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Abstract

This paper is concerned with a family of two-dimensional cutting stock problems that seeks

to cut rectangular regions from a finite collection of sheets in such a manner that the minimum

number of sheets is used. A fixed number of rectangles are to be cut, with each rectangle having

a known length and width. All sheets are rectangular, and have the same dimension. We review

two known mixed-integer mathematical formulations, and then provide new representations that

both economize on the number of discrete variables and tighten the continuous relaxations. A key

consideration that arises repeatedly in all models is the enforcement of disjunctions that a vector

must lie in the union of a finite collection of polytopes. Computational results demonstrate a

relative performance of the different formulations.
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Chapter 1

Introduction

Given a collection of m rectangular sheets of length L and width W, the two-dimensional

cutting stock problem of concern is to cut, from amongst these sheets, a collection of n rectangles

so that the minimum number of sheets is used. Here, each rectangle Ri for i = 1, . . . , n has known

length `i and width wi. Each rectangle is to be cut so that either the length or the width is parallel

to the x-axis.

This problem, and variants thereof, have received attention by different authors [3, 4, 5].

The particular problem of concern was studied in [5], within which is found two different mixed-

integer linear formulations. The main contribution of this paper is to encompass these formulations

within a general disjunctive framework that allows for the devising of different forms, and to perform

computational tests to assess the relative merits.

There are two key modeling challenges relative to this problem. The first, which is shared

by related problems in [3, 4], is to ensure that no overlap exists between cut rectangles; that is,

that no region found on any sheet is used by more than one rectangle. The second challenge is to

ensure that each rectangle is cut from exactly one sheet.

To motivate the construction of a model, envision that the sheets are arranged vertically in

a 2-dimensional plane so that the bottom-most sheet has its lower left corner situated at the origin,

and so that the width of each sheet is parallel to the x-axis. The sheets are stacked so that, given

any two which are adjacent, the top of the lower sheet is aligned flush with the bottom of the upper
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sheet. Now, for each rectangle Ri, define an ordered pair of continuous decision variables (xi, yi) to

denote the coordinates of the lower left corner of the region from which Ri is to be cut. Also define

a binary decision variable si to denote the orientation of rectangle Ri, so that si = 1 if the side

having length `i is parallel to the x-axis, and si = 0 otherwise. Then the right side of rectangle Ri

will be at value xi +wi + si(`i−wi) and the top of rectangle Ri will be at value yi + `i + si(wi− `i).

Of course, if `i = wi for any rectangle Ri, then the variable si is not needed.

The first challenge of preventing rectangle overlap is addressed using a method found in

[3]. For every pair of rectangles Ri and Rj with i < j, the following disjunctive statement prevents

overlap:

(Ri is to the right of Rj) or (Ri is above Rj) or

(Ri is to the left of Rj) or (Ri is below Rj).

This statement can be rewritten in terms of (xi, xj , yi, yj , si, sj) as follows

xi ≥ xj + wj + sj(`j − wj) or yi ≥ yj + `j + sj(wj − `j) or

xi ≤ xj − wi − si(`i − wi) or yi ≤ yj − `i − si(wi − `i). (1.1)

To enforce (1.1), define four binary variables, say aij , bij , cij , dij , to associate with the four propo-

sitions of (1.1) in a one-to-one fashion so that the kth proposition holds true when the kth variable

equals 1. Then restrict the sum of the four binary variables to equal 1 to ensure that at least one

2



proposition holds true. Specifically, for each (i, j), i < j, define the set Sij .

Sij = {(xi, xj , yi, yj , si, sj , aij , bij , cij , dij) :

xi ≥ xj + wj + sj(`j − wj)−W (1− aij), (1.2)

yi ≥ yj + `j + sj(wj − `j)−mL(1− bij), (1.3)

xi ≤ xj − wi − si(`i − wi) +W (1− cij), (1.4)

yi ≤ yj − `i − si(wi − `i) +mL(1− dij), (1.5)

aij + bij + cij + dij = 1, (1.6)

aij , bij , cij , dij binary}

Each set Sij operates as follows. The inequalities (1.2), (1.3), (1.4), and (1.5) correspond, in order,

to the four propositions of (1.1). That variable from amongst {aij , bij , cij , dij} which is selected to

realize value 1 activates the associated inequality, and thereby enforces the associated proposition.

The scalars W and mL are sufficiently large that the remaining three inequalities within (1.2)–(1.5)

are redundant.

The second challenge of ensuring that each rectangle is cut from exactly one sheet is satisfied

by [5] in two different ways, in two different formulations. The first formulation is Problem P1 below.

For convenience, we adopt the notation that N ≡ {(i, j) : i ∈ N, j ∈ N, i < j} denotes the set of

n(n − 1)/2 distinct pairs of rectangles Ri and Rj that are to be cut. We also let the index i run

from 1 to n, and the index k run from 1 to m, unless stated otherwise.
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P1: minimize Y

subject to (xi, xj , yi, yj , si, sj , aij , bij , cij , dij) ∈ Sij ∀ (i, j) ∈ N (1.7)

yi ≤ L

(
m∑
k=1

Qikk

)
− `i − si(wi − `i) ∀ i (1.8)

yi ≥ L

(
m∑
k=1

Qik(k − 1)

)
∀ i (1.9)

1 =
m∑
k=1

Qik ∀ i (1.10)

W ≥ xi + wi + si(`i − wi) ∀ i (1.11)

Y ≥ yi + `i + si(wi − `i) ∀ i (1.12)

xi ≥ 0, yi ≥ 0 ∀ i, Qik binary ∀ (i, k) (1.13)

Problem P1 operates as follows. Restrictions (1.7) prevent rectangles from overlapping, as

explained above. For each i ∈ N, the two inequalities of (1.8) and (1.9), together with the equation

of (1.10) and binary restrictions on Qik for all k of (1.13), ensure that rectangle Ri is cut from

exactly one sheet. These restrictions enforce that, for some sheet k, the lower height yi of Ri is

bounded below by the lower height L(k − 1) of sheet k and the upper height yi + `i + si(wi − `i)

of Ri is bounded above by the upper height Lk of sheet k. Inequalities (1.11) enforce the width

restriction on each sheet, and inequalities (1.12) record the minimum overall height Y. (The paper

[5] does not include the equations (1.10) nor the nonnegativity restrictions on the variables xi,

but these omissions appear to be oversights and do not affect the merits of the paper.) Problem

P1 has 5n(n + 1)/2 constraints in (1.7)–(1.12), 2n nonnegative continuous variables (xi, yi) and a

continuous variable Y, and n(2n+m− 1) binary variables.

