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ABSTRACT 

 

 In this master’s thesis, several digital image processing techniques are explored 

for potential in evaluation of Brightness mode (B-mode) ultrasound images. Currently, 

many processing techniques are utilized during ultrasound visualization in cardiovascular 

applications, mammography, and three-dimensional ultrasound systems. However, 

approaches that serve to aid the clinician in diagnostic assessment of tendinous and 

ligamentous injuries are more limited. Consequently, the methods employed below are 

aimed at reducing the dependence on clinician judgment alone to assess the healing stage 

and mechanical properties of tendinous injuries. 

 Initial focus concentrated on the use of entropy in texture analysis to relate a 

tendon’s appearance in an ultrasound image to its mechanical integrity. Confounding 

effects such as motion artifacts and region of interest selection by the user limited the 

applicability of small regions selected for analysis, but general trends were observed 

when the entire visualized tendon or superficial background region was selected. Entropy 

calculations suggested a significant change in texture pattern for tendinous regions 

compared to the selected background regions.  

 In order to reduce the impact of motion artifacts and dependence of the texture 

analysis on manual identification of regions of interest, a Matlab
® 

script was developed 

intended to isolate the tendinous regions of interest for further analysis. Methods for 

segmentation employed relied on a moving window Fourier Transform to compare local 

parameters in the image to a predefined window of tendinous tissue. Further assessment 



iii 

 

of each local region benefited from parameterization of the local window’s properties that 

focused on capturing indicators of mean pixel intensity, local variation in pixel intensity, 

and local directionality consistency derived from the spatial frequency patterns observed 

in the Fourier Transforms via comparison by the circular Earth Mover’s Distance.  

 Results of the segmentation algorithm developed indicated the presence of 

directional consistency within the tendinous regions, and changes in the speckle pattern 

were observed for the image derived from mean intensity and local pixel intensity 

variation. However, non-tendinous regions were also identified for their directional 

consistency, limiting the applicability of the current process in tendinous region isolation. 

The results obtained for calculations of the circular Earth Mover’s Distance improved 

slightly with the inclusion of temporal averaging and image registration, but still require 

improvement before implementation in clinical applications can be realized.  
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CHAPTER I 

INTRODUCTION TO ULTRASONIC THERAPY 

1.1 Introduction 

Medical ultrasound is a modality that is commonly used in a wide variety of 

applications due to a number of benefits it offers: it is non-invasive, non-ionizing, 

inexpensive, and has excellent temporal resolution.
2
 It relies on application of high-

frequency acoustics to a volume of interest in pulses and measurement of the reflected 

sound waves to generate an image. This functional method produces a negative 

correlation between resolution of ultrasonic images and penetration depth, as attenuation 

of acoustic waves within tissues is greater for the high frequencies that provide superior 

resolution. While ultrasound is utilized extensively to visualize soft tissues in the body, 

the large, abrupt change in density at the interface of a bone and the surrounding soft 

tissue results in almost total reflectance of the sound waves, preventing visualization of 

tissues beyond the interface. Despite these limitations, ultrasound imaging is a useful 

modality for many applications, from cardiovascular visualization to fetal examination to 

diagnosis of soft tissue disease and injury.
2
  

There are approximately 16 million soft tissue injuries, including tendon and 

ligaments, reported in the United States each year.
3
 Risk factors influencing the 

likelihood of a patient in the United States to suffer a tendinous rupture include overuse 

and predisposing conditions such as kidney failure, rheumatoid arthritis, diabetes, gout, 

and use of steroids.
3,4 

As a method for diagnosis of soft tissue injuries, brightness mode 

(B-mode) ultrasound offers an inexpensive and effective screening method clinicians use 
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to assess the severity and nature of the injury. Assessment of such injuries for tendons 

and ligaments relies extensively on a clinician’s ability to derive information from these 

images in order to distinguish between those requiring surgical intervention and those 

that may heal properly from physical therapy alone.
1,3

 The potential benefit of a process 

that establishes objective metrics for a tendon’s healing stage, mechanical properties, and 

severity of injury continues to drive demand for development.  

 The following chapters will discuss the factors involved in tendinous injuries, 

image acquisition of tendons via ultrasound, and employed image processing techniques 

aimed at improving the diagnostic quality of B-mode ultrasound images. Chapter 2 

relates to a tendon’s composition and the factors that lead to injury. Chapter 3 considers 

the benefits of current digital image processing techniques that offer potential for the 

isolation and parameterization of regions of interest. Chapter 4 discusses ultrasound 

image acquisition and texture parameterization. Chapter 5 concerns the processing 

techniques used in the development of a segmentation algorithm functioning to identify 

regions of interest. 
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CHAPTER II 

TENDON FUNCTIONAL ANATOMY AND INJURIES 

 

As the mechanical junction that permits locomotion, tendons and ligaments 

represent a critical load-bearing component of the musculoskeletal system. Due to the 

inherent difficulty in assessing the severity of tendinous injuries, the stage of healing of a 

tendon after injury, and predicting the mechanical properties of tendons, there is a great 

need for an improved understanding of the factors that affect tendinous injuries.
3,5,6,8,11,14

 

Critical elements of diagnostic process improvement in ultrasound imaging for the 

assessment of tendinous injuries are tendon composition, the natural mechanical behavior 

of tendon,  its stages of healing and how injury impacts its mechanical integrity, current 

treatment methods and how they affect the healing process. 

 

2.1 Tendon Composition 

Tendons are rode-like bundles of cells and connective tissue. The cellular part of a 

tendon consists of tenoblasts, tenocytes, and chondrocytes. The tenoblasts and tenocytes 

cells are approximately 90% of this part of the tendon, while chondrocytes and other cells 

are the remaining 10%.
14

 Tenocytes, mature tenoblasts, have a very low metabolic rate, 

which gives the cell high endurance while under large stresses. The mature nature of 

these cells also contributes to a slow healing process after injury.
14

 Tenocytes synthesize 

type I collagen, which is the basic structural unit of the tendon. Type III collagen is also 

present, but in significantly smaller concentrations. Once the collagen is synthesized, it is 

excreted to the extracellular matrix where it is assembled into densely packed fibers 
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along the longitudinal axis of the tendon. Altogether, collagen accounts for 

approximately 75% of the dry weight of a tendon. Overall, the dry weight of a tendon is 

only 30% of the total mass. Another two percent is contributed to elastin.
8,14 

Other 

components of the extracellular matrix include decorin, aggrecan, and biglycan that 

primarily serve as sites of attachment between collagen fibers.
8
 The remaining 68% is 

water. Generally speaking, elastin fibers within the tendon contribute to the tendon’s 

flexibility, whereas the collagen fibers within a tendon provide it with its considerable 

tensile strength.
12

  

 Morphologically, tendons are composed of a hierarchical structure in which many 

layers of bundles exist, as shown in Figure 2.1. Together with tenocytes, collagen fibrils 

bound together, forming collagen fibers, are the basic structural unit of tendons. Bundles 

of collagen fibers are bound together by a layer of connective tissue known as endotenon, 

forming fascicle functional units. Multiple fascicles and a sparse network of blood and 

lymphatic vessels are further bound together by a connective tissue layer known as the 

epitenon. Tendons are encapsulated in an areolar loose connective tissue layer, the 

paratenon, that allows blood vessels to permeate into deeper tendon tissue.
8,12,14

  Other 

tendons that bend around a joint, such as those in the hand, are enclosed by a tendon 

sheath that is lubricated by the fluid produced from surrounding synovial cells, limiting 

sliding friction.
8
 Vascularity in tendons is nonuniform; zones of compression, friction, 

and torsion have demonstrated hypovascularity. This relationship limits the blood flow of 

tendons at their insertions, which in turn reduces the rate of healing in these regions.
14

 

The highly ordered and densely packed nature of tendons give them strength 
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equivalent to bone and are stronger per unit area than muscle.
8
 A tendon with a cross 

sectional area of one square centimeter is capable of holding up to 1000 kg.
14

 

Furthermore, tendons are flexible and slightly extendable, allowing for a one to three 

percent elongation.
8
 The body limits this ability of the tendon to extend in order to 

translate as much of the muscle force to the bone as possible. In spite of their strength, 

tendons do rupture and tear during some intense exercises or due to stress on the joint 

when it is in an unnatural position. The intensive exercise may cause a sudden over 

loading of force on the tendon, or over-extension of the tendon, leading to injury. It has 

been shown that patients with Achilles tendon ruptures see a high recurrence rate of two 

to eight percent.
6
 These injuries often severely limit the patient’s ability to use the joint 

due to risk of disrupting the healing process and causing re-injury.  
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Figure 2.1: Diagram depicting hierarchical, bundled structure of tendon tissue. Note that the large 

number of parallel collagen fibers lends tendons impressive tensile strength, but make it more 

susceptible to shear forces. (Adapted from [8] James et al. 2008). 
 

2.2 Mechanical Properties of Tendon 

 The mechanical properties of tendon follow directly from its structure. Their 

complex composition containing multiple fiber types and sizes and the numerous 

paradigms by which tendinous tissue extends and contracts yields a non-Newtonian 

mechanical behavior. As viscoelastic tissues, tendons display stress relaxation and creep 
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responses to mechanical loading.
14 

Figure 2.2 summarizes the primary response of 

tendinous tissue to mechanical loading. Below two percent strain, the toe region of 

tendon elongation represents the region in which the collagen fibers, whose resting state 

is slightly crimped, flatten into linear arrangements. As the potential for such extension 

becomes exhausted around two percent strain, further elongation between two and four 

percent strain occurs as the fibrils composing each collagen triple helix slide past one 

another.
14

 Failure of the crosslinks binding collagen fibers together occurs in the four to 

eight percent strain region as the fibers begin to slide past one another, resulting in 

microscopic damage to the stretched tendon.
12

 If further stress is applied to the tendon, 

macroscopic failure of the tendon is a result of intrafibril molecular bond breakage as the 

applied energy overcomes the bond energy holding together the atoms within each 

collagen fibril.  

