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ABSTRACT 
 
 

The paradigm of model evaluation is challenged by compensations between 

various forms of errors and uncertainties that are inherent to the model development 

process due to, for instance, imprecise model input parameters, scarcity of experimental 

data and lack of knowledge regarding an accurate mathematical representation of the 

system. When calibrating model input parameters based on fidelity to experiments, such 

compensations lead to non-unique solutions. In turn, the existence of non-unique 

solutions makes the selection and use of one ‘best’ numerical model risky. Therefore, it 

becomes necessary to evaluate model performance based not only on the fidelity of the 

predictions to experiments but also the model’s ability to satisfy fidelity threshold 

requirements in the face of uncertainties. The level of inherent uncertainty need not be 

known a priori as the model’s predictions can be evaluated for increasing levels of 

uncertainty, and a model form can be sought that yields the highest probability of 

satisfying a given fidelity threshold. By implementing these concepts, this manuscript 

presents a probabilistic formulation of a robust-satisfying approach, along with its 

associated metric.  

This new formulation evaluates the performance of a model form based on the 

probability that the model predictions match experimental data within a predefined 

fidelity threshold when subject to uncertainty in their input parameters. This approach 

can be used to evaluate the robustness and fidelity of a numerical model as part of a 

model validation campaign, or to compare multiple candidate model forms as part of a 

model selection campaign. In this thesis, the conceptual framework and mathematical 
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formulation of this new probabilistic treatment of robust-satisfying approach is presented. 

The feasibility and application of this new approach is demonstrated on a structural steel 

frame with uncertain connection parameters, which has undergone static loading 

conditions.  
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CHAPTER ONE 
 

INTRODUCTION 
 

1.1 Motivation 
 
 In today’s technology driven society, the role of the computer simulation model 

has become one of utmost importance in the continued success of a majority of the 

industries that make up the global market. From the design and manufacturing of 

children’s toys to real-time predictions of the ever-fluctuating financial markets to the 

analysis and design of today’s longest and tallest structures, simulation models are at the 

heart of it all. With the ever-increasing complexity of modern day analytical challenges, 

the dependence on computer simulations has become inevitable. Therefore, the highest 

level of confidence in the predictions of these computer models is required to meet the 

standards of present day practices. Confidence in model predictions can be established 

through selection of a proper model that can fit the needs of the challenge at hand. Thus, 

this manuscript presents a novel approach to model evaluation that accounts for the 

uncertainties inherent in the modeling process while evaluating a model’s probability of 

successfully reproducing realistic observations within an accuracy threshold.  

  In numerical modeling, assumptions often stem from poorly known values of 

input parameters and lack of knowledge regarding the correct form of equations to 

characterize the system response behavior. Consequently, numerical models can only 

provide an approximate representation of the physical reality (Atamturktur et al. 2011), 

and thus, establishing confidence and credibility in these models’ predictions becomes 

essential for modeling and simulation to support decision making. However, establishing 



 2

such confidence is a difficult task when the response of interest cannot be obtained from 

direct measurements. Such responses may include the vibration amplitude of a newly 

developed seismic base isolation system undergoing extreme earthquake loading without 

building a full-scale physical model (Koh and Kelly 1990); or the performance 

characteristics of fuel-rod cladding in a nuclear reactor in the event of a natural disaster 

without having to undergo risky nuclear testing (Lassmann 1992). Also, these predictions 

often involve what-if scenarios that attempt to simulate future responses at untested 

settings, making the task of model validation even more difficult.  

 As a result, numerical models must be validated at settings where experiments are 

available to ensure that the predictions adequately represent a realistic, physical 

phenomenon at settings where experiments are unavailable. Traditionally, this validation 

task is handled solely focusing on the fidelity of the predictions to experiments through a 

process widely known as test-analysis correlation. Test-analysis correlation involves 

systematic comparisons of model simulations with experimental observations by 

establishing a quantitative validation metric (Doebling 2002, Oberkampf and Barone 

2006). Typically, validation metrics are defined by a distance norm between model 

predictions and experimental observations.  

 The approach of solely focusing on fidelity however has proven to be problematic 

due to compensating effects from parametric uncertainties and model bias which can 

allow for multiple sets of input parameters to yield predictions with similar fidelity; a 

phenomenon known as non-uniqueness (Berman 1995). What is more, many of the 

assumptions made during initial development of the model regarding the formulation of 
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mathematical equations tend to have profound effects on the sensitivity of the model’s 

predictions to uncertainties in the input parameters (Elishakoff 1995). If incorrect 

assumptions are made in the model formulation, slight variations in the input parameters 

can lead to drastic degradation in the model’s predictive accuracy (Belegundu and Zhang 

1992, XiaopingDu and WeiChen 2002, Au et al. 2003). The degree of sensitivity of a 

model’s predictions to variations caused by uncertain input parameters, such as uncertain 

material properties or uncertain boundary conditions, is formally known as the model’s 

robustness-to-uncertainty (Phadke 1989, Taguchi 1993, Du and Chen 2000, Hemez and 

Ben-Haim 2004). Based on this definition, a model that has a higher robustness-to-

uncertainty will produce more consistent results even in the face of uncertain input.  

With the increasing complexity of today’s modern engineering challenges come 

gaps in knowledge of how to accurately simulate the complex behavior taking place. This 

lack of knowledge may manifest itself, for instance, as uncertainty in the model input 

parameters. If left unaccounted for, these input parameter uncertainties can have 

detrimental effects on the accuracy of model predictions, possibly leading to unforeseen 

catastrophic failures in engineered systems and threats to public well-being. Therefore, a 

thorough evaluation of these uncertainties and their effects on the model predictions are 

necessary. 

This thesis presents a robust-satisficing approach for model evaluation that 

assesses the probability of success for satisficing the fidelity threshold for a given amount 

of uncertainty in the input parameters. This approach follows three distinct steps to 

evaluate the model’s predictions. First, the fidelity of a given model form is evaluated at 
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various, predefined levels of threshold fidelity. Next, the uncertainty in the input 

parameters, represented as nested, unbounded intervals, is propagated through the model 

to evaluate the uncertainty in the predictions. Finally, by evaluating the probability of 

success of the model in satisficing the predefined threshold fidelity, a degree of 

confidence in the model form is quantified. These three steps ultimately lead to the 

evaluation of the model’s prediction fidelity, robustness to uncertainty and probability of 

successfully satisficing the fidelity threshold as well as the trade-offs between all three 

attributes.  

To summarize, this thesis advocates that trying to achieve a model which 

perfectly matches observational data, in the sense that traditional, fidelity-based model 

calibration is carried out, is infeasible due to unavoidable compensations between various 

forms of errors and uncertainties in model predictions and experiments. Therefore, this 

thesis asserts that one must evaluate a family of plausible models that satisfice a desired 

level of accuracy relative to the model’s intended use. An advantage of this approach is 

that, in the face of severe uncertainty in parameter values, multiple alternative model 

forms that satisfice the same fidelity threshold can be further distinguished based on their 

probability of successfully satisficing that fidelity threshold. Furthermore, the trade-off 

between fidelity, robustness to uncertainty and probability of successfully satisficing the 

fidelity requirement is presented as a decision making tool.  
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1.2 Organization of the Thesis 

This thesis begins by providing background knowledge of existing techniques for 

quantifying modeling uncertainties and, thus, for evaluating the predictive capabilities of 

numerical models.  Chapter three then explains in detail the new approach for model 

evaluation presented in this thesis, henceforth referred to as probabilistic treatment of 

robust-satisficing approach. Chapter three demonstrates the application of this new 

approach on an academic example using three different model forms. Chapter four 

applies the probabilistic treatment of robust-satisficing approach to a case study of a 

structural portal frame with uncertainty in the model form as well as the input parameters 

for connection stiffness and demonstrates the viability of the method for identifying the 

most preferred model form. Chapter five is an extension of the case study presented in 

Chapter four in that the models are then further evaluated using a triple-objective 

optimization of fidelity, robustness, and probability of success, which implements the use 

of NSGA-II. Finally, Chapter six briefly summarizes the main contributions of the thesis, 

and then discusses the limitations of the new model evaluation method along with the 

future direction.  
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CHAPTER TWO 

BACKGROUND 

 
In the past half century, scientists and engineers have come to realize the growing 

need for assessing the level of uncertainty in model predictions (Elishakoff 1995). This 

has led to the development of numerous methods for analyzing models that attempt to 

simulate the physics of realistic phenomena. Uncertainty quantification methods available 

in the established literature that are relevant to this thesis include probabilistic methods, 

interval analysis methods, possibility theory, and methods employing nested convex sets. 

