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Abstract

While purposeful introduction of stiffness nonlinearities into the dynamics of energy

harvesters is aimed at enhancing performance under non-stationary and random excitations,

most of the conclusions reported in the current literature are based on the steady-state

response which assumes a harmonic fixed-frequency excitation. As a result, we still do not

have a clear understanding of how the nature of the excitation influences the output power,

or what role stiffness nonlinearities play in the transduction of energy harvesters under

random excitations.

To fill this gap in the current knowledge, this thesis investigates the response of

nonlinear mono- and bi-stable energy harvesters to environmental excitations that can be

approximated via a white noise process. For the mono-stable case, statistical linearization is

utilized to analytically approximate the statistical averages of the response. The influence of

the nonlinearity and the symmetry of the restoring force on the mean power is investigated

under optimal electric loading conditions. It is shown that the nonlinearity has no influence

on the output power unless the ratio between the time constant of the harvesting circuit and

the period of the mechanical oscillator is small. In such case, a mono-stable harvester with

a symmetric nonlinear restoring force can never produce higher mean power levels than

an equivalent linear harvester regardless of the magnitude or nature of the nonlinearity.

On the other hand, asymmetries in the restoring force are shown to provide performance

improvements over an equivalent linear harvester.

For energy harvesters with a bi-stable potential function, statistical linearization,

direct numerical integration of the stochastic differential equations, and finite element solu-
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tion of the Fokker-Plank-Kolmogorov equation governing the response probability density

function are utilized to understand how the shape and symmetry of the potential energy

function influence the mean output power of the harvester. It is observed that, both of

the finite element solution and the direct numerical integration provide close predictions

for the mean power regardless of the shape of the potential energy function. Statistical

linearization, on the other hand, yields non-unique and erroneous predictions unless the

potential energy function has shallow potential wells. It is shown that the mean power

exhibits a maximum value at an optimal potential shape. This optimal shape is not di-

rectly related to the shape that maximizes the mean square displacement even when the

time constant ratio, i.e., ratio between the time constants of the mechanical and electrical

systems is small. Maximizing the mean square displacement yields a potential shape with a

global maximum (unstable potential) for any value of the time constant ratio and any noise

intensity, whereas maximizing the average power yields a bi-stable potential which possesses

deeper potential wells for larger noise intensities and vise versa. Away from the optimal

shape, the mean power drops significantly highlighting the importance of characterizing

the noise intensity of the vibration source prior to designing a bi-stable harvester for the

purpose of harnessing energy from white noise excitations. Furthermore, it is demonstrated

that, the optimal time constant ratio is not necessarily small which challenges previous

conceptions that a bi-stable harvester provides better output power when the time constant

ratio is small. While maximum variation of the mean power with the nonlinearity occurs

for smaller values of the time constant ratio, these values do not necessarily correspond

to the optimal performance of the harvester. Finally, it is shown that asymmetries in the

potential shape of bi-stable harvesters do not improve the mean power unless the symmetric

potential function is designed away from its optimal parameters.
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Chapter 1

Introduction

Energy harvesting is the process by which ambient energy is captured and trans-

formed into a useful form. Historically, mankind has relied on this process to fill its basic

energy needs using windmills, sailing ships, and waterwheels. However, our ever increasing

energy demands and changing research trends is pushing these old concepts into newer di-

rections. For instance, today, we continue to produce smaller and lower-power consumption

devices that span different fields of technology. Wireless sensors, data transmitters, con-

trollers, and implantable medical devices that require only sub-milliwatts of average power

to function are being developed [4, 8, 24, 31]. Unfortunately, further evolution of such

technologies is currently being moderated by the lack of continuous scalable energy sources

that can be used to power and maintain them. Batteries, which remain the most adequate

power choice, have not kept pace with the devices’ demands, especially in terms of energy

density [45]. In addition, their finite life span which necessitates regular replacement can

be a very costly and cumbersome process. Consider, for instance, the difficulty of replacing

batteries for a spatially-dense remotely-located wireless sensor network, or the risks involved

in changing batteries for patients with implantable pace makers.

In light of such challenges and the low-power consumption of many new critical tech-

nologies, this last decade has witnessed a new evolution in energy harvesting technologies

whereby the concept of micro-power generators (MPGs) was introduced [49, 55, 56]. MPGs
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are compact energy harvesting devices that can transform the smallest amounts of avail-

able wasted ambient energy into electricity. When embedded with electronic devices, these

generators can provide a continuous power supply permitting an autonomous operation pro-

cess. Within the vast field of micro-power generation, vibratory energy harvesters (VEHs)

have flourished as a major thrust area. Various devices have been developed to transform

mechanical motions directly into electricity by exploiting the ability of active materials

and some electromechanical mechanisms to generate an electric potential in response to

mechanical stimuli and external vibrations [49, 55, 56].
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Figure 1.1: A schematic of a linear piezoelectric harvester and its voltage-frequency re-
sponse.

The most prolific energy harvesting design consists of a cantilever beam subjected

to base excitations as shown in Fig. 1.1. Attached to the beam near the clamped end are

piezoelectric patches. External environmental excitations set the beam in motion producing

large strains near the clamped end, which, in turn, produce a voltage difference across the

piezoelectric patches. By designing the proper circuitry, this electric potential can be used

to create a current that transfers energy from the environment to an electric device.

Key for efficient energy transduction is the ability to set the beam into large-

amplitude oscillations. For an environmental excitation exhibiting harmonic fixed-frequency

characteristics, large-amplitude beam deflections can be excited by tuning one modal fre-

quency of the beam, usually the first, to be equal to the excitation frequency (resonance
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condition). This tuning approach however, can, in many instances, be very difficult to

achieve in realistic vibratory environments for the following reasons:

1. Linear VEHs similar to the cantilever beam shown in Fig. 1.1 have a very narrow

frequency bandwidth. Small drifts in the excitation frequency around the harvester’s

fundamental frequency can easily occur due to small variations in the nature of the

excitation source and/or changes in the design parameters of the harvester around

their nominal values. This drops the already small energy output of VEHs even

further making the energy harvesting process inefficient.

2. Most environmental excitations are not harmonic but have broad-band or non-stationary

(time-dependent) characteristics in which the energy is distributed over a wide spec-

trum of frequencies or the dominant frequency vary with time. For instance, envi-

ronmental excitations to which a bridge is subjected are generally random resulting

from wind loadings whose frequency and intensity vary depending on the atmospheric

conditions; and moving vehicles whose number, speed, weight, etc. vary at different

times during a given day. Common sources for oscillations in microsystems have white

noise characteristics normally due to non-equilibrium thermal fluctuations as well as

shot and low-frequency noise [10, 59].

1.1 Current Solutions

To remedy this problem, some initial solutions called for the design of vibratory en-

ergy harvesters with tunable characteristics. Tuning mechanisms use passive/active design

means to alter the fundamental frequency of the harvester to match the dominant frequency

of the excitation [5, 9, 47, 50, 53, 53, 54, 58]. Following a number of research investigations,

it became evident that tunable VEHs can only be utilized to account for slow drifts in the

excitation’s frequency and are not efficient under random or fast-varying frequency inputs

[50]. In addition, tuning mechanisms usually require external power or complex design

means. Others proposed solutions that utilize stacks of harvesters with different fundamen-
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tal frequencies such that, at least, one will have a matching fundamental frequency and

will, thereby, resonate and harvest energy from the corresponding excitation’s component

[5, 47, 53]. This, however, reduces the power density and adversely affects the scalability of

the harvester.

A significant body of the current research on vibratory energy harvesting is focused

on the concept of purposeful inclusion of stiffness nonlinearities for broadband transduction.

When compared to their linear resonant counterparts, nonlinear energy harvesters have

a wider steady-state frequency bandwidth, leading to the idea that they can be utilized

to improve performance especially in random and non-stationary vibratory environments.

The basic idea lies in altering the potential energy function of the harvesting system by

introducing a nonlinear restoring force. In general, the nonlinearity can be introduced

using external design means such as magnetic or mechanical forces [1, 2, 7, 12, 17, 18, 20,

35, 38, 40, 46, 57]. There are two different classes of these harvesters. The first is designed

to exhibit a nonlinear resonant behavior similar to that of a mono-stable duffing oscillator

with a hardening/softening nonlinearity [7, 35, 38]. As shown in Fig. 1.2, the nonlinearity

bends the frequency-response curves to the left or to the right depending on its nature

thereby extending the bandwidth of the harvester to a wider range of frequencies. However,

the enhanced bandwidth is accompanied with the presence of regions of multiple stable

solutions with different basins of attraction. As such, a mono-stable harvester is not always

guaranteed to operate on the large-amplitude branch of solutions.

Examples of mono-stable VEHs include, but are not limited to, the magnetically-

levitated inductive harvester proposed by Mann and Sims [35] and shown in Fig. 1.3 (a).

This harvester comprises of two outer magnets to levitate a fluctuating central magnet. The

nonlinearity is introduced in the form of the magnetic restoring force, which also enables the

system to be tuned to a specific resonant frequency. Per Faraday’s law, energy is generated

as a result of the relative motion between the coil and the center magnet. Barton et al. [7]

also proposed a mono-stable inductive VEH but in the form of a tip magnet attached to a

cantilever beam, Fig. 1.3(b). When the beam oscillates, the magnet moves relative to a coil

4
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Figure 1.2: A typical steady-state frequency-response curve of a mono-stable energy har-
vester. Dashed lines represnt unstable solutions.

wound around an iron core generating a current in the coil.
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Figure 1.3: Schematics of different nonlinear energy havesters. (a,b) Inductive VEHs pro-
posed in Refs. [35, 36] and Ref. [7], respectively; the linear stiffness and nonlinearity can be
tuned by varying the distance between the magnets. (c) Piezoelectric VEH proposed in Ref.
[38]; linear stiffness and nonlinearity can be tuned by varying an axial load, P . All devices
can operate in the mono- and bi-stable configurations and ab(t) refers to the environmental
base excitation.
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Masana and Daqaq [38] also proposed a mono-stable axially-loaded piezoelectric

clamped-clamped beam harvester as shown in Fig. 1.3 (c). The axial preload, which is

kept below the critical buckling load, serves to tune the natural frequency of the beam and

to introduce a cubic nonlinearity which depends on the magnitude of the axial load. The

device harvests energy as a result of the excitation-induced deformation of a piezoelectric

patch attached to the surface of the beam.