 A tendon’s tensile strength is proportional to its cross-sectional thickness, with a 

square centimeter cross-sectional area corresponding to load-bearing capacity of 

approximately one kilogram.
14

 The rate at which a load is applied to tendon affects the 

apparent strength of that tendon; physiologic loading during running measured in the 

Achilles tendon exceed 12.5 times body weight that is applied at comparatively low 

frequency.
10 

Tension applied at a faster rate increases risk of tendon rupture at a given 

applied load.
1,10 

In many cases, clinically reported tendon injuries have been found to be 

associated with degenerative changes within the tendon tissue, which is expected to cause 

a predisposition for tendinous injury. While there are many possible precursors to 

tendinous injury, multiple factors are commonly involved that result in tendon rupture.
14

  



9 

 

 

Figure 2.2: Stress-strain relationship of tendons separated by regional paradigm and mechanism of 

elongation. Forces exerted on tendons during normal use typically do not exceed magnitudes capable 

of causing more than a four percent strain. (Adapted from [12] O’Brien 1992). 

 

2.3 Tendon Healing Process 

Ruptured tendon tissue can be visualized using ultrasound due to a change in the 

speckle pattern of the tissue.
3,5 

Tendon healing can be divided into three stages: the 

inflammatory response, the proliferative stage, and the remodeling stage. Each stage, 

while possessing unique characteristics, partially overlap with the adjacent stages.
14

 

During the initial inflammatory response to tendon injury, degradation of wound debris 

and necrotic material occurs by migration of monocytes and subsequent maturation of 

these cells into macrophages. During this phase, angiogenesis is stimulated that results in 

the elevated levels of vascularization evident in tendinous tissue even years after injury.
16 

Tenocyte migration and deposition of type-III collagen at the site of injury is stimulated, 
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leading to a transition into the proliferative phase after a period of a few days.
14

  

 During the proliferative phase, tenocyte proliferation, activity, and recruitment of 

fibroblasts to the wound site is responsible for the deposition of proteoglycans, ground 

substance and tropocollagen.
8,14

 Histological evaluation of post-injury tendon tissue has 

demonstrated increased cellularity due to the proliferation of fibroblasts accompanied 

with increased vascularity and deterioration of the fiber structure.
3,4,8,9,11,12,14,16

 This 

change in histological composition of a tendon following injury into scar-like tissue is 

accompanied by a decrease in tensile strength and, consequently, increased risk of tendon 

rupture. Immobilization of a tendon for long periods of time results in a 20% to 40% loss 

of its ground substance.
12

 A tendon that has healed from trauma becomes tendon-like in 

composition, but never fully regenerates, shown in Figure 2.3. By the conclusion of the 

proliferative stage, the resulting tissue contains substantially increased cellularity, 

vascularity, water content, and matrix components deposited by tenocytes and 

inflammatory cells.
8
  

Six to ten weeks after injury, the remodeling stage begins. Over the course of 

several years, cellularity of the tendon slowly decreases, matrix synthesis slows, and 

type-I collagen, the form of organized linear collagen to which tendons owe their tensile 

strength, increases as deposition of type-III collagen slows.
8,14

 The changes effected in 

the remodeling stage are evident over several years as the healing tissue increases in 

stiffness and the tensile strength improves, but histological evidence of the injury remains 

even up to six years post-injury, and the mechanical properties never fully recover.
16
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Figure 2.3: Histology of patellar tendon tissue that observes the stages of healing after harvesting of 

the central third for reconstruction surgery (approximate original magnification of 200x). Depicted 

in a) and b) is the healing stages of the patellar tendon in an 18 year old male undergoing anterior 

cruciate ligament reconstruction surgery two and size years after surgery, respectively. When 

compared with c), which shows the histology of 25 year old male’s patellar tendon as a control 

specimen, it can be seen that injury to a tendon results in reduced fiber linearity, increased 

vascularity, and substantially increased cellularity present even through the long term remodeling 

stage of healing and tendon repair (Adapted from [16] Svensson et al. 2005).  

 

 The mechanisms by which these changes in tissue activity and composition occur 

fall into two main categories; extrinsic healing responses involve invasion of the native 

tissue by inflammatory cells that initiate healing while cellular activity originating in the 

epitenon and endotenon layers leads to the intrinsic healing response.
8,14

 Many factors 
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influence the extent to which each pathway occurs, including injury severity, location, 

and motion of the tendon.
3,4,8,11,14 

Typically, extrinsic healing dominates in the 

proliferative phase yielding to increased intrinsic healing activity in the remodeling 

phase.
8
 Figure 2.4 displays the responses to tendon trauma that dominate at each stage of 

injury.  

 
Figure 2.4: Stages of healing in tendinous injury, pictured in clockwise progression: tendon injury, 

inflammatory stage, proliferative stage, and remodeling stage. GAG=glycosaminoglycans, 

ECM=Extracellular Matrix (Adapted from [8] James et al 2008).  

 

Note that the matrix components responsible for interfibril collagen articulation 

and alignment (decorin, aggrecan, biglycan) are primarily synthesized in the remodeling 

stage. As a result, earlier healing stages have disorganized collagen fibers that do not 

present the linear alignment typical of healthy tendon tissue. The reduced availability of 

these complexes during the earlier healing stages results in a weakening of the tendon’s 
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strength in its toe region where most physiological loading occurs. However, prolonged 

mobilization of an injured tendon has been shown to lead to reduce water and 

proteoglycan content while increasing tissue atropy.
8,14 

Loading of the tendon during the 

inflammatory stage not only prevents the effects of immobilization, but also promotes 

improved collagen synthesis and fiber alignment.
14

 This demonstrates the importance of 

careful monitoring of the healing stage of an injured tendon in order to take appropriately 

timed steps to promote the development of healthy tissue while limiting risk of further 

injury. 

 

2.4 Tendon Treatment Options 

Currently, there are many approaches that attempt to accelerate the rate and extent 

of healing of an injured tendon.
3,4,8,11,14,15

 These solutions include extracorporeal shock 

wave therapy, applying direct current, laser therapy, and radiofrequency coblation. Some 

techniques incorporate gene therapy and tissue engineering into the treatment process to 

promote superior and more complete tendon healing.
5
 Generally, modern physical 

treatment balances immobilization and stimulation of the tendon during healing due to its 

poor mechanical properties after rupture and the increased risk of further injury.
8 

Physical 

therapy in this paradigm relies on intermittent, precisely timed mechanical stimulation.
3
  

Other treatment options rely on effecting an change in the expression of growth 

factors and the biochemical response that accompanies tendinous healing, the basis for 

extracorporeal shock wave therapy.
2,7,14 

While such treatments were successful in study 

conducted using a rat model, a double blind, randomized trial for humans demonstrated 
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that the treatment showed little effect over a sham treatment offered to the control group 

in noncalcific rotator cuff injuries.
2,14,15 

In another trial, calcific rotator cuff injuries 

responded positively to extracorporeal shock wave therapy proportional to the total 

energy delivered.
7 

The proposed mechanism of action of this therapy involves the 

stimulation of angiogenesis and increased expression of vascular endothelial growth 

factor (VEGF), transforming growth factor-β1 (TGF-β1), and insulin-like growth factor 1 

(IGF-1), all of which mediate aspects of the healing process.  Care must be exercised 

when employing this treatment method, however, which has been demonstrated to cause 

necrosis, fibrosis, and inflammation in rabbit tendons.
13,14  

 Stem cell and tissue engineering approaches are also being explored as potential 

treatment options to bridge the gap between injury and functional recovery of the tendon. 

For injuries in which a tendon has lost its capacity to withstand the loads associated with 

transferring action of a muscle to a bone, the tissue engineering approach proposes to 

implant a scaffold material and mesenchymal stem cells to encourage colonization of the 

scaffold, thereby restoring mechanical integrity.
14

 However, the specific parameters 

promoting the most preferred outcome with this approach, such as scaffold material, cell 

culture, and seeding density, have not yet been established. 

 An emerging therapy option known as radiofrequency coblation the generation of 

reactive plasma to degrade soft tissues, which was shown to stimulate angiogenesis in 

rabbits and may relieve pain in tendinous injuries.
14

 Before concrete conclusions may be 

drawn about the benefit of this therapy, broader human trials are required for validation. 

