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Abstract  

Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. 

There is currently no effective therapeutic for the treatment of TBI. Primary injury, from 

the initial injury, causes contusions and hemorrhaging at the site of impact. Diffuse 

damage is caused throughout the brain from the impact; this includes axonal injury, 

hypoxic brain damage, brain swelling and vascular injury. Brain damage continues as the 

secondary injury; which is characterized by hypoxia, hypotension, amino acid 

excitotoxicity and ionic imbalance. All of these conditions cause additional cell death and 

damage. Inflammation, brought about by reduced cyclic AMP levels is also seen post-

injury. After injury, the glial scar and myelin produce neurite growth inhibitory 

molecules. There are several different types of myelin associated inhibitors expressed by 

oligodendrocytes; these interact with multiple types of neuron surface receptors 

triggering the RhoA cascade, which inhibits actin polymerization and neurite outgrowth. 

Chondroitin sulfate proteoglycans (CSPG) expressed on astrocytes also inhibits growth 

through the same RhoA pathway. Several strategies have elected to knockdown the RhoA 

gene or other genes involved in the growth inhibition pathway. 

The objective of this work is to develop novel neuron-specific nanotherapeutics 

for combinatorial therapy of drug and small interfering RNA (siRNA) targeting both 

extrinsic and intrinsic barriers to neuroplasticity. This neuron-specific polymeric micelle 

nanotherapeutics will be designed as follows: First, a cell-type specific targeting moiety 

such as an antibody can be conjugated to the polymeric micelle nanoparticle surface to 



iii 
 

deliver nanotherapeutics specifically to neurons.   Second, RhoA siRNA, can be targeted 

to common intracellular signal transduction pathways for inhibitory molecules such as 

myelin and CSPGs. Third, a hydrophobic drug, a phosphodiesterase 4 inhibitor (rolipram) 

will be incorporated in the PgP micelle to increase intrinsic neuronal growth capacity by 

preventing injury-induced reductions in cAMP levels.  

To achieve this goal, we synthesized amphiphilic block copolymers, poly (lactide-

co-glycolide)-graft-polyethylenimine (PLGA-g-PEI: PgP) using PLGA as a hydrophobic 

core forming block and PEI as a hydrophilic shell forming block and characterized the 

physico-chemical properties of the PgP micelle as a delivery carrier for combinatorial 

therapy of nucleic acid and drug. We demonstrated that the PgP micelle is a promising 

nucleic acid delivery carrier using phMGFP plasmid as a reporter gene in C6 (glioma) 

cells and primary  chick forebrain neurons (CFN) cells in 10% serum containing media in 

vitro. We also studied incorporating rolipram in the PgP micelle and successfully 

conjugated an antibody (mouse IgG) on the surface of PgP. Currently, we are evaluating 

PgP as a siRNA delivery carrier to primary CFN cells and preparing PgP-mNgR1 using 

NgR1 monoclonal antibody and evaluating the feasibility of PgP-mNgR1 as a neuron-

specific nucleic acid carrier for targeting neuron cells in a rat cortical neuron /astrocyte 

co-culture system.  In the future, we will study rolipram-loaded PgP-Ab as a nucleic 

acid/drug carrier using RhoA siRNA in hypoxic conditions as a TBI model in vitro and a 

rat traumatic brain injury model in vivo.    
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Chapter 1 

Introduction 

1.1 Traumatic Brain Injury 

 Traumatic brain injury (TBI) is caused by a blow to the head which disrupts 

normal brain function. It is the most common cause of death and disability in young 

people. [1] Each year around 1.7 million traumatic brain injuries occur. The most 

common causes of the trauma are falls, vehicle accidents, hitting another object (ex. 

children running into wall) and assault. [2] The degree of damage can range from mild to 

severe. A mild TBI is usually a concussion with full neurological recovery. Severe TBI is 

often characterized by a coma, which has several long term effects. These effects include 

loss of cognitive function and motor function, impairment of senses and emotional 

changes. The initial trauma, termed as primary injury, from the initial blow causes 

localized damages such as brain contusions and hemorrhaging.  Diffuse damage also 

occurs such as axonal injury, hypoxic brain damage, brain swelling and vascular injury; 

however the secondary injury, which happens after the trauma, is the leading cause of in 

hospital deaths after TBI. [1,3]  

Secondary injury is caused by an increase in intracranial pressure, decrease in 

cerebral perfusion and vasogenic fluid accumulation. The secondary injuries lead to 

hypoxemia and hypotension, all of which lead to neuronal damage and death. Damage is 

also done to the brain chemically. For example, after injury there is an ionic imbalance, 

oxidative damage and release of amino acids (ex. glutamine) which cause excitatory 
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damage. The damage done to the blood brain barrier allows the influx of cytokines and 

chemokines which causes inflammation. [4]  

 The post-injury remodeling creates an environment that inhibits neuron regrowth 

from occurring. The major inhibitory groups are myelin associated inhibitors (MAI) and 

chondroitin sulfate proteoglycans (CSPG) associated with the extracellular matrix. Three 

common MAIs Nogo, oligodendrocyte-myelin glycoprotein (OMgp) and myelin 

associated glycoprotein (MAG) inhibit neurite outgrowth They all bind to the cell surface 

Nogo-66 receptor (NgR1) causing activation of the Rho and Rac cascade; inhibiting both 

actin polymerization and neurite outgrowth. [5,6] Heavy inflammation is also seen in 

TBI, this is caused by injury induced decreases in cyclic AMP (cAMP) levels. cAMP is 

involved in the activation of protein kinase A (PKA) which phosphorylates cAMP-

responsive element binding protein (CREB). CREB is important for transcription of 

survival genes. PKA also phosphorylates nuclear factor-κB which suppresses 

inflammatory cytokines. [7] 

There have been several different approaches to treating the underlying causes of 

traumatic brain injury. One option for increasing cell survival and axon growth is the 

delivery of neurotrophins. Studies have used nerve growth factor (NGF), brain-derived 

neurotrophic factor (BDNF), neurotrophin-3 (NT-3), NT-4/5, glial cell-line derived 

neurotrophic factor (GDNF) and leukemia inhibitory factor (LIF). Some showed axon 

growth and neuron survival. [8] However, neurotrophins also cause additional systemic 

effects such as an immune response. [9]  
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Neurotrophins stimulate axon growth; however the inhibitory environment caused 

by the post-injury remodeling still exists. The glial scar helps create this inhibitory 

environment by expressing chondroitin sulfate and keratin. The glial scar may also inhibit 

diffusion of growth promoting molecules by creating a physical barrier to diffusion. 

