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Abstract

Quantile regression is a developing statistical tool which is used to explain the relationship between

response and predictor variables. This thesis describes two examples of climatology using quantile re-

gression. Our main goal is to estimate derivatives of a conditional mean and/or conditional quantile

function. We introduce a method to handle autocorrelation in the framework of quantile regression

and used it with the temperature data. Also we explain some properties of the tornado data which

is non-normally distributed. Even though quantile regression provides a more comprehensive view,

when talking about residuals with the normality and the constant variance assumption, we would

prefer least square regression for our temperature analysis. When dealing with the non-normality

and non constant variance assumption, quantile regression is a better candidate for the estimation

of the derivative.

Keywords: Quantile Regression, Conditional Quantile Function, Derivative, Autocorrelation
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Chapter 1

Introduction

The weather is a very complex system in which a series of changes take place in a short

period of time. Climate is merely the average weather over some larger time scale, usually in months

or years [9]. It is measured by using averages of weather elements like temperature, precipitation,

humidity and barometric pressure. Variations of these elements give rise to several phenomena that

impact our daily lives. In this work, we will use data sets related to the study of temperature

anomalies and tornadoes. Evidence of these anomalies have been recorded by research groups,

namely, NASA Goddard Institute for Space Studies (GISS), NOAA National Climatic Data center

and UK Met Office Hadley Centre [31]. These studies have shown that for example the average

temperature across global land and ocean surfaces in 2013, compared with the base period that

comprises the years 1901-2000 has raised 1.12 ◦F (0.62◦C), a quantity which is significant in the

field of global warming [33]. Moreover, according to NOAA’s Storm Prediction Center, the tornado

count of 856 for 1989 rose to 891 for 2013 [34].

In recent years, quantile regression has been widely used in the field of statistics, since it

provides a more comprehensive view on the relationship of response and predictor variables [23,26,

43]. However, climate studies mostly focus on average. The ordinary least square method (OLS)

estimates the relationship between predictor and response variables by using the conditional mean

function while quantile regression models explain that relationship using the conditional quantile

function (see Section 1.2); quantile regression methods can detect more subtle relationships between

independent and dependent variables and allow for potential heteroskedasticity.

In this thesis, we will be concerned in estimating derivatives of a conditional mean and/or
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conditional quantile function. Our work considers both, a parametric and non-parametric approach.

In the parametric approach we use the bootstrap technique for deriving confidence intervals of the

derivative of a quantile regression model. For the non-parametric method we use local polynomial

quantile regression.

1.1 Quantiles

Let F (x) = P (X ≤ x) be the cumulative distribution function (CDF) and f(x) the

probability density function of a random variable X. The τ -th quantile is defined as

Q(τ) = F−1(τ) = inf {x : F (x) ≥ τ}, (1.1)

where τ ∈ (0, 1) [27]. The median Q(1/2), is a special case of quantiles. The asymmetric quantile

loss function is defined as

ρτ (u) = u(τ − I(u < 0)), (1.2)

which is illustrated in Fig. 1.1. Here I(·) is the indicator function.

Figure 1.1: The Quantile Loss Function

In order to find the quantiles, we minimize E(ρτ (X − ξ)) with respect to ξ.

2



E (ρτ (X − ξ)) =

∫ +∞

−∞
ρτ (X − ξ) dF (x)

= (τ − 1)

∫ ξ

−∞
(x− ξ) dF (x) + τ

∫ +∞

ξ

(x− ξ) dF (x)

Differentiating this expectation with respect to ξ,

=
d

dξ

[
(τ − 1)

∫ ξ

−∞
(x− ξ) dF (x) + τ

∫ +∞

ξ

(x− ξ) dF (x)

]

=
d

dξ

[
(τ − 1)

(∫ ξ

−∞
x dF (x)− ξ

∫ ξ

−∞
dF (x)

)
− τ

(∫ ξ

+∞
x dF (x)− ξ

∫ ξ

+∞
dF (x)

)]

= (τ − 1)

(
ξf(ξ)− ξf(ξ)− 1.

∫ ξ

−∞
dF (x)

)
− τ

(
ξf(ξ)− ξf(ξ)− 1.

∫ ξ

+∞
dF (x)

)

= (τ − 1)(−F (ξ))− τ(1− F (ξ))

= F (ξ)− τ

and finding the unique ξ that satisfies F (ξ)−τ = 0, gives us the minimum value. This claim is based

on the fact that the second derivative of E (ρτ (X − ξ)) is the probability density function f(ξ), which

is a non-negative function. Hence, minimizing the quantile loss function applied to residuals leads

us to an estimation of the quantiles of the response variable. In general, the distribution function

F (x) is unknown. Thus, we estimate the distribution function using the empirical CDF which is

computed using sample observations.

Fn(x) =

n∑
i=1

I(xi ≤ x)

Then we minimize the expectation with the empirical distribution.

E (ρτ (X − ξ)) =

∫ +∞

−∞
ρτ (X − ξ) dFn(x)

=
1

n

n∑
i=1

ρτ (X − ξ)
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Since 1/n is a constant, minimizing the above expectation is the same as minimizing

n∑
i=1

ρτ (X − ξ).

Let R(ξ) =
∑n
i=1 ρτ (X − ξ). Suppose the optimal occurs at a point ξ̂. This happens when the left

and right derivatives of R are both non-negative at the point ξ̂. In summary, the quantiles can be

expressed as the solution to an optimization problem. This leads us to a more general method of

estimating models of conditional quantile functions.

1.2 Quantile Regression

Quantile regression was introduced by Koenker and Bassett [23]. It provides more robust

and efficient estimators compared to OLS and it does not make distributional assumptions on the

error term in the model.

Consider the following simple linear mean regression model,

Y = XTβ + ε, (1.3)

with E(ε) = 0. Therefore, E(Y |X = x) = xTβ . Here, β explains the change in the mean of the

response variable Y due to a small change in x. In OLS regression β is estimated by solving,

β̂ = argmin
{β∈Rp}

n∑
i=1

(yi − xTi β)2. (1.4)

A similar approach can be applied to estimate regression quantiles.

The τ -th conditional quantile function is defined as

Q(τ |x) = xTβ(τ), (1.5)

for τ ∈ (0, 1). Here β(τ) = (β1(τ), β2(τ), . . . , βp(τ))T is the quantile coefficient vector. Thus,

Q(τ |x) = β1(τ)x1 + β2(τ)x2 + . . . ,+βp(τ)xp, where βk(τ), for k = 1, 2, ...., p measures the change in

4



the τ -th quantile of Y with respect to xk.

Now, define the quantile regression model

yi = xTi β(τ) + εi(τ), (1.6)

where P (εi(τ) < 0) = τ . Analogous to (1.4), β(τ) can be estimated by solving the optimization

problem,

β̂(τ) = argmin
{β∈Rp}

n∑
i=1

ρτ (yi − xTi β), (1.7)

where ρτ (·) is the quantile loss function defined in (1.2).

In order to find β̂(τ), we rewrite the quantile regression model as,

yi = xTi β(τ) + εi(τ)

= xTi β(τ) + (ui − vi),

by introducing 2n artificial variables ui, vi, i = 1, . . . , n where ui = εiI(εi > 0) and vi = |εi|I(εi < 0)

[27] , i.e. the residual vector splits into positive and negative parts. As a consequence, the problem

introduced in (1.7) becomes,

min
{β∈Rp}

τ1Tnu + (1− τ)1Tnv

subject to y −XTβ = u− v

u ≥ 0, v ≥ 0

which has been solved using the Simplex algorithm [24], the Frisch-Newton interior point method

and the Interior method with preprocessing. Among them, the simplex method is usually preferred.