Another experimental approach proposes to improve the healing outcome by direct 
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application of TGF-β1, IGF-1, and cytokines to the wounded tissue, but has yet to be 

studied extensively.
8 

 In conclusion, while integration of the many promising new treatment approaches 

remains a critical objective for improving functional healing of tendons, surgery or 

physical therapy remain the options with greatest success in the clinic today.
3,8

 Except in 

the most severe cases, surgery is usually considered once physical therapy alone has not 

proven successful.
3
 A variety of surgical techniques are employed that are selected from 

after considering tendon location, injury severity, and surgeon preference. In most cases, 

the paratenon is stripped away and the ruptured tissue is removed.
3
 With current standard 

technologies, tendon injury management continues to challenge society. As 

demonstrated, if physical therapy is too aggressive, risk of reinjury becomes a major 

concern. However, physical therapy that fails to adequately stimulate the tendon during 

healing could result in a poor outcome due to atrophy and excess generation of scar-like 

tissue.
3,8 

For these reasons, there is a great need for methods that improve the diagnostic 

quality of screening tools, namely ultrasonography, in assessing the healing stage and 

mechanical properties of an imaged tendon. In order to assist clinicians in the 

development of an appropriate physical therapy regimen for each patient, an objective, 

automated parameterization of the tendinous region of interest in the ultrasound image is 

preferred. It is therefore appropriate to develop image processing techniques that isolate 

tendinous regions from B-mode ultrasound images as well as distinguish between the 

texture patterns of tendons at different stages of healing in order to correlate such 

parameters to the predicted mechanical properties of each tendon. 
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CHAPTER III:  

 

DIGITAL IMAGE PROCESSING TECHNIQUES 

 

 

 Digital image processing is a field of signal processing that has found applications 

in almost every medical image modality, as well as innumerable applications in the 

computer-based society in which we live.
13

 It is a concept that refers to the process by 

which a sampled signal from a sensor array is quantized, after which one or more 

mathematical operations is applied to transform the image to the displayed image. The 

general goal of such operations is to improve the image quality by some metric of image 

enhancement. Such metrics include, but are not limited to, signal-to-noise ratio (SNR), 

image sharpness, image contrast, or frequency domain exclusion. The processes applied 

fall into five main categories: image enhancement, image restoration, image analysis, 

image compression, and image synthesis. The application of image processing discussed 

in Chapter One relates to image analysis, a process that involves the parameterization of 

features within an image for the purpose of regional isolation, known as image 

segmentation, or pattern recognition.
3
 Sophisticated segmentation algorithms are 

responsible for the facial identification procedure in many camera as well as gesture 

recognition in the Xbox Kinect
™ 

system.
14

  

 Image analysis is particularly useful for texture identification.
3,5,8,12,18

 The first 

example of this, published in 1991 by Dong-Chen He and Li Wang, established the 

foundation for parameterization that would allow for automated classification of surface 

textures pictured in an image.
5 

He and Wang defined a number of parameters useful for 

such classifications, each providing specific metrics about the properties of the input 
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image. The features defined include black-white symmetry, geometric symmetry, degree 

of direction, and orientation specific features: micro-horizontal structure defined in each 

direction, and central symmetry. Three of these features were used to parameterize twelve 

sample texture images of such things as beach sand, water, and pressed cork. The process 

depicted in this work laid the groundwork for many modern texture discrimination 

algorithms in use today.  

 

3.1 Spatial Dependency and Texture Analysis in Image Processing 

 He and Wang’s parameters were all derived from the spatial domain of the image; 

that is, the functional texture unit from which each of the parameters was calculated is 

represented as a pixel and all its neighbors, forming a three by three local neighborhood 

in which each parameter could be defined. Therefore, the defined procedure belongs to a 

category of algorithms that retain spatial information within the output value. Other 

metrics of an image do not retain spatial information; one of the most common examples 

of a spatially independent image processing algorithms is the histogram. An image’s 

histogram loses all dependency on individual pixel location during the summation of each 

brightness value a pixel can be assigned. Regardless of location in the image, two pixels 

of the same brightness in an image are identical when the histogram is computed. The 

normalized histogram of an image, the probability density function (PDF), is commonly 

used in image processing as an analytical device for evaluating an image’s contrast, 

dynamic range, and overall brightness. Mathematical functions applied to the PDF can be 

used to alter an image’s appearance in techniques known as histogram normalization and 
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histogram equalization.
3 
These transformations are often utilized as image enhancement 

algorithms in an attempt to improve an image’s quality.  

 In many applications, output that is dependent on the spatial information in an 

image is desired. Such dependence is the basis of texture analysis for images. One 

method used to assess an image’s texture is through application of information theory and 

calculation of a region’s entropy. In order to compute a region’s entropy, one must first 

understand that the information content of a pixel, as a measure of its reduction of 

uncertainty, is given by Equation 3.1. That is, a common pixel value in a region of 

interest contains little information, and subsequently has a low entropy value.  

 ( )     (
 

 ( )
)         ( ) 

Equation 3.1: Calculation of a unit’s information content, where I(E) is the unit’s information 

content, and P(E) is the probability each unit has of carrying that same information (i.e. pixels of the 

same value) (Adapted from [3] Digital Image Processing for Medical Applications). 

 

 For binary outputs, the base of the logarithms shown in Equation 3.1 becomes 

two, and the unit of information being computed is the bit, for two events that may occur 

with equal probability. For situations in which the probability of each output is not equal, 

as in images containing features other than random noise, Equation 3.2 offers a first-order 

estimate of the entropy in a region of interest. 
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Equation 3.2: Equation for the first order approximation of entropy (H) for a region of interest, in 

bits per pixel, where P(ai) = the probability of occurrence of that information state, I(ai) = the 

information content of that state, n = the number of bits that are needed to define the number of 

unique states in the image possible value range: 2
n
. The summation is evaluated over 2

n
-1 to 

compensate for the possibility of a zero value (Adapted from [3] Digital Image Processing for Medical 

Applications). 

 

 Evaluating this equation, it can be seen that an image consisting of a number of 

pixels, all with the same value, has an entropy of zero, whereas an image in which all 

possible values occur with equal probability has the maximum possible entropy defined 

for an image of that size and bit-depth. Note that this first order evaluation of entropy still 

fails to retain any spatial information; the summation in Equation 3.2 is independent of 

pixel location. Entropy does provide an indication of a region’s texture, however, by 

offering a measure of a region’s local pixel variation in intensity. This has been utilized 

successfully in outcome prediction for pathological breast tissues.
3
  

 In order to retain spatial dependency of entropy calculations over a region of 

interest, it is necessary to derive entropy over domains other than the two-dimensional 

spatial domain. This is commonly accomplished by derivation of the gray-level co-

occurrence matrix (GLCM). The GLCM is a matrix containing the number of instances in 

a region of interest in which one information state occupies a location relative to a 

specific direction from another.  

For images, the GLCM tracks the number of instances in which a given pixel 

intensity occurs, in a given directional vector chosen by the user, relative to another. The 

direction selected indicates the alignment along which the GLCM retains spatial 
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information. Construction of a GLCM from a sample matrix is shown in Figure 3.1.   

 

 

 

 

 

 

 

 

 

Figure 3.1: Depiction of the generation of a GLCM (right) from a sample matrix (left). The direction 

defined in this instance is a horizontal vector one pixel in magnitude; that is, the GLCM generated is 

for pixels in the sample matrix in which one occurs directly to the right of the other. A pixel with a 

value of one occurs adjacent to a pixel with a value of one exactly one time in the sample matrix. 

Therefore, the value stored in the GLCM at position (1,1) is one (Adapted from [4] Digital Image 

Processing). 

 

 Note that summation of the GLCM along each row, generating a column vector, 

is the histogram of the original image. This indicates that the spatial information of a 

GLCM is retained only in one direction. Consequently, calculations derived from the 

GLCM also retain spatial information in that direction.
3,4

  

 

3.2 Frequency Domain Image Processing and Analysis 

 A well-established process in image processing known as the Fourier transform 

involves the expression of a function or, in two dimensions, an image, as a summation of 

sinusoidal waves. This transform has been utilized in innumerable applications across 
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many of the categories in digital image processing, including image enhancement, image 

restoration, image analysis, and image reconstruction.
1,3,4,6,10,11,12,13,18 

One benefit of the 

Fourier transform related to images that has contributed to its success is the ability to 

easily identify and filter out anomalies in the frequency domain whose effect would 

otherwise prove difficult to remove in the spatial domain.
 
Futhermore, analysis of the 

frequency content of a region of interest is less susceptible than spatial domain analysis to 

changes in image quality such as overall brightness or altered contrast.
3,4,13 

  

 Automated segmentation of tendinous tissue from the surrounding regions 

through utilization of the frequency domain has already been implemented by Tuthill et 

al. in 1999.
18

 The procedure involved the rastering of a moving window Fourier 

transform across the original image, calculating the elliptical major-to-minor axis ratio of 

the speckle pattern observed in the frequency domain. This approach proved successful in 

segmentation of healthy tendinous regions when aligned parallel to the ultrasound 

transducer. However, slight disruptions in the speckle pattern of the tendon caused by 

probe rotation, motion artifacts generated by the patient or the clinician, or a ruptured 

tendon led to failed segmentation in the affected regions and frames. The employed 

segmentation algorithm would therefore readily distinguish between healthy and injured 

tendinous tissue, but lacks the robustness needed for widespread clinical application due 

to a dependency on lack of relative motion between transducer and patient as well as 

transducer angle relative to the pictured tendon. With improvements in parameterization 

of the defined regions, it may be possible to track the healing stage of a tendon through 

this approach.
3,8,13,17,18 
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  Another analysis method implemented in 2008 by Bashford et al utilized 

frequency analysis of manually defined regions of interest in B-mode ultrasound images 

as an approach to classify a tendon’s potential pathology.
1 

The employed algorithm 

refined the input region by applying a high pass filter to the Fourier transform, 

suppressing low frequency input that was resulting in a greater misclassification of the 

tendon by the algorithm. Using multiple parameters and the filtered input, the developed 

algorithm was able to successfully discriminate between a healthy and injured tendon 

approximately 80 percent of the time with both inputs. Classification of this algorithm 

could potentially be improved with the addition of a robust segmentation algorithm to 

eliminate any possibility of regional effects on classification accuracy, as well as 

potential correlation of ultrasonic parameters with histological microscopy images 

obtained through surgical resections during tendon repair.
1,2,7,9,16 

 The methods discussed currently rely on parameterization within the frequency 

domain of a region in order to compare the information contained in the current region of 

interest to a metric of interest. This process inherently limits the robustness of the system, 

as comparison with a rigidly defined external comparator generally fails to incorporate 

compensation for variations in image metrics including quality, overall brightness, degree 

of saturation, level of contrast, and dynamic range. Furthermore, parameterization of a 

region into a single value such as elliptical axis ratio may introduce potential for 

unreliability in situations where the defined parameter fails to capture the intended 

properties. Direct quantification of similarity between two regions of interest is preferred 

to prevent reliance on a metric that may be subject to influence from unintended sources.  
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 Computer science applications such as the gesture recognition algorithm utilized 

in the Xbox Kinect
™ 

sensor apply the concept of distribution matching to successfully 

quantize the dissimilarity between two compared distributions through calculation of a 

mutually defined parameter known as the Earth Mover’s Distance (EMD). EMD is 

calculated by computing the effort, along all axes, required to transform one distribution 

into the other when comparing two distributions. If two distributions can be visualized as 

a series of hills and valleys, both with normalized mass, the EMD between them is 

analogous to the total minimum mass than can be moved in the shortest distance to render 

both distributions identical.  