The second formulation of [5] uses a reduced number of binary variables. This reduction

is accomplished in two steps. The first step applies a method of [4] to replace the four binary

variables aij , bij , cij , and dij of each set Sij with two binary variables αij and βij . The replacement
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is accomplished by defining new sets S′ij as follows.

S′ij = {(xi, xj , yi, yj , si, sj , αij , βij) :

xi ≥ xj + wj + sj(`j − wj)−W (αij + βij),

yi ≥ yj + `j + sj(wj − `j)−mL((1− αij) + βij),

xi ≤ xj − wi − si(`i − wi) +W (αij + (1− βij)),

yi ≤ yj − `i − si(wi − `i) +mL((1− αij) + (1− βij)),

αij , βij binary}

Here, for each of the four possible binary realizations of the variables αij and βij , exactly one of

the expressions (αij +βij), ((1−αij)+βij), (αij +(1−βij)), and ((1−αij)+(1−βij)) will be equal

to 0, and the other three expressions will be greater than or equal to 1. That expression equalling

0 has the associated inequality active. This activation of an inequality allows restrictions (1.7) of

Problem P1 to be replaced with

(xi, xj , yi, yj , si, sj , αij , βij) ∈ S′ij ∀ (i, j) ∈ N , (1.14)

reducing the size of P1 by n(n− 1) binary variables and n(n− 1)/2 constraints.

The second step reformulates (1.8) and (1.9) so as to replace the nm binary variables Qik

with ndlog2me binary variables. To explain, we adopt the notation of [1], because a method of [1]

will be shown in the following section to improve upon that of [5]. For each sheet k, define the

binary vector vk ∈ Rdlog2me in terms of the base-2 expansion of the integer k − 1 so that

k − 1 =

dlog2 me∑
j=1

vkj2
j−1, (1.15)

where, for each sheet k, we let vkj denote entry j of vk. Then define n linear functions Ak(u) of
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variables u ∈ Rdlog2 me in terms of the m binary vectors vk so that

Ak(u) =
∑

j:vkj=0

uj +
∑

j:vkj=1

(1− uj) = |vk|+
∑

j:vkj=0

uk −
∑

j:vkj=1

uj ∀ k. (1.16)

In this manner, every binary vector u ∈ Rdlog2 me having
∑dlog2 me

j=1 2j−1uj ≤ m−1, will have exactly

one function Ak(u) equal to 0 and the remaining (m−1) such functions greater than or equal to 1.

Finally, for each rectangle Ri, define a vector ui ∈ Rdlog2 me of binary variables. Then [5] rewrites

Problem P1 as Problem P2 below.

P2: minimize Y

subject to (1.11), (1.12), (1.14)

yi ≤ L
(
k + (m− k)Ak(ui)

)
− `i − si(wi − `i) ∀ (i, k), k 6= m (1.17)

yi ≥ (k − 1)L
(
1−Ak(ui)

)
∀ (i, k), k 6= 1 (1.18)

dlog2me∑
j=1

2j−1uij ≤ m− 1 ∀ i (1.19)

xi ≥ 0, yi ≥ 0, ui binary ∀ i (1.20)

Although unnoticed in [5], inequalities (1.17) are not needed when k = m because the m sheets of

length L have a maximum height of mL, and inequalities (1.18) are not needed when k = 1 because

yi ≥ 0 for all i by (1.20). Also, (1.19) is redundant for all i when log2m = dlog2me.

As alluded to above, there are two main differences between Problems P1 and P2. First,

the sets Sij of (1.7) found in P1 are replaced with the sets S′ij of (1.14). Second, restrictions (1.8)–

(1.10) and the binary variables Qik of P1 are replaced by (1.17)–(1.19) and the binary variables ui.

For each i, and any chosen ui satisfying (1.19), that function Ak(ui) realizing value 0 will combine

with inequalities (1.17) and (1.18) to enforce that

L(k − 1) ≤ yi ≤ Lk − `i − si(wi − `i), (1.21)

so that rectangle Ri is cut from sheet k. All 2(m − 1) remaining inequalities of (1.17) and (1.18)
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for the chosen i are redundant. This same pair of inequalities is enforced in P2 when Qik = 1.

