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ABSTRACT 

As the developing world is industrializing and people migrate to cities, the need 

for infrastructure is growing quickly and concrete has become one of the most widely 

used construction materials. One poor construction practice observed widely across the 

developing world is the minimal use of reinforcement for concrete structures due to the 

high cost of steel. As a low-cost, high-performance material with good mechanical 

properties, bamboo has been investigated as an alternative to steel for reinforcing 

concrete. The goal of this research is to add to the knowledge base of bamboo reinforced 

concrete (BRC) by investigating a unique stirrup design and testing the lap-splicing of 

flexural bamboo reinforcement in concrete beams. Component tests on the mechanical 

properties of Moso bamboo (Phyllostachys edulis) were performed, including tensile tests 

and pull-out tests. The results of the component tests were used to design and construct 

13 BRC beams which were tested under monotonic gravity loading in 3 and 4-point 

bending tests. Three types of beams were designed and tested, including shear controlled, 

flexure controlled, and lap-spliced flexure controlled beams. The test results indicated 

that bamboo stirrups increased unreinforced concrete beam shear capacities by up to 

259%. The flexural bamboo increased beam capacities by up to 242% with an optimal 

reinforcement ratio of up to 3.9%, assuming sufficient shear capacity. Limitations of the 

bamboo reinforcement included water absorption as well as poor bonding capability to 

the concrete. The test results show that bamboo is a viable alternative to steel as tensile 

reinforcement for concrete as it increases the ultimate capacity of the concrete, allows for 

high deflections and cracks, and provides warning of impending structural failure. 
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Chapter 1 – INTRODUCTION 

1.1 Research Overview 

As the developing world is becoming more industrialized and people are 

migrating to the cities, the need for infrastructure is growing quickly and concrete has 

become one of the most widely used construction materials. The construction industry 

has expanded rapidly and is in a haphazard and disorganized state in many developing 

countries. This problem, coupled with many other critical challenges faced by developing 

countries has led to sub-standard and dangerous construction practices that have severe 

consequences when tested by natural disasters. The 7.0 magnitude earthquake that hit 

Port-au-Prince, Haiti in January 2010 was a shocking reality of the devastation occurring 

due to poor construction practices. One poor construction practice observed widely across 

the developing world is the minimal use of reinforcement for concrete structures. 

Concrete requires tensile reinforcement, traditionally steel rebar, due to its brittle and low 

tensile strength nature. In many cases however, little to no rebar is provided to reinforce 

the concrete. This is the result of a lack of experience and knowledge on the part of the 

contractors as well as the inability of the owner to afford steel rebar - the cost of rebar for 

a home can be very expensive relative to the average income. 

The high cost of steel rebar as well as the increasing emphasis on sustainable 

construction materials has led researchers to investigate alternatives to steel 

reinforcement. One promising alternative for steel reinforcement is bamboo. Bamboo is 

part of the grass family and is currently categorized into over 1,200 species (Judziewicz 

et al., 1999). In many regions of the world, especially in India and Southeast Asia, 
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bamboo is being used as a common construction material for scaffolding, housing and 

bridges. Bamboo’s fast growth rate and high tensile strength make it a good candidate for 

reinforcing concrete.  

The physical and mechanical properties of bamboo have been studied extensively. 

Bamboo reinforced concrete (BRC) has been studied at Pontifical Catholic University of 

Rio de Janeiro (PUC-Rio) in Brazil, Clemson University and the University of Texas 

Arlington in the United States and Fukuyama University and Kumamoto University in 

Japan, among other places. However, more practical demonstration is required before 

bamboo gains enough credibility to be used to reinforce concrete structures around the 

world. 

The goal of this research is to add to the knowledge base of bamboo reinforced 

concrete (BRC) by focusing on a unique stirrup design and testing the lap-splicing of 

flexural reinforcement. Tests of the mechanical properties of bamboo were performed 

including the tensile strength and bond strength between bamboo and concrete. These 

results were used in the design and construction of bamboo cages to reinforce concrete 

beams. This research presents the results of tensile tests and pull-out tests on Moso 

(Phyllostachys edulis) bamboo harvested from the Clemson University Experimental 

Forest. Using the tensile and pull-out test results, 13 full-scale BRC beams were 

constructed and tested under monotonic gravity loading to assess the performance of 

bamboo as shear reinforcement, flexural reinforcement and lap-splicing. The preliminary 

test results show that bamboo is a viable alternative to steel as tensile reinforcement for 

concrete structures. 
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1.2 Research Problems 

1. Variability of both physical and mechanical properties from one bamboo culm 

to another 

2. Low bond strength between bamboo and concrete 

3. Water absorbing quality of bamboo 

4. Brittle failure of bamboo which may prevent ductile failure of BRC beams 

1.3 Objectives and Scope of Research 

Since there are over 1,200 species of bamboo with varying physical and 

mechanical properties, the results from this research may not apply directly to all species 

of bamboo. This research was conducted using Moso bamboo (Phyllostachys edulis) 

grown in Clemson, SC. 

1.3.1 Tensile strength 

1. Further investigate the tensile strength and tensile failure modes of Moso 

bamboo. 

2. Determine the relationship of bamboo nodes (locations on the bamboo plant 

which separate the hollow segments and where the branches grow from) to 

bamboo tensile strength. 

1.3.2 Bond strength 

3. Investigate the effect of nodes and water proofing agents on the bonding 

between bamboo and concrete. 
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4. Determine the required development length needed to achieve full tensile 

capacity of the bamboo. 

1.3.3 Bamboo reinforced concrete beams 

5. Determine a design using bamboo reinforcement that addresses its brittle 

failure mode. 

6. Investigate the shear capacity of bamboo reinforced concrete beams provided 

by closed-loop bamboo stirrups and determine the optimum stirrup spacing. 

7. Investigate the flexural capacity of bamboo reinforced concrete beams with 

varying percentages of bamboo and determine the optimum percentage of 

flexural reinforcement. 

8. Investigate the lap-splicing of flexural bamboo reinforcement and determine 

the minimum allowable lap-splice length. 

9. Determine an efficient and practical method for constructing bamboo cages 

for reinforcing concrete in the field. 
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Chapter 2 – LITERATURE REVIEW 

 

The following section presents a literature review on the topic of bamboo 

reinforcement for concrete in developing countries. The introduction of the literature 

review covers the properties of concrete and the function of steel as reinforcement. 

Construction problems in developing countries are addressed, with a specific look into 

Haiti. An investigation into the cause of building failures from the 2010 Haiti earthquake 

concludes that the lack of proper reinforcement due to its high cost was a major problem. 

This introduces bamboo as a low cost alternative to steel rebar. 

The physical structure and mechanical properties of bamboo are introduced with 

an emphasis on bamboo properties relating to its use as reinforcement. The economic and 

environmental impacts of bamboo are briefly discussed as well as common applications 

of bamboo around the world. 

 The final sections of the literature review provide information on the past studies 

of bamboo reinforced concrete emphasizing the results from the test specimens and actual 

field construction of several bamboo reinforced concrete structures. Finally, various 

issues with bamboo reinforcement are presented. 

2.1 Concrete as a construction material 

Concrete is the most common, man-made, building material that is being used for 

many applications including the construction of residential houses, high-rise buildings, 

bridges, streets, and dams. As the developing world is becoming more industrialized and 

people are migrating to the cities, the need for infrastructure is growing quickly and 
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concrete has become the primary construction material. Concrete has many advantageous 

properties including high compressive strength, durability, fire-resistance, low 

maintenance and energy efficiency. 

However, one disadvantage of concrete is its relatively low tensile strength. For 

this reason, concrete must be reinforced with high tensile strength materials to carry the 

tensile loads. Masonry structures and mortar have similar properties to concrete, and must 

also be reinforced. The most common reinforcing material for concrete and masonry 

structures is steel rebar. 

Rebar, also known as reinforcing steel bar, is commonly made of mild steel, 

although for special corrosion resistant applications it can be made of stainless steel. 

Most rebar is made from scrap steel from automobiles, farm equipment and other 

discarded steel products, which are processed into the final steel bars. The milling 

process is well monitored with high levels of quality control. This ensures uniform 

strength, size and shape from rebar to rebar. 

The idea of reinforced concrete was developed in 1849 by Joseph Monier, a 

Parisian gardener. Monier made garden pots and concrete basins reinforced with an iron 

mesh. He patented the idea in 1867, displaying his discovery at the Paris exposition the 

same year. Monier soon realized the potential for steel reinforcement for concrete in other 

engineering applications including bridges, floors, arches and pipes (Joseph Monier, n.d.). 

2.2 Construction problems in Haiti 

As many developing countries are rapidly urbanizing, and their infrastructures are 

expanding, often times little oversight is given to the local contractors and engineering 
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designs are not used in construction. A prime example of this is in Port-au-Prince, Haiti. 

The majority of buildings in Port-au-Prince consist of low-rise, non-engineered, concrete 

block masonry structures which are used for single-family dwellings and small 

businesses. The roofs and floors are generally reinforced concrete slabs, 4-6 inches thick, 

with a single layer of reinforcement. The concrete frames of the buildings are lightly 

reinforced with slender columns which contain unreinforced concrete masonry walls 

(International Code Council [ICC], 2010). 

According to Disaster’s Emergency Committee (DEC), around 86% of people in 

Port-au-Prince live in slum conditions of tightly packed, poorly-built, concrete buildings. 

Typical low income housing in Port-au-Prince can be seen in Figure 2.1. 

 

Figure 2.1 Typical low income housing in Port-au-Prince 

(AFP photo) 

 

Most homeowners construct their houses themselves or hire local contractors who 

have little engineering experience. While most Caribbean countries use the Caribbean 
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Uniform Building Code (CUBiC), Haiti has no building code. Occasionally engineers 

will use U.S. or European building codes, but only voluntarily, as no codes are enforced 

by the government. In recent years, building permits have been required for some 

buildings, but construction inspections are extremely rare. As a result, most of Haiti’s 

infrastructure is built without engineering code enforcement and without quality control 

of construction methods and materials (ICC, 2010). The consequences of the poor 

construction were fully realized after the earthquake in 2010. 

2.3 Haiti earthquake 

In January 2010, a 7.0 magnitude earthquake occurred 10 miles south-west of 

Port-au-Prince. According to the DEC, 3.5 million people were affected by the 

earthquake and over 220,000 are estimated to have died. Close to 200,000 houses were 

badly damaged and 100,000 houses were destroyed, leaving 1.5 million people homeless. 

The quake crippled the fragile infrastructure of Port-au-Prince destroying 60% of 

government buildings, including the national palace, and 80% of schools. At the peak, 1.5 

million people lived in refugee camps at critical risk from storms, flooding and diseases. 

The cholera outbreak in October, 2010 left over 6,000 dead and thousands more infected 

(Haiti Earthquake Facts and Figures, 2010). 

Immediately following the earthquake, international engineering teams traveled to 

Port-au-Prince to investigate the nature and cause of the structural failures. The 

catastrophic damage resulted from poor construction methods and materials, including 

improper use of steel reinforcement. Unreinforced concrete masonry walls were observed 
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to have collapsed under out-of-plane loading. The damage from the earthquake can be 

seen in Figure 2.2. 

 

Figure 2.2 Earthquake damage 

(LA Times) 

The average compressive strength of concrete in the United States ranges from 

2,500 psi for residential structures to 4,000 psi and higher for commercial applications. 

According to ACI 318-11, concrete used for seismic design must have a compressive 

strength of 3,000 psi. In Haiti, the average compressive strength of concrete is 1,300 psi 

with a standard deviation of 530 psi according to a report by Georgia Tech (DesRoches, 

2011). The high variability of concrete strength in Haiti stems from poor construction 

practices including improper mixing, inconsistent mix designs, poor aggregate quality 

and insufficient cement. 
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An article from National Society of Professional Engineers (NSPE) highlights 

some of the findings of several earthquake engineers. According to Peter Coats, a senior 

engineer who volunteered through Earthquake Engineering Research Institute (EERI), 

smooth rebar was the standard in Europe until the 1950s and 1960s. This rebar was used 

in Haitian construction until it was phased out around the year 2000, and as a result, the 

majority of reinforced buildings in Port-au-Prince were reinforced with smooth rebar 

having low bond strength to the concrete (Leiserson, 2010). 

2.4 Rebar alternatives 

The main deterrent to using rebar in Haitian construction is its cost. There is 

currently no production of rebar in Haiti, so all rebar must be imported. Being an island 

country also drives up the cost of imports. In a country where over 70% of the population 

lives on less than $2 USD per day, it would cost many months wages to purchase the 

required steel to properly reinforce a house. Rather than spend their income to reinforce 

their house, many spend their money on more immediate needs such as food and 

education and hope that an earthquake or hurricane does not happen. 

The high cost of rebar as well as the increasing emphasis on sustainable 

construction materials has led researchers to investigate alternatives to steel 

reinforcement. One promising alternative to steel reinforcement is bamboo, which has 

been studied extensively at Pontifical Catholic University of Rio de Janeiro (PUC-Rio) in 

Brazil, Clemson University and the University of Texas Arlington in the United States, 

Eindhoven University of Technology in Holland and Fukuyama University and 

Kumamoto University in Japan, among other places. 
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2.5 Introduction to bamboo 

2.5.1 Physical structure 

 Bamboo is part of the grass family and is currently categorize into over 1,200 

species which can be divided into two main groups: woody and herbaceous bamboos. 

Herbaceous bamboos are commonly called pygmy bamboos and resemble grasses with 

broader leaves than woody bamboo. Woody bamboos are the more commonly known 

bamboos which can grow to extraordinary sizes (Botanical Features of Bamboo, 2011). 

Bamboo grows from seeds or a rhizome system which provides the foundation for 

the bamboo plant underground. The underground bamboo structure can be seen in Figure 

2.3. Bamboo shoots grow from the rhizome and become mature culms, which are the 

woody stems of bamboo. By the time bamboo culms appear, they have already reached 

their full diameter. Young bamboo culms are protected by a layer of sheaths which fall 

off as the culms mature. Most species of bamboo are hollow but are partitioned by 

diaphragms which are denoted by a ring around the culm. The diaphragm and outside 

ring form a “node” from which branches and protective sheaths grow. The portion of the 

culm in between nodes is known as the “internode.” Both the diameter and wall thickness 

of bamboo is largest at the base and gradually decreases from bottom to top. Internodal 

length however, is largest in the middle of the culm. Figure 2.4 labels the various portions 

of the bamboo plant (Janssen, 2000). 
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Figure 2.3 Bamboo structure  

(Garden, 2012) 

 

 

Figure 2.4 General features of a bamboo culm 

(Subrahmanyam, 1984) 
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Bamboo has very fast growth rates and has set the Guinness World Record for the 

fastest growing plant, some species growing over 30 inches (76.2-cm) in day under ideal 

conditions. It can reach its full growth in just a few months and gain maximum strength 

in just a few years, giving it significant economic advantage over other construction 

materials (Ghavami, 2005). 

2.5.2 Growth distribution 

Bamboo has an extremely wide geographic distribution and can be found in a 

variety of habitats. Bamboo is indigenous to every continent except for Antarctica and 

Europe and can be found from 46°N to 47°S latitude. Figure 2.5 shows the geographic 

distribution of bamboo around the world. Bamboo also has a high altitudinal range and 

can grow from sea level to heights of 10,000 to 13,000 feet (3,000 to 4,000 meters) in the 

Himalayan and Andes mountain ranges (Botanical Features of Bamboo, 2011). 

 

Figure 2.5 Geographic distribution of bamboo 

(Wikimedia) 
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2.5.3 Natural durability 

 According to Janssen (2000), the service life of bamboo is lower than most woods 

partially due to the absence of certain preservative chemicals and also because of 

bamboo’s hollow, thin walled structure. Even a small amount of destruction to the 

bamboo wall could seriously compromise the bamboo’s structural strength. Janssen 

provides rough guidelines on the service life of untreated bamboo: 

 1-3 years in the open and in contact with soil; 

 4-6 years under cover and free from contact with the soil; and 

 10-15 years under very good storage/use conditions. 

2.5.4 Harvesting and treatment 

Proper treatment of bamboo can dramatically increase its service life. Janssen 

(2000) suggests that bamboo should be harvested in the season when starch content is 

low as this decreases the chance of fungal and insect attacks. Bamboo should be kept free 

from soil and dry, with sufficient space between culms for good air flow. Youssef (1976) 

found that green bamboo possessed only 60% of the tensile strength, and between 30% 

and 35% of the compressive strength compared to seasoned bamboo, which has a much 

lower moisture content. Brink and Rush (1966, 2000) provide guidelines for selecting 

bamboo to be used as reinforcement in concrete structures: 

1. Use only bamboo showing a pronounced brown color. This will insure that the 

plant is at least three years old. 

2. Select the longest large diameter culms available. 
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3. Do not use whole culms of green, unseasoned bamboo. 

4. Avoid bamboo cut in spring or early summer. These culms are generally 

weaker due to increased fiber moisture content. 

Bamboo’s structure makes it difficult to be preserved. Both the outer and inner 

skin of bamboo are impermeable so preservatives can only enter through the conducting 

vessels which make up less than ten percent of the cross-section. These conducting 

vessels close within 24 hours of harvesting, so any preservation needs to be completed 

within this short time limit. Preservation can increase the service life of bamboo and 

includes traditional and chemical methods. 

Traditional methods of treating bamboo are popular since they can be applied 

without any capital investment with the use of unskilled labor. Various traditional 

preservation methods include air curing, smoking, soaking and seasoning, and lime-

washing (Janssen, 2000). 

Chemical preservation methods are necessary for bamboo to be used in modern 

industry or in large-scale building projects. Effective and safe chemicals are based on the 

element boron. Two chemical preservation methods are the modified Boucherie process 

for whole green culms and dip-diffusion for split culms. In the modified Boucherie 

process, the preservative is passed through the culm vessels under pressure from one end 

of the bamboo to the other. This must be applied to bamboo within the first 24 hours of 

harvesting. After treatment, the culms must be dried under shade. In the dip-diffusion 

process, the bamboo culm is immersed in the preservative so that a slow diffusion can 
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take place. This process only works on split bamboo strips because whole culms are 

impermeable and would not allow the preservative to penetrate (Janssen, 2000). 

2.5.5 Mechanical properties 

The mechanical properties of bamboo are described in the following section. It 

should be noted that there are many species of bamboo and the mechanical properties can 

vary greatly between species. For any values given in the following sections, an attempt 

will be made to name the associated bamboo species. If no species name is provided, the 

value given should be assumed to be an average for common bamboo species. 

2.5.5.1 Fiber distribution 

The outside of a bamboo culm wall is a thin, but very dense layer containing silica. 

Bamboo is composed of cellulose fibers together with vessels running in the longitudinal 

direction and surrounded by parenchyma. The cellulose fibers are strong and stiff and act 

as reinforcement in the parenchyma matrix. Bamboo is approximately made up of 40% 

fibers, 10% vessels and 50% parenchyma by volume (Janssen, 2000). 

Ghavami (2005) describes bamboo as an orthotropic material with variations in 

mechanical properties along its radial, circumferential and axial directions. The fiber 

distribution on the cross-section of bamboo is more concentrated closer to the outside 

perimeter, according to the stress distribution caused by bending due to wind forces. The 

fiber distribution on a cross-section of bamboo can be clearly seen in Figure 2.6. 

According to Janssen (2000), the cellulose fibers in bamboo act as reinforcement to the 

culm structure. Amada (1997) has described the fiber distribution in the nodes to be 
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chaotic, which is evidence for their brittle behavior. Amada also suggests that the nodes 

prevent buckling due to bending and also may help prevent axial cracks. It is evident that 

bamboo is much stronger parallel to the fibers and weaker in the perpendicular direction. 

Due to the structure of the bamboo culm, its strength is greatest at the base where there is 

a larger concentration of fibers and decreases towards the top. 

 

Figure 2.6 Non-uniform fiber distribution on bamboo cross section 

(Ghavami, 2005) 

2.5.5.2 Modulus of elasticity 

 According to Ghavami (2005), bamboo has a structural advantage over other 

engineering materials in terms of modulus of elasticity and density. Janssen (2000) has 

given the average modulus of elasticity of bamboo to be around 2500 ksi which is similar 

to the value given by Brink and Rush (1966, 2000). 

 A study by Khare (2005) showed the nodal region to have a brittle behavior, 

while the internodal region to have a more ductile behavior. The stress-strain curve of 
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bamboo samples suggested that internodal regions elongated until reaching a limiting 

value, at which point the load was transferred to the node. 

2.5.5.3 Tensile strength 

The tensile strength of bamboo is known to be very high, but the average strength 

varies from species to species. When addressing bamboo’s tensile strength it is important 

to differentiate between the culm tensile strength and the fiber tensile strength. A study 

by Cao and Wu (2008) showed fiber tensile strengths to range from 18 to 131 ksi (124 to 

903 MPa) with an average strength of 53 ksi (365 MPa). Ghavami (2005) has listed the 

tensile strength of bamboo as high as 54 ksi (372 MPa), but it is unclear whether this is 

for the culm or fibers. Amada (1997) has concluded that the fiber strength for Moso 

bamboo is around 87 ksi (600 MPa) while the culm strength is only around 7 ksi (48 

MPa). 

A study done by Stamford University in Bangladesh showed tensile strengths of 

bamboo culm to be around 18 ksi (124 MPa).  This study also described the difficulties of 

gripping the bamboo during the tensile tests and explained how spiraled wire wrapped 

around each end prevented slipping at the grips (Sabbir, Mamun & Fancy, 2012). 

According to the International Standard Organization (ISO), the tensile strength 

of a node region is only 30% of an internode region (ISO, 2004). Results from Glenn 

(1950) and Khare (2005), also show that nodes are weaker than internodes. 

ISO has developed a laboratory manual for determining physical and mechanical 

properties of bamboo. This manual covers testing methods for moisture content, 

specimen volume, shrinkage, compression, bending, shear and tension. 
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 Wahab et al. (2012) used a variation from ASTM D 143-94, the Standard Test 

Methods for Small Clear Specimens of Timber, to test the tensile strength of bamboo 

parallel to the grain. Four different species of Gigantochloa were tested with tensile 

strengths ranging from 14.9 ksi to 17.7 ksi. The tensile strength of dried bamboo was 

found to be 20 ksi compared to 13 ksi for green bamboo (Wahab et al., 2012). 

2.5.6 Environmental impacts 

 Bamboo is a natural plant that has many positive environmental impacts. 

According to Ghavami (2005), the energy required to produce steel is 50 times that of 

bamboo. The carbon footprint of bamboo is significantly less than that of rebar as an acre 

of bamboo can sequester up to 40 tons of carbon dioxide from the atmosphere (Bamboo 

& Global Warming, 2011). 

According to Geiger (2006), bamboo produces about 20 times more timber than 

trees on the same acreage. Bamboo can be harvested in only 3 years compared to a fir 

tree which takes up to 40 years to be harvested and after being harvested, new bamboo 

can continue to grow from the same underground root structure. Bamboo’s quick growth 

rates make it an ideal candidate for reforestation especially in areas where timber is cut 

and used for charcoal. Bamboo can also be used to make charcoal which burns more 

efficiently and cleanly than wood charcoal. Mingjie (2004), provides a manual for 

bamboo charcoal production and utilization. 

The extensive root system of bamboo is extremely useful in combating soil 

erosion. An INBAR (International Network for Bamboo and Rattan) project in Allahabad, 

India planted bamboo to reclaim land whose topsoil had been depleted by the brick 
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industry. After only five years, farmers could once again cultivate the land (Rosenberg, 

2012). 

2.5.7 Applications of bamboo 

Bamboo is commonly known as ‘poor man’s timber’ because it is cheap, readily 

available, and is used in all aspects of life. Bamboo has been used since ancient times for 

a variety of applications including pulp and paper, construction and structural 

applications, furniture, weapons, food and even clothing. 

Bamboo’s unique mechanical properties make it an ideal construction material. In 

many countries, bamboo is the primary material for house construction. INBAR estimates 

that one billion people live in bamboo dwellings. Scaffolding is a major use of bamboo 

around the world, but especially in India and Southeast Asia. In Hong Kong, many of the 

skyscrapers are constructed with bamboo scaffolding, some reaching up to 80 stories. 