1.3 Asymptotic Results

Recall the quantile regression function in (1.7). Quantile regression estimators are consis-

tent, i.e. ‖β̂n(τ)−β(τ)‖ → 0 in probability as n→∞, assuming the following regularity conditions:

1. The conditional distribution functions F (Y |xi) are absolutely continuous with continuous den-

sities f(Y |xi) which are uniformly bounded away from 0 and ∞ at the τ -th quantile.

2. Q0 and Q1 are positive definite matrices such that,

5



(a) limn→∞ n−1
∑n
i=1 xix

T
i = Q0

(b) limn→∞ n−1
∑n
i=1 f

2
i (F−1(τ))xix

T
i = Q1

(c) max
i=1,...,n

‖xi‖/
√
n→ 0

Under the above conditions we have two scenarios for the asymptotic normal distribution of regres-

sion quantiles [27]. The first case is when the errors are independent and identically distributed,

√
n
(
β̂n(τ)− β(τ)

)
d→ N

(
0,

τ(1− τ)

f2(F−1(τ))
Q−10

)
,

and the second when the errors are independent, but not identically distributed,

√
n
(
β̂n(τ)− β(τ)

)
d→ N

(
0, τ(1− τ)Q−11 Q0Q

−1
1

)
,

The asymptotic covariance between quantiles τi and τj is

Acov
(√

n
(
β̂n(τi)− β(τi)

)
,
√
n
(
β̂n(τj)− β(τj)

))
= (τi ∧ τj − τiτj)Q1(τi)

−1Q0Q1(τj)
−1,

In order to do statistical inference based on the asymptotic distribution of regression quantiles, first

we have to estimate the covariance matrix. Under the iid assumption for the errors, the covariance

matrix is

var
(√

nβ̂(τ)
)

=
τ(1− τ)

f̂2(F−1(τ))
Q̂−10 ,

where Q̂0 = n−1
∑n
i=1 xix

T
i . The sparsity function s(τ) =

1

f(F−1(τ))
is estimated using the differ-

ence quotient of the empirical distribution function

ŝn(τ) =
F̂−1n (τ + hn|x̄)− F̂−1n (τ − hn|x̄)

2hn
,

where F̂−1n (τ |x̄) provides the estimated conditional quantile of of Y given x̄, x̄ is the sample mean

given by

∑n
i=1 xi
n

and hn is the bandwidth parameter where hn → 0 as n→∞.

Under non-iid error setting, the covariance matrix is

var
(√

nβ̂(τ)
)

= τ(1− τ)Q̂−11 Q̂0Q̂
−1
1 ,
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where Q̂1 = n−1
∑n
i=1 f̂

2
i (F−1(τ))xix

T
i and

f̂i(F
−1(τ)) =

2hn

xTi β̂(τ + hn)− xTi β̂(τ − hn)

The bandwidth parameter hn can be computed using the Bofinger method or the Hall and Sheather

method [18]. For further reference read Chapter 4 of Koenker [27].

Once we estimate the covariance matrix the next step is to construct the confidence intervals. In

order to do that, methods such as the Sparsity method, Rank score test and resampling techniques

can be used for that purpose. One of the resampling methods, Bootstrap, is explained in the next

section.

1.4 Bootstrapping

The bootstrap method is a general resampling procedure introduced by Efron [10] as a

computer based method for estimating the distributions of statistics using the observations of the

sample. It has many advantages. Although it provides inconsistent estimators in some occasions, it

does not require distributional assumptions like normality. Bootstrap provides more accurate infer-

ences even when the sample size is small. It can apply to statistics with sampling distributions that

are difficult to derive asymptotically. The main characteristic of this method is that it generates a

large number of repeated samples with replacement from the original sample in order to obtain a

good estimate of the sampling distribution of interest. Once we know the sampling distribution of

our statistic, we can find standard errors and confidence intervals for estimates such as mean, me-

dian [21] and regression coefficients [15]. Efron [11] has considered setting approximate confidence

intervals for a single parameter θ in a parametric and non-parametric scenario. Later on, Efron

and Tibshirani [12] worked together in deriving confidence intervals for time series data structures.

Recent work shows that the bootstrap method can be implemented to construct confidence intervals

for quantile regression estimates. Hahn [17] worked on bootstrapping quantile regression estimators

and he showed that the constructed confidence intervals have asymptotically correct coverage prob-

abilities. This work deals with a special method called the sieve bootstrap studied by Bühlmann [2]

for time series data. In sieve bootstrap, the basic idea is to fit a parametric model first and then

resample from the residuals. The algorithm is formally described as follows: Let x1, . . . , xn be a

7



sample from a stationary process {xt}t∈Z.

1. First we fit an autoregressive model of order p which is given by,

xt =

p∑
j=1

φjxt−j + zt t ∈ Z, (1.8)

2. Estimate φ̂1, . . . , φ̂n corresponding to the model (1.8). The residuals are then computed with

xt =

p∑
j=1

φ̂jxt−j + ẑt. (1.9)

3. Construct the resampling based on autoregressive residuals. For any t ∈ Z, z∗t
iid∼ F̂z, where

Fz is the empirical CDF of ẑt. Define {x∗t }t∈Z by the recursion formula,

x∗t =

p∑
j=1

φ̂jx
∗
t−j + ẑ∗t . (1.10)

4. Now consider any statistic Tn = Tn(x1, . . . , xn). Then we can define the bootstrapped statistic

T ∗n by

T ∗n = Tn(x∗1, . . . , x
∗
n). (1.11)

For further reference of the bootstrap methods, we recommend the book of Davison and Hinkley [8].

1.5 Local Linear Quantile Regression

Local Linear Quantile Regression is an important non-parametric tool used for smoothing

quantile regression curves. It is also useful in estimating derivatives of a particular estimate. The

idea of smoothing by local regression was studied by Rosenblatt [37] and Parzen [36] with kernel

density estimation methods. More general works on local regression have been written by Stone [39]

and Cleveland [5]. Cleveland and Devlin [6] applied local linear and quadratic fitting to multivariate

data. Local linear regression has been used as a basis for constructing projection pursuit estimates

by Friedman and Stuetzle [15]. Hastie and Tibshirani [20] used local regression in additive models.

A more detailed treatment on local regression can be found in Cleveland and Loader [7]. Local

8



regression, together with quantile regression provide us information about smooth quantile curves.

Some recent work on non-parametric estimation of conditional quantile functions can be found in

Bhattacharya & Gangopadhyay [1], Koenker et al [25] and Chaudhuri [3]. This thesis focuses on

estimating derivatives of a conditional quantile function. Chaudhuri [3] discussed the asymptotic

behaviour of regression quantiles and Chaudhuri et al [4] applied those results in estimating average

derivatives on local quantile regression. Suppose the sample {(xi, yi); i = 1, . . . , n} follows the model

yi = mτ (xi) + εi(τ), (1.12)

wheremτ (·) is an unknown function and x is uni-dimensional predictor . The quantile functionmτ (x)

can be locally approximated with a polynomial by using a Taylor expansion in the neighborhood of

x,

mτ (xi) ≈
p∑
j=0

mj
τ (x)

j!
(xi − x)j ≡ X̃T

i βτ ,

where mj
τ is the j-th derivative of mτ and X̃i = (1, (xi − x), (xi − x)2, . . . , (xi − x)p)T , βτ =

(β0τ , β1τ , β2τ , . . . , βpτ ). Then the function is estimated by

m̂τ (x) = β̂0τ , (1.13)

and the first derivative is given by

m̂′τ (x) = β̂1τ . (1.14)

Then, the local polynomial quantile regression estimates, βτ , are solved by using a weighted objective

function

argmin
{β∈Rp}

n∑
i=1

wi(x)ρτ (yi − X̃T
i β), (1.15)

where wi(x) = K((xi−x)/h) with K as the bounded kernel function and h the bandwidth parameter.