The paper [5] introduces Problem P2 as an improvement over P1. Problem P2 has n(2n+

m − 1) constraints in (1.11),(1.12), (1.14) and (1.17)–(1.19), 2n + 1 continuous variables, and

n (n+ dlog2me) binary variables. In contrast, and as noted above, Problem P1 has 5n(n + 1)/2

constraints, 2n + 1 continuous variables, and n(2n + m − 1) binary variables. Thus, Problem P2

has n (n+m− 1− dlog2me) fewer binary variables and (n(n+ 7)/2)− 2m fewer constraints. (The

paper [5] states that P1 has n(5n + 3)/2 constraints and n(2n + m + 1) binary variables. The

difference in the number of constraints is due to the omission of (1.10) from P1, but we have no

explanation for the discrepancy in the number of variables. Also, the paper [5] states that P2 has

n(2n+m+ 1) constraints and n (n+ dlog2me) binary variables, with the difference in the number

of constraints being that [5] includes the redundant inequalities (1.17) for k = m and (1.18) for

k = 1.)
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Chapter 2

Modeling Disjunctions

The two main modelling challenges identified in Section 1 can be viewed in terms of dis-

junctive programming. Given p polytopes of the form

Ωg ≡ {ω : Bgω ≤ bg} ∀ g = 1, . . . , p (2.1)

in variables ω, each challenge is to construct linear inequalities that enforce

ω ∈
p⋃

g=1

Ωg. (2.2)

Relative to the first challenge of preventing overlap between rectangles, for each (i, j) ∈ N , state-

ment (1.1) is of the form (2.2) with p = 4, ω = (xi, xj , yi, yj , si, sj), and Ωg is antecedent g of (1.1)

for g = 1, . . . , 4. For the second challenge of restricting that each rectangle Ri is cut from a single

sheet, constraints (1.8)–(1.10) of P1 and (1.17)–(1.19) of P2 each enforce, in different ways, that

(1.21) is satisfied for some k ∈ {1, . . . ,m}. Given a fixed rectangle Ri, this restriction can be cast

in the form of (2.2) by letting p = m, ω = (yi, si), and

Ωg = {(yi, si) : yi + `i + si(wi − `i) ≤ Lg, −yi ≤ −L(g − 1)} ∀ g = 1, . . . ,m. (2.3)

In this section, we consider four different approaches for modelling (2.2), and then relate
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these approaches in Section 3 to the 2-dimensional cutting stock problem. We let the index g run

from 1 to p throughout.

• Approach 1

A classical method for modelling (2.2) is due to [2]. This paper defines p new sets of variables

µg of the same size as ω, and p additional nonnegative variables, say λg, to form the set

Ω′ ≡

(ω,µ,λ) : Bgµg ≤ bgλg ∀ g, ω =

p∑
g=1

µg, 1 =

p∑
g=1

λg, λ ≥ 0

 , (2.4)

where µT =
(
(µ1)T , . . . , (µp)T

)T
. The convex hull of

p⋃
g=1

Ωg is shown to be the projection

of the set Ω′ onto the space of the variables ω. When the sets Ωg lie within some larger

optimization problem in ω, as is the case for the 2-dimensional cutting stock problem of

concern, the convex hull is forfeited, and the variables λ must be restricted to be binary to

satisfy (2.2). A drawback of this approach is that Ω′ uses an additional pη variables µ, where

η is the number of variables ω.

• Approach 2

A second approach for modelling (2.2) uses only the p binary variables λ of Approach 1, in

addition to the variables ω. For each g, define a vector U g ≥ 0 having the same size as bg in

such a manner that the inequalities defining Ωg are redundant when the vector U g is added

to bg; that is, so that Bgω ≤ (bg +U g) for all ω ∈
p⋃

g=1

Ωg. Then define the system

Γ1 ≡

(ω,λ) : Bgω ≤ bg +U g(1− λg) ∀ g,
p∑

g=1

λg = 1, λ binary

 . (2.5)

That variable λg realizing value 1 in (2.5) will enforce that the associated system Bgω ≤ bg

is satisfied, and the remaining p− 1 systems will be redundant.

• Approach 3

A third approach for modelling (2.2) uses the vectors U g of Approach 2, as well as the
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functions Ag(u) of (1.16), where m is replaced by p in (1.15) in defining the binary vectors

vg ∈ Rdlog2pe for all g. The property of the functions Ag(u) that, for any binary u ∈ Rdlog2pe

with
∑dlog2pe

j=1 2j−1uj ≤ p− 1, a single such function will equal to 0 and the remaining (p− 1)

functions will be greater than or equal to 1, allows us to conclude that ω ∈
p⋃

g=1

Ωg if and only

if there exists a u so that (ω,u) ∈ Γ2, with

Γ2 ≡

(ω,u) : Bgω ≤ bg +U gAg(u) ∀ g,
dlog2pe∑
j=1

2j−1uj ≤ p− 1, u binary

 . (2.6)

The inequality
∑dlog2pe

j=1 2j−1uj ≤ p− 1 is not needed when log2p = dlog2pe.

• Approach 4

Approach 3 has an advantage over Approaches 1 and 2 in terms of numbers of binary variables,

but this advantage can be overcome. Approach 3 uses only dlog2pe binary variables u, while

each of Approaches 1 and 2 uses p binary variables λ. However, an observation of [1] shows

that a restriction of the form
∑p

g=1 λg = 1 in p binary variables λ can be changed to having

continuous variables λ ≥ 0 by including the dlog2pe equations
∑p

g=1 vgλg = u in binary

variables u ∈ Rdlog2pe, where vg ∈ Rdlog2pe for all g, as in Approach 3. This observation,

together with a suitable projection operation, was used in [6] on the set Ω′ of Approach 1 to

motivate linearizations of piecewise-linear functions. Applying this observation to Approach

2, we have that (ω,λ) ∈ Γ1 if and only if there exists a u so that (ω,λ,u) ∈ Γ3, with

Γ3 ≡ {(ω,λ,u) : Bgω ≤ bg +U g(1− λg) ∀ g,
p∑

g=1

λg = 1,

p∑
g=1

vgλg = u,λ ≥ 0, u binary}. (2.7)

Then a vector ω ∈
p⋃

g=1

Ωg if and only if there exists a (λ,u) so that (ω,λ,u) ∈ Γ3.