There are many methods for applying boundary rules for flow between the first 

and final bins; a commonly utilized method allows flow between them, making the 

assumption that the bins are arranged in a circular or continuous pattern. The value 

calculated in this manner is called the circular Earth Mover’s Distance (cEMD). An 

example calculation of cEMD is demonstrated in Figure 3.2. Rubner et al. in 1998 

demonstrated the effectiveness of EMD as a superior method related to matching 

perceived similarity and image retrieval applications.
15 

Its application in robust hand 

gesture recognition by Ren et al. demonstrated an impressive 93percent  mean accuracy 

despite increasingly challenging backgrounds, such as poor lighting and cluttered 

environments.
14  

Because the algorithm centered on calculation of the EMD value for each 

distribution, the resultant system achieved input rotation invariance, a feature that is 

equally useful in analysis of medical images. Utilizing cEMD to compare the 
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dissimilarities of two regions in the frequency domain allows for an understanding of 

how each entire frequency spectrum compares with the other, yielding a metric that 

identifies directional consistency in the spatial domain.  
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Figure 3.2: Example cEMD calculation shown for two vectors with four bins. Note that for all 

comparisons of two distributions with equal sums (‘mass’), the final bin will always be balanced to 

the output in the prior step. In this example, the calculated cEMD value between the two 

distributions is 13, indicating the level of dissimilarity between the compared distributions. 

Comparing identical distributions yields a cEMD value of zero. 
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CHAPTER IV 

TENDINOUS ULTRASOUND IMAGE AND PARAMETER ACQUISITION 

 

4.1 Introduction 

 Treatment of tendon ruptures and tears is a field that is rapidly growing. With 

millions of Americans suffering a tendon injury every year, it is important to find a 

suitable method for properly assessing and managing treatment options while minimizing 

future risk to the patient.
7
 Methods are being developed that involve treatment with 

growth factors, tissue engineering and gene therapy to improve the healing outcome for 

tendinous tissue. However, the problem remains that it is difficult to determine the stage 

of healing and mechanical properties of the tendon in vivo. These solutions provide 

improved healing rates for tendons, but fail to provide superior insight into the stage of 

healing an injury has progressed to or the mechanical properties of the injured tendon. 

These shortcomings drive the need for development of a model capable of predicting the 

mechanical properties of a tendon imaged via ultrasound modalities through 

parameterization of tendinous regions.  

Use of texture mapping to distinguish between tendons of different mechanical 

properties is a promising application of image processing to build a model helpful for 

diagnosis. The combination of these two elements will help us produce a predictive 

model that will show the limits of the healing tendon. Ultrasound is a highly portable and 

easy to use technology. This type of predictive model would be extremely useful to 

combat medics who need to diagnose tendinous injuries in the field. This method could 
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also allow a physician or physical therapist to determine the maximum amount of force 

they can apply to the tendon before it will rupture. Ultimately, this ability will lead to 

reduced therapy times and reduced patient discomfort by allowing for maximum 

movement during therapy while preventing overloading and recurrence of injury. 

Currently, ultrasonic imaging techniques can be used to measure arterial stiffness 

and mechanics in vivo.
1,4,8,9,14

 These methods allow for advantageous non-invasive 

determination of a vessel’s mechanical properties that enhance clinical diagnostics. 

Arterial incremental displacements can be determined using a 1-D cross-correlation 

method comparing each frame.
9 

Similarly, ultrasonic imaging is used in the clinic for 

diagnostic purposes regarding tendons. Generally, diagnosis is performed by a 

physician’s eye observations, although ultrasound image analysis methods have now 

been demonstrated to properly classify tendon injury type with approximately 85% 

accuracy.
6
  

A variety of ultrasonic image parameters may be utilized to evaluate a tendon’s 

properties, including digital image correlation, central symmetry, and spatial frequency 

analysis.
2,3,5,6,10,11,12,13,15

 The method selected for use in the developed program will be 

determined by analysis of each method’s computation time and strength of correlation to 

experimental data. Figure 4.1 shows example ultrasonic supraspinatus images containing 

diseased tissues that can be classified using these techniques. The ability to correlate 

tendon ultrasonic image parameters used in texture analysis with a tendon’s mechanical 

properties and histological composition will result in a powerful tool for assisted 

diagnostics. 
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Figure 4.1: Samples of ultrasonic supraspinatus images. The image (a) is a normal case, image (b) is a 

sample of tendon inflammation. The images (c) and (d) are calcific tendonitis and tear, respectively 

(Adapted from [6] Horng et al.). 
 

4.2 Materials and Methods 

4.2.1 Ultrasound Image Acquisition and Preparation 

 B-mode ultrasound images were obtained using a Philips IU-22 Ultrasound 

System at the Clemson University Biomedical Engineering Innovation Campus 

(CUBEInC). Ultrasonic procedure was completed adhering to Philips guidelines for 

ultrasonography of the knee (printed in USA G64215 6-03), outlined in this section.   

Before and during image acquisition, considerations were given for the following 

conditions:  
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 Patient position 

 Transducer orientation 

 Joint position 

 Dynamic flexion-extension of the knee 

 Scanning plane 

During the imaging process, the patient’s knee was held at approximately 90 

degrees. Anterior probe positioning was required in order to visualize the patellar tendon 

along its longitudinal axis. For comparison, a transverse image of the patellar tendon was 

obtained in a separate output by a rotation of the probe 90 degrees from its original 

orientation. Probe orientation was always implemented such that the clinical standard 

image alignment was observed; that is, the top of the ultrasound image always 

corresponded to the superior or medial position. The transducers for which images were 

acquired were the Philips L9-3 and L15-7io models. A male and female volunteer 

allowed for obtainment of five sets of images: Female Longitudinal Axis L9-3 (FLL93), 

Female Longitudinal Axis L15-7io (FLL157io), Male Transverse Axis L9-3 (MTL93), 

Male Longitudinal Axis L9-3 (MLL93), and a second data set obtained on a different 

date for Male Longitudinal Axis L9-3 (ML2L93), for comparison.  

Once obtained, a time series of approximately 650 B-mode images were compiled 

into a dicom file and saved for output in each case. The files were transferred to a 

portable hard drive for further processing in Matlab
®
 (MathWorks). Figure 4.2 

demonstrates a representative frame for each of the transducers used. Further examples 

are available in Appendix A. Before further analysis could be completed, the image was 
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cropped to remove the banner and border regions shown. Further analysis was conducted 

on the resultant series of images for each dicom set.  
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Figure 4.2: Representative images of the patellar tendon obtained from the Philips IU-22 Ultrasound 

System. Top: A longitudinal view of the female patellar tendon visualized with the L15-7io probe, 

resulting in a comparatively smaller domain with higher resolution. Bottom: A longitudinal view of 

the male patellar tendon visualized with the L9-3 probe. Note that the larger domain results in lower 

resolution. Image depth is displayed at the bottom right of each image, in centimeters. 
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4.2.2 Ultrasound Image Texture Analysis 

 Once imported into Matlab, each dicom set was reviewed in order to remove any 

large sections of gross motion artifacts due to probe movement relative to the patient. 

This was necessary in some cases due to the length of the interval in which 650 

consecutive images were acquired, causing unintended motion. After removal of frames 

lost due to motion artifacts, the first frame was displayed to the user for selection of the 

region of interest. For each set, four regions were selected. Two regions were outlined of 

the patellar tendon and superficial background tissue each. In each case, an iteration of 

the script was run for a large region and a small region, the latter of which was intended 

to further reduce the effects of motion artifacts by identifying and selecting regions in 

which view artifacts were observed. The tissue superficial to the patellar tendon was 

selected in every case to represent all background tissue in order to maintain consistency 

in addition to representing the region most similar to the patellar tendon. Each region was 

identified by the user on the first frame using the roipoly function within Matlab, and was 

used for calculations on all frames for the dicom set in which it belonged. Examples of 

each region selection method are shown for one frame in Figure 4.3. For clarity, further 

examples are shown in Appendix B. Examples shown will be displayed for the first frame 

of the FLL157io data set when relevant. 

 For the purposes of calculation, each frame’s values were then normalized to a 

range of zero and one. The gray-level co-occurrence matrix (GLCM) was then calculated 

for the highlighted region, and entropy values calculated from the probability density 

function (PDF) and GLCM were stored in an output structure for each frame. The means 
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and standard deviation of each category for every dicom set were later calculated for 

comparison. In order to maintain consistency with the data available for techniques in 

Chapter 5, only those frames for which a complete data set was available were used in 

these calculations. 

 

Figure 4.3: Example region of interest selection for each iteration of the Matlab script per frame. 