CSPGs are upregulated by astrocytes after CNS injury. The effect on growth inhibition 

was tested by using a chondroitinase treatment and deletion of scar forming astrocytes. 

[10] The study used chondroitinase ABC enzyme (cABC) to digest the CSPG side chains 

on the astrocytes. This showed increased axon sprouting after brain injury.  [11] Another 

group knocked down chondroitin polymerizing factor instead of treating with an enzyme. 

The advantage of this method is that CSPGs are continuously synthesized thus an enzyme 

treatment may not be sufficient due to short enzyme activity time in vivo. Another 

disadvantage of the cABC enzyme is that it may cause an immune response. [10] 

The Rho kinase (ROCK) pathway controls CSPG mediated inhibition of growth 

but it is also involved with growth inhibition molecules expressed on myelin. [12] These 

inhibition molecules, mentioned above are OMpg, MAG and Nogo-A. These factors all 

bind strongly to the NgR1 receptor on the surface of neurons. A study which deleted 

NgR1 in mice showed less brain injury volume, better performance in motor function 

testing, increased neurogenesis and axon sprouting and increased growth associated 

protein-43 (GAP-43). [5] GAP-43 is expressed in areas of the brain with higher plasticity 

(ex. hippocampus). It is important in the forming of new connections between neurons. 

However, MAIs bind to receptors other than NgR1 such as lingo-1 and p75 (TROY). 

Another study showed increased functional recovery when deleting the three signaling 
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molecules (OMpg, MAG and Nogo-A). [13] However, the CSPG and NgR1 controlled 

pathways both involve the Rho kinase so several studies have used this to increase 

regrowth. In one study the cells were treated with Y27632 which inhibits ROCK. [12] 

The other study researchers knocked down p75, NgR1 and RhoA using siRNA to silence 

gene expression. [14] 

1.2 Gene Delivery 

Gene delivery uses either DNA or RNA to induce or silence production of a 

protein. However, in vivo delivery of a nucleic acid without a carrier has many 

challenges. This includes degradation by enzymes, serum protein aggregation, 

phagocytosis and charge repulsion from the cell membrane; both nucleic acids and cell 

membranes are negatively charged. [15] Thus a delivery vehicle is often used being 

categorized into viral and non-viral methods.  

Viral delivery systems are advantageous because they have high transfection 

rates; disadvantages include mutagenesis, carcinogenesis and immune response. The 

most popular viruses chosen for gene delivery have been retrovirus and adenovirus. 

Retroviruses are made up of double stranded RNA which can also carry foreign DNA. 

Long-term gene expression is also seen with cells because the delivered gene integrates 

into the host chromosome. Adenoviruses are double stranded DNA viruses which can 

also carry foreign DNA. They produce high transfection effic iency with rare chromosome 

integration. They have, however received negative attention due to a death caused by 

severe immune response. [16]  
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Non-viral methods are made up of chemical and physical delivery methods. 

Popular chemical methods include cationic lipids and polymers and natural polymers 

such as chitosan. Physical delivery methods include gene guns, electroporation and 

microinjection. [17] Liposomes are made up of lipids which have a polar head group and 

can form either monolayers or bilayers. Lipoplexes are formed when polycationic 

liposomes are mixed with polyanionic nucleic acids. Lipoplexes protect the nucleic acid 

from degradation. Liposomes have shown good transfection in vitro in non-serum 

conditions however when tested in cell cultures with serum and in vivo, they show very 

low transfection efficiency. This is because the negative charges on serum proteins 

aggregate with liposomes. In the blood stream these large aggregates cannot reach the 

target cell because of red blood cell surface absorption or getting trapped in mucus lining 

and tight junctions of epithelial cells. [18] PEG-liposomes have also been used to 

increase circulation time by shielding the liposome. [19] 

Polymer based delivery systems are also used in place of lipids. Cationic 

polymers are chosen to form polyplexes with nucleic acids. Branched polyethylenimine, 

(PEI 25kDa) is a cationic polymer which has shown high proficiency for endosomal 

escape and gene transfer into cells [20]. This property is important because if the 

polyplex is contained in the endosome, endosomal enzymes degrade it causing inefficient 

gene transfer. PEI has the ability to initiate the proton sponge effect leading to endosomal 

escape. At physiological pH the secondary amines on PEI are not protonated;however at 

endosomal pH (5.0-5.5) the secondary amines on the PEI become protonated because the 

pH is lower than the pKa. [19] The additional positive charges inside the endosome cause 
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a charge gradient across the membrane. Negative chlorine ions cross into the endosome 

due to this charge gradient. The increase in ions causes increased osmolarity in the 

endosome, thus water enters the endosome. The additional water causes the swelling and 

bursting of the endosome allowing escape into the cytosol. [18,21] Like lipids PEI has 

been PEGylated to reduce interactions with blood components [22]. In addition to PEI 

highly branched polymers called dendrimers have also been studies for nucleic acid 

delivery. Some examples of dendrimers used are polyamidoamines (PAMAM), 

polypropelenimine (PPI). [23] 

Polymeric micelles are made up of amphiphilic molecules which self-assemble in 

aqueous solution. Micelles are made up of a block copolymer with a hydrophobic (ex. 