A comparison of (2.6) and (2.7) reveals the following characteristics in terms of size and

relaxation strength. Each of these two systems has dlog2pe binary variables u, but (2.7) has an
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additional p nonnegative variables λ in dlog2pe + 1 equations. Relative to strength, let Γ2 denote

the continuous relaxation of Γ2 obtained by replacing the u binary restrictions with 0 ≤ u ≤ 1, and

let Γ3 denote the continuous relaxation of Γ3 obtained by deleting the u binary restrictions. The

paper [1, page 1483, Theorem 1] addresses the special family of disjunctions having ω ∈ R1 and

Ωg = {ω : ω = θg} for some scalar θg for each g and, for these disjunctions, shows that a simpler

form of Γ3 given by

Γ3 ≡

(ω,λ,u) : ω =

p∑
g=1

θgλg,

p∑
g=1

λg = 1,

p∑
g=1

vgλg = u,λ ≥ 0


is preferable to the method used to generate Γ2 in terms of the strengths of the continuous relax-

ations. This relaxation preference with respect to Γ3 over Γ2 continues to hold true for the more

general sets Ωg of (2.1), as stated in the following theorem.

Theorem

Given any (ω̂, λ̂, û) ∈ Γ3 of (2.7), we have that (ω̂, û) ∈ Γ2 of (2.6).

Proof

It is sufficient to show, given any (λ̂, û) feasible to

P1 ≡

(λ,u) :

p∑
g=1

λg = 1,

p∑
g=1

vgλg = u, λ ≥ 0

 ,

that û is feasible to

P2 ≡

u :

dlog2pe∑
g=1

2g−1ug ≤ p− 1, 0 ≤ u ≤ 1

 ,

and that

(1− λ̂g) ≤ Ag(û) ∀ g.

To begin, we have by definition that vg ∈ P2 for all g. Then û ∈ P2 because P1 expresses û as a
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convex combination of the vectors vg. Next, the set P1 enforces that

(1− λ̂g) =

p∑
j=1
j 6=g

λ̂j ≤
p∑

j=1
j 6=g

Ag(vj)λ̂j =

p∑
j=1

Ag(vj)λ̂j = Ag(û) ∀ g.

To explain, consider any g. The first equality follows from
∑p

j=1 λ̂j = 1, the inequality is due to

Ag(vj) ≥ 1 for all j 6= g and λ̂ ≥ 0, and the second equality is due to Ag(vg) = 0. The final equality

is obtained from (1.16) by computing a linear combination of the equality constraints of P1 using

the multiplier |vg| for the constraint
∑p

j=1 λ̂j = 1 and, for each q = 1, . . . , dlog2pe, the multiplier πq

for constraint q of
∑p

j=1 vj λ̂j = u, where πq = 1 if vgq = 0 and αq = −1 if vgq = 1. In this manner,

for each j = 1, . . . , p, we have |vj |+ πTvj = |vj |+
∑

q:vjq=0 vjq −
∑

q:vjq=1 vjq = Aj(vg) = Ag(vj),

and we also have |vg| + πT û = Aj(û). Here, Aj(vg) = Ag(vj) for all j = 1, . . . , p, because the

expression Aj(vg) can be interpreted as the Hamming distance between the binary vectors vg and

vj ; that is, the number of positions at which the corresponding entries in vg and vj differ. This

completes the proof. �

Consider the example below that shows that the converse of the theorem is not true. There

can exist a (ω̂, û) ∈ Γ2 of (2.6) for which there exists no λ̂ so that (ω̂, λ̂, û) ∈ Γ3 of (2.7).

Example

Let p = 4, ω ∈ R4, and Ωg = {ω : 0 ≤ ωg ≤ 1, 0 ≤ ωj ≤ 2 ∀ j 6= g} for g = 1, . . . , 4. Then

by defining, for each g, U g ∈ R8 to have entry 1 for the inequality ωg ≤ 1 and entry 0 for the

inequalities ωj ≤ 1 ∀ j 6= g and −ωj ≤ 0 ∀ j, we have

Γ2 = {(ω,u) : 0 ≤ ωg ≤ 1 +Ag(u) ∀ g = 1, . . . , 4, u binary} ,

where u ∈ R2, A1(u) = u1 + u2, A2(u) = (1 − u1) + u2, A3(u) = u1 + (1 − u2), and A4(u) =
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(1− u1) + (1− u2). For the same U g and for λ ∈ R4, system (2.7) can be expressed as

Γ3 = {(ω,λ,u) : 0 ≤ ωg ≤ 1 + (1− λg) ∀ g = 1, . . . , 4,

4∑
g=1

λg = 1,

λ2 + λ4 = u1, λ3 + λ4 = u2, λ ≥ 0, u binary}.

The vector (ω̂, û) with ω̂1 = ω̂2 = ω̂3 = ω̂4 = 2 and û1 = û2 = 1
2 is feasible to Γ2. Adding the

sum of the four inequalities ωg ≤ 1 + (1 − λg) ∀ g to the equation −
∑4

g=1 λg = −1, with all five

restrictions from Γ3, gives
∑4

g=1 ωg ≤ 7, so that there exists no λ̂ having (ω̂, λ̂, û) ∈ Γ3.

We conclude this section with a modelling approach that is tailored for special sets Ωg of

(2.1). This approach will be useful in dealing with the 2-dimensional cutting stock problem in the

next section.

Remark

Given that the sets Ωg of (2.1) have all Bg equal to the same matrix B so that

Ωg = {ω : Bω ≤ bg} ∀ g,

then disjunction (2.2) can be modelled by

Bω ≤
p∑

g=1

bgλg,

p∑
g=1

λg = 1, λ binary.