Local composite quantile regression(CQR), proposed by Kai et al [22], is a new non-

parametric regression method which provides more efficient estimators compared to the local linear

estimators. In order to find the bandwidth, the authors initialize their method using a generalized

version of the quantile loss function (1.2).

ρτku = u(τk − I(u < 0)),

9



k = 1, 2, . . . , q, with q loss functions and τk = k/(q + 1).

Then the locally weighted CQR loss function is defined as follows,

argmin

q∑
k=1

[
n∑
i=1

wi(x)ρτk(yi − X̃T
i β)

]
, (1.16)

where wi(x) = K((xi−x)/h) and X̃i = (1, (xi−x), (xi−x)2, . . . , (xi−x)p)T , βτ = (β0τ , β1τ , β2τ , . . . , βpτ ).

The previously introduced method has been used to estimate the function m(x) = E(Y |X = x) and

the derivative of the function, m′(x). Zheng et al [45] generalize CQR to allow for optimal data

based weights as opposed to the equal weighting scheme of Kai et al [22].

1.6 Bandwidth Selection

Bandwidth is interpreted as a degree of smoothness of a curve. Choosing the optimal band-

width is highly important in non-parametric regression. There are several methods for bandwidth

selection in non-parametric mean regression, namely, plug-in, rule-of-thumbs and cross validation.

These procedures, usually find an asymptotic optimal bandwidth by minimizing the Mean Square

Error(MSE) or Mean Integrated Squared Error (MISE). However, like other methods, classical tech-

niques for bandwidth selection have been extended to the field of quantile regression.

Abberger (1996) adjusted the cross validation to kernel quantile regression replacing the

squared loss criterion by the quantile loss function defined in (1.2). Therein, the following formula

was used:

CV (h) =

n∑
i=1

ρτ (Yi −Q(−i)
n (τ |xi)), (1.17)

where Q
(−i)
n (τ |xi) is the leave-one-out estimator for the conditional quantile estimate Qn(τ |xi) de-

fined in (1.5). One defect of the cross validation procedure is that it has a low relative convergence

rate, namely O
(
n−1/10

)
[30].

Yu & Jones [42] presented a rule-of-thumb based on plug-in idea for selecting regression

quantile smoothing parameters. They considered minimizing a local linear quantile function accord-

ing to (1.15) with p = 1. Let f be the marginal density of X , Q(τ |x) be the conditional quantile

estimate and g(H(Y )|X = x) be the conditional density of some function H(Y ) based on τ . Then,
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the optimal bandwidth is

h5τ =
R(K)τ(1− τ)

nµ2(K)
2
Q′′(τ |x)

2
f(x)g(Q(τ |x)|x)2

, (1.18)

where µ2(K) =
∫
u2K(u) du and R(K) =

∫
K2(u) du. Q′′(τ |x) and g(Q(τ |x)|x) both are unknown

functions.

The authors have proposed the subsequent steps (suitable only for symmetrical distributions) to

find the optimal bandwidth.

∗ Compute the ratio

(
hτ1
hτ2

)5

by using the optimal bandwidths at different quantiles τ1 and τ2.

(
hτ1
hτ2

)5

=
τ1(1− τ1)Q′′(τ2|x)2g(Q(τ2|x)|x)2

τ2(1− τ2)Q′′(τ1|x)2g(Q(τ1|x)|x)2
,

∗ According to their rule-of-thumb set Q′′(τ1|x) = Q′′(τ2|x).

∗ Employ the standard normal distribution for g(Q(τ |x)|x).

∗ Then the bandwidth formula becomes,

h5τ = π−12τ(1− τ)φ(Φ−1(τ))−2h51/2,

where h1/2 is the optimal bandwidth for the median.

∗ Compute h1/2 using the following expression, which can be considered as a combination of a

plug-in rule and a rule-of-thumb. (
hmean

h1/2

)5

=
2

π
,

where hmean is the optimal bandwidth for mean regression. Plug-in rule is used to find the

optimal choice for hmean ( Fan & Gijbels [13] ; Ruppert et.al [38] ),

h5mean =
R(K)σ2(x)

nµ2(K)2{m′′(x)}2f(x)
,

with the conditional mean function m(x) and the variance σ2(x).

The proposed rule-of-thumb has a relative rate of convergence of O
(
n−1/7

)
under the normal as-

sumption. A detailed description can be found in Yu & Jones [42] and Yu & Lu [44].
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Both Kai et al and Zheng et al, exploit the relationship between asymptotic MSE for OLS and that

for CQR to find plug-in bandwidths for CQR.

The optimal bandwidth in the sense of minimizing MISE(m̂τ (x)) is defined as,

h =

 ν0
∫ σ2(x)w(x)

fX(x)
dx

n
∫
m′′(x)2w(x) dxµ2

2


1/5

R1(q)1/5, (1.19)

where ν0 =
∫
K2(u) du , µ2 =

∫
u2K(u) du , fX(·) the marginal density function of the covariate X

, w(x) a weight function and

R1(q) =
1

q2

q∑
k=1

q∑
k′=1

τkk′

f(ck)f(ck)
, (1.20)

with τkk′ = τk ∧ τk′ − τkτk′ and ck = F−1(τk).

The function f(·) is estimated with the fitted residuals and σ2(x) is the variance of the residuals.

The plug-in bandwidth for the local linear regression estimator is

hLS =

 ν0
∫ σ2(x)w(x)

fX(x)
dx

n
∫
m′′(x)2w(x) dxµ2

2


1/5

. (1.21)

Then the expressions (1.19) and (1.21) follow that

h = hLSR1(q)1/5. (1.22)

Generally, local quadratic regression decreases the bias of an estimation without increasing

the variance ( Fan & Gijbels [13]). Therefore, local quadratic regression is preferred for estimating

the derivative. The optimal bandwidth is computed by minimizing the MISE (m̂′τ (x)) ,

h =

 27ν2
∫ σ2(x)w(x)

fX(x)
dx

n
∫
m′′′(x)2w(x) dxµ2

4


1/7

R2(q)1/7, (1.23)
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where ν2 =
∫
u2K2(u) du , µ4 =

∫
u4K(u) du and

R2(q) =
(
∑q
k=1

∑q
k′=1 τkk′)

(
∑q
k=1 f(ck))

2 . (1.24)

The plug-in bandwidth for the derivative estimator is

hLS =

 27ν2
∫ σ2(x)w(x)

fT (x)
dt

n
∫
m′′′(x)2w(x) dt µ2

4


1/7

. (1.25)

It follows that,

h = hLSR2(q)1/7. (1.26)

In order to find
∫
m′′′(x)2, consider a global cubic model,

y = β0 + β1x+ β2x
2 + β3x

3 + ε, (1.27)

where m̂(x) = β̂0 + β̂1x+ β̂2x
2 + β̂3x

3 and
∫

(m′′′(x))2 dx is,

∫
(m′′′(x))2 dx ≈ lim

δt→0

∑
i

(m′′′(xi))
2δx,

with δx = (xi − xi−1).

It is important to mention that in contrast to the previously discussed methods, the local quadratic

CQR estimator for the derivative exhibits the optimal rate of convergence O
(
n2/7

)
.