Poly-lactide) and hydrophilic polymer (ex. Polyethylene glycol). Polymeric micelles are 

able to have long circulation times if designed to be larger 42kDa but have a particle size 

smaller than 200nm.  Being above 42kDa allows micelles to avoid glomular excretion. 

Micelles below 200nm avoid recognition by the reticuloendothelial system (RES). This 

system works by marking of foreign materials with complement proteins which then 

target the material for removal. [19] 

1.3 Blood Brain Barrier  

The blood brain barrier (BBB) is a major barrier to delivery of therapeutics to the 

brain. The composition of the extracellular fluid in the brain is controlled by what can 

pass through this barrier. The barrier is made of endothelial cells bound together by tight 

junctions. [17] Several options exist to overcome the BBB; lipophilic carriers such as 
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liposomes can be used for treatment of the CNS; this is because hydrophilic drugs cannot 

pass through the BBB. In addition, a prodrug which is uptaken by the brain can be used. 

If a lipophilic option cannot be used the drug can also be conjugated to a peptide which 

will cause it to be transported by endocytosis through the endothelial cells which make up 

the BBB. [24] 
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Chapter 2  

Objectives 

2.1 Project Objectives 

The limitations of current treatment options for traumatic brain injury are that 

they only treat a single factor inhibiting neurite regrowth. As described earlier, there are 

several factors present in the post-injury remodeling cascade that inhibit regrowth. 

Recently, combination therapies, those which treat multiple factors preventing recovery, 

for TBI have sparked increasing interest from several national heath institutes. [25] 

Because no one treatment option will elicit a total recovery from a severe TBI, the 

objective of this project was to develop a combination siRNA and drug therapeutic.  

2.2 Therapeutic Carrier Design 

The path to this goal started with the synthesis and characterization of a polymeric 

micelle to be used in a combination therapy for the treatment of TBI. The polymeric 

micelle is to be used as a targeted genetic and drug delivery vehicle. (Fig. 2.1) Anti-NgR1 

antibody will be conjugated to the micelle. NgR1 is mostly expressed in neurons, thus the 

micelles will be targeted toward neurons so the siRNA and rolipram will only affect 

neurons.[26] The gene to be knocked down is RhoA, as stated earlier this is involved in 

common pathway shared by several factors which inhibits axon growth. Finally the drug 

to be loaded is the phosphodiesterase IV inhibitor rolipram. Rolipram was found to 
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restore cAMP levels in vivo. [7,27] Rolipram is a hydrophobic drug thus can be loaded 

into the micelle core. [28]  

 

Figure 2.1 Micelle Scheme 

Polymeric micelle nanoparticles are made from amphiphilic copolymers. Above a 

certain concentration in water, the critical micelle concentration, the polymer forms an 

ordered sphere. Due to thermodynamic instability of water interactions with a 

hydrophobic polymer the hydrophobic portions aggregate together in the micelle core. 

Likewise the hydrophilic portions point outwards. [29] Thus in order to form a micelle 

the polymer was designed with a hydrophobic and hydrophilic portion. Poly (Lactide-co-

glycolide) (PLGA) a biocompatible, biodegradable hydrophobic copolymer was chosen 

as the hydrophobic portion of the polymer. [30] The hydrophilic portion of the micelle 

will consist of a polycation segment to form a polyplex with nucleic acids. [21] Branched 

PEI 25kDa as described above has high proficiency for endosomal escape. PEI also has 

the ability to conjugate a targeting antibody. PEI has primary amines which can react 

with aldehyde groups on oxidized targeting antibodies to form a Schiff base.[31]Due to 

these properties PEI was chosen as, the hydrophilic portion of the polymer. To achieve 
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our goal, we synthesized Poly (Lactide-co-Glycolide) –graft-Polyethylenimine (PgP) and 

characterized the physical-chemical properties.  

2.3 Experimental Design  

 Three different PgPs were synthesized with branched PEI 25kDa and three 

different molecular weights of PLGA (4kDa (lactide:glycolide 50:50), 25kDa  

(lactide:glycolide 75:25 ) and 50k (lactide:glycolide 50:50)). A designation was given to 

each PgP based on the total PLGA composition. For example, “PgP-12k” is made up of 

12kDa of PLGA (3 PLGA 4kDa:1 PEI), “PgP-25k” has 25kDa of PLGA per molecule (1 

PLGA 25kDa:1PEI) and “PgP-50k has 50kDa of PLGA per molecule (1 PLGA 

50kDA:1PEI). Particle size was used to determine micelle size and pDNA loading ability. 

Zeta potential and gel retardation were used to determine pDNA charge neutralization.  

N/P ratio is used in place of weight/weight ratio because the positive nitrogen groups on 

the polymer are what will bind to the negative phosphate groups on the nucleic acid. [32]  

In order to test the ability of PgP to deliver nucleic acids, phMGFP (plasmid 

encoding human monster green fluorescent protein pGFP) was used as a reporter gene. 

Transfections were performed at various nitrogen/phosphate (N/P) ratios. PEI 5/1 was 

used as a positive control because it was previously shown to be the best cationic 

polymer for gene delivery. [33] Transfections were done in non-serum conditions and 

serum conditions. Serum conditions were used to more closely mimic in vivo conditions. 