Given that there further exists some b so that

bg =
(
b1 − b

)
+ bg ∀ g, (2.8)

the variables λ can be replaced by a single integer variable, say z, to obtain

Bω ≤
(
b1 − b

)
+ bz, 1 ≤ z ≤ p, z integer. (2.9)
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This simplification follows because

p∑
g=1

bgλg =

p∑
g=1

(
(b1 − b) + bg

)
λg =

(
b1 − b

)
+ b

 p∑
g=1

gλg

 =
(
b1 − b

)
+ bz,

where the first equation makes the substitution bg =
(
b1 − b

)
+ bg for all g from (2.8), the second

equation is due to
∑p

g=1 λg = 1, and the third equation is a standard binary expansion of the

variable z.
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Chapter 3

Proposed Models

We use the disjunctive programming arguments of the previous section to explain and en-

hance Problems P1 and P2 that were given in [5] to model the two-dimensional cutting stock

problem. Recall that the two main modeling challenges are: preventing rectangle overlap and en-

suring that each rectangle is cut from exactly one sheet. Each challenge is addressed below.

Preventing Rectangle Overlap

The disjunctive statement (1.1) used to ensure that no two rectangles Ri and Rj are cut from the

same region of any sheet can be expressed using any of Approaches 1, 2, 3, or 4. These approaches,

and their relationships to the two methods of [5], are discussed below.

1. For each (i, j) ∈ N , the implementation of Approach 1 of [2] requires the polyhedral sets Ωg of

(2.1) to be bounded. Boundedness can be accomplished by including the twelve inequalities

0 ≤ yk ≤ mL− `k − sk(wk − `k), k = i, j, (3.1)

0 ≤ xk ≤W − wk − sk(`k − wk), k = i, j, (3.2)

0 ≤ sk ≤ 1, k = i, j, (3.3)

within each of the antecedents of (1.1). Then, letting p = 4, the sets Ωg for g = 1, . . . , 4 of
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(1.1) become as follows

Ω1 = {(xi, xj , yi, yj , si, sj) : xi ≥ xj + wj + sj(`j − wj), (3.1), (3.2), (3.3)}, (3.4)

Ω2 = {(xi, xj , yi, yj , si, sj) : yi ≥ yj + `j + sj(wj − `j), (3.1), (3.2), (3.3)}, (3.5)

Ω3 = {(xi, xj , yi, yj , si, sj) : xi ≤ xj − wi − si(`i − wi), (3.1), (3.2), (3.3)}, (3.6)

Ω4 = {(xi, xj , yi, yj , si, sj) : yi ≤ yj − `i − si(wi − `i), (3.1), (3.2), (3.3)}. (3.7)

Letting ω = (xi, xj , yi, yj , si, sj) and λ = (aij , bij , cij , dij), we can construct the set Ω′ of (2.4)

in the six variables ω, 24 variables µ, and four variables λ. The set Ω′ has 28 inequality

restrictions, six equations of the form ω =
∑4

g=1µ
g, the equation aij + bij + cij + dij = 1,

and nonnegativity on µ. Here, as noted earlier, aij , bij , cij , dij must also be binary to satisfy

(2.2).

2. For each (i, j) ∈ N , Approach 2 applied to (1.1) derives the set Sij of Section 1, where

(2.5) has p = 4 and ω = (xi, xj , yi, yj , si, sj), and where λ is given by (aij , bij , cij , dij). Each

component of the vector U g ∈ R4 has an entry of either W or mL, depending on whether the

associated inequality restricts the variables (xi, xj) or (yi, yj), respectively.

3. For each (i, j) ∈ N , Approach 3 applied to (1.1) derives the set S′ij of Section 1, using

the same p = 4, ω = (xi, xj , yi, yj , si, sj), and U g of Sij . Unlike Approach 2, there are no

variables λ, and u ∈ R2 of (2.6) has u1 = αij and u2 = βij . Expression (1.15) defines

v1 =

[
0

0

]
, v2 =

[
1

0

]
, v3 =

[
0

1

]
, and v4 =

[
1

1

]
so that (1.16) gives A1(u) = αij + βij ,

A2(u) = (1 − αij) + βij , A3(u) = αij + (1 − βij), and A4(u) = (1 − αij) + (1 − βij). The

inequality αij + 2βij ≤ 3 is not needed because log24 = dlog24e = 2.

4. For each (i, j) ∈ N , Approach 4 applied to (1.1) derives the set

S′′ij = {(xi, xj , yi, yj , si, sj , aij , bij , cij , dij , αij , βij) : (1.2)− (1.6), bij + dij = αij ,

cij + dij = βij , aij , bij , cij , dij ≥ 0, αij , βij binary} ∀ (i, j) ∈ N . (3.8)
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Here, Γ3 of (2.7) uses the same p = 4, ω = (xi, xj , yi, yj , si, sj), and (continuous) λ =

(aij , bij , cij , dij) of Approach 2, as well as the same vectors v1, v2, v3, and v4 of Approach 3

to compute the equations bij + dij = αij and cij + dij = βij of (3.8), and also includes the

variables u ∈ R2 given by u1 = αij and u2 = βij as in Approach 3.

The Theorem and Example of Section 2 show that Approach 3 dominates that of Approach

2 relative to the relaxation strengths of the resulting sets. Consistent with the relaxations of Γ2 and

Γ3 to Γ2 and Γ3, respectively, let S
′
ij denote the continuous relaxations of S′ij obtained by relaxing

the αij , βij binary restrictions to 0 ≤ αij , βij ≤ 1, and let S
′′
ij denote the continuous relaxation of

S′′ij obtained by deleting these same binary restrictions. For each (i, j) ∈ N , the Theorem gives

us that the set S
′′
ij dominates S

′
ij . For an example of strict dominance relative to these specific

sets, consider the trivial problem having m = 1 sheet and n = 2 rectangles R1 and R2, with

w1 = w2 = W and L1 = L2 = L. This problem cannot have a solution, as each rectangle is the

same size as the sheet. But the point (x1, x2, y1, y2, s1, s2, α12, β12) = (0, 0, 0, 0, 0, 0, 12 ,
1
2) is feasible

to S
′
12. However, S

′′
12 is empty, so that it identifies the problem as being infeasible. To explain,

adding inequalities (1.2) and (1.3) to the negative of inequalities (1.4) and (1.5), with all four in-

equalities taken from (3.8), gives us W (a12 + c12) + L(b12 + d12) ≤ 0. This last inequality cannot

be satisfied because (1.6) of (3.8) enforces a12+b12+c12+d12 = 1, and because a12, b12, c12, d12 ≥ 0.