The second class of nonlinear harvesters is designed to have a double-well potential

energy function exhibiting the response of a bi-stable oscillator as shown in Fig. 1.4 (b).

The operation concept of this class, which has been initially proposed by Cottone et al. [12]

and later studied by several researchers [7, 20, 38, 40, 57], is based on the widely-celebrated

bi-stable magneto-elastic structure of Moon and Holmes [41]. While several variances of the

device were proposed, the main concept of operation is very similar. As shown in Fig. 1.4(a),

the device consists of a piezoelectric beam (harvester) with a ferroelectric tip oscillating

between two magnets. For a certain separation range between those magnets, the system

becomes bi-stable having a double-well potential energy function with two stable equilibria

and one unstable saddle. When such a device is subjected to small input excitations, the

dynamics remain confined to one potential well exhibiting a nonlinear resonant behavior

similar to that of a regular mono-stable duffing oscillator. However, when enough energy

is supplied to allow the dynamic trajectories to overcome the potential barrier and escape

to the other potential well (inter-well motion) , the harvester can exhibit complex dynamic

responses which can, under some conditions be favorable for energy harvesting [20, 57].

Masana and Daqaq [37] has investigated the relative response of a mono- and bi-stable VEHs

based on the axially-loaded clamped-clamped piezoelectric beam design under harmonic

excitations illustrating that the bi-stable harvester can only outperform the mono-stable

design for some shapes of the potential energy function and for large base excitation levels.
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Figure 1.4: (a) Schematic of a bi-stable piezoelectric harvester. (b) Associated potential
energy function.

1.2 Response to Random Excitations

While the purposeful introduction of nonlinearities has been aimed to resolve the

issue of excitations’ non-stationarities and randomness, the associated analyses and pre-

dicted power enhancements were, for the most part based, on the steady-state response

which assumes a harmonic fixed-frequency excitation. As of today, we still do not have

a clear understanding of how the nature of the excitation influences the output power, or

what role stiffness nonlinearities play in the transduction of energy harvesters under random

excitations. Still, it is not even well-understood whether the steady-state fixed-frequency

analysis currently adopted in the literature is a valid performance indicator.

A few recent research studies have tried to address some of these unanswered ques-

tions by providing a clearer picture of how randomness and non-stationarities in the exci-

tation influence the average power of nonlinear VEHs [3, 6, 14–16, 22, 23, 25, 43, 52]. Such

studies were mainly focused on analyzing the response of a mono-stable Duffing harvester

with a symmetric restoring force to white noise excitations. It was determined that the

ratio between the period of the mechanical system and the time constant of the harvesting

circuit plays an important role in characterizing the influence of the nonlinearity on the

average power.

In one demonstration, Gammaitoni et al. [22] numerically and experimentally stud-

ied the response of a mono-stable piezoelectric energy harvester with symmetric potential

to random excitations. They showed that, when the time constant of the harvesting circuit
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is large, the root mean square (RMS) output voltage always decreases with the nonlinearity

for a fixed linear stiffness. In another demonstration, Daqaq [14] considered an electro-

magnetic mono-stable VEH and formulated the Fokker-Plank-Kolmagorov (FPK) equation

governing the evolution of the probability density function of the harvesters response under

white noise. He showed that, when the inductance of the coil can be neglected (equivalent

to having a very large time constant ratio), the PDF of the response can be separated into

a function of the displacement and a function of the velocity, further proving that, under

such conditions, the output power of the harvester is not even a function of the nonlinearity.

Sebald et. al [51] confirmed these results experimentally by showing that the average output

power levels of a linear and a nonlinear mono-stable Duffing-type harvesters are very close

when both are excited with equivalent broadband noise.

In an extension to his earlier work, Daqaq [16] also showed that even when the time

constant ratio is not large for both capacitive and inductive harvesters, the mean square

voltage always decreases with the nonlinearity for a harvester with a symmetric restoring

force. He concluded that, for two energy harvesters with equal linear stiffnesses, the one

with zero nonlinear stiffness component always outperforms the one exhibiting a hardening

nonlinear behavior. Recent research results by Green et al. [23] corroborated these findings

but also showed that, although both the linear and nonlinear harvesters produce exactly

similar power levels under white noise, the harvester with the nonlinear restoring force has

a smaller RMS displacement when compared to the linear one making it better suited for

applications with constrained space. In recent studies, Nguyen et al. and Halvorsen [26, 44]

also demonstrated that the RMS voltage of the harvester is not a function of the nonlinearity

when the time constant of the harvesting circuit is very small. Halvorsen [26] showed that,

for intermediate values of the time constant, the RMS voltage of a mono-stable harvester

with a hardening nonlinearity can never be larger than that of a linear harvester with equal

linear stiffness.

The optimization of the electric load for mono-stable Duffing harvesters with a sym-

metric restoring force under white noise was discussed by Green et al. [23], who considered
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an electromagnetic energy harvester with hardening nonlinearities and used statistical lin-

earization to show that, when neglecting the inductance of the coil, the optimal load is not

a function of the nonlinearity and is equal to that corresponding to the optimization of the

linear problem.

The major portion of these studies investigate the response of mono-stable VEHs

to excitations that can be approximated by a white noise process. However, due to the

complexity of their response behavior under random inputs, bi-stable VEHs have received

lesser attention. In one demonstration, Cottone et al. [12] analyzed the response of a bi-

stable VEH to white and exponentially correlated noise excitations. They illustrated that,

a bi-stable device can provide performance improvement over a linear device only when the

time constant of the harvesting circuit is large. They explained that, since the nonlinear

restoring force is only a function of the displacement, its maximum influence on the output

power appears when the voltage is proportional to the displacement and not the velocity.

This happens when the time constant of the harvesting circuit is large. By analytically

solving the Fokker-Plank-Kolmogorov (FPK) equation which governs the probability den-

sity function (PDF) of the harvester’s response, Daqaq [16] corroborated these findings and

showed that, the mean power of a bi-stable harvester becomes independent of the nonlinear-

ity when the time constant ratio, i.e., ratio between the period of the mechanical oscillator

and the time constant of the harvesting circuit is large. Both researchers also showed that

this condition is necessary but not sufficient to guarantee enhanced performance. They

demonstrated that, for a given known noise intensity, the potential well of the harvester

should be intricately designed to balance the rate of inter-well transitions (Kramer’s rate)

with wells’ separation and the height of the potential barrier. Thus, it was concluded that,

knowledge of the excitation’s intensity is essential to design a bi-stable VEH which can

outperform an equivalent linear one under white noise. This conclusion has also been con-

firmed by Litak et al. [34], Halvorsen [26], and Zho and Erturk [60]. Masana and Daqaq

[39] illustrated experimentally that a properly designed bi-stable harvester outperforms the

mono-stable one unless the variance of the input excitation is very small in which case both
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configurations yield similar levels of output voltage.

1.3 Thesis Objectives and Organization

This thesis aims to delineate the influence of stiffness nonlinearities on the perfor-

mance of energy harvesters operating in a white noise environment. Specifically, we first

use statistical linearization techniques to investigate how the optimal power and associ-

ated electric load of mono-stable harvesters is influenced by the nonlinearity, the shape,

and asymmetries in the restoring force. Results are then compared to an equivalent op-

timal linear harvesters and conclusions are drawn regarding utilizing the nonlinearity to

enhance the performance of the harvester. Subsequently, we investigate the response of

bi-stable VEHs to white noise excitations and focus on understanding whether their exists

an optimal potential shape which maximizes the output power for a given noise intensity.

Previously, Adhikari and Friswell [19] demonstrated using statistical linearization (SL) that

the mean output power of a bi-stable symmetric VEH does not exhibit a maximum value

at an optimal potential shape. They showed that the power always decreases as the depth

and separation distance between the wells decreases. On the other hand, Cottone et. al

[13] used a direct numerical integration of the stochastic differential equations to show that,

under exponentially-correlated noise, the mean output power of a bistable symmetric har-

vester exhibits a maximum value at an optimal potential shape. They showed that this

optimal shape corresponds to that maximizing the variance of the displacement. Here, we

further investigate these finding using a combination of SL, numerical integration, and fi-

nite element solution of the FPK equation and arrive at some conclusions regarding the

optimality of the shape of the potential function and the influence of the symmetry on the

output power.

The rest of the thesis is organized as follows. Chapter 2 presents a general electrome-

chanical model that can be used to study the response of nonlinear mono- and bi-stable

energy harvesters. An exact solution of the FPK equation governing the response PDF is
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then obtained for the linearized system and for the special case of a large time constant

ratio. Statistical linearization techniques combined with an optimization algorithm are used

to delineate the influence of the nonlinearity on the optimal electric load for both symmet-

ric and asymmetric mono-stable potentials. Chapter 3 employs the method of statistical

linearization in conjunction with finite element methods to solve the FPK equation for the

approximate PDF of bi-stable harvesters. The approximate PDF is subsequently used to

obtain the statistical averages of the response. The influence of potential shape and sym-

metry on the mean power of the harvester is analyzed. Finally, Chapter 4 presents the main

conclusions.
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Chapter 2

Response of Mono-stable

Harvesters to White Noise

This chapter investigates the optimal response of linear and nonlinear monostable

energy harvesters to white noise excitations. For a linear restoring force, the exact solution

of the FPK equation is obtained and used to generate analytical expressions for the opti-

mal mean power and associated electrical load. For a nonlinear restoring force, statistical

linearization is utilized to obtain approximate analytical expressions for the statistical aver-

ages including the mean output power. An optimization algorithm is used to delineate the

influence of the nonlinearity on the optimal electric load for both symmetric and asymmetric

potentials.

2.1 Electromechanical Model

To achieve the objectives of this work, a basic model of a nonlinear VEH which con-

sists of a mechanical oscillator coupled to an electric circuit through an electromechanical

coupling mechanism is considered. The mechanism can either be piezoelectric, Fig. 2.1(a)

or electromagnetic, Fig. 2.1(b). The piezoelectric energy harvester contains a critical part

of piezoelectric layers, which is subjected to the vibrational beam. The deformation of the
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beam would induce the strain in the piezoelectric materials, which further generate alter-

nating voltage output across the electrodes. In the case of electromagnetic type harvester,

it utilizes the movement of the magnets inside the coil to generate electrical power output.