The following sections will give a brief description of each of these methods. 

2.1  Probabilistic Methods 
 

Perhaps the most extensively applied method is probabilistic analysis, where the 

central concept is to represent the uncertainty in the model input parameters using 

statistical distributions based on measurement data, published literature or experience. 

The probabilistic distribution is used to represent the parameter of interest, where the 

distributions assign probabilities to the possible values of the parameter, therefore 

acknowledging uncertainty in any single value.  After characterizing the uncertainty in 

the model parameters, the second step in this method is to propagate the uncertainty 

through the model in order to determine the uncertainty’s effect on the model’s 

predictions. Typically, a probability distribution of prediction values is obtained.  

The Monte Carlo method is widely used to carry out the forward propagation of 

uncertainty (Wu et al. 1990, Hills and Trucano 1999, Pepin et al. 2001). This method 
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involves executing a large number of simulations using random values of the input 

parameters generated by sampling their respective probability distributions, with the 

ultimate goal of creating a distribution of prediction values. According to the method, the 

prediction with the highest frequency of occurrence is the most likely prediction. 

However, because of the large number of simulations required for this method, Monte 

Carlo method can become infeasible, especially when the simulation model is more 

computationally demanding. Another very common technique is known as the Advanced 

Mean Value method, which employs a truncated Taylor’s series expansion of the model 

form to evaluate the change in the model’s predictions with changes in the input 

parameters (Wu et al. 1990). This method is generally suited for more time-costly 

computer analysis and is known for requiring less functional evaluations (Pepin et al. 

2001).  

2.2 Interval Analysis 
 

Although the probabilistic techniques are well established and have accrued much 

success in past research, they require prior information about the probability 

distributions, and small errors in the distribution data can lead to large errors in the 

prediction distributions (Elishakoff 1995). Therefore, where probabilistic information 

about the properties of a system is not available, other non-probabilistic techniques may 

be better suited. One popular non-probabilistic technique is interval analysis, in which the 

uncertain parameters are expressed by a range of values (Rao and Berke, 1997). The 

information regarding the distribution of the parameters within that range need not be 

known, and therefore, there are infinite possible values of the uncertain parameter within 
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that range. The objective of interval analysis is then to discover upper and lower bounds 

of prediction values, which satisfice the equations that constitute the model form; or also 

put, the analysis finds the least favorable and most favorable predictions that still satisfice 

the set constraints (Qiu and Wang, 2003).  Moens and Vandepitte (2005a) describe an 

approach to interval analysis that uses hypercube approximations to estimate the domain 

of the exact solution set. The main disadvantage to traditional interval analysis, however, 

is that the range of prediction values gives no consideration to the likelihood of a 

particular outcome.  

2.3 Possibility Theory 
 

Another popular theory for quantifying uncertainty, which can be seen as a 

combination of probability theory and interval analysis, is known as possibility theory. 

Possibility theory is seen as an alternative to probability theory in that it provides a 

measure that defines the degree to which an event can occur (Moens and Vandepitte 

2005a).  More specifically, this theory assigns a degree of possibility between 0 and 1, 

with 0 representing an impossible situation and 1 representing a common situation (but 

not guaranteed), to each element in a set of elements describing the validity of its 

description. The set of possibilities then defines a possibility distribution, which conveys 

the amount of existing knowledge about the values in the set (Dubois 2006). Possibility 

values are determined via a normalized mathematical function called the possibility 

function. The fundamentals of this theory are extended from the concept of fuzzy logic, 

which was first introduced by Zadeh (1965). Formally, fuzzy logic is centered on the 

capability of defining incomplete information through the use of fuzzy sets (Elton, Juang 
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and Lin 2000). To reiterate, these sets distinguish between elements of the set by varying 

degrees of membership using a membership function. This function assigns a normalized 

grade of membership to each element defining the level of certainty to its description. 

Furthermore, the membership range is subdivided into various levels, typically called α-

levels, and where the value of the membership function, which defines the input 

uncertainties, intersects with each level defines an interval. Then an interval analysis is 

performed using the intervals just defined, resulting in corresponding intervals of results 

for each α-level (Moens and Vandepitte 2005b).   

2.4 Convex Modeling 
 

Convex modeling is another non-probabilistic theory that can be implemented for 

the quantification of uncertainty. The main idea of this approach that differentiates it 

from the previous theories mentioned is that convex modeling is an approach for 

bounding uncertainty. For instance, uncertain parameters can be bound to a certain value, 

or uncertain functions can be bound by an envelope of functions or by an integral. The 

objective is to find the lower and upper bounds of a model which are consistent with 

some given quantity of information (Ben-Haim 1994). This is contrary to previous 

theories that instead use mathematical functions defined over a domain of events. Here, 

an event refers to a set of physical parameters used in the formulation of a mathematical 

function (Ben-Haim 1994). Also, the initial set of values for the said physical parameters 

are herein known as the nominal parameter values and are typically chosen based on prior 

information if available or expert judgment. These nominal values also represent the 

geometric center of the convex model from which the size of the model structure is 
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measured. Elishakoff and Ben-Haim (1990) provide a theorem which proves that possible 

realizations of uncertain events have a tendency to cluster into convex sets. However, the 

existence of non-convex uncertain events is acknowledged, and is associated with the 

characteristics of the events.  

The clustering property of uncertain events is what gave rise to the theory of 

uncertainty quantification through convex modeling (Elishakoff and Ben-Haim 1990). 

Ben-Haim (1996) uses the concept of convex modeling to pioneer Information-Gap 

Decision Theory, a widely accepted approach to making informed decisions under severe 

lack of information. In this theory, he applies structured convex and non-convex models 

to quantify uncertainties associated with decision making.   

In convex modeling, each function within one of the convex sets is said to 

represent a possible realization of an uncertain event. According to the theory of convex 

modeling, the uncertain predictions will tend to congregate into sets that vary in size 

based on the amount of uncertainty in the model’s parameter values (Ben-Haim 1996). 

An important advantage of this theory, like the interval analysis method, is that 

probabilistic information about the distributions of the uncertain parameters is not 

required. One only needs estimations of the range of values for the uncertain parameters 

in order to effectively carry out the method. It also shows that convex modeling focuses 

on the geometric representation of uncertain events. This allows uncertainty analysis to 

be guided by the size and location of its convex sets; however, the structure of the convex 

model is initially assumed and held constant throughout the analysis. This concept and its 
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intricate role in the present method will be further dissected in the following chapter on 

failure surfaces and their role in defining fidelity and robustness. 
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CHAPTER THREE 

METHODOLOGY 
 
 

The approach described herein is a method that evaluates a model’s ability to 

realistically simulate physical observations by quantifying the model’s probability of 

successfully satisficing a given fidelity threshold value. In this chapter, the ability to 

discriminate between multiple models that yield similar fidelity predictions based on the 

robustness of these models to yield said fidelity under uncertainty is thoroughly 

discussed. This new approach is then demonstrated on a notional, proof-of-concept 

application. The method is comprised of three main steps: (1) defining a failure surface in 

parameter space (i.e., two uncertain parameters would yield a two-dimensional, plane 

failure surface, and three uncertain parameters would yield a volumetric failure surface) 

that quantifies the fidelity of the model output to physical observations; (2) exploiting the 

spatial variability of the failure surface to assess model robustness using increasing, 

unbounded sets of parameter values; (3) calculating the model’s probability of 

successfully satisficing the fidelity requirement given increasing uncertainty in the input 

parameter values.   