Ensuring that each Rectangle is Cut from One Sheet

Motivated by the disjunctive approaches of Section 2, and Problems P1 and P2 from [5], we present

six models for ensuring that each rectangle is cut from exactly one sheet.

1. For each rectangle Ri, Approach 1 of [2] can be applied to a bounded version of the sets Ωg

of (2.3) to model (2.2). Here, p = m within (2.2) and (2.4), and each set Ωg is of the form

(2.3) with the two additional bounding inequalities 0 ≤ si ≤ 1. Then ω = (yi, si), λ ∈ Rm,

and µ ∈ R2m with µg = (ug1, µ
g
2) representing the products yiλg and siλg, respectively, for
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g = 1, . . . ,m. The resulting set Ω′ of (2.4) takes the form

Ω′ = {ω,µ,λ) : L(g − 1)λg ≤ µg1 ≤ Lgλg − `iλg − µ
g
2(wi − `i) ∀ g = 1, . . . ,m,

0 ≤ µg1 ≤ λg ∀ g = 1, . . . ,m,

m∑
g=1

µg1 = yi,
m∑
g=1

µg2 = si,
m∑
g=1

λg = 1, λ ≥ 0}.

2. For each rectangle Ri, the sets Ωg of (2.3) satisfy the conditions of the Remark with ω =

(yi, si), and with b1 =

[
L

0

]
and b =

[
L

−L

]
satisfying (2.8). Then (2.2) with p = m can

be expressed in the form of (2.9) as

m⋃
g=1

Ωg = {(yi, si) : L(zi − 1) ≤ yi ≤ Lzi − `i − si(wi − `i), 1 ≤ zi ≤ m, zi integer} . (3.9)

Within (3.9), the variable zi identifies the sheet number from which rectangle Ri is to be cut.

3. For each rectangle Ri, binary expansions of the integer variable zi found in (3.9) can be

performed. One method is to define, for each Ri, m new binary variables, say Qik for k =

1, . . . ,m, and to set

zi =

m∑
k=1

Qikk,

m∑
k=1

Qik = 1, Qik binary ∀ k = 1, . . . ,m. (3.10)

This method yields restrictions (1.8)–(1.10) of Problem P1, upon observing that
∑m

k=1Qikk−

1 =
∑m

k=1Qik(k− 1) for each i. An alternate method is to define, for each rectangle Ri, only

dlog2me binary variables Qik for k = 1, . . . , dlog2me, and to set

zi =

dlog2me∑
k=1

2k−1Qik,

dlog2me∑
k=1

2k−1Qik ≤ m, Qik binary ∀ k = 1, . . . , dlog2me. (3.11)

This third method shares the advantage of Approaches 3 and 4 that a logarithmic number of

binary variables is needed for each family of disjunctions.

4. For each rectangle Ri, Approach 2 with p = m is applicable to (2.3), where each set Ωg has
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U g ∈ R2 in (2.5) so that the upper bounds on the left and right inequalities of (2.3) are

(m− g)L and (g − 1)L, respectively. In this manner, we obtain

m⋃
g=1

Ωg = {(yi, si,λ) : yi + `i + si(wi − `i) ≤ Lg + (m− g)L(1− λg) ∀ g = 1, . . . ,m,

− yi ≤ −L(g − 1) + L(g − 1)(1− λg),

m∑
g=1

λg = 1, λ binary}. (3.12)

Here, the first inequality is not needed when g = m, given that there exists a sufficient

number m of sheets to cut the rectangles, and the second inequality is not needed when

g = 1, assuming that yi ≥ 0 is elsewhere enforced.

5. For each rectangle Ri, the application of Approach 3 with p = m to (2.3) uses the same

upper bounds U g ∈ R2 within (2.6) as Approach 2 does within (2.5), as discussed above.

The functions Ag(u) are defined as in (1.15) in terms of the vectors vg given in (1.16).

Here, only dlog2me binary variables are required for each Ri. Upon considering all rectangles

Ri, i = 1, . . . ,m, inequalities (1.17)–(1.19) of Problem P2 result.

6. For each rectangle Ri, Approach 4 with p = m is applicable to (2.3) using the same upper

bounds U g ∈ R2 in (2.7) as Approaches 2 and 3 within (2.5) and (2.6), respectively, and using

the same vectors vg ∈ Rdlog2me defined in (1.15) as Approach 3. The resulting model has m

continuous variables λ and dlog2me binary variables u, as given below.

m⋃
g=1

Ωg = {(yi, si,λ) : yi + `i + si(wi − `i) ≤ Lg + (m− g)L(1− λg) ∀ g = 1, . . . ,m,

− yi ≤ −L(g − 1) + L(g − 1)(1− λg),
m∑
g=1

λg = 1,

m∑
g=1

vgλg = u, λ ≥ 0,u binary}. (3.13)

Again, as with Approaches 2 and 3, the first inequality is not needed when g = m, and the

second inequality is not needed when g = 1.
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Chapter 4

Computational Experience

The previous section presented four models for preventing rectangle overlap and six models for

ensuring that each rectangle is cut from a single sheet. We provide computational experience in

this section to compare the merits of different pairwise-combinations of these models, focusing on

initial relaxation value, numbers of nodes enumerated in a branch-and-bound routine, and overall

CPU execution times.