Top left: Small region selected of the patellar tendon. Top right: Small region selected of the 

superficial background. Bottom left: Large region selected of the patellar tendon. Bottom right: 

Large region selected of the superficial background. 

 

4.3 Results 

4.3.1 Small Region Entropy Calculation 

Entropy means for the small region selection are shown in Figures 4.4 and 4.5, 
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respectively. All calculations were completed in Matlab, and the data were transferred to 

Excel
® 

spreadsheets for later reference.  The entropies derived from the PDF are orders of 

magnitude lower than those calculated from the GLCM: this is due to the normalization 

step taken for the PDF matrix, where the GLCM contains a sum equal to the number of 

pixels in the region. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 4.4: Entropy means calculated for each dicom set from the GLCM derived from the small 

input regions. 
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Figure 4.5: Entropy means calculated for each dicom set from the PDF matrices of the small input 

regions. 

  

Regarding the GLCM-derived Entropy, background  tissue entropy primarily 

centered around 30 bits/pixel. The lowest background entropy value was derived from 

ML2L93 at under 24 bits/pixel. All mean values computed for background regions fell 

below those for tendinous regions. For the tendinous entropy means, ML2L93 again 

displayed the lowest entropy value at approximately 40 bits/pixel. No other tendinous 

entropy mean calculated from the GLCM small region selection fell below 50 bits/pixel.  

The greatest difference in entropy mean difference between regions was established by 

FLL157io with a difference of over 27 bits/pixel. Least significant was the difference in 

magnitude between the ML2L93 regions, which were separated by 16.3 bits/pixel. 
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 Results derived from the PDF matrix were somewhat more varied; the 

distributions of magnitudes overlapped. In general, however, the relationship between 

region of interest and mean entropy value was reversed. For all but MLL93, background 

tissue mean entropy calculated with small region selected exceeded that of its 

corresponding tendinous mean entropy value. The largest discrimination between 

regional mean entropy values was again FLL157io, with a 0.016 bits/pixel difference, a 

32 percent decrease. Most closely related were the MLL93 values, separated by 0.00197 

bits/pixel.   

4.3.2 Large Region Entropy Calculation 

 Entropy means calculated using the large region selection method are shown in 

Figures 4.6 and 4.7 for GLCM and PDF origins, respectively. The relationship between 

the relative magnitudes of background mean entropy and tendinous mean entropy when 

calculated using the GLCM large region selection were reversed from the paradigm 

observed with the GLCM small region method. No tendinous mean entropy calculated 

using the GLCM large region exceeded its corresponding background mean entropy of 

the same method. Some overlap between their distributions of magnitudes was observed 

for the male data sets.  

The smallest difference in entropies calculated was for MLL93 at 6.9 bits/pixel, 

just a 5.4 percent change. The largest magnitude change was manifested by FLL157io, 

with 253 bits/pixel corresponding to a 72 percent decrease in magnitude between 

background and tendinous regions. Magnitudes for mean entropy calculated from the 

PDF large region method were tightly clustered: only one value across all regions was 
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computed to not be within 0.012 and 0.014 bits/pixel. That value was 0.0155 bits/pixel 

for the tendinous region of MTL93.  
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Figure 4.6: Entropy means calculated for each dicom set from the GLCM of the large  input regions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: Entropy means calculated for each dicom set from the PDF matrices of the large input 

regions. 
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4.4 Discussion 

 While the results seem to indicate contradictory paradigms in some cases, sound 

understanding of the basis behind the results reveals consensus among the methods used. 

There is an apparent pattern shift between the GLCM small region method and the 

GLCM large region method. However, observation during the data acquisition phase 

indicated that the small region method, in particular the background tissue calculations, 

varied dramatically with relatively small changes in region selection. This is likely due to 

the large number of tissue borders in the superficial background region; not only do these 

borders often separate regions of contrasting properties, but the presence of the borders 

themselves has a significant impact on entropy calculations. Consequently, true 

representation of a region through entropy calculations is only feasible if the region is 

relatively homogeneous.  

 Regarding mean entropy calculation derived from the probability density 

function, the observed result was expected. Spatial organization has no impact on the 

probability density function; this is best demonstrated in the large region entropy 

calculation, which demonstrates almost total uniformity of entropy across probe type, 

patient gender, and tissue type. The comparatively larger variations in the small region 

method are likely a result of sampling bias due to the inherently smaller area collected for 

calculation. As a means for reducing the impact of motion artifacts in the 

parameterization, small region sampling has demonstrated too many drawbacks to be 

advantageous.  

The effect of motion artifacts on the large region method may still be unclear. 
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Once again due to its spatial independence, entropy derived from the PDF is relatively 

unaffected by motion artifacts; provided the distribution of pixel intensity is similar, the 

PDF will remain unaffected. The effect of motion artifacts on the large region, GLCM-

derived entropy values is less certain. Almost all male dicom sets possessed very similar 

entropy to one another, and little distinction between background tissue and tendinous 

tissue was evident for MTL93 and MLL93. While the different tissue types became 

somewhat more pronounced with ML2L93, the most dramatic difference was displaying 

in FLL157io, possibly due to the transducer’s superior resolution. If such a distinction 

does exist between background and tendinous tissues, the smaller differences visible with 

the L9-3 probe may be obscured by the confounding nature of motion artifacts. While 

interference from motion may be affecting the entropy calculations in the large region 

method, the robustness to local variations in tissue structure results in greater stability 

that is too substantially impacted in the small region method. 

 

4.5 Conclusion 

 The small region method has proven to have an overall negative impact on the 

reliability of parameterization of the ultrasound image. However, reduction of the impact 

of motion artifacts remains a concern when selecting large tissue regions during 

processing. Entropy as an indicator of tissue texture revealed promising results that 

demonstrate its potential for future parameterization of ultrasound regions.  

Identification of tissue borders and automated segmentation would improve the 

performance of entropy as a diagnostic aid for tendinous injuries. Texture comparison of 
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healthy and injured tendons is needed for the future in order to establish the effectiveness 

of such an approach. Future work will address these needs as well as the need for 

implementation of a registration process in order to reduce the effect of motion artifacts. 
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CHAPTER V 

SEGMENTATION OF TENDONS IN B-MODE ULTRASOUND 

5.1 Introduction 

As discussed in Chapter 4, segmentation of tendinous regions in ultrasonic images 

offers great potential for improving the performance of parameterization in digital 

processing. Considering as much of a region of interest as possible offers robustness 

against common forms of interference, such as motion artifacts and local variations of 

intensity and texture.
2,6

 Functional tendon segmentation along the longitudinal axis of 

superficial, parallel tendons has already been implemented.
7
 However, there is a need in 

this application for a segmentation algorithm that is robust to probe rotation, angle, and 

tendon orientation and shape.
1,4,5

 Proper identification of a tendinous region allows for 

specialized parameterization reliant on the assumption that contributing pixels all fall 

within a tendinous region, as with speckle pattern analysis and comparison to a radial 

basis function network.
4,7 

Processes reliant on texture analysis, such as entropy 

computations, applied over a domain larger than the region of interest lose sensitivity and 

accuracy as the region of interest’s contribution to the total area decreases. Consequently, 

successful distinction of a tendon from surrounding tissue is closely associated with 

improved feature extraction. 

The circular Earth Mover’s Distance (cEMD) calculation discussed in Chapter 3 

offers a robust method for comparing two total distributions. It is anticipated that clever 

implementation of this ability will allow for discrimination of regions in B-mode 

ultrasound based on directional consistency. Though cEMD calculations offer a robust 
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method for comparison of two distributions, it suffers from substantial computation 

requirements.
3
 Use as a real-time segmentation process would therefore involve 

significant advances in its optimization.  

 

5.2 Materials and Methods 

Several of the dicom files discussed in Chapter 4 were utilized for assessment of 

the segmentation algorithm. For clarity, figures displayed will consist of a single 

FLL157io frame when relevant. Further examples are available for browsing in 

Appendices A through D.  

Due to the computation time required per frame, the imported dicom files were 

sampled such that the collected frames were equally separated throughout the entire 

original series. The number of acquired frames approximated 35 for all but one file, for 

which the number of acquired frames totaled 134. For each file, a mask consisting of a 

small 16 by 16 region was defined on the first frame that would later be used to as a 

representative tendinous region against which comparisons could be made.  

5.2.1 Moving Window Fourier Transform and Tendon Mask Comparison 

 A cEMD for each interior pixel in the original image was computed in the 

following manner: 

 The Fourier Transform of the 16 by 16 pixel mask, defined by the user, is 

calculated. 

 A moving window (16 by 16 pixels), whose current position is defined as the 

center pixel, rasters through the image, column by column, row by row.  



50 

 

 For each interior pixel, the Fourier Transform of the moving window is 

calculated. 

 Each two dimensional Fourier Transform is converted to one dimension by a 

phase angle energy summation: The sum of the squares of the elements in each 

half quadrant (45 degrees) is calculated and stored in an eight element vector.  

 The cEMD value defined for that pixel is the cEMD calculated for the mask and 

current window. 

This process is shown graphically in Figures 5.1 and 5.2. When an interior pixel is 

reached, the script calculates the Fourier Transform of the local window, converts it to a 

one dimensional vector through an energy summation, shown in Figure 5.2, and 

computes the cEMD between that pixel’s vector and the mask vector.  

In addition to defining a cEMD value for each interior pixel, the moving 

window’s mean intensity and Discrete Laplacian (as an indicator of intensity variance in 

the region) were stored for each interior pixel as well. These calculations are repeated 

until the final interior pixel has been assigned its three parameters. 
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Figure 5.1: Mask and raster process of the Matlab script. Yellow Box: An example of a mask region 

selected by the user, sampling tendinous tissue for comparison. Blue Box: Example local region 

defined for a particular interior pixel. Blue Circle: Particular pixel for which the blue box region is 

defined. Red Arrow: When proceeding to the next pixel, the script rasters first along the red arrow 

direction. Orange Arrow: After completing a row of calculations, the script then rasters one pixel 

along the orange arrow direction and continues. 

