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ABSTRACT 

 

 

A significant number of US highway bridges are inadequate for seismic loads and 

could be seriously damaged or collapse during a relatively small earthquake.  On the 

most recent infrastructure report card from the American Society of Civil Engineers 

(ASCE), one-third of the bridges in the United States are deemed to be structurally 

deficient.  To improve this situation, at-risk bridges must be identified, evaluated, and 

effective retrofitting programs implemented to reduce their seismic vulnerabilities.  In 

practice, the Federal Highway Administration uses the expected damage method and 

indices method to assess the condition of bridges.  These methods compare the severity 

of expected damage for each at-risk bridge and the bridges with the highest expected 

damage will receive the highest priority for retrofitting.  However, these methods ignore 

the crucial effects of traffic networks on the highway bridge’s importance.  Bridge 

failures or even capacity reductions may redistribute the traffic of the entire network.  

This research develops a new retrofit strategy decision scheme for highway bridges under 

seismic hazards and seamlessly integrates the scenario-based seismic analysis of bridges 

and the traffic network into the proposed optimization modeling framework.  A full 

spectrum of bridge retrofit strategies are considered based on explicit structural 

assessment for each seismic damage state.  A simplified four-bridge network is used to 

validate the model, and then a modified version of the validated model is applied to the 

bridge network in Charleston, SC to illustrate the applicability of the model.  The results 

of the case study justify the importance of taking a system viewpoint in the retrofit 
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strategy decision process and the benefit of using the developed model in the retrofit 

decision making process 
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CHAPTER ONE 

INTRODUCTION 

 

 

Many U.S. highway bridges, in particular older bridges that predate major 

changes to seismic code provisions, are inadequate for seismic loads and could be 

seriously damaged or suffer collapse during a relatively moderate intensity earthquake 

(1).  On the most recent infrastructure report card from the American Society of Civil 

Engineers (ASCE), one-third of the bridges the United States are deemed structurally 

deficient (2).  In the past, major structural damage has occurred to highway bridges due 

to earthquakes causing for millions of dollars economic loss in various states, such as 

Alaska, California, Washington, and Oregon (1).  To improve this situation, at-risk 

bridges must be identified, evaluated, and retrofitting programs must be implemented to 

reduce the seismic vulnerability of critical bridges (1).  

The main bridge components to be considered under the retrofit strategies are the 

bridge’s superstructure, substructure, and foundation.  There are various retrofitting 

methods in use today and many upcoming methods still being tested to determine their 

effectiveness.  The main goals of bridge seismic retrofits are focused on the following 

(1): 

 strengthening bridge components 

 improvement of displacement capacity  

 limiting forces on major bridge components 

 modification of the bridge response  
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 site remediation by ground movement  

 acceptance or control of damage to specific components 

Retrofitting all at-risk bridges is neither practical nor economical.  Thus, it is 

important for the transportation stakeholders (e.g., the federal/state departments of 

transportation or DOT) to determine the best action to take in order to maximize the 

return (e.g., post-disaster traffic conditions) of the retrofit expenditures (3, 4).  The 

retrofit decision making process is challenging, which is essentially a resource allocation 

problem under uncertainty (5).  The first challenge is that the resources including budget, 

human resources, and material supplies are all limited.  The second challenge is the 

uncertainty caused by the retrofit decision being about the future.  The future cannot be 

predicted with any true certainty, so this uncertainty is transferred to the retrofit decision 

process.  

In practice, the Federal Highway Administration uses the expected damage 

method and the indices method to determine which bridges are to receive retrofitting 

procedures.  The expected damage method compares the severity of expected damage for 

each at-risk bridge and the bridges with the highest expected damage will receive the 

highest priority for retrofitting (1, 6).  While the indices method uses indices to 

characterize the structure vulnerability and hazard level of the bridge (1).  These indices 

are then combined to generate a rating from 0 to 10 for each bridge, and are used to 

determine the priority for retrofitting.  These methods provide quantitative results on the 

expected damage and direct economic losses; however, they ignore the crucial effects of 

traffic networks on the importance of highway bridges.  Bridge failures or even capacity 
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reductions may redistribute the traffic over the entire network.  Thus, a bridge retrofit 

strategy based solely on the severity of expected damage may not lead to optimal solution 

from a system perspective (7) and an integrated retrofit decision scheme taken on the 

system level should be considered.  

In this research, the goal was to develop a new yet practical retrofit program for 

highway bridges under seismic hazards, which explicitly integrates the expected damage 

severity and the adverse impact on the traffic network into the decision making scheme.  

The analysis considers a full spectrum of bridge retrofit strategies that are based on 

explicit bridge structural assessments for each possible seismic damage state.  The 

optimization model will indicate what retrofit strategy applies to which bridge.  The goal 

is to minimize the total cost incurred by retrofitting the bridges and the subsequent 

expected damage cost, while satisfying a predefined traffic throughput.  It is important to 

note that both retrofit and expected damage costs are included in the objective for 

achieving the overall cost-effective retrofit strategies, since a retrofit strategy that is low-

cost in retrofitting may have high- cost damages in the aftermath of an earthquake.  A 

simplified four-bridge network was used to validate the model, and a modified version of 

the model was applied to Charleston, SC to demonstrate the applicability of the model.  

Although the model is demonstrated in Charleston, SC, it has been developed in general 

terms for the purpose of being able to be applied to any region or transportation network 

setup.  The results of this thesis will justify the system viewpoint in retrofit strategy 

decision process. 
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The following chapters describe the evolution and performance of the developed 

model. Chapter 2 discusses what is currently published regarding the bridge seismic 

damage states, retrofit strategies, resource allocation, maximum concurrent flow problem, 

and the current state of Charleston’s infrastructure.  The optimization model is presented 

and discussed in Chapter 3, and demonstrated on the simple four-bridge network.  Also, 

Chapter 3 describes the data inputs for the network, followed by numerical results with 

analysis.  Chapter 4 describes the application of the model to the Charleston area, 

followed by the numerical results with analysis.  Chapter 5 summarizes the research 

findings and outlines possible future research efforts. 



 5 

CHAPTER TWO 

LITERATURE REVIEW 

 

 

2.1  Bridge Structural Systems 

 

2.1.1  Damage States 

 

The consequences of damage sustained by a bridge during an earthquake can 

range from minor to severe.  The impacts of a bridge collapse are clearly seen in the risk 

to safety and the monetary value to replace the bridge, while less severe damage has 

subtle but costly consequences.  A bridge closure, even temporary, can have tremendous 

consequences as bridges often provide vital links in a transportation network.  A closure 

of a bridge may impair emergency response operations in the aftermath of an earthquake 

and have an economic impact that continually builds.  The economic impact can increase 

with the length of time the bridge is closed due to, the economic importance of the traffic 

using the route, the traffic delay caused by following alternate routes, and the 

replacement cost for the bridge.  In this research, five distinct damage states (i.e., none, 

minor, moderate, extensive and complete) were adopted as defined in the earthquake loss 

estimation model in HAZUS (Hazards-United States) for highway bridges (8).  The 

damages states are described as follows: 

 None (d0) – No Damage. 

 Minor (d1) – Minor cracking and spalling to the abutment, cracks in shear keys at 

abutments minor spalling and cracks at hinges, minor spalling at the column or 

minor cracking to the deck. 
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 Moderate (d2) – Any column experiencing moderate cracking and spalling, 

moderate movement of the abutment, extensive cracking and spalling of shear 

keys, any connection having cracked shear keys or bent bolts, keeper bar failure 

without unseating rocker bearing failure or moderate settlement of the approach. 

 Extensive (d3) – Any column degrading without collapse, significant residual 

movement at connections, or major settlement approach, vertical offset of the 

abutment, differential settlement at connections, or shear failure at abutments. 

 Complete (d4) – Any column collapsing and connection losing all bearing 

support, which may lead to imminent deck collapse, or tilting of substructure due 

to foundation failure. 

 

2.2  Bridge Retrofitting Strategies 

 

Bridge damage classifications and possible retrofit strategies are identified in the 

Seismic Retrofitting Manual for Highway Bridges (9).  Four areas of retrofit strategies 

considered in this research are defined as follows in addition to the “do nothing” 

alternative.  A higher numbered, or enhanced, strategy is more costly but leads to a more 

resilient structure in the aftermath of an earthquake. 

 Strategy 0 (S0): Do Nothing 

 Strategy 1 (S1): Superstructure Retrofits 

 Strategy 2 (S2): Superstructure and Substructure Retrofits 

 Strategy 3 (S3): Superstructure, Substructure, and Foundation Retrofits 

 Strategy 4 (S4): Complete Bridge Replacement 
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2.2.1  Do Nothing and Full Replacement Options 

When retrofitting a seismically deficient bridge, two possible solutions, at 

opposite ends of the spectrum, should be kept in mind: the ‘do-nothing’ and ‘full-

replacement’ options. 

The ‘do-nothing’ option requires the acceptance of damage during a future 

earthquake.  This will be a relatively straightforward decision if the expected damage is 

not a threat to life safety (1).  The most likely cause of loss of life is total collapse of a 

span, but this is a relatively rare event.  For example, the toppling or failure of individual 

bearings will not necessarily lead to collapse if the bearing seats are wide enough to catch 

the superstructure.  Similarly, foundation failures are unlikely to cause collapse, unless 

the ground deformations are extremely large due to widespread liquefaction or massive 

ground failure such as fault rupture.  Fortunately, these occurrences are rare.  

Nevertheless, judgment should be used when assessing collapse potential and to the 

extent possible. 