Non-serum conditions were used as controls to test if PEI neutralization by the negatively 

charged serum proteins in serum conditions would cause lower transfection efficiency. 
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The hydrophobic drug rolipram was mixed with PgP to determine loading capacity. To 

conjugate the antibody to PgP, mouse IgG was oxidized by sodium periodate and then 

reacted with the primary amine of PEI in PgP micelles. The effect of antibody 

conjugation on transfection efficiency was also tested. To test the effect of Rolipram 

loaded PgP on neuronal survival; we used cobalt chloride CoCl2 induced hypoxia as a 

model for traumatic brain injury.   
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Chapter 3  

Materials and Methods 

3.1 Materials 

 Poly (lactic-co-glycolic acid) (PLGA) (4kDa; 50:50, 25kDa; 50:50, and 50 kDa; 

75:25) were purchased from Durect Corporation (Cupertino, CA). Anhydrous 

dimethylformamide (DMF), N-hydroxysuccidimide (NHS), dicyclocarbodiimide (DCC), 

branched polyethylenimine 25kDa (PEI), deuterium oxide (D2O), sodium periodate, 

thiazolyl blue tetrazolium bromide (TBST), 2-mercaptoethanol, methanol, bromophenol 

blue, poly-L-lysine (PLL), acetonitrile (ACN), DNaseI and cobalt chloride hexahydrate 

were obtained from Sigma-Aldrich (St. Louis, MO). Dialysis tubing (MWCO: 50kDa, 

300kDa) were obtained from Spectrum labs (Rancho Dominguez, CA). Unconjugated 

mouse IgG was obtained from Rockland Antibodies and Assays (Gilbertsville, PA). 

Sodium acetate and paraformaldehyde were purchased from Alfa Asesar (Ward Hill, 

MA). Bicinchoninic acid assay (BCA), bovine growth serum (BGS), Fetal bovine serum 

(FBS), DMEM/F12 50:50, Dimethyl sulfoxide (DMSO), tris-HCl, tris Base, sodium 

dodecyl sulfate (SDS), nitrocellulose membranes, D-glucose, sodium chloride, potassium 

chloride, potassium phosphate, sodium phosphate, penicillin, 1% trypsin, 0.25% trypsin 

and glycine were obtained from Thermo Fisher Scientific (Waltham, MA). 

Polyvinylidene fluoride (PVDF) membranes, Bis-acrylamide, Kaleidoscope ladder, 

Ammonium Persulfate and Tetramethylethylenediamine (TEMED) were purchased from 

Bio-Rad (Hercules, CA). WesternBreeze with anti-mouse secondary, basal medium eagle 
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(BME), trypsin/EDTA 0.05%, Alexa fluor secondary antibodies and 200mM L-glutamine 

were obtained from Life Technologies (Grand Island, NY). C6 cells were obtained from 

ATCC (Manassas, VA). Anti-HIF1α was obtained from Millipore (Billerica, MA). Anti-

βIII tubulin and anti-β-actin antibodies were obtained from Abcam (Cambridge, MA). 

Rolipram was purchased from LC Labs (Woburn, MA). The C18 Column was obtained 

from Shodex (New York, NY). The Waters 1525 binary HPLC pump, Waters 2998 

photodiode array detector, Waters 2414 refractive index detector and Ultrahydrogel 250 

column were obtained from Waters (Milford, MA). The 90Plus Particle Size Analyzer 

was from Brookhaven Instruments Corporation (Holtsville, NY) 

3.2 Synthesis of PgP  

3.2.1 Synthesis of PgP 

To synthesize PgP-12k, PgP-25k, and PgP-50k, the carboxylic end group on the 

PLGA (MW: 4kDa, 25kDa or 50kDa) was activated by NHS and DCC for two hours in 

DMF. PgP-12k was synthesized by using a 4:1 mole ratio of PLGA-4kDa to PEI and 

PgP-25k and PgP-50k were synthesized by using a 1.2:1mole ratio of PLGA-25kDa and 

PgP-50kDa to PEI. After the reaction, the reactant solution was filtered to remove 

dicyclohexyl urea. Following filtration, the activated PLGA was reacted with branched 

PEI (MW: 25kDa) by adding it drop-wise and then the mixture was allowed to react for 

24hrs at room temperature with stirring. Poly (lactide-co-glycolide)–g-poly 

(ethylenimine) (PLGA-g-PEI: PgP) was purified by dialysis against deionized water 
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using a membrane filter (MWCO=50,000), filtered with a 0.2µm filter to remove the 

precipitate, and then freeze-dried.  

Following synthesis and purification, the structure was verified by 1H- NMR on a 

Bruker 300MHz in D2O. The gel permeation chromatography (GPC) was carried out with 

a Waters 1525 binary high performance liquid chromatography (HPLC) pump and 

Waters 2414 refractive index detector. The mobile phase was Millipore water at a flow 

rate of 0.7mL/min. Injection volume was 20µL and run time was 15 minutes. The 

standards used were dextran at molecular weights of 5, 12, 25, 50 and 80kDa.Critical 

micelle concentration (CMC) was determined using dye dissolution. 10µL of 0.4mM 1,6 

diphenyl- 1,3,5-hexatriene was added to 1mL PgP solutions at various concentrations. 

The solutions were incubated in the dark for 6 hrs. Absorbance was taken at 356nm and 

used to calculate CMC. 

3.2.2 Antibody Conjugation 

 Antibody conjugation using mouse IgG was accomplished by first oxidizing the 

antibody with sodium periodate in isotonic sodium acetate buffer for 2 hours at 4oC. The 

reaction was then terminated with ethylene glycol and dialyzed against sodium acetate 

once and against isotonic PBS twice to remove excess ethylene glycol and sodium 

periodate. [36] Protein concentration was then determined by BCA assay. PgP-12k was 

mixed with oxidized antibody to make a 40mg/mL PgP solution with a 50:1 ratio of PgP 

to antibody. The solution was mixed overnight at 4oC and then dialyzed 24 hours against 

water (300kDa membrane) to remove unconjugated IgG. Antibody conjugation was 
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verified by immunoblot assay. A nitrocellulose membrane was washed with tris buffered 

saline (TBS) and then dried. Following drying 2µL dots of undialyzed PgP-IgG, dialyzed 

PgP-IgG, IgG standards and PgP were spotted on the paper and allowed to dry. Next the 

procedure included with the WesternBreeze kit was followed but the primary antibody 

step was omitted because the alkaline phosphates secondary antibody (anti-mouse) 

recognizes the mouse IgG directly. [37]  

3.3 Characterization of PgP/pDNA Polyplexes 

3.3.1 Particle Size and Zeta Potential 

  The particle size and zeta potential of PgP/pDNA polyplexes were determined 

by using Brookhaven Instruments Corporation 90Plus Particle Size Analyzer.  PgP/pGFP 

complexes were prepared at various N/P ratios; PgP was mixed with pGFP (20µg) and 

incubated for 30 minutes at 37oC.   The solution was transferred to a 2mL cuvette and the 

particle size was measured. Particle size was measured three times for two minutes each 

using an angle of 90o and wavelength of 659nm. Following particle size measurements, 

1.7mL of solution was transferred to a new cuvette and the zeta potential electrode was 

inserted into the cuvette.  Zeta potential measurements were taken three times. 