 

  

 

 

 

 

 
 

 

Figure 5.2: Map of the Fourier Transform of a 16 by 16 pixel window. Elements of the same color 

and text are individually squared, then summed, to yield an energy value for each phase angle. Bins 

begin with the zero to 45 degree Q1- blue section and continue counterclockwise until the final 315 to 

360 degree Q4+ black section. Note that the first and final bins are adjacent to one another; this is 

why the circular Earth Mover’s condition is valid. 
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5.2.2 Calculation of Local Comparison cEMD 

 After all interior pixels have an energy vector of their Fourier Transform defined, 

a second pass through the frame is conducted to calculate the cEMD values of each 

pixel’s vector as it relates to some of its neighbors. To observe the effect of pixel 

separation and number of vectors in all eight primary directions, a series of such 

calculations were conducted for each pixel. Observed quantities included one pixel 

separation paired with 16 regions in all eight directions, four pixel separation paired with 

eight regions, eight pixel separation paired with four regions, and 16 pixel separation 

paired with two regions. For a given method pair, the individual cEMD values were 

combined in two ways, for comparison: a standard mean, and a Gaussian weighted 

average centered on the pixel of interest. The result of this method is eight further cEMD 

average values that are defined for each interior pixel. Due to region size and comparison 

to adjacent regions, more border values could not be calculated. However, the bulk of 

pixel values remained fully defined.  

 

5.3 Results 

 A comparison of the example image, its mean intensity map, its Discrete 

Laplacian, and a map of the cEMD values calculated with respect to the user defined 

mask is shown in Figure 5.3. Results across different dicom sets were fairly consistent; 

more examples are available in Appendix C.  
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Figure 5.3: Comparison of the original image with the defined parameter values. Top left: Original 

image. Top right: Mean intensity image. Bottom left: Discrete Laplacian. Bottom right: cEMD 

relative to the user defined tendinous mask. 

 

 The mean intensity calculation results in a blurring effect on the original image; 

this is mathematically equivalent to the process of averaging local intensities for output. 

The Discrete Laplacian demonstrated a large speckle pattern for non-zero inputs. Some 

elongation of this speckle pattern can be observed in the tendinous region. The mask 

cEMD values varied significantly in magnitude. The tibial interface with the surrounding 

tissue resulted in very large cEMD values orders of magnitude above other regions, 

indicating a very large discrepancy in the spatial frequency pattern of the tendon and 

bone. The zero input regions beyond the tibial surface resulted in zero output matrices; 
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values of zero must be excluded before any minimization procedure can be performed on 

the cEMD values.  

 Results for the local comparison cEMD values calculated in the second pass of 

each image are shown in Figures 5.4 and 5.5 for standard mean and Gaussian weighted 

average, respectively. Due to the large range of values calculated for the cEMD, the base 

10 logarithm of each image is shown for clarity. Figure 5.4 displays all standard mean 

calculations in addition to their logarithms. Figure 5.5 compares one logarithm of a 

standard mean calculation with its related Gaussian average. Among all Gaussian and 

standard mean cEMD matrices, few differences were noted. Discontinuities in the image 

were increasingly observed with less overlap among compared regions, and contrast was, 

in general, greater for the greatest overlap of regions. Additional examples of Gaussian 

and standard mean cEMD matrices are provided in Appendix D. 
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Figure 5.4: Standard mean cEMD images. The left column displays the original matrices; the right 

column illustrates their respective base 10 logarithms. Pictured from top to bottom: One pixel 

separation, 16 regions in each direction; four pixels separation, eight regions in each direction; eight 

pixels separation, four regions in each direction; 16 pixels separation, two regions in each direction. 
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Figure 5.5: Comparison of standard mean and Gaussian averaging methods for four pixel 

separation, eight regions in each direction sampling method. Left: Standard mean method. Right: 

Gaussian weight average method. 

 

 Results displayed previously include several calculations based on a single frame. 

In addition, the effects of pointwise averaging of the cEMD results were observed. 

Averaging was completed using a sampling of the dicom set with zero separation 

between frames. This was necessary to ensure the correct function of the image 

registration algorithm used to reduce motion artifacts in the output. Figure 5.6 shows the 

effect of particular forms of averaging on the local region cEMD matrix. For these 

studies, a Gaussian weighted average employing the four pixels, eight regions in each 

direction method for cEMD calculations.  

 Time averaging of the cEMD had the effect of smoothing on the output matrix. 

Motion artifacts appeared to have little effect on this dicom set on the time scale of 60 

frames; little difference was observed for the output with and without motion correction. 

An average of just two frames of the cEMD displayed a noticeable effect on the contrast 

in the output image. A pointwise multiplication of the mean intensity with the Discrete 

Laplacian scaled the Discrete Laplacian relative to the local intensity values in each 
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region. The output matrix of this operation demonstrates this principle: areas of very low 

intensity became very dark on the combined metric output. Output intensity appeared to 

scale primarily with mean intensity, with a secondary effect associated with the Discrete 

Laplacian.  
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Figure 5.6: Effects of time averaging on the Gaussian weighted cEMD. Top left: Original image. Top 

right: Pointwise product of the Discrete Laplacian and mean intensity parameters. Middle left: Base 

10 logarithm of the Gaussian weighted average cEMD for the original image. Middle right: Base 10 

logarithm of the Gaussian weight average cEMD as a pointwise product of the first two frames. 

Bottom left: Base 10 logarithm of the pointwise average of the first 60 frames in the FLL157io dicom 

set without motion correction. Bottom right: Base 10 logarithm of the pointwise average of the first 

60 frames in the FLL157io dicom set with motion correction. 
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5.4 Discussion 

 Results for the cEMD calculations do appear lower in the tendinous regions, but 

also return values of approximately equal value for other regions of the image with 

directional consistency as well. This limits its current use for the segmentation of 

tendinous regions until further improvements to the algorithm can be made. Time 

averaging did show some potential as a smoothing process, after which a post-process 

application of a series of erosion and dilation iterations may yield features for which 

identification of the tendinous region is possible. Compiling the mean intensity, Discrete 

Laplacian, mask cEMD values, and local directionality cEMD values into a single metric 

in a logical and effective way is both highly desirable and non-trivial. Magnitudes of each 

parameter not only vary on dramatically different scales, but identify tendinous regions in 

very different ways. The patellar tendon is a hyperechoic structure in ultrasound, 

resulting in a comparatively high mean intensity. Minimization of the cEMD matrix is 

desired in order to locate the most closely related match.  

 

5.5 Conclusion 

 The current state of the proposed segmentation algorithm is unable to reliably 

isolate tendinous regions as intended. However, the possibility for improvement is 

substantial and with application of appropriate steps in the future, a robust segmentation 

algorithm for tendinous regions could be created. Time averaging of the cEMD matrix 

and its smoothing effects appeared to highlight the borders of the tendon sheath, 

separating the low values of the tendon from low values of adjacent regions. With the 
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proper application of shape priors or assumptions of image configuration, isolation of the 

tendon in this way is achievable.  

 Future work should strive to improve the sharpness of the cEMD matrices; current 

iterations of this algorithm display too much noise to offer sharply defined borders. 

Additionally, identification of a properly defined single metric incorporating input from 

the mean intensity, Discrete Laplacian, mask cEMD values, and local cEMD values 

represents a goal that, if achieved, could substantially improve the quality of image 

outputs.  
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CHAPTER VI 

RECOMMENDATIONS 

 The parameterization and segmentation methods explored offer significant 

potential in the application of tendinous region isolation and analysis. Before that 

potential can be fully realized, improvement on the implementation of parameterization 

during the segmentation process is necessary. Specifically, a single segmentation output 

dependent on all parameters defined represents a substantial step towards successful 

implementation of these methods. Despite some success so far in the field of tendon 

segmentation, demand still exists for a reliable method of segmentation that is robust to 

the confounding factors present in clinical ultrasound. 

 Texture analysis is a promising method for differentiation of the healing stages of 

a tendon. Consequently, correlation of texture parameters such as entropy to the 

mechanical properties of the tendon in vivo as a predictive model to aid in assessment of 

therapeutic strategy represents a critical goal for the future. The realization of this goal 

would be best accomplished by the coupling of an ultrasound image data set with a 

mechanical and histological analysis of the imaged tendon. Such a goal is possible with a 

porcine animal model that closely approximates the properties of human tendon.  

 Further work with local cEMD calculations do not seem to be critically dependent 

on selection of pixel separation and region count in each direction. Reducing the set of 

images derived for each input image would substantially reduce the computation time 

required for the most time intensive step of the script. Searching for regions of interest 

with local directionality consistency appears to be a viable option for future research to 
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continue pursuing. As a general solution to calculate local directionality, this method 

could potentially be used for any application interested in the separation of regions in an 

image based on local spatial patterning.  
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APPENDICES 
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APPENDIX A 

REPRESENTATIVE IMAGES OBTAINED FROM THE PHILIPS IU-22 

ULTRASOUND SYSTEM 

Displayed in Appendix A are frames representative of several dicom sets obtained 

from the Philips IU-22 Ultrasound System. Frame number was selected via random 

number generator. The only processing performed on these images involved the removal 

of personal identifiers in the banner. 