Our formulations can be viewed as compartmentalized in that, in addition to a common

objective function and set of constraints, the restrictions for preventing rectangle overlap and the

restrictions for ensuring that each rectangle is cut from a single sheet are substitutable. For all

problems, the objective is to minimize Y, as in Problems P1 and P2, and the common constraints

are (1.11), (1.12), and the nonnegativity restrictions xi ≥ 0, yi ≥ 0 ∀ i of (1.13). For enforcing

the prevention of rectangle overlap, Model 1 forms a set Ω′ of (2.4) comprised of Ω1 through Ω4

of (3.4) through (3.7), respectively, for each (i, j), i < j. In lieu of these restrictions, Models 2,

3, and 4 enforce the set Sij of Section 1, the set S′ij of Section 1, and the set S′′ij of Section 3

as defined in (3.8), respectively. As mentioned earlier, the variable si is not necessary for any

rectangle Ri which is a square (i.e. `i = wi) and is thus set to 0. Relative to ensuring that each

rectangle Ri is cut from a single sheet, for each i = 1, . . . ,m, Method 2 uses the integer variable

zi and inequalities as described in (3.9). Method 3 uses binary expansions of the integer variables

zi as presented in (3.10) to obtain restrictions of the form (1.8)–(1.10). (We chose to not perform
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base-2 expansions on the variables zi as in (3.11) because preliminary computational experience

did not indicate an advantage.) Method 4 uses the inequalities of (3.12), while Method 5 uses

the restrictions (1.17)–(1.19) of P2, together with ui binary for all i. Method 6 employs the sets

described in (3.13).

All test problems were coded in AMPL and submitted to CPLEX 12.6.0.0 on Clemson

University’s Palmetto cluster (a 21,392-core 500 teraFLOPS High Performance Computing System),

using one of the cluster’s Intel-based cores, with 24gb of RAM.

We begin by examining the two sample problems of [5], which we refer to as Sample Problems

1 and 2, and abbreviate by SP1 and SP2, respectively. Problem SP1 has n = 7 rectangles and

m = 4 sheets, while SP2 has n = 18 rectangles and m = 4 sheets. Specific rectangle and sheet

dimensions for each problem are found in Appendix A. For both of these problems, we paired each

of the four models for preventing rectangle overlap with each of models 2 through 6 for ensuring

that every rectangle is cut from a single sheet. (Method 1 was not used for reasons discussed later.)

Table 1 gives the results for SP1, and Table 2 for SP2. Each table contains six columns. The

first column is an ordered pair whose first entry denotes the model type used to prevent rectangle

overlap and whose second entry denotes the model type used to ensure that each rectangle is cut

from a single sheet. In this manner, Problems P1 and P2 of Section 1 are represented in the first

column by ordered pairs (2,3) and (3,5) respectively. Columns 2 and 3 denote the objective values

to the mixed-integer programs, and to the associated linear programs obtained by relaxing the

discrete variables to be continuous, respectively. Columns 4, 5, and 6 give the number of simplex

iterations, the number of branch-and-bound nodes encountered, and the overall CPU execution

time in seconds for CPLEX 12.6.0.0 to solve the problem.

Some observations follow from Tables 1 and 2. First, these tables indicate, for both test

problems, that the linear programming relaxations of the first set of five problem forms are tighter

than those available from all other forms, but the number of MIP simplex iterations, branch-and-

bound nodes, and CPU times are much larger. This increased effort is likely due to the larger

formulation sizes resulting from the approach of [2]. (Based on this performance, we did not use

Method 1 to ensure that each rectangle is cut from one sheet.) Second, Method 4 for preventing
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rectangle overlap appears inferior to both Methods 2 and 3, as can be seen from columns 4 through

6 of the tables. This result is unexpected, as Method 4 uses half the number of binary variables as

does Method 2. Third, Methods 2 and 3 for preventing rectangle overlap are comparable, although

both appear to suffer when combined with Method 6 for ensuring that each rectangle is cut from one

sheet. This is consistent with earlier results, since Method 4 for preventing rectangle overlap and

Method 6 for cutting from a single sheet both use Approach 4 of Section 2 for handling disjunctions.

Fourth, for both problems tested, Problem P1 (form (2,3)) outperformed Problem P2 (form (3.5)),

which contradicts the experience of [5]. Finally, these two problems appear to be easier to solve

than other problems of similar and slightly larger sizes, as we were unable to solve various problems

having from 16 to 39 rectangles and 4 to 11 sheets in 10800 seconds CPU execution time.

In order to isolate the effects of the four different modeling forms for preventing rectangle

overlap, we reconsider the two sample problems of [5], but this time consider only a single sheet

having length L =
∑n

i=1 `i so that it is sufficient to contain all rectangles, and we remove all con-

straints associated with multiple sheets. We refer to these problems as SP1′ and SP2′, respectively,

to distinguish them from SP1 and SP2. The results are found in Tables 3 and 4. For each problem,

we considered all four forms, as indicated in the first column. The remaining columns are identical

to those found in Tables 1 and 2. Again, Method 1 is superior in terms of the tightness of the

linear programming relaxations, but is not competitive in terms of the numbers of MIP simplex

iterations, branch-and-bound nodes, and CPU times. Methods 2, 3, and 4 are competitive, though

Method 2 appears preferable. As with the case of multiple sheets, this result is unexpected, since

Method 2 uses twice the number of binary variables as do Methods 3 and 4.
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Table 4.1: SP1 (n = 7 rectangles, m = 4 sheets)

Problem Objective LP MIP simplex B&B CPU time
Form Value Relaxation iterations nodes (seconds)