A bridge made from bamboo composites that can support a 16-ton truck has been 

built in China. The bamboo composites for this structure were formed into timber-like 

beams by a technique similar to cross laminated timber (CLT) in which many small strips 

of bamboo are arranged in alternating layers and glued together (Inman, 2007). 

In 2004, the International Code Council (ICC) certified that Structural Bamboo 

Poles produced by Bamboo Technologies met International Building Code (IBC) 

standards. These structural poles are from the bamboo species Bambusa Stenostachya 

which is found in Vietnam. Despite positive advances made by Bamboo Technologies, 

bamboo still has a ways to go to be accepted by the IBC for modern construction. 
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2.6 Bamboo reinforcement 

2.6.1 History 

Bamboo reinforced concrete (BRC) has been studied at Pontifical Catholic 

University of Rio de Janeiro (PUC-Rio) in Brazil, Clemson University and the University 

of Texas Arlington in the United States and Fukuyama University and Kumamoto 

University in Japan, among other places. During the 1930’s several experiments were 

performed in Germany and Italy testing the performance of cement concrete beams 

reinforced with bamboo. However, the earliest comprehensive information on bamboo 

reinforcement is found in a report carried out by Clemson Agricultural College under the 

direction of Professor H.E. Glenn (Glenn, 1950). 

In 1943, Clemson Agricultural College of South Carolina
1
 was awarded with 

undertaking the research of bamboo reinforcement in Portland cement concrete. This 

research was funded by the War Production Board (W.P.B.) during WWII in an attempt 

to find substitutes for steel reinforcement. The Clemson study consisted of laboratory 

research followed by field construction. 

Ghavami has conducted much research on bamboo as a concrete reinforcement at 

PUC-Rio in Brazil. His work includes research of the mechanical properties of bamboo, 

water repellent treatment methods as well as investigation of bamboo reinforced concrete 

beams, columns and slabs (Ghavami, 2005). 

                                                 
1
 Clemson Agricultural College of South Carolina ceased to exist as of 1964; now it is known as Clemson 

University 
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Khare (2005) from the University of Texas Arlington conducted a study on the 

mechanical properties of Moso and Tonkin bamboo and investigated the performance of 

six bamboo reinforced concrete beams (Khare, 2005). 

Terai and Minami (2012) from Fukuyama University in Japan presented their 

bamboo reinforced concrete research at the 15th World Conference on Earthquake 

Engineering (WCEE) in Lisbon, Portugal. Their research focused on the mechanical 

properties of bamboo, including the effects of alkali contact on bamboo durability and 

tensile strength as well as the bond strength of bamboo in concrete. Terai and Minami 

also tested the flexural failure of BRC slabs reinforced with whole bamboo culms (Terai 

& Minami, 2012). 

Yamaguchi, Murakami, and Takeda (2013) from Kumamoto University in Japan 

presented on the flexural performance of BRC beams using bamboo as main rebar and 

stirrups. This presentation and corresponding paper was delivered at the Third 

International Conference on Sustainable Construction Materials and Technologies 

(SCMT) at the Kyoto Research Park in Kyoto, Japan. 

2.6.2 Design principles for bamboo reinforced concrete 

Brink and Rush (1966, 2000) outline several design principles for bamboo 

reinforced concrete. According to Brink and Rush, bamboo reinforced concrete design 

can be performed similarly to steel reinforcing design with the mechanical properties of 

bamboo substituted for the steel. Bamboo reinforced concrete design examples are 

provided for beams and girders, columns, ground-supported slabs, and walls. 
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2.6.3 Bamboo reinforced concrete beams 

 There have been many studies applying bamboo reinforcement to a concrete 

beam. The first well-documented research was conducted by the Clemson Agricultural 

College
2
 who performed studies on rectangular beams, T-beams and slabs. The study 

concluded that the bamboo reinforcement in concrete beams increased the load capacity 

with increasing percentages of bamboo reinforcement up to an optimum value of three to 

four percent (Glenn, 1950). Very little literature is available on lap splicing bamboo. 

Glenn suggests to lap splice bamboo a minimum distance of 25 inches (64-cm) and to 

securely tie the splices. 

Ghavani (2005) has performed several studies on bamboo reinforcement and 

concluded that the ultimate strength of a concrete beam reinforced with bamboo is 

approximately 4 times that of an unreinforced concrete beam of the same dimensions. 

Khare (2005) conducted a study at the University of Texas at Arlington on the 

performance evaluation of bamboo reinforced concrete. This study comprised of tensile 

tests on three types of bamboo (Moso, Solid and Tonkin), followed by the preparation of 

six reinforced concrete beams with variation in a/d (shear span to depth) ratios, 

percentages of reinforcement, and bamboo type. Test results indicated that bamboo 

reinforcement increased the beam capacity by 250% as compared to the initial crack in 

the beam. A direct relationship was found between percentage of reinforcement and 

capacity; however, the beam with 4% bamboo reinforcement produced an over-

reinforced failure mode. 

                                                 
2
 Clemson Agricultural College of South Carolina ceased to exist as of 1964; now it is known as Clemson 

University 
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Rahman et al. (2011) conducted tests on plain concrete beams as well as singly 

and doubly reinforced concrete beams. The results indicate that bamboo reinforcement 

increases the ultimate load carrying capacity of the beam by 2 for the singly reinforced 

beam and by 2.5 for the doubly reinforced beam. The maximum deflections of the singly 

and doubly reinforced beams were 4.5 and 8 times that of the plain concrete beam. 

Hidalgo (1996) studied bamboo cables as reinforcement for concrete. The 

bamboo cables were made from woven strips of bamboo taken from the outer layer of the 

bamboo culm which is almost three times stronger than the inner part. The outer layer of 

the bamboo absorbs a minimum amount of water compared with the inner portion and 

therefore does not have to be waterproofed. In addition, the helical shape of the cables 

increase the bonding between the concrete and the bamboo. These benefits make the 

bamboo cables a promising method for using bamboo reinforcement which has been 

tested in slab foundations (Hidalgo, 1996). The application of the bamboo cables is 

further addressed in Section 2.6.5. 

2.6.4 Bamboo reinforced concrete masonry shear walls 

Moroz (2014) conducted tests on seven squat concrete masonry walls under 

quasistatic, in-plane, cyclic loading. One of the seven walls was reinforced with 

traditional steel reinforcement vertically and horizontally in the bond beams. The other 

six walls were reinforced with varying amounts of Tonkin cane bamboo reinforcement 

both vertically to resist flexural and sliding failure and horizontally to resist diagonal 

shear failure. The results indicated that bamboo reinforcement in concrete block shear 

walls enhanced the shear capacity and ductility compared to unreinforced masonry. The 
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bamboo reinforced shear wall with four vertical cores reinforced with bamboo behaved 

very similarly to the steel reinforced shear wall with four vertical cores and three bond 

beams reinforced with steel. 

2.6.5 Bamboo reinforced concrete structures 

There are only a few application of bamboo reinforcement in concrete structures. 

The most extensive study was completed by the Clemson Agricultural College
3
 which 

included the field application of laboratory research. This study consisted of the 

construction of three separate units comprising four structures. Further descriptions of 

each unit with designs and construction procedures can be found in the report by Glenn 

(1950). 

Unit No. 1, also known as the “Planner Building”, is 32 feet by 32 feet, and was 

used as a workshop for the making of pre-fabricated parts for Unit No. 3. Unit No. 1 was 

a box type structure of the conventional beam and girder design. The footings, piers, 

columns, girders, beams and floor slab were constructed with cast in place bamboo 

reinforced concrete. The walls were made entirely of precast concrete panels, and the 

roof comprised of both cast in place and precast concrete reinforced with bamboo. This 

building is still partially standing, although one side has collapsed. A few concrete 

samples with bamboo reinforcement were inspected and no bond between the bamboo 

and concrete was observed. 

Unit No. 2 was constructed as the press box for the Clemson College Memorial 

Stadium. The stadium was partially designed by Professor H.E. Glenn who was also one 

                                                 
3
 Clemson University 
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of the primary investigators of the bamboo research. Unit No. 2 was three stories tall and 

constructed entirely with cast in place bamboo reinforced concrete. This unit was much 

more complex than Unit No.1 as it contained nearly every type of load-carrying member. 

The press box was 60 feet long by 18 feet wide and provided space for stairs and toilets. 

This unit was demolished when the stadium was expanded. 

Unit No. 3 consisted of eight structures, only one of which was completed. This 

structure was a five-room residence constructed entirely out of pre-fabricated units of 

bamboo reinforced concrete. The residence was inhabited shortly after completion but it 

is uncertain whether this structure is still standing. 

Brink and Rush (1966, 2000) prepared a report to assist field personnel in the 

design and construction of bamboo reinforced concrete. The information in the report 

was compiled from various research documents including the Clemson study and a study 

conducted at the U.S. Army Engineer Waterways Experiment Station in 1964. This report 

includes the selection and preparation of bamboo reinforcement, construction principles 

for bamboo reinforced concrete, design procedures and charts for bamboo reinforced 

concrete, and six design examples. It must be noted that the original report is not 

available to the public and the replicated document has not been verified for accuracy. 

Nevertheless, this document provides much useful information regarding bamboo 

reinforced concrete construction. 

 Another example of a bamboo reinforced house is found in Auroville, India. The 

house was designed and constructed by Alok Mallick in 2009. The roof and floor slabs of 

the house were constructed with bamboo reinforced concrete but the walls were made 
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with a mud and coconut fiber mix reinforced with bamboo. The tensile strengths of 

various bamboo species were tested and a factor of safety of 50% of the average was used 

to determine the amount of bamboo reinforcement that would be required. All materials 

and labor was local, and the workers had to be trained for the construction of the bamboo 

reinforced floor and roof slabs. The house was still in excellent condition after two years 

of intense monsoons and hot summers, but the current condition of the house is unknown 

(Mallick, 2011). 

Hidalgo (1996) utilized bamboo cables to reinforce the footing around a slab 

foundation for a prefabricated housing program in Guayaquil city. Ten years after the 

construction, the houses with the bamboo reinforced slab foundations did not show any 

cracks (Hidalgo, 1996). 

2.6.6 Issues with bamboo reinforced concrete 

 Although bamboo has many good properties that make it a strong candidate as an 

alternative reinforcement, it has qualities which cause several issues when using bamboo 

as reinforcement for concrete elements. These issues are addressed in the following 

sections. 

2.6.6.1 Environmental damage 

Bamboo’s low durability is a major drawback for structural use. Like timber, 

bamboo is susceptible to damage from the environment, insects and mold. Ghavami 

(2005) claims there is a positive relation between starch content in the bamboo and insect 

attacks. To reduce starch content, Ghavami suggests curing and treatment by immersion, 



28 

 

heating or smoke. Janssen (2000) indicates that high moisture content increases the 

likelihood of fungal attacks and outlines various traditional and chemical preservation 

methods to protect the bamboo. The long term durability of bamboo encased in concrete 

is a concern, but Ghavami (2005) has addressed this issue. The first BRC beam tested at 

PUC-Rio in 1979 was exposed to the open environment in the university campus. It was 

observed that the bamboo reinforcement – treated against insects and waterproofed – was 

still in satisfactory condition after 15 years (Ghavami, 2005). 

2.6.6.2 Low stiffness 

The modulus of elasticity of bamboo is much lower than that of steel and is also 

lower than that of concrete which is approximately 2000 – 6000 ksi (14,000 – 16,000 

MPa) depending on its compressive strength. In a technical paper on bamboo reinforced 

concrete pavements, Rolt (2008) concludes that bamboo cannot prevent load induced 

cracking because its modulus of elasticity is too low to reduce the tensile stresses that 

cause cracking. This conclusion is also confirmed by the Glenn (1950), Brink and Rush 

(1966, 2000), Janssen (2000), and Rahman et al. (2011). Sherwood (2008) explains how 

extensive flexural cracking could cause pre-mature shear failure, but this has not been 

addressed by previous studies on crack widths. 

2.6.6.3 Alkaline resistivity 

Janssen (2000) suggests that the alkaline environment of the concrete would 

deteriorate the bamboo over time, but Ghavami contradicts this theory. According to 

Ghavami, the first bamboo reinforced concrete beam tested at PUC-Rio was exposed to 
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open air for 15 years. After this time it was observed that the bamboo segment of the 

beam reinforcement was still in satisfactory condition (Ghavami, 2005).  

2.6.6.4 Differential thermal expansion 

The differential thermal expansion of bamboo with respect to concrete poses 

several problems. Ghavami (2005) suggests that the differential thermal expansion may 

lead to cracking of the concrete during service life and research by Hebel, Heisel, and 

Javadian (2013) indicates that de-bonding will occur. 

2.6.6.5 Moisture absorption 

The tendency for bamboo to absorb moisture leads to several serious problems 

including pre-loading cracking and loss of bond strength. Like timber, the engineering 

properties of bamboo are highly sensitive to different moisture contents, absorbing or 

releasing moisture depending on its environment. Research has shown that bamboo can 

absorb up to 100% of its dry weight in water. The lateral expansion ranges from 2% to 

5%, and the longitudinal expansion is around 0.05%. The moisture absorption is initially 

quite high, causing the bamboo to swell until reaching its fiber saturation point, after 

which there is almost a negligible change in volume (Subrahmanyam, 1984).  

Jiang et al. (2012) tested the sensitivity of select mechanical properties of Moso 

bamboo to moisture content (MC) change and bamboo age. It was determined that 

bamboo age has little effect on the sensitivity of the tensile modulus and bending 

modulus to MC change (Jiang et al., 2012). 
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The problems of moisture absorption and cracking were observed by Moroz, 

Lissel and Hagel (2014) in their study of bamboo reinforced concrete masonry shear 

walls. One of their wall specimens had extensive pre-cracking which was attributed to the 

expansion of the horizontal bamboo during the curing period (Moroz, 2014). 

According to Janssen (2000), untreated bamboo will absorb water from the 

concrete mix and shrink as the concrete cures. The shrinkage of bamboo can be four 

times that of concrete, and as the bamboo shrinks it will pull away from the concrete, 

resulting in little to no bond. This is illustrated in Figure 2.7, taken from Ghavami’s paper 

(Ghavami, 2005) 

 

Figure 2.7 Behavior of untreated segment bamboo as reinforcement in concrete  

(a) bamboo in fresh concrete, (b) bamboo during curing of concrete, and  

(c) bamboo after cured concrete (adapted from Ghavami, 2005) 

The bond stress of uncoated and water proofed bamboo has been determined by 

Sakaray, Togati, and Reddy (2012) and compared to 8-mm HYSD steel bars. The bond 
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stress values of uncoated bamboo range from 0.9 to 1.74 N/mm
2
 (131 to 252 psi) which 

was 4.7 times less than for the steel (Sakaray et al., 2012). 

Kankam and Perry (1989) studied the variability of bond strength between 

bamboo and concrete. The presence of embedded nodes, surface roughening and the 

number of waterproofing coatings were the variables. They concluded that natural 

protrusions at the embedded nodes, waterproofing then sanding of the splints as well as 

higher concrete strengths led to greater bond strength. For 4-week seasoned bamboo 

splints with a single embedded node in the concrete, the ultimate bond strength non-

waterproofed was 2.04 N/mm
2
 (296 psi). The corresponding bond strength for 

waterproofed splints was 2.6 N/mm
2
 (377 psi). 

The presence of embedded nodes increased bond strength by 81 up to 257 

percent. The application of waterproofing paint, followed by a dusting with river sand, 

increased the ultimate bond strengths by 12 and 27 percent, respectively, over the 

strength of specimens in which the paint was not used (Kankam & Perry, 1989). Kankam 

and Perry conclude the reason for this being the fact that the untreated bamboo strips 

swell after absorbing moisture from the wet concrete and subsequently dried and shrank 

when the concrete had hardened, with consequent reduction in bond. This confirms the 

conclusions of Ghavami (Ghavami, 2005). 

Braga et al. (2010) experimented with improving the bamboo-concrete bond by 

means of nailing. In total eight beams were tested, two of them being reference beams 

reinforced with bamboo splints without pins and the remaining six beams being 

reinforced with nailed bamboo splints. Both steel and bamboo pins were used and the 
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results from the nailed bamboo beams showed an increase in stiffness but a reduction in 

ultimate load capacity since the nails locally reduced the transversal section of the 

bamboo splint. 

2.6.6.6 Variable mechanical properties 

Since bamboo is a natural material its characteristics are extremely variable. This 

makes it difficult to specify design provisions for construction with bamboo 

reinforcement and any designs must have appropriate factors of safety. 

2.6.7 Bamboo composite reinforcement 

Dirk Hebel, an assistant professor of architecture and construction at the Future 

Cities Laboratory, in Singapore, is investigating a bamboo fiber composite as a substitute 

for steel reinforcement in concrete. Natural, untreated bamboo, has variable 

characteristics and is vulnerable to insect and fungal growth. One of the greatest 

problems with bamboo reinforcement is its poor bond strength to concrete which 

develops as the bamboo swells and shrinks as it absorbs moisture from the fresh concrete 

and dries. The resulting loss of bond strength minimizes its advantages as a reinforcement 

for concrete, since a good bond is required to transfer stresses from the concrete to the 

reinforcement (Cardno, 2014). 

Hebel’s current bamboo composite comprises naturally processed bamboo fibers 

and an adhesive. The fibers, after being carbonized to minimize sugar content and then 

dried to reduce moisture content, bound together with a water-based resin. After being 

mixed with the adhesive, the strands are pressed into a mold to achieve the desired shape 
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and thickness. The bamboo composite is approximately 80 percent bamboo and 20 

percent adhesive. Advantages of the bamboo composite over natural bamboo include 

increased density, water resistance, durability, controlled thermal expansion, and the 

ability to be pressed into any shape. Through the manufacturing process, Hebel wishes to 

fully control the properties of the bamboo composite, so that it can be certified by local 

standardization organizations (Cardno, 2014). 

Hebel envisions the bamboo composite could find a niche in the concrete market 

for application in which a noncorrosive reinforcement is required. Hebel also sees great 

potential for the bamboo fiber composite to replace steel in urban construction in 

developing countries. This would allow cities to produce their own construction materials 

and reduce their reliance on foreign steel and allowing for local economic growth. By 

2016, Hebel hopes to have financing to take the research from the laboratory and start 

pilot projects where the bamboo composite can be tested in the field (Cardno, 2014). 
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Chapter 3 – TESTING PROCESS SUMMARY 

 

The goal of this research is to test the application of bamboo as shear, flexural and 

flexural lap-spliced reinforcement for concrete. The bamboo tested was Moso bamboo 

(Phyllostachys edulis) and was harvested from Fant’s Grove in the Clemson 

Experimental Forest in Clemson, SC. The harvesting and splitting of the bamboo is 

described in Chapter 4. In order to design bamboo reinforced concrete beams, the 

properties of the bamboo were investigated including the tensile strength, modulus of 

elasticity and bond strength with concrete. The details of these component tests and their 

results can be found in Chapter 5. 

Once the mechanical properties of the bamboo were determined, 13 Bamboo 

Reinforced Concrete (BRC) beams were designed and constructed with varying 

configurations to test the application of bamboo as shear, flexural, and flexural lap-

spliced reinforcement. The design of the BRC beams was done by following the Building 

Code Requirements for Structural Concrete (ACI 318-11) and replacing the properties of 

rebar with the predetermined properties of bamboo. Fabrication of the BRC beams 

included bamboo cage preparation, strain gauge installation, and casting of the beams. 

The testing setup varied depending on the type of beam being tested. The details of the 

beam design, fabrication and testing setup can be found in Chapter 6. 

The testing took place in the Wind and Structural Engineering Research (WiSER) 

Facility at Clemson University with a reaction frame incorporating a 150-kip actuator. A 

total of 13 BRC beams were tested and the strain in the concrete and in the bamboo 

reinforcement at strategic locations was measured. Each beam was loaded until failure 
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and the failure mechanism of each beam was investigated. After testing, each beam was 

broken apart with a sledge hammer to expose the bamboo reinforcement to further 

explain the failure mechanism. The results of the beam tests can be found in Chapter 7. 

A summary of the testing process is given below: 

1. Investigate the properties of Moso bamboo harvested in Clemson, SC by 

conducting the following component tests on bamboo specimens: 

a. Tensile strength 

b. Modulus of elasticity 

c. Bond strength 

2. Design BRC beams to test the application of bamboo as a reinforcement. Vary 

beam dimensions and reinforcement configurations to assess the performance of 

bamboo as shear reinforcement (Table 3.1), flexural reinforcement (Table 3.2) 

and lap-spliced reinforcement (Table 3.3). 

Table 3.1 Shear controlled beam configurations 

 

 

  

(in) (mm) (in) (cm) (in) (cm) (in2) (cm2) (in) (mm)

S1 4 4.0 101.6 18.0 45.7 16.3 41.4 1.1 3.7 24.0 2.3% n/a n/a

S2 4 4.0 101.6 18.0 45.7 15.8 40.2 1.1 3.7 24.0 2.4% n/a n/a

S3 4 6.0 152.4 18.0 45.7 15.7 39.9 1.1 3.7 24.0 2.4% n/a n/a

S4 4 6.0 152.4 18.0 45.7 15.1 38.4 1.2 3.7 24.0 2.5% n/a n/a

S5 4 8.0 203.2 18.0 45.7 15.4 39.1 1.2 3.7 24.0 2.4% n/a n/a

S6 4 8.0 203.2 18.0 45.7 16.2 41.0 1.1 3.7 24.0 2.3% n/a n/a

Shear Beams

Beam ID
# Flexural 

Rows

Stirrup Spacing, s Shear span, a depth, d Abamboo Splice length
a/d ρbamboo
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Table 3.2 Flexure controlled beam configurations 

 

 

Table 3.3 Lap-splice beam configurations 

 

 

3. Construct BRC beams including bamboo cage preparation, strain gauge 

installation, and casting of the beams. 

4. Test BRC beams by loading each beam to failure and measure the strain in the 

bamboo reinforcement at strategic locations. Investigate the failure mechanism of 

the beam as well as the bamboo reinforcement. 

5. Assess the performance of bamboo as a reinforcement for concrete. 

a. Optimum stirrup spacing 

b. Optimum percentage of flexural reinforcement 

c. Minimum allowable lap-splice length 

  

(in) (mm) (in) (cm) (in) (cm) (in2) (cm2) (in) (mm)

F1 3 6.0 152.4 25.0 63.5 17.0 43.2 1.5 2.8 18.0 1.6% n/a n/a

F2 4 6.0 152.4 25.0 63.5 15.8 40.1 1.6 3.7 24.0 2.4% n/a n/a

F3 5 6.0 152.4 30.0 76.2 15.5 39.4 1.9 4.7 30.0 3.0% n/a n/a

F4 6 6.0 152.4 38.0 96.5 14.5 36.7 2.6 5.6 36.0 3.9% n/a n/a

Flexure Beams

Splice lengthAbamboodepth, dShear span, aStirrup Spacing, s# Flexural 

Rows
Beam ID ρbambooa/d

(in) (mm) (in) (cm) (in) (cm) (in2) (cm2) (in) (mm)

L1 4 6.0* 152.4 25.0 63.5 14.7 37.3 1.7 3.7 24.0 2.5% 12 30

L2 4 6.0* 152.4 25.0 63.5 15.4 39.1 1.6 3.7 24.0 2.4% 18 46

L3 4 6.0* 152.4 25.0 63.5 15.5 39.4 1.6 3.7 24.0 2.4% 24 61

Lap-spliced Beams

* Note: Lap-splice lengths are surrounded by stirrups with a spacing of 4.0 inches (102 mm)

Beam ID
# Flexural 

Rows

Stirrup Spacing, s Shear span, a depth, d Splice length
a/d ρbamboo

Abamboo
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Chapter 4 – HARVESTING and SPLITTING 

4.1 Harvesting 

The type of bamboo used in this research was Moso bamboo which is known by 

the scientific name of Phyllostachys edulis. All the bamboo was harvested from the 

Fant’s Grove Moso bamboo site in the Clemson Experimental Forest (CEF) located at 

34°37’51” N and 82°49’24” W. A special permit was required to harvest the bamboo and 

was obtained from the CEF Forest Manager. The bamboo was harvested multiple times 

from July to September 2013. 