The ‘full-replacement’ option, on the opposite end of the spectrum, may be an 

attractive option, particularly when the cost of retrofit is on the same order of magnitude 

as the replacement cost of the bridge.  Full replacement is generally considered whenever 

the retrofit costs approach 60 to 70 percent of a new bridge and may become even more 

attractive if the structure has non-seismic structural deficiencies and is functionally 

obsolete (1).  However, the cost of demolition and any costs associated with control and 

rerouting of traffic should be considered as part of the cost of the replacement alternative.  
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2.2.2  Superstructure Retrofitting 

The most common and serious seismic deficiencies are often found at the bearings 

and bearing seats, and can potentially lead to a loss of support and collapse of the bridge 

(1).  In order to prevent failure of bearing and expansion joints of a bridge, several 

relatively simple and inexpensive actions can be taken.  Retrofitting measures include 

restraining devices, bearing seat extensions, bearing strengthening, and bearing 

replacement.  The main retrofit seen in this area is the use of restrainers to tie different 

parts of the bridge together (9).  The three main types of restrainers are longitudinal joint, 

transverse bearing, and vertical motion restrainers.  Longitudinal joint restrainers are 

installed to limit the relative displacement at joints and decrease the chance of losing 

support or unseating at these locations.  Transverse bearing restrainers are a necessity in 

most cases.  They are designed to keep the superstructure from sliding off its supports if 

the bearings were to fail.  Finally, vertical motion restrainers are designed to prevent 

uplift that could cause damage to the bridge (See Figure 2.1). 

 

Figure 2.1 Example of Effective Superstructure Retrofitting (1) 

If it is impractical to restrain the movement of the bridge to prevent losing support 

at bearings additional retrofitting methods can be done.  These include bearing seat 
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extensions and replacing the bearing.  Bearings should be replaced if their failure will 

result in collapse or loss of function of the superstructure.  Replacing or strengthening 

bearings and their accompanying restraining components should be capable of resisting 

the longitudinal, transverse, and vertical forces acting on the bridge during an earthquake 

event. 

 

2.2.3  Substructure Retrofitting 

Bridge substructure (columns and cap beams) retrofitting measures have been the 

subject of intensive research and development, leading to great insight into the 

effectiveness of different retrofitting strategies on the substructure of bridges (1, 10).  For 

example, columns are commonly deficient in flexural ductility and shear strength.  A 

significant portion of the initial column research provided insight into the effectiveness of 

different retrofit measures to improve both shear strength and flexural ductility of 

reinforced concrete bridge columns (11).  As a result, standards were developed for 

evaluating bridge columns and standard techniques were adopted for improving their 

ductility and shear resistance (12).  This was accomplished by encasing reinforced 

concrete columns in circular or elliptical steel shells (steel jacketing) or by wrapping 

them with fiber composite materials (See Figure 2.2).  These methods were shown in the 

laboratory to improve flexural ductility and shear strength and to prevent the failure of 

starter bar splices located within potential plastic hinge zones.  They have now been 

implemented on a large number of California bridges, and been proved to be effective in 

practice by preventing several bridge failures during the 1994 Northridge earthquake 

(13). 
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Figure 2.2 Example of Effective Substructure Retrofitting (1) 

Steel jacketing significantly improves the flexural strength of the column by using 

passive confinement.  Two steel plates are placed around the area to be retrofitted and the 

gap in between is filled with concrete adding support to the column.  Composite 

fiberglass/epoxy wrapping has been successful in enhancing the flexural ductility and 

shear strength of columns.  Similarly to steel jacketing, the composite fiberglass/epoxy 

wrapping is wrapped around the critical areas of the column (9).   

 

2.2.4  Foundation Retrofitting 

Abutments, footings, and foundations connect the bridge to the earth, and are the 

means by which a bridge feels the effects of an earthquake.  Most foundation failures that 

occur during earthquakes can be attributed to the instability of the supporting soil due to 

liquefaction, lateral spreading, fault movement, or a landslide (1).  Very few bridges have 

collapsed due to structural failure of foundation components, but there are instances 

where retrofitting is required. 

Footings that support columns may be structurally unable to resist the forces 

transmitted from those columns.  This usually occurs when there is a lack of 
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reinforcement in the top of the footing (1).  Structural strengthening of the footing will be 

necessary to force plastic hinging into the column.  There are also cases when movements 

of existing footings can result in instability of the pier and the capacity of the pier 

foundations needs to be increased.  Instability caused by liquefaction or lateral spreading 

can also be addressed by providing a strong foundation (1).  Retrofitting footings is the 

most expensive aspect of bridge seismic upgrading.  Deficiencies are found in flexural 

strength, shear strength, footing/column shear strength, anchorage of column rebar, pile 

capacity, and overturning resistance (See Figure 2.3).  Retrofitting strategies include 

overlaying of reinforced concrete, increasing the depth of the footing, and prestressing by 

drilling ducts or new concrete on the sides (9). 

 

Figure 2.3 Example of Effective Foundation Retrofitting (1) 

2.3 Transportation System Analysis 

 

2.3.1  Resource Allocation 

The difficulty associated with the selection of retrofitting strategies is resource 

allocation.  Transportation infrastructure planning can have a significant impact on urban 

development, but is governed by uncertainty and limited resources.  It is neither practical 
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nor economical to retrofit all bridges to enhance their performance hedging against 

earthquakes.  As the gap between the total budgetary resources available for 

transportation infrastructure projects and the need for new construction and upgrading 

projects for highway infrastructure widens, it is important for public administrators to 

maximize the return for the expenditures on transportation investments by selecting the 

most cost benefit projects (3).  The most challenging task for public administrators of the 

state Departments of Transportation (DOT), who are usually responsible for the 

management, inspection, and maintenance of transportation infrastructure under a limited 

budget, is to decide which projects to fund in a prioritized order (4).  The selection 

process is difficult because various factors must be considered simultaneously when 

selecting a subset of projects from a set of feasible candidate projects.  When projects are 

selected based only on cost minimization, the selection process is likely to overlook some 

salient aspects, such as the perceived project value and chance of success (5).  This 

makes the project selection problem a multi-criteria decision making problem, making it 

difficult to estimate the needed project resources.  These resources most commonly 

include construction costs, human resources, and material supplies.  A majority of the 

time public administrators fund projects without a complete knowledge of all the 

necessary information.  Accordingly, developing and using evaluation criteria and 

performance metrics can drive effective project selection (5).  To do this the developed 

model incorporates a modified version of the expected damage method developed by the 

Federal Highway Administration (1) to allow for the selection of a subset of retrofit 

strategies to be selected from the set of feasible candidates.  
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2.3.2  Maximum Concurrent Flow Problem 

The maximum concurrent flow problem (MCFP) is a multicommodity flow 

problem in which every pair of entities can send and receive flow concurrently (14).  The 

ratio of the flow supplied between a pair of entities to the predefined demand for that pair 

is called throughput and must be the same for all pairs of entities for a concurrent flow.  

The MCFP objective is to maximize the throughput, subject to the capacity constraints 

(14).  The most common applications include packet-switched networks (15, 16, 17), and 

cluster analysis (18). 

Consider a network of entities (cities, computers, etc.) in which there exists a 

demand for flow between all pairs of entities.  The flow is sustained through channels 

with certain capacities.  For the MCFP, it is desired to assign flow to each route of the 

network, such that the ratio of the flow supplied between each pair of entities to the 

demand between that pair (termed the throughput) is the same for all pairs of entities 

(14).  This flow assignment must respect the capacity constraints; that is, the total flow 

through a channel should not exceed its capacity.  The MCFP is to assign flow to the 

routes such that the throughput is maximized.  A flow rerouting approximation algorithm 

for the MCFP was introduced in (19) and also employed in (20).  An extension of this 

algorithm in (14) was shown computationally to provide for the solution of much larger 

problems than could be solved by specialized linear programming codes (21).  The use of 

the MCFP allowed for the model to be adapted from the simple four bridge network to 

the more complex network of the Charleston area. 
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2.3.3  Traffic Network Effects 

The traffic network effects have been incorporated in optimization model based 

retrofit strategy designs, such as (22-24).  Due to the large scale of traffic networks and 

the complexities in modeling the user equilibrium (UE) or system optimization (SO) 

traffic conditions (25), a compromised way to make the problem more tractable was to 

simplify retrofit decisions to be binary decisions (i.e., either retrofit a bridge or not), and 

the bridge damage conditions to be a binary situation that a bridge is either standing or 

collapsed.  For example, Fan et al. (22) used binary retrofit decision variables and 

assumed binary bridge damage conditions in their optimization program for determining 

the best retrofit strategies for the highway bridges in the San Francisco Bay area under 

seismic hazards.  The models in (23, 24) were similar to (22), in which, however, the UE 

rather than the SO traffic condition was assumed.  Chang et al. (26) extended these 

assumptions to allow for a set of mutually exclusive retrofit alternatives and explicitly 

considered the probability of damage states in their study to maximize the post-disaster 

network evacuation capacity.  However, they only budgeted for the retrofit cost and 

neglected the subsequent bridge damage cost resulting from the retrofit strategies. 

 

2.4 Charleston’s Infrastructure System 

 

The Charleston region is composed of numerous towns, crossroad communities, 

as well as unincorporated rural areas.  This allows for the region to offer many options to 

its residents in terms of residential locations and employment opportunities.  From the 

historic downtown to the newer residential subdivisions, small rural communities, and 

beachfront towns, there are options for every lifestyle.  Historic downtown Charleston, 



 15 

the natural amenities, and the beaches also make the region a popular tourist destination.  