+

x̄ + x̄b

x̄b

-
m

c

✓ȳ

ȳCp

+
� ˙̄x

-
ȳ � ˙̄x

LdŪ

dx̄

Rl Rp

Rc

Rl

(a) Piezoelectric (b) Electromagnetic

Figure 2.1: A simplified representation of a vibratory energy harvester.

To establish the mathematical model of the system, the equation of motion can be

written as

m¨̄x+ c ˙̄x+
dŪ(x̄)

dx̄
+ θȳ = −m¨̄xb, (2.1a)

Cp ˙̄y +
ȳ

R
= θ ˙̄x, (piezoelectric), L ˙̄y +Rȳ = θ ˙̄x, (electromagnetic) (2.1b)

where the dot represents a derivative with respect to time, τ . The variable x̄ rep-

resents the relative displacement of the mass, m; c is a linear viscous damping coefficient;

θ is a linear electromechanical coupling coefficient; ¨̄xb is the base acceleration; Cp is the

capacitance of the piezoelectric element; L is the inductance of the harvesting coil, and ȳ

is the electric quantity representing the induced voltage in capacitive harvesters and the

induced current in inductive ones. These are measured across an equivalent resistive load,

R. In piezoelectric energy harvesters, the load, R, is the parallel equivalent of the piezo-

electric resistance, Rp, and the load resistance, Rl, i.e., R =
RlRp

Rl+Rp
. In inductive harvesters,

it represents the series equivalent of the load and coil resistance, Rc, i.e., R = Rl +Rc. The

function Ū(x̄) represents the potential energy of the mechanical oscillator and is given in
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the following general form:

Ū(x̄) =
1

2
k1x̄

2 +
1

3
k2x̄

3 +
1

4
k3x̄

4, (2.2)

where k1, k2 and k3 are, respectively, the linear, quadratic, and cubic nonlinearity coef-

ficients appearing in the restoring force. The equations of motion can be further non-

dimensionalized by introducing the following dimensionless quantities:

x =
x̄

lc
, xb =

x̄b
lc
, t = τωn, y =

Cp
θlc
ȳ (piezoelectric), y =

L

θlc
ȳ (electromagnetic)

(2.3)

where lc is a length scale, and ωn =
√
k1/m is the natural frequency of the mechanical

oscillator when k1 is greater than 0. With these transformations, the non-dimensional

equations of motion can be expressed as

ẍ+ 2ζẋ+
dU

dx
+ κ2y = −ẍb, (2.4a)

ẏ + αy = ẋ, (2.4b)

and

ζ =
c

2
√
k1m

, κ2 =
θ2

k1Cp
(capacitive), κ2 =

θ2

k1L
(inductive),

λ =
k2lc
k1

, δ =
k3l

2
c

k1
, α =

1

RCpωn
(piezoelectric), α =

R

Lωn
(electromagnetic).

where

dU

dx
= x+ λx2 + δx3, (2.5)

Here, ζ represents the mechanical damping ratio, κ is a linear dimensionless coupling co-

efficient, λ is the quadratic nonlinearity coefficient, δ is the cubic nonlinearity coefficient,
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and α is the ratio between the period of the mechanical system and the time constant of

the harvesting circuit. It is worth noting that, regardless of the electromechanical coupling

mechanism, Equation (2.4), can be used to study the dynamics of any nonlinear mono- or

bi-stable harvester with cubic nonlinearity. It is also worth mentioning that, in the non-

dimensional form, the potential energy function and the restoring force depend only on λ

and δ. This permits classifying energy harvesters, regardless of their coupling mechanism,

into three major categories based on the shape of their potential energy function and the

associated restoring force.

1. Linear when λ = δ = 0: In such a case, the restoring force is a linear function of the

displacement. Most linear VEHs are only linear within a certain range of operation.

Large deformations and electromechanical coupling mechanisms can introduce small

nonlinearities that are usually neglected to avoid complexities in the analysis.

2. Nonlinear mono-stable when δ > 0 and 0 ≤ λ < 2
√
δ: When δ > 0 and λ = 0, the

potential function is symmetric and has one minimum (mono-stable). The restoring

force increases with the displacement and is said to be of the hardening type. When

δ > 0 and 0 < λ < 2
√
δ, the potential function remains mono-stable but loses its

symmetry around the equilibrium as shown in Fig. 2.2(a).

3. Nonlinear bi-stable when δ > 0 and λ ≥ 2
√
δ: Here, the potential function of the har-

vester has two potential wells separated by a potential barrier as depicted in Fig. 2.3.

In the case of bi-stable symmetric VEHs, the restoring force can also be written in

the more convenient form

dU

dx
= −x+ δx3, (2.6)

in which case the potential function only depends on δ. As depicted in Fig. 2.4 when δ

increases, the separation distance between the potential wells, 2
√

1/δ and the height of

the potential barrier at the saddle point, 1/(4δ) both decrease. As such, the harvester

approaches the mono-stable symmetric design when δ approaches a large number.
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Figure 2.2: (a) Potential energy and (b) restoring force in nonlinear mono-stable VEHs
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Figure 2.3: (a) Potential energy and (b) restoring force in nonlinear bi-stable VEHs.

2.2 Fokker-Plank-Kolmogorov (FPK) Equation

In the field of signal processing, white noise represents a random signal which ex-

hibits a flat spectral density line in frequency domain. It has a wide application in science

and technology, such as the disciplines of electrical engineering, acoustics, civil engineering

and so on. In time domain, white noise displays random pattern which is unpredictable.

However, By looking at such a signal in frequency domain, white noise is such a broad

band process that covers an infinite band of frequencies, which represents a pure theoretical
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Figure 2.4: Variation of (a) the potential energy U(x) and (b) the restoring force dU(x)
dx with

the displacement for different values of the nonlinearity coefficient, δ

concept. In practical, a signal can be treated as white noise if its bandwidth is sufficiently

larger than the frequencies of interest.

The excitation, ẍb, to which the harvester is subjected is assumed to be a physical

zero-mean Gaussian process with a small enough correlation time which tends to be zero.

Gaussian noise is statistical noise that have the bell-shaped probability density function

equal to normal distribution. Under this circumstances, ẍb can be approximated by a

Gaussian white noise process such that1

〈ẍb(t)〉 = 0, 〈ẍb(t)ẍb(s)〉 = 2πS0δ0(s− t), (2.7)

where 〈〉 denotes the expected value, S0 is the spectral density of the process, and δ0 is the

dirac-delta function. The response statistics for the stochastic dynamics of Equation (2.4)

can be generated by expressing the equations in the Itô stochastic form as [28, 29]

dx(t) = f(x, t)dt+ G(x, t)dB, (2.8)

1The assumption of white noise is not as restrictive as it may appear. If the bandwidth of the excitation
is sufficiently larger than that of the harvester’s, then a random excitation can be safely considered to be
white.
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where x = (x1, x2, x3)
T ≡ (x, ẋ, y)T , B is a Brownian motion process such that ẍb(t) =

dB/dt and

f(x, t) =





x2

−2ζx2 − dU
dx1
− κ2x3

−αx3 − x2




, G(x, t) =





0

−1

0




. (2.9)

The solution of Equation (2.8) is determined by the evolution of the transition PDF, P (x, t),

which, in turn, is governed by the following FPK equation:

∂P (x, t)

∂t
= −

3∑

i=1

∂

∂xi
[P (x, t)fi(x, t)]

+
1

2

3∑

i=1

3∑

j=1

∂2

∂xi∂xj
[P (x, t)(QGGT )ij ],

P (∞, t) = P (−∞, t) = 0,

(2.10)

where

Q =




0 0 0

0 2πS0 0

0 0 0



.

With the knowledge of f(x, t) and G(x, t), the FPK equation reduces to

∂P (x, t)

∂t
= −x2

∂P (x, t)

∂x1
+ 2ζ

∂(x2P (x, t))

∂x2
+

(
dU

dx1
+ κ2x3

)
∂P (x, t)

∂x2

+ α
∂(x3P (x, t))

∂x3
+ x2

∂P (x, t)

∂x3
+ πS0

∂2P (x, t)

∂x22
,

P (∞, t) = P (−∞, t) = 0.

(2.11)

Since, in our case, we are interested in the stationary response, the term ∂P (x,t)
∂t is
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set to zero; thus, Equation (2.11) can be rewritten as

−x2
∂P (x)

∂x1
+ 2ζ

∂(x2P (x))

∂x2
+

(
dU

dx1
+ κ2x3

)
∂P (x)

∂x2
+ α

∂(x3P (x))

∂x3
+ x2

∂P (x)

∂x3
+ πS0

∂2P (x)

∂2x2
= 0.

(2.12)

Upon solving Equation (2.12) for P (x), the response statistics can then be obtained

via 〈
3∏

i=1

xkii

〉
=

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

3∏

i=1

xkii P (x)dx1dx2dx3, (2.13)

where ki = 0, 1, 2, . . ..

2.3 Optimality of The Linear System

For the purpose of performance comparison, we first investigate the response statis-

tics and the optimality of the design parameters for the linear harvester with λ = δ = 0.

Since for linear systems, the response to a Gaussian input is also Gaussian, it is possible to

obtain an exact stationary solution of Equation (2.11) in the general Gaussian form

P (x1, x2, x3) = A exp




3∑

i,j=1

aijxixj


, (2.14)

where A is a constant obtained via the following normalization scheme:

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
P (x1, x2, x3)dx1dx2dx3 = 1, (2.15)

and the aij are attained by substituting Equation (2.14) into Equation (2.11), then forcing

the solvability conditions. This yields

aij = −1

2

|R|ij
|R| , (2.16)
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where

R =
2πS0

2ζ(1 + α2 + 2αζ) + κ2(α+ 2ζ)




1 + α2 + 2αζ 0 1
2

0 1+α2+2αζ+κ2

2
α
2

1
2

α
2

1
2



.

Here, |R| and |R|ij are, respectively, the determinant and co-factors of R.