Harvesting was done with a hand saw and a machete. The skin of the bamboo is 

very hard and the machete is ineffective to cut through the entire culm. The machete was 

used to remove the small branches protruding out from the nodal regions of the culm. 

When cutting the bamboo it is important to cut just to the outside of a node. This ensures 

that the final bamboo stalk has nodes very near both of its ends. The nodes, which contain 

the diaphragms separating the internodal regions, prevent longitudinal cracks from 

emerging and spreading over the length of the culm. The reinforcement provided by the 

nodes is important when splitting the bamboo. While harvesting, the longitudinal bamboo 

was cut to roughly 8 feet (2.5-m) and the stirrup bamboo was cut to approximately 5 feet 

(1.5-m). Later, the bamboo was cut down to its required length. Figure 4.1 shows the 

bamboo being harvested from the Clemson Experimental Forest. 
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Figure 4.1 Harvesting Moso bamboo from the Clemson Experimental Forest 
 

When harvesting bamboo, there are a few important things to look for. First the 

age of the bamboo is a factor because young bamboo is not as strong as three to four year 

old bamboo. Young bamboo can be identified by softer skin with chalky, white bands 

around the culm. During bamboo’s initial growth the culms and branches are protected by 

sheaths which are usually found near the base of the plant. The size and overall health of 

the bamboo culm are also important factors affecting the selection of bamboo. Only 

healthy looking bamboo with no obvious visual defects was harvested. The size of the 

bamboo harvested was dictated by the dimensions of the splitters. The maximum 

diameter bamboo which could fit into the largest available splitter was 3.5 inches (90-

mm). 
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4.2 Splitting 

Bamboo splits very easily along its fibers which run parallel to its length. There 

are many methods of splitting bamboo with relatively any sharp blade, but for this 

research the splitting was done with manufactured bamboo splitters. The splitters were 

purchased from Hida Tool & Hardware Co.
4
 A picture of the two bamboo splitters used 

can be seen in Figure 4.2. The 6-cut splitter had an inside diameter of 4 inches (102-mm) 

and the 8-cut splitter had an inside diameter of 4.5 inches (114-mm). The largest diameter 

bamboo which could be split was 3.5 inches (90-mm) in the 8-cut splitter with inside 

diameter of 4.5 inches (114-mm). During the splitting process, the bamboo spreads out, 

so the bamboo must be at least 1 inch (25-mm) smaller than the inside diameter of the 

splitter to prevent it from getting stuck. Both splitters were used to achieve uniform strip 

widths of about 1 inch (25-mm) for the longitudinal bamboo and about 0.75 inches (19-

mm) for the stirrups. The average cross-sectional area of the longitudinal bamboo was 

0.31 square inches (200-mm
2
) which is the same cross sectional area as an imperial #5 

rebar. The average cross sectional area of the stirrups was 0.20 square inches (129-mm
2
) 

which is the same cross sectional area as an imperial #4 rebar. Splitting should be done 

within a few days after harvesting to prevent the bamboo from drying out which causes 

longitudinal cracks to form. 

                                                 
4
 www.hidatool.com 

http://www.hidatool.com/
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Figure 4.2 Bamboo splitters, 6-cut and 8-cut 
 

To split the bamboo, two people are needed. One holds the bamboo culm steady 

against an immovable object while the other person hammers the bamboo splitter into the 

end of the culm to start the splitting. It is necessary to center the splitter on the culm or 

the result will be strips of varying widths. Also, since the splitters are made from cast 

iron, it is necessary to not strike the splitter directly with a hammer, but rather to strike a 

wooden block placed on the splitter. After the initial split has started, the splitter should 

be held tightly and the bamboo culm should be forcefully pounded into the ground or an 

immovable object to finish the splitting. The splitting technique can be seen in Figure 4.3. 
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Figure 4.3 Splitting technique 

After the bamboo was split, it was stored in a closed environment until it was used 

for the component tests and beam reinforcement cages. The bamboo was allowed to dry 

for at least 2 weeks before being used for the tensile strength tests and at least 1 month 

before being used for the bond strength tests and the cage fabrication. The moisture 

content of the bamboo was not measured, but the equilibrium moisture content (EMC) of 

Moso bamboo is known to be around 10.3% in a 20°C climate of 65% relative humidity 

(RH) from a report conducted by Larenstein University in the Netherlands (de Vos, 2010). 
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Chapter 5 – COMPONENT TESTS 

 

The general properties of bamboo have been extensively studied by a number of 

researchers including Yu, Jiang, Hse and Shupe (2008), Cao and Wu (2008), Ghavami 

(2005), Khare (2005), Amada (1997), and Kankam and Perry (1989) to name a few. 

However, the purpose of the component tests were to determine the mechanical 

properties of the Moso bamboo obtained from the Clemson Experimental Forest which 

was the same bamboo used to reinforce the concrete beams. In order to design bamboo 

reinforced concrete beams, the properties of the bamboo were investigated including the 

tensile strength, modulus of elasticity and bond strength with concrete. 

5.1 Tensile strength tests 

The tensile strength is a critical factor in choosing a reinforcement for concrete. 

Typical concrete has a tensile strength of roughly 10-15% of its compressive strength. 

Since concrete has such low tensile strength, it will crack quickly under tension. In 

tension zones, the reinforcement is engaged primarily when a crack occurs and, in fact, a 

crack needs to form for the reinforcement to be fully engaged. Once the crack forms, the 

stresses are transferred from the concrete to the reinforcement. A traditional 

reinforcement used is ASTM A615 rebar made of grade 60 steel which has a tensile 

strength of 60 ksi (414 MPa). 

The tensile strength of bamboo is known to be very high, but the average strength 

varies from species to species. It is also important to note that there is a significant 

difference between fiber tensile strength and culm tensile strength of bamboo. In this 
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study, the culm tensile strength was tested because 1 inch (25-mm) wide split sections of 

the culm were used as reinforcement instead of individual fibers. 

5.1.1 Specimen preparation 

After the bamboo culms were harvested and seasoned they were cut into 15 to 18-

inch (380 to 450-mm) long sections. It is important to note that two nodes were included 

in each specimen so as to give a good representation of the bamboo culm including nodal 

and internodal regions. Each section was split into 1 in (25-mm) strips with the bamboo 

splitter as described in Chapter 4. After the initial split, each strip was then split again 

into 0.5 inch (12-mm) strips with a machete.  

Once the general size of the specimen was obtained, a chisel was used to carve 

away the inner portion of specimen to achieve a “dog-bone” shape as shown in Figure 5.1. 

After the rough cutting was done with the chisel, a circular sander was used to smooth the 

faces and achieve as uniform thickness as possible. The specimens were given a “dog-

bone” shape to force the failure to occur in between the grips where the cross-sectional 

dimensions were clearly measured. Grip failure does not give an accurate representation 

of the specimen tensile strength and should be avoided. The thickness and width were 

measured at 3 locations on each specimen – left node, middle, right node – and were used 

to determine the cross-sectional area of the specimen. The initial length between grips 

was also measured prior to testing. These measurements were used to determine the 

average stress and strain in each specimen. 
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Figure 5.1 Tensile sample 

 

Aluminum tabs with a thickness of 0.1 inch (2.5-mm) were epoxied to the ends of 

the bamboo specimens to prevent the UTM grips from crushing the bamboo. The width 

and length of the aluminum end tabs varied but were roughly 0.5 inch (12.5-mm) wide 

and 2-inch (50-mm) long. Fully extended, the grips only had an opening of 0.5 inch 

(12.5-mm) so the bamboo specimens had to be less than 0.3 inch (7.5-mm) thick to 

ensure they would fit in the grips with the aluminum tabs epoxied on. The epoxy used 

was Devcon 5-minute, two-part epoxy with a tensile strength of 1500 psi (10.34 MPa). 

The end tabs can be seen in Figure 5.2 and Figure 5.3.  In total, 30 specimens were tested. 

 

Figure 5.2 Epoxied end tab, front view 

 

 

Figure 5.3 Epoxied end tab, side view 
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5.1.2 Test setup 

The specimens were tested in a 10-kip (50 kN) Tinius Olsen UTM, as shown in 

Figure 5.4, with V-grips. The V-grips are designed to apply more pressure as the 

specimen is pulled in tension. An enlarged picture of a grip can be seen in Figure 5.5. 

The specimens were loaded continuously at a rate of 0.05 in/min (0.02-mm/s) 

until failure. The resulting force-displacement data was recorded through a MATLAB 

script written by Dr. Weichiang Pang. 

 

Figure 5.4 Tinius Olsen 10-kip UTM 

 

 

Figure 5.5 Close-up of a V-grip 
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5.1.3 Results 

All tensile specimens failed in a brittle manner at a node. This was expected based 

on reviewing previous literature. Amada (1997) has described the fiber distribution in the 

nodes to be chaotic, which is an explanation for their brittle behavior. The failure 

mechanisms of the tensile samples included clean break through node, diagonal split 

from node to node, and diagonal split from node to tab. The failure modes are shown in 

Figure 5.6. 

 

Figure 5.6 Tensile specimen failure modes 

 

The results of the tensile tests are summarized in Table 5.1 and the stress-strain 

curves for the tensile specimens are shown in Figure 5.7. The probability density 

functions (PDFs) and cumulative density functions (CDFs) for both stress and strain can 

be seen in Figure 5.8 through Figure 5.11. The comprehensive tensile test data can be 

found in Appendix A. 
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Table 5.1 Summary of Tensile Tests 

 

 

 

Figure 5.7 Stress strain curves for bamboo tensile samples 
 

(ksi) (MPa) (ksi) (MPa) (in/in) %

Mean 1145 7891 18.7 129.1 0.016 1.64

Standard

Deviation
223 1536 2.67 18.4 0.004 0.38

Coefficient 

of Variation

Minimum 688 4742 11.3 78.1 0.007 0.74

Maximum 1577 10872 23.0 158.7 0.027 2.70

0.19 0.14 0.230

Modulus of Elasticity Tensile Strength Rupture Strain
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Figure 5.8 PDF of rupture strains 
 

 

Figure 5.9 CDF of rupture strains 
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 Figure 5.10 PDF of failure stresses 
 

 

Figure 5.11 CDF of failure stresses 
 



50 

 

Upon failure, the maximum load was divided by the area of the corresponding 

failure location to obtain the maximum stress in the bamboo. The calculation for stress is 

given in Equation 5.1 where F is the force exerted and A is the cross-sectional area. The 

tensile strengths of the bamboo specimens ranged from 11.3 – 23.0 ksi (78 – 159 MPa), 

with a mean of 18.7 ksi (129 MPa) and a standard deviation of 2.67 ksi (18 MPa). These 

tests indicated that the tensile strength of the Moso bamboo was about one-third that of a 

typical grade 60 steel rebar. 

   
 

 
 5.1 

The rupture strain for each specimen was calculated by dividing the maximum 

displacement of the grips at failure by the length of the bamboo specimen. The 

calculation for strain can be found in Equation 5.2 where ΔL is the change in length of the 

specimen and L0 is the initial length. The rupture strain of each specimen ranged from 

0.007 to 0.027 with a mean of 0.016 and a standard deviation of 0.004. 

   
  

  
  5.2 

A comparison between the stress-strain curves of bamboo and low carbon steel 

rebar can be seen in Figure 5.12. It is important to notice the ductile nature of the steel 

compared to the brittle nature of the bamboo. 
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Figure 5.12 Comparison of stress-strain curves for low carbon steel and bamboo 
 

Steel has four regions of response to increased strain. The linear portion of the 

steel’s stress-strain curve is known as the elastic region. In this region the ratio of stress 

to strain (modulus of elasticity) is constant. After the elastic limit is reached, low carbon 

steel will yield until reaching a strain of 0.02. In between a strain of 0.02 and 0.2, the 

steel will gain strength through a process known as strain-hardening. After a strain of 0.2, 

the steel will begin necking until it ruptures at a strain of 0.25. 

As evident from the stress strain curves in Figure 5.7, bamboo is not a ductile 

material, but rather exhibits brittle failure. The rupture failure mode of the bamboo is 

problematic for design. For traditional steel reinforced concrete design using ACI 318-11, 

the steel is designed to reach the yielding phase and carry a constant stress, known as its 
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yield stress. Section 10.3.4 of ACI 318-11 states, “Sections are tension-controlled if the 

net tensile strain in the extreme tension steel, εt, is equal to or greater than 0.005 when the 

concrete in compression reaches its assumed strain limit of 0.003.” Tension-controlled 

failure is preferred as there is ample warning of failure with excessive deflection and 

cracking. 

Unlike steel, bamboo does not yield upon reaching its critical strain. Rather, 

bamboo will fail in rupture upon reaching a strain of about 0.016. This rupture failure 

mode presents numerous problems when using ACI 318-11 to design bamboo reinforced 

concrete elements. In steel reinforced concrete design there is no upper limit to the strain 

in the steel reinforcement, because after the steel yields it will continue to gain strength 

through strain hardening and the yield stress of the steel is used for design. In bamboo 

reinforced concrete design there must be an upper limit to the strain in the bamboo 

reinforcement to avoid rupture failure. At the same time there must be a lower limit to the 

strain in the bamboo so as to ensure that the bamboo is carrying sufficient stress. 

It is the author’s thought that although single strips of bamboo exhibit brittle 

failure, a bundle made up of multiple strips of bamboo may exhibit ductile failure. Since 

each bamboo strip will have varying ultimate stresses and rupture strains, as the strain in 

the bamboo bundle increases the strips will fail at different levels of strain. When one 

strip fails, the stresses will be transferred to the remaining strips. This will continue until 

all the strips have failed which will correspond to the failure of the bundle. This theory is 

shown in Figure 5.13, where the average stress for all the tensile samples was taken at 

each strain level. When a bamboo sample reached its rupture strain its stress value was 
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taken as zero and still calculated into the average stress. The effects of bamboo’s brittle 

failure nature will be further investigated in the beam tests. 

 

Figure 5.13 Average stress of bamboo specimens under strain 
 

The variability of the tensile strength and rupture strain of bamboo is evident from 

the stress-strain curves in Figure 5.7 and the relatively high coefficients of variation 

shown in Table 5.1. The variability in bamboo specimens is expected because bamboo is 

a natural material and many factors affect its mechanical properties. However, the 

variability presents a challenge in design and appropriate safety factors will have to be 

determined when designing bamboo reinforced concrete members. 
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 The correlation between the Moso bamboo’s mechanical properties, including 

stress, strain and modulus of elasticity, was also investigated. From Figure 5.14, a 

moderately positive correlation can be observed between stress and strain indicating that 

specimens with higher rupture strains generally had higher stresses. The coefficient of 

correlation between stress and strain is 0.38. A weak positive correlation exits between 

the modulus of elasticity and stress with a coefficient of correlation value of 0.18 and is 

shown in Figure 5.15. There is a strong negative coefficient of correlation between the 

modulus of elasticity and strain equaling -0.81 and shown in Figure 5.16. This indicates 

that bamboo with a high rupture strain generally has lower stiffness. A summary of the 

coefficients of correlation and the covariance between each property is provided in Table 

5.2. 

Table 5.2 Correlation between bamboo properties 
 

 

 
 

Stress vs. Strain MoE vs. Stress MoE vs. Strain

Coefficient of Correlation 0.38 0.18 -0.81

Covariance 0.004 106.060 -0.657
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Figure 5.14 Correlation between stress and strain 
 

 

Figure 5.15 Correlation between modulus of elasticity and stress 
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Figure 5.16 Correlation between modulus of elasticity and strain 
 

The modulus of elasticity of the Moso bamboo was determined through the tensile 

test results. The modulus of elasticity is a measure of the stiffness of a material and is 

calculated by dividing the stress by the strain as shown in Equation 5.3. 

   
 

 
 5.3 

The modulus of elasticity of concrete can be approximated using Equation 5.4 

from ACI 318-11 Section 8.5.1, assuming a normal weight concrete. The modulus of 

elasticity for a 3,000 psi (21 MPa) concrete would be approximately 3,100 ksi (21,000 

MPa). 

         √    5.4 
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The calculated modulus of elasticity (MoE) averaged 1,145 ksi (7,894 MPa) 

which is less than the value of 2,500 ksi (17,237 MPa) suggested by Janssen (2000) and 

Brink and Rush (1966, 2000). The MoE of bamboo in this study ranged from 688 – 1,577 

ksi (4,744 – 10,873 MPa) with a standard deviation of 223 ksi (1,538 MPa). The results 

for the bamboo’s MoE values can be found in Table 5.1 in Section 5.1.3. In Figure 5.7 

the stiffness of each bamboo tensile specimen can be compared relative to each other. 

Steeper stress-strain curves indicate a higher MoE and therefore a higher stiffness. 

The modulus of elasticity of the Moso bamboo tested is much lower than steel and 

even lower than concrete. Bamboo’s low MoE is expected to have negative impacts on its 

performance as a reinforcement and ability to decrease crack width in the concrete, but 

this will be further examined during the beam tests. 

5.2 Bond strength tests 

A good bond between the reinforcement and the concrete is necessary to ensure 

an effective transfer of tensile stresses from the concrete to the reinforcement. There have 

been multiple studies on the bond strength between concrete and bamboo. The bond 

strength results tested by others as well as the test results by the author of this study are 

presented and briefly discussed next. The bond strength tests were not meant to be a 

comprehensive study, but rather to give an idea of how the bamboo would bond with the 

concrete. 

The bond strength tests consisted of two phases. In the first phase, bond strength 

tests were conducted on specimens with varying embedment lengths and the results were 

used to determine the appropriate lap-splice lengths to examine during the full-scale 
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beam tests. Very little literature is available on lap-splicing bamboo. Glenn (1950) 

suggests to lap splice bamboo a minimum distance of 25 inches (635-mm) and to 

securely tie the splices. Based on the results of the pullout tests, lap-splice lengths of 12 

inches (305-mm), 18 inches  (457-mm) and 24 inches (610-mm) were chosen for the lap-

spliced beam tests. 

In the second phase, a new set of bond strength specimens were cast using the 

same concrete mix as used for the large-scale beam tests. The bamboo in these bond 

strength samples was designed to be comparable to the longitudinal bamboo 

reinforcement used in the beams – being waterproofed and having the same dimensions. 

Since waterproofing was already known to improve bond strength, the effect of 

waterproofing was not studied in depth. The purpose of the second phase of bond 

strength tests was to quantify the bond strength of the waterproofed bamboo cast within 

the beams. 

5.2.1 Specimen preparation 

The pullout specimens were similar to the tensile specimens described in Section 

5.1.1. However, the bond strength bamboo specimens differed from the tensile specimens 

in that only one end had a “dog-bone shape.” The other end was straight and was 

embedded into a 4-inch (102-mm) diameter concrete cylinder. Four different embedment 

lengths were tested and can be seen in Figure 5.17. The embedment depths included 9 

inches (229-mm), 12 inches (305-mm), 15 inches (381-mm), and 18 inches (457-mm). 

The embedded length of the bamboo specimens were not sanded down or 

modified in any way to ensure that they were similar to the bamboo strips used for the 
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beam design. The bamboo specimens for phase two testing were waterproofed with 

Thompson’s WaterSeal, model number TH.024101-16 which was also used to waterproof 

the bamboo reinforcement in the beams. The bamboo pullout specimens were all roughly 

1 inch (25.4-mm) wide and 0.3 inch (7.6-mm) thick. The dimensions of the embedded 

bamboo specimens were chosen based on the dimensions of the longitudinal bamboo 

strips used in the beam design since the purpose of the pullout specimens was to 

determine how the longitudinal bamboo would bond to the concrete. 

Similarly to the tensile specimens, the grip ends of the bamboo specimens had to 

be sanded level to remove the natural curvature of the bamboo so the aluminum tabs 

could be epoxied to the ends and a tight hold could be achieved in the grips. The grip end 

of the pullout specimen without the aluminum tabs can be seen in Figure 5.18. 
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Figure 5.17 Pullout specimen 

embedment depths 
 

 

Figure 5.18 Pullout specimen grip end

The pullout specimens proved difficult to test. The reduced cross-sectional area of 

the bamboo at the grip, combined with the concentrated pressure of the grips cutting into 

the bamboo, facilitated failure at the grip end of the specimens. The reduced cross-

sectional area of the pullout specimen can be seen in Figure 5.18. 

Aluminum is a very soft metal, with a hardness number of 2.5 – 3.0 on the Mohs 

hardness scale. The softness of the aluminum tabs did not distribute the pressure of the 

UTM grips along the length of the tab, and the pressure of the grips cutting into the 

bamboo caused premature failure at the grips. The aluminum tabs which were used for 

the tensile test specimens did not cause grip failure because the tabs were thicker than the 

tabs used for the bond strength specimens. Also, the middle portion of the tensile 
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specimens had a small cross-sectional area and the ultimate stress was achieved at this 

location, preventing grip failure. A solution to the grip failure problem is to use a harder 

metal for the end tabs and use thicker tabs. Steel would be a good option since it has a 

hardness value of between 4.0 – 4.5 on Mohs hardness scale, but steel tabs were not used 

since all the samples had already been prepared with the aluminum tabs at the time of 

testing. 

After the bamboo specimens were prepared, they were placed in the PVC pipe 

which was then filled with either QUIKRETE® Concrete Mix (No. 1101) or the concrete 

mixture used for the beam specimens. The QUIKRETE® Concrete Mix specimens were 

mixed in a portable concrete mixer as shown in Figure 5.19. About 9 pt. (4.3 L) of water 

was added for each 80 lb. bag of concrete as per the mixing instructions. Each specimen 

was filled in 4-inch (102-mm) layers – with each layer being compacted – before the next 

layer was added as per ASTM C31. Each specimen was air cured with a damp cloth 

covering the concrete during the initial curing phase. The phase two pullout specimens 

can be seen in Figure 5.20. A total of 23 bond strength samples were prepared and tested. 
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Figure 5.19 Portable concrete mixer 
 

 

Figure 5.20 Phase two pullout 

specimens

5.2.2 Test setup 

Similarly to the tensile strength tests, the bond strength tests were conducted in 

the 10-kip Tinius Olsen UTM. One V-grip was used to hold the bamboo end with the 

aluminum end tabs and the cylinder end of the specimen was held in a steel frame. The 

test setup can be seen in Figure 5.21 and a pullout test specimen can be seen in Figure 

5.22.
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Figure 5.21 Pullout test setup 
 

 

Figure 5.22 Pullout test specimen

The bond strength tests consisted of two phases. QUIKRETE® Concrete Mix was 

used in phase one to determine the range of embedment depths to test, since it cures to a 

high strength within a short period of 7 days. The QUIKRETE® Concrete Mix (No. 1101) 

used in the tests has a typical 7-day compressive strength of 2500 psi (17.2 MPa) 

according to ASTM C39. Once the range of embedment depths was determined with the 

QUIKRETE® Concrete Mix specimens, the rest of the phase two pullout specimens were 

cast using the same concrete mix as used for the full-scale beam specimens. 

V-grip 

Steel frame 

Specimen 

V-grip 

Steel frame 

Specimen 

Aluminum 

tab 
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5.2.3 Results 

In this study, four different embedment depths have been tested: 9 inches (229-

mm), 12 inches (305-mm), 15 inches (381-mm), and 18 inches (457-mm) for bamboo 

specimens around 1 inch (25.4-mm) wide and 0.3 inch (8-mm) thick. The testing of the 9-

inch (229-mm) sample resulted in pullout failure with a bond stress of 106 psi (0.73 MPa) 

indicating that the 9-inch (229-mm) embedment length is inadequate to develop sufficient 

bond between the bamboo and concrete even when a node and diaphragm are present. 

Diaphragms increased the bonding strength between the bamboo and the concrete. 

The average bond stress for the pullout specimens can be seen in Table 5.3. The average 

bond stress for specimens with zero diaphragms was 72.0 psi (0.50 MPa) and the average 

bond stress for specimens with 1 diaphragm was 82.6 psi (0.57 MPa). Diaphragms 

increased the bond strength by 15%. 