Charleston is also a critical economic hub due to the Port of Charleston being one of the 

largest deep-water shipping ports and freight shipping centers in the US.  However, the 

growth in employment, housing, shipping and tourism has resulted in increased traffic 

congestion that continues to worsen in major corridors. 

 

2.4.1  Highway Infrastructure 

Regional access in the region is provided by two important interstate highways 

and three major US Routes which are (See Figure 2.4): 

 I-26 and I-526 

 US 17, US 52, and US 78 

I-26 is the one of the major interstate corridors in South Carolina.  With 

connections from Johnson City, TN, Asheville, NC, and Columbia, SC, the corridor runs 

northwest/southeast through the state, terminating in Charleston, SC.  At the western 

edge of the area, I-26 is a four-lane rural freeway.  At the exit for US 17 Alternate, it 

becomes a six-lane freeway, which expands to eight lanes between Ashley Phosphate 

Road and I-526.  This cross-section continues until the eastern terminus of the interstate 

at US 17 in Charleston.  I-526 is a half-loop, four-lane facility that begins at US 17 west 

of the Ashley River and ends at US 17 in Mount Pleasant, providing connectivity to 

Daniel Island and North Charleston (27).   

US 17 is a major US route that runs east/west across the region.  It connects the 

Charleston peninsula with the mainland on both the east and the west.  The newly 

constructed, eight-lane Arthur Ravenel Jr. bridge provides increased mobility and 
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accessibility to and from US 17, the Charleston Peninsula, and I-26.  US 52 and US 78 

are also multilane major arterials that serve short as well as long distance travel (27).  

 

Figure 2.4  Major Highway Map of Charleston, SC 

The continuing growth in the Charleston region as well as limited mobility 

options has resulted in heavy congestion during peak hours on these major roadways.  

Due to limitations on design and by the geography, a lack of road connectivity is 

predominant creating morning and afternoon peak travel periods that have sections of 

commuter travel corridors frequently congested and can reduce to stop and go traffic.  
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The principal arterials within the Charleston area that are the most heavily 

congested include sections of I-26, I-526, and US 17.  These roadways all have high 

volume/capacity (V/C) ratios, meaning they experience heavy traffic and long delays 

during peak hours.  US 17 has a V/C ratio ranging from acceptable to well over capacity 

throughout much of the Charleston region, from I-526 in West Ashley through Mount 

Pleasant.  I-26 and I-526 are two of the major traffic-carrying roads in the region, and 

currently both of these roads are operating near capacity, with V/C ratios generally 

between 0.8 and 1.0 (As the V/C approaches 1.0, the roadway becomes increasingly 

congested) (27).  Although many of the main highway segments located near Charleston 

are in good condition in terms of a roadway standpoint they cannot handle the current and 

future vehicular demand. 

Furthermore, critical areas (main components of the transportation system that 

need to be modified, i.e. capacity, maintenance, connectivity, etc..) have been identified 

by the Port Authority and trucking firms to be enhanced within the transportation 

infrastructure.  The most predominant was the long term need to provide additional 

capacity for movements out of Charleston.  Specifically these improvements would be 

needed on I-26 and I-526.  While the trucking industry needs continue to grow along with 

the port, automobile traffic is still considered the major influencing factor, by 

transportation officials, on the necessity of roadway improvements.  Possible solutions 

discussed include the widening of I-26 and the establishment of an alternative route.  

Transportation providers are in favor of the ongoing widening of a section of I-26 north 

of I-526.  Although general concerns have been expressed that a much longer segment of 
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I-26 needs to be widened, potentially to Interstate 95 based on the anticipated impact of 

the Jedburg Commerce Park and adjacent proposed warehouse and transportation 

facilities.  In addition, numerous freight providers indicated a need to rebuild the 

Interstate 26-Interstate 526 intersection to better handle freight transportation needs. 

Other long-term needs include the improvement of the I-526/US 17 interchange to 

relieve traffic congestion and improve the traffic flow.  Trucking firms have voiced 

support on several items including truck lane restrictions, keeping trucks to the two right-

hand lanes, to try and help improve flow as well.  Also, the concern of impatient drivers 

continually swerving in traffic has been raised.  Recommendations to help alleviate this 

concern include signage and increased police patrolling along problematic corridors. 

 

2.4.2  Bridge Infrastructure 

Furthermore not only are the highway segments critical to transportation in 

Charleston, the bridges allowing these roadways are just as significant.  According to the 

National Bridge Inventory (NBI) there are 281 bridges within the Charleston are that are 

annual assessed (28).  Of the 281 bridges it was found that 32 are structurally deficient 

and 78 bridges are functionally obsolete.  (Note: NBI does not include bridges being 

constructed or having major reconstruction within the last 10 years)  Of the bridges 

located within the Charleston region 39% of the bridges are structural deficient or 

functionally obsolete, which is significantly higher than the national average of one in 

four bridges (25%) (28).  According to the Federal Highway Administration (FWHA) 

bridges are considered structurally deficient (SD) if significant load carrying elements are 

found to be in poor condition due to deterioration and/or damage, or the adequacy of the 
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waterway opening provided by the bridge is determined to be extremely insufficient to 

the point of causing overtopping with intolerable traffic interruptions.  Examples of poor 

conditions include corrosion that has caused significant section loss of steel support 

members, movement of substructures, or advanced cracking and deterioration in concrete 

bridge decks.  Bridges are considered functionally obsolete (FO) when the deck 

geometry, load carrying capacity (comparison of the original design load to the current 

state legal load), clearance, or approach roadway alignment no longer meet the usual 

criteria for the system of which it is an integral part (29).  Functionally obsolete bridges 

are those that do not have adequate lane widths, shoulder widths, or vertical clearances to 

serve current traffic demand, or those that may be occasionally flooded.  A functionally 

obsolete bridge is similar to an older house.  A house built in 1950 might be perfectly 

acceptable to live in, but it does not meet all of today’s building codes.  Yet, when it 

comes time to consider upgrading that house or making improvements, the owner must 

look at ways to bring the structure up to current standards (28). 

 

2.4.3  Impacts of Natural Disasters 

The main threat to Charleston’s infrastructure comes from nature itself in natural 

disasters.  From historical data, the natural disasters to be most likely to affect Charleston 

are severe storms, earthquakes, flooding, and tornadoes.  The most memorable of these 

disasters being Hurricane Hugo in 1989 and the Charleston earthquake of 1886.  Hugo 

caused for much of the infrastructure within Charleston to be damaged or destroyed due 

to high winds and severe flooding.  Sullivan’s Island and Isle of Palms were both cut off 

from the mainland as the only bridge leading to the islands was destroyed.  Many other 
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roads and bridges were flooded or under water due to the low elevation of the Charleston 

area.  The limited connectivity of the roads in Charleston and the further limiting of areas 

due to flooding caused this to become a severe problem.  Economic damages in South 

Carolina alone are estimated to be $10.5 billion (30).  Due to Charleston’s economic 

status these damages were especially high within the region.  This storm, however, was 

limited in the loss of life due to evacuations.  Without a competent infrastructure system 

these evacuations would not be possible.  If these systems are not kept up or updated to a 

certain standard the losses caused from natural disasters could be even worse. 

In addition, Charleston is the site of one of the strongest earthquakes to hit the 

eastern seaboard of the United States.  The earthquake occurred in 1886 and registered 

with an approximate magnitude of 7 on the Richter scale.  This event caused for more 

deaths, injuries, and property damage than Hurricane Hugo.  Sixty-seven percent of 

Charleston’s brick buildings were destroyed including its three main medical facilities.  

The damages seen to Charleston alone were estimated to be $281 to $338 million in 

terms of 2012 dollars (31).  Although this event happened over 120 years ago, due to its 

occurrence it has been theorized it will happen again.  Using the FEMA provided 

program of HAZUS (estimates potential losses from natural disasters) studies have been 

done to model this situation if it were to happen again.  From the results they found that 

economic loss from the Charleston region would be over $14 billion (77% of the total), 

and many bridges would be damaged to the point they would no longer be usable cutting 

off portions of Charleston only accessible by bridges (32).  Extensive damage to both 

buildings and infrastructure, such as roads, bridges, and railroads, would also been seen.  
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Although these are examples of extreme cases, the possibilities of damages to 

infrastructure, the economic losses, and its importance to safety is easily seen.  

 

2.4.4  Seismic Risk Assessment of Charleston, SC 

 Regional seismic risk assessments (SRAs) are becoming popular tools for 

evaluating the performance of transportation networks under earthquake loading.  The 

term seismic risk refers to the potential for damage or losses that may be associated with 

a seismic event.  Such regional assessments provide a unique approach for estimating the 

risk to highway infrastructure by evaluating potential bridge damage and consequences of 

the seismic event, such as the estimated direct and indirect losses (33).  This framework 

offers support to decision-makers for pre-event planning and risk mitigation, emergency 

route identification, retrofit selection and prioritization (33). 