Many researchers have studied non-parametric regression with correlated errors. A good

review on this topic is given in the paper Opsomer et al [35]. They have focused on the non-

parametric model for time series data,

yi = m

(
i

n

)
+ εi, (1.28)

with E(εi) = 0 , V ar(εi) = σ2
ε and equally spaced fixed design points xi =

i

n
.

Suppose the errors {εi} comprise a stationary process with correlation function ρ(k) satisfying

13



∑∞
k=1 |ρ(k)| <∞. The optimal plug-in bandwidth for estimating m(x) is

hLS =

(
ν0 σ

2
ε (1 + 2R)

nµ2
2

∫
m′′(x)2 dx

)1/5

, (1.29)

where R =
∑∞
k=1 ρ(k). In Chapter 2 we consider model

εt = φεt−1 + zt,

where |φ| < 1 and σ2
z <∞. In this case we estimate

ĥLS =

(
ν0 σ̂

2
z

(1− φ̂)2nµ2
2

∫
m′′(x)2 dx

)1/5

. (1.30)

The corresponding non-parametric quantile model for time series data can be defined as

yi = mτ

(
i

n

)
+ ετi , (1.31)

with xi =
i

n
equally spaced fixed design points. The optimal bandwidth for estimating the function

mτ (x) is

ĥτ = ĥLSR̂1(q)1/5. (1.32)

In Chapter 2 we estimate m′τ (x) by smoothing y∗t = yt − φ̂ε̂t−1 against t. In this case the optimal

hτ is approximately

ĥτ =

(
27 ν2 σ̂

2
z

nµ2
4

∫
m′′′(x)2 dx

)1/7

R̂2(q)1/7. (1.33)

The remainder of this thesis is organized as follows. Chapter 2 applies quantile regression

to a data set of autocorrelated temperature anomalies. Our main goal is to estimate rate of change

of temperature anomalies. Chapter 3 explains some properties of the tornado dataset which is

non-normally distributed; We apply quantile regression method to tornado count and investigate

derivative behavior. The conclusions are given in Chapter 4 and the R-code is in the Appendix.
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Chapter 2

Quantile Regression with

Temperature data

2.1 Parametric Procedure

This work is concerned in estimating the derivatives of mean or quantile regression func-

tions. Estimation of the derivative i.e. rate of change, is important in exploring the structure of

regression curves.

Most of the statistical literature on regression analysis focuses on the conditional mean

function µ(X) = E(Y |X = (x1, . . . , xn)) and estimating partial derivatives
∂µ(X)

∂xi
using regression

coefficients. In this work we will only consider one explanatory variable. As in Chaudhuri et al [4],

quantile regression defines the conditional quantile function and the rate of change in the response

variable as θτ (X) = Qτ (Y |X = (x1, . . . , xn)),
∂θτ (X)

∂xi
, respectively. The derivatives are estimated

by using βτ , which are the regression estimates at the τ -th quantile as defined in the model (1.6).

We consider a parametric and non-parametric approach applied to a data set of tem-

perature anomalies in order to capture the behavior of the derivative. This section explains the

parametric approach. The temperature anomaly is the difference between a particular temperature

and the average over a base period. The base period is also called long-term average or reference

value. A positive anomaly signifies that the temperature was warmer than the reference value and

a negative anomaly means that the temperature was cooler than the reference value. The reason
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to study the anomalies, instead of the actual values is that they could function as better indica-

tors. For example, a summer month over an area may be cooler than average, both at a mountain

top and inhabited valley, but the actual temperatures will be quite different at the two locations.

Moreover, it is difficult to collect temperature values in some areas in the world which have few

temperature measurement stations so that temperature is measured over large areas such as deserts,

mountains and remote forests. Thus, using the departure from an average, compared to the actual

temperatures, allows for more accurate interpretations [32].

The next important thing is selecting a proper model for the given data. One of the best

criteria used for this purpose is the Schwarz Information Criterion(SIC)(Kohler & Murphree 1988).

Since the SIC is derived using Bayesian arguments, it is also known as the Bayesian Information

Criterion (BIC) [40].

The Schwarz Criterion takes the general form,

SIC = n ln

(∑
i ρ(εi)

n

)
+ k ln (n) (2.1)

where k is the number of parameters. As a consequence, the best model will possess the minimum

SIC value.

Among the linear, quadratic and cubic models, we applied the SIC criterion to choose the

optimal one. The results indicate that the quadratic model has minimal SIC value and therefore it

is the one that we consider for our work.

Let t = (t1, t2, . . . , tn) be time points and y = (y1, y2, . . . , yn) the n observed responses. Consider

the parametric regression model,

yτ = β0τ + β1τ t+ β2τ t
2 + ετ (2.2)

where ετ represents the residual vector, and ετ satisfies (1.6). We use the model (2.2) to fit regression

quantiles for temperature data and observe the behavior of the curves at different quantiles. Figure

2.1 illustrates the fitted models for different quantiles τ = 0.05, 0.25, 0.50, 0.75, 0.95. The package

quantreg available in R is used to estimate and make inferences about conditional quantile functions

[27]. Let us consider the median quantile regression fit. The function rq in quantreg is used to fit

the median regression for the observed data using the quadratic model.
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Figure 2.1: Quantile Regression Curves

In most cases time series data inherits autocorrelation, a property which can be verified

with the Ljung-Box test [29], known to be robust to outliers. We apply this test to residuals from the

fitted parametric quantile regression. The Ljung-Box test statistic for our model is 182.3074, which

has a p-value of < 2.2e-16. Since the p-value for the test statistic regarding the median regression

is near zero, we can conclude that the temperature data has significant autocorrelation.

The first part of our goal, fitting a parametric model to our data, is complete. The next step is to

obtain an estimate of the derivative using a resampling procedure from the autocorrelated residuals.

For that matter, we consider the ARIMA(1,0,0) model,

εt = φεt−1 + zt (2.3)

with |φ| < 1. After examining the time series plot of the residuals (not included) and applying the

Ljung-Box test to AR(1) residuals {ẑt}, we selected model (2.3) to fit the residuals of the parametric

model.

Then we apply a non-parametric bootstrap procedure (the algorithm is explained in Section (1.4))
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inside the parametric approach to construct the confidence interval for the derivative of the median

regression fit.

The bootstrap sample is generated in the following way:

1. Obtain bootstrap residual values z∗1 , z
∗
2 , . . . , z

∗
n using the boot function in R.

2. Compute ε∗t values with the recursive formula ε∗t = φ̂εt−1 + z∗t where t = 2, . . . , n.

3. Construct new data y∗ with the resampled residuals ε∗t .

4. Estimate regression coefficents β∗1τ and β∗2τ using the new model y∗τ = β0τ + β1τ t+ β2τ t
2 + ε∗τ .

5. Repeat steps 1 through 4, N times to obtain estimates of β∗iτ with i = 1, 2.

6. Find the derivative of the bootstrapped model, .i.e T ∗n = β∗1τ + 2β∗2τ t.

After running for N = 999, we have a collection of estimated coefficients for the derivative.

We construct a 95% confidence interval for the estimation using those coefficients with the following

formula:

(T ∗(N+1)(α/2), T
∗
(N+1)(1−(α/2))) (2.4)

where T ∗ is the estimate of the bootstrap sample. If (N + 1)(α/2) is an integer, the quantile ,

T ∗(N+1)(α/2) is estimated with the (N + 1)(α/2) element of the ordered bootstrap sample. If not,

interpolation is used between (b(N + 1)(α/2)c)-th and (b(N + 1)(α/2) + 1)c)-th elements of the

ordered sample, where b·c denotes the floor function.