Table 5.3 Effect of diaphragms on bond stress 

 

Results from the phase one tests showed pullout failures occurred for the 9-inch 

(229-mm), 12-inch (305-mm) embedment depths. Based on these results as well as the 

recommendation by Glenn (1950) to splice bamboo 25 inches (635-mm), lap-splice 

lengths of 12 inches (305-mm), 18 inches (457-mm) and 24 inches (610-mm) were 

chosen for the lap-spliced beam tests. 

(psi) (MPa)

zero 72.0 0.50

1 82.6 0.57

Bond stress
# of diaphragms
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The purpose of the phase two bond strength tests was not to determine the effects 

of waterproofing and long term curing, but rather to quantify the bond strength of the 

waterproofed bamboo cast within the beams. The average bond stress of the waterproofed 

specimens after curing a period of 120 days was 76.4 psi (0.53 MPa). 

Summary results from the phase one and phase two tests were compiled and the 

number of pullouts and percent pullout at each bonded length can be seen in Table 5.4 

and the resulting graph can be seen in Figure 5.23. A second order polynomial trend line 

was fit to the data with Equation 5.5. 

                                           5.5 

Solving for the embedment depth, d, at which % Pullout equals zero results in an 

embedment depth of 18.8 inches (478-mm). From this analysis it can be concluded that a 

development length of about 20 inches (508-mm) is sufficient for waterproofed Moso 

bamboo strips 1 inch (25-mm) wide and 0.3 inch (8-mm) thick. 

Table 5.4 % Pullout at different embedment depths 

 

Embedment depth (in) Total samples # Pullouts % Pullout

9 1 1 100

12 9 4 44

15 7 2 29

18 6 0 0
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Figure 5.23 % Pullout at different embedment depths 
 

Another analysis using detailed calculations for required embedment depth 

(development length) are found below. In these calculations, the results from the tensile 

strength tests are used in addition to the pullout tests to determine the range of 

development lengths required based on the distribution of bamboo tensile strengths. First, 

the ultimate force, F, is calculated based on the range of ultimate bamboo strengths (min, 

mean, and max), fult, and the average cross-sectional area, A, of the pullout specimens as 

shown in Equation 5.6. 
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The bond stress is calculated by dividing the force required to achieve pullout 

failure by the contact surface area of the bamboo embedded in the concrete. The 

calculation for pullout bond stress can be seen in Equation 5.7, where F is the force 

required to achieve pullout failure, P is the perimeter around the bamboo specimen and d 

is the embedment depth. The average pullout bond stress determined from the bond 

strength tests is 78.1 psi (0.54 MPa). 

               
 

   
 5.7 

Re-arranging Equation 5.7 to solve for the embedment depth, d, and substituting 

the ultimate force, F, from Equation 5.6 and the average perimeter, P, of 2.377 inches 

(60.4-mm) results in Equation 5.8. 

   
 

       
 (

    
    
    

)    5.8 

Therefore, the range of embedment depths for the previously specified bamboo 

dimensions is 15 – 31 inches (381 – 787-mm) based on the range of ultimate bamboo 

strengths and the average area, perimeter and pullout bond stress of the bond strength 

specimens. The average embedment depth required is 25 inches (635-mm). These results 

compare with the minimum required embedment depth, d, calculated from Equation 5.5 

which is around 20 inches (508-mm). 

Multiple bamboo pullout specimens failed at the grip after reaching tensile 

stresses ranging from 5.0 – 13.6 ksi (34.5 – 93.8 MPa). These stresses were less than the 

expected tensile strength of the bamboo, indicating a higher bond strength could be 
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reached and making these test results inconclusive. Figure 5.24 shows the grip failure for 

specimen BW 14, while Figure 5.25 shows pullout failure for specimen BW 15. 

Figure 5.26 shows the tested bond strength samples. The comprehensive data of 

the bond strength tests can be found in Appendix B. 

 

 

Figure 5.24 Bond specimen grip 

failure 
 

 

Figure 5.25 Bond specimen pullout 

failure
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Figure 5.26 Tested bond strength samples 
 

  



70 

 

Chapter 6 – BEAM DESIGN, FABRICATION and TEST SETUP 

6.1 Beam design 

Once the mechanical properties of the bamboo were determined, 13 BRC beams 

were designed and constructed with varying configurations to test the application of 

bamboo as shear, flexural, and flexural lap-spliced reinforcement. The design of the BRC 

beams was done by following the Building Code Requirements for Structural Concrete 

(ACI 318-11) and replacing the properties of rebar with the properties of bamboo as 

determined from the component tests in Chapter 5. 

A modification was made to the bamboo model since bamboo exhibits brittle 

characteristics and does not behave like steel. Instead of achieving the yield strength as 

steel would upon reaching its yielding strain, bamboo ruptures when it reaches its rupture 

strain of 0.016. Since the failure mechanism of the bamboo reinforcement when acting as 

a group is unknown, three different models were used to predict the capacity of each 

beam. 

The first model assumes bamboo will yield like steel and retain all of its 

maximum stress upon reaching its strain limit. In the MathCAD calculations this model is 

labeled as Yielding. The second model assumes bamboo will only retain 2/3 of its 

maximum stress upon reaching its strain limit. This model is labeled as Rupture 2/3. The 

third model accounts for the loss of bond between the bamboo and the concrete by 

reducing modulus of elasticity of the flexural bamboo reinforcement. This model was 

first presented by Shimoda, Murakami, Takeda, Matsunaga and Kakuno (2010) and then 

confirmed by Yamaguchi et al. (2013). This model is labeled as Yielding 0.6E. The 
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stress-strain diagrams for these models are shown in Figure 6.1 and compared to the 

results from the component tensile tests (average stress of combined bamboo). The three 

models were used to predict the capacities of each beam and the results were compared to 

the actual beam capacities after testing. 

 

Figure 6.1 Stress-strain curves of three bamboo models 
 

The beams were designed not based off of LRFD loads but rather from previous 

research and the component tests which gave target longitudinal reinforcement ratios and 

suggested  stirrup spacing. The beam reinforcement configuration, including location, 

quantity and spacing was selected. Then the expected flexural and shear capacities for 

each beam were determined through multiple iterations, varying the depth of the neutral 

axis, c, which would result in static equilibrium between the compressive and tensile 

forces acting on the concrete beam cross section. The compression force from the 
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equivalent rectangular stress block was calculated using Equation 6.1 where f’c is the 

concrete design compressive strength, a is the depth of the compression block and b is the 

beam width. 

         
 
       6.1 

 The tension force in the bamboo reinforcement, T, was calculated using Equation 

6.2. Abi is the area of bamboo in each layer and Stressi is the stress in each bamboo layer.  

   ∑              
 

     
    6.2 

The force in each bamboo layer, Stressi, was determined based on the Bernoulli-

Euler principle which state that the strains above and below the neutral axis are 

proportional to the distance from the neutral axis. The Bernoulli-Euler principle is shown 

visually in Figure 6.2. The strain in each bamboo layer is given as ɛbi and the depth to 

each layer is given as di. The depth to neutral axis is given as c. The equivalent triangles 

are based off the rupture strain limit of concrete, which is set at 0.003. 

 

Figure 6.2 Bernoulli-Euler principle 
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Once the depth to the neutral axis resulting in static equilibrium between the 

compressive and tensile forces acting on the cross-section was determined, the nominal 

moment design Mn was calculated based off Equation 6.3. The depth of the equivalent 

compressive block a is calculated from Equation 6.4. 

    ∑ [        (  
 

 
)
 
   

]
     
    6.3 

       6.4 

The nominal shear capacity of the beams, Vn, were calculated using Equation 6.5. 

Vc is the shear capacity of the concrete and is given by Equation 6.6 where b is the width 

of the beam. For all concrete flexural members, the maximum shear applied Vu must be 

less than or equal to half the shear capacity of the concrete, Vc. 

          6.5 

     √  
 
       6.6 

The shear capacity of the reinforcement, Vs, is given in Equation 6.7, where Av is 

the area of the shear stirrups, and s is the stirrup spacing. Both fy and d were previously 

defined. 

    
     

 
 6.7 

After the nominal flexural and shear capacities of the beam was calculated, the 

minimum load, P, which would cause either flexural or shear failure was determined. 

Using P, the maximum applied moment Ma and max applied shear Va were determined. 

Each of the beams tested is technically classified as a deep beam according to 

ACI-318 Section 11.7.1. The provisions of Section 11.7 for deep beams are applied to 
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members with the clear span-to-depth ratio not exceeding 4 (ln/h<4) and when the shear 

span-to-depth ratio does not exceed 2 (av/h<2). Figure 6.3 provides a visual for the shear 

span limit. These dimensioning conditions allows for compression struts to be developed 

between the loads and supports as shown in Figure 6.4. 

 

Figure 6.3 Shear span, av = 2h, limit for a deep beam  

(ACI 318-11 Fig. RA.1.2) 

 

 

Figure 6.4 Description of strut and tie model  

(ACI 318-11 Fig. RA.1.3) 

Although the beams are classified as deep beams, beams were designed by the 

strength design method of the ACI 318-11 Code. According to Section R10.2, the 

strength of a member computed by the strength design method of the Code requires that 
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two basic conditions be satisfied: (1) static equilibrium between the compressive and 

tensile forces acting on the cross section, and (2) compatibility between the stress and 

strain for the concrete and the reinforcement. Many tests have confirmed the linear 

distribution of strain across a reinforced concrete cross-section. The strain in the both the 

concrete and reinforcement is assumed to be directly proportional to the distance from the 

neutral axis. The flexure and shear beam designs were done in accordance with ACI 318-

11 Chapter 10, Flexure and Axial Loads, and Chapter 11, Shear and Torsion. 

6.1.1 Shear beams 

The shear beams were designed to test varying stirrup spacing and check the 

design shear capacity versus the actual shear capacity of six bamboo reinforced concrete 

beams. From the results of the shear beam tests, the optimum stirrup spacing will be 

determined and the shear failure mechanism will be studied. The results of the shear 

beam tests can be found in Chapter 7. The following section provides background 

information on bamboo stirrups including previous research and then describes in greater 

detail the design of the shear beams. 

6.1.1.1 Background 

Stirrups are crucial in providing shear capacity to concrete members. In members 

with shear reinforcement, a portion of the shear strength is assumed to be provided by the 

concrete and the remainder is assumed to be provided by the shear reinforcement. 

Shear failure, also known as “diagonal tension failure” is difficult to predict 

accurately. ACI 318-11 provides guidelines for shear reinforcement design based on the 

vertical shear force, Vu, that is present at any given cross-section of a member. The 
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diagonal tensile forces are the real cause for shear failure, but these forces are not 

calculated. Traditionally, vertical shear force, Vu, has been taken to indicate the presence 

of diagonal tensile forces. Shear reinforcement is used to cross the diagonal tension 

cracks and keep them from opening.  

Bamboo stirrups have been used by a number of researchers including 

Yamaguchi, Murakami and Takeda (2013), Mark and Russell (2011), Ghavami (2005), 

and Khare (2005). However, there is limited literature on the design of bamboo stirrups. 

Based on a study of the flexural performance of BRC beams, Yamaguchi et al. (2013) 

have stated that good load-carrying capacity, determined by when the main bamboo rebar 

ruptured, can be obtained if the number of bamboo stirrups is sufficient to prevent the 

shear failure of the beam. 

Mark and Russell (2011) conducted a comparative study of BRC beams using 

different stirrup material for construction including bamboo, rattan cane, and steel. A 

beam performance index (BPI), developed by Mark and Russell, indicated the use of steel 

stirrups as the most economical. 

Khare (2005) tested six BRC beams, three of which failed in shear. The bamboo 

stirrups used by Khare were 0.5 inch (12-mm) wide, open ‘U-shaped’ with no end hooks. 

Tonkin bamboo was used due to its flexible behavior. The stirrup spacing is not 

indicated, but Khare concluded that the stirrup design provided small resistance to shear 

forces. 

Brink and Rush (1966, 2000) recommend vertical stirrups be made from wire or 

packing ties when available, but that they can also be improvised from split bamboo 
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sections bent into U-shape and tied securely to the longitudinal reinforcement. Brink and 

Rush also suggest that stirrup spacing should not exceed 6 inches (152-mm). 

Yamaguchi et al. (2013) utilized sliced Moso bamboo stirrups with a section size 

of 0.6 x 0.15 inches (15 x 3.8-mm) in their beam design. The bamboo stirrups were bent 

in hot water after the outer skin had been removed with a planer. A polymer cement 

mortar was sprayed on the reinforcement to waterproof it. Results from the beam tests 

showed that the fracture behavior of the BRC beams varied according to stirrup spacing. 

It was also concluded that good load-carrying capacity of a beam can be obtained if the 

number of stirrups is sufficient to prevent shear failure. 

6.1.1.2 Design 

To test the shear reinforcement capacity of the bamboo, six beams with varying 

stirrup spacing were designed. The beams were designed to fail in shear by specifying a 

very short clear span and loading the beam with a low a/d ratio. Stirrups were spaced at 4 

inches (102-mm), 6 inches (152-mm) and 8 inches (204-mm) with two beams per stirrup 

spacing. Each shear beam had the same number of rows of flexural reinforcement (4 

rows) with the only variable being the stirrup spacing. The shear controlled beam test 

matrix can be seen in Table 6.1. The values in the table were measure from the 

constructed bamboo cages which results in slightly varying a/d (shear span to depth) 

ratios and ρbamboo (ratio of Abamboo to d) values. This was because the d values varied 

slightly between cages. 
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Table 6.1 Shear controlled beam test matrix 
 

 

The bamboo cages for the shear beam tests can be seen in Figure 6.5. The stirrups 

were made from the same Moso bamboo as the longitudinal reinforcement. The 

procedure for stirrup construction can be found in Section 6.2.1.2. The average cross 

sectional area of the stirrups was 0.20 in
2
 (129-mm

2
) which is the same cross sectional 

area as an imperial #4 rebar. The dimensions of the shear beams are 10 inches (25-cm) 

wide by 20 inches (51-cm) deep by 48 inches (122-cm) long. Each beam was tested under 

a single point load in the center of the beam with an a/d ratio between 1.1 and 1.2. 

(in) (mm) (in) (cm) (in) (cm) (in2) (cm2) (in) (mm)

S1 4 4.0 101.6 18.0 45.7 16.3 41.4 1.1 3.7 24.0 2.3% n/a n/a

S2 4 4.0 101.6 18.0 45.7 15.8 40.2 1.1 3.7 24.0 2.4% n/a n/a

S3 4 6.0 152.4 18.0 45.7 15.7 39.9 1.1 3.7 24.0 2.4% n/a n/a

S4 4 6.0 152.4 18.0 45.7 15.1 38.4 1.2 3.7 24.0 2.5% n/a n/a

S5 4 8.0 203.2 18.0 45.7 15.4 39.1 1.2 3.7 24.0 2.4% n/a n/a

S6 4 8.0 203.2 18.0 45.7 16.2 41.0 1.1 3.7 24.0 2.3% n/a n/a

a/d ρbambooBeam ID
# Flexural 

Rows

Stirrup Spacing, s Shear span, a depth, d Abamboo Splice length
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Figure 6.5 Varying stirrup spacing for shear beam tests 

a) 4-inch (102-mm), b) 6-inch (152-mm), c) 8-inch (203-mm) 

The a/d ratio is the shear span-to-depth ratio. In the a/d ratio, a is defined as the 

distance from the support to the point load and d is the distance from the top of the beam 

to the centroid of the longitudinal reinforcement. A higher a/d radio indicates a greater 

moment to be reached in the beam under the given loading while a lower a/d ratio means 

the flexure (moment) observed in the beam will be lower. This is explained visually in 

Figure 6.6. 
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Figure 6.6 Definition of a/d ratio 
 

The stirrup spacing, strain gauge placement and loading configuration for each 

beam can be seen in Figure 6.7. Strain gauges 1, 2, 4 and 5 were placed on stirrups 

located a distance d from the supports where the shear cracks were expected to form. A 

single strain gauge, 3, was placed on the bottom layer of longitudinal reinforcement to 

measure the strain in the reinforcement under the maximum moment. To measure the 

strain in the top and bottom faces of the concrete beam, reusable Bridge Diagnostics Inc. 

(BDI) strain transducers were installed near the mid span of the beam. Since the point 

load was applied directly at mid span, the BDIs were offset 4 inches (102-mm) from the 

beam’s midpoint. 
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Figure 6.7 Loading conditions for shear beams 

Note: distances are in inches 

 

The major design parameters for the shear beams can be found in Table 6.2. Each 

model (Yielding, Rupture 2/3, Yielding 0.6E) has a different depth to the neutral axis, c, 

as shown in the table. Section 10.2.7 of the ACI 318 Code allows the use of an equivalent 

rectangular stress block to estimate the more exact concrete stress distribution. For the 

beam designs, all the design parameters were entered and the depth to neutral axis, c, was 

varied until the static equilibrium between the compressive and tensile forces acting on 

the cross-section was reached. For each failure model, the depth to the neutral axis is the 

same for each shear beams because each shear beam has the same number of rows of 
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longitudinal reinforcement and therefore the same tensile forces acting on the beam’s 

cross-section. The detailed MathCAD designs for the BRC beams can be found in 

Appendix C. 

Table 6.2 Shear beam design parameters 
 

 

The expected failure loads, Pexpect, for the shear beams ranged from 67.0 – 97.9 

kips (298.0 – 435.5 kN), and can be seen in Table 6.3. All of the shear beams were 

designed to fail in shear with the shear capacities ranging from 33.5 – 48.9 kips (149.0 – 

217.5 kN). Since the beams were designed to fail in shear, the bamboo model had no 

impact on the expected beam capacities. This is because the model only affects the 

flexural capacities of the beam. Once the beams were tested, the expected shear beam 

capacities were compared to the actual beam capacities and the results can be found in 

Chapter 7. 

Table 6.3 Expected shear beam capacities 
 

 

(psi) (MPa) (ksi) (MPa) (in) (mm) (in) (mm) (in) (mm) (in) (mm) (in) (cm)

S1

S2

S3

S4

S5

S6

72.0 64.6 57.0

203.2

17.0

17.0

17.0

Beam ID

Concrete 

strength, f'c

Bamboo 

strength, fbamboo Yielding Rupture 2/3 Yielding 0.6E

20.7

20.7

20.7

129.1

18.7 43.2129.1 152.4

3000 18.7

3000

3000

8

2.543

# 

Flexural 

Rows

18.7

43.2

2.836

4129.1

4

6

Depth to neutral axis, c (in)

2.245

4

4

Stirrup 

spacing, s

101.6 43.2

Shear span, a

Beam ID
Mcr 

(kip-ft)

Vn 

(kip)

Vu 

(kip)

Mn 

(kip-ft)

Mu 

(kip-ft)

Pexpect 

(kip)

Expected 

Failure Mode

S1

S2

S3

S4

S5

S6

SHEAR69.3 97.9>79.0

33.522.8 33.5 SHEAR

> 54.7 77.3 SHEAR

79.0 > 47.5 67.0

79.022.8 38.6 38.6

22.8 48.9 48.9
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6.1.2 Flexure beams 

The flexure beams were designed to test varying amounts of flexural 

reinforcement and check the design flexure capacity versus the actual flexural capacity. 

From the results of the flexure tests, the optimum level of flexural reinforcement will be 

determined and the flexural failure mechanism will be studied. The results of the flexure 

beam tests can be found in Chapter 7. The following sections provide background 

information on flexural bamboo reinforcement including previous BRC research and then 

describe the flexure beam design in greater detail.  

6.1.2.1 Background 

Flexural reinforcement, also known as longitudinal reinforcement, is necessary to 

increase the flexural capacity of a concrete beam. The tensile strength of concrete in 

flexure, also known as the modulus of rupture, is only about 10 to 15 percent of the 

compressive strength. A concrete beam in flexure will have zones in compression and 

tension, and reinforcement with high tensile strength is needed in the tension zones to 

carry the tensile stresses and prevent structural failure of the member. 

A study by Clemson Agricultural College in 1950 concluded that the bamboo 

reinforcement in concrete beams increased the load capacity with increasing percentages 

of longitudinal bamboo reinforcement up to an optimum value of 3 to 4 percent (Glenn, 

1950). This recommendation is also confirmed in a report prepared by the U.S. Naval 

Civil Engineering Laboratory (Brink & Rush, 1966). More recently, Khare (2005), at the 

University of Texas at Arlington, conducted a study on six beams with varying 
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reinforcement ratios. This study showed that a beam with 4 percent reinforcement failed 

in crushing of the concrete in the top of the beam, indicating over-reinforcement. 

Yamaguchi et al. (2013) utilized Moso bamboo as the main longitudinal 

reinforcement in their beams tests. Each section of reinforcement was made by tying two 

bamboo strips together with the inner sides facing each other. The bamboo strips had a 

section size of 1.2 x 0.4 inches (30 x 10-mm).  The flexural capacity of the BRC beams 

was estimated using section analysis based on the Bernoulli-Euler assumptions. Two 

BRC beams were tested and the theoretical results were comparable to the experimental 

results when the bamboo’s Young’s modulus was reduced by 0.6 times. 

6.1.2.2 Design 

To test the flexural reinforcement capacity of the bamboo, four beams with 

varying bamboo reinforcement ratios have been prepared. Based on previous research, 

reinforcement ratios varying from 1.6 to 3.9 percent have been selected for the four 

flexure beams. Each beam had a different number of layers of longitudinal reinforcement, 

including 3, 4, 5 and 6 rows. The total area of longitudinal reinforcement for each beam 

was The stirrup spacing for the flexure beams remained constant at 6 inches (152-mm). 

The flexure controlled beam test matrix can be seen in Table 6.4. The values in the table 

were measure from the constructed bamboo cages which results in slightly varying a/d 

(shear span to depth) ratios and ρbamboo (ratio of Abamboo to d) values. This was because the 

d values varied slightly between cages. 
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Table 6.4 Flexure controlled beam test matrix 
 

 

The longitudinal reinforcement was made from 1 inch (25-mm) wide bamboo 

strips. The average cross-sectional area of the longitudinal bamboo was 0.31 in
2
 (200-

mm
2
) which is the same cross sectional area as an imperial #5 rebar. The bamboo 

reinforcement cage preparation is described in more detail in Section 6.2.1. The bamboo 

cage for flexure beam, F1, can be seen in Figure 6.8. 

 

Figure 6.8 Bamboo cage for flexure beam, F1 
 

(in) (mm) (in) (cm) (in) (cm) (in2) (cm2) (in) (mm)

F1 3 6.0 152.4 25.0 63.5 17.0 43.2 1.5 2.8 18.0 1.6% n/a n/a

F2 4 6.0 152.4 25.0 63.5 15.8 40.1 1.6 3.7 24.0 2.4% n/a n/a

F3 5 6.0 152.4 30.0 76.2 15.5 39.4 1.9 4.7 30.0 3.0% n/a n/a

F4 6 6.0 152.4 38.0 96.5 14.5 36.7 2.6 5.6 36.0 3.9% n/a n/a

ρbambooa/dBeam ID
Splice lengthAbamboodepth, dShear span, aStirrup Spacing, s# Flexural 

Rows
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The dimensions of the flexure beams are 10 inches (25-cm) wide by 20 inches 

(51-cm) deep by 90 inches (230-cm) long. These beams were tested under a monotonic 

loading of either one or two-point loads at a/d ratios of 1.5 to 2.6 to maximize the 

moment in each beam. Two point loads at a distance of 25 inches (635-mm) from the 

support were applied to the flexure beams F1, F2 and all the lap-spliced beams L1, L2 

and L3. Since beam F2 was the control for the lap-spliced beams it had to be loaded 

under the same conditions. Beams F3 and F4 which had the highest quantities of flexural 

reinforcement were loaded under different conditions to prevent shear failure, since it 

was the goal of the tests to investigate the flexural failure mechanism. The flexure beam 

loading conditions can be seen in Figure 6.9. 

Strain gauges were attached to the bottom layer of the flexural bamboo as well as 

to the stirrups at a distance ‘d’ from the support. For beams F1, F3 and F4, strain gauges 

1, 2 and 3 were placed on each bamboo strip on the bottom row in the center of the beam. 