Methodologies for seismic risk assessment of transportation systems have been 

presented by many researchers in the field of lifeline earthquake engineering (34, 35, 36, 

37).  These methodologies offer a potential framework for assessing likely bridge 

damage, direct losses due to repair and replacement of the structures, and some extend 

this evaluation to include an assessment of the impact of the event on network 

performance and the resulting indirect economic losses (38, 39) 

In a risk assessment of the Charleston area conducted by Padgett, Desroches, and 

Nilsson (33), 375 bridges were assessed using bridge fragility curves representative of the 

unique characteristics of the bridges in the region.  In addition to the use of state-specific 

bridge repair and replacement cost data for damage and loss estimation.  The risk 

assessment was conducted for three different scenario events as defined with 
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recommendations from the South Carolina Department of Transportation (SCDOT), 

earthquakes of magnitude MW 4.0, 5.5, and 7.0 located at 32.9° N, 80.0° W.  This 

location was the same point at which the Charleston earthquake of 1886 originated.  The 

case study revealed expected damage states of moderate, extensive, or complete damage 

for over 85% of the Charleston bridges due to a MW 7.0 event (33).   

 

2.4.5  Economic Importance 

Moreover, the Port of Charleston is an economic gateway employing one of the 

largest groups of people in the region as well as the state.  The impacts and jobs 

associated with freight extends beyond the port facilities, including those employed by 

trucking firms, warehouses, railroads, and other intermodal facilities, as well as services 

associated with these businesses.  As of 2008 nearly 9,000 people were employed in the 

transportation and warehousing sector with the majority in port related activities.  Freight 

transportation along with regional tourism is a major driving force for Charleston 

economy, and affects an estimated 261,000 jobs in South Carolina alone (27).  With a 

continually expanding region depending directly on these transportation facilities stated 

(highways and bridges) a critical need arises to keep these facilities up to date and in 

good condition.  If this is not completed a significant impact to both South Carolina’s and 

the United States’ economy will be seen.  
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CHAPTER THREE 

MODEL FORMULATION 

This research developed an optimization program to determine the best bridge 

retrofit strategies, with the lowest total expenditures on retrofitting the desired bridges 

and the subsequent expected damage cost.  A simplified four-bridge network was used, 

using bridges representative of the Charleston area to illustrate the optimization model. 

The geographic information system (GIS) map based on the data from the South Carolina 

DOT (40) is shown in Figure .  Figure 3.1(a) shows the simple bridge network used for 

the model demonstration.  The bridges #1 and #4 are in series and the bridges #2 and #3 

are in parallel.  Figure 3.1(b) shows the four bridges chosen along the major highways in 

the Charleston area and labeled with the latitudes and longitudes.  It is assumed that the 

four bridges are independent from each other, meaning that damage to one bridge would 

not affect the others.  
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(a) Four-Bridge Sample Network 

 

(b) GIS Map of Charleston Area. 

Figure 3.1 A Simplified Charleston Area Transportation Network 

In this research, the probability of a bridge experiencing a damage state d D  

(where D denotes the set of aforementioned possible damage states) relates to the 

geographic location i I  (where I denotes the set of bridges in the network, i.e., bridges 

#1, 2, 3, and 4 in this sample network) and the retrofit strategy Ss  (where S denotes 

the set of aforementioned possible retrofitting strategies).  The probability of bridge i 
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with retrofit s experiencing damage state d under an earthquake scenario is denoted as 

Pd,i,s.  Scenario-based seismic analysis was used, a method selecting one or a limited set 

of scenario earthquakes for analysis (41).  The selection is focused on the largest 

(magnitude) earthquakes, called maximum credible earthquakes (MCEs), expected from 

each source (41).  

It is challenging to estimate the actual retrofitting cost.  In this research, it was 

assumed that the retrofitting cost is as a percentage (denoted as ŝ ) of the new 

construction cost (denoted as CRi).  It was further assumed that the bridge damage cost 

due to the seismic hazards is linearly proportional to the capacity loss (1- ρd) where ρd is 

the remaining capacity of a bridge after an earthquake.  The assumed bridge remaining 

traffic capacities (ρd) under damage states d0 through d4 are respectively 1, 0.8, 0.6, 0.2, 

and 0 of the original traffic capacity. 

A mixed integer linear programming model was formulated to minimize the total 

cost of retrofitting bridges and the expected damage cost while meeting a prescribed 

system-level traffic capacity.  The model will explicitly determine retrofit strategies on 

the network of bridges. The complete model is given in (3.1)-(3.5). 

 

Minimize  , , , ,
ˆ (1 )i i s s d i d i s i s

i I s S d D i I s S

CR X CR P X 
    

    (3.1) 

Subject to 

 
, , ,i d i s d i s

d D s S

C P X cap
 

 , 4,1i  (3.2) 

 
, , ,

2,3

i d i s d i s

i d D s S

C P X cap
  

  (3.3) 
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Ss

siX 1, , i I   (3.4) 

  1,0, siX , ,i I s S    (3.5) 

Sets: 

I:  index i, set of bridges in the network, 

S:  index s, set of available retrofit strategies, 

D:  index d, set of possible damage states,  

 

Parameters: 

CRi:  the new construction cost ($) of bridge i I , 

Ci:  traffic capacity of bridge (veh/day) i I , 

ρd :  the percent of remaining traffic capacity under damage state d D , 

ŝ : the percent of the replacement cost as a new construction of a bridge when retrofit 

strategy Ss  is applied, 

Pd,i,s:  Probability of damage state d D  occurs at bridge i under retrofit strategy Ss , 

cap: the designed through-traffic capacity of the network (veh/day).  

 

Decision Variables: 

Xi,s = 1 if retrofitting strategy s is selected for bridge i; 0 otherwise. 

 

The objective (3.1) is to minimize the total system cost including the expenditures 

on retrofits in the first term and the expected damage costs in the second term.  The 

retrofit decisions are made prior to an earthquake and the subsequent damage cost are 

evaluated in the aftermath of an earthquake.  Constraints (3.2) and (3.3) require the post-
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disaster capacity of the transportation network to meet a prescribed capacity level, 

measured by the average daily traffic (ADT).  These two constraints are dependent on the 

network topology.  For this particular four-bridge network, constraint (3.2) is imposed 

individually on the bridges #1 and #4 which are in series and the capacity of either of the 

bridges should not be lower than the capacity level.  Constraint (3.3) is for the bridges #2 

and #3 in parallel and it requires the total capacity of them to be no less than the capacity 

level.  Constraint (3.4) states that only one retrofit strategy can be applied to a bridge. 

The retrofit decision variable is defined in constraint (3.5).  

 

3.1  Data Description 

 

HAZUS uses GIS technology to estimate physical, economic, and social impacts 

of disasters.  It graphically illustrates the limits of identified high-risk locations due to 

earthquakes, hurricanes, and floods (23).  The seismic fragility curves and bridge 

classification data, located within HAZUS, are based on the National Bridge Inventory 

(NBI) data.  This classification scheme incorporates various parameters that affect 

damage into fragility analysis and provides a means to obtain fragility curves that are 

location specific, allowing the probability of each damage state to be found and used 

within the model.  A total of 28 classes are defined this way helping differentiate between 

the different bridge characteristics found in the NBI.  The HAZUS software was used to 

model the aforementioned earthquake event and determine its impacts on the bridge 

network in terms of the probability of each damage state and the replacement cost for 

each bridge.  The most notable 1886 Charleston earthquake (originated at 32.9°N, 

80.0°W with a magnitude of 7.0 ML) was used as the earthquake scenario.  Since it 

http://www.fema.gov/national-earthquake-hazards-reduction-program-nehrp
http://www.ready.gov/hurricanes
http://www.ready.gov/floods
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relates to the worst-case scenario, it ensures that the bridge network will receive damage 

that needs to be mitigated by the model (42).  The latitudes and longitudes of the bridges 

(see Figure 3.1(b)) help retrieve the probabilities of damage states and new construction 

cost for each bridge from the HAZUS program. 

The probabilities adopted from HAZUS program represent the “do nothing” (S0) 

retrofit alternative.  These probabilities were then modified to represent the probabilities 

of each damage state when a retrofit strategy other than “do-nothing” is applied, i.e., S1, 

S2, S3, and S4.  In this research, it is assumed 10%, 15%, 20%, and 25% reductions in 

the risk if a bridge respectively takes retrofit strategies S1, S2, S3, and S4 and thus the 

corresponding probabilities are 90%, 85%, 80%, and 75% of their respective probabilities 

of strategy S0, i.e., , ,1 , ,0 90%d i d iP P , , ,2 , ,0 85%d i d iP P , , ,3 , ,0 80%d i d iP P , and 

, ,4 , ,0 75%d i d iP P , d D , i I .  The probabilities of damage states of the four bridges 

resulted from using retrofit strategies S0-S4 are displayed in Table 3.1.  For example, for 

bridge #1, the probability of being minor damage (d1) is 0.073 or 7.3% if retrofit strategy 

doing nothing (S0) is selected and the probability reduces to 0.0657 (i.e., 90% of 0.073) if 

the enhanced retrofit strategy (S1) is applied.  Note for each strategy, the summation of 

probabilities over the five damage states (i.e., d0-d4) equals one.  The probability of no 

damage (i.e., d0) increases with higher retrofit strategies (rows of “d0” in the table) while 

the probabilities of the other damage states decrease (other rows). 
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Table 3.1  Probabilities of Damage States for Four Bridges by Using Retrofit 

Strategies 

 

Bridges 
Damage 

states 

Do 

Nothing 

(S0) 

Superstructure 

(S1) 

Superstructure 

& Substructure 

(S2) 

Superstructure, 

Substructure, & 

Foundation 

(S3) 

Complete 

Replacement 

(S4) 