  

 

 

 

 

 

 

 

 

 
Figure A.1: Frame 132 of FLL93. 
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Figure A.2: Frame 227 of FLL157io. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure A.3: Frame 217 of MTL93. 
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Figure A.4: Frame 522 of MLL93. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure A.5: Frame 638 of ML2L93. 
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APPENDIX B 

SELECTED REGIONS OF INTEREST FOR ENTROPY CALCULATIONS AND 

USER-DEFINED MASK CIRCULAR EARTH MOVER’S DISTANCE 

COMPARATOR MATRIX 

 The images displayed below contain overlays in which a region was selected for a 

specific calculation. In the case of small tendinous region selection, the script iteration 

also selected the 16 by 16 mask for circular Earth Mover’s Distance calculations to be 

centered on center pixel of the region selected for entropy analysis. The figures below are 

organized by dicom set; for each dicom set shown, four images are displayed, 

corresponding to the following images.  

 Top left: Small Tendon Selection.  

 Top Right: Small Background Selection.  

 Bottom Left: Large Tendon Selection.  

 Bottom Right: Large Background Selection.  

The dicom sets chosen for display were selected by random number generation. 

FLL157io was removed from eligibility due to its extensive use in example calculations. 

The regions shown selected were used for all frames of the dicom set to which it 

belonged.  
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Figure B.1: Region Selections for FLL93.  
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Figure B.2: Region Selections for MTL93. 
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Figure B.3: Region Selections for ML2L93.  
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APPENDIX C 

PARAMETERIZATION OF ULTRASOUND IMAGES: MEAN INTENSITY, 

DISCRETE LAPLACIAN, AND CIRCULAR EARTH MOVER’S DISTANCE 

Each figure displayed below represents a randomly selected frame of a separately 

dicom set. Order of display for each figure will be as follows:  

 Top left: Original image.  

 Top right: Local Mean Intensity Image. 

 Bottom left: Discrete Laplacian 

 Bottom right: Circular Earth Mover’s Distance 

The circular Earth Mover’s Distance depicted in Appendix C relates the local region’s 

energy vector to the user-defined mask’s energy vector. The dicom sets and frames 

shown below were selected by random number generation within each dicom set. 

FLL157io was excluded from eligibility due to its extensive use in example calculations.  
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Figure C.1: Computed matrices for MTL93 Frame 16.  
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Figure C.2: Computed matrices for MLL93 Frame 36. 
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Figure C.3: Computed matrices for ML2L93 Frame 30. 
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APPENDIX D 

STANDARD MEAN AND GAUSSIAN WEIGHTED AVERAGE CIRCULAR 

EARTH MOVER’S DISTANCE CALCULATIONS FOR LOCAL DIRECTIONAL 

CONSISTENCY 

 Standard mean and Gaussian weighted average calculations were computed as a 

metric of local directional consistency. For clarity, all matrices will be displayed after a 

base 10 logarithm operation is applied to offset the large numeric range present in most 

calculated cEMD matrices. Matrices for a random frame were chosen from each dicom 

set for which the second pass was computed is displayed below. For each figure, images 

will be displayed in the following order: 

 Top left: Original Image 

 Top right: User-defined mask-associated cEMD 

 Row 2, left: One pixel separation, 16 regions in each direction standard mean 

 Row 2, right: One pixel separation, 16 regions in each direction Gaussian 

weighted average 

 Row 3, left: Four pixel separation, eight regions in each direction standard mean 

 Row 3, right: Four pixel separation, eight regions in each direction Gaussian 

weighted average 

 Row 4, left: Eight pixel separation, four regions in each direction standard mean 

 Row 4, right: Eight pixel separation, four regions in each direction Gaussian 

weighted average 

 Row 5, left: 16 pixel separation, two regions in each direction standard mean 
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 Row 5, right: 16 pixel separation, two regions in each direction Gaussian 

weighted average 
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Figure D.1: cEMD calculations for FLL157io Frame 78. 
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Figure D.2: cEMD calculations for MTL93 Frame 34. 
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Figure D.3: cEMD calculations for MLL93 Frame 21. 
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Figure D.4: cEMD calculations for ML2L93 Frame 33. 
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APPENDIX E 

MATLAB SCRIPTS 

 Function TendonCalculations was the primary script used for texture analysis. 

Function trimmer was used remove empty borders from the output once the structure was 

completed, and used for display purposes and image registration. Transcriptions of both 

scripts are provided below. 

function[stats, Contrast, Correlation, Energy, CoEntropy, PDFEntropy] = 

TendonCalculations(dicomfile) %requires dicom string name for input 

  
videoin = im2double(squeeze(mean(dicomread(dicomfile),3))); 
numframes = size(videoin, 3); 
sampdist= 1; %Change this value to manipulate the sampling distance 

between frames 

  
videoin = videoin(:,:,1:sampdist:numframes); 
numframes = size(videoin, 3); 

  
%Image Region without info border 
i=dicominfo(dicomfile); 
minx=i.SequenceOfUltrasoundRegions.Item_1.RegionLocationMinX0+125; 
miny=i.SequenceOfUltrasoundRegions.Item_1.RegionLocationMinY0+35; 
maxx=i.SequenceOfUltrasoundRegions.Item_1.RegionLocationMaxX1-125; 
maxy=i.SequenceOfUltrasoundRegions.Item_1.RegionLocationMaxY1-35; 

  
%Displays ultrasound image to user 
imagein = videoin(miny:maxy,minx:maxx,1); 
figure(1) 
set(1,'Position', [10,10,1000,750]) 
colormap gray 
imagesc(imagein); 

  

  
%Prompts user for region of interest 
[~,xi,yi] = roipoly; 
close(1) 
newimgin = 

imagein(round(yi(1)):round(yi(3)),round(xi(1)):round(xi(3))); 
maxi = max(max(newimgin)); 
normimgin = newimgin./maxi; %normalize input region to pdf 
numpixels = sum(size(normimgin)); 
center = [round((size(normimgin,1))/2), round((size(normimgin,2))/2)]; 
mask = normimgin(center(1,1)-7:center(1,1)+8,center(1,2)-

7:center(1,2)+8); 
clear imagein 
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%Begin texture analysis calculations 
stats.frame(numframes) = 

struct('Contrast',0,'Correlation',0,'Energy',0); 
for frame = 1:numframes     
    %First frame must initialize some variables 
    if frame == 1 

     
        comatrix = graycomatrix(normimgin, 'NumLevels', maxi); 

%Calculate cooccurrence matrix 

     
        %Stores some desired metrics in output structure 
        stats.frame(1) = graycoprops(comatrix, 

{'Contrast','Correlation', 'Energy'}); 
        stats.frame(1).Energy = (stats.frame(1).Energy)/numpixels; 
        stats.frame(1).CoEntropy = 0; 

         
        %Calculates entropy from the cooccurrence matrix 
        comatrix(comatrix == 0) = eps; 
        for x = 1:size(comatrix,1) 
            for y = 1:size(comatrix,2) 
                stats.frame(1).CoEntropy = stats.frame(1).CoEntropy + 

(comatrix(x,y)*log2(comatrix(x,y))); 
            end 
        end 
        stats.frame(1).CoEntropy = 

(stats.frame(1).CoEntropy)/numpixels; 

         

         

         
        %Calculates entropy from the probability density function 
        [counts, ~] = imhist(normimgin, maxi); 
        counts(counts == 0) = eps; 
        counts = counts./sum(counts); 
        stats.frame(1).PDFEntropy = (-

sum(counts.*log2(counts)))/numpixels; 
        clear comatrix 

         
    else  %Same function as first frame for all other frames 
       imagein = videoin(miny:maxy,minx:maxx,frame); 
       newimgin = 

imagein(round(yi(1)):round(yi(3)),round(xi(1)):round(xi(3))); 
       maxi = max(max(newimgin)); 
       normimgin = newimgin./maxi; 
       comatrix = graycomatrix(normimgin, 'NumLevels', maxi); 
       tempstats = graycoprops(comatrix, {'Contrast','Correlation', 

'Energy'}); 
       stats.frame(1,frame).Contrast = tempstats.Contrast; 
       stats.frame(1,frame).Correlation = tempstats.Correlation; 
       stats.frame(1,frame).Energy = (tempstats.Energy)/numpixels; 
       stats.frame(1,frame).CoEntropy=0; 
       clear tempstats 
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       comatrix(comatrix == 0) = eps; 
       for x = 1:size(comatrix,1) 
            for y = 1:size(comatrix,2) 
                stats.frame(1,frame).CoEntropy = 

stats.frame(1,frame).CoEntropy + (comatrix(x,y)*log2(comatrix(x,y))); 
            end 
       end 
       stats.frame(1,frame).CoEntropy = 

(stats.frame(1,frame).CoEntropy)/numpixels; 

        
       [counts, ~] = imhist(normimgin, maxi); 
       counts(counts == 0) = eps; 
       counts = counts./sum(counts); 
       stats.frame(frame).PDFEntropy = (-

sum(counts.*log2(counts)))/numpixels; 

  
       clear comatrix 
       clear imagein 
    end 
end 

  
%Stores desired metrics into the output structure 
for nframe = 1:numframes 
    Contrast(nframe) = stats.frame(nframe).Contrast; 
    Correlation(nframe) = stats.frame(nframe).Correlation; 
    Energy(nframe) = stats.frame(nframe).Energy; 
    CoEntropy(nframe) = stats.frame(nframe).CoEntropy; 
    PDFEntropy(nframe) = stats.frame(nframe).PDFEntropy; 
end 

  

  

  
%End texture analysis, begin segmentation algorithm 

  

  