Strain gauges 4 and 5 were placed at a distance L/4 from the end of the beam and gauges 

6 and 7 were placed on the stirrup a distance ‘d’ from the support. The strain gauge 

placement for beam F2 was similar to the lap-spliced beams since beam F2 was the 

control for the lap-spliced tests. The stirrup spacing, flexural reinforcement rows, strain 

gauge placement and loading configuration for each beam can be seen in Figure 6.9. 

The major design parameters for the flexure beams can be found in Table 6.5. The 

detailed MathCAD designs for the BRC beams can be found in Appendix C. 
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Table 6.5 Flexure beam design parameters 
 

 

 

Figure 6.9 Loading conditions for flexure beams 

Note: distances are in inches 

 
 

(psi) (MPa) (ksi) (MPa) (in) (mm) (in) (mm) (in) (mm) (in) (mm) (in) (cm)

F1 3000 20.7 18.7 129.1 2.407 61.1 1.605 40.8 2.003 50.9 3 6 152.4 25 63.5

F2 3000 20.7 18.7 129.1 2.835 72.0 2.543 64.6 2.246 57.0 4 6 152.4 25 63.5

F3 3000 20.7 18.7 129.1 3.072 78.0 3.072 78.0 2.437 61.9 5 6 152.4 30 76.2

F4 3000 20.7 18.7 129.1 3.257 82.7 3.257 82.7 2.592 65.8 6 6 152.4 38 96.5

Beam ID

Concrete 

strength, f'c

Bamboo 

strength, fbamboo

Depth to neutral axis, c (in)

Yielding Rupture 2/3 Yielding 0.6E

# 

Flexural 

Rows

Stirrup 

spacing, s
Shear span, a
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 The expected failure loads, Pexpect, for the flexure beams ranged from 45.8 – 75.9 

kips (203.7 – 337.6 kN), and can be seen in Table 6.7. All of the flexure beams were 

designed to fail in flexure, with the flexural capacities ranging from 47.7 – 83.8 kip-ft 

(64.7 – 113.6 kN-m). Beams F3 and F4 were expected to be compression controlled 

flexural failure for the Yielding and Rupture 2/3 models. All the flexure beams were 

expected to be compression controlled flexural failure for the Yielding 0.6E model. The 

balanced depth to neutral axis, cbalanced, was determined for each of the models and is 

given in Table 6.6. The balanced depth to neutral axis is the depth of the neutral axis, c, at 

which the bottom layer of reinforcement will yield in a tension controlled flexural failure 

mode at the same moment as the concrete reaches its rupture strain limit of 0.003. Beams 

having c values less than cbalanced will result in tension controlled flexural failure and 

beams with c values greater than cbalanced will result in compression controlled flexural 

failure. Once the beams were tested, the expected flexural beam capacities were 

compared to the actual beam capacities and the results can be found in Chapter 7. 

Table 6.6 Balanced depth to neutral axis (cbalanced) values 
 

 

  

(in) (mm)

Yielding

Rupture '2/3'

Yielding '0.6 E' 1.824 46.3

Model
Cbalanced

2.852 72.4
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Table 6.7 Expected flexure controlled beam capacities 
 

 

6.1.3 Flexure lap-spliced beams 

The flexure lap-spliced beams were designed to test varying lap-spliced lengths to 

determine the minimum lap-splice length required to achieve full capacity in the flexural 

reinforcement. From the results of the beam tests, the optimum lap-splice length will be 

determined and the lap-splice failure mechanism will be studied. The following section 

provides background information on bamboo lap-splicing and then describes in greater 

detail the design of the lap-spliced beams. 

6.1.3.1 Background 

A lap-splice is made when two pieces of reinforcement are overlapped to create a 

continuous piece. According to ACI 318-11 Chapter 12, the lap-splice length of rebar 

depends on many factors including concrete strength, rebar grade, size, spacing as well as 

the depth of concrete above the bars and the concrete cover.  

Model Beam ID
Mcr 

(kip-ft)

Vn 

(kip)

Vu 

(kip)

Mn 

(kip-ft)

Mu 

(kip-ft)

Pexpect 

(kip)

Expected 

Failure Mode

F1 40.1 > 33.6 70.0 70.0 67.2 TENSION

F2 38.6 > 38.0 79.1 79.1 75.9 TENSION

F3 37.2 > 32.9 82.2 82.2 65.7 COMPRESSION

F4 35.7 > 26.5 83.8 83.8 52.9 COMPRESSION

F1 40.1 > 22.9 47.7 47.7 45.8 TENSION

F2 38.6 > 33.6 70.0 70.0 67.2 TENSION

F3 37.2 > 32.9 82.2 82.2 65.7 COMPRESSION

F4 35.7 > 26.5 83.8 83.8 52.9 COMPRESSION

F1 40.1 > 28.4 59.1 59.1 56.8 COMPRESSION

F2 38.6 > 30.5 63.6 63.6 61.0 COMPRESSION

F3 37.2 > 26.5 66.4 66.4 53.1 COMPRESSION

F4 35.7 > 21.4 67.9 67.9 42.9 COMPRESSION

Rupture 2/3

Yielding 22.8

22.8

22.8Yielding 0.6E
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Lap-splicing is a common practice in reinforced concrete construction, but 

currently there exits very little literature on the performance of lap-spliced bamboo. In the 

U.S. Navy report on Bamboo Reinforced Concrete Construction, Brink and Rush (1966, 

2000) suggest that bamboo lap-splices should overlap at least 25 inches (635-mm) but 

gives no other details on the construction of the splices. 

6.1.3.2 Design 

In this research, three beams were tested using different lengths of lap-splicing for 

the bottom layer of reinforcement. The lap-splice lengths were chosen based on the 

results from the component bond strength tests described in Chapter 5. The pullout tests 

indicated the range of development lengths to be from 15 to 31 inches (38 – 79-cm) with 

an average of 25 inches (51-cm). Three different lap-splice lengths were chosen to be 

tested: 12-inch (30-cm), 18-inch (46-cm) and 24-inch (61-cm). Each lap-splice was tied 

with steel rebar ties spaced at about 5 inches (127-mm). Each lap-spliced beam had 4 

layers of flexural reinforcement and had stirrups spaced at 6 inches (152-mm) with the 

exception of along the splice, where the stirrup spacing was 4 inches (102-mm). The lap-

spliced beam testing matrix can be seen in Table 6.8 and the three varying splice lengths 

of the bamboo can be seen in Figure 6.10. 

Table 6.8 Lap-splice beam test matrix 
 

 

(in) (mm) (in) (cm) (in) (cm) (in2) (cm2) (in) (mm)

L1 4 6.0* 152.4 25.0 63.5 14.7 37.3 1.7 3.7 24.0 2.5% 12 30

L2 4 6.0* 152.4 25.0 63.5 15.4 39.1 1.6 3.7 24.0 2.4% 18 46

L3 4 6.0* 152.4 25.0 63.5 15.5 39.4 1.6 3.7 24.0 2.4% 24 61

a/d ρbamboo

Abamboo Splice length
Beam ID

# Flexural 

Rows

Stirrup Spacing, s Shear span, a depth, d

* Note: Lap-splice lengths are surrounded by stirrups with a spacing of 4.0 inches (102 mm)



91 

 

 

Figure 6.10 Lap-splicing of flexural reinforcement 
 

The dimensions of the lap-spliced beams are the same as the flexure beams: 10 

inches (25-cm) wide by 20 inches (51-cm) deep by 90 inches (230-cm) long. The lap-

spliced beams were designed the same as the flexure beam, F2, apart from  the bottom  

layer of longitudinal reinforcement being spliced. Strain gauges were spaced evenly at 4 

inches (102-mm) on center along the lap-splice as well as on stirrups a distance ‘d’ from 

the supports. 

These beams were tested under a monotonic loading of two-point loads at an a/d 

ratio of 1.5 to 2.6. Two point loads at a distance of 25 inches (64-cm) from the support 

and 24 inches (61-cm) between loads, were applied to the lap-spliced beams, L1, L2, and 

L3 as well as to the flexure beam, F2, which was the control for the lap-spliced beams. 

The two point loading condition was specified for the lap-spliced beams to ensure the 

entire lap-splice was in the region of constant moment. 

According to ACI 318-11 Section 21.6.3, it is necessary to provide closer stirrup 

spacing around lap-spliced regions for earthquake resistant structures. The closer stirrup 
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spacing is needed because of the uncertainty of moment distributions along the height 

and to confine the concrete around the splice. For each lap-spliced beam, a stirrup 

spacing of 4 inches (102-mm) was provided around the splice. The stirrup spacing, lap-

splice length, strain gauge placement and loading configuration for each beam can be 

seen in Figure 6.11. 

 

Figure 6.11 Loading conditions for lap-spliced beams 

Note: distances are in inches 

 

The design parameters for the lap-spliced beams are the same as for beam F2 and 

can be seen in Table 6.9. In the designs for the lap-spliced beams, it was assumed that the 

splices would be sufficient, so the design capacities of the lap spliced beams were the 
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same as for beam F2. The lap-spliced beam expected capacities can be seen in Table 

6.10. The MathCAD designs for the BRC beams can be found in Appendix C. 

Table 6.9 Lap-spliced beam design parameters 
 

 

Table 6.10 Lap-spliced beam expected capacities 
 

 

6.2 Beam fabrication 

Fabrication of the BRC beams included bamboo cage preparation, strain gauge 

installation, and casting of the beams. The bamboo cage preparation was by far the most 

time intensive process as it involved harvesting, splitting the culms into the proper 

widths, bending the bamboo and constructing the stirrups, assembling the cage and 

finally waterproofing. 

6.2.1 Cage preparation 

The bamboo used for the reinforcement cages was harvested and split in a similar 

manner as the bamboo used for the component tests. The harvesting and splitting of the 

bamboo is described in Chapter 4. 

(psi) (MPa) (ksi) (MPa) (in) (mm) (in) (mm) (in) (mm) (in) (mm) (in) (cm)

L1

L2

L3

3000 63.525152.46457.02.246

Beam ID

Concrete 

strength, f'c

64.62.54372.02.835129.118.720.7

Bamboo 

strength, fbamboo

Depth to neutral axis, c (in) # 

Flexural 

Rows

Stirrup 

spacing, s
Shear span, a

Yielding Rupture 2/3 Yielding 0.6E

Model Beam ID
Mcr 

(kip-ft)

Vn 

(kip)

Vu 

(kip)

Mn 

(kip-ft)

Mu 

(kip-ft)

Pexpect 

(kip)

Expected 

Failure Mode

Yielding L1, L2, L3 22.8 38.6 > 38.0 79.1 79.1 75.9 TENSION

Rupture 2/3 L1, L2, L3 22.8 38.6 > 33.6 70.0 70.0 67.2 TENSION

Yielding 0.6E L1, L2, L3 22.8 38.6 > 30.5 63.6 63.6 61.0 COMPRESSION
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6.2.1.1 Bending 

The purpose of bending the bamboo was to form the rectangular closed stirrups. 

There are various methods used to bend bamboo including heating with a propane torch, 

soaking in water and steaming. The steaming method was selected to bend the bamboo 

into the required stirrup shape. For this method, it is necessary to heat the bamboo above 

boiling (225
o
F) to soften the lignin and pectin between the fibers. This temperature 

should be maintained for 30 minutes per 0.5 inch (13-mm) for sufficient steaming. To 

accomplish the bending, both a steam box and bending forms had to be constructed. 

The steam box was constructed from a 6-inch (152-mm) PVC pipe with two end 

caps. Dowel rods with a diameter of 0.25 inch (6-mm) were used to support the bamboo 

strips within the PVC pipe in four layers. To secure the dowel rods, holes were drilled 

into the side of the pipe and the rods were inserted into the holes. An Earlex SS77USG 

Steam Generator was used to produce the steam and was connected to the side of the 

PVC pipe via the hose provided with the generator. Highland Woodworking
5
 provides a 

datasheet with the steamer specs as well as a steamer manual. Detailed instructions to 

build a steam box are also included on their website. The supports for the steam box were 

constructed from 2x4 lumber. The steam box set up can be seen in Figure 6.12 and a 

close-up of the stirrup strips can be seen in Figure 6.13. 

                                                 
5
 http://www.highlandwoodworking.com/earlex-steam-generator.aspx 
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Figure 6.12 Steam boxe set-up 
 

  

Figure 6.13 Bamboo strips in steam 

box 

 

The bending forms were constructed from a sheet of OSB sheathing with 2x4 

lumber screwed to it outlining six stirrups. A 1 inch (25-mm) gap was provided between 

the 2x4 lumber where the steamed bamboo pieces were bent into shape and left to cool. 

The bending forms can be seen in Figure 6.14 and the bending process can be seen in 

Figure 6.15. Once the bamboo stirrups cooled they were removed from the bending forms 

and secured into shape with rebar ties as shown in Figure 6.16. 

Steam 

box Bamboo stirrup 

strips 

Steam 

generator 
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Figure 6.14 Bending forms 
 

 

Figure 6.15 Bending the bamboo stirrups into the forms 
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Figure 6.16 Securing stirrups with rebar ties 

6.2.1.2 Stirrup construction 

Bamboo stirrups have been made with 0.5 inch (13-mm) wide strips. The outside 

dimensions of each stirrup are roughly 7 inches (178-mm) wide by 17 inches (432-mm) 

tall to provide 1.5-inch (38-mm) cover to the surface of the concrete beams. The stirrup 

shape was made by heating strips of bamboo in a steam box and then bending them into 

wooden forms. This is a new stirrup design and was used for all the beams. The closed 

stirrup shape has an advantage over open stirrups when torsion is expected. The closed 

stirrups were also expected to confine the core of concrete better than open stirrups. 

However, under the monotonic loads of this research, no advantage was. A typical stirrup 

can be seen in Figure 6.17. 
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Figure 6.17 Bamboo closed stirrup 

6.2.1.3 Cage assembly 

Bamboo cages, similar to the traditional rebar cages, were used to reinforce the 

beams and increase their shear and moment capacities. The constructed bamboo cages 

can be seen in Figure 6.18. The cages were constructed from longitudinal bamboo strips 1 

inch (25-mm) wide and 87 inches (220-cm) long and bamboo stirrups which are 

described in Section 6.2.1.2. All the connections were made with 6-inch (152-mm) rebar 

ties. 
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Figure 6.18 Constructed bamboo cage 
 

The first step of the cage assembly was to gather the required number of stirrups 

for the cage as well as the total number of longitudinal bamboo strips. Next, the 

longitudinal bamboo strips were tied together in separate layers of three strips per layer. 

The longitudinal bamboo strips were tied together to bamboo splints spaced evenly about 

25 inches (64-cm) apart for the flexural and lap-splice beams and about 40 inches (102-

cm) for the shear beams. For best results, the rebar ties connecting the two outside strips 

to the bamboo splint should not be oriented parallel to each other. A horizontal spacing of 

about 1 inch (25-mm) was provided between each strip of longitudinal bamboo. 

Once all the required layers of longitudinal reinforcement were tied together, a 

single layer was tied to the bottom of the stirrups and a single bamboo strip was tied to 
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the top of the stirrups to provide stability to the cage and help maintain its shape. For the 

bottom layer of longitudinal reinforcement it is necessary to securely tie each stirrup to 

the two outside strips of bamboo. A single longitudinal layer, as well as a partially 

constructed cage can be seen in Figure 6.19. 

 

Figure 6.19 Partially constructed bamboo cage 
 

Once the bottom layer of longitudinal reinforcement was secured, the strain 

gauges were installed. It was necessary to install the strain gauges to the bottom layer 

prior to installing the remaining layers because the bottom layer would not be accessible 

once the remaining layers of longitudinal reinforcement were installed. The strain gauge 

installation is described in further detail in Section 6.2.2. 

Bamboo 

splint 
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After the strain gauges were installed, the remaining layers of longitudinal 

reinforcement were tied in place. A vertical spacing of about 1 inch (25-mm) was 

provided between layers of longitudinal reinforcement. It is not necessary to tie each 

stirrup to the longitudinal layers. It is sufficient to tie the longitudinal layers to the 

stirrups on each side at 25-inch (64-cm) spacing. 

The steps of the cage assembly are outlined below: 

1. Gather the required number of stirrups and longitudinal bamboo strips 

2. Tie longitudinal strips in separate layers of three strips per layer 

3. Tie stirrups at their designed spacing distance to a single layer of longitudinal 

reinforcement 

4. Tie a single longitudinal strip to the under face of the top side of the stirrups to 

give stability to the cage and help it maintain its shape 

5. Install strain gauges where needed 

6. Install remaining layers of longitudinal reinforcement 

7. Waterproof cages 

6.2.1.4 Waterproofing 

After the cages were fully constructed and allowed to dry in a controlled 

environment for over one month, the bamboo was waterproofed with Thompson’s 

WaterSeal, model number TH.024101-16. Waterproofing the bamboo is necessary to 

mitigate the problem of poor bonding caused by the swelling and subsequent shrinkage of 

the bamboo after absorbing moisture from the fresh concrete. The sealant was applied to 

the bamboo cages with a paint sprayer and although care was taken to cover all surfaces, 
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it was difficult to ensure complete coverage. The performance of the waterproofing will 

be assessed during the beam testing. 

6.2.2 Strain gauge installation 

Strain gauges were installed prior to full assembly of the bamboo cages. The 

strain gauges were placed at location of highest expected shear and moment within the 

beams. Strain gauges will be attached to the middle of the bottom layer of the flexural 

bamboo as well as to the stirrups at a distance ‘d’ from the support. The placement of the 

strain gauges can be seen for each beam in Section 6.1. 

The strain gauges were purchased from Vishay Micro Measurements and were 

classified as general purpose strain gauges with a linear pattern. The type of strain gauges 

used were CEA-06-250UW-120/P2. The gauges were 0.250 inches (6-mm) in length, 

with a resistance of 120 ohms and a strain limit of approximately ±5%. The label P2 

indicates that lead wires are attached to the gauges and no soldering is required. More 

detailed specifications can be found from the Vishay Micro Measurements website
6
. 

The gauges were installed on the bamboo using M-Bond AE-10 adhesive which 

was also purchased from Vishay Micro Measurements and allowed to cure for 8 hours. It 

is very important to install the strain gauges correctly to increase the chances of obtaining 

useful data. The harsh environment of wet concrete can cause the strain gauges to 

malfunction, and they must be properly protected with a polysulfide coating (M-Coat J). 

The strain gauge installation on the lap-spliced reinforcement can be seen in Figure 6.20. 

                                                 
6
 http://www.vishaypg.com/micro-measurements/ 

http://www.vishaypg.com/micro-measurements/
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Figure 6.20 Strain gauge installation on lap-spliced reinforcement 
 

The procedure for the strain gauge installation is outlined below: 

1. Sand down location with 60 grit sandpaper. 

2. Blow off dust with compressed air. 

3. Clean area with a shop towel dipped in acetone. 

4. Allow surface to dry completely. 

5. Cut tape and fold over one edge. 

6. Lay tape with sticky side up on a clean plastic plate. 

7. Attach gauge to tape with shiny side (the face with the solder connections) to the 

sticky surface of the tape. 
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8. Place a small amount of adhesive (M-Bond AE-10) on the bamboo surface and 

then press the gauge into place. The adhesive will harden beyond use at around 20 

minutes. 

9. Place a small piece of silicone rubber over the gauge and then clamp in place with 

spring clamp. 

10. Allow to cure for at least 8 hours at 70F. 

11. Once epoxy has cured, remove clamps and silicone rubber. The tape can be 

carefully removed or left in place. 

12. Cover solder connections with Teflon tape. It is important that the solder 

connections are protected from the M-Coat J polysulfide coating. 

13. Coat the strain gauges completely with M-Coat J, extending at least 0.5 inch (12-

mm) beyond the edge of the strain gauge and sealing the gauge off completely 

where the lead wires attach. 

6.2.3 Formwork and casting 

6.2.3.1 Formwork design 

The formwork for the beams was made from 2x4 lumber and 7/16 inch (11-mm) 

OSB sheathing as shown in Figure 6.21. A gap under the beam was provided for the 

forklift. The inside joints were sealed with caulk to prevent concrete from flowing out 

through the gaps. After the joints were sealed the inside of the forms were coated with 

WD-40 as a de-bonding agent. 

To provide the 1.5-inch (38-mm) cover, small wood blocks were screwed into the 

forms as shown in Figure 6.22. The blocks also helped to straighten out the curvature in 
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bamboo cages which occurred as the bamboo dried out. The completed forms can be seen 

in Figure 6.23. 

 

Figure 6.21 Beam formwork preparation 
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Figure 6.22 Installation of block spacers 
 

 

Figure 6.23 Completed forms with bamboo cages 
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6.2.3.2 Concrete casting 

The concrete used for the beams was a normal strength mix of 3000 psi (21 MPa), 

28-day compressive strength made using Portland Cement Type I/II. A small aggregate 

size (#89) was ordered  to ensure that aggregate did not get stuck in between the bamboo 

and create voids in the concrete. Also, to prevent voids, the beams were cast on their 

sides so that the longitudinal bamboo strips were oriented on their edges which allowed 

for concrete to flow between them easily. The concrete had a high slump of 8 inches (20-

cm) which was useful to provide good consolidation but may have caused lower bond 

strength between the bamboo and concrete. 

The concrete was cast around noon on January 14, 2014 in Clemson, SC. During 

casting, the air temperature on day of pour was 66 ºF (19 ºC). The concrete was cast 

inside since temperatures were expected to drop to below freezing outside during the 

night. A front discharge mixer truck delivered the concrete as shown in Figure 6.24. The 

beams were finished smooth with a hand trowel as shown in Figure 6.25. 
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Figure 6.24 Front discharge mixer truck 
 

 

Figure 6.25 Finishing concrete with a steel finishing trowel 
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Compressive strength cylinders were prepared from the same concrete mix as 

used for the beams and left to cure next to the beams as to be in the same environment. 

The 7, 14 and 28-day compressive strength was tested with 3 samples at each time period 

according to ASTM C39. The ends of the samples were first cut straight as shown in 

Figure 6.27 then they were tested in the compression testing machine (CTM) in Figure 

6.28. The average 28-day compressive strength was 3027 psi and the compressive 

strength of the concrete at different ages is shown in Table 6.11 and Figure 6.26. 

Table 6.11 Compressive strength of concrete 
 

 

 

Figure 6.26 Compressive strength of concrete mix 
 

Age 1 2 3
Average 

Stress (psi)

7 day 1871 1672 1722 1755

14 day 2086 2006 2119 2070

28 day 2823 3295 2963 3027
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Figure 6.27 Preparing sample ends 
 

 

Figure 6.28 Compression Testing 

Machine 

 

6.3 Beam test setup 

The beam test setup consisted of positioning the beam in the UTM, fabrication of 

the Wheatstone bridge circuit box, and connecting and calibrating of all instrumentation. 

All the beams were tested in the universal testing machine (UTM) with a hydraulic 

actuator with a capacity of 150-kip (667 kN). The testing setup varied depending on the 

type of beam being tested and details for each beam design and setup can be found in 

Section 6.1. Before each test, the beams were positioned in the UTM and painted white 

so that the cracks could easily be identified and marked with different colors depending 

on the loading level. The instrumentation setup will be described in the next sections. 
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6.3.1 Wheatstone bridge circuit 

To measure strain of a bonded resistance strain gauge, it must be connected to an 

electric circuit that is capable of measuring very small changes in resistance which 

correspond to strain. A Wheatstone bridge circuit was built to measure the resistance 

change across the gauges. The Wheatstone bridge consists of four resistive arms with an 

excitation voltage, VEX, that is applied across the bridge as shown in Figure 6.29. 