#1 

None (d0) 0.085 0.1765 0.22225 0.268 0.31375 

Minor 

(d1) 
0.073 0.0657 0.06205 0.0584 0.05475 

Moderate 

(d2) 
0.171 0.1539 0.14535 0.1368 0.12825 

Extensive 

(d3) 
0.162 0.1458 0.1377 0.1296 0.1215 

Complete 

(d4) 
0.509 0.4581 0.43265 0.4072 0.38175 

#2 

None (d0) 0.009 0.1081 0.15765 0.2072 0.25675 

Minor 

(d1) 
0.026 0.0234 0.0221 0.0208 0.0195 

Moderate 

(d2) 
0.047 0.0423 0.03995 0.0376 0.03525 

Extensive 

(d3) 
0.173 0.1557 0.14705 0.1384 0.12975 

Complete 

(d4) 
0.745 0.6705 0.63325 0.596 0.55875 

#3 

None (d0) 0.396 0.4879 0.51635 0.5448 0.57325 

Minor 

(d1) 
0.147 0.1323 0.12495 0.1176 0.11025 

Moderate 

(d2) 
0.117 0.1053 0.09945 0.0936 0.08775 

Extensive 

(d3) 
0.18 0.162 0.153 0.144 0.135 

Complete 

(d4) 
0.125 0.1125 0.10625 0.1 0.09375 

#4 

None (d0) 0.004 0.1036 0.1534 0.2032 0.253 

Minor 

(d1) 
0.014 0.0126 0.0119 0.0112 0.0105 

Moderate 

(d2) 
0.028 0.0252 0.0238 0.0224 0.021 

Extensive 

(d3) 
0.125 0.1125 0.10625 0.1 0.09375 

Complete 

(d4) 
0.829 0.7461 0.70465 0.6632 0.62175 
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Table 3.2  Cost of Retrofit Strategies as Percentage of New Construction Costs ( ŝ )* 

Range 

Retrofit Strategies 

Superstructure 

Only (S1) 

Superstructure 

and Substructure 

(S2) 

Superstructure, 

Substructure and 

Foundations (S3) 

Low 1.3 0.7 2.3 

Average 3.1 15.4 28.8 

High 13.2 64.8 232.9 
* adapted from (1) 

 

 

Table 3.3  Critical Parameters of Bridges 

Bridges Replacement Cost 

($m)* 

Traffic Capacity 

(Veh/Day) 

#1 56.7 50,000 

#2 76.4 30,000 

#3 9.5 20,000 

#4 8.4 50,000 

* adapted from HAZUS program 

 

The estimate of actual cost of retrofitting bridges is challenging as very few states 

have completed extensive retrofit programs, from which to take data.  The Federal 

Highway Administration (FHWA) has complied data based on California Department of 

Transportation experience in retrofitting 165 bridges during 1993 and 1994 in Table 3.2.  

The costs are expressed as percentages of new construction for same time frame and the 

low, average, and high ranges of estimates are provided.  In this research, the “average” 

retrofit cost range is used due to South Carolina’s lower seismic risk when compared to 

California.  When the superstructure is retrofitted (corresponding to the retrofit strategy 

S1 in this study) the average cost is 3.1% of new construction cost.  When the 

substructure is also considered along with the superstructure (i.e., strategy S2) the 
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average cost increases to 15.4 percent.  Finally, when the foundation, super, and 

substructures (i.e., strategy S3) are all included the average price increases further to 28.8 

percent.  The cost of strategy S0 is zero and the strategy S4 costs as much as the new 

construction of a bridge.  An enhanced strategy normally costs more.  The new 

construction cost for each of the bridges adopted from HAZUS is summarized in Table 

3.3, which is relevant to their geographic locations.  With this information, the retrofit 

cost can be estimated. For example, when the strategy S1 is applied to bridge #1, it costs 

$1.76m (=$56.7m 3.1%).  The assumed traffic capacity of each bridge and the 

geographic location information of the bridges are also reported in Table 3.3. 

 

3.2  Numerical Solution and Analysis 

 

The optimization model is developed to produce the optimal retrofit strategies for 

the bridges in the network.  The retrofit solutions will be different in response to different 

traffic capacity levels, which in reality are normally identified by the DOTs as targets.  
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Figure 3.2 Results of All Possible Solutions of Retrofit Strategies 

Before solving the optimization model, the performances of all possible 

combinations of the five retrofit strategies applied to the four bridges were evaluated and 

the resulted 1024 (= 4
5
) different solutions are plotted in Figure 3.2, in which the 

horizontal and vertical axes respectively represent the total cost in millions of dollars 

($m) and traffic capacity in vehicles per day (veh/day).  In this research, a feasible 

solution is any solution that satisfies all constraints within the model while the optimal 

solution satisfies both the objective and all constraints.  The results indicate that the 

network can support a traffic throughput of up to 14,638 veh/day.  Given a particular 

capacity target, say 12,000 veh/day, feasible solutions are easy to identify, which are the 

ones above the horizontal line of 12,000 (in red) and the ones below the line will be 

disregarded, since they cannot satisfy the traffic capacity requirements.  Within the 

feasible solutions, the most economical retrofit solution is represented by the dot above 

the line on the most left as highlighted.  In addition, the results in the figure also show the 
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minimum traffic capacity at 2850 veh/day, a result of the strategy of “do nothing” (S0).  

However, as noted, it is not the most economical solution, since both the retrofit and 

damage costs are included in the objective and the resulted high damage cost (i.e., 

$121.4m) has made the total cost compromised.  

The stepwise shaped results in the figure suggest that for a particular traffic 

capacity the solution represented by the dot on the most left of the line is the most 

economical and will be considered.  All the other dots on the same line will be 

disregarded due to the higher costs.  Thus, there is a significant computing waste on 

generating unused solutions.  This is caused by the retrofitting of non-critical bridges.  

For example, if bridge #1 is the weakest in the bridge set and determines the traffic 

throughput.  There are still 243 (=3
5
) combinations of solutions that do not include the 

retrofitting of bridge #1.  This leads to the possible traffic throughput of the network to 

remain constant while the cost increases.  In addition, for a real-world network, it is 

unrealistic to enumerate all possible retrofit solutions.  With these, it is easy to justify the 

use of the optimization model for the best retrofit solutions.  However, these solutions 

generated in Figure 3.2 will be used to validate the solutions of the optimization model. 

The optimization model was programed using AMPL (43) and solved by the 

commercial optimization solver CPLEX12.4.  Six different traffic capacities were 

assumed as the model inputs according to the results in Figure 3.2Figure , which are 

2,000, 7,000, 9,000, 12,000, 13,000, and 14,000 veh/day.  The model was ran separately 

for each of the six traffic capacity levels and the corresponding retrofit solutions and the 

resulting costs are displayed in Table 3.4.  The optimal retrofit strategies vary with traffic 
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capacities.  Barely meeting the minimum capacity requirement does not guarantee the 

most economical solution in terms of the total retrofit and damage cost.  For example, 

when the traffic capacity is required at merely 2,000 veh/day, the model suggests the 

strategy S1 to all the four bridges, although the strategy S0 can already provide 2850 

veh/day to the network as shown in Figure 3.2.  The reason is the total cost of $113.95m 

resulted from S1 beats off the high expected damage cost of $121.4m by S0.  This also 

justifies the use of both the retrofit and damage costs.  As the traffic capacity increases, 

enhanced retrofit strategies are used.  When it is as high as 14,000 veh/day, the bridge #4 

needs the strategy S4.  Additionally, the bridge #4 is identified as the bottleneck to the 

network, mainly due to the high failure probability that makes the bridge most susceptible 

to damage.  The solutions in Table 3.4 were verified by comparing them with the 

solutions in Figure 3.2.  It can be seen that the optimization solutions correspond to the 

most left dots in the figure.  This solution set is called a solution (P). 

Table 3.4  Optimal Retrofit Strategies for Bridges and Associated Costs for Various 

Traffic Capacity Levels 

 

Traffic 

Capacity 

(Veh/Day) 

Bridge 

1 

Bridge 

2 

Bridge 

3 

Bridge 

4 

Retrofit 

cost ($m) 

Expected 

damage 

cost ($m) 

Total Cost ($m) 

2,000 S1 S1 S1 S1 4.68 109.28 113.95 

7,000 S1 S1 S1 S1 4.68 109.28 113.95 

9,000 S1 S1 S1 S2 5.71 108.88 114.59 

12,000 S1 S1 S1 S3 6.84 108.48 115.32 

13,000 S1 S1 S1 S4 12.83 108.09 120.92 

14,000 S1 S1 S1 S4 12.83 108.09 120.92 
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CHAPTER FOUR 

APPLICATION TO CHARLESTON NETWORK 

4.1  Formulation for Charleston Transportation Network  

 

The developed model from Chapter 3 was extended for the use in a real-world 

application in the Charleston area.  In particular, this research effort aims to provide 

timely and sufficient aid to downtown Charleston in an event of earthquake.  Although 

this research focuses on sending rescue resources into downtown Charleston, the model 

developed can additionally be used to model an evacuation scenario by simply reversing 

the traffic flows in the network. 

Through researching the Charleston area, the routes most crucial for access to the 

region were found to be two interstate highways (I-26 and I-526) and three major US 

Routes (US 17, US 52, and US 78).  These routes became the basis for the setup of the 

transportation network (Figure 2.4). 

 Using the National Bridge Inventory (NBI) data for the state of South Carolina 

provided from the HAZUS program, bridges were first filtered by county to limit the case 

study to the area of interest in Charleston, South Carolina.  They were then filtered again 

by their location only selecting those that fell along the major highways.  Bridges were 

selected not only by their location on the major routes but by their traffic volume on the 

route.  For this research it was assumed that bridges with traffic volumes under 5000 

veh/day (AADT) were not considered to be significant and are not included in the model.  