3.1 Defining the Failure Surface for Model Fidelity 
 

The probabilistic treatment of the robust-satisficing approach relies on the 

assumption that all possible realizations of uncertain quantities which are consistent with 

some given amount of information will cluster together (Ben-Haim 1994). In this thesis, 

the uncertain quantities will be defined as uncertainty in the values of the model’s input 
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parameters. Since each convex set of output is associated with some given quantity of 

information regarding the input, and the size of these sets depends on this available 

information, the change in the size of the set of uncertain realizations can be said to be 

directly correlated with the change in the information. Given this association, and the 

notion that all values contained within a convex set give prediction fidelity relative to 

experimental measurements no worse than that assigned to the set, a connection can be 

made between the values that are outside of the set bounds and failure to achieve that 

set’s level of fidelity. Therefore, the concept of a failure surface will herein be defined as 

a geometric set of uncertain function realizations which all yield predictions with the 

same level of error from the experiments (i.e., fidelity to experiments). 

 Another bi-product of the mathematical simplification of a real physical system is 

that there may exist multiple model forms, which the modeler will have to choose from. 

This means that the modeler must decide which model is most appropriate for simulation 

of the phenomena of interest. This thesis advocates that in this selection importance 

should also be given to the robustness of a model. In other words, if two models display 

the same fidelity, the model that is more robust should be chosen for simulation. In 

convex modeling, given the same fidelity threshold, a larger geometric set of solutions 

translates to a more robust design compared to a smaller set (Ben-Haim 1995).  
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           (a)                                          (b)                                           (c) 

Figure 3.1: Failure surfaces for three different notional model forms (a) failure 

surface centered at the nominal parameter values (b) failure surface centered away 

from the nominal parameter values (c) failure surface centered at the nominal 

parameter values, yet fewer solutions 

 
Figure 3.1 illustrates the concept of a model’s failure surface for a given fidelity 

threshold value for a hypothetical model with two input parameters. In this figure, the 

abscissa and ordinate axes represent the uncertain input parameter values U1 and U2, 

respectively. Failure surface here is defined as the area encompassed by the geometric set 

(in this example a circle) representing all pairs of input parameter values that yield model 

output that is consistent with a specific fidelity threshold value. For instance, for each of 

the three models shown in Figure 3.1, there is an associated domain of acceptable 

parameter value pairs, which would guarantee a predefined level of fidelity to 

experiments. A contour drawn to envelope these acceptable parameter values would yield 

what is henceforth referred to as failure surface.  

U2 

U1 

αααα 

U2 

U1 

αααα 

U2 

U1 

αααα 
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Hemez and Ben-Haim (2004) describe this phenomenon as ambiguity, which 

occurs when variables, such as input parameters or model forms, can interact to 

reproduce the data in more than one way. The α values shown in Figure 3.1 are a 

measure from the nominal parameter values of the model to the boundary of the failure 

surface. This is a common robustness measure associated with convex models of 

uncertainty called worst-case robustness analysis (Parkinson et al. 1993, Chen et al. 1996, 

Su and Renaud 1997, Lee and Park 2001, Au et al. 2003). Worst-case robustness analysis 

may use an expansion parameter, such as α in Figure 3.1, to quantify the level of 

uncertainty in the model output given uncertain input. It does so by expanding the size of 

the uncertain input domain until failure occurs (i.e., the expansion parameter reaches the 

boundary of the failure surface), hence the name worst-case analysis (Figure 3.2). In this 

sense, the model design is said to be totally immune to unexpected input variations that 

fall within the predefined intervals. 

 

 
 

Figure 3.2: Demonstration of the expansion parameter α if the convex model was 

assumed to be uniformly bound 
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Worst-case robustness analysis is known to be conservative and can result in 

over-designing of the system being modeled (Mulvey, Vanderbei and Zenios 1995). 

Furthermore, this approach may create the problem illustrated in Figure 3.1. Figure 3.1(a) 

shows a model’s failure surface that is centered at the nominal parameter values and 

displays a large domain of acceptable parameter values. Figure 3.1(b), however, shows a 

failure surface with the same parameter domain size as Figure 3.1(a), yet the surface is 

not centered at the nominal parameter values, and thus α stops expanding much earlier 

than it did with the model in Figure 3.1(a). On the other hand, there may exist multiple 

model forms where their domain of acceptable input parameter values are centered at the 

same values yet their domain sizes vary for the same fidelity value, as shown in Figure 

3.1(c). Here, the failure surface may be centered at the nominal input parameter values 

but the model can only tolerate small deviations from those the nominal values before 

failing to satisfice the fidelity threshold. With the worst-case robustness analysis, the 

robustness of parts (b) and (c) would be quantified as equal for a given fidelity threshold. 

However, if the domain size was selected as the robustness measure, then the two models 

shown in (b) and (c) would be identified to have different robustness. As seen, neither 

approach is able to distinguish between these three models. Herein, the challenge arises 

to differentiate between these model forms as to determine which one will yield the most 

robust results considering their probability of successfully yielding the results with a 

minimum level of fidelity. 
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3.2 Derivation of the Failure Surface  
 

As discussed in the previous section, this probabilistic treatment of the robust-

satisficing approach presented herein  relies heavily on the use of a geometric delineation 

of input parameter values that defines the varying levels of a model’s fidelity, referred to 

herein as the failure surface. The term failure surface, in this thesis, stems from the 

concept of convex modeling of uncertainty in which all uncertain parameter values that 

lay on or within the boundary of the surface yield output within the same fidelity 

threshold value.  

Let’s consider a model  with  uncertain input parameters, , 

defining an -dimensional parameter space, where 

                                                  for                     (Equation 1) 

In this equation,  is the model output and  and  are the model input parameters. 

The  parameters represent a subset of the input parameters called the control parameters, 

which are known to the analyst and can be controlled during the experiment. These 

variables define the domain of applicability. The uncertain parameters  cannot be 

controlled by the analyst, yet they exhibit significant influence on the results of the 

model. The  variables represent all other variables in the model which are neither 

controlled nor uncertain.  

Here, the analyst is assumed to have prior knowledge regarding the nominal (i.e. 

best estimate) values for ; however, their precise values or distributions are unknown. 

The fidelity of this model to reproduce reality with various input parameter values can be 

determined by exploiting the availability of experiments. For instance, fidelity can be 
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defined as the normalized deviation of model predictions from experimental 

measurements as given in Equation1: 

                                                                                            (Equation 2) 

where  represents the norm of the error between the model predictions  and the 

experimental measurement . In Equation 1,  indicates a suitable norm, such as a 

Euclidian distance, i.e. absolute geometric distance between two points; Mahalanobis 

distance, i.e. weighted distance between a point and a population that considers the 

correlations; Bhattacharyya distance, i.e. weighted distance between two populations that 

also considers the correlations. 

 Assuming that a  -dimensional parameter space contains a solution that can 

identically reproduce the results of an experimental measurement; i.e., , where  

represents the predefined fidelity threshold, there would exist a single (unique) solution 

set of  model input parameters  that satisfice this requirement. If such a solution does 

not exist, then there will be a single (unique) solution that would yield the best fidelity 

(i.e., lowest R value) to experiments. Such unique, so-called ‘best fidelity’ solutions 

cannot be trusted however, due to the inevitable compensations between various forms of 

uncertainties and errors in the model. The problem is further compounded by the 

inevitable uncertainties in the experimental measurements . All things considered, 

fidelity alone is an unrealistic indicator of a model’s predictive ability.  

Let’s evaluate the functional form of Equation 2 for a model with a two-

dimensional parameter domain  corresponding to the input parameters  and  given 

by the following generalized model:   
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                                                                                              (Equation 3) 

where  represents the fidelity metric, or level of disagreement between the model 

predictions and experimental observations, to be minimized. This representative 

functional form of Equation 3 is illustrated in Figure 3.3. 

 
 

Figure 3.3: Depiction of a minimization function in two-dimensional parameter 

space 

 
The goal is to find all coordinate pairs of  and  in this three dimensional 

domain that give ‘the same’ values of  (within acceptable tolerance limits). Thus, the 

analyst desires the coordinates of points in the -  plane that satisfice the following 

conditions: 

                                                                                                (Equation 4) 
 
where  is the desired fidelity threshold of our model predictions. Equation 3 can be 

reorganized into the following form: 
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                                                                                         (Equation 5) 

Based on Equation 3, it is clear that for any other point that is not on our desired failure 

surface we will have the following condition: 

                                                                  (Equation 6) 

where  represents the domain of parameter values that are bounded by the failure surface 

at the fidelity threshold . Therefore, by defining an objective function in the following 

form and minimizing the  value, the points on the failure surface can be found. 