 

Figure 6.29 Wheatstone bridge circuit 
 

A total of eight Wheatstone bridge circuits were soldered to a circuit board and a 

2-pole PC mount terminal block was used to connect the lead wires from each strain 

gauges to the active arm of the Wheatstone Bridges. The Wheatstone bridge circuits can 

be seen in Figure 6.30 and the completed circuit box with the connected strain gauge lead 

wires can be seen in Figure 6.31. 
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Figure 6.30 Wheatstone bridge circuits 
 

 

Figure 6.31 Wheatstone bridge circuit box 
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6.3.2 Instrumentation setup 

Before every test, all the strain gauges, BDIs and LVDT string pots were 

calibrated. Calibration calculations were done using a Sensors Channel spreadsheet 

developed in a separate experimental test program which can be found in Appendix E. 

Figure 6.32 shows the instrumentation setup including the strain gauge lead wires, LVDT 

string pot and BDI. 

 

Figure 6.32 Instrumentation setup 

6.3.3 Loading protocol 

All beams were tested under displacement controlled loading. The loading 

protocol for the beams was targeted at approximately 20, 40, 60% of the expected failure 

load and then the beams were loaded until failure. However, due to the uncertainty of 

LVDT string pot 

BDI 

Strain gauge 

lead wires 
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how the bamboo reinforcement would perform, the loading protocol varied slightly from 

the 20, 40, 60% loading levels. The actual loading levels can be seen in Table 6.12 

through Table 6.14. 

Table 6.12 Loading protocol for shear beams (kip) 
 

 

Table 6.13 Loading protocol for flexure beams (kip) 
 

 

Table 6.14 Loading protocol for flexure lap-spliced beams (kip) 
 

 

 

  

S1 S2 S3 S4 S5 S6

20% n/a 29 20 20 20 20

40% n/a 50 35 35 30 30

60% n/a 75 50 50 45 45

Expected 95.4 89.8 77.3 77.3 67 67

Actual 110 78.2 115.7 103.1 94.9 75.6

F1 F2 F3 F4

20% 12 15 15 12

40% 24 30 30 20

60% 36 40 45 30

Expected 56.8 61 53.1 42.9

Actual 51.3 64.8 62.4 43.9

L1 L2 L3

20% 15 15 15

40% 30 30 30

60% 45 45 45

Expected 61 61 61

Actual 61.3 61.2 57.2
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Chapter 7 – BEAM TEST RESULTS 

 

The testing took place in the Wind and Structural Engineering Research (WiSER) 

Facility at Clemson University with a universal testing machine (UTM) incorporating a 

150-kip actuator. A total of 13 BRC beams were tested and the strain in the concrete and 

in the bamboo reinforcement at strategic locations was measured. Each beam was loaded 

until failure and the failure mechanism of each beam was investigated. After testing, each 

beam was broken apart with a sledge hammer and chisel to expose the bamboo 

reinforcement to further explain the failure mechanism. The beam examination notes can 

be found in Appendix D. The results of the beam tests can be found in the following 

sections. 

7.1 Shear beams 

To test the shear reinforcement capacity of the bamboo, six beams with varying 

stirrup spacing were designed. The beams were designed to fail in shear by specifying a 

very short clear span and loading the beam with a low a/d ratio. Stirrups were spaced at 4 

inches (102-mm), 6 inches (152-mm) and 8 inches (204-mm) with two beams per stirrup 

spacing. Each shear beam had the same number of rows of flexural reinforcement (4 rows) 

with the only variable being the stirrup spacing. The results from the shear controlled 

beam tests including the force-displacement curves, bamboo model comparisons, bamboo 

and steel comparisons, beam failure analysis and the strain analysis are presented in the 

following sections. 
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7.1.1 Force-displacement curves 

Each of the force-displacement curves for the shear controlled beams can be seen 

from Figure 7.1 through Figure 7.6. The loading levels were targeted at approximately 20, 

40, 60% of the expected failure load and then the beams were loaded until failure. Beam 

S1 was accidentally loaded prior to testing, so it was not loaded in stages, but rather was 

loaded directly to failure as shown in Figure 7.1. 

The damage in the beams is evident after each loading cycle by the widening of 

the force-displacement curves. After each loading cycle, the beam experiences a greater 

deflection under a given force. 

A few of the shear controlled beams exhibited a gradual failure. Apart from beam 

S1, the beams S2, S3 and S4 having a stirrup spacing of 4 and 6 inches (102 and 152-mm) 

showed a somewhat ductile failure. This indicates that a closer stirrup spacing allows 

stresses to transfer to the remaining stirrups and allow the beam to retain most of its 

capacity even after some of the stirrups have failed. This type of failure can be seen in 

Figure 7.2. 
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Figure 7.1 Force-displacement curve for S1 
 

 

Figure 7.2 Force-displacement curve for S2 
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Figure 7.3 Force-displacement curve for S3 
 

 

Figure 7.4 Force-displacement curve for S4 
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Figure 7.5 Force-displacement curve for S5 
 

 

Figure 7.6 Force-displacement curve for S6 
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7.1.2 Bamboo model comparison 

Once the actual capacities of the beams were determined from the test results, the 

expected failure forces for each bamboo model were compared to the actual forces. The 

expected and actual failure forces and the resulting percent errors are shown in Table 7.1. 

Since the three bamboo models do not affect the shear capacity of the beams, and each of 

the shear controlled beams was expected to fail in shear for both the Yielding and Rupture 

2/3 models, there is no difference in the expected forces between these two models. The 

Yielding 0.6E model indicated an expected compression controlled flexural failure which 

slightly decreased its expected failure forces. 

Apart from beam S2, all the shear controlled beams had higher capacities than 

expected. Beam S2 performed unexpectedly, failing at 78.2 kips (348 kN), which was 

over 30 kips (133 kN) less than its counterpart, beam S1. It is unclear why beam S2 failed 

at a much lower capacity than beams S1, S3 and S4. The model predictions had relatively 

high percent errors, between -11 to -33% of the actual beam capacities, apart from beam 

S2. This indicates that the shear design for BRC beams is not very accurate and that 

higher shear capacities can be expected. 

Table 7.1 Shear controlled beam force comparison 

 

 

Expected Failure 

(kip)
% Error

Expected Failure 

(kip)
% Error

Expected Failure 

(kip)
% Error

S1 110.0 -11% -11% -13%

S2 78.2 25% 25% 22%

S3 115.7 -33% -33% -33%

S4 103.1 -25% -25% -25%

S5 94.9 -29% -29% -29%

S6 75.6 -11% -11% -11%

Actual Failure 

(kip)
Beam ID

Yielding Rupture 2/3 Yielding 0.6E

67.0

77.3

95.497.9

77.3

67.0

97.9

77.3

67.0
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7.1.3 BRC & steel comparison 

The performance of bamboo and steel as shear reinforcement for concrete beams 

was compared. The six shear controlled beams were designed with an equivalent area of 

steel as the provided bamboo reinforcement. The steel reinforced concrete (SRC) beams 

were designed according to ACI 318-11. The capacities of the BRC shear controlled 

beams using the Yielding 0.6E model are compared to the equivalent SRC shear 

controlled beams in Table 7.2. The BRC beam capacities are shaded in green while the 

SRC beam capacities are shaded in purple. The BRC shear controlled beams had 

capacities ranging from 33 to 70% of the SRC shear controlled beams of equal 

dimensions and are shaded in light orange. 

Table 7.2 Bamboo steel comparison for shear controlled beams 
 

 

7.1.4 BRC & unreinforced beam comparison 

The capacity of each shear controlled BRC beam was compared to the capacity of 

an unreinforced concrete beam of the same dimensions. The capacity of the unreinforced 

beams was calculated as the load required to cause Mcr, the cracking moment. The 

bamboo stirrups increased the capacity of the unreinforced shear beams by 135 up to 259% 

BRC:SRC

(in) (mm) (kip) (kN) (kip) (kN) Capacity

S1 4 102 110.0 489.3 234.1 1041.3 47%

S2 4 102 78.2 347.9 234.1 1041.3 33%

S3 6 152 115.7 514.7 168.1 747.7 69%

S4 6 152 103.1 458.6 168.1 747.7 61%

S5 8 203 94.9 422.1 135.1 601.0 70%

S6 8 203 75.6 336.3 135.1 601.0 56%

BRC  Yielding 0.6E Equivalent SRC
Beam ID

Stirrup spacing, s
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as shown in Table 7.3. The beams with a 6-inch (152-mm) stirrup spacing provided the 

highest shear capacity and greatest % strength increase. 

Table 7.3 % strength increase between unreinforced and BRC shear beams 
 

 

7.1.5 Failure analysis 

As expected, each of the shear controlled beams failed in shear. Under loading, 

the first cracks to form were flexure cracks near the mid-span of  the beam. These flexure 

cracks often coincided with a stirrup location. As the beam was loaded further, the 

flexure cracks continued to widen to large widths of even greater than 0.25 inch (6-mm). 

The formation of the shear cracks could be seen shortly before they expanded and the 

beam failed. The front crack patterns for the shear controlled beams can be seen in Figure 

7.7. 

 

BRC vs. Unreinforced

(in) (mm) (kip) (kN) (kip) (kN) % Strength Increase

S1 4 102 110.0 489.3 34.2 152.3 221%

S2 4 102 78.2 347.9 32.2 143.3 143%

S3 6 152 115.7 514.7 32.2 143.3 259%

S4 6 152 103.1 458.6 32.2 143.3 220%

S5 8 203 94.9 422.1 32.2 143.3 195%

S6 8 203 75.6 336.3 32.2 143.3 135%

BRC  Yielding 0.6E UnreinforcedStirrup spacing, s
Beam ID
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Figure 7.7 Shear beam front crack pattern 
 

After the beams were tested, each one was broken open with a sledge hammer and 

chisel to reveal the bamboo reinforcement and further investigate the failure modes. Care 

was taken during this process to ensure that the bamboo was not damaged by the chisel 

and hammer. 

Shear controlled beams S1, S2 and S3 had longitudinal ‘curing cracks’ which 

formed during the curing stage. Further investigation revealed that these ‘curing cracks’ 

formed in the beams only when the concrete cover was less than about 1.25 inches (32-

mm). It is believed that these cracks formed due to expansion of the longitudinal bamboo 

reinforcement after absorbing moisture from the wet concrete during the curing phase of 

the concrete. Although the bamboo reinforcement was waterproofed as described in 
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Chapter 6, it is quite possible that not all the tightly spaced longitudinal bamboo strips 

were completely sealed. 

The failure of the stirrups occurred both near the bent radius and also in the 

middle of the stirrup, indicating that there was not a significant strength loss upon 

bending the stirrups. Figure 7.8 shows a failure in the middle of a bamboo stirrup. 

 

Figure 7.8 Failure in middle of bamboo stirrup of beam S3 
 

Each of the shear controlled beams exhibited bond loss in the bottom layer of the 

longitudinal reinforcement. Figure 7.9 shows the slippage of the longitudinal 

reinforcement. After the stirrups failed, the concrete core and longitudinal bamboo 
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reinforcement were no longer confined, and further loading from the actuator caused the 

slippage near the ends of the longitudinal reinforcement. 

 

Figure 7.9 Longitudinal reinforcement slippage near beam end of beam S2 

7.1.6 Strain analysis 

The strain analysis of the shear controlled beams indicated the presence of 

compression struts running between the load and supports. Stirrups spanning the 

compression strut experienced compressive strain. Figure 7.10 shows the crack pattern 

for beam S2. The 75-kip (334 kN) shear crack runs from the right support to the point 

load at mid-span which is along the same location as the compression strut. The strain in 

gauge 2 of beam S2 is shown in Figure 7.11. Since no cracks span across gauge 2, there 

Slippage of 

longitudinal 

reinforcement 
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was no tension in the corresponding stirrup and gauge 2 showed a very small 

compressive strain reading. The maximum compressive strain is very small and only 

reached a value of about -0.00035. The negative value indicates compressive strain. 

In comparison to the strain in gauge 2, the strain in gauge 4 is shown in Figure 

7.12. The strain in gauge 4 remained as compressive strain until a load of about 45 kips 

(200 kN) was reached. During the 40% loading level, the strain changed from 

compressive to tensile strain as the shear cracks began to form. The tensile strain in gauge 

reached its limit indicating a possible stirrup failure. The stirrup failure was confirmed 

upon further investigation and can be seen in Figure 7.13. 

 

Figure 7.10 Crack pattern and strain gauge location for beam S2 

Note: distances are in inches 
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Figure 7.11 Strain gauge 2 on stirrup of beam S2 
 

 

Figure 7.12 Strain gauge 4 on stirrup of beam S2 
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Figure 7.13 Stirrup failure in beam S2 
 

Several of the strain gauges reached their limit during testing. This is indicated by 

a vertical line on the strain gauge graphs. The strain analysis steps can be found in 

Appendix F. All the strain graphs for each of the beams except S1 can be found in 

Appendix G. 

  

Stirrup failure 
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7.2 Flexure beams 

To test the flexural reinforcement capacity of the bamboo, four beams with 

varying bamboo reinforcement ratios have been prepared. Based on previous research, 

reinforcement ratios varying from 1.6 to 3.9 percent have been selected for the four 

flexure beams. Each beam had a different number of layers of longitudinal reinforcement, 

including 3, 4, 5 and 6 rows. The total area of longitudinal reinforcement for each beam 

was The stirrup spacing for the flexure beams remained constant at 6 inches (152-mm). 

The results from the flexure controlled beam tests including the force-displacement 

curves, bamboo model comparisons, bamboo and steel comparisons, beam failure 

analysis and the strain analysis are presented in the following sections. 

7.2.1 Force-displacement curves 

The force-displacement curves for the flexure controlled beams can be seen in 

Figure 7.14 through Figure 7.17. The loading levels were targeted at approximately 20, 

40, 60% of the expected failure load and then the beams were loaded until failure. All the 

beams exhibited brittle failure except beam F4, which failed in an overall ductile manner. 

The failure force-displacement curve of F4, shown in Figure 7.17, reached its initial 

maximum at around 40 kips (178 kN) before dropping down to 35 kips (156 kN). After 

its initial drop, the force on beam F4 continued to rise and exceeded its previous peak, 

reaching about 42 kips (187 kN). Under continued loading, the force decreased in a step-

like pattern until a displacement of 1.4 inches (36-mm) was reached. The beam was 

loaded 0.65 inches (17-mm) past its initial drop in force. 
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Figure 7.14 Force-displacement curve for F1 
 

 

Figure 7.15 Force-displacement curve for F2 
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Figure 7.16 Force-displacement curve for F3 
 

 

Figure 7.17 Force-displacement curve for F4 
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7.2.2 Bamboo model comparison 

The actual capacities of each flexure controlled beam were compared to the 

expected capacities determined for each bamboo model. The expected and actual failure 

forces and the resulting percent errors are shown in Table 7.4. The Yielding model 

overestimated all the flexure controlled beam capacities, with percent errors ranging from 

5 to 31%. The Rupture 2/3 model had percent errors ranging from -11 to 21%. The 

Yielding 0.6E model underestimated all the flexure controlled beams except F1 and had 

percent errors ranging from -15 to 11%. 

The sum of the absolute values of the percent errors for each beam were 

calculated and used to compare the bamboo models in Table 7.5. The lowest % error for 

each beam was highlighted in red. The sum of the Yielding 0.6E percent errors was 34% 

compared to 40% and 74% for the Rupture 2/3 and Yielding models respectively. The 

Yielding 0.6E model most closely predicted the actual flexure controlled beam capacities 

since the sum of its percent errors was the lowest of the three models. 

Table 7.4 Flexure controlled beam force comparison 
 

 

  

Expected Failure 

(kip)
% Error

Expected Failure 

(kip)
% Error

Expected Failure 

(kip)
% Error

F1 51.3 67.2 31% 45.8 -11% 56.8 11%

F2 64.8 75.9 17% 67.2 4% 61.0 -6%

F3 62.4 65.7 5% 65.7 5% 53.1 -15%

F4 43.9 52.9 21% 52.9 21% 42.9 -2%

Beam ID
Actual Failure 

(kip)

Yielding Rupture 2/3 Yielding 0.6E
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Table 7.5 Flexure controlled beam % error comparison 
 

 

7.2.3 BRC & steel comparison 

The performance of bamboo and steel as flexural reinforcement for concrete 

beams was compared. The four flexure controlled beams were designed with an 

equivalent area of steel reinforcement as the provided bamboo reinforcement. The steel 

reinforced concrete (SRC) beams were designed according to ACI 318-11. The capacities 

of the BRC flexure controlled beams using the Yielding 0.6E model are compared to the 

equivalent SRC flexure controlled beams in Table 7.6. The BRC flexure controlled 

beams had capacities ranging from 29 to 39% of the SRC flexure controlled beams of 

equal dimensions and area of reinforcement. 

Table 7.6 Bamboo steel comparison for flexure controlled beams 
 

 

Yielding Rupture 2/3 Yielding 0.6E

F1 51.3 31% 11% 11%

F2 64.8 17% 4% 6%

F3 62.4 5% 5% 15%

F4 43.9 21% 21% 2%

74% 40% 34%

Beam ID
Failure 

Mode

Bamboo Model

Sum

BRC:SRC

(kip) (kN) (kip) (kN) Capacity

F1 51.3 228.2 174.5 776.2 29%

F2 64.8 288.2 168.1 747.7 39%

F3 62.4 277.6 161.8 719.7 39%

F4 43.9 195.3 138.1 614.3 32%

1.6%

2.4%

3.0%

3.9%

ρbamboo

BRC  Yielding 0.6E Equivalent SRC
Beam ID

Reinforcement ratio
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7.2.4 BRC & unreinforced beam comparison 

The bamboo reinforcement increased the capacity of the unreinforced flexure 

beams by 134 up to 242% as shown in Table 7.7. Beam F3 (3.0% reinforcement) had the 

highest increase in flexural capacity of 242% compared to an unreinforced beam of equal 

dimensions.  

Table 7.7 % Strength increase between unreinforced and BRC flexure beams 
 

 

7.2.5 Failure analysis 

The flexure controlled beams did not all behave as expected. Beams F1 and F4 

failed in flexure as designed, but beams F2 and F3 both failed in shear. This could be 

because the applied shear to beams F2 and F3 is close to their shear capacities (within 5 

kips) and it is understood that shear failure is difficult to predict accurately. Also, the 

increased shear crack width decreases resistance mechanisms such as aggregate interlock. 

Stirrups are designed to control the crack width as well as provide doweling action but 

due to bamboo’s low modulus of elasticity it cannot control the crack widths. Bamboo’s 

low stiffness may contribute to the premature shear failures in the flexure controlled 

beams.  

The cracking characteristics of the flexure controlled beams were similar to the 

shear controlled beams. Under loading, the first cracks to form were flexure cracks near 

BRC vs. Unreinforced

(kip) (kN) (kip) (kN) % Strength Increase

F1 51.3 228.2 21.9 97.5 134%

F2 64.8 288.2 21.9 97.5 196%

F3 62.4 277.6 18.3 81.2 242%

F4 43.9 195.3 14.4 64.1 205%

UnreinforcedBRC  Yielding 0.6E

1.6%

2.4%

3.0%

Reinforcement ratio

ρbamboo

3.9%

Beam ID
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the mid-span of  the beam and in-between the point loads. These flexure cracks often 

coincided with a stirrup location. As the beam was loaded further, the flexure cracks 

continued to widen to large widths of even greater than 0.25 inch (6-mm). The formation 

of the shear cracks could be seen shortly before they expanded and the beam failed. The 

front crack patterns for the flexure controlled beams can be seen in Figure 7.18. 

Beam F4 failed in tension controlled bending, but also had evidence of the 

concrete crushing on top of the beam, indicating slight compression failure. Each model 

predicted a compression controlled flexural failure for beam F4. The formation of some 

shear cracks can be seen for beam F4 but the ultimate failure mode was in bending. 
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Figure 7.18 Front crack patterns for the flexure controlled beams 
 

After the flexure controlled beams were tested, each one was broken open with a 

sledge hammer and chisel to reveal the bamboo reinforcement and further investigate the 

failure modes. 
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Figure 7.19 Longitudinal bamboo slippage in beam F3 
 

Figure 7.19 shows a diaphragm failure and slippage of the longitudinal 

reinforcement in beam F3. Diaphragm failure shows that while diaphragms contribute to 

the mechanical bonding between the bamboo and concrete, they are weak and will shear 

off if sufficient force is applied. Beam F3 also experienced shear failure. After its stirrups 

failed, the concrete core and longitudinal bamboo reinforcement were no longer confined 

and the longitudinal bamboo de-bonded from the concrete, leaving a sizeable gap as 

shown in Figure 7.19. 

 

Sheared-off 

diaphragm De-bonding of 

longitudinal bamboo 
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Figure 7.20 Longitudinal bamboo 

failure in beam F1 
 

 

Figure 7.21 Longitudinal bamboo 
failure in beam F1 (close-up) 

Figure 7.20 and Figure 7.21 show the longitudinal bamboo failure in beam F1. 

This failure occurred right near the large flexure gap which opened up in line with a 

stirrup. Many of the flexure cracks occurred at stirrup locations. This may be due to the 

weak plane in the concrete created by the stirrup. The flexure controlled beam F4 also 

displaced similar failure type in its longitudinal reinforcement. Figure 7.22 shows the 

three longitudinal bamboo strips in the bottom layer all fail at the same location directly 

in line with a stirrup. 

  

Longitudinal 

bamboo failure 

Longitudinal 

bamboo failure 
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Figure 7.22 Longitudinal failure at stirrup location in beam F4 
 

7.2.6 Strain analysis 

Analyzing the strain in the bottom layer of longitudinal reinforcement in beam F4 

indicates that the strain started as tensile strain but turned into compressive strain after the 

beam failed. This phenomenon can be seen in Figure 7.23. It is believed that the strain 

turned into compressive strain after failure because the longitudinal bamboo snapped 

back into place after it failed. As the bamboo returned quickly into its original position, it 

went into compression. 

The flexure controlled beams also contain compression zones running from the 

supports to the loads and passing through the stirrups. This is evident in Figure 7.24. The 

strain in the stirrup spanning the compression zone is in compression until the shear 

cracks begin to open up. Then the strain switches from compressive to tensile strain. 
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Figure 7.23 Longitudinal bamboo behavior in beam F4 
 

 

Figure 7.24 Shear stirrup behavior in beam F4 
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7.3 Flexure lap-spliced beams 

To test the splicing capability of longitudinal bamboo reinforcement, three beams 

were tested using different lengths of lap-splicing for the bottom layer of reinforcement. 

The lap-splice lengths were chosen based on the results from the component bond 

strength tests described in Chapter 5. The pullout tests indicated the range of 

development lengths to be from 15 to 31 inches (38 – 79-cm) with an average of 25 

inches (51-cm). Three different lap-splice lengths were chosen to be tested: 12-inch (30-

cm), 18-inch (46-cm) and 24-inch (61-cm). Each lap-spliced beam had 4 layers of 

flexural reinforcement and had stirrups spaced at 6 inches (152-mm). The results from the 

flexure controlled lap-spliced beam tests including the force-displacement curves, 

bamboo model comparisons, bamboo and steel comparisons, beam failure analysis and 

the strain analysis are presented in the following sections. 

7.3.1 Force-displacement curves 

The force-displacement curves for the flexure controlled lap-splice beams can be 

seen from Figure 7.25 through Figure 7.27. The loading levels were targeted at 

approximately 20, 40, 60% of the expected failure load and then the beams were loaded 

until failure. Beam L1 failed in a very brittle manner while beams L2 and L3 behaved in 

a somewhat more ductile manner. Beam L2 was loaded about 0.4 inches (10-mm) past its 

initial drop in force and still retained about half of its max capacity. 
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Figure 7.25 Force-displacement curve for L1 
 

 

Figure 7.26 Force-displacement curve for L2 
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Figure 7.27 Force-displacement curve for L3 
 

7.3.2 Bamboo model comparison 

The actual capacities of each flexure controlled lap-splice beam were compared to 

the expected capacities determined for each bamboo model. The expected and actual 

failure forces and the resulting percent errors are shown in Table 7.8. Both the Yielding 

and Rupture 2/3 models overestimated all the flexure controlled lap-spliced beam 

capacities. The Yielding model had percent errors ranging from 24 to 33%. The Rupture 

2/3 model had percent errors ranging from 10 to 17%. The Yielding 0.6E model closely 

estimated the flexure controlled lap-spliced beams and had percent errors ranging from 0 

to 7%. 