This yielded an inventory of 79 bridges along the major routes, described above, to be 

evaluated in the model (Figure 4.1). 
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Figure 4.1 Charleston Area Bridges Considered 

To adapt the model to Charleston area, the modeling network framework had to 

be defined.  For the network, the locations at which two highways intersect were 

considered to be the nodes, while the roadways containing the bridges were considered to 

be the links of the network.  External flows were considered along all major interstates 

into downtown Charleston.  Thus, four origins were set for the external flows along the 

major highways as they enter the Charleston and a single destination set as downtown 

Charleston.  External flows were considered to originate along I-26 South, US 17 West 

and East, and US 52 South.  The model allows for external flow from all four origins to 

be considered concurrently.  The bridges on a given link were grouped and considered to 

be in series.  The nodes are labeled from 1 to 11 with 11 being the destination and nodes 

● Bridge Locations 

Downtown Charleston 

Epicenter 
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1-4 being the origins of the network.  The bridge groups consist of 12 groups, denoted as 

E,Q,C,K,G,J,H,N,P,L,O,M (See Figure 4.2).  It was also assumed that the bridges are 

independent from each other, meaning that damage to one bridge would not affect the 

others.  

 

 

Figure 4.2 Charleston Modeling Network 

A mixed integer linear programming model, a variant of the model in Chapter 3 

designed for this comprehensive bridge network, was formulated to minimize the total 

cost of retrofitting bridges and the expected damage cost while meeting a prescribed 

external flows (i.e., desired flow in the formulation) entering the network through the 

four origins.  The model will explicitly determine retrofit strategies on the network of 

bridges.  The complete model is given in (4.1)-(4.24). 

Downtown Charleston 
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Minimize , , , ,
ˆ (1 )i i s s d i d i s i s

i I s S d D i I s S

CR X CR P X 
    

      (4.1) 

Subject to: 

"_"4,03,02,01,0 flowdesiredFFFF      (4.2) 

5,15,11,0 2CFF         (4.3) 

6,26,22,0 2CFF         (4.4) 

7,37,33,0 2CFF         (4.5) 

8,48,44,0 2CFF         (4.6) 

11,511,55,65,1 2CFFF        (4.7) 

7,69,65,66,76,2 FFFFF        (4.8) 

10,78,77,67,3 FFFF        (4.9) 

11,811,88,78,4 2CFFF        (4.10) 

10,911,99,69,10 FFFF        (4.11) 

11,109,1010,910,7 FFFF        (4.12) 

"_"11,811,1011,911,5 flowdesiredFFFF      (4.13) 

5,65,6 2CF          (4.14) 

9,69,6 2CF          (4.15) 

10,710,7 2CF          (4.16) 

8,78,7 2CF          (4.17) 

7,66,77,6 , CFF         (4.18) 
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10,99,1010,9 , CFF          (4.19) 

11,911,9 2CF           (4.20) 

11,1011,10 2CF          (4.21) 


 


Dd Ss

sidsidiba XPCC ,,,,   MOLPNHJGKCQEi ,,,,,,,,,,, (4.22) 





Ss

siX 1,             Ii       (4.23) 

 1,0, siX              SsIi  ,      (4.24) 

 

Sets: 

I,E,Q,C,K,G,J,H,N,P,L,O,M:   index i, set of bridges in the network, 

S:  index s, set of candidate retrofit strategies, 

D:  index d, set of possible damage states, 

A:  index a, set of origin nodes in the network, 

B:  index b, set of destination nodes in the network, 

Parameters: 

Fa,b: flow from node Aa  to node Bb , 

CRi :  replacement cost of bridge at i I , 

Ci :  capacity for bridge i I , 

Ca,b:  maximum capacity of link from node Aa  to node Bb , 

ρd  :  the percent of capacity lost under damage state d D , 

ŝ :  the percent of the replacement cost when retrofitting strategy Ss  is applied, 
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Pd,i,s :  probability of damage state d D  occurs at bridge i under retrofitting strategy 

Ss  

desired_flow:  the total desired throughput-traffic of the network. 

 

Decision Variables: 

Xi,s = 1 if retrofitting strategy s is selected for bridge i; 0 otherwise 

 

The objective (4.1) is to minimize the total system cost including the expenditures 

on retrofits in the first term and the expected damage costs in the second term.  The 

retrofit decisions are made prior to an earthquake and the subsequent damage cost are 

evaluated in the aftermath of an earthquake.  Constraints (4.2)-(4.21) represent the flow 

conservation and capacity of links in the network.  Constraint (4.22) evaluates the traffic 

capacity of the bridges on each link of the network, measured by traffic flow rate 

(veh/hr).  Constraint (4.23) states that only one retrofit strategy can be applied to a bridge. 

The retrofit decision variable is defined in constraint (4.24).   

 

4.2  Data Description 

The same datasets were prepared for this Charleston bridge network.  This 

includes using HAZUS to determine the probability of each damage state and 

replacement cost for each bridge, the reductions to damage state probabilities from each 

retrofit, and the retrofit cost being a percentage of the replacement cost (See Appendix 

A).  In particular, as determined in (33) according to the recommendations by the 

SCDOT, earthquakes of magnitude (MW) 5.5 and 7.0 located at 32.9° N, 80.0° W were 

selected to evaluate the bridge network.  The traffic capacity for the 79 bridges was not 

available, and thus was estimated using the Highway Capacity Manual (HCM) 
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Procedures for Estimating Highway Capacity (44) with the bridge dimensions provided 

from the HAZUS program.  The procedures are described as follows and  detailed 

calculations for each bridge are available in Appendix B. 

1. Calculate Free Flow Speed (FFS) 

The first step in the procedure is to estimate free flow speed (FFS) using 

the Highway Capacity Manual’s equation 23-1: 

IDNLCLW ffffBFFSFFS  .  The base free flow speed was assumed to 

be the speed limit of the roadway and such speed will be adjusted according to the 

reduction factors of the roadways, which are lane width, number of lanes, 

shoulder width, and interchange density, respectively.  The data used to assign the 

adjustment factors, through tables provided in the highway capacity manual, were 

found using the information provided in the HAZUS dataset or through the use of 

the GIS software ArcGIS. 

2. Calculate Base Capacity (Base Cap) 

The base capacity (passenger cars per hour per lane) of a freeway facility 

is based on the following equations developed from information found in the 

HCM Exhibit 23-3. 

  ;10700,1 FFSBaseCap   for FFS <= 70 

;400,2BaseCap   for FFS > 70 

 

 

3. Determine Peak Capacity (Peak Cap) 
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The final step in the procedure is to make adjustments to the base capacity.  

These adjustments convert the units from passenger cars equivalents to vehicles 

and lower capacity to account for the effect of heavy vehicles.  The procedure is 

based on HCM equation 23-2: pHV ffNPHFBaseCapPeakCap **** .  The 

base capacity found in the previous step is adjusted according to the peak hour 

factor, the number of lanes in one direction, and adjustment factors for both heavy 

vehicles and the driver population.  The peak hour factor was 0.92 and the 

adjustment for the driver population was 1 as recommend in the Highway 

Capacity Manual for urban areas. The adjustment for heavy vehicles was assumed 

to be 1 as the model was finding the ability for aid vehicles to traverse the 

network and not normal traffic. 

 

4.3  Numerical Solution and Analysis 

 

The optimization model was programed using AMPL (43) and solved by the 

commercial optimization solver CPLEX12.4.  A complete AMPL programming code is 

attached in Appendix C.  Before the model was implemented, a baseline was established 

for the potential damage associated with both the MW 5.5 and MW 7.0 events.  Having 

this baseline will allow for the results from the model to be compared in terms of total 

system cost and validate the retrofitting strategies chosen by the model.  Additionally, it 

demonstrates the need for retrofitting if the chosen earthquake events were to happen and 

the benefits that can be achieved.  Using the results from the HAZUS program (Table 

4.1) it was found that for the MW 5.5 event the expected damage cost is approximately 
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$142 million with an associated system traffic capacity of 14,377 veh/hr.  It is expected 

that 40% of the bridges in the study area will receive slight, moderate, extensive, or 

complete damage.  For the MW 7.0 event, the expected damage cost is approximately 

$369 million with an associated system traffic capacity of 2,411 veh/hr.  With this 

extreme event, 42% of the bridges would be receiving slight, moderate, or extensive 

damages, while 40% of bridges are expected to fail completely.  Meaning that in the case 

the Charleston earthquake of 1886 was to be repeated, 82% of the bridges in the area 

would be damaged if no retrofitting was put in place. 

Table 4.1  Baseline of Potential Damage to the Charleston Area 

 
 Earthquake Event 

MW 5.5 MW 7.0 

Damage State 
Percent of 

Bridges (%) 

Percent of 

Bridges (%) 

None 60 18 

Slight 12 11 

Moderate 8 11 

Extensive 11 20 

Complete 9 40 

 

After implementing the model on the Charleston network, the maximum 

throughput that can be achieved through retrofitting and the associated total system cost 

were found for both the MW 5.5 and MW 7.0 earthquake events.  By applying the 

maximum amount retrofitting at the lowest cost, the maximum traffic throughput the 

network is capable of handling for the MW 5.5 event was found to be 20,841 veh/hr with 

an associated cost (using the average cost range) of $153 million.  For the MW 7.0 event, 



 44 

the maximum throughput was found to be much lower at 11,828 veh/hr with an 

associated system cost of $381 million. 