                                                                                         (Equation 7) 

where  is the tolerance limit, i.e. absolute value of the discrepancy between the 

prediction fidelity and the predefined fidelity threshold. However, a tradeoff exists 

between the solution accuracy of  and the time to solution. In other words, the smaller 

the value of , the longer the computation time.  

 The objective function for minimization can now be formatted into the following 

general equation: 

                                                              (Equation 8) 

In Equation 8, the threshold value of  was decided to be , but it should be noted that 

this value is subjective and case specific. 

Most optimization approaches require an initial, starting point for the algorithm. 

The initial starting point used in this method is the nominal values of the uncertain input 

parameters. The second point is then chosen randomly within a specified allowable range. 

This range will also be based upon the analyst’s judgment. Each point after is selected as 

the calculated average of the two previous points. However, if a selected point does not 
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satisfice the condition given by Equation 6, the algorithm starts over from the initial 

point. This iterative process continues until the desired number of points  that satisfice 

Equation 8 are found. The collection of these points for a single fidelity threshold value 

makes up the failure surface. This algorithm can be implemented to generate multiple 

failure surfaces for a single model, each corresponding to a specific fidelity threshold 

value. A flow chart describing the algorithm’s step-wise process is shown in Figure 3.4.  
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Figure 3.4: Flowchart of optimization algorithm used to define the failure surface of 

a two-dimensional uncertain parameter domain 
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To solve this minimization problem, a variety optimization methods can be 

implemented such as gradient-based minimization approaches (i.e., Newton’s method, 

Steepest Descent Approach, Golden Section,  fminsearch) or stochastic optimizations 

(i.e., Genetic Algorithms, Ant Colony Optimization, Cultural Optimization, Particle 

Swarm Optimization). 

Naturally, the input parameter values associated with equivalent prediction 

fidelity can be linked together to form an individual failure surface as shown in Figure 

3.5 for a two-dimensional parameter domain. Equation 8 provides the link between the 

input parameter values and the threshold fidelity. However, the value of fidelity threshold 

 need not be known initially since the current method evaluates the model for 

increasing levels of  so that the analyst can visualize how the simulation is behaving as 

more uncertainty is introduced into the input parameters. This evaluation therefore 

naturally leads to a trade-off analysis, which is discussed later in this chapter.  

                                            {:                       (Equation 9) 

 

Figure 3.5: Example failure surface for a single level of fidelity 
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From Figure 3.5, it can be seen that the failure surface may not assume a specific 

geometric shape, such as a circle, square or ellipsoid. Moreover, the allowable ranges for 

parameter values that satisfice a given fidelity requirement may assume different values 

in different parameter dimensions as shown by and  in Figure 3.5. Thus, 

assessing the entire failure surface allows for a complete evaluation of the amount of 

uncertainty that can be tolerated in the model input parameters and still satisfice a given 

fidelity requirement.  

The amount of uncertainty that can be tolerated, which can be defined through the 

use of a variety of metrics, yields an indication of the robustness of the model predictions 

to uncertainty. For instance, Ben Haim (1996) defines robustness as the maximum 

allowable deviation from the nominal value in one of the input parameter dimensions in 

which failure cannot occur as illustrated in Figure 3.6.  The symbol α shown in Figure 

3.6 is a metric used in convex modeling of uncertainty to measure the amount of 

uncertainty that is consistent with 100% success of a system’s operation (Ben-Haim 

1996). The magnitude of α grows with each increase in the allowable uncertainty in the 

system (i.e., increase in the size of the failure surface in Figure 3.5). Therefore, in regards 

to the geometry of convex sets, α is also known as the uncertainty parameter, and is used 

to evaluate the amount of acceptable uncertainty a system will tolerate before failure 

occurs. Although a circle is shown in Figure 3.6, based on the information available to 

the modeler regarding the uncertainty within the model, a number of geometrical 

configurations can be used to represent the uncertainty (Ben-Haim 2006). For instance, 
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ellipsoidal models are a frequent configuration encountered in convex models of 

uncertainty. 

 

 
 

Figure 3.6: Illustration of the uncertainty parameter αααα as implemented in worst-

case robustness analysis methods 

 
There are other alternative definitions for robustness depending on the 

characteristics of the problem; for instance, Hample (1971) qualitatively defines a robust 

parametric model as one whose distributions of the parameter estimations are defined by 

weak-continuous functionals. Taguchi (1993) originally defined robust design as the 

ability to minimize the effects of the causes of variations without eliminating the causes. 

Taguchi’s method has been widely accepted as a standard for the quality control of 

industrial designs (Phadke 1989; Chen et al. 1998). Regardless of the metric used to 

define robustness, it can be said that the size of the failure surface in Figures 3.5 and 3.6 

is indicative of the robustness of the model against uncertainty.  
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Of course, as the fidelity threshold is increased, the uncertainty that is allowed in 

the input parameters naturally increases as a larger number of parameter sets can satisfice 

this increasingly less stringent fidelity requirement. If the process is carried out for 

multiple levels of fidelity threshold, a hyper-dimensional volume can be obtained. One 

such volume is illustrated in Figure 3.7 for the two-dimensional domain shown earlier in 

Figures 3.5 and 3.6. From here, the decision maker can evaluate the trade-off between 

fidelity, robustness-to-uncertainty and probability of success and make an informed 

decision in determining the appropriate fidelity requirement for the model.  

 

 
 

Figure 3.7: The domain of parameter values (  and ) increasing with increasing 

error in the predictions (i.e., decreasing fidelity) of an example model 

 
Figure 3.7 also demonstrates the relationship between the size of the failure 

surface and the fidelity (i.e., prediction error). Here, a larger failure surfaces entails more 

solutions or acceptable pairs of input parameter values that will satisfice the fidelity 

threshold. Furthermore, Figure 3.7 visually demonstrates the paradigm proposed by Ben-

Haim and Hemez (2011), in which the relationship between fidelity and robustness-to-
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uncertainty are mutually antagonistic. In other words, one cannot improve one aspect 

without deteriorating the other. Therefore, when selecting a simulation model that will 

best represent the physical system in question, a model which yields high fidelity 

predictions is likely to lack robustness, and if left unchecked, can lead to low fidelity 

predictions when slight variations are introduced into the modeling parameters. This 

confirms the necessity to base the process of model selection on more than just prediction 

fidelity, but also on the effect of uncertainty on the fidelity.   

Also note that in Figure 3.7, the rate at which the size of the failure surfaces are 

growing indicates the compromise between the fidelity threshold and robustness against 

uncertainty for a given model, a quality of the convex modeling, robust-satisficing 

approach that was established by Ben-Haim (1996). If the model displays significant 

gains in robustness with only slight loss of fidelity, it could be considered a favorable 

trade-off in the eyes of the model developer, since this would mean that the simulation 

model has gained immunity to the parameter uncertainty while still producing accurate 

predictions. On the other hand, if it is shown that the model’s fidelity degrades quickly 

with little gain in robustness, this could mean that there exist significant inconsistencies 

in the model. Herein lies the basis of this presented method as a decision-making tool for 

model developers.   

3.3 Probabilistic Evaluation of Satisficing the Fidelity Threshold 
 

With the failure surface defined, the robustness of the model to the uncertainty in 

the input parameter values can be quantified via probabilistic assessment of the model’s 

ability to satisfice the fidelity threshold. This is necessary since it is the model’s 
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predictions that are compared to the observed data, and there needs to be a link between 

the amount of uncertainty in the system and model’s ability to produce robust predictions. 

This defines the core of the novel probabilistic treatment of robust-satisficing approach.  

While worst-case robustness analysis does not allow for any failure to occur, in 

the proposed method, the robustness metric is defined as the measure of the allowable 

deviations from the nominal model input parameters for a given probability of 

successfully satisficing a fidelity threshold requirement. Evaluating a model's probability 

of successfully satisficing a fidelity threshold invokes the concept that there is an 

"acceptable" tolerance for failure of said threshold. 