According to the above formula, for 999 estimated values, 95% confidence level would have

25 -th and 975 -th elements as lower and upper limits. The derivative for the first quartile, median

and third quartile regression fits and the 95% confidence interval for the estimation are illustrated in

Fig.2.2. Based on the figures we have a 95% confidence that the derivative is non-negative after 1913

for the median regression while it is true for first and third quartile after 1918, 1911 respectively.

2.2 Non-Parametric Procedure

Non-parametric kernel smoothing techniques can be applied without making any restrictive

assumptions about the form of the unknown function introduced in the model (1.12). Therefore,

these techniques have become quite popular based on their flexibility over the parametric methods.
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Figure 2.2: Parametric Estimation of the Derivative for different Quantiles
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Nadaraya-Watson, local linear and nearest-neighbor are some well-known kernel smoothing methods.

The performance of these methods is based on the smoothness of the regression function, the kernel

density function and the bandwidth parameter. Here we are interested in local polynomial quantile

regression.

Local fitting combined with quantile regression was introduced in the field of non-parametric

statistics by Chaudhuri [3]. Yu & Jones [42] worked on local linear quantile regression focusing on

bandwidth selection. Yu & Lu [44] studied the estimation of average derivative using a local linear

additive quantile regression model. Ghouch & Genton [16] worked on local polynomial quantile re-

gression with parametric features. A vast literature can be found on this non-parametric regression

method.

In order to estimate the derivative for the local quadratic median regression we first recall the

non-parametric model (1.31)

yt = mτ

(
t

n

)
+ ετt

with equally spaced fixed design points xi =
t

n
and apply the following steps:

1. We consider the bandwidth (1.32) (which is explained in Section (1.6)). Finding the optimal

bandwidth for the local linear regression estimator requires the plug-in bandwidth hLS and

R1(q). To get hLS, we do the following:

(a) Approximate
∫

(m′′(x))2 dx in the following way:

i. We fit a second order polynomial of mean regression.

ii. Then the derivative m′′(x) is given by 2β̂2 .

iii. Finally, approximate
∫

(m′′(x))2 dx with
∑
i(m

′′(xi))
2δx (Refer (1.6)). In our case x

denotes years and δx = 1.

(b) Set ν0 =
1

2
√
π

and µ2 = 1 for the Gaussian kernel.

(c) The ARIMA coefficient φ̂ is computed by fitting an ARIMA model (2.3) for the residuals

of the quadratic model obtained in step (a), and σ̂2
z is the variance for residuals of the

ARIMA model.

(d) Using the above information we now calculate the plug-in bandwidth hLS.
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Letting q = 1, R1(q) is computed with

R1 =
(1/2)(1− 1/2)

f(F−1(0.5))2

where f(F−1(0.5)) is the density of ετt evaluated at 0.5-th quantile. In here, f(·) is estimated

with the fitted residuals of the median regression function. Since kernel density estimation is

a well-known non-parametric method for estimating probability density functions, we use the

Gaussian kernel density function to infer the error density (see the R-code).

With the values hLS and R1, we are ready to compute the optimal bandwidth for estimating

the function m̂τ (x) as explained in (1.32). At this point the first step is complete.

2. We estimate mτ (x) using the bandwidth computed in step 1. That is done by fitting the local

linear qunatile regression model (1.15) using the package lprq in R. The code to produce the

local linear fit is:

fit=lprq(x, y, h, tau = 0.5, m)

where x and y are the explanatory and the response variables, respectively. In our case x

is time, y is the annual temperature anomalies, h is the bandwidth parameter, τ is the fixed

quantile andm is the number of points where the function is to be estimated. For the smoothing

kernel we use the Gaussian kernel which is the default in R.

In order to take into account autocorrelation, we obtain the residuals of the non-parametric fit

(ετt ) using fit$residuals. Once ετt is obtained, as we have done in the parametric approach,

we plug it in back into the ARIMA model (2.3) and find the value of the ARIMA coefficient

φ̂. Now we consider a new model in terms of the original one which can be written in the

following way:

yt = mτ (x) + φετt−1 + zt (2.5)

Using the ARIMA coefficient φ̂ and error terms ετt−1, we substitute them in the previous

equation and get

yt − φ̂ετt−1 = m̃τ (x) + zt (2.6)

which defines the new model

y∗ = m̃τ (x) + zt (2.7)
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where y∗ represents the new observed values. The final step is to estimate mτ (x) again based

on (x, y∗). The purpose of transforming the original y values to y∗ values is to remove the

autocorrelation by bringing it closer to the iid assumption. This whole procedure is executed

as many times as necessary until we get the desired smoothness.

3. With the new y∗ values we estimate the derivative of m̂τ (x) using the optimal bandwidth in

(1.33).

Here, ν2 = 1/(4
√
π) and µ4 = 3 for the Gaussian kernel. The way of calculating

∫
m′′′(x) dx

is similar to the one that was explained in step 1 , but with a cubic model (1.27) and σ2 is the

variance of the residual arising in model (2.7). Computing

R2 =
(1/2)(1− 1/2)

f(F−1(0.5))2

and the bandwidth for local quadratic regression, we get the optimal bandwidth, which we use

together with the y∗ values to estimate the derivative.

The curves shown in the Fig:2.3, Fig:2.4 and Fig:2.5 display the estimate of the derivative regarding

the median, first and third quartile, respectively.

We considered three different quantiles, where we expected different behaviors of their curves. How-

ever, the results showed something different, namely, we saw a similar pattern, i.e. a growth of the

three estimates in the parametric approach in contrast to the corresponding non-parametric esti-

mates. This is because that data is approximately normally distributed (see Fig: 2.6) and appears

to have a constant variance, so that mτ (x) = m(x) + qτ and m′τ (x) = m′(x).
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Figure 2.3: Non-Parametric Estimation of the Derivative for the Median

Figure 2.4: Non-Parametric Estimation of the Derivative for First Quartile

Figure 2.5: Non-Parametric Estimation of the Derivative for Third Quartile
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Figure 2.6: Q-Q plot for Temperature Data

24



Chapter 3

Tornado Climatology with

Quantile Regression

Since quantile regression does not make restrictive assumptions on the form of the error

distribution, it is able to do statistical analysis on non-normal data. We have studied a data set

comprising the number of tornadoes for each month from 1950-2013. The data set is archived from

NOAA [32].

Our work consists of two parts. First we split the data by months and observe the profile

of the derivative of the number of tornadoes as a function of time (years) and check whether the

derivative depends on the month and quantile. Next, for every year, we sum over the months the

number of tornadoes, i.e. yearly tornado counts and study the dependency of the derivative on

different quantiles.

3.1 Monthly Tornado Analysis

3.1.1 Parametric Approach

Consider the following linear quantile regression model,

yn,m = β0,m(τ) + β1,m(τ)t+ ετn,m n = 1, . . . , 64 m = 1, . . . , 12 (3.1)
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where n denotes the year and m denotes the month.

First we fit the linear quantile model introduced in (3.1) for each month. Using the Q-Q

plots obtained for the residuals of twelve parametric models, we can conclude that the data follows

non-normality. See Fig.3.1.

Figure 3.1: Q-Q Plots for Monthly data

The next task was to check the autocorrelation. We applied the Ljung-Box test to assess

it. The resultant p-values by the aforementioned test indicate that there is no autocorrelation. As

a consequence, we continue our work under the independent and non-normal assumption.