3.3.2 Gel Retardation 

 A gel retardation assay was done to determine if DNA was completely 

complexed with PgP. 100µL of PgP/pGFP complexes were prepared at various N/P ratios 

by mixing PgP with pGFP and incubating for 30 minutes at 37oC. The agarose gel was 
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prepared at 1% with an ethidum bromide concentration of 0.5µg/mL. 10µL of complexes 

were mixed with 3µL of loading dye. 10µL of sample was then loaded into each well. 

The gel was run at 80V until the xylene cyanol (light blue) dye was 2/3 through the gel. 

The images were taken using an Alpha Innotech FlourChem SP imager set to UV 

transillumination.  

3.4 Cell Culture 

 C6 rat glioma cells were cultured with DMEM/F12 media supplemented with 5% 

BGS and 1% antibiotics at 37oC in 5% CO2. Cells were passaged every 2-3 days and 

were not kept above passage 10.   

 Chick forebrain neurons were isolated from day eight embryonic chicks (E8); 

chicken eggs obtained from Clemson University Poultry Center and incubated at 37oC 

with light rocking.  Polystyrene culture plates were coated with PLL by adding 0.01% 

PLL solution onto the plates for at least 1 hour and then washing with DI water twice to 

remove unbound PLL. After removal of the membrane from the forebrain the brains were 

incubated in 0.25% trypsin for 5 minutes at 37oC. The trypsin was then aspirated and the 

brains were triturated and suspended in complete media. The neurons were plated at 1 

million cells/mL. The neurons were cultured in BME supplemented with 10% FBS, 

6mg/mL D-glucose, 2mM L-glutamine and 1% antibiotic at 37oC in 5% CO2.  

 Rat cerebellar neurons were isolated from day 3 postnatal rats. Rat cerebellums 

were isolated and the membranes and blood vessels were removed. The cerebellum was 

then minced and trypsinized for 15 minutes at 37oC in 1mL of 1% trypsin supplemented 



17 
 

with 100uL of 1% DNase. The solution was then centrifuged for 3 minutes at 1000 RPM. 

Next the trypsin was aspirated and the brains were resuspended in 5mL media and 

triturated. The neurons were further homogenized with a 3mL syringe with 22Gx1½ 

needle. Neurons were cultured on PLL plates as described previously at a concentration 

of 1 million cells/mL. [38] The culture medium used was BME supplemented with 10% 

FBS, 6 mg/mL D-glucose, 1.5 mg/mL KCl, 2mM L-glutamine and 1% antibiotic at 37oC 

in 5% CO2. 

3.5 Transfection Efficiency and Cytotoxicity  

 PgP nucleic acid delivery capability was tested using transfection with phMGFP 

(pGFP) as a reporter gene. C6 cells were seeded at 1e5 cells/mL in 12 well plates. Plating 

media consisted of DMEM/F12 supplemented with 10% FBS and 1% antibiotic. Media 

for transfection was either serum containing or serum free depending on conditions 

desired. 24 hours after plating PgP/pGFP complexes were prepared at various N/P ratios 

on a basis of 2ug of pDNA and 100µL of volume per well. The complexes were well 

mixed and incubated for 30 minutes at 37oC. For non-serum conditions, cells were 

washed and replaced with serum-free media. After incubation, the complexes were 

distributed drop-wise into each well. Four hours after transfection, cells were washed 

twice and replaced with 10% serum media. For 10% serum conditions, cells were washed 

and replaced with 10% serum media. Complexes were then distributed in the same 

manner. 24 hours after transfection, cells were washed twice and replaced with 10% 
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serum media.  48 hours after transfection, analysis of cell viability and percent 

transfection were performed.  

Percent transfection was calculated using flow cytometery on a Millipore 

easyCyte flow cytometer with guavaCyte software. The cells were washed with PBS 

without calcium and magnesium and trypsinized. The trypsin was neutralized with media 

containing serum and the cells were diluted to less than 500 cells/µL. Each sample was 

run until 5000 events were counted. 

Cell viability testing was calculated using MTT assay; the media was removed 

and replaced with serum-free media then 240µL of 2mg/mL TBST solution in PBS with 

calcium and magnesium was added to each well drop-wise. The wells were incubated for 

4 hours at 37oC, the media was aspirated and the remaining formazan crystals were 

dissolved in 1mL DMSO. The absorbance of the solution was read at 570nm. 

3.6 Generation of Hypoxia as an in vitro TBI Model 

 Hypoxia was induced by treating cells with 100µM, 150µM and 200µM CoCl2 in 

PBS with calcium and magnesium for 20, 24 and 44 hours. C6 cells were plated at 3e5 

cells/mL in 6 well plates. Rat cerebellar neurons were plated at 1 million cells/mL in 6 

and 96 well plates. The next day the media was changed and the appropriate amount of 

CoCl2 was added to each well. At the desired time points, the cells were lysed using 

200uL of RIPA buffer in each well. Total protein was assessed using BCA assay. 