 By exploiting the failure surface that was derived in Section 3.2, the robustness 

evaluation can be carried out by assessing the spatial variability of the input parameters 

within the domain defined by the input parameters. Hence, given prior knowledge 

regarding the best estimate (i.e., nominal) values for the input parameters, the failure 

surface for a given model can be used to define that model’s probability of successfully 

recreating the phenomenon being simulated. This can be accomplished by defining nested 

sets of the input parameters around the nominal values. The phrase “nested sets” refers to 

monotonically increasing the size of each set, or also put, the domain of the previous set 

is always contained in the domain of the successive set.  

The use of nested sets implies that the bounds of input parameter values are 

sequentially increased to sample a sufficiently large domain of values so that all feasible 

values of the input parameters are attempted. Ultimately, model robustness is evaluated 

by comparing the parameter values contained in the failure surface with the increasing 
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sets of input parameter values that are centered around the nominal parameter values. The 

ratio of the number of input parameter solutions within the failure surface that match the 

input parameter values within the nested sets to the total number of values sampled in the 

nested set is used to determine the probability of successfully satisficing the threshold 

fidelity requirement. The sets of parameter values need to be sampled thoroughly to 

achieve an accurate determination of probability of successfully satisficing the fidelity 

requirement. This approach for evaluating fidelity and robustness results in a much more 

computationally efficient technique than traditional Monte Carlo techniques.  

3.4 Proof of Concept Demonstration 

3.4.1 Robustness Evaluation 
 

A proof-of-concept demonstration of the aforementioned procedure was carried 

out on three mathematical models. In this academic example, these three model forms are 

assumed to be developed to simulate the same phenomenon. All three models share the 

ability to satisfy the same fidelity thresholds with non-unique sets of input parameter 

values. The challenge herein is distinguishing which model form best represents the 

phenomenon being simulated.  

First, let’s consider a model whose failure surface centered at the nominal 

parameter values. This is depicted as Model 1 in Figure 3.8. This figure shows that by 

expanding the uncertainty parameter α the probability of the model being able to 

successfully satisfy the associated fidelity threshold deteriorates. This is representative of 

increasing the uncertainty in the input parameter values. Here, the approximately 14% 

increase in α between Figure 3.8(a) and 3.8(b) leads to a 20% decrease in the model’s 
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probability of satisfying the fidelity requirement, and the 12.5% increase in α from 

Figure 3.8(b) to 3.8(c) leads to a 17% decrease in the probability of success. It should 

also be noted that the α increase for  and  does not need to be the same. 

 

                                  
 (a)                                         (b)                                          (c) 

Figure 3.8: Sampling of Model 1 for three interval ranges given equal fidelity 

thresholds (a) Probability of Success = 99%; (b) Probability of Success = 79%; (c) 

Probability of Success = 62% 

 
Let’s now consider a model whose failure surface is not centered at the nominal 

parameter values, henceforth referred to as Model 2 (Figure 3.9).  Figure 3.9 depicts the 

results of the sampling procedure on Model 2 for the same fidelity threshold value as that 

used for Model 1 in Figure 3.8.  

 

 



 31

 
                         (a)                                           (b)                                           (c) 

 
Figure 3.9: Sampling of Model 2 for three interval ranges given equal fidelity 

thresholds (a) Probability of Success = 70%; (b) Probability of Success = 62%; (c) 

Probability of Success = 54% 

 
Now consider a third model, henceforth referred to as Model 3, that is centered at 

the nominal parameter values like Model 1; however, the failure surface is much smaller. 

Figure 3.10 illustrates how the proposed method discriminates between the robustness of 

models that otherwise would be considered similar according to the worst-case 

robustness analysis approach described in Chapter 2 of this thesis. This figure shows the 

comparison between Model 2 and 3 using the proposed method for the same fidelity 

threshold value as well as the same magnitude of the uncertainty parameter α. If the 

robustness analysis was based solely on the worst-case approach (i.e., the largest α value 

reached before breaching the failure surface) then Models 2 and 3 would be described as 

having similar robustness since the distance from the nominal values to the failure 

surface is the same for both models. However, given their failure surfaces in Figure 3.7, 

one can see that Model 2 has a much larger domain of parameter values that satisfy the 

fidelity requirement, although Model 2 has a failure surface that is centered on the 
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nominal parameter values. Based on the proposed method, Model 2 has a 54% 

probability of successfully satisfying the fidelity requirement, while Model 3 has a 15.5% 

probability of satisfying the fidelity requirement. Thus, the proposed method successfully 

distinguishes between the predictive capabilities of the two models. The following 

section will discuss how to analyze each model’s ability to handle the increasing 

uncertainty as well as define a metric that will distinguish each model based on their 

immunity to the uncertainty.   

 

                          
 

             (a)                                                     (b) 

Figure 3.10: Comparison of Probability of Success for (a) Model 2 to (b) Model 3 for 

equal fidelity threshold requirement and parameter sample interval 

3.4.2 Trade-off between Robustness to Uncertainty and Fidelity-to-data for a given 

Probability of Success  

In general, a model is considered validated when it can be said with confidence 

that the formulation of the model is representative of the physical system throughout the 

entire domain of applicability (Hemez and Ben-Haim 2004). Therefore, it is necessary to 

analyze a model over all plausible values of the uncertain input parameters. Of course, 
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the extent of plausible parameter values is based solely on the amount of knowledge 

available about the parameter values. This is yet another decision to be made by the 

analyst. This evaluation then illustrates how each model is affected by the increasing 

uncertainty over all plausible values of the uncertain input parameters.  

Here, the approach uses unbounded, monotonically increasing sets of the input 

parameters represented by the uncertainty parameter α centered at the nominal parameter 

values to compare spatially within the parameter domain contained by the failure surface. 

Since this method focuses on quantifying robustness based on the clustering of possible 

events that are consistent with a given level of information and not on ranking the 

frequency or possibility of occurrence, less prior information is necessary for analysis. 

This is a critical advantage to the proposed method that has also been emphasized by 

Ben-Haim (2006). 

This process must then be carried out for increasing levels of fidelity (i.e., 

increasing sizes of the failure surfaces) as well as the increasing uncertainty in the input 

parameters just previously discussed. Then the trade-off relationships between fidelity, 

uncertainty parameter, and probability of successfully satisfying a defined fidelity 

threshold should be analyzed to determine the most preferable model (i.e., displaying 

favorable robustness and fidelity attributes simultaneously). This procedure was carried 

out for the three academic models shown earlier in Figures 3.8, 3.9 and 3.10 and the 

results are given in Figures 3.11, 3.12 and 3.13 for comparison of these three different 

model forms. 
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Figure 3.11: Trade-off between Robustness to Uncertainty and Fidelity-to-data for a 

given Probability of Success for Model 1 (refer to Figure 3.8) 

 

 

Figure 3.12: Trade-off between Robustness to Uncertainty and Fidelity-to-data for a 

given Probability of Success for Model 2 (refer to Figure 3.9) 



 35

 

Figure 3.13: Trade-off between Robustness to Uncertainty and Fidelity-to-data for a 

given Probability of Success for Model 3 (refer to Figure 3.10) 

 
In Figures 3.11, 3.12 and 3.13, one can visualize how all three attributes (i.e. 

fidelity, robustness of the said fidelity and probability of satisfying the fidelity) of this 

method interact for these three different models. Although the numerical results differ 

between all three models, the trends follow the same pattern. As the uncertainty 

parameter α increases, the probability of successfully satisfying the fidelity requirements 

deteriorates as expected. The opposite trend occurs for the error in the model predictions. 

It should be noted that fidelity has an inverse relationship to prediction error (i.e., high 

prediction error means low fidelity and vice versa). In all three models, as the error is 

allowed to increase, there exists more possible values of the input parameters that can 

satisfy the fidelity requirement, and therefore the probability of success increases. 

However, by observation of Figures 3.11, 3.12 and 3.13 it appears that Model 1 has the 

most favorable reaction to the increasing uncertainty parameter.  
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There are three scenarios that exist for the decision maker (DM) in this process. 