The method that we used to observe the behavior of the derivative is explained as follows:

1. Consider the linear quantile model introduced in (3.1) for each month.

2. The quantile regression estimator for the derivative is given by the coefficients β1,m m =

1, . . . , 12.

3. Plot the derivative versus the month.

4. Repeat steps 1-3 for different quantiles.
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Fig: 3.2 displays the derivative for each month at three different quantiles.

Figure 3.2: The Derivative Estimation by the Month and Quantile

There is a small difference in the derivative for the quantiles in January, February, March, August

and December and significant one in June. Moreover, the estimation is almost the same for the

month of May.

3.1.2 Non-Parametric Approach

We consider the local quadratic quantile regression to estimate the derivative of mτ (x) in

(1.12). The lprq package in R is used to fit the nonparametric model.

Bandwidth plays an important role in nonparametric regression. Thus, we should aim for

finding the best possible candidate. In order to do this, we apply the method in the Section 1.6, Kai

& Li [22] along with independent observations. More concretely, we estimate the derivative using

the optimal bandwidth given by this concise formula explained in (1.26)

h = hLSR2(q)1/7 (3.2)
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with hLS, the optimal plug-In bandwidth for local least squares regression. In turn, hLS is computed

with the function dpill in the package KernSmooth in R.The following figure (Fig:3.3) illustrates

the behavior of the derivative for local median regression.

Note that the blue line is the parametric estimation of the derivative.

Figure 3.3: The Local Median Regression estimation for the derivative by Month

Since we used a local quadratic function, the derivative should be linear. Nevertheless, Fig:3.3

exhibits different patterns. One possibility for this could be that we chose the simplest model, which

may be inappropriate. It may be recommendable to introduce a higher order polynomial to obtain

a better estimation. By looking at the graphs, a cubic model for January-April, a fourth order

polynomial for May-August and a periodic function for September-December might be appropriate.

Another reason could be that the non constant nature of the variance might be responsible for the

nonlinearity of the derivative.

In addition, we observe the shape of the derivative at different quantiles which are characterized by

Fig: 3.4, Fig: 3.5, Fig: 3.6 and Fig:3.7.

28



Figure 3.4: The Local Regression estimation for the derivative at τ = 0.25, 0.5 & 0.75 -th quantiles
: January-March

3.2 Yearly Tornado Analysis

One might be interested in estimating the yearly total number of tornadoes and its deriva-

tive. This section provides a method to do such analysis and applies it to tornado data going from

1950 to 2013. First we fit a local quadratic median regression and check the normality of the resid-

uals using the Q-Q plot . In our case, Fig:3.8 indicates a departure from normality. Additionally,

the Ljung-Box test reveals that there is no significant autocorrelation.

Then, we apply the same bandwidth used in Section 3.1.2 to non-parametrically estimate

the derivative. The results are illustrated in Fig:3.9. From the graphs we can conclude that the

non-parametric fit for the median is close to the parametric model over the years. As in the monthly

analysis, the quadratic model does not appears suitable to estimate the derivative. Based on the

results, a global quartic model may be appropriate.
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Figure 3.5: The Local Regression estimation for the derivative at τ = 0.25, 0.5 & 0.75 -th quantiles
: April-June
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Figure 3.6: The Local Regression estimation for the derivative at τ = 0.25, 0.5 & 0.75 -th quantiles
: July-September
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Figure 3.7: The Local Regression estimation for the derivative at τ = 0.25, 0.5 & 0.75 -th quantiles
: October-December
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Figure 3.8: The Q-Q plot for Yearly Data

Figure 3.9: The Derivative for Yearly Data at τ = 0.25, 0.5 & 0.75 -th Quantiles
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Chapter 4

Conclusions and Discussion

This thesis illustrates two applications of climatology using quantile regression in several

settings. In particular, we introduced a method to handle autocorrelation in the framework of

quantile regression and used it with the temperature data. Our results illustrate that the method

works well for the parametric model since the increasing nature of the temperature is captured by

the model in that the derivative is mostly positive (see Fig:2.2). In fact the sieve bootstrap method

which we used inside the parametric approach was successful with quantile regression. In the non-

parametric case, selecting the bandwidth parameter was of utmost importance. However, it can

be shown that using the proper bandwidth parameter, the non-parametric model approaches the

parametric one. The reason for this is the normality and the constant variance . By looking at the

results we can see there is an issue in the smoothness of the first quartile compared to the median

and third quartile (Fig:4.1). Since the optimal bandwidth for mean regression (hLS) (Refer (1.30))

provided us fair results, the only quantities that may be the cause of not attaining the desired output

are R1(q) and R2(q) in (1.20) and (1.24). In turn, R1(q) and R2(q) depend on f(·) which is the

unknown distribution function estimated with the fitted residuals using a kernel density function.

Thus, estimating f(·) is the crucial step. However, we will not pursue this idea further.

Therefore, in order to get a better estimation for the derivative our attention focused on

local least square regression. We followed the same method in section 2.2 with the local quadratic

least square function and the bandwidths (1.30), (1.33) (see R code in Appendix C). Using this

procedure we obtained the result shown in Fig:4.2 which has the same pattern as the parametric

models that were obtained for quantile regression (Fig:2.2).
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Figure 4.1: The Derivative Estimation for the Local Quadratic Quantile Regression

Moreover, we compared the parametric and non-parametric model for least square regres-

sion, and both generated very similar results as illustrated in Fig.4.3 and Fig.4.2. Now, the question

of whether we need the non-parametric model can be easily addressed. The answer is simply no,

since there is no significant difference in the estimated derivative.

Based on the previous discussion, after analyzing the temperature data, we can conclude

that local least square regression performs better than quantile regression. Another important re-

mark regarding the temperature analysis is that the quadratic model with first order autocorrelation

provides a reliable estimate of the derivative function.

Since quantile regression does not require any distributional assumptions, we were able to

handle non-normal data as it was done with the tornado data set. We chose the simplest model to

estimate the derivative. However, figures (Fig:3.4 -Fig:3.7) emphasize that a more general model

has to be considered in order to do a better analysis. A possible continuation of this work is the

introduction of a global cubic model and a quartic model for our monthly and yearly tornado data,

respectively, which we expect will allow for comparisons between months and years.

Through out this thesis we have discussed the flexibility of both parametric and non-
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Figure 4.2: The Derivative Estimation for the Local Quadratic Least Square Regression

parametric statistical methods with quantile regression. We discussed as well the approach of statis-

tical analysis of linear and nonlinear models with quantile regression. Quantile Regression provides

us with a comprehensive picture of the sampling distribution compared to least square regression.