With the knowledge of the exact stationary probability function, the required re-

sponse statistics can now be obtained using Equation (2.13). Of special importance are

the mean square values of the displacement, velocity, and electric quantity which can be

expressed as
〈
x21
〉

= πS0
1 + α2 + 2αζ

2ζ(1 + α2 + 2αζ) + κ2(α+ 2ζ)
, (2.17a)

〈
x22
〉

= πS0
1 + α2 + 2αζ + κ2

2ζ(1 + α2 + 2αζ) + κ2(α+ 2ζ)
, (2.17b)

〈
x23
〉

= πS0
1

2ζ(1 + α2 + 2αζ) + κ2(α+ 2ζ)
. (2.17c)

Using Equation (2.17c), the dimensional average power can also be expressed in the simple

form

〈P〉 = k1l
2
cωnακ

2〈x23〉, (2.18)

Equations (2.18) can be utilized to investigate the optimal time constant ratio, α, of the

linear VEH. This can be achieved by differentiating Equation (2.18) with respect to α, then

solving for αopt to obtain

αopt =
√

1 + κ2. (2.19)

The preceding expression reveals that the optimal time constant ratio of the linear har-

vester is only dependent on the electromechanical coupling, κ. Using the definition of

the time constant ratio, we conclude that the optimal equivalent resistance occurs at
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Ropt = 1/(Cpωn
√

1 + κ2) for a piezoelectric VEH, and at Ropt = Lωn
√

1 + κ2 for an in-

ductive one.

2.4 Optimality of the Nonlinear System

2.4.1 The Special Case of a Large Time Constant Ratio

In this section, the effect of the nonlinearity on the optimal electric load is inves-

tigated. Due to its simplicity, the case of a large time constant ratio, α, is first discussed.

This serves to represent the behavior when either L or Cp are very small. In fact, it is

a common practice in the literature to neglect the inductance of the coils in electromag-

netic harvesters, and, sometimes the capacitance of the piezoelectric element for simplicity,

[15, 23, 35]. From a mathematical point of view, the circuit dynamics, Equation (2.4b),

represents a first-order low-pass filter with the velocity being its input, the electric quantity,

y, representing its output, and α characterizing the inverse of its time constant. When α is

large, the bandwidth of the filter is large, and the circuit dynamics can be approximated via

αy = ẋ. This allows the dynamics of the coupled system, Equation (2.4a), to be reduced to

the following form:

ẍ+ ζeff ẋ+
dU

dx
= −ẍb (2.20)

where ζeff = 2ζ + κ2/α. For the reduced system, the PDF of the response can be obtained

by solving a reduced FPK equation of the form

∂P (x, t)

∂t
= −x2

∂P (x, t)

∂x1
+ 2ζeff

∂(x2P (x, t))

∂x2
+

(
dU

dx1

)
∂P (x, t)

∂x2
+ πS0

∂2P (x, t)

∂x22
,

P (∞, t) = P (−∞, t) = 0,

(2.21)

where (x1, x2)
T ≡ (x, ẋ)T . In the stationary sense, the transition probability function is

time invariant, i.e. ∂P (x, t)/∂t = 0 or P (x, t) = P (x), and Equation (2.21) admits the

21



following stationary solution:

P (x1, x2) = A1 exp

{−ζeff
πS0

U(x1)

}
×A2 exp

{−ζeff
πS0

x22
2

}
, (2.22)

where A−11 =
∫∞
−∞ exp

{
−ζeff
πS0

U(x1)
}

dx1 and A−12 =
∫∞
−∞ exp

{
−ζeff
πS0

x22
2

}
dx2. Note that,

the resulting PDF can be factored into a function of the displacement, x1, and a function

of the velocity, x2. This implies that the displacement and velocity can be treated as two

independent random variables. In such a case, the expected mean square value of the

velocity, 〈x22〉, is independent of the displacement, nonlinearity, and the potential function

altogether; and is given by

〈ẋ2〉 ≡ 〈x22〉 = A2

∫ ∞

−∞
x22 exp

{−ζeff
πS0

x22
2

}
dx2 =

πS0
ζeff

. (2.23)

Using the relation y = ẋ/α in conjunction with Equation (2.23), the expected mean square

value of the electric quantity can then be written as

〈y2〉 ≡ 〈x23〉 =
πS0
α2ζeff

. (2.24)

Equation (2.24) reveals that the expected value of the electric quantity, voltage in the case

of piezoelectric harvesters, and current in the case of electromagnetic ones, is independent

of the shape of the potential function leading to the conclusion that for large values of the

time constant ratio α, no matter how the potential function of the harvester is altered, it

has no influence on the average output power. This conclusion holds for all harvesters with

nonlinearities appearing in the restoring force.

Referring back to Equation (2.17c), it can be noted that when α >> ζ , i.e., when L

or Cp approaches a very small number, the mean square value of the electric output reduces

to

< x23 >=
πS0
α2ζeff

, (2.25)
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which is equivalent to Equation (2.24). This illustrates that the linear and nonlinear system

have similar expressions for the electric quantity when α is large. Thus, the optimal load is

the same for both cases as given by Equation (2.19). In dimensional terms, since Cp and L

approach zero when α is large, Ropt approaches short circuit in electromagnetic VEHs, and

approaches open circuit in piezoelectric ones.

It is worth noting that, while the variance of the electric quantity is independent

of the nonlinearity as previously described, the variance of the displacement still decreases

with the nonlinearity as discussed earlier in Ref. [23]. This implies that the nonlinearity

helps produce the same average power but for a smaller variance in the displacement. Based

on this result, the authors of Ref. [23] concluded that the nonlinearity can help produce a

more compact device. However, this conclusion should be approached with caution since

a reduction in variance does not necessarily prevent the instantaneous displacement from

being large at some instants in time.

2.4.2 The General Case of Any Time Constant Ratio

When the time constant ratio is not necessarily large and the restoring force has a

nonlinear dependence on the displacement, an exact solution of the FPK equation, Equa-

tion (2.11), is not easily attainable even in the stationary sense. The reason being that, even

when the input excitation is Gaussian, the response PDF will deviate from the Gaussian dis-

tribution depending on the strength of the nonlinearity. To approximate the response statis-

tics in such a scenario, it is common to seek approximate response statistics. One approach

is based on statistically linearizing the governing equation of motion, Equation (2.4a). For

the mono-stable nonlinear system at hand, methods of statistical linearization are capable

of providing accurate response statistics for weakly nonlinear systems subjected to Gaussian

excitations of moderate intensity. For a better understanding of the results, the case of a

symmetric mono-stable potential is first considered.
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2.4.2.1 Symmetric Potential

When the potential function is symmetric, the nonlinear equation of motion can be

replaced by an equivalent linear system in the form

ẍ+ 2ζẋ+ ω2
ex+ κ2y = −ẍb,

ẏ + αy = ẋ,

(2.26)

where ω2
ex is an equivalent linear restoring force that best approximates the nonlinear

restoring force of Equation (2.4a). To obtain the unknown coefficient, ω2
e , we minimize the

main square error, E, between the actual restoring force and its linear equivalent, i.e., we

let

∂〈E2〉
∂ω2

e

= 0,
∂2〈E2〉
∂(ω2

e)
2
> 0, (2.27)

where 〈E2〉 = 〈(ω2
ex− x− δx3)2〉. This yields

(ω2
e − 1)〈x2〉 − δ〈x4〉 = 0, 〈x2〉 > 0, (2.28)

To find an approximate analytical expression for ω2
e , the fourth order statistical moment of

the displacement is approximated as 〈x4〉 ≈ 3〈x2〉2, which yields

ω2
e = 1 + 3δ〈x2〉. (2.29)

With the knowledge of ω2
e , the response statistics associated with the equivalent linear

system, Equation (2.26), can now be obtained in a manner similar to that described in

Section 2.3, resulting in the following expression:

〈
x2
〉

=
〈
x21
〉

=
πS0

1 + 3δ〈x21〉
1 + 3δ〈x21〉+ α2 + 2αζ

2ζ(1 + 3δ〈x21〉+ α2 + 2αζ) + κ2(α+ 2ζ)
, (2.30a)

〈
ẋ2
〉

=
〈
x22
〉

= πS0
1 + 3δ〈x21〉+ α2 + 2αζ + κ2

2ζ(1 + 3δ〈x21〉+ α2 + 2αζ) + κ2(α+ 2ζ)
, (2.30b)
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〈
y2
〉

=
〈
x23
〉

= πS0
1

2ζ(1 + 3δ〈x21〉+ α2 + 2αζ) + κ2(α+ 2ζ)
. (2.30c)

and the dimensionless average power, 〈P〉 = α〈x23〉. Since the coefficient ω2
e still depends

on the unknown variance of the displacement of the original nonlinear system, it is still

necessary to approximate 〈x21〉. To achieve this goal, two approaches are commonly adopted

in the literature. In the first approach, 〈x21〉 is approximated using the variance of the linear

system, in other words, using Equation (2.17a). In the second approach, Equation (2.30a) is

solved for 〈x21〉 and then substituted into Equation (2.30c). Naturally, the second approach

is more accurate but involves the solution of a six order polynomial in 〈x21〉.

To investigate the accuracy of both approaches, variation of 〈x21〉 with the non-

linearity is compared to a numerical integration of the stochastic differential equations,

Equations (2.8), as depicted in Fig. 2.5. It is evident that using the approximate variance

based on the linear system, Equation (2.17a), to approximate 〈x21〉, yields results that signif-

icantly underestimates the numerical simulations especially for larger values of δ. Thus, the

exact variance as obtained by solving Equation (2.30a) is used in this work to approximate

the electric quantity and average output power.
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Figure 2.5: Variation of 〈x2〉 with the nonlinearity, δ, obtained for κ = 0.65, α = 0.5,
ζ = 0.01, and S0 = 0.04. Asterisks represent solutions obtained via numerical integration.