First, the DM can choose a probability of success that he or she feels establishes a 

reliable level of confidence in the model, and then assess the trade-off between fidelity 

and the uncertainty parameter. Another scenario would be to establish a fidelity 

requirement up front, then analyze the results for probability of success versus the 

uncertainty parameter. Here, the DM would be able to assess a model’s prediction ability 

based on how their probabilities of successfully satisfying the fidelity requirement change 

with the increasing uncertainty parameter. The third scenario would be to initially 

establish a certain magnitude of the uncertainty parameter α and then analyze the change 

in probability of success with the change in the fidelity requirement. A specific fidelity 

threshold can be decided upon based on analysis of how the fidelity varies given an 

increasing uncertainty parameter. Once this predefined level is reached, the system is 

deemed to be robust to the level of uncertainty (value of the uncertainty parameter) that 

corresponds to that fidelity threshold (i.e., will yield predictions accurate to within the 

fidelity threshold with a given probability of success).  

The robust-satisfying approach taken is then defined as the highest magnitude of 

the uncertainty parameter that a model can achieve for a given probability of successfully 

satisfying a fidelity threshold requirement. In other words, given several model forms 

using the same uncertain parameters, the model with the largest uncertainty parameter 

evaluated at the same probability of success is the most robust. This concept can be 

formulated mathematically as follows: 

                                                         (Equation 10) 
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 where  represents the maximum robustness of the model’s predictions,   represents 

the probability of successfully satisfying the fidelity threshold,  is the probability of 

success threshold,  is the fidelity associated with a given uncertainty parameter 

requirement, and  is the threshold fidelity value. This concept is also illustrated in 

Figure 3.14 for a constant magnitude of the uncertainty parameter α. 

 

 
 

Figure 3.14: Probability of success versus prediction error for a constant αααα  
 
 

Figure 3.14 also illustrates a unique phenomenon in this decision making process 

known as preference reversal. For Models 1 and 2 in Figure 3.14, between 0 and 2 

percent error, the two models can be seen exchanging roles as the more successful model, 

as shown by the enlarged window. At approximately 0.5% error Model 2 yields a higher 

probability of success than Model 1, yet this outcome reverses at 2% error and continues 

this trend. This concept, referred to as preference reversal, shows that a model may 

seemingly produce accurate predictions for a certain phenomenon; however the 
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underlying uncertainties inherent with the model formulation can cause fluctuating 

behavior that another model may more suitably manage.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 39

CHAPTER FOUR 

CASE STUDY APPLICATION: STEEL MOMENT RESISTING FRAME WITH 

UNCERTAIN CONNECTION STIFFNESS 

 
The proposed procedure developed in this manuscript is demonstrated on a case 

study of a two-story, two-bay, steel portal frame shown in Figure 4.1. In steel frame 

structures, connection stiffness values are typically highly uncertain due to natural 

variability in material properties, geometry and construction practices. These parameters 

are typically calibrated against experiments in an attempt to converge on their true values 

and, thus, in this study are treated as calibration parameters, K1 and K2. In this case study, 

aside from being also unaware of the exact values of K1 and K2, the model developer is 

also assumed to have an inaccurate knowledge of the underlying shear deformation 

behavior of the system. . As a result, multiple model forms with varying accuracy of 

shear deformation representation and with uncertain input parameters are developed.  

The model developers are assumed to have experimental evidence to calibrate the 

uncertain parameters of the model. Accordingly, synthetic experimental data are 

generated in the form of displacement responses of the frame using an exact model that 

accurately accounts for the effects of shear deformations and also uses the assumed exact 

values of K1 and K2. The goal of these experiments is to determine which model best 

represents the experiments given uncertain input parameters. 
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Figure 4.1: Two-bay, two-story portal frame with rotational springs at the top and 
bottom of the first story left and center columns 

 
 

Aside from uncertainties in connection parameters, uncertainties also exist within 

the model due to assumptions and simplifications made to the governing equations, 

widely known as model form error (Draper 1995, Kennedy and O’Hagan 2001, 

Atamturktur et al. 2012, Farajpour and Atamturktur 2012). Furthermore, these 

assumptions and simplifications can allow for multiple model forms to yield similar 

results, drawing into question which model form is most representative of the real 

phenomenon.  

  Recognizing that no model is perfect, the model developer herein is assumed to 

be unaware of the accuracy of which the shear deformations are accounted for. Thus, 

besides the model that is used to generate the synthetic experiments, two inaccurate 

model forms are developed; one that underestimates the shear area coefficient and one 

that overestimates the shear area coefficient. Furthermore, the model developer is 
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assumed to be unaware of the true values of K1 and K2 shown in Figure 4.1. Therefore, 

the two inexact models will inaccurately account for the shear deformations, while all 

three models will remain uncertain as to which values of K1 and K2 are appropriate for 

the analysis. These inaccurate and imprecise models will thus result in unavoidable 

disagreements between predictions and experiments. 

4.1 Exact Model 
  

The portal frame is constructed from vertical columns that sit on pinned supports, 

while the beams are rigidly connected to the columns at two levels except at the 

connections of the left and center first story columns to the left, first story beam. Here, 

the connections are represented with linear rotational springs. All members of the portal 

frame have uniform cross-sections. A static, external horizontal load is applied to the top 

of the portal frame, and the members are oriented in such a way that they bend about their 

strong axis. The applied force is assumed to be in the elastic range and the sections are 

assumed not to yield under bending or shear stresses. Geometric data and material 

properties of the model frame are provided in Table 4.1. 

 
Table 4.1: Input values for the portal frame 

 
Property Description Beams Columns 

Member Length (m) 4 3 
Cross-Sectional Area (m2) 0.05 0.05 
Moment of Inertia (m4) 0.1 0.05 
Young’s Modulus (Pa) 200x10^1 200x10^1 
Shear Area Coefficient 0.95;1;1.05 0.95;1;1.05 
Poisson’s Ratio 0.3 0.3 
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 Here, Timoshenko beam theory (Hartmann and Katz 2007) is applied to consider 

the axial, shear, and flexural deformations of the frame elements. All members are 

assumed to experience zero deformations when not under loading; i.e., gravitational loads 

due to self-weight are neglected.  

 Synthetic experimental data is generated by applying a known horizontal force to 

the top story of the portal frame and using a finite element model to solve for lateral 

displacements at six locations on the frame using a so-called “exact” model. This model 

is assumed to implement physically accurate assumptions and equations for determining 

shear deformations, while also using the “precise” values of K1 and K2. Experimental 

uncertainty is neglected for this application.  

4.2 Accurate Model with Imprecise Input Parameters 
 

The proposed model updating methodology is first demonstrated on an accurate 

model with imprecise parameter values of K1 and K2. In this study, to simulate the 

uncertainty in the stiffness parameters, Monte Carlo simulations are employed for the 

unknown values of K1 and K2. Here, a uniformly distributed range of values is specified 

for both K1 and K2. The ranges of values for both parameters are given in Table 4.2, and 

were selected as such so that all plausible values of K1 and K2 would be sampled.  As 

mentioned in Chapter 2, the Monte Carlo method samples numerous random values from 

the specified ranges and evaluates the finite element model for each sampled pair of K1 

and K2 to obtain model predictions. The model predictions are then compared to the 

synthetic experimental data to calculate the prediction error  for the various values of K1 

and K2. Failure surfaces are then generated for the varying levels of . Herein,  is 
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formulated as the absolute mean value of the normalized error between the synthetic 

experimental displacement data and the model predictions as follows: 

                                                           (Equation 11)                         

where  is the number of locations on the portal frame at which displacement 

measurements are taken, while  and  still represent the experimental measurements 

and model simulations, respectively. It should be noted that model fidelity still has an 

inverse relationship with the error calculated in Equation 11. The exact values for K1 and 

K2 as well as their ranges for the Monte Carlo predictions are provided in Table 4.2.  