Least square regression focuses on the mean of the response given x variables without accounting for

the full conditional distributional properties. In contrast, quantile regression uses several regression

curves at various quantiles of the distribution, providing us those very same distributional properties

(see Fig:2.1). Even though quantile regression is more versatile, when talking about residuals with

the normality and the constant variance assumption, we would prefer least square regression for our

temperature analysis. On the other hand, when dealing with the non-normality and non constant

variance assumption, quantile regression is a better candidate for the estimation of the derivative.
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Figure 4.3: The Parametric Estimation of the Derivative for the Quadratic Least square Regression
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Appendix A R Code for Temperature Data

Parametric Approach

annualtemp <- scan()#Read Land and Ocean Data

times <- 1:(length(annualtemp))

plot(times,annualtemp,ylab ="annual temperature anomalies")

x1<- timesˆ2

fitmed <- rq(annualtemp˜times+x1,tau =.5)

lines(times,fitmed$fitted,col=2)

beta0 <-summary(fitmed)$coefficients[1,1]

beta1 <-summary(fitmed)$coefficients[2,1]

beta2 <-summary(fitmed)$coefficients[3,1]

res_P <-fitmed$residuals ###Residulas of parametric Model

R_P <-as.matrix(res_P)

acf(res_P)

pacf(res_P)

####Fitting ARIMA model

arimafit <-arima(res_P,order=c(1,0,0))

p <-arimafit$coef[1]

####Z_t values in ARIMA model

res_A <-arimafit$residuals

Z <-matrix(nrow=134,ncol=1)

Z <-res_A
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Box.test(Z,type ="Ljung",lag=24,fitdf=0)

T <-beta1+(2*beta2*times)##Derivative for the Parametric Model

###Bootstraping T values

eps_star <- matrix(nrow =134,ncol= 1)

ystar <-matrix(nrow=134,ncol=1)

boot1 <-function(index,M){

subscripts1 <-sample((1:134),134,replace=TRUE)

Zstar <-M[subscripts1,]

eps_star[1] <-Zstar[1]

ystar[1] <-beta0+(beta1*times[1])+(beta2*x1[1])+eps_star[1]

for(i in 2:134){

eps_star[i] <-Zstar[i]+(p*eps_star[i-1])

ystar[i] <-beta0+(beta1*times[i])+(beta2*x1[i])+eps_star[i]

}

#ystar

Boot_fitmed <-rq(ystar˜times+x1,tau=.5)

betastar1 <-summary(Boot_fitmed)$coefficients[2,1]

betastar2 <-summary(Boot_fitmed)$coefficients[3,1]

Tstar <-betastar1 + (2*betastar2*times)

Tstar

}

Tstar_B <-sapply(1,boot1,M=Z)
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Tstar_Boot <-matrix(nrow=134,ncol=999)

Tstar_Boot <-sapply(1:999,boot1,M=Z)

qup <-apply(Tstar_Boot,1,quantile,probs =0.975)

qlow<-apply(Tstar_Boot,1,quantile,probs =0.025)

plot(1:134,Tstar_B,xlab="times",ylab="Derivatives",

ylim=c(-2e-2,2.5e-2))

lines(1:134,Tstar_B)

lines(1:134,qup,col=2)

lines(1:134,qlow,col=2)

abline(h=0,lty=2)

legend(70,-0.01,c("Derivative","Confidence Limits"),

col=c(1,2),lty=c(1,1),pch=c(1,NA))

title("Derivative for the median")

lines(x=c(34.3,34.3),y=c(0,-0.03),lty=2,col="blue")

Non-Parametric Approach

annualtemp<-scan()#Read Land and Ocean Data

times<-1:(length(annualtemp))

x1<-timesˆ2

##########Step 1-Computing the Bandwidth

fitmedian <-lm(annualtemp˜times+x1)

beta2 <-summary(fitmedian)$coefficients[3,1]

T <-2*beta2

m_dprime <-(Tˆ2)
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PR <-fitmedian$residuals

######ARIMA coefficient

arimafit <-arima(PR,order=c(1,0,0))

p <-arimafit$coef[1]

#######variance

sigmaZ <-var(arimafit$residuals)

######compute R1

fitmedian2 <-rq(annualtemp˜times)

res2<-fitmedian2$residuals

######kernel density

den<-density(res2,kernel = "gaussian")

n <-length(den$y)

y.cs <-cumsum(den$y)

i.med <- length(y.cs[2*y.cs <= y.cs[n]])

y.med <- den$y[i.med]

v0 <-1/(2*sqrt(pi))

mu2<-1

h_LS <-((v0*sigmaZ)/(134*((1-p)ˆ2)*m_dprime*(mu2ˆ2)))ˆ(1/5)

R1 <-((1/4)/((y.med)ˆ2))

hoptimal <-h_LS*(R1ˆ(1/5))

##########Step 2-Estimating the function
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annualtemp_c <- annualtemp

for(k in 1:10){

Nfit <-lprq(times,annualtemp_c,hoptimal,m=134,tau=0.5)

res <-annualtemp-Nfit$fv

arimafit <-arima(res,order=c(1,0,0))

phi<-arimafit$coef[1]

#ystar[1]<-annualtemp[1]

#annualtemp[1] never changes

#res[n] never used

for(i in 2:134){

annualtemp_c[i]<-annualtemp_c[i]-(phi*res[i-1])

}

}

R <-arimafit$residuals

Box.test(R,type="Ljung",lag=24,fitdf=0)

sig <-var(R)

newy <-annualtemp_c

########### Step 3-Estimating the derivative

x1 <-timesˆ2

x2 <-timesˆ3

fitmed1 <-lm(newy˜times+x1+x2)

beta3 <-summary(fitmed1)$coefficients[4,1]

T2 <-6*beta3

T_tprime <-(T2ˆ2)
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fit <-rq(newy˜times,tau=0.5)

RR <-fit$residuals

D1 <-density(RR,kernel = "gaussian")

n <-length(D1$y)

y.cs <-cumsum(D1$y)

i.med <- length(y.cs[2*y.cs <= y.cs[n]])

y.med <- D1$y[i.med]

v2 <-1/(4*sqrt(pi))

mu4 <-3

h_LS <-((v2*sig)/(134*T_tprime*(mu4ˆ2)))ˆ(1/7)

R2 <-((1/4)/((y.med)ˆ2))

hopt <-h_LS*(R2ˆ(1/7))

lprq<-function (x, y, h, tau = 0.5, m = 50)

{

xx <- seq(min(x), max(x), length = m)

fv <- xx

dv <- xx

for (i in 1:length(xx)) {

z <- x - xx[i]

u<-zˆ2

wx <- dnorm(z/h)

r <- rq(y ˜ z+u, weights = wx, tau = tau, ci = FALSE)

fv[i] <- r$coef[1]

dv[i] <- r$coef[2]

}

list(xx = xx, fv = fv, dv = dv)
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}

Nfit1 <-lprq(times,newy,hopt,m=134,tau=0.5)

plot(Nfit1$xx,Nfit1$dv,pch =".",ylim=c(-0.05,0.05),lwd=2)

lines(Nfit1$xx,Nfit1$dv,lwd =2)

abline(h=0,lty=2)
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Appendix B R Code for Tornado Data

#################### MONTHLY ANALYSIS

tornado<-read.csv(file.choose())

freq<-tornado$Freq

times<-1:64

##SPLITING THE DATASET BY MONTHS

jan<-freq[seq(1,768,by=12)]

feb<-freq[seq(2,768,by=12)]

mar<-freq[seq(3,768,by=12)]

apr<-freq[seq(4,768,by=12)]

may<-freq[seq(5,768,by=12)]

jun<-freq[seq(6,768,by=12)]

jul<-freq[seq(7,768,by=12)]

aug<-freq[seq(8,768,by=12)]

sep<-freq[seq(9,768,by=12)]

oct<-freq[seq(10,768,by=12)]

nov<-freq[seq(11,768,by=12)]

dec<-freq[seq(12,768,by=12)]

###### PARAMETRIC APPROACH

fitjan<-rq(jan˜times,tau=.50)

res_jan<-fitjan$resid

qqnorm(res_jan)

qqline(res_jan)
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betajan<-summary(fitjan)$coefficients[2,1]

Beta<-cbind(betajan,betafeb,betamar,betaapr,betamay,

betajun,betajul,betaaug,betasep,betaoct,betanov,betadec)

B<-matrix(Beta,ncol=1,nrow=12,byrow=FALSE)

month<-1:12

plot(month,B,xlab="month",ylab="Derivative",pch=19)

lines(month,B)