(1,2) 277 100.00 39288 1137 2.04
(1,3) 277 100.00 28987 967 1.94
(1,4) 277 100.00 18235 753 1.46
(1,5) 277 100.00 36955 920 2.03
(1,6) 277 100.00 58610 1766 3.37

(2,2) 277 82.00 2906 447 0.50
(2,3) 277 82.00 825 169 0.35
(2,4) 277 82.00 1235 233 0.27
(2,5) 277 82.00 8029 1399 0.63
(2,6) 277 82.00 15981 2821 6.15

(3,2) 277 82.00 11501 3676 0.86
(3,3) 277 82.00 2314 625 0.62
(3,4) 277 82.00 6364 2067 0.73
(3,5) 277 82.00 12641 3126 0.88
(3,6) 277 82.00 8195 2572 8.36

(4,2) 277 82.00 21013 6077 1.26
(4,3) 277 82.00 9786 2538 0.88
(4,4) 277 82.00 13141 3932 1.00
(4,5) 277 82.00 23844 5863 1.37
(4,6) 277 82.00 31586 6015 6.87
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Table 4.2: SP2 (n = 18 rectangles, m = 4 sheets)

Problem Objective LP MIP simplex B&B CPU time
Form Value Relaxation iterations nodes (seconds)

(1,2) 525 146.28 20052284 107683 6454.59
(1,3) 525 146.28 34960168 426967 9551.93
(1,4) 525 146.28 184213342 1645024 41568.30
(1,5) 525 146.28 22227939 63699 7334.74
(1,6) 525 146.28 176751280 520508 77295.40

(2,2) 525 100.00 279663 16718 29.09
(2,3) 525 100.00 168372 7953 19.58
(2,4) 525 100.00 248573 18375 21.94
(2,5) 525 100.00 634316 20044 45.03
(2,6) 525 100.00 293006 25333 29.18

(3,2) 525 100.00 223864 33165 27.36
(3,3) 525 100.00 208126 29178 24.72
(3,4) 525 100.00 304061 40545 35.29
(3,5) 525 100.00 301985 34846 39.00
(3,6) 525 100.00 407499 47532 56.25

(4,2) 525 100.00 1725174 186727 152.31
(4,3) 525 100.00 1015173 130450 98.11
(4,4) 525 100.00 1997947 224633 190.65
(4,5) 525 100.00 762133 93993 127.03
(4,6) 525 100.00 503079 62109 54.99
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Table 4.3: SP1′ (n = 7 rectangles, m = 1 sheet)

Problem Objective LP MIP simplex B&B CPU time
Form Value Relaxation iterations nodes (seconds)

1 272 107.35 376820 10381 18.62
2 272 82.00 44629 4865 2.23
3 272 82.00 85422 12116 3.84
4 272 82.00 157400 25967 8.16

Table 4.4: SP2′ (n = 18 rectangles, m = 1 sheet)

Problem Objective LP MIP simplex B&B CPU time
Form Value Relaxation iterations nodes (seconds)

1 525 146.28 22051429 99842 8245.21
2 525 100.00 487113 21981 52.13
3 525 100.00 700183 96610 93.26
4 525 100.00 633292 97040 67.23

25



Chapter 5

Conclusions and Discussion

This paper presents a general disjunctive framework for modeling a special family of 2-

dimensional cutting stock problems. Two main disjunctive challenges exist: preventing rectangle

overlap and ensuring that each rectangle is cut from a single sheet. Four approaches for modeling

unions of polytopes are reviewed; these four approaches give rise to four models for preventing

rectangle overlap and six models for ensuring that each rectangle is cut from a single sheet. The

models contain different numbers of discrete and continuous variables, different numbers of con-

straints, and promote different relaxation values. The models were submitted to CPLEX 12.6.0.0

for the purpose of comparing their relative merits.

A surprising outcome of the computational results is the inherent difficulty of the problem.

The larger of the two test problems taken from the literature contains only n = 18 rectangles and

m = 4 sheets. We were unable to solve slightly larger problems within 1800 CPU seconds by any

of the models described.

Based on insights gained from this study, we have identified three avenues for future work.

First, the problems suffer from symmetry, which can slow the enumerative process. To illustrate,

consider any arrangement of rectangles upon a single sheet having width W and length L, with

lower left corner placed at the origin and with width parallel to the x-axis. This arrangement can

be reflected about the vertical line x = W
2 , or about the horizontal line y = L

2 , or about both the

vertical and horizontal lines. Thus, four different configurations describe similar cutting patterns.
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Given a cutting pattern on m sheets, there consequently exists 4m different (equivalent) patterns.

The manner in which the sheets are numbered increases this value to (4m)!. The challenge, and

first avenue of research, is to avoid this symmetry. Notably, the CPLEX option for elimination

of symmetry had no effect on iteration counts or solve times. The second avenue of research is

to compute improved disjunctions that tighten the linear programming relaxations, but do not

substantially increase the problem sizes. Tables 1 through 4 indicate significant gaps between the

integer optimal solutions and the linear programming relaxation values, particularly when Approach

1 is not used. The third research direction is to exploit the linear programming strength afforded

by Approach 1 through the identification of special structures. Our ongoing research addresses

these avenues.
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Appendix: Cutting Rectangle and Sheet Dimensions

Problem Sheet Set of Rectangle

Name Dimensions Dimensions (`i, wi)

SP1 110×60 (82,60),(90,30),(85,27),(57,30)

(60,25), (60,20), (55,29)

SP2 180×150 (130,30),(130,10),(120,25),(100,100)

(95,95),(90,90),(95,85),(80,80)

(80,75),(70,70),(60,60),(55,50)

(40,40),(50,40),(100,30),(45,20)

(20,15),(25,10)

SP1′ 489×60 same as SP1

SP2′ 1385×150 same as SP2
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