To investigate the optimal electric load embedded within the time constant ratio,
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α, the equation ∂〈P〉
∂αopt

= 0 is solved for αopt subject to the condition ∂2〈P〉
∂α2

opt
< 0. Results are

shown in Fig. 2.6 illustrating that the optimal power always decreases with the nonlinearity

regardless of the excitation spectral density. The optimal time constant ratio, on the other

hand, increases with the magnitude of the nonlinearity.
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Figure 2.6: Variation of (a) optimal 〈P〉 and (b) optimal α with the nonlinearity, δ for
different values of S0. Results are obtained for κ = 0.65 and ζ = 0.01.

To put these non-dimensional quantities in a better perspective, we use the parame-

ter values of the electromagnetic generator studied by Green et al. [23]. In their paper, the

authors neglected the influence of the inductance on the power and found that the optimal

load and power do not depend on the nonlinearity. This is the same conclusion we arrived

at in Section 2.4.1. Upon dimensionalizing Equation (2.20), we arrive at the same power

and optimal load expressions presented in Ref. [23]. These are given by

〈P〉opt =
πS0θ

2RL

2ζωn(RL +Rc)2 + θ2(RL+Rc)
m

, (2.31)

Rlopt =

√
(2ζωnRc)2 + 2ζωnRcθ2

2ζωnm
. (2.32)

Clearly, the above expressions are independent of the nonlinearity. However, as shown

in Fig. 2.7, if the inductance of the coil is not sufficiently small, the optimal power and
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associated electric load are actually a function of the nonlinearity. When L is as small

as 0.01 H, there is a clear dependence of the optimal power on both the inductance and

the nonlinearity. Thus, by neglecting the inductance, the harvester operates away from its

optimal conditions which reduces the average output power. It is worth noting that an

inductance value as large as 0.08 H was reported in Ref. [36] for an actual electromagnetic

energy harvester.

The preceding discussion clearly illustrates that the mono-stable Duffing harvester

with a symmetric potential always produces lower average power than its linear counterpart

with equivalent linear stiffness. Thus, even the unintentionally introduced hardening non-

linearities commonly seen in the first mode dynamics of beams, will inadvertently reduce

the average output power of the harvester when operated in a white noise environment.

Furthermore, it is shown that the optimal load has a clear dependence on the nonlinearity

when L and Cp are not sufficiently small. As such, extreme caution should be practiced

before neglecting the inductance of the coil or the capacitance of the piezoelectric element

while performing optimization analysis as this may yield suboptimal results.
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Figure 2.7: Variation of (a) optimal 〈P〉 and (b) optimal RL with the nonlinearity δ for
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2.4.2.2 Asymmetric Potential

In many cases, the potential energy function of nonlinear mono-stable harvesters

is asymmetric due to asymmetries in the nonlinear restoring force. For instance, struc-

tural imperfections, initial curvature, and added masses produce a quadratic nonlinearity

in beam-type harvesters. Additionally, in the process of intentionally introducing nonlin-

earities to the harvester’s through external design mechanisms, it is often difficult to create

a perfectly symmetric restoring force.

Since the potential energy is no longer symmetric, harvesters with both quadratic

and cubic nonlinearity do not necessarily have a zero mean value of displacement 〈x〉 6= 0

[48]. To account for this, we introduce the following transformation:

x(t) = x0(t) + 〈x〉, (2.33)

where x0(t) is the dynamics measured with respect to the mean of x(t). Next, to statistically

linearize the asymmetric system, we seek a linear restoring force that best approximates

the nonlinear one in the form

dU

dx
= ω2

eqx0 + b, (2.34)

where b is introduced to account for a possible shift in the approximate linear force due

to asymmetries in the original nonlinear restoring force. With that, the equivalent linear

system can be written as

ẍ0 + 2ζẋ0 + ω2
eqx0 + b+ κ2y = −ẍb, (2.35a)

ẏ + αy = ẋ. (2.35b)

To obtain the unknown coefficient, ω2
eq, we minimize the main square error, E, between the
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actual restoring force and its linear equivalent, i.e., we let

∂〈E2〉
∂ω2

eq

= 0,
∂〈E2〉
∂b

= 0, (2.36)

where 〈E2〉 = 〈((x+ λx2 + δx3)− (ω2
eq(x− 〈x〉) + b))2〉.

subject to

∂2〈E2〉
∂(ω2

eq)
2
> 0,

∂2〈E2〉
∂(ω2

eq)
2

∂2〈E2〉
∂b2

−
(
∂2〈E2〉
∂ω2

eq∂b

)2

> 0. (2.37)

By taking the statistical average of both sides of Equations (2.35a) and (2.35b), it

can be shown that b = 〈−ẍb〉 = 0, and 〈y〉 = 0. Furthermore, by assuming that the response

PDF follows a Gaussian process, the higher-order moments can be approximated via

〈x3〉 ≈ 3〈x〉〈x2〉 − 2〈x〉3, (2.38)

〈x4〉 ≈ 3〈x2〉2 − 2〈x〉4. (2.39)

Substituting Equations (2.38) and (2.39) into Equation (2.36), and solving for ω2
eq and b

yields

ω2
eq = 3δ〈x2〉+ 2λ〈x〉+ 1, (2.40)

b = 3δ〈x〉〈x2〉 − 2δ〈x〉3 + λ〈x2〉+ 〈x〉 = 0. (2.41)

It is worth noting that, in the case of the asymmetric potential, ω2
eq depends on the nonzero

mean value of x which can be obtained using Equation (2.41).

Repeating similar steps to those described in Section 2.4.2.1, the important response

statistics can be expressed as

〈
x2
〉

=
〈
x21
〉

=
πS0
ω2
eq

ω2
eq + α2 + 2αζ

2ζ(ω2
eq + α2 + 2αζ) + κ2(α+ 2ζ)

+ 〈x1〉2, (2.42a)
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〈
ẋ2
〉

=
〈
x22
〉

= πS0
ω2
eq + α2 + 2αζ + κ2

2ζ(ω2
eq + α2 + 2αζ) + κ2(α+ 2ζ)

, (2.42b)

〈
y2
〉

=
〈
x23
〉

= πS0
1

2ζ(ω2
eq + α2 + 2αζ) + κ2(α+ 2ζ)

. (2.42c)

and the dimensionless average power is given by, 〈P〉 = α〈x23〉.

Figure 2.8 depicts variation of average power with δ for different values of λ as

obtained via statistical linearization and long-time integration of the original equations

of motion. Good qualitative agreement between the statistical linearization results and

the numerical integration is observed further validating the approximate results. It is also

evident that the average power increases as λ is increased, i.e., as the restoring force becomes

more asymmetric. The maximum value of the average power takes place at the extreme

case of mono-stability where λ = 2
√
δ. Beyond this value, the potential function becomes

bi-stable. Most importantly, it can also be seen that, the average power of the mono-stable

VEH with asymmetric potential can be larger than the linear VEH with δ = 0 when λ is

sufficiently large. This indicates that the asymmetry in the restoring force can help improve

the average power of nonlinear mono-stable VEHs under white noise.
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Figure 2.8: Variation of 〈P〉 with the nonlinearity δ obtained for α = 0.5, κ = 0.65, ζ = 0.01
and S0 = 0.05. Markers represent solutions obtained via numerical integration.

To better understand the influence of the time constant ratio on the output power
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in the case of an asymmetric potential, we study variation of the mean square displacement

and mean power with δ in the extreme case of λ = 2
√
δ for two different values of α as

depicted in Figs. 2.9 and 2.10. It is clear that, for both values of α, the average power

exhibits a maximum at some δ value. Furthermore, variation of the average power follows

similar trends as the mean square displacement and is more pronounced for smaller values

of α corresponding to large values of L or Cp. This trend can be explained by inspecting

Equation (2.4b) and noting that, when α is small, the electric quantity (voltage of current)

becomes directly proportional to the displacement.
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Figure 2.9: Variation of (a) 〈P〉 and (b) 〈x2〉 with the non-linearity δ for λ = 2
√
δ, α = 0.1,

κ = 0.65 and ζ = 0.01. Markers represent solutions obtained via numerical integration.

Figures 2.9 and 2.10 also reveal that the average power is larger for α = 0.5 than

it is for α = 0.1 indicating the presence of an optimal value. Figure 2.11 (a) investigates

how this optimal value varies with δ for different values of the noise’s spectral density.

Results indicate that the optimal load decreases initially with δ, exhibits a minimum value

then increases again as δ in increased further. The minimum value of αopt corresponds to

the maximum value of 〈P〉opt as shown in Figs. 2.11 (b), (c) and (d). When compared to

the symmetric potential (λ = 0) or the linear system (λ = δ = 0), it is evident that the

asymmetric potential produces higher optimal average power levels for all values of noise’s

spectral density.
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Chapter 3

Response of Nonlinear Bi-stable

Harvesters to White Noise

The exact solution of the FPK equation, which represents a linear partial differential

equation with varying coefficients, is difficult to obtain in the case of a bi-stable potential,

especially with the multi-dimensional nature of this problem. Hence, the solution must

be approximated using other techniques. In this chapter, statistical linearization, direct

numerical integration of the stochastic differential equations, and finite element solution of

the FPK equation are utilized to approximate the probability density function (PDF) of

the response. The PDF is then used to understand how the shape and symmetry of the

potential energy function influence the mean output power of the harvester.

3.1 Statistical Linearization

Since Equation (2.12) is a linear partial differential equation (PDE) with varying

coefficients, obtaining its exact solution, especially for this multi-dimensional problem, is not

a simple task. As a result, some researchers attempted to approximate the response statistics

of the bi-stable VEH using analytical methods [19]. Statistical linearization represents one

common approach. To obtain the response statistics using the SL techniques for a bi-stable
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VEH, it is assumed that the mean displacement of the response, 〈x〉, can be different from

zero. Thus, the following transformation is introduced:

x(t) = x0(t) + 〈x〉 (3.1)

to measure the dynamics, x0(t), with respect to the mean of x(t). In SL, the nonlinear

equation of motion is further replaced by an equivalent linear system in the form

ẍ0 + 2ζẋ0 + ω2
eqx0 + b+ κ2y = −ẍb, (3.2a)

ẏ + αy = ẋ, (3.2b)

where ω2
eqx0 +b is an equivalent linear restoring force that best approximates the nonlinear

restoring force of Equation (2.4). To obtain the unknown coefficients, ω2
eq and b, we minimize

the main square value of the error between the actual restoring force and its linear equivalent,

i.e., we let

∂〈E2〉
∂ω2

eq

= 0,
∂〈E2〉
∂b

= 0, (3.3)

subject to

∂2〈E2〉
∂(ω2

eq)
2
> 0,

∂2〈E2〉
∂(ω2

eq)
2

∂2〈E2〉
∂b2

−
(
∂2〈E2〉
∂ω2

eq∂b

)2

> 0.

where 〈E2〉 = 〈((−x+ δx3)− (ω2
eq(x− 〈x〉) + b))2〉. This yields

(ω2
eq + 1)(〈x2〉 − 〈x〉2)− δ(〈x4〉 − 〈x〉〈x3〉) = 0,

b+ 2〈x〉 − δ〈x3〉 = 0.