 
Table 4.2: Exact Values and Simulation Ranges for Input Parameters K1 and K2 

 
 K1 K2 

Exact Value 33000 40000 
Lower Bound 3300 4000 
Upper Bound 132000 160000 
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Figure 4.2: Two-dimensional representation of the expanding failure surfaces for 

the accurate model with imprecisely known input parameters, where the black dot 

represents the location of the nominal parameter values 

 
The dot in Figure 4.2 represents the exact values of the input parameters K1 and 

K2. The formation of the failure contours and their increasing size can be seen in the 

figure. The model form used in the development of this figure was the “accurate” model 

form, and that is why the failure contours are centered on the true parameter values. A 

three dimensional representation of the failure surfaces as they expand with increasing 

prediction error is shown in Figure 4.3.  
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Figure 4.3: Three-dimensional representation of the failure surfaces for the accurate 

model 

 
Figure 4.3 illustrates the relationship between the error in the model output (i.e. 

lack of fidelity) and the size of the domain of parameter values encompassed by the 

failure surface. As expected, the domain of acceptable parameter values encompassed by 

each failure surface increases with increasing error in the model output. It can be seen 

that the contours increase in size quite rapidly, suggesting that the model possibly has a 

favorable trade-off between fidelity and robustness. It can also be seen that the error in 

predictions increases very rapidly for small values of K1 and K2, which is expected. As 

the values of K1 and K2 approach zero, the frame becomes unstable and thus yields large 

lateral deformations. On the other hand, for very large values of K1 and K2, the frame 

becomes stiffer and asymptotically converges to having fully rigid columns. Thus, the 

increase in discrepancy between predictions and experiments develops much more 

slowly. This relationship is depicted in Figure 4.4. 
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Figure 4.4: Relationship between increasing connection stiffness (Ki) and the mean 

prediction error 

 
Moreover, as the model form changes, shifts in the origin of the failure contours 

would be expected. This shift is due to the introduction of model bias and/or 

compensating effects between the uncertain parameters into the prediction results.   

4.3 Inexact Models with Uncertain Input Parameters 
 
 In this study, the two inaccurate finite element models that are used to analyze the 

portal frame displacements are assumed to underestimate and overestimate the shear area 

coefficients necessary to incorporate the shear deformation by 5% in both models (i.e., 

95% of the shear area and 105% of the shear area, respectively) in the element stiffness 

matrices, therefore, introducing two different model forms. This will unavoidably 

introduce imperfections into the models ultimately changing each model’s behavior. The 

failure surfaces for the two inexact models are generated and shown in Figures 4.5 and 

4.6.  
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Figure 4.5: Two-dimensional failure surfaces for the inexact model with 95% shear 

deformations 

 
 As seen in Figure 4.5, the underestimation of the shear area causes the failure 

surfaces to shift downward, which is evident when compared to Figure 4.2. As shown, 

the nominal parameter values represented by the black dot in the figure no longer fall at 

the center of the initial (smallest) failure surface. This shift is a result of the 

compensations between model imperfections and uncertain input parameters. This entails 

that the model requires lower values of K1 and K2 to increase the lateral deformations of 

the frame since less shear deformations are accounted for due to less shear area. As 

expected, the opposite effect is seen in Figure 4.6 for the inexact model that is 

overcompensating for shear deformations.  



 48

 

Figure 4.6: Two-dimensional representation of failure surfaces for 105% shear 

deformations 

 
In Figure 4.6, the compensating effects caused by the imprecision in the model 

due to overcompensation of shear deformations causes an upward shift in the failure 

surfaces, encompassing larger values of K1 and K2. Referring back to Figure 4.4, the 

larger stiffness values create stiffer connections and, therefore, decrease the model’s 

calculated lateral displacements and, in turn, the prediction error. It can also be seen that 

the initial failure surface is larger than that of the two previous models, meaning that this 

model can allow for more variations in the parameter values for this level of fidelity.  

4.4 Utilizing the Failure Surfaces 
 
 The failure surfaces for the three models are evaluated for their probability of 

successfully satisfying the fidelity threshold values. Here, the unbounded sets of input 

parameter values are centered at the nominal parameter values, which in this study are the 

exact values of K1 and K2 used in the formulation of the exact model and also given in 
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Table 4.2. For each fidelity threshold value evaluated, the uncertainty parameter α is 

increased from 0-100% of its original size at steps of 20%. The original size of α is set as 

[(K i-K i*0.125),(Ki+Ki*0.125)]. Thus, an α value of zero indicates this initial range. 

Fidelity thresholds are evaluated between 0.01-1.41% error.  Figures 4.7, 4.8 and 4.9 

show a single failure surface from each of the three models being compared to a set of 

parameter values for K1 and K2 of a certain size.   

 

 
 

Figure 4.7: Failure surface for the accurate model at R = 0.885% being evaluated 

for αααα = 40% 
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Figure 4.8: Failure surface for the inexact model accounting for 95% shear 

deformations at R = 0.885% being evaluated for αααα = 40% 

 

 

Figure 4.9: Failure surface for the inexact model accounting for 105% shear 

deformations at R = 0.885% being evaluated for αααα = 40% 
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By comparing the failure surfaces in Figures 4.7, 4.8 and 4.9, it can be seen that 

their sizes and locations differ for all three models. Given that these failure surfaces are 

all associated with the same fidelity threshold Rt = 0.885%, this proves the existence of 

multiple model forms that can satisfy the same fidelity requirement. However, from the 

method proposed in this manuscript, it can also be seen how the utilization of the failure 

surfaces distinguishes between the models even though all three still satisfy the same 

fidelity threshold. The area of the parameter set that falls within the failure surface 

represents each model’s ability to satisfy that fidelity requirement. Figures 4.10, 4.11 and 

4.12 display the interaction between increasing prediction error and increase uncertainty 

parameter and their effect on each model’s probability of successfully satisfying the 

fidelity threshold.  

 

 
 

Figure 4.10: Three-dimensional plot of probability of success versus the uncertainty 

parameter versus prediction error (inverse of fidelity) for the accurate model 
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Figure 4.11: Three-dimensional plot of probability of success versus the uncertainty 

parameter versus prediction error (inverse of fidelity) for the model with 95% shear 

deformations 

 

 

Figure 4.12: Three-dimensional plot of probability of success versus the uncertainty 

parameter versus prediction error (inverse of fidelity) for the model with 95% shear 

deformations 
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Figure 4.10 illustrates the trade-off between the fidelity, uncertainty parameter 

and probability of success. In this figure, one cannot improve the probability of success 

without decreasing the uncertainty parameter and/or decreasing the model fidelity (i.e., 

increasing prediction error). These attributes are said to be antagonistic and are the reason 

that the model developer is also a decision maker.  

Figures 4.11 and 4.12 display these antagonistic trade-offs between the three 

attributes except for a small region in both figures (the far right side of both figures) 

where the antagonistic traits do not hold true. This can occur when model bias and 

compensating effects between model parameters cause the failure surface to shift away 

from the nominal parameter values, as shown in Figures 4.5 and 4.6. In this situation, 

when the unbounded nested sets are applied to the increasing failure surfaces, only the 

extreme values of a set fall within the failure surface, yielding a small probability of 

success. However; the successive sets, which are larger than the previous sets contain 

more values that fall within the failure surface and, thus, yield a larger probability of 

success. Therefore, with increasing uncertainty in the input parameters, the model’s 

probability of successfully satisficing the fidelity requirement increases.  

 Given these three figures, it can be seen that the accurate model in Figure 4.10 

displays more favorable trade-offs in that its probability of success increases more 

quickly than the other two models. Though this may seem intuitive, it does signify that 

the proposed method is effective in helping the model developer identify the model that 

best represents the physical experiment, even in the face of parametric uncertainty. This 

is further illustrated in Figures 4.13, 4.14 and 4.15.  
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Figure 4.13: Probability of Success versus Prediction Error for a constant αααα 

 

Figure 4.14: Probability of Success versus the uncertainty parameter for constant R 

 
 

Figure 4.15: Prediction error (inverse of fidelity) versus the uncertianty parameter 

for a constant Ps 
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Figure 4.13 shows that the probability of successfully satisfying the fidileity 

requirements for the accurate model increases much faster than the two inexact models 

given a constant  value of the uncertainty parameter. In this figure, the value of the 

uncertainty parameter is zero, which means that the initial set range of parameter values 

was used for evaluation.  