Polyacrylamide gels were cast with a 10% resolving gel. Samples were diluted with 

reducing sample buffer so that 30µg of total protein was added to each well. After 
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dilution the samples were heated for 5 minutes at 60oC. The gel was run at 100V until 

sample buffer reached the bottom of the gel. The proteins were transferred to a PVDF 

membrane by western blotting at 30V overnight at 4oC. Following transfer the membrane 

was stained according to the WesternBreeze protocol using chromogenic detection for 

both anti-HIFα and anti-β-actin. Immunocytochemistry was done on rat cerebellar 

neurons with βIII-tubulin to detect morphological changes.  

3.7 Rolipram Loading 

 Three separate variables were tested for their effect on rolipram loading. Rolipram 

amount added to PgP solutions, PgP solution concentration and PgP composition were 

tested. PgP-12k, PgP-25k and PgP-50k were used to measure rolipram loading efficiency 

with an increase hydrophobic core size. Amount of rolipram was tested by adding 1, 2 or 

4mg to PgP to test if supersaturating with drug increased loading amount. Finally, 

concentration of PgP solution was tested using 1, 5 or 10mg/mL of PgP solution. The 

variables were all tested in parallel; there were three conditions for each of the three 

variables yielding 27 different conditions. Rolipram in amounts of 1, 2 or 4mg was 

dissolved in PgP 12k, 25k or 50k solutions at concentrations of 1, 5 or 10mg/mL, 

respectively. The samples were mixed while shaking for 6 hours at room temperature. 

The samples were then filtered with 0.2µm in preparation for HPLC. Reverse phase 

HPLC was used to determine rolipram loading. The HPLC was run on a Waters 1525 

binary HPLC pump and detected with a Waters 2998 photodiode array detector set to 

280nm. The column used was a Shodex C18.  The mobile phase was 60:40 Millipore 
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water:ACN [28] Rolipram standards were dissolved in DMSO to make a standard curve 

of rolipram concentration. Injection volume was 20 µL and run time was 7 minutes. Each 

sample made in duplicate and injected twice.  
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Chapter 4 

Results and Discussion 

4.1 Synthesis of PgP 

4.1.1 Synthesis of PgP 

PgP was synthesized using branched polyethylenimine (b-PEI or PEI, MW 25 

kDa) and three different MW of poly-D,L-(lactide-co-glycolide) (PLGA, MW 4 kDa, 

25kDa, and 50kDa). Different molecular weights and ratios of lactide:glycolide were 

used to change the size of the hydrophobic core used for drug loading. Longer PLGA 

molecules were chosen to increase the hydrophobic tail length of the micelle. Higher 

lactic acid ratios were chosen to increase hydrophobicity of the polymer tail. Because 

there were three different PLGA molecular weights used, three different PgP molecules 

were synthesized. Following synthesis and purification, the structure and molecular 

weight (MW) of PgP was determined by 1H NMR and GPC (Fig. 4.1 and 4.2).  The 

structure of PgP was characterized by 1H-NMR using D2O as solvent (δ=2.4~3.5 (m, PEI 

backbone -CH2), δ=1.4~1.6 (d, 3H, PLGA -CH3), δ=4.3 (q, 1H, PLGA-CH), δ=3.9 (s, 

2H, PLGA –CH2)).  The degree of PLGA graft to the PEI and molecular weight of PgP 

was calculated from the ratio of the integrals of the PEI back bone to methylene of PLGA 

(δ=3.9).  In case of PgP-12k, approximately three 4 kDa of PLGA are grafted to one PEI 

and the molecular weight of PGP was calculated approximately 38,681Da by NMR and 

38,168Da by GPC.  In case of PgP-25k, approximately one of 25kDa of PLGA are 



22 
 

grafted to one PEI and the molecular weight of PgP was calculated approximately 

49,275Da by NMR and 48,791Da by GPC (Table 4.1).  

Critical micelle concentration (CMC) was calculated creating two linear fits to the 

concentration versus absorbance at 356nm. The logarithm of polymer concentration was 

plotted against absorbance. The graph shows a rapid spike at the critical micelle 

concentration.  The intersection of the linear fit from the region before the rapid spike and 

after it is used to calculate the critical micelle concentration. 
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Figure 4.1 1H-NMR Spectra of PgP-12k (A), PgP-25k (B), PgP-50k (C) 
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Figure 4.2 GPC of dextran standards (A), standard curve (B) PgP-12k (C) and            

PgP-25k (D) 

 

  MW by NMR MW by GPC 
CMC 
(µM) 

PgP-12k 38681 38168 18.6 

PgP-25k 49275 48791 9.3 

 
Table 4.1 NMR, GPC and CMC calculations for PgP at various molecular weights 

 

 

D 
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4.1.2 Antibody Conjugation to PgP 

Antibody conjugation with mouse IgG was verified by immunoblotting (Fig. 4.3). 

The density of colorimetric staining was used to compare undialyzed PgP-IgG to dialyzed 

PgP-IgG. The undialyzed PgP-IgG showed slightly greater colorimetric staining density 

compared to dialyzed PgP-IgG. The difference in colorimetric staining is attributed to 

oxidized IgG that was not conjugated to PgP and was thus removed by dialysis. PgP 

alone was also immunoblotted to check for background and none was seen.  

 

Figure 4.3 Immunoblot of 300kDa dialyzed PgP-IgG, undialyzed PgP-IgG, PgP and a 

serial dilution of IgG alone. 

4.2 Characterization of PgP/pDNA Polyplexes 

4.2.1 Particle Size and Zeta Potential 

The particle size and zeta potentials were measured at various N/P ratios of PgP-

12k/pGFP. Ratios above 2.5/1 completely neutralized the negative charge of the pDNA 

 80kDa 50kDa 25kDa  12kDa       5kDa A 

B 

C 
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by complexation with PgP. The particle size was found to be around 200nm. (Fig. 4.4A) 

The particle size and zeta potential were also taken for PgP-25k and PgP-50k. At w/w 

higher than 1/1 the pDNA was neutralized. The particle sizes were approximately 200nm 

and 150nm at all w/w ratios for PgP-25k and PgP-50k respectively. (Fig. 4.4B) The 

reason for the lower size with a higher molecular weight is most likely the larger 

hydrophobic core forming a tighter micelle. Based on this particle size data PgP-50k may 

be the best option for systemic injection in vivo. The reason for this is that particles above 

200nm are subject for removal by the reticuloendothelial system [24]. 