The sum of the absolute values of the percent errors for each beam were 

calculated and used to compare the bamboo models in Table 7.9. The sum of the Yielding 
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0.6E percent errors was 7% compared to 37% and 81% for the Rupture 2/3 and Yielding 

models respectively. The Yielding 0.6E model most closely predicted the actual flexure 

controlled lap-spliced beam capacities since the sum of its percent errors was the lowest 

of the three models. 

Table 7.8 Flexure controlled lap-splice beam force comparison 
 

 

Table 7.9 Flexure controlled lap-spliced beam % error comparison 
 

 

7.3.3 BRC & steel comparison 

The performance of bamboo and steel as flexural reinforcement for concrete 

beams was compared. The three flexure controlled lap-splice beams were designed with 

an equivalent area of steel reinforcement as the provided bamboo reinforcement. The 

steel reinforced concrete (SRC) beams were designed according to ACI 318-11. The 

capacities of the BRC flexure controlled lap-splice beams using the Yielding 0.6E model 

are compared to the equivalent SRC flexure controlled beams in Table 7.10. The BRC 

Expected Failure 

(kip)
% Error

Expected Failure 

(kip)
% Error

Expected Failure 

(kip)
% Error

L1 61.3 75.9 24% 67.2 10% 61.0 0%

L2 61.2 75.9 24% 67.2 10% 61.0 0%

L3 57.2 75.9 33% 67.2 17% 61.0 7%

Beam ID
Actual Failure 

(kip)

Rupture 2/3 Yielding 0.6EYielding

Yielding Rupture 2/3 Yielding 0.6E

L1 61.3 24% 10% 0%

L2 61.2 24% 10% 0%

L3 57.2 33% 17% 7%

81% 37% 7%

Beam ID
Failure 

Mode

Bamboo Model

Sum
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flexure controlled beams had capacities ranging from 34 to 36% of the SRC flexure 

controlled beams of equal dimensions and area of reinforcement. 

Table 7.10 Bamboo steel comparison for flexure controlled beams 
 

 

7.3.4 BRC & unreinforced beam comparison 

The bamboo reinforcement increased the capacity of the unreinforced beams by 

161 up to 180% as shown in Table 7.11.  

Table 7.11 % Strength increase between unreinforced and BRC lap-spliced beams 
 

 

7.3.5 Failure analysis 

The flexure controlled lap-splice beams exhibited both flexure failure and shear 

failure. Beam L1 (12-inch splice) failed in flexure at a load of 61-kip (271 kN), beam L2 

(18-inch splice) failed in shear at a load of 61-kip (271 kN) and beam L3 (24-inch splice) 

failed in a combination of shear and flexure at a load of 57-kip (254 kN). 

The cracking characteristics of the flexure controlled beams were similar to the 

shear controlled beams. Under loading, the first cracks to form were flexure cracks near 

the mid-span of  the beam and in-between the point loads. These flexure cracks often 

BRC:SRC

(in) (mm) (kip) (kN) (kip) (kN) Capacity

L1 12 305 61.3 272.7 168.1 747.7 36%

L2 18 457 61.2 272.2 168.1 747.7 36%

L3 24 610 57.2 254.4 168.1 747.7 34%

Lap-splice length BRC  Yielding 0.6E Equivalent SRC
Beam ID

BRC vs. Unreinforced

(in) (mm) (kip) (kN) (kip) (kN) % Strength Increase

L1 12 305 61.3 272.7 21.9 97.5 180%

L2 18 457 61.2 272.2 21.9 97.5 179%

L3 24 610 57.2 254.4 21.9 97.5 161%

BRC  Yielding 0.6E UnreinforcedLap-splice length
Beam ID
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coincided with a stirrup location. As the beam was loaded further, the flexure cracks 

continued to widen to large widths of even greater than 0.25 inch (6-mm). The formation 

of the shear cracks could be seen shortly before they expanded and the beam failed. The 

front crack patterns for the flexure controlled lap-spliced beams can be seen in Figure 

7.28. 

 

Figure 7.28 Front crack patterns for the lap-splice beams 
 

Beam L1 (12-inch splice) failed in flexure at a force of 61-kip (271 kN). No 

stirrups failed but three strips of the longitudinal bamboo reinforcement failed. The 

longitudinal reinforcement failures occurred within the region of constant moment in the 

second and third layers of reinforcement. One longitudinal strip failed in the front face as 
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shown in Figure 7.29 and two longitudinal strips failed in the back face as shown in 

Figure 7.30. No failure occurred within the lap-spliced reinforcement, indicating that the 

lap-spliced reinforcement slipped and did not carry the proportional amount of stress. A 

close examination of the L1 lap-splice showed that slippage occurred on either end of the 

splice and the new length of the splice was 11.125 inches (283-mm). This indicates that a 

12-inch (305-mm) lap-splice length is insufficient to fully develop the strength in the 

longitudinal reinforcement. 

 

Figure 7.29 Longitudinal strip failure in front face of beam L1 
 

The strain along the lap-splice is shown in Figure 7.31. When the longitudinal 

bamboo in the second and third layers failed the spliced layer slipped and there was a 

subsequent reduction in stress and strain within the bamboo. 

Longitudinal 

bamboo failure 
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Figure 7.30 Longitudinal strip failures in back face of beam L1 
 

 

Figure 7.31 Longitudinal bamboo behavior in beam L1 
 

Longitudinal 

bamboo failure 
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Beam L2 (18-inch splice) failed in shear at a load of 61-kip (271 kN). The shear 

failure occurred well outside of the lap-spliced region. Two stirrup legs failed in the front 

face of the beam as shown in Figure 7.32 and the opposite two stirrup legs of the same 

stirrups failed in the back face of the beam as shown in Figure 7.33. The stirrup near the 

large shear crack is bent. The bend most likely occurred when the beam failed in shear 

and the large shear crack opened up, causing the stirrup to bend without snapping. In 

Figure 7.33, two failures are present in the same stirrup. The author believes that the 

bottom failure occurred first and then when the large shear crack opened up, the stirrup 

failed again at the point where it crossed the crack. 

As evident in both Figure 7.32 and Figure 7.33, The top layer of longitudinal 

bamboo reinforcement is completely delaminated from the concrete. This is a result of 

the shear failure and subsequent loss of confinement in the concrete core. The shear 

failure in beam L2 indicates that the flexure capacity and corresponding lap-splice length 

of 18 inches (457-mm) is adequate. 



150 

 

 

Figure 7.32 Stirrup failure in front face of beam L2 
 

 

Figure 7.33 Stirrup failure in back face of beam L2 
 

Stirrup failure 

Stirrup failure 
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Beam L3 (24-inch splice) failed in shear at a load of 57-kip (254 kN). Beam L3 

also had evidence of concrete crushing on the top face of the beam indicating slight 

compression failure. Three stirrup legs failed in the front face of beam L3 as shown in 

Figure 7.34 and two stirrup legs failed in the back face as shown in Figure 7.35. Also, 

one bamboo strip failed in the second layer of longitudinal reinforcement in between the 

two stirrup legs in the back face as evident in Figure 7.35. 

No evidence of lap-splice slippage was evident. Although one of the longitudinal 

bamboo strips in the second layer failed, the overall beam failure was shear failure which 

indicates that the flexural capacity of the beam was sufficient and therefore the lap-splice 

length of 24 inches (610-mm) is adequate. 

 

Figure 7.34 Stirrup failure in front face of beam L3 
 

Stirrup failure 
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Figure 7.35 Stirrup and longitudinal failure in back face of beam L3 
 

7.4 Beam test results summary 

Longitudinal ‘curing cracks’ along the longitudinal bamboo reinforcement formed 

in the beams when the concrete cover was less than about 1.25 inches (32-mm). It is 

believed that these cracks formed due to expansion of the longitudinal bamboo 

reinforcement after absorbing moisture from the wet concrete during the curing phase of 

the concrete. 

The cracking characteristics of all the beams were similar. Under loading, the first 

cracks to form were flexure cracks near the mid-span of  the beam and in-between the 

point loads. The flexure cracks formed and expanded rapidly because bamboo is less stiff 

than the concrete. These flexure cracks often coincided with a stirrup location. As the 

beam was loaded further, the flexure cracks continued to widen to large widths of even 

Stirrup failure 

Longitudinal 

bamboo failure 
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greater than 0.25 inch (6-mm). The formation of the shear cracks could be seen shortly 

before they expanded and the beam failed. 

 All of the shear controlled beams failed in shear as expected, but a few of the 

flexure controlled beams unexpectedly failed in shear. Stirrups are designed to control the 

crack width as well as provide doweling action but due to bamboo’s low modulus of 

elasticity it cannot control the crack widths. Bamboo’s low stiffness may contribute to the 

premature shear failures in the flexure controlled beams. A closer stirrup spacing than 6 

inches (152-mm) is required to prevent premature shear failure. 

The lap-spliced beam tests indicated that the 12-inch (304-mm) splice length was 

insufficient but the beams with lap-splice lengths of 18 and 24 inches (457 and 610-mm) 

were adequate to develop the flexural reinforcement and prevent slippage. 

Of the three models tested, the Yielding 0.6E model most closely predicted the 

BRC beam capacities, especially when slippage of the longitudinal reinforcement is 

expected. A better model needs to be developed for the shear bamboo reinforcement. 

The failure of the stirrups occurred both near the bent radius and also in the 

middle of the stirrup, indicating that there was not a significant strength loss upon 

bending the stirrups. The stirrups failed at the location where the shear cracks opened up. 

The shear controlled beams performed more closely to the equivalent steel 

reinforced beams than the flexure controlled beams. Compared to equivalent steel 

reinforced concrete beams of the same dimensions and area of reinforcement, the shear 

controlled beams had between 33 and 70% capacity and the flexure controlled beams had 

between 29 and 39% capacity. The BRC and steel reinforced concrete (SRC) beams are 
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compared in Figure 7.36. The bamboo reinforcement increased the capacity of the 

unreinforced shear beams by up to 259%. The bamboo reinforcement increased the 

capacity of the unreinforced flexure beams by up to 242%. The BRC and unreinforced 

concrete beams are compared in Figure 7.37. 

 

Figure 7.36 BRC and SRC beam capacity comparisons 
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Figure 7.37 BRC and unreinforced beam capacity comparisons 
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Chapter 8 - CONCLUSION 

8.1 Summary 

This study evaluated the application of Moso bamboo (Phyllostachys edulis) as 

shear, flexural and flexural lap-spliced reinforcement for concrete through the 

construction and testing of 13 full-scale beams. To design the bamboo reinforced 

concrete (BRC) beams, the properties of the bamboo were investigated including the 

tensile strength, modulus of elasticity and bond strength with concrete. 

Once the mechanical properties of the bamboo were determined, 13 full-scale 

BRC beams were designed and constructed with varying configurations to test the 

application of bamboo as shear, flexural, and flexural lap-spliced reinforcement. The 

design of the BRC beams was done by following the Building Code Requirements for 

Structural Concrete (ACI 318-11) and replacing the properties of rebar with the 

predetermined properties of bamboo. 

Each of the beams were tested in the Wind and Structural Engineering Research 

(WiSER) Facility at Clemson University in a reaction frame incorporating a 150-kip 

actuator. A total of 13 BRC beams were tested in bending, and the strain in the concrete 

and in the bamboo reinforcement at strategic locations was measured. Each beam was 

loaded until failure and the failure mechanism of each beam was investigated. The test 

results indicated that bamboo stirrups increased unreinforced concrete beam shear 

capacities by up to 259%. The flexural bamboo increased beam capacities by up to 242% 

with the optimal reinforcement ratio of 3.9%. Limitations of the bamboo reinforcement 

included water absorption and swelling as well as poor bonding capability to the concrete. 
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The test results show that bamboo is a viable alternative to steel as tensile reinforcement 

for concrete as it increases the ultimate capacity of the concrete, allows for high 

deflections and cracks, and provides warning of impending structural failure. 

8.2 Conclusion 

Bases on the component test results and the full-scale beam test results, the 

following conclusions can be made. 

8.2.1 Component tests 

1. All the tensile specimens failed at the nodes in a brittle manner indicating that the 

nodes are the weakest part of the bamboo culm when loaded in tension. Therefore 

the nodes in the longitudinal reinforcement should be staggered to prevent planes 

of weakness. 

2. Bamboo’s variable properties makes it difficult to specify design provisions for 

construction with bamboo reinforcement and any designs must have appropriate 

factors of safety. 

3. The presence of diaphragms increased the bond strength between the bamboo and 

concrete by 15%. However, the strength of the diaphragms was insufficient in 

many cases as they sheared off from the main bamboo culm as the beams were 

loaded. Once they sheared off they no longer provided any benefit. 

4. Pullout tests indicated the required development length to achieve maximum 

tensile stress in 1 inch (25.4-mm) wide and 0.3-inch (8-mm) thick bamboo strips 
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ranges from 15 to 31 inches (38 to 79-cm) with an average length of 25 inches 

(64-cm). At least 25 inches (64-cm) is recommended for lap-splicing bamboo. 

8.2.2 Beam tests 

5. Longitudinal ‘curing cracks’ formed parallel to the longitudinal reinforcement in 

beams with concrete clear covers of less than 1.25 inches (32-mm). It is believed 

that these cracks formed due to expansion of the longitudinal bamboo 

reinforcement after absorbing moisture from the wet concrete during the curing 

phase of the concrete. A cover of at least 1.5 inches (38-mm) is recommended to 

prevent ‘curing cracks’ from forming. 

6. Bamboo stirrups greatly increased the ultimate shear capacity of the concrete 

beams by up to 259% compared to an unreinforced concrete beam of equal 

dimensions. 

7. Bamboo’s low stiffness may contribute to the premature shear failures in the 

flexure controlled beams. A stirrup spacing of less than 6 inches (152-mm) is 

recommended to prevent premature shear failure. 

8. The optimum percentage of flexural reinforcement was found to be 3.9% as this 

produced a ductile failure in beam F4. Having many strips of longitudinal 

reinforcement allowed the stresses to be transferred to the remaining strips when 

the strips failed. The flexure beam with 3.0% of flexure reinforcement had the 

highest increase in capacity over an unreinforced beam of equal dimensions, but 

failed in shear. It is therefore necessary to have a closer stirrup spacing to fully 

develop the flexural capacity of each beam and prevent premature shear failure. 
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9. The longitudinal bamboo reinforcement increased the ultimate capacities of 

unreinforced beams of equal dimension by 134 to 242%. 

10. The 18 and 24-inch (46 and 61-cm) lap-splice lengths were sufficient to develop 

the spliced flexural reinforcement and the beams subsequently failed in shear. The 

12-inch (31-cm) lap-spliced beam failed in flexure after the lap-splice slipped and 

the stresses were transferred to the other layers of reinforcement. This indicates 

that the 12-inch (31-cm) lap-splice is insufficient.  

11. The closed-stirrup design was easy to manufacture through the steaming 

procedure and made the bamboo reinforcement cages easy to assemble. 

12. An efficient and practical method for constructing bamboo cages for reinforcing 

concrete in the field was determined and explained in Chapter 6. The production 

of bamboo reinforcement is a labor-intensive process with very low material 

costs. This is ideal in many developing regions of the world where labor is 

plentiful and inexpensive. 

Bases on the these conclusions, the author believes that bamboo is a viable 

alternative to steel for reinforcing concrete as it increases the ultimate capacity of the 

concrete, allows for high deflections and cracks, and provides warning of impending 

structural failure. However, more research is required before bamboo reinforcement can 

be recommended to use in concrete construction in the field. 
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8.3 Recommendations 

The following studies are recommended by the author for further investigation of 

bamboo reinforced concrete. 

1. A closer stirrup spacing should be tested, perhaps as low as 3 inches (76-mm). A 

closer spacing than 3 inches (76-mm) may be impractical for construction of the 

bamboo cages. 

2. Smaller beam dimensions should be tested since the concrete members found in 

structures in the developing world generally have smaller dimensions. 

3. Higher a/d ratios should be tested to further investigate the flexural failure mode 

of the BRC beams. 

4. Smaller bamboo cross-sectional areas should be tested as reinforcement which 

may help to solve the bonding issues. Bamboo fiber reinforced concrete should 

also be investigated. 

5. Variations in cage construction should be investigated, including orienting the 

longitudinal bamboo strips on their sides, with the thin ends facing up and down, 

so more strips could be included in each layer. 

6. Quality control measures, such as non-destructive visual grading and machine 

grading, should be established to limit the variability of the bamboo. 

7. A beam-column joint should be tested under cyclic loading to investigate 

bamboo’s ability to develop plastic hinges in the beam to determine if bamboo 

can be used to reinforce concrete under earthquake loads. 
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8. A full-scale BRC house could be tested on a shake table to investigate the 

performance of bamboo reinforcement in earthquake design. 

9. Other methods to increase the bond strength between the bamboo and concrete 

should be investigated. 

10. A long-term study further investigating the durability of bamboo in the high alkali 

environment of concrete should be performed. 

11. Bamboo has a lower stiffness than concrete. Solutions to this problem should be 

investigated such as increasing the stiffness of bamboo or reducing the stiffness of 

concrete by using a rubber concrete which substitutes recycled rubber in place of 

some aggregate. This could also increase the sustainability of the BRC 

technology. 

12. Bamboo fiber composite should be investigated as a reinforcement for concrete. 

Advantages of the engineered bamboo composite over natural bamboo include the 

elimination of node defects, controlled mechanical properties with lower 

variability, water resistance, and the ability to shape the composite to increase 

mechanical bonding to the concrete. 
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Appendix A – Tensile strength test comprehensive data 

Date Sample ID Testing 
Location 

Location Width (in) Thickness (in) Area (in2) 

8/9 T_1 WiSER Node L 0.223 0.193 0.043 

   Middle 0.245 0.170 0.042 

   Node R 0.220 0.172 0.038 

 T_2 WiSER Node L 0.205 0.200 0.041 

   Middle 0.180 0.225 0.041 

   Node R 0.220 0.190 0.042 

9/3 T_3 WiSER Node L 0.320 0.245 0.078 

   Middle 0.310 0.180 0.056 

   Node R 0.290 0.265 0.077 

9/16 T_4 WiSER Node L 0.260 0.270 0.070 

   Middle 0.245 0.195 0.048 

   Node R 0.280 0.270 0.076 

5/17 T_5 WiSER Node L 0.251 0.279 0.070 

   Middle 0.265 0.263 0.070 

   Node R 0.266 0.260 0.069 

9/16 T_6 WiSER Node L 0.260 0.280 0.073 

   Middle 0.230 0.220 0.051 

   Node R 0.270 0.290 0.078 

 T_7 WiSER Node L 0.295 0.340 0.100 

   Middle 0.275 0.250 0.069 

   Node R 0.245 0.295 0.072 

 T_8 WiSER Node L 0.260 0.310 0.081 

   Middle 0.275 0.245 0.067 

   Node R 0.275 0.280 0.077 

 T_9 WiSER Node L 0.230 0.250 0.058 

   Middle 0.240 0.230 0.055 

   Node R 0.220 0.290 0.064 

 T_10 WiSER Node L 0.270 0.285 0.077 

   Middle 0.250 0.230 0.058 

   Node R 0.250 0.280 0.070 

 T_11 WiSER Node L 0.207 0.332 0.069 

   Middle 0.220 0.235 0.052 

   Node R 0.174 0.230 0.040 

 T_12 WiSER Node L 0.210 0.170 0.036 

   Middle 0.200 0.185 0.037 

   Node R 0.210 0.190 0.040 
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 T_13 WiSER Node L 0.320 0.210 0.067 

   Middle 0.350 0.210 0.074 

   Node R 0.340 0.190 0.065 

 T_14 WiSER Node L 0.280 0.270 0.076 

   Middle 0.290 0.230 0.067 

   Node R 0.290 0.320 0.093 

 T_15 WiSER Node L 0.120 0.230 0.028 

   Middle 0.180 0.295 0.053 

   Node R 0.150 0.260 0.039 

 T_16 WiSER Node L 0.265 0.265 0.070 

   Middle 0.325 0.220 0.072 

   Node R 0.345 0.285 0.098 

 T_17 WiSER Node L 0.240 0.260 0.062 

   Middle 0.265 0.235 0.062 

   Node R 0.225 0.305 0.069 

 T_18 WiSER Node L 0.300 0.275 0.083 

   Middle 0.250 0.230 0.058 

   Node R 0.260 0.260 0.068 

 T_19 WiSER Node L 0.205 0.250 0.051 

   Middle 0.220 0.230 0.051 

   Node R 0.205 0.260 0.053 

5/17 T_20 WiSER Node L 0.257 0.277 0.071 

   Middle 0.215 0.233 0.050 

   Node R 0.233 0.300 0.070 

 T_21 WiSER Node L 0.241 0.263 0.063 

   Middle 0.211 0.265 0.056 

   Node R 0.253 0.268 0.068 

 T_22 WiSER Node L 0.282 0.244 0.069 

   Middle 0.219 0.265 0.058 

   Node R 0.264 0.284 0.075 

 T_23 WiSER Node L 0.225 0.210 0.047 

   Middle 0.235 0.220 0.052 

   Node R 0.200 0.220 0.044 

 T_24 WiSER Node L 0.283 0.258 0.073 

   Middle 0.234 0.261 0.061 

   Node R 0.295 0.269 0.079 

 T_25 WiSER Node L 0.242 0.266 0.064 

   Middle 0.275 0.269 0.074 

   Node R 0.310 0.275 0.085 

 T_26 WiSER Node L 0.255 0.293 0.075 
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   Middle 0.243 0.240 0.058 

   Node R 0.225 0.275 0.062 

 T_27 WiSER Node L 0.249 0.269 0.067 

   Middle 0.272 0.220 0.060 

   Node R 0.255 0.225 0.057 

 T_28 WiSER Node L 0.246 0.250 0.062 

   Middle 0.235 0.250 0.059 

   Node R 0.268 0.250 0.067 

 T_29 WiSER Node L 0.231 0.265 0.061 

   Middle 0.254 0.260 0.066 

   Node R 0.250 0.285 0.071 

 T_30 WiSER Node L 0.271 0.247 0.067 

   Middle 0.298 0.232 0.069 

   Node R 0.265 0.270 0.072 
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Sample ID Length between  
Grips (in) 

Loading Rate 
(in/min) 

Max Load  
(kip) 

Displacement  
(in) 

T_1 11.500 0.050 0.469 0.1187 

     

     

T_2 11.625 0.050 0.873 0.1886 

     

     

T_3 12.500 0.050 1.335 0.1991 

     

     

T_4 14.375 0.050 1.444 0.2295 

     

     

T_5 12.000 0.050 1.398 0.1902 

     

     

T_6 14.500 0.050 1.418 0.3227 

     

     

T_7 13.750 0.050 1.324 0.2707 

     

     

T_8 14.000 0.050 1.392 0.2735 

     

     

T_9 14.250 0.050 1.234 0.2242 

     

     

T_10 12.375 0.050 1.430 0.3343 

     

     

T_11 12.063 0.050 0.833 0.1592 

     

     

T_12 11.625 0.050 0.679 0.1754 

     

     

T_13 11.813 0.050 1.260 0.2233 
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T_14 11.625 0.050 1.479 0.2503 

     

     

T_15 11.688 0.050 0.312 0.0864 

     

     

T_16 14.125 0.050 1.209 0.1819 

     

     

T_17 14.375 0.050 1.162 0.2206 

     

     

T_18 12.688 0.050 1.468 0.2459 

     

     

T_19 12.500 0.050 1.166 0.2153 

     

     

T_20 14.125 0.050 1.445 0.230 

     

     

T_21 14.063 0.050 1.319 0.1980 

     

     

T_22 11.750 0.050 1.501 0.204 

     

     

T_23 12.125 0.050 0.892 0.256 

     

     

T_24 13.875 0.050 1.303 0.233 

     

     

T_25 11.688 0.050 1.481 0.2055 

     

     

T_26 13.813 0.050 1.232 0.239 

     

     

T_27 12.250 0.050 1.071 0.1928 
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T_28 11.750 0.050 1.133 0.179 

     

     

T_29 11.688 0.050 1.117 0.2561 

     

     

T_30 11.750 0.050 1.422 0.178 
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Sample ID Stress 
(ksi) 

Strain 
(in/in) 

MoE 
(ksi) 

Failure  
Notes 

Comments 

T_1 12.407 0.0103 1202 Node R Failure at node 

      

      

T_2 20.876 0.0162 1287 Node R Failure at node 

      

      

T_3 18.981
8 

0.0159 1192 Both Split from left node diagonally to 
right node 

      

      

T_4 20.576 0.0160 1289 Node L Fairly clean break through node. 