From Figure 4.14, it can be seen that as the uncertinaty parameter is allowed to 

expand, and the probability of success for all three models begins to converge. This 

means that the differences in model form are more distinguishable for lower values of 

input parameter uncertainty. Once a sufficient amount of uncertainty is allowed in the 

input parameters, the compensations between the bias errors and parameter uncertainties 

allow the two inaccurate models to yield a probability of success similar to that of the 

accurate model.  

Figure 4.15 compares the fidelity and the uncertianty parmaeter for a single 

probability of success. Here, the decision maker can establish a minimum probability of 

success requirement and then evaluate which model performs best given the increasing 

uncertianty in input parameters. The common factor in all three figures is that the 

decision maker must be able to decide upon the threshold values to be able to make 

informed decisions. The following section explains the use of an optimization algorithm 

to assist in this process. 
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CHAPTER FIVE 

MODEL EVALUATION USING MULTI-OBJECTIVE OPTIMIZATION 
 
 

The approach discussed in Chapter 3 and demonstrated in Chapter 4 on a case 

study application of a steel portal frame for model selection naturally leads to a multi-

objective optimization problem with three distinct objectives: fidelity, uncertainty in 

input parameters and probability of success of satisfying the fidelity with a given amount 

of uncertainty in the input parameters. As reported earlier, these three objectives tend to 

be uncooperative in nature, and thus a single solution that optimizes all of these 

objectives does not always exist in the solution space. However, a set of solutions that are 

better than all other solutions can be obtained.  

Unlike single objective optimization, the purpose of which is to search for a single 

best design, multi-objective optimization yields a family of optimum designs, which is to 

find multiple Pareto-optimal solutions. When the objectives are conflicting (or 

uncooperative), it is not possible to have a single solution which simultaneously 

optimizes all objectives (Deb et al. 2002). However, a set of solutions, referred to as 

Pareto front that are better than all other solutions can be obtained. These designs 

constitute a Pareto optimum set (or Pareto front), as illustrated in Figure 5.1. 
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Figure 5.1: Illustration of a Pareto Front 

A general multi-objective optimization problem can be expressed as: 

                                     

( ) ( ) ( ) ( )1 2Minimize:   , , ,  

Subject to: ( ) 0 1,...,

l

i

f f f

g i n

= …  
≤ =

F d d d d

d             (Equation 12)

 

with f  representing each of the single objective functions, and g representing the 

constraint functions. The Pareto front can be viewed as a set of designs, which dominate 

all other designs (Marler and Arora 2004). The domination relationship is defined as 

follows: 

• design B is dominated by design A, if A is superior to B in at least one criteria 

(i.e., fi(d)A< fi(d)B for at least one i), and  

• A is not inferior to B in all other criteria (i.e., fi(d)A≤ fi(d)B for all other i). A 

design that is not dominated by any other design is included in the Pareto front  
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Thus, the Pareto front supplies a clear, visual representation of the trade-off between 

multiple objectives as, among the Pareto front solutions, one cannot gain improvement in 

one of the objectives without  compromising  the other objective(s). 

Many multi-objective optimization methods can also be implemented to derive 

the Pareto front such as MOEAs, Zitzler and Thiele’s (1998) strength Pareto EA (SPEA), 

Knowles and Corne’s (1999) Pareto-archived evolution strategy (PAES), and Rudolph’s 

(1997) elitist GA. Over the past decade, a number of evolutionary algorithms (MOEAs) 

have also been suggested to solve such multi-objective problems (Fonseca and Fleming 

1993; Hom et al. 1994; Srinivas and Deb 1994). Among the evolutionary algorithms, the 

low computational requirements, its elitist approach and parameter-less sharing make 

Non-dominated Sorting Genetic Algorithm (NSGA-II) a widely-used algorithm (Deb et 

al. 2002). 

Herein, NSGA-II is employed to solve the proposed multi-objective model 

selection problem introduced in Chapter 4 considering, first, probability of success and 

fidelity of the prediction obtained with the nominal parameter values, and then, second, 

all three objectives. The two-objective optimization will yield a line of optimal solutions 

that separates two areas; one area containing feasible solutions and the other containing 

infeasible solutions. The three-objective optimization yields a three-dimensional surface 

of solutions which separates two volumes, again one feasible and the second, infeasible. 

A population size of 50 is used for each generation, and the converged solution (i.e., 

Pareto front) is acquired after 100 generations.  
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Figure 5.2: Evaluation of the accurate model through multi-objective optimization 

considering fidelity (error), uncertainty (αααα) and probability of success 

 

 

Figure 5.3: Evaluation of the inaccurate model through multi-objective optimization 

considering fidelity (error), uncertainty (αααα) and probability of success 

 
 As shown in Figure 5.2, as the uncertainty parameter increases in magnitude the 

optimal solutions only exist for lower probabilities of success. Also, more optimal 

solutions exist for high levels of error (low fidelity) as well. The surfaces shown in 

Figures 5.2 and 5.3 not only represent the optimal solutions to the multi-objective 
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problem, but they also separate feasible solutions from infeasible solutions. Less optimal, 

but feasible, solutions exist above and behind the surfaces, while infeasible solutions 

would exist below the surfaces. This is due to the antagonistic qualities between the three 

objectives. 

By comparison of Figures 5.2 and 5.3, one can see that the Pareto front surface of 

the accurate model in Figure 5.2 obtains more solutions with low error (high fidelity) and 

high uncertainty. This, in turn, translates to a more robust model. Also, it can be seen that 

the accurate model contains higher probability of success solutions. As a DM, the 

evaluation of these three attributes yields a clear model choice of the accurate model.  
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CHAPTER SIX 

CONCLUSION 
 
 

In numerical modeling, uncertainties inherently exist due to unknown or partially 

known values of input parameters as well as an imperfect understanding or lack of 

knowledge of the underlying physics that drive the model. These uncertainties often lead 

to compensating effects between the input parameters that may give the modeler a false 

perception of the accuracy of the model. Compensating effects between input parameters 

typically result in the existence of non-unique solutions. Although we acknowledge that 

the existence of a “perfect” model is highly unlikely, it is necessary to implement criteria 

that adequately distinguish between the robustness of multiple model forms with varying 

domains of acceptable input parameter which satisfy the same fidelity threshold value. At 

the same time the criteria cannot be overly conservative leading to unrealistic, over-

designed systems. Therefore, the method presented in this manuscript assesses different 

model forms based on three criteria: fidelity-to-data, robustness-to-uncertainty, and 

probability of successfully satisfying a predefined fidelity threshold requirement.  

In this manuscript, a new methodology is proposed for assessing the robustness of 

a simulation model to discriminate between multiple models that yield similar 

predictions. Instead of estimating the boundary of solutions which satisfy a given level of 

information, the proposed approach implements an optimization algorithm which solves 

for the exact boundary of solutions that satisfy a given level of prediction fidelity, or 

otherwise known as the inverse error of the predictions. This boundary is referred to as 

the model’s failure surface. By accurately defining the failure surface, the modeler can 
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then exploit this domain by spatially comparing the contained parameter values with 

increasing sets of the modeler’s best estimation of the real parameter values. These sets 

of parameter values are unbounded, monotonically increasing sets of values whose size 

are defined by a metric known as the uncertainty parameter α. The increasing magnitude 

of α represents increasing the uncertainty in the parameter values. A spatial comparison 

refers to comparing the parameter values contained in the failure surface to those 

contained in the increasing input parameter sets.  

The goal of this procedure is to quantify how the model reacts to uncertainty in 

the input parameters, also known as the model’s robustness to uncertainty. Therefore, the 

ratio of the number of parameter values from the set that fall within the failure surface 

domain to the total number of parameter values in the set is used as the metric to quantify 

this relationship. In this manuscript, this measure is known as the probability of success.  

More specifically, it is the probability of the model to successfully satisfy the fidelity 

threshold value associated with a particular failure surface. Thus, this method defines 

three metrics that are used by the model developer to decide upon the most appropriate 

model form, the model fidelity, uncertainty parameter and probability of success. To 

highlight the conflicting relationships between these metrics, a multi-objective 

optimization procedure is performed using a non-dominated genetic sorting algorithm 

known as NSGA-II. From these results, a modeler can make an informed decision as to 

which model form best characterizes the realistic phenomenon being simulated.  
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