 

Figure 4.4 Particle size and Zeta Potential of PgP-12k, PEI (A), PgP-25k  

and PgP-50k (B) 
 

 

4.2.2 Gel Retardation 

Gel retardation was used to determine complex stability. PgP-12k at N/P ratios 

above 5/1 showed no pDNA migration, meaning the complex was completely stable. 

(Fig. 4.5A). For PgP-12kDa-Ab all w/w ratios used showed complete pDNA complex 

A B B 
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formation (Fig. 4.5B). Weight/weight ratio was used because the exact amount of 

conjugated antibody was not known. N/P ratio could not be calculated because of this. 

 

 

 

 

 

 

 

Figure 4.5 Gel retardation of PEI and PgP-12k (A) Lanes: 1 ladder, 2 pGFP, 3 PEI/pGFP 
N/P 5/1, 4-9 PgP-12k/pGFP N/P 5/1-30/1. Gel retardation of PEI and PgP-12k-Ab (B) 

Lanes: 1 ladder, 2 pGFP, 3 PEI/pGFP N/P 5/1, 4-9 PgP-12k-Ab/pGFP w/w 1/1-6/1 

 

4.3 Transfection Efficiency and Cytotoxicity  

First, transfection was done in non-serum conditions because serum severely 

inhibits transfection with the positive control PEI. In these conditions, higher ratios of 

PgP-12k showed a significant increase in percent transfection compared with PEI with no 

significant change in cell viability (Fig. 4.6A, B). Next, transfection was tested in 10% 

serum conditions because it more accurately mimics conditions seen in vivo. PEI 

performed as expected in serum conditions, with low transfection but PgP-12k showed 

increased percent transfection up to an N/P ratio of 30/1 with no decrease in cell viability 

(Fig. 4.6A, B). Representative images of C6 cells transfected with PgP-12k/pGFP show 

high levels of GFP expression with no change in cell morphology (Fig. 4.7).  After 
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showing that PgP significantly outperforms PEI in serum conditions, non-serum 

conditions were no longer tested. PgP-25k and PgP-50k were tested with higher N/P 

ratios due to the higher molecular weights. PgP-25k showed higher transfection with 

lower cell viability (Fig. 4.6C, D). The same was true for PgP-50k (Fig. 4.6E, F). 

Transfection was also tested using PgP-12k-Ab. The percent transfection was higher than 

that of PgP-12k and PEI however the cytotoxicity was higher (Fig. 4.8A, B). All PgP 

transfections in C6 cells showed promising transfection results with much higher 

transfection than PEI and low to no cytotoxicity. Similar studies have transfected C6 cells 

with PEI based nanoparticles in non-serum and serum conditions with varying degrees of 

success. One study showed 25% percent transfection with 85% viability in C6 cells. [39] 

Another study showed 40% transfection with no cytotoxicity in serum conditions. [42] A 

targeting ligand based nanoparticle showed 60% transfection in serum conditions with no 

cytotoxicity. [43] Based on these studies our polymer is better than or on par with other 

transfections done in the same cell type. This is promising for future studies because we 

showed that our polymer has the ability to delivery nucleic acids to cells.  

Transfection in CFN was done to show transfection capability in neurons. Non-

serum transfection with PgP-12k showed similar percent transfection to PEI 5/1 with 

increased cytotoxicity at higher N/P ratios (Fig. 4.9A, B). Serum transfection with PgP-

12k showed higher transfection than PEI 5/1 however it did show higher cytotoxicity. 

PgP-25k showed increased transfection with increasing N/P ratio with high toxicity (Fig. 

4.9C, D). PgP-50k showed similar results (Fig. 4.9E, F). While the transfection 

percentage was not as high as in C6 cells it is known that non-dividing cells transfect at 
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much lower percentages than rapidly dividing ones when using a DNA based reporter. 

[41] Other studies have shown low rates of transfection in neurons with lipoplexes, 

around 4% hippocampal and cortical neurons. [40] Another showed similar results with 

branched PEI transfection in neurons. [44] Our polymer, showed its capability to deliver 

pDNA to neurons.  
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Figure 4.6 C6 cells transfected with PgP-12k/pGFP in 10% serum and non-serum 

conditions; percent transfection (A) and cell viability (B). C6 cells transfected with PgP-

25k/pGFP in 10% serum; percent transfection (C) and cell viability (D). C6 cells 

transfected with PgP-25k/pGFP in 10% serum; percent transfection (E) and cell viability 

(F). PEI N/P is 5/1 *:P<0.05 for serum conditions, †:P<0.05 for non-serum compared to 

PEI 

 

B A 

C D
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Figure 4.7 Representative images of transfected C6 cells. Magnification 100x, top: phase 

contrast, bottom GFP transfected cells. PEI/pGFP 5/1 (A), PgP-12k/pGFP 5/1, 10/1, 15/1 
and 20/1 (B-E respectively) 

 

 

 

Figure 4.8 C6 cells transfected with PgP-12k-Ab/pGFP in 10% serum; percent 

transfection (A) and cell viability (B). PEI N/P is 5/1 *:P<0.05 for serum conditions. 