(3.4)

By taking the mean of both sides of Equations (3.2), we obtain

b = 〈−ẍb〉 = 0, 〈y〉 = 0. (3.5)
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Furthermore, using the property of the response statistics of a Gaussian process, the un-

known higher-order moments are approximated as

〈x3〉 = 3〈x〉〈x2〉 − 2〈x〉3, 〈x4〉 = 3〈x2〉2 − 2〈x〉4. (3.6)

Substituting Equation (3.6) into Equation (3.4), we obtain the following two equations:

ω2
eq = −1 + 3δ〈x2〉, (3.7a)

〈x〉(−1 + 3δ〈x2〉 − 2δ〈x〉2) = 0. (3.7b)

Equation (3.7a) indicates the effect of the nonlinearity can be approximated by an equiv-

alent linear frequency which depends on the unknown variance of the displacement 〈x2〉.

Furthermore, Equation (3.7a) is subjected to the condition given by Equation (3.7b) which

admits three possible solutions. One of these solutions is 〈x〉 = 0, while the other two yield

non-zero mean values. Physically, the first solution describes motions, which on average,

has a zero mean about the unstable saddle. In other words, this solution refers to the

harvester undergoing inter-well motions with zero mean around the unstable equilibrium

point regardless of the shape of the potential function or the intensity of the excitation.

Next, the PDF of the linearized system of Equations (3.2a) and (3.2b) is obtained by

solving the associated FPK equation. Since, for the equivalent linear system, the response

to a Gaussian input is also Gaussian, it is possible to obtain an exact stationary solution of

Equation (2.11) in the general Gaussian form

P (x1, x2, x3) = A exp




3∑

i,j=1

aijxixj


, (3.8)
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where A is a constant obtained via the following normalization scheme:

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
P (x1, x2, x3)dx1dx2dx3 = 1, (3.9)

and the aij are attained by substituting Equation (3.8) into Equation (2.11), then forcing

the solvability conditions. This yields

aij = −1

2

|R|ij
|R| , (3.10)

where

R =
2πS0

2ζ(ω2
eq + α2 + 2αζ) + κ2(α+ 2ζ)




ω2
eq + α2 + 2αζ 0 1

2

0
ω2
eq+α

2+2αζ+κ2

2
α
2

1
2

α
2

1
2



.

Here, |R| and |R|ij are, respectively, the determinant and co-factors of R.

With the knowledge of the exact stationary PDF, the required response statistics

can now be obtained using Equation (2.13). Of special importance are the mean square

values of the displacement, velocity, and electric quantity which are given by

〈x2〉 =
πS0
ω2
eq

ω2
eq + α2 + 2αζ

2ζ(ω2
eq + α2 + 2αζ) + κ2(α+ 2ζ)

+ 〈x〉2, (3.11a)

〈ẋ2〉 = πS0
ω2
eq + α2 + 2αζ + κ2

2ζ(ω2
eq + α2 + 2αζ) + κ2(α+ 2ζ)

, (3.11b)

〈y2〉 = πS0
1

2ζ(ω2
eq + α2 + 2αζ) + κ2(α+ 2ζ)

. (3.11c)

and the dimensionless average power, 〈P 〉 = α〈y2〉. By solving Equations (3.7a), (3.7b),

and (3.11a) together, the equivalent natural frequency, ω2
eq, the mean displacement 〈x〉,

and the mean square displacement 〈x2〉 can be obtained. Subsequently, the mean square
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velocity 〈ẋ2〉, and the mean square value of the electric quantity, 〈y2〉, which depend on ω2
eq

can be calculated.
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Figure 3.1: Variation of 〈x〉2, 〈x2〉, 〈ẋ2〉, and 〈P 〉 with δ obtained for κ = 0.65, ζ = 0.01,
α = 0.5, and S0 = 0.01.

Using Equations (3.11a)- (3.11c), we study variation of 〈x〉2, 〈x2〉, 〈ẋ2〉 and 〈P 〉

with the nonlinearity coefficient δ as depicted in Fig. 3.1. Results illustrate that, in general,

there are three possible branches of solution. The first two are associated with the non-zero

mean displacement condition to reflect steady-state dynamic motions of the harvester that

do not necessarily average to zero about the saddle point. These solutions only exist for

small values of δ because the potential wells are too deep. When the intensity of the white

noise is increased as depicted in Fig. 3.2, these solutions disappear at even smaller values
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of δ. The third solution which exists over the entire domain of δ, and regardless of the

noise intensity is associated with the zero mean displacement motion of the harvester. This

solution yields the largest values of the mean power that always decrease as δ increases.
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Figure 3.2: Variation of 〈x〉2 and 〈x2〉 with δ obtained for κ = 0.65, ζ = 0.01, α = 0.5, and
S0 = 0.04.

The presence of non-unique solutions at some values of δ as obtained using the SL

approach is incorrect because the PDF of the response should be unique for any value of δ.

As such, some, or all of the solutions obtained via the SL method are fictitious and do not

reflect the actual long-time behavior of the system. In fact, the two branches of solution

appearing for small values of δ are only a result of statistically linearizing the dynamics

around the stable equilibria. These solutions state that, if the potential energy function is

too deep, the dynamics can spend more time in one potential well versus the other yielding

non-zero mean values of the displacement. However, we know that, under white noise,

no matter what the shape of the potential function is, the dynamics will have zero mean

value after a long enough time. Therefore, it is essential to validate these solutions against

other, more accurate techniques, before studying the influence of the design parameters on

the average output power of the system. To achieve this task, one possible solution is to

integrate the stochastic differential equations numerically using some especially developed

tools, e.g. the communication toolbox in Matlab. However, this approach is not very
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accurate especially as we try to understand the dynamics for small values of δ, i.e., when

the potential wells are very deep. In such a scenario, obtaining accurate response statistics

via direct numerical integration of the stochastic equations of motion is very time consuming

since the dynamic trajectories can take a very long time to escape a single potential well.

This issue becomes especially prevalent when the variance of the excitation is small.

A more accurate approach is based on solving the FPK equation of the system ana-

lytically or numerically for the response PDF. Unfortunately, the exact solution of Equation

(2.12), which represents a linear partial differential equation (PDE) with varying coefficients,

is difficult to obtain for this multi-dimensional problem. Hence, the solution must be ap-

proximated using other techniques, among which FEM represents a good candidate. Finite

element techniques become extremely beneficial as we try to understand the dynamics for

small values of δ, i.e., when the potential wells are very deep.

3.2 Finite Element Analysis

In this section, we present a specially designed Finite Element technique to solve

the FPK equation and compare the results to the SL approach [32]. Since the problem

of solving Equation (2.12) using FEM is not a trivial one and cannot be readily solved

using commercial softwares, we elect to provide some details to explain the process. Equa-

tion (2.12) contains 3 non-dimensional variables: the displacement x1, the velocity x2, and

the electric output x3. Since Equation (2.12) appears in its strong form, it is first converted

to its weak form to facilitate the application of FEM. To achieve this goal, the Galerkin

weighted residual method is adopted and Equation (2.12) is rewritten in the following form:

L [P (x)] = L1 [P (x)] + L2 [P (x)] = 0, (3.12)

where L denotes a differential operator with L1 and L2 expressed as

L1 = −
3∑

i=1

∂

∂xi
[fi(x)· ], L2 =

1

2

3∑

i=1

3∑

j=1

(QGGT )ij
∂2

∂xi∂xj
[ ], (3.13)
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For any arbitrary continuous weighting function φ(x) defined on a certain domain, R,

Equation (3.12) can be rewritten as

∫

R
φ(x)L1[P (x)]dτ +

∫

R
φ(x)L2[P (x)]dτ = 0, (3.14)

where R defines the whole domain and dτ ≡ dx1dx2dx3. Using integration by parts, the

first term in Equation (3.14) can be written as

∫

R
φ(x)L1[P (x)]dτ = −

3∑

i=1

∫

R
φ(x)

∂

∂xi
[fi(x)P (x)]dτ

= −
3∑

i=1

∫

R′
[φ(x)fi(x)P (x)]xi2xi1dτ

′ +
3∑

i=1

∫

R
fi(x)P (x)

∂

∂xi
[φ(x)]dτ,

(3.15)

Similarly, the second term of Equation (3.14) can be expressed as

∫

R
φ(x)L2[P (x)]dτ =

1

2

3∑

i=1

3∑

j=1

(QGGT )ij

∫

R
φ(x)

∂2

∂xi∂xj
[P (x)]dτ

=
1

2

3∑

i=1

3∑

j=1

(QGGT )ij

{∫

R′
[φ(x)

∂

∂xj
P (x)]xi2xi1dτ

′ −
∫

R

∂

∂xi
[φ(x)]

∂

∂xj
[P (x)]dτ

}
.

(3.16)

whereR′ and dτ ′ are the reduced domains excluding the variables upon which the integration

is carried out, and xi2 and xi1 are the upper and lower bound of xi respectively.