In addition to the maximum throughput traffic capacities, five other different 

levels of throughput traffic capacities were assumed to create a full spectrum of desired 

flows of sending emergency aid into the downtown Charleston in the case of extreme 

events, which are 14,377, 15,000, 16,500, 18,000, 19,500 veh/hr for the MW 5.5 event, 

and 2,411, 4,000, 6,000, 8,000, and 10,000 veh/hr for the MW 7.0 event.  The chosen 

traffic throughput levels were different for each event due to the differing levels of 

expected damage the network was to receive.  The MW 5.5 event will, of course, have 

less damage to the bridges within the network, and the traffic throughput levels chosen 

for the MW 7.0 event may not be significant when applied.  The chosen throughput levels 

ensure the model demonstrates its ability to mitigate damage while meeting the 

throughput at a variety of levels.  The model was ran separately for each of the six traffic 

capacity levels and the resulting retrofitting costs, expected damage costs, and total cost 

are displayed in Tables 4.2 and 4.3 for MW 5.5 and MW 7.0 earthquake events, 

respectively.  The complete optimal retrofit solutions for both the MW 5.5 and MW 7.0 

earthquake events for each of the 79 bridges of study are provided in Appendix D.  The 

solution set for the “average cost” range is referred to herein as solution (P). 
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Table 4.2  Optimal Retrofit Strategies for Bridges and Associated Costs for Various 

Traffic Capacity Levels for MW 5.5 Event 

 

Desired 

Throughput 

(Veh/Hr) 

Retrofit cost 

($m) 

Expected 

damage cost 

($m) 

Total Cost 

($m) 

14377 3.59 134.82 138.41 

15000 3.59 134.82 138.41 

16500 3.59 134.82 138.41 

18000 4.19 134.69 138.88 

19500 7.14 134.04 141.18 

20841 20.52 132.50 153.03 

 

Table 4.3  Optimal Retrofit Strategies for Bridges and Associated Costs for Various 

Traffic Capacity Levels for MW 7.0 Event 

 

Desired 

Throughput 

(Veh/Hr) 

Retrofit Cost  

($m) 

Expected  

damage cost 

 ($m) 

Total Cost  

($m) 

2411 16.73 332.23 348.96 

4000 16.73 332.23 348.96 

6000 16.73 332.23 348.96 

8000 17.86 331.84 349.70 

10000 23.18 330.37 353.55 

11828 55.99 324.75 380.73 

 

The effects of a critical parameter, retrofit cost expressed in terms of percentage 

of new construction costs ŝ , were further evaluated on the strategy for both the MW 5.5 

and MW 7.0 events by using the “low” and “high” ranges from Table 3.2.  The 

optimization model was rerun for these two ranges and the results are reported in Table 

4.4 and Table 4.5.  For comparisons, the evaluated total costs of the solution (P) were 

also reported.  As illustrated in the table, for the “low” retrofit cost range, as it lowers the 

weight on the retrofit cost in the objective, selecting enhanced (higher numbered) 
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strategies can help reduce the expected damage cost and the total cost.  The “high” 

retrofit cost range on the other hand makes it more economical to choose strategies that 

merely meet the capacity. 

Table 4.4  Retrofit Strategies and Costs for “Low” and “High” Retrofit Cost Range 

for MW 5.5 Event 

 

Desired 

Throughput 

(Veh/Hr) 

Retrofit 

cost 

($m) 

Expected 

damage 

cost ($m) 

Total 

Cost 

($m) 

Evaluated 

total cost of 

solution (P) 

($m)  

“Low” Retrofit Cost Range 

14377 5.63 117.02 122.65 136.33 

15000 5.63 117.02 122.65 136.33 

16500 5.63 117.02 122.65 136.33 

18000 5.63 117.02 122.65 136.22 

19500 5.63 117.02 122.65 138.49 

20841 19.35 116.53 135.88 148.33 

“High” Retrofit Cost Range 

14377 0.00 141.74 141.74 150.09 

15000 0.15 141.68 141.82 150.09 

16500 1.33 141.12 142.45 150.09 

18000 3.69 140.56 144.25 159.31 

19500 10.36 139.27 149.63 168.09 

20841 28.60 136.81 165.41 187.14 
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Table 4.5  Retrofit Strategies and Costs for “Low” and “High” Retrofit Cost Range 

for MW 7.0 Event 

 

Desired 

Throughput 

(Veh/Hr) 

Retrofit 

cost 

($m) 

Expected 

damage 

cost ($m) 

Total  

Cost 

($m) 

Evaluated 

total cost of 

solution (P) 

($m)  

“Low” Retrofit Cost Range 

2411 12.41 295.32 307.73 339.25 

4000 12.41 295.32 307.73 339.25 

6000 12.41 295.32 307.73 339.25 

8000 12.41 295.32 307.73 338.85 

10000 13.50 295.27 308.76 339.68 

11828 43.50 293.81 337.31 363.50 

“High” Retrofit Cost Range 

2411 0.00 369.15 369.15 403.47 

4000 0.15 369.22 369.37 403.47 

6000 4.77 366.07 370.84 403.47 

8000 9.29 365.26 374.55 410.44 

10000 34.02 354.88 388.90 429.83 

11828 75.63 348.18 423.81 495.54 

 

From the results, it is easy to see the benefits of evaluating the current conditions 

of infrastructure and preparing for future events.  As mentioned earlier, the expected 

damage cost when no retrofitting is applied for the MW 5.5 event is $142 million with a 

corresponding traffic capacity of 14,377 veh/hr, and for the MW 7.0 event the expected 

damage cost is approximately $369 million with a corresponding traffic capacity of 2,411 

veh/hr.  From the model results from all cost ranges for the MW 5.5 event, an overall cost 

difference (in terms of total system cost) when compared to if no retrofitting was done 

found (system cost with retrofitting – system cost without retrofitting) to range from $24 

million in extra costs to $19 million in savings and was able to raise the traffic throughput 
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by up to 6464 veh/hr (See Figure 4.3).  Similarly for the MW 7.0 event, an overall cost 

difference ranging from $55 million in extra costs to $62 million in savings and the 

ability to raise the traffic throughput up to 9417 veh/hr was also determined (See Figure 

4.4).  In some cases the total system cost exceeded the system cost when compared to if 

no retrofitting was done, it must be seen that the additional cost allows for the traffic 

throughput of the system to be maintained after an event.  Although the total system cost 

may be lower prior to any retrofitting, the system does not meet the desired traffic 

capacity set by the model.  So even though the baseline damage is used to illustrate the 

benefits of the model it should not be considered a feasible solution to the model. 

 

Figure 4.3  Mw 5.5 Solution Comparison 
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Figure 4.4  Mw 7.0 Solution Comparison 
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CHAPTER FIVE 

SUMMARY AND CONCLUSION 

 This thesis has introduced a new retrofit strategy decision scheme for highway 

bridges under seismic hazards and seamlessly integrates the scenario-based seismic 

analysis of bridges and the traffic network into the proposed optimization modeling 

framework.  The developed model uses this decision scheme to select critical bridges for 

retrofitting to accommodate a desire throughput while minimizing the total system cost. 

5.1  Summary 

 

In this research, an optimal modeling framework to determine best retrofit 

strategies for a network of highway bridges was developed and applied to the Charleston 

area. It aims to achieve the least total cost of retrofitting and the subsequent damage 

while satisfying the traffic capacity of the network.  The model explicitly integrates the 

effects of the traffic network and the bridge seismic assessment of damage states into the 

retrofit strategy decision scheme.  

A simplified four-bridge network and the 1886 Charleston earthquake as the 

earthquake scenario were used to validate the model, and it was then modified and 

applied to the Charleston area to demonstrate its applicability.  The results indicate that 

the decisions on the selected retrofit strategy are highly dependent on traffic capacity 

requirement and related to the network topology.  They also justify the importance of 

integrating the traffic network into the decision making process, and including both the 

retrofit and sequent damage costs in the objective.  



 51 

Though the model is developed to cope with seismic hazards, the modeling 

framework can be generalizable for retrofit strategy design under other kinds of natural 

disasters, e.g., floods, with appropriate strategies and damage estimates.  There are 

several modeling extensions that can make the decision scheme for more practical 

considerations, such as integrations of the effects of traffic equilibrium and integrated 

analysis of bridge structural enhancement strategies. 

5.2  Conclusion 

 

In this research it was seen that the choosing of retrofit strategies varies greatly 

depending on the required network traffic throughput and the costs associated with 

retrofitting.  For a given retrofit price range (low, average, or high), as the desired traffic 

throughput increases a higher or more enhanced retrofitting strategy is chosen.  

Furthermore, only the bridges most critical to the traffic capacity of the network received 

the more enhanced strategies.  This was caused by the model choosing to meet the traffic 

throughput requirement but also choose the lowest system cost outcome.  It is interesting 

to note that for the “high” retrofit cost range many solutions to the model had a higher 

system cost than if no retrofitting was to be completed.  Although the cost may be higher, 

the model solution allows for the traffic throughput to be met while doing nothing does 

not. 

For the “low” retrofit cost range, a lower weight is placed on the retrofit cost in 

the objective.  This causes the model to select enhanced (or higher numbered) strategies 

reducing the expected damage cost and the system cost while, in most cases, surpassing 

the desired traffic throughput of the network.  This occurs due to the retrofit benefits to 
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the expected damage outweighing the cost of retrofitting.  Adversely, for the “high” 

retrofit cost range puts a greater weight on the retrofit cost in the objective.  This causes 

the model to choose strategies that merely meet the traffic throughput requirement of the 

network.  This is due to the cost of retrofitting outweighing the reduction to the expected 

damage of the network.  For the “average” retrofit cost range, a balance was seen 

between the retrofit strategies chosen and meeting capacity.  The model would choose to 

retrofit a majority of bridges with at least strategy S1 (Superstructure), and then only 

enhance the strategy on the most critical bridges to traffic.  This allowed for the network 

to meet the desired traffic throughput and mitigate expected damages on a majority of 

bridges. 