      

      

T_5 20.213
2 

0.0159 1275 Node R First node L snapped partially and 
split to longitudinally along 
specimen to midpoint. 
Then node R snapped clean 
through. 

      

      

T_6 18.112 0.0223 814 Node R Break through the right node; Split 
from bottom along the 
longitudinal axis to the middle 

      

      

T_7 16.456
1 

0.0197 836 Both Crack a little at left node first and 
then fairly clean break through the 
right node 

      

      

T_8 18.072 0.0195 925 Node R Crack from the right node toward 
the bottom, but still connected. 
Press pause button on Matlab and 
the bamboo break itself 
"pa..pa..bang" 

      

      

T_9 21.464
5 

0.0157 1364 Node L Fairly clean break through the 
node 
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T_10 18.581 0.0270 688 Node L Crack at left node a little and then 
split along the longitudinal axis 
towards both direction 

      

      

T_11 20.812
6 

0.0132 1577 Node R Cracked at right node then split 
across the bamboo to the other 
face and met near the aluminum 
tab 

      

      

T_12 17.016 0.0151 1128 Node R Clean split through node R 

      

      

T_13 19.511
4 

0.0189 1032 Node R Clean split at right grip 
No skin 

      

      

T_14 18.871 0.0215 877 Both Failed longitudinally from node to 
node 
Area of failure should be average 
between two nodes or middle 
cross sectional area 

      

T_15 11.322
0 

0.0074 1531 Node L Clean break through node L 
No skin 

      

      

T_16 17.218 0.0129 1337 Node L Initial failure on inside of left node 
then longitudinal failure diagonally 
near to right node 

      

      

T_17 16.936
5 

0.0153 1103 Node R Initial failure on inside of right 
node then clean failure across 
node 

      

T_18 21.722 0.0194 1121 Node R Cracked at right node then split 
across the bamboo to the other 
face and met near the aluminum 
tab and also split towards the 
middle of the specimen 



171 

 

      

      

T_19 22.759 0.0172 1321 Node L Cracked at left node then split 
across the bamboo to the other 
face and met near the aluminum 
tab 

T_20 20.300 0.0163 1245 Node L Split from node L longitudinally to 
center of specimen and to left tabs 

      

      

T_21 19.451 0.0141 1382 Node R Split from node to grip 

      

      

T_22 20.014 0.0174 1152 Node R Split from node to grip 

      

      

T_23 20.267 0.021 959 Node R Clean break through node 

      

      

T_24 16.417 0.017 979 Node R Split from node R to grip 

      

      

T_25 23.015 0.018 1309 Node L Split from node L to grip 

      

      

T_26 16.494 0.017 955 Node L Split from node L to grip 

      

      

T_27 15.993 0.016 1016 Node L Split from node L to grip 

      

      

T_28 18.417 0.015 1207 Node L Split from node L to node R 

      

      

T_29 18.246 0.022 833 Node L Split from node to grip and to 
center 
Skin separated 

T_30 21.237 0.015 1399 Node L Split from node to grip and to 
center 
Split down center of skin 
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Appendix B – Bond strength test comprehensive data 
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5.0
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Appendix C – MathCAD beam designs 

 

 

 

 

 

 

  

 

 

 

 

 

 

  

Beam Design 

Inputs IMPORTANT: Only change red inputs 

Beam Dimensions and Loading 

Width   

Height   

Total length  

Bearing pad length  

Distance from support to load  

Concrete Properties 

Concrete strength  

Concrete rupture strain  

Compression block  Check 

Bamboo Properties 

Bamboo strength  

Bamboo modulus of elasticity  

Bamboo rupture strain  

Reinforcement 

Number of rows  

Stirrup spacing  

b 10in

h 20in

L 48in

Lpad 6in

a 17in

fc 3000psi

c 0.003

c 2.836in

fy 18.7ksi

b 1145ksi

b_yield

fy

b

0.016

Nrows 4

s 4in
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Flexure Design - Bamboo 

Beam Dimensions 

Width   

Height   Height to width ratio  

Total length  

Effective Length  

Concrete compressive strength  

 

 because fc < 4000psi 

 normal weight concrete 

Concrete rupture strain  

Bamboo tensile strength  

Bamboo modulus of elasticity  

Bamboo rupture strain  

Guess c value 

Guess   

 

Area of one bamboo strip 

 (from experimental data) 

Number of rows required 

  

b 10 in

h 20 in
h

b
2

L 48 in

Le L Lpad 2  36 in

fc 3 ksi

1 0.85 2500psi fc 4000psiif

1.05 0.05
fc

1000psi










4000psi fc 8000psiif

0.65 otherwise



1 0.85

 1.0

c 3 10
3



fy 18.7 ksi

b 1.145 10
3

 ksi

b_yield 0.016

c 2.836in

 c 1

Abstrip 0.31in
2



ORIGIN 1
Nrows 4
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Number of bamboo strips provided 

 

Area of bamboo provided 

 

Nr

if Nrows 1 1 0 

if Nrows 2 1 0 

if Nrows 3 1 0 

if Nrows 4 1 0 

if Nrows 5 1 0 

if Nrows 6 1 0 























1

1

1

1

0

0





















Nb

if Nrows 1 1 0 

if Nrows 2 1 0 

if Nrows 3 1 0 

if Nrows 4 1 0 

if Nrows 5 1 0 

if Nrows 6 1 0 























3

3

3

3

3

0

0





















Ab Nb Abstrip

0.93

0.93

0.93

0.93

0

0



















in
2


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Detailing 

Clear cover  

Horizontal spacing  

Vertical spacing  

Stirrup thickness  

Bamboo strip width  

 ≤   Detailing works 

Note: must also take into account radius of stirrup 

   

   

   

Depths to centroid of bamboo layers 

 

Reinforcement ratio 

 

cc 1.5in

sh 1in

sv 1in

tstirrup 0.25in

wb 1in

cc 2 sh 2 tstirrup 2 wb 3 8.5 in b 10 in

d1 h cc
tstirrup

2
 d2 d1 sv tstirrup d3 d2 sv tstirrup

d4 d3 sv tstirrup d5 d4 sv tstirrup d6 d5 sv tstirrup

x

d1 Nr
1



d2 Nr
2



d3 Nr
3



d4 Nr
4



d5 Nr
5



d6 Nr
6





























18.375

17.125

15.875

14.625

0

0



















in d
1

Nrows

i

x
i

Nb
i



















1

Nrows

i

Nb
i









 b

Ab
b d( )



d 16.5in

b 0.023
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Model of bamboo (Rupture or Yielding) 

Choose either rupture or yielding model for bamboo by dragging the function into the box 

Rupture  

Yielding  

Strain in each layer 

Stress in each layer 

  

fb b fy  sign b  b b  b b_yieldif

sign b 
2

3
 fy otherwise



fb b fy  sign b  b b  b b_yieldif

sign b  fy otherwise



b

x
1

c

c
c x

1
0if

0 otherwise

x
2

c

c
c x

2
0if

0 otherwise

x
3

c

c
c x

3
0if

0 otherwise

x
4

c

c
c x

4
0if

0 otherwise

x
5

c

c
c x

5
0if

0 otherwise

x
6

c

c
c x

6
0if

0 otherwise

























































 Stress

sign b
1







fb b
1

fy







sign b
2







fb b
2

fy







sign b
3







fb b
3

fy







sign b
4







fb b
4

fy







sign b
5







fb b
5

fy







sign b
6







fb b
6

fy


































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Strain in each bamboo layer Stress in bamboo layer 

  

Check to make sure Compression Force = Tension Forces 

Check  Re-try? 

Compression Force  

Force in Bamboo  

 

 

 

 

 

Result

if b
1

b_yield "NOT YIELDED" "YIELDED"





if b
2

b_yield "NOT YIELDED" "YIELDED"





if b
3

b_yield "NOT YIELDED" "YIELDED"





if b
4

b_yield "NOT YIELDED" "YIELDED"





if b
5

b_yield "NOT YIELDED" "YIELDED"





if b
6

b_yield "NOT YIELDED" "YIELDED"
































Summary

Nr
1

Nr
2

Nr
3

Nr
4

Nr
5

Nr
6

b
1

b
2

b
3

b
4

b
5

b
6

Result
1

Result
2

Result
3

Result
4

Result
5

Result
6





























b

0.016

0.015

0.014

0.012

0

0



















 Stress

18.7

17.307

15.793

14.279

0

0



















ksi

c 2.836in

Cc 0.85 fc  0.85 c( ) b 61.47 kip

Fb

1

Nrows

i

Stress
i

Ab
i









61.453kip

Cc Fb 0.017 kip

Action if Cc Fb 0.2 kip  "DECREASE c" if Cc Fb 0.2kip "INCREASE c" "GOOD"  

capprox

Fb

Cc

c

2.835in

Action "GOOD"

capprox 2.835 in
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Calculate Flexural Capacity 

 

 
Calculate Cracking Moment 

  

 
 

 
 

  

 

 

 

Mn

1

Nrows

i

Stress
i  x



2








 i

 Ab
i













79.042ft kip

d 16.5in

 2.411in
fr 7.5 fc psi

Fb 61.453 kip

Ig
1

12
b h

3


Ab 3.72 in
2



yt
h

2


Mcr

fr Ig

yt

 Mcr 22.822 kip ft

Action "GOOD"

Mn 79.042 kip ft

Mcr 22.822 kip ft
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Shear Design - Bamboo 

Calculate Shear Capacity of Concrete 

 

 

Calculate Shear Capacity of Bamboo Stirrups 

Stirrup Spacing  

Stirrup Area  

 

 

Shear Capacity of Beam 

 

 

 

Vc 2  fc psi b d

Vc 18.075 kip

s 4 in

Av 2 0.20in
2 

Vs

Av fy d

s


Vs 30.855 kip

Vn Vc Vs

Vn 48.93kip

Vn 48.93kip
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UTM Loading 

 
For Shear Beams (S1, S2, S3, S4, S5, S6) use an 

"a" = Leff/2 = 17in 
 

For Flexure Beams (F1, F2) and Lap-Spliced 

Beams (L1, L2, L3) use an "a" = 25in 

For Flexure Beam (F3) use an "a" = 30in  

For Flexure Beam (F4) use an "a" = 38in 
 

 

 

a 17 in

P min
Mn 2

a
Vn 2









97.86kip

Pcr

2 Mcr

a
32.219kip

Vu
P

2


Mu Vu a
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Status if Mu Mn "FLEXURE FAILURE" if Vu Vn "SHEAR FAILURE" "NO FAILURE"  

Status "T ENSION FLEXURE FAILURE" Mu Mn

b
1

b_yield





if

"OVER-REINFORCED FLEXURE FAILURE" b
1

b_yieldif

"BALANCED FLEXURE FAILURE" b
1

b_yieldif

"SHEAR FAILURE" Vu Vnif



P 97.86kip

Pcr 32.219 kip

Vu 48.93kip

Mu 69.317 kip ft
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Summary 

 

 

Expected Load  

Cracking Load  

Cracking Moment  

Moment Capacity  

Ultimate Moment  

Shear Capacity  

Ultimate Shear  

Yielding bamboo assumes stress in bamboo remains fb when yielding strain is reached 

Rupture bamboo assumes stress in bamboo drops to 2/3 fb when rupture strain is reached 
Layer Strain Status 

 
 

 

Action "GOOD"

Status "SHEAR FAILURE"

P 97.86kip

Pcr 32.219 kip

Mcr 22.822 ft kip

Mn 79.042 kip ft

Mu 69.317 kip ft

Vn 48.93kip

Vu 48.93kip

b_yield 0.016
Summary

1

1

1

1

0

0

0.016

0.015

0.014

0.012

0

0

"YIELDED"

"NOT YIELDED"

"NOT YIELDED"

"NOT YIELDED"

"NOT YIELDED"

"NOT YIELDED"




















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Appendix D – Beam examination notes 
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Appendix E – Sensors channel spreadsheet 
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Appendix F – Strain analysis steps 

The following steps were taken to synchronize the strain gauge data with the 

actuator data. The computer collecting the strain gauge data continued to gather data even 

while the actuator was paused, resulting in many more strain gauge data points than 

actuator data points. A function generator was used to time-stamp each of the output data 

files (actuator, B00, B01) to aid in synchronization. 

1. Copy and paste Actuator raw data into a new excel spreadsheet 

2. Delete time step gaps 

3. Move function generator data to left-most column 

4. Add in B00 and B01 data including both function generators 

5. Include date and time for all three data sets 

6. Add in consecutive numbers in left-most column. Don’t separate numbers in 

this column. 

7. Set conditional formatting rules for the following rules: 

a. Force column: <700 

b. Actuator function generator: <4.7, >5.3 

c. B00 function generator: = -1.41133, -1.416016, 1.362305, 1.367187 

d. B01 function generator: = -1.41133, -1.416016, 1.362305, 1.367187 

8. Segment each data set at function change 

9. Check synchronization with the following graphs: 

a. Actuator function with force and B00, B01 

b. Actuator deflection and string pot deflection 
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10. Count number of data points for each data set segment 

11. Save file as BeamID_sync_deleted 

12. Delete B00 and B01 data points to match actuator data started when the 

actuator force is at a minimum 

13. Once all data is matched, copy and paste into a new sheet 

14. Delete all breaks between function type 

15. Add in breaks at time step jump 
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Appendix G – Strain gauge graphs 

Appendix G.1 Shear beams 
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Appendix G.2 Flexure beams 
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Appendix G.3 Flexure lap-spliced beams 

 



237 

 

 

 



238 

 

 

 



239 

 

 

 



240 

 

 

 



241 

 

 

 



242 

 

 

 



243 

 

 

 



244 

 

 

 



245 

 

 

 



246 

 

 

 



247 

 

 

 



248 

 

 

 



249 

 

 

 

  



250 

 

REFERENCES 

 

Amada, S., Ichikawa, Y., Munekata, T., Nagase, Y. & Shimizu, H. (1997). Fiber Texture 

and Mechanical Graded Structure of Bamboo. Composites Part B, 28B, 13-20. 

Anglandes, Y., Brink, S., Coats, P., DesRoches, R., Elnashai, A., Etienne, H., … Paultre, 

P. (2010). Performance of buildings in the Haiti Earthquake. ICC Building Safety 

Journal Online, 7(5). Retrieved from http://bsj.iccsafe.org/april/features/haiti.html 

Bamboo & Global Warming. (2011). In Bamboo Technologies. Retrieved from 

http://www.bambooliving.com/bamboo-and-global-warming.html 

Botanical Features of Bamboo. (2011). In Bamboo Select. Retrieved from 

http://eng.bambooselect.com/Botany.html 

Braga, F., Antonio, C., Lima, J., Humberto, C., Barbosa, N. P., & Willrich, F. L. (2010). 

Comportamento estrutural de vigas de concreto reforçadas com ripas de bambu 

cravejadas de pinos. Revista Brasileira de Engenharia Agricola e Ambiental, 

14(10), 1115. 

Brink, F. E., & Rush, P. J. (1966, 2000). Bamboo Reinforced Concrete Construction. U.S. 

Naval Civil Engineering Laboratory. Retrieved from 

http://www.romanconcrete.com/docs/bamboo1966/BambooReinforcedConcreteF

eb1966.htm 

Cao, Y., & Wu, Y. (2008). Evaluation of statistical strength of bamboo fiber and 

mechanical properties of fiber reinforced green composites. J. Cent. South Univ. 

Technol. 15(1), 564−567. 



251 

 

Cardno, C. (2014, July). Bamboo Reinforcement Could Help Developing Cities. Civil 

Engineering. Retrieved from 

http://www.asce.org/cemagazine/Article.aspx?id=23622331706#.U9LEHvldWSp 

DesRoches, D. R., Kurtis, K. E., & Gresham, G. J. (2011). Breaking the reconstruction 

logjam. American Ceramic Society Bulletin, 90(1), 24. 

De Vos, V. (2010, May). Bamboo Material Properties and Market Perspectives (BSc 

Thesis). Larenstein University, Leeuwarden, Netherlands. 

Garden, J. (2012). In Growing Bamboo. Retrieved from 

http://jessegarden.com/2012/09/02/growing-bamboo/ 

Geiger, O. (2006). Bamboo Earns ICC Approval. In Geiger Research Institute of 

Sustainable Building. Retrieved from 

http://www.grisb.org/publications/pub32.htm 

Ghavami, K. (2005). Bamboo as a reinforcement in structural concrete elements. Cement 

and Concrete Composites, 27(6), 637–649. 

Glenn, H. E. (1950). Bamboo Reinforcement in Portland Cement Concrete. Engineering 

Experimental Station, Clemson Agricultural College of South Carolina. 

Engineering Bulletin No. 4. 

Haiti Earthquake Facts and Figures. (2010). In Disasters Emergency Committee. 

Retrieved from <http://www.dec.org.uk/haiti-earthquake-facts-and-figures>  

Hebel, D. E., Heisel, F., & Javadian, A. (2013). Engineering Bamboo. Future Cities 

Laboratory (FCL) Magazine, 1, 46-59. 



252 

 

Hidalgo, O. (1996). Study of Mechanical Properties of Bamboo and Its Use as Concrete 

Reinforcement: Problems and Solution. (pp. 76-91). In Rao, R. I. V., & Sastry, C. 

B. (Eds.), Bamboo, People and the Environment. Paper presented at The 5th 

International Bamboo Workshop and The 4th International Bamboo Congress. 

Bali, Indonesia New Delhi, India: International Network for Bamboo and Rattan. 

Inman, M. (2007). Bamboo road bridge can support 16-tonne trucks. New Scientist. 

Retrieved from http://www.newscientist.com/article/dn13107-bamboo-road-

bridge-can-support-16tonne-trucks.html 

ISO. (2004). Laboratory Manual on Testing Methods for Determination of Physical and 

Mechanical Designing and Building with Bamboo. ISO 22157-1:2004. 

Janssen, J. J. A. (2000). Designing and Building with Bamboo. International Network for 

Bamboo and Rattan. Technical University of Eindhoven. Eindhoven, Netherlands. 

Technical Report No. 20. 

Jiang, Z., Wang, H., Tian, G., Liu, X., & Yu, Y. (2012). Moisture & Bamboo Properties. 

BioResources, 7(4), 5048-5058. 

Joseph Monier. (n.d.). In Encyclopaedia Britannica online. Retrieved from 

http://www.britannica.com/EBchecked/topic/389450/Joseph-Monier 

Judziewicz, E. J., Clark, L. G., Londoño, X., & Stern, M. J. (1999). American bamboos. 

Washington D. C.: Smithsonian Institution Press. 

Kankam, J. A., & Perry, S. H. (1989). Variability of Bond Strength between Bamboo and 

Concrete. ACI Materials Journal, 86(6), 615-618. 

http://www.britannica.com/EBchecked/topic/389450/Joseph-Monier


253 

 

Khare, L. (2005). Performance Evaluation of Bamboo Reinforced Concrete Beams 

(Master’s Thesis). The University of Texas at Arlington, Arlington, USA. 

Leiserson, E. K. (2010). Haiti’s Lessons. PE Magazine. Retrieved from 

http://www.nspe.org/PEmagazine/10/pe_0410_Haiti.html 

Mallick, A. (2011). A bamboo-reinforced solar house. Retrieved from 

http://www.auroville.org/journals&media/avtoday/archive/2010-2011/2011-

04/AVT-262-7.pdf (Feb. 26, 2013). 

Mark, A., & Russell, A. O. (2011). A comparative study of Bamboo reinforced concrete 

beams using different stirrup materials for rural construction. International 

Journal of Civil and Structural Engineering, 2(2), 407-423. 

doi:10.6088/ijcser.00202010120 

Mingjie, G. (2004). Manual for Bamboo Charcoal Production and Utilization. Bamboo 

Engineering Research Center. E. Nanjing Forestry University. Retrieved from 

http://www.bambubrasileiro.com/arquivos/ 

Moroz, J. G., Lissel, S. L., & Hagel, M. D. (2014). Performance of bamboo reinforced 

concrete masonry shear walls. Construction and Building Materials, 61, 125–137. 

http://dx.doi.org/10.1016/j.conbuildmat.2014.02.006 

Rahman, M. M., Rashid, M. H., Hossain, M. A., Hasan, M. T., & Hasan, M. K. (2011). 

Performance Evaluation of Bamboo Reinforced Concrete Beam. International 

Journal of Engineering & Technology, 11(4), 142-146. 

Rolt, J. (2008). Bamboo Reinforced Concrete Pavements. Unpublished manuscript, TRL 

Limited. SEACAP 19 Technical Paper No 1 



254 

 

Rosenberg, T. (2012). In Africa’s Vanishing Forests, the Benefits of Bamboo. New York 

Times - The Opinion Pages. Retrieved from 

http://opinionator.blogs.nytimes.com/2012 /03/13/in-africas-vanishing-forests-

the-benefits-of-bamboo/ 

Sabbir, M. A., Mamun, M. S., & Fancy, S. F. (2012). Performance Evaluation Of 

Bamboo Twig As A Potential Reinforcement In Concrete Considering Tensile 

Property. International Journal of Engineering Research and Applications 

(IJERA), 2(3), 3205-3209. 

Sakaray, H., Togati, V.K., & Reddy, R. (2012).  Investigation on the properties of 

bamboo as reinforcing material in concrete. International Journal of Engineering 

Research and Applications (IJERA). 2(1), 77-83. 

Sherwood, E. G. (2008). One-Way Shear Behaviour of Large, Lightly-Reinforced 

Concrete Beams and Slabs (Doctoral dissertation, University of Toronto). 

Retrieved from http://http-server.carleton.ca/~tedsherw/Sherwood1and2.pdf 

Shimoda, S., Murakami, K., Takeda, K., Matsunaga, T., & Kakuno, Y. (2010). 

Experimental study on structural performance of bamboo reinforced concrete 

slabs. Summaries of Technical Papers of Annual Meeting, AIJ, A-1, 877-878. 

Subrahmanyam, B.V. (1984). Bamboo reinforcement for cement matrices in new 

reinforced concrete. (pp. 141–194). Guildford, England: Surrey University Press. 

Terai, M., & Minami, K. (2011). Fracture behaviour and mechanical properties of 

bamboo reinforced concrete members. Procedia Engineering, 10, 2967-2972. 



255 

 

Wahab, R., Mustafa, M. T., Salam, M. A., Tabert, T. A., Sulaiman, O., & Sudin, M. 

(2012). Potential and Structural Variation of Some Selected Cultivated Bamboo 

Species in Peninsular Malaysia. International Journal of Biology, 4, 102-116. 

doi:10.5539/ijb.v4n3p102 

Yamaguchi, M., Murakami, K., & Takeda, K. (2013). Flexural Performance of Bamboo-

Reinforced-Concrete Beams using Bamboo as Main Rebars and Stirrups. Paper 

presented at the Third International Conference on Sustainable Construction 

Materials and Technologies. Retrieved from 

http://www.claisse.info/Proceedings.htm 

Youssef, M. A. R. (1976). Bamboo as a substitute for steel reinforcing in structural 

concrete. New Horizons Construction Materials, 1, 525–554. 

Yu, H. Q., Jiang, Z. H., Hse, C. Y., & Shupe, T. F. (2008). Selected Physical and 

Mechanical Properties of Moso Bamboo (Phyllostachys Pubescens). Journal of 

Tropical Forest Science, 20(4), 258-263. 


	Clemson University
	TigerPrints
	8-2014

	APPLICATION OF BAMBOO FOR FLEXURAL AND SHEAR REINFORCEMENT IN CONCRETE BEAMS
	Nathan Schneider
	Recommended Citation


	tmp.1409848255.pdf.y1na3