The region, R, which contains the variables x1, x2 and x3, is of infinite span. In

such a domain, the value of the probability density function P (x) is very close to zero when

any of the components of the vector x becomes large. This implies that P (x) and its first

derivative vanish at infinity leading to the elimination of the first terms of Equation (3.15)

and Equation (3.16). With that, the weak form of Equation (3.14) is reduced to

3∑

i=1

∫

R
fi(x)P (x)

∂

∂xi
[φ(x)]dτ − 1

2

3∑

i=1

3∑

j=1

(QGGT )ij

∫

R

∂

∂xi
[φ(x)]

∂

∂xj
[P (x)]dτ = 0. (3.17)
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To find the unknown stationary PDF, P (x), we apply the FEM to the formulated

weak form of Equation (3.17). To achieve this goal, the corresponding region must satisfy

the condition of integration over a finite domain which our problem lacks. To resolve this

problem, we use the knowledge that the PDF, P (x), approaches zero as the components of

the vector x approach infinity. This allows us to truncate the infinite domain to a finite

region out of which the PDF is assumed to be zero. In order to define the boundaries of

this region, a direct numerical integration of the original stochastic differential equations

is used to provide a rough estimate for the components of the vector x beyond which the

PDF becomes very small.

Once the interior region is defined, it is discretized into a set of n = 3 dimensional

element (cuboid element), which consists of m = 2n corner nodes. The integration over the

finite domain of Equation (3.17) is further discretized as a sum of the integration over each

element. The weighting function is selected to be the variation of the PDF, δP (x). This

yields

∑

e

{ 3∑

i=1

∫

e
fi(x)P e(x)

∂

∂xi
[δP e(x)]dτ

− 1

2

3∑

i=1

3∑

j=1

(QGGT )ij

∫

e

∂

∂xi
[δP e(x)]

∂

∂xj
[P e(x)]dτ

}
= 0,

(3.18)

where
∑

e denotes the sum of the integration over each element,
∫
e is the integration over

each element, and Pe is the unknown PDF for the element e. The unknown PDF, Pe(x),

and the position dependent vector, fi(x), can be approximated as the sum of the nodal

values multiplied by their corresponding shape functions; that is

P e(x) =
m∑

r=1

Nr(x)Pr, fi(x) =
m∑

s=1

Ns(x)f si
∂

∂xi
[P e(x)] =

∑

k=1

m
∂

∂xi
[Nk(x)δPk],

(3.19)

where m represents the number of nodes of each element; Pr and Pk are the PDF evaluated

at nodes r and k, respectively; Nr(x), Ns(x), and Nk(x) are the shape functions evaluated
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at nodes r,s, and k; respectively; and, finally, fsi is the value of fi evaluated at node s.

The shape function, Nr(x), Ns(x), and Nk(x) take a similar form and are chosen

to be unity at nodes r, s and k [32]. For the sake of demonstration, we illustrate the shape

function Nr(x) which takes the form

Nr(x) =

n∏

k=1

fkr(xk), (3.20)

where fkr(xk) = (xk0 + dxk − xk)/dxk when the xk coordinate of node i lies in x0, and

fkr(xk) = (xk − xk0)/dxk when the xk coordinate of node i lies in x0 + dx, with xk0

representing the kth coordinate for the point x0.

Next, Equation (3.19) is substituted into Equation (3.18), which yields

∑

e

{ 8∑

r=1

8∑

k=1

[ 8∑

s=1

3∑

i=1

∫

e
fsi NsNrPr

∂

∂xi
[NkδPk]dτ

− 1

2

3∑

i=1

3∑

j=1

(QGGT )ij

∫

e

∂

∂xi
[NkδPk]

∂

∂xj
[NrPr]dτ

]}
= 0,

(3.21)

which upon further reduction can be written as

∑

e

{
8∑

r=1

kekrPr

}
= 0, (3.22)

where

kekr =
8∑

s=1

3∑

i=1

∫

e
fsi NsNr

∂

∂xi
[Nk]dτ −

1

2

3∑

i=1

3∑

j=1

(QGGT )ij

∫

e

∂

∂xi
[Nk]

∂

∂xj
[Nr]dτ. (3.23)

Here, ke represents the 8× 8 element matrix, kekr is the entry of stiffness matrix ke in row

k and column r, and Pr represents the rth entry of the column vector P e. Although the

integral in the element matrix ke can be evaluated on the physical element in 3D coordinate

system for the simple rectangular elements, isoparametric mapping is utilized in this paper

43



to perform the integration over the master element [11].

Because the stiffness matrix in Equation (3.23) is obtained through isoparametric

mapping, the Gaussian quadrature method can be utilized to evaluate the terms inside the

integration. It is worth mentioning that this is still a local matrix regarding only a single

element, assembly of these local matrices is required by referring to the relation between

local and global indices. Upon assembly of the global matrix, we obtain the following

eigenvalue problem:

KP = 0, (3.24)

where K is a n × n singular matrix, P is a n × 1 vector which represents the nodal PDFs

at the global nodes, and n represents the number of global nodes. Equation (3.24) can be

solved for the unknown vector P which can then be assembled to approximate the response

PDF. Different from the equations usually encountered in solving Laplace’s equation for

structural problems, the right hand side of Equation (3.24) is equal to zero, for which the

trivial solution P = 0 is a candidate solution. However, this solution conflicts with the

property of the PDF, which states that the integral of the PDF over the whole domain

is unity; i.e.,
∫
R P (x)dτ = 1. Therefore, the non-trivial solutions are the only solutions

considered. The resulting PDF can then be integrated numerically to obtain the response

statistics using Equation (2.13).

3.3 Results of the Finite Element Analysis

Results of the FEM are shown in Fig. 3.3 which displays a cross-sectional view of

the PDF for different sets of variables, {x1, x2}, {x1, x3} and {x2, x3}, respectively. It is

observed that the PDF has origin symmetry, which results from considering a symmetric

potential function as depicted earlier in Fig. 2.4(a). The presence of two symmetric peaks

near the potential wells implies that the dynamic trajectories have a higher but equal

probability of being near the two potential wells of the bi-stable harvester for the given

design parameters and noise intensity.
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Figure 3.3: Cross-sectional views of the resulting stationary PDF for (a) x1 and x2 when
x3 = 0, (b) x1 and x3 when x2 = 0, and (c) x2 and x3 when x1 = 0. Results are obtained
for δ = 1.5, α = 0.5, κ = 0.65, ζ = 0.01 and S0 = 0.01.

Fig. 3.4 compares the statistical averages obtained via the FEM to those obtained

via a direct numerical integration of the original stochastic differential equations, Equation

(2.8). The numerical integration is carried out using Matlab’s communication toolbox.

Figure 3.4(a) illustrates that the mean displacement obtained using FEM is always zero

regardless of the value of δ. This implies that, even when the potential wells are very

deep, dynamic trajectories can still escape from a single potential well and, on average, the

harvester performs inter-well oscillations with zero mean value about the saddle point. In

comparison, results from numerical integration show that the mean displacement starts to
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deviate from zero as δ decreases. For the results of the numerical integration to converge

to zero, a much longer time span, in the order of days, should be considered as depicted in

Fig. 3.5. The figure shows the convergence of the numerical solution to the FEM results for

two different integration times with the closer response obtained using an integration time

that is ten times the other. The issue of convergence of the numerical solutions becomes

even more prevalent when the noise intensity is decreased.
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Figure 3.4: Variation of (a) 〈x〉, (b) 〈x2〉, (c) 〈ẋ2〉, and (d) 〈P〉 with the nonlinearity δ
obtained for α = 0.5, κ = 0.65, ζ = 0.01 and S0 = 0.01. Squares and triangles represent
solutions obtained via Numerical Integration and FEM, respectively.

Results from the FEM are further compared to those obtained using SL as shown

in Fig. 3.6. It can be clearly seen that none of the solutions obtained using SL predicts
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Figure 3.5: Variation of (a) 〈P〉, and (b) percentage error with the nonlinearity δ obtained
for α = 0.5, κ = 0.65, ζ = 0.01, and S0 = 0.01. Triangles represent solutions obtained
using FEM while the squares and the crosses represent solutions obtained via Numerical
Integration. The simulated time for squares is ten times that of the crosses.

the actual response statistics for small values of δ. Only when δ becomes sufficiently large

that the solution associated with 〈x〉 = 0 converges to the FE solution. The SL results

also reveal that the power does not exhibit an optimal value but continues to decrease as

δ increases. As a result, SL can only be used to study the dynamics of the VEH when

the potential wells are shallow and closely spaced. In such a scenario, the power always

decreases with δ similar to a mono-stable VEH possessing a symmetric potential function

[27].

3.4 Influence of The Potential Shape on the Output Power

Since, as discussed in the previous section, SL produces erroneous predictions for the

output power especially for small values of δ, numerical simulations that are cross-validated

with FE results are used in this section to study the influence of the shape of the potential

function on the output power.

First, it should be noted that, when the time constant ratio is very large, the shape

of the potential function embedded within δ has very little influence on the output power
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Figure 3.6: Variation of (a) 〈x2〉 and (b) 〈P〉 with nonlinearity δ obtained for κ = 0.65,
ζ = 0.01 and S0 = 0.01 for different α via FE and SL method.

as shown in Fig. 3.7 (a). As such, the study of the influence of the potential shape on the

output power becomes irrelevant. When α is large, the electric output, y, becomes directly

proportional to the velocity, ẋ, and loses its direct dependence on the displacement, x, as

can be seen in Equation (2.4). This reduces the influence of the shape of the potential

function on the output power as has also been proven analytically by Daqaq in [14, 16]. On

the other hand, as α decreases, the power exhibits a clear dependence on the shape of the

potential function and can also exhibit a maximum at an optimal value of δ.

Fig. 3.7 (a) further illustrates that this optimal value of δ decreases with the time

constant ratio and approaches zero as α approaches zero. To explain this behavior, we first

discuss the case when α approaches zero. In such a scenario, the electric output becomes

directly proportional to the displacement as per Equations (2.4b). As a result, the optimal

value of 〈y2〉 approaches the optimal value of 〈x2〉. To find the optimal value of 〈x2〉, we

reexamine the FEM results which predict that, for white noise, the mean square value of the

displacement takes its maximum value when δ approaches zero; that is, when the potential

energy function has a global maximum at x = 0. Such results make physical sense, because

the mean square displacement approaches infinity when the potential well has one unstable

saddle. This conclusion regarding the optimal value of 〈x2〉 holds for any value of α.
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Now, back to the case when α is not necessarily close to zero. In this case, δ exhibits

an optimal value which is different from zero. To approximate this value analytically,

Cottone et al. [13] used an intelligent approach where they balanced the Kramer’s inter-

well transition rate with the separation distance between the wells to maximize the mean

square displacement. Then, using the argument that the optimal value of 〈y2〉 approaches

the optimal value of 〈x2〉 for sufficiently small values of α, they obtained δopt = 1
2πS0τc

where

τc is the correlation time of the noise. Using this approach for white noise (τc → 0), yields

δopt → 0 which is quite different from the optimal value obtained using the FEM analysis.