###### NONPARAMETRIC APPROACH

lprq=function (x, y, h, tau, m )

{

xx <- seq(min(x), max(x), length = m)

fv <- xx

dv <- xx

for (i in 1:length(xx)) {

z <- x - xx[i]

u <- zˆ2

wx <- dnorm(z/h)

r <- rq(y ˜ z+u, weights = wx, tau = tau, ci = FALSE)

fv[i] <- r$coef[1]

dv[i] <- r$coef[2]

}

list(xx = xx, fv = fv, dv = dv)

}

fitjanorg<-rq(jan˜times,tau=.50)

betajan<-summary(fitjanorg)$coefficients[2,1]
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D<-density(res_jan,kernel = "gaussian")

n<-length(D$y)

y.cs<-cumsum(D$y)

i.med <- length(y.cs[2*y.cs <= y.cs[n]])

y.med <- D$y[i.med]

year<-1:64

h_LS<-dpill(year,jan)

hLAD<-((1/4)/((y.med)ˆ2))ˆ(1/7)

h<-h_LS*hLAD

Nfit<-lprq(year,jan,h,m=64,tau=0.50)

plot(Nfit$xx,Nfit$dv,pch=20,main="Q2-January")

lines(Nfit$xx,Nfit$dv)

abline(h=betajan,col="blue")

#################### YEARLY ANALYSIS

yearly<-1:64

for(i in 0:63){

yearly[(i+1)]=sum(freq[(12*i+1):(12*i+12)])

}

times<-1:64

plot(times,yearly,xlab="year",ylab="Number of Tornadoes")

fitmed<-rq(yearly˜times,tau=.50)

res<-fitmed$resid
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qqnorm(res,main="Yearly Data")

qqline(res)

Box.test(res, lag = 24, type = c("Ljung-Box"))

### pvalue=0.8168

beta<-summary(fitmed)$coefficients[2,1]

x2<-timesˆ2

fitmed1<-rq(yearly˜times+x2,tau=.50)

res1<-fitmed$resid

D<-density(res1,kernel = "gaussian")

n<-length(D$y)

y.cs<-cumsum(D$y)

i.med <- length(y.cs[2*y.cs <= y.cs[n]])

y.med <- D$y[i.med]

h_LS<-dpill(times,yearly)

hLAD<-((1/4)/((y.med)ˆ2))ˆ(1/7)

h<-h_LS*hLAD

Nfit<-lprq(times,yearly,h,m=64,tau=0.50)

plot(Nfit$xx,Nfit$dv,pch=20,main="Median")

lines(Nfit$xx,Nfit$dv)

abline(h=beta,col="blue")
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Appendix C R Code for Temperature Data : Least Square

Regression

Parametric Approach

annualtemp<-scan()#Land and Ocean

times<-1:(length(annualtemp))

x1<-timesˆ2

fit<-lm(annualtemp˜times+x1)

beta0<-summary(fit)$coefficients[1,1]

beta1<-summary(fit)$coefficients[2,1]

beta2<-summary(fit)$coefficients[3,1]

res_P<-fit$residuals

arimafit<-arima(res_P,order=c(1,0,0))

p<-arimafit$coef[1]

Z <-arimafit$residuals

Box.test(Z,type="Ljung",lag=48,fitdf=0)

T<-beta1+(2*beta2*times)##Derivative for the Parametric Model

T_prime<-2*beta2####Second derivative

###Bootstraping T values

eps_star<-matrix(nrow=134,ncol=1)

ystar<-matrix(nrow=134,ncol=1)
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boot1<-function(index,M){

subscripts1<-sample((1:134),134,replace=TRUE)

Zstar<-M[subscripts1,]

eps_star[1]<-Zstar[1]

ystar[1]<-beta0+(beta1*times[1])+(beta2*x1[1])+eps_star[1]

for(i in 2:134){

eps_star[i]<-Zstar[i]+(p*eps_star[i-1])

ystar[i]<-beta0+(beta1*times[i])+(beta2*x1[i])+eps_star[i]

}

#ystar

Boot_fit<-lm(ystar˜times+x1)

#summary(Boot_fit95)

betastar1<-summary(Boot_fit)$coefficients[2,1]

betastar2<-summary(Boot_fit)$coefficients[3,1]

Tstar<-betastar1+(2*betastar2*times)

Tstar

}

Tstar_B<-sapply(1,boot1,M=Z)

Tstar_Boot<-matrix(nrow=134,ncol=999)

Tstar_Boot<-sapply(1:999,boot1,M=Z)

#Tstar_Boot

qup<-apply(Tstar_Boot,1,quantile,probs=0.975)

qlow<-apply(Tstar_Boot,1,quantile,probs=0.025)

plot(1:134,Tstar_B,xlab="times",pch=’.’,
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ylab="Derivatives",ylim=c(-0.0075,0.02))

lines(1:134,Tstar_B)

lines(1:134,qup,col=2)

lines(1:134,qlow,col=2)

abline(h=0,lty=2)

legend(10,0.0175,c("Derivative","Confidence Limits"),col=c(1,2),lty=c(1,1),pch=c(’.’,NA))

title("Derivative for the median")

lines(x=c(33.0825,33.0825),y=c(0,-0.03),lty=2,col="blue")

Non-Parametric Approach

######Step 1

annualtemp<-scan()#Land and Ocean

times<-1:(length(annualtemp))

x1<-timesˆ2

fitmedian<-lm(annualtemp˜times+x1)

beta2<-summary(fitmedian)$coefficients[3,1]

#######second derivative

T<-(2*beta2)

m_dprime<-(Tˆ2)

######variance of the parametric model

par_res<-fitmedian$residuals

#####ARIMA coefficient

arimafit<-arima(par_res,order=c(1,0,0))

p<-arimafit$coef[1]
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#######variance

sigmaZ<-var(arimafit$residuals)

v0<-1/(2*sqrt(pi))

mu2<-1

h_LS<-((v0*sigmaZ)/(134*((1-p)ˆ2)*m_dprime*(mu2ˆ2)))ˆ(1/5)

####### Step 2

annualtemp_c <- annualtemp

for(k in 1:2){

Nfit1<-locfit(annualtemp_c˜times,alpha=h_LS)

N<-as.vector(fitted(Nfit))

res<-annualtemp-N

arimafit<-arima(res,order=c(1,0,0))

phi<-arimafit$coef[1]

for(i in 2:134){

annualtemp_c[i]<-annualtemp_c[i]-(phi*res[i-1])

}

}

R<-arimafit$residuals

Box.test(R,type="Ljung",lag=24,fitdf=0)

sig<-var(R)

newy<-annualtemp_c

########Step 3
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fitmed1<-lm(newy˜times+x1+x2)

beta3<-summary(fitmed1)$coefficients[4,1]

T2<-6*beta3

T_tprime<-(T2ˆ2)

v2<-1/(4*sqrt(pi))

mu4<-3

h_LS<-((v2*sig)/(134*T_tprime*(mu4ˆ2)))ˆ(1/7)

Nfit1<-locfit(newy˜times,deriv=1,alpha=h_LS)

NF<-fitted(Nfit1)

plot(times,NF,pch=".",lwd=2)

lines(times,NF,lwd=2)

abline(h=0,lty=2)

plot(Nfit1,band="local",ylab="Derivative",

ylim=c(-0.0075,0.02),col=2)

lines(x=c(25.54,25.54),y=c(0,-0.03),lty=2,col="blue")

legend(10,0.0175,c("Derivative","Confidence Limits"),col=c(2,1),lty=c(1,2),pch=c(’.’,NA))
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