 

 

 

A 

B A 
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Figure 4.9 CFN cells transfected with PgP-12k/pGFP in 10% serum and non-serum 

conditions; percent transfection (A) and cell viability (B). CFN cells transfected with 

PgP-25k/pGFP in 10% serum; percent transfection (C) and cell viability (D). CFN cells 

transfected with PgP-50k/pGFP in 10% serum; percent transfection (E) and cell viability 

(F). PEI N/P is 5/1 *:P<0.05 for serum conditions, †:P<0.05 for non-serum compared to 

PEI 
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4.4 Generation of Hypoxia as an in vitro TBI Model 

 Western blots done to test for HIF1α in C6 cells showed the highest levels of 

protein production with 150µM CoCl2 at 24 and 44 hours. (Fig. 4.10A) Beta actin 

blotting showed equal levels of protein levels (Fig. 4.10B), meaning the change in 

hypoxia factor was due to hypoxia induction. Neurons were treated with CoCl2 at 100µM 

and 150µM for 24 hours to test for hypoxia. After staining with betaIII tubulin noticeably 

less neurite outgrowth was seen. (Fig. 4.11) 

 

Figure 4.10 Western blot for HIF1α (A) and beta actin (B) from C6 cells treated with 
CoCl2 to induce hypoxia 

 

 

Figure 4.11 Hypoxia on Rat Cerebellar Neurons stained with BetaIII tubulin. No 
treatment (A), 100µM CoCl2 (B), 150µM CoCl2 (C) for 24 each.  
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4.5 Rolipram Loading 

 Rolipram loading was tested by varying rolipram amounts, PgP composition and 

PgP concentration. PgP-50k at 10mg/mL using 4mg of rolipram was found to be able to 

load the highest amount rolipram. PgP-50k has the longest hydrophobic portion thus 

forms a strong hydrophobic core for drug loading (Fig 4.12). Weight of rolipram 

dissolved was compared with weight of PgP used (Fig. 4.13, primary axis, colored bars). 

It was found that although higher concentrations of PgP were able to load more rolipram 

they were not as efficient. This is an important consideration for treatment using rolipram 

loaded micelles. In order to use rolipram loaded micelles in vitro the PgP must be diluted 

to the concentrations on the order of micrograms. Diluting 10mg/mL PgP to appropriate 

concentrations would dilute rolipram more than diluting 1mg/mL PgP to appropriate 

concentrations. Higher rolipram amounts added to PgP solutions showed higher loading 

amounts. However, higher rolipram amounts were not as efficient as using lower amounts 

of rolipram. (Fig. 3.13, secondary axis, white bars) 
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Figure 4.12 PgP loading amounts in PgP-12k, PgP-25k and PgP-50k; each category is 

amount of rolipram weighed out. Data points are concentration of rolipram dissolved in 

solution calculated from standard curve by HPLC 

 

 

 

Figure 4.13 Weight/Weight ratio of rolipram loaded by micelle (µg rolipram)/(mg PgP) 

(colored bars); Percent of dry rolipram used loaded by micelle. 
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Chapter 5  

Conclusion and Future Studies 

5.1 Conclusion 

 The goal of this project was to develop a neuron-specific polymeric 

micelle nanoparticle delivery system for combinatorial therapy of an siRNA and a drug. 

This study showed that the PgP micelle is an effective nucleic acid delivery vehicle that 

can both load drug and conjugate to an antibody. The polymeric micelle was synthesized 

successfully and important characteristics were measured. Molecular weight and particle 

size were used to characterize the micelle. Particle size, zeta potential and gel retardation 

proved stable polyplex formation with pDNA. The critical micelle concentration was 

calculated. It was also proven that PgP has the ability to conjugate an antibody. This is 

important because the micelle can be conjugated to anti-NgR1 for neuron specific 

delivery.  

Next, we demonstrated that this PgP micelle is a promising delivery carrier for 

nucleic acids and drugs in C6 (glioma) cells and primary CFN cells in 10% serum 

containing medium in vitro.  The combination of improved transfection and reduced 

cytotoxicity in the presence of serum relative to conventional b-PEI (25 kDa) control 

suggest PgP may be a promising nucleic acid carrier for in vivo gene delivery. In 

addition, transfection using PgP-Ab in C6 cells showed that adding an antibody did not 

hinder transfection efficiency or cytotoxicity.  

 In addition to showing nucleic acid delivery, hydrophobic drug loading capability 

of PgP was also demonstrated. The PgP micelle was able to load sufficient amount of 
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rolipram for treatment of in vitro cultured neurons. Lastly, an in vitro model for TBI, 

hypoxia, was generated using cobalt chloride.  

5.2 Limitations and Future Studies 

PgP molecular weight was calculated using both 1H-NMR and GPC; however, the 

molecular weight of PgP-50k could not be calculated. We believe this is due to the strong 

hydrophobic core formed when the polymer is in aqueous solutions interfering with 

measurements. The next steps for characterization of PgP-50k are to determine an 

adequate solvent for use in 1H-NMR and GPC.   

Transfection in C6 cells was very successful, with both high transfection 

efficiency and low cytotoxicity. Transfection in CFN showed higher cytotoxicity. The 

next steps are to use siRNA knockdown to analyze transfection efficacy.  

PgP-IgG conjugation was successful. Currently, we are preparing PgP-Ab 

(Ab:NgR antibody) and evaluating the feasibility of PgP-Ab as a neuron-specific nucleic 

acid (NgR siRNA) carrier for targeting neuron cells in rat cortical neuron/astrocyte co-

culture system.  In the future, we will study rolipram-loaded PgP-Ab as a nucleic 

acid/drug carrier using RhoA siRNA in hypoxia conditions in vitro and rat traumatic 

brain injury model in vivo. 

Rolipram was successfully loaded into the micelle. The next steps are to 

determine release of the drug. Using hypoxia as a TBI model, neurons can be treated with 

free rolipram, rolipram loaded PgP, no treatment and healthy neurons. The cAMP levels 

of cells can then be analyzed using cAMP ELISA to determine release and effectiveness 

of rolipram treatments. Finally, an in vivo model of traumatic brain injury will be utilized 
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to test the regenerative capacity of our neuron-targeted, rolipram loaded, RhoA siRNA 

complexed PgP micelle. 
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