As such, Cottone’s approach of approximating the optimal value analytically cannot be

used to predict the optimal potential shape that maximizes the average power for the white

noise case.

It can also be seen in Figs. 3.7 (b) and Fig. 3.8, that the optimal potential shape

embedded within δ has a clear dependence on the noise intensity. Results clearly illustrate

that δopt decreases with S0 meaning that a potential function with deeper and more widely-

separated wells is necessary to maximize the average power as the noise intensity increases.

If the potential shape is not optimized for a given noise intensity, significant reduction in the

output power is expected. For instance, when S0 = 0.1, the mean power drops by around

15% as δ changes from its optimal value of 0.1 to the arbitrary chosen value of δ = 1.

Variation of the average power with δ becomes even more prevalent as the noise intensity

of the source increases.

Variation of the optimal average power and the associated electrical load embedded

within the time constant ratio α with δ are displayed in Fig. 3.9 for a fixed noise intensity.

It is evident that the optimal load can result in an optimal time constant ratio α which is

not necessarily small. This brings to question the argument raised previously by various

researchers which states that α must be small for enhanced energy harvesting using a

bi-stable harvester. While reducing α amplifies the influence of the nonlinearity on the

output voltage, it does not guarantee optimal performance. This can also be clearly seen

by reinspecting Fig. 3.7 (a) and noticing that, while maximum variation of the mean power
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Figure 3.7: Variation of the average power 〈P〉 with the nonlinearity δ for different values of
α and S0 for (a) S0=0.01 and (b) α = 0.5. Results are obtained for κ = 0.65, and ζ = 0.01.
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Figure 3.8: Variation of optimal δ with the input variance S0. Results are obtained for
κ = 0.65, ζ = 0.01 and α = 0.5.

with δ occurs for smaller values of α = 0.1, the maximum attainable power occurs for an

intermediate value of α = 0.5.

3.5 Influence of Potential Asymmetry on the Output Power

The design of a perfectly symmetric bi-stable potential function for energy harvest-

ing is a very challenging task. For instance, in buckled-beam type harvesters, structural
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Figure 3.9: Variation of the optimal average power (a)〈P〉 and (b)α with the nonlinearity
δ. Results are obtained for κ = 0.65, ζ = 0.01.

imperfections, initial curvature, added masses, as well as asymmetries in the externally ap-

plied magnetic fields can produce asymmetry in the potential function. When the potential

function is asymmetric, the harvester’s response does not necessarily have zero mean value

under white noise excitations. This can significantly influence the harvester’s performance

and efficacy.

To analyze the influence of potential asymmetry on the average power, we adopt the

restoring force in Equation (2.5) which includes a quadratic nonlinearity with coefficient,

λ. When λ is greater than 2
√
δ, the potential function switches from being a mono-stable

asymmetric potential to a bi-stable asymmetric potential. As shown in Fig. 2.3(a), when

λ = 3
√
δ/2, the bi-stable potential recovers its symmetric properties. Increasing λ further

causes the potential function to become asymmetric again. The influence of varying λ and

δ on the shape of the potential energy function is displayed in Fig. 3.10. The coefficient λ

controls the symmetry properties of the potential function while δ controls the depth and

separation distance between the wells.

We use the finite element analysis described in section 3.2 to obtain the potential

energy function as depicted in Fig. 3.11 which provides a cross-sectional view of the PDF

for different sets of variables, {x1, x2}, {x1, x3}, {x2, x3}, respectively, and λ =
√

17δ/4. It
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Figure 3.10: (a) Potential energy function for different values of λ when δ = 1 and (b)
Potential energy function for different values of δ when λ =

√
5δ.

is evident that the PDF does not possess symmetric properties with the dynamics clearly

having higher probability of being near the deeper potential well as shown in Fig. 3.11(a).

A comparison between the FE solution and the numerical integration of the stochastic

differential equations is shown in Fig. 3.12 clearly demonstrating an excellent agreement.

Figure 3.13 depicts variation of the mean square displacement and mean power of

the harvester with δ for a small noise intensity of S0 = 0.01 and different values of λ. It is

evident that the harvester possessing the symmetric potential function provides larger mean

power over most of the range considered. The potential energy function with the highest

asymmetric properties, λ =
√

5δ, seems to provide the lowest power levels when δ is small,

but recovers to provide the largest power level when δ becomes very large. Nevertheless,

when designed using the optimal value of δ, the symmetric bi-stable harvester provides more

power levels than all other values of λ.

Similar results can be seen when S0 is increased to the intermediate values of S0 =

0.04 and 0.05 as depicted in Fig. 3.14 with the main difference that the energy harvester with

the highly asymmetric potential can now outperform the symmetric one for smaller values

of δ. However, when all harvesters are designed to operate using their optimal value of δ,

the one with the symmetric potential still provide the maximum average power. When S0 is
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Figure 3.11: Cross-sectional views of the resulting stationary PDF for (a) x1 and x2 when
x3 = 0, (b) x1 and x3 when x2 = 0,(c) x2 and x3 when x1 = 0. Results are obtained for
δ = 1, λ =

√
17/4, κ = 0.65, ζ = 0.01, α = 0.5 and S0 = 0.01.

increased significantly to 0.5 as depicted in Fig. 3.15, the effect of the potential asymmetry

diminishes and the mean power curves converge nicely into one curve.

The effect of potential symmetry and noise intensity can also be seen by inspecting

variation of the mean power with λ for different values of S0 as depicted in Fig. 3.16. It

is evident that mean power increases initially and reaches an optimal values which is very

close to that associated with the symmetric potential. The power then decreases monoton-

ically with λ clearly illustrating the detrimental influence of potential asymmetries on the

output power. Variation of the power is also clearly less prominent as S0 increases, further
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Figure 3.12: Variation of 〈P 〉 with δ obtained for κ = 0.65, ζ = 0.01, α = 0.5, S0 = 0.01,
(a) λ =

√
17δ/4 and (b) λ =

√
5δ. Squares and triangles represent solutions obtained via

Numerical Integration and FEM, respectively
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Figure 3.13: Variation of 〈x2〉 and 〈P 〉 with δ obtained for κ = 0.65, ζ = 0.01, α = 0.5 and
S0 = 0.01

highlighting the diminishing influence of potential asymmetry for larger noise intensities.
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Figure 3.14: Variation of 〈P 〉 with δ obtained for κ = 0.65, ζ = 0.01, α = 0.5 when
(a)S0 = 0.04 and (b)S0 = 0.05
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Figure 3.15: Variation of 〈P 〉 with δ obtained for κ = 0.65, ζ = 0.01, α = 0.5, and S0 = 0.5
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Figure 3.16: Variation of 〈P 〉 with λ obtained for κ = 0.65, ζ = 0.01, α = 0.5 when
(a)δ = 0.5 and (b)δ = 1
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Chapter 4

Conclusions

This thesis investigated the influence of stiffness nonlinearities on the performance

of energy harvesters subjected to white noise excitations. Both mono-stable and bistable

VEHs were considered.

For the mono-stable VEHs, both symmetric and asymmetric nonlinear restoring

forces were investigated. It was clearly shown that, the optimal electrical load depends

on the nonlinearity especially when the ratio between the period of the mechanical system

and the time constant of the harvesting circuit is not large. Mono-stable harvesters with a

symmetric potential shape are demonstrated to produce smaller average power levels when

compared to the linear VEH with an equivalent stiffness. On the other hand, for VEHs

with asymmetric restoring forces, the average power is observed to be larger as compared

to a linear device.

Subsequently, the response of a bi-stable energy harvester to white noise excitations

is analyzed. To obtain the optimal potential shape which maximizes the mean power for

a given noise intensity, statistical linearization, direct numerical integration method, and

finite element solution of the Fokker-Plank-Kolmogorov equation were utilized. It was

observed that, statistical linearization generates non-unique and erroneous results unless

the potential energy function has shallow potential wells. On the other hand, both of the

finite element solution and the direct numerical integration provide close predictions for the
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mean power regardless of the shape of the potential energy function. However, convergence

of the numerical integration approach can be very slow especially when the potential wells

are very deep and the noise intensity is small.

Using the solution from finite element analysis, we arrived at the following conclu-

sion:

• The mean power exhibits a maximum value at an optimal potential shape. This

optimal shape does not correspond to the shape that maximizes the mean square

displacement even when the time constant ratio between the time constants of the

mechanical and electrical systems is small. In fact, maximizing the mean square

displacement yields a potential shape with a global maximum (unstable potential)

regardless of the time constant ratio and noise intensity, whereas maximizing the

average power yields a bi-stable potential function which possesses deeper potential

wells for larger noise intensities and vise versa.

• Apart from the optimal shape, the average power decreases significantly demonstrating

the necessity of characterizing the noise intensity of the vibration source prior to

designing a bi-stable harvester for the purpose of harvesting energy from white noise

excitations.

• The optimal time constant ratio will not necessarily be small which challenges pre-

vious conceptions that a bi-stable harvester provides better output power when the

time constant ratio is small. While maximum variation of the mean power with the

nonlinearity occurs for smaller values of time constant ratio, this does not necessarily

correspond to the optimal performance of the harvester.

• The asymmetry of potential energy function can enhance the power output only when

the cubic nonlinearity is large and quadratic nonlinearity can exceed the critical sym-

metric value. Furthermore, under large white noise excitation, the value of quadratic

nonlinearity can decrease, beyond which the asymmetric harvester would outperform

the symmetric one.
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Having evaluated the influence of stiffness-type nonlinearities on energy harvesting

under white noise, further research efforts should investigate other types of nonlinearities

e.g., nonlinearities in the harvesting circuit dynamics or in the velocity to enhance the

transduction of energy harvesters under random excitations which can be approximated by

a white noise process. Other types of excitations that exhibit properties should also be

discussed because they provide a better representation of actual environmental excitations.
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