5.3  Future Work 

 

While this thesis has demonstrated the potential for using modeling to determine 

retrofitting strategies at minimum costs, many opportunities for extending the scope of 

this thesis remain.  Future research can be accomplished to further this study through the 

incorporation of a greater number of direct damages, or costs, into the objective, the 

incorporation of all possible hazards (earthquake, wind, and flood) to a region, and 

research into true retrofit costs. 

The additional direct cost that could be evaluated is the “user” cost.  The user 

cost, in this situation, would be the cost related to the travel delay experienced by the 

failure or reduced capacity of a bridge within the network.  As well the manpower 

required to redirect traffic from crossing the damaged bridges.  The inclusion of the user 

cost would allow the model to more realistically report the total costs of the system. 
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The HAZUS program not only models the effects of earthquakes, but also the 

potential effects of flooding and winds on the desired area.  In this thesis, only the 

potential effects of earthquakes were considered and retrofitted against.  To provide a 

truly effective retrofitting program for the study area, the effects of all hazards should be 

considered.  With all other hazards considered, it would allow for the bridges in the 

region to have a greater chance of reduced damage if any hazard were to occur and not 

protected solely from one. 

Additionally, there are retrofits that could not only mitigate damage from seismic 

hazards but from others as well.  An example of this is the use of seismic restrainers.  

Restrainers can not only reduce the chances of the bridge superstructure from falling off 

its supports, it can prevent the superstructure from lifting off during flooding.  This 

allows for both hazards to be considered within one retrofitting strategy. 

As reported in Chapter 4, the retrofitting solutions vary greatly with the cost range 

associated with each retrofit type.  For this research values were adopted from a study 

done by CALTRANS in California.  However, these values varied greatly and the use of 

the low value versus the high value produced very different results in terms of system 

costs.  Further research into this area will allow for a smaller range to be developed, and 

greatly reduce the variability in the solutions generated by the model. 
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Appendix A:  

MW 5.5 Model Probability Data 
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MW 7.0 Model Probability Data 
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Appendix B: Procedures for Estimating Highway Capacity (44) 
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Appendix C AMPL Model Code 

reset; 

option solver cplex; 

option cplex_options 'mipdisplay=2 mipinterval=200 ';  

option show_stats 1; 

 

# define sets 

set D; 

set I; 

set S;  

set A; 

set B; 

set C; 

set E; 

set Q; 

set G; 

set H; 

set J; 

set K; 

set L; 

set M; 

set N; 

set O; 

set P; 

 

param probability {d in D, i in I, s in S}; 

param replacement_cost {i in I}; 

param retrofit_percentage {s in S}; 

param capacity {i in I}; 

param row_hat {s in S}; 

param row {d in D}; 

param repair_cost {i in I, s in S}; 

param cap = 3500; 

 

data; 

set D:= d0 d1 d2 d3 d4; 

set I:= i01 i02 i03 i04 i05 i06 i07 i08 i09 i10 i11 i12 i13 i14 i15 i16 

i17 i18 i19 i20 i21 i22 i23 i24 i25 i26 i27 i28 i29 i30 i31 i32 i33 i34 

i35 i36 i37 i38 i39 i40 i41 i42 i43 i44 i45 i46 i47 i48 i49 i50 i51 i52 

i53 i54 i55 i56 i57 i58 i59 i60 i61 i62 i63 i64 i65 i66 i67 i68 i69 i70 

i71 i72 i73 i74 i75 i76 i77 i78 i79; 

set S:= s0 s1 s2 s3 s4; 

set A:= 0 1 2 3 4 5 6 7 8 9 10 11; 

set B:= 0 1 2 3 4 5 6 7 8 9 10 11; 

set C:= i28 i29; 

set Q:= i01 i02 i03 i04 i05 i06; 

set E:= i67 i68 i69; 

set G:= i13 i14 i15 i16 i17 i18 i19 i20 i21 i22 i23 i24 i25 i26 i27; 

set H:= i07 i08 i09 i010 i11; 

set J:= i70 i71 i72 i73 i74; 

set K:= i36 i37 i38 i39 i40 i41 i42 i43 i44 i45 i46 i47 i48 i49 i50 i51 

i52 i53 i54 i55 i56 i57 i58 i59; 
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set L:= i30 i31 i32 i33 i34 i35; 

set M:= i12; 

set N:= i77 i78 i79; 

set O:= i75 i76; 

set P:= i60 i61 i62 i63 i64 i65 i66; 

 

read {d in D, i in I} probability [d, i, "s0"] <s0.txt;  

read {d in D, i in I} probability [d, i, "s1"] <s1.txt;  

read {d in D, i in I} probability [d, i, "s2"] <s2.txt;  

read {d in D, i in I} probability [d, i, "s3"] <s3.txt;  

read {d in D, i in I} probability [d, i, "s4"] <s4.txt;  

read {i in I} capacity [i] <capacity.txt;  

read {s in S} row_hat [s] <row_hat.txt; 

read {i in I} replacement_cost [i] <replacement_cost.txt;  

read {d in D} row [d] <row.txt; 

 

var x {i in I, s in S} binary; 

var F {a in A, b in B} >= 0; 

 

minimize cost: sum {i in I, s in S} (x [i,s] * row_hat [s] * 

replacement_cost [i]) + sum {d in D, i in I, s in S} ((1 - row [d]) * 

replacement_cost [i] * probability [d,i,s] * x [i,s]); 

  

subject to P0: F [0,1] + F [0,2] + F [0,3] + F [0,4] >= cap; 

 

subject to P1: F [0,1] = F [1,5]; 

 

subject to P2: F [2,6] = F [0,2]; 

 

subject to P3: F [3,7] = F [0,3]; 

 

subject to P4: F [4,8] = F [0,4]; 

 

subject to P5: F [1,5] + F [6,5] = F [5,11]; 

 

subject to P6: F [6,5] + F [6,9] + F [6,7] = F [7,6] + F [2,6]; 

 

subject to P7: F [3,7] + F [6,7] = F [7,10] + F [7,8] + F [7,6]; 

 

subject to P8: F [4,8] + F [7,8] = F [8,11]; 

 

subject to P9: F [6,9] + F [10,9] = F [9,10] + F [9,11]; 

 

subject to P10: F [7,10] + F [9,10] = F [10,11] + F [10,9]; 

 

subject to P11: F [9,11] + F [5,11] + F [8,11] + F [10,11] >= cap; 

 

subject to F2_6 {i in E}: F [2,6] <= 2 * (capacity [i] * ((sum {d in D, 

s in S} probability [d,s,i] * row [d] * x [s,i]))); 

 

subject to F3_7 {i in Q}: F [3,7] <= 2 * (capacity [i] * ((sum {d in D, 

s in S} probability [d,s,i] * row [d] * x [s,i]))); 

  



 86 

subject to F4_8 {i in C}: F [4,8] <=  2 * (capacity [i] * ((sum {d in 

D, s in S} probability [d,s,i] * row [d] * x [s,i]))); 

  

subject to F5_11 {i in P}: F [5,11] <= 2 * (capacity [i] * ((sum {d in 

D, s in S} probability [d,s,i] * row [d] * x [s,i]))); 

 

subject to F6_5 {i in K}: F [6,5] <= 2 * (capacity [i] * ((sum {d in D, 

s in S} probability [d,s,i] * row [d] * x [s,i]))); 

  

subject to F7_8 {i in G}: F [7,8] <= 2 * (capacity [i] * ((sum {d in D, 

s in S} probability [d,s,i] * row [d] * x [s,i]))); 

  

subject to F6_7: F [6,7] <= 3850; 

  

subject to F7_6: F [7,6] <= 3850; 

  

subject to F6_9 {i in J}: F [6,9] <= 2 * (capacity [i] * ((sum {d in D, 

s in S} probability [d,s,i] * row [d] * x [s,i]))); 

 

subject to F7_10 {i in H}: F [7,10] <= 2 * (capacity [i] * ((sum {d in 

D, s in S} probability [d,s,i] * row [d] * x [s,i]))); 

  

subject to F9_10 {i in N}: F [9,10] <=  capacity [i] * ((sum {d in D, s 

in S} probability [d,s,i] * row [d] * x [s,i])); 

  

subject to F10_9 {i in N}: F [10,9] <=  capacity [i] * ((sum {d in D, s 

in S} probability [d,s,i] * row [d] * x [s,i])); 

   

subject to F9_11 {i in O}: F [9,11] <= 2 * (capacity [i] * ((sum {d in 

D, s in S} probability [d,s,i] * row [d] * x [s,i]))); 

  

subject to F10_11 {i in M}: F [10,11] <= 2 * (capacity [i] * ((sum {d 

in D, s in S} probability [d,s,i] * row [d] * x [s,i]))); 

  

subject to F8_11 {i in L}: F [8,11] <=  2 * (capacity [i] * ((sum {d in 

D, s in S} probability [d,s,i] * row [d] * x [s,i]))); 

  

subject to variable {i in I}: sum {s in S} x [s,i] = 1;  

 

solve;  
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Appendix D: Full Solution Sets 

MW 5.5 All Cost Range Solutions 
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MW 7.0 All Costs Range Solutions 
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