  
%First pass begins here that initializes the data storing structure and 
%begins analysis related to cEMD-mask 
stats.fourier(numframes) = 

struct('MaskEMDValues',[],'GaussianLocalEMDValues',[],'AverageLocalEMDV

alues',[],'MIValues',[],'STDValues',[],'AnalyzedUSImage',[],'Combined',

[],'IndicesOfMinimumEMD',[]); 
maskft = abs(fftshift(fft2(mask))); %Fourier Transform of mask 

  
%quadrant locator that overlays as a mask over each windows to 

calculate 
%energy summation vector 
locator = zeros(16);  
for c=1:16,  
    if c<=8,  
        locator(c:17-c,c)=1;  
    else 
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        locator(17-c:c,c)=1;  
    end; 
end; 
q1=locator(1:8,9:16); 
q2=locator(1:8,1:8); 
q3=locator(9:16,1:8); 
q4=locator(9:16,9:16); 

  
%Mask energy vector is calculated at 45 degree phase angles 
for bin=1:8, 
    maskenergy(bin)=0; 
    for r=1:8, 
       for c=1:8; 
           if bin==1, 
               if q1(r,c)==1, 
                  maskenergy(bin)=maskenergy(bin)+(maskft(r,8+c))^2; 
               end 
           elseif bin==2, 
               if q1(r,c)==0, 
                  maskenergy(bin)=maskenergy(bin)+(maskft(r,8+c))^2; 
               end 
           elseif bin==3,  
               if q2(r,c)==0, 
                  maskenergy(bin)=maskenergy(bin)+(maskft(r,c))^2; 
               end 
           elseif bin==4, 
               if q2(r,c)==1, 
                  maskenergy(bin)=maskenergy(bin)+(maskft(r,c))^2; 
               end 
           elseif bin==5, 
               if q3(r,c)==1, 
                  maskenergy(bin)=maskenergy(bin)+(maskft(8+r,c))^2; 
               end 
           elseif bin==6, 
               if q3(r,c)==0, 
                  maskenergy(bin)=maskenergy(bin)+(maskft(8+r,c))^2; 
               end 
           elseif bin==7, 
               if q4(r,c)==0, 
                  maskenergy(bin)=maskenergy(bin)+(maskft(8+r,8+c))^2; 
               end 
           elseif bin==8, 
               if q4(r,c)==1, 
                  maskenergy(bin)=maskenergy(bin)+(maskft(8+r,8+c))^2; 
               end 
           end 
       end 
    end 
end 

  
%sanitizes input in the event of a 0 input mask 
if sum(maskenergy)~=0, 
    maskenergy=maskenergy./sum(maskenergy); 
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end 

  
%Begin mask-compared cEMD calculations 
indEMDmin=[1,1]; 
numbins = 8; %number of bins for 45 degree phase angle in circle 
for ftframe=1:numframes 
    imagein = padarray((videoin(miny:maxy,minx:maxx,ftframe)), [8,8], 

'replicate','both'); 
    stats.fourier(ftframe).AnalyzedUSImage = imagein; 
    [m,n] = size(imagein); 
    blurmask = fspecial('gaussian',[15 15],2); 
    mimap = imfilter(imagein,blurmask,'same'); 
    stdmap = imfilter(abs(del2(imagein)),blurmask,'same'); 
    mimap = mimap(8:m-8,8:n-8); 
    stdmap = stdmap(8:m-8,8:n-8); 
    stats.fourier(ftframe).MIValues = mimap; 
    stats.fourier(ftframe).STDValues = stdmap; 
    comb = mimap.*stdmap; 
    minEMD=65535; 
    sepmat = [1,4,8,16]; % define region of interest comparison 

distance matrix 
    numbox = [16,8,4,2]; % define number of regions of interest in each 

direction to compare cEMD with the current region matrix 
    for row=8:m-8, %per row raster 
        loop=1; 
        for col=8:n-8, %per column raster 
            roi(row,col,:,:) = imagein(row-7:8+row,col-7:8+col); 

%define 16x16 region of interest 
            roift(row,col,:,:) = 

abs(fftshift(fft2(squeeze(roi(row,col,:,:))))); %calculate the 2D 

Fourier transform of the roi 
            for bin=1:numbins, %8 bins created for 45 degree phase 

angles of the 2D Fourier transform 
                roienergy(row,col,bin)=0; %initialize energy total for 

phase angles 
                for r=1:8, %per row within the region of interest 
                   for c=1:8; %per column within the region of interest 
                       if bin==1, 
                           if q1(r,c)==1, 
                              

roienergy(row,col,bin)=roienergy(row,col,bin)+(roift(row,col,r,8+c))^2; 
                           end 
                       elseif bin==2, 
                           if q1(r,c)==0, 
                              

roienergy(row,col,bin)=roienergy(row,col,bin)+(roift(row,col,r,8+c))^2; 
                           end 
                       elseif bin==3,  
                           if q2(r,c)==0, 
                              

roienergy(row,col,bin)=roienergy(row,col,bin)+(roift(row,col,r,c))^2; 
                           end 
                       elseif bin==4, 
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                           if q2(r,c)==1, 
                              

roienergy(row,col,bin)=roienergy(row,col,bin)+(roift(row,col,r,c))^2; 
                           end 
                       elseif bin==5, 
                           if q3(r,c)==1, 
                              

roienergy(row,col,bin)=roienergy(row,col,bin)+(roift(row,col,8+r,c))^2; 
                           end 
                       elseif bin==6, 
                           if q3(r,c)==0, 
                              

roienergy(row,col,bin)=roienergy(row,col,bin)+(roift(row,col,8+r,c))^2; 
                           end 
                       elseif bin==7, 
                           if q4(r,c)==0, 
                              

roienergy(row,col,bin)=roienergy(row,col,bin)+(roift(row,col,8+r,8+c))^

2; 
                           end 
                       elseif bin==8, 
                           if q4(r,c)==1, 
                              

roienergy(row,col,bin)=roienergy(row,col,bin)+(roift(row,col,8+r,8+c))^

2; 
                           end 
                       end 
                   end 
                end 
            end 
            if sum(roienergy(row,col,:))~=0, 
                

roienergy(row,col,:)=roienergy(row,col,:)./sum(roienergy(row,col,:)); 

%normalize mass in each transform's energy total 
            end 
            roienergymaskmat = roienergy; 
            EMD=[]; 
            for EMDbin=1:numbins, 
                diff = roienergymaskmat(row,col,EMDbin)-

maskenergy(EMDbin); 
                if sum(roienergymaskmat(row,col,:))~=0, 
                    if EMDbin~=8, 
                        

roienergymaskmat(row,col,EMDbin+1)=roienergymaskmat(row,col,EMDbin+1)+d

iff; 
                        

roienergymaskmat(row,col,EMDbin)=roienergymaskmat(row,col,EMDbin)-diff; 
                        EMD(EMDbin)=diff; 
                    else 
                        EMD(EMDbin)=0; 
                    end 
                else 
                    EMD(EMDbin)=10000; 
                end 
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            end 
            if sum(abs(EMD-median(EMD))) < 80000, 
                cEMDsum = sum(abs(EMD-median(EMD))); 
            else 
                cEMDsum = 255; 
            end 
            stats.fourier(ftframe).MaskEMDValues(row-7,col-7) = 

cEMDsum; 
            diff=[]; 
            if cEMDsum<minEMD && cEMDsum~=0, 
                minEMD=cEMDsum; 
                indEMDmin=[row-7,col-7]; 
            end                   
        end 
    end 
    %End mask-related cEMD calculations 

     

     
    %Begin local region cEMD calculations 
    for i=8:m-8, %second pass used for local region cEMD calculations 
        loop=2; 
        for j=8:n-8, %column raster for local region cEMD calculations 
            if i>=41&&i<=m-41, % bulk row test 
                if j>=41&&j<=n-41, %bulk column test 
                    for boxnumtype=1:4, 
                        % seppixels=1,4,8,16; numboxes=16,8,4,2; 
                        seppixels=sepmat(1,boxnumtype); 
                        numboxes=numbox(1,boxnumtype); 
                        for boxcomp=1:numboxes, 
                            roiendir(1,boxcomp,:)=squeeze(roienergy(i-

(seppixels*boxcomp),j-(seppixels*boxcomp),:)); 
                            roiendir(2,boxcomp,:)=squeeze(roienergy(i-

(seppixels*boxcomp),j,:)); 
                            roiendir(3,boxcomp,:)=squeeze(roienergy(i-

(seppixels*boxcomp),j+(seppixels*boxcomp),:)); 
                            

roiendir(4,boxcomp,:)=squeeze(roienergy(i,j-(seppixels*boxcomp),:)); 
                            

roiendir(5,boxcomp,:)=squeeze(roienergy(i,j+(seppixels*boxcomp),:)); 
                            

roiendir(6,boxcomp,:)=squeeze(roienergy(i+(seppixels*boxcomp),j-

(seppixels*boxcomp),:)); 
                            

roiendir(7,boxcomp,:)=squeeze(roienergy(i+(seppixels*boxcomp),j,:)); 
                            

roiendir(8,boxcomp,:)=squeeze(roienergy(i+(seppixels*boxcomp),j+(seppix

els*boxcomp),:));                                 
                            for dir=1:8, 
                                intercEMD=[]; 
                                roiencurrent=squeeze(roienergy(i,j,:)); 
                                for bins=1:numbins, 
                                    diff=roiencurrent(bins)-

roiendir(dir,boxcomp,bins); 
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                                    if 

sum(roiencurrent~=0)&&sum(roiendir(dir,boxcomp,:))~=0, 
                                        if bins~=8, 
                                            

roiencurrent(bins+1)=roiencurrent(bins+1)+diff; 
                                            

roiencurrent(bins)=roiencurrent(bins)-diff; 
                                            intercEMD(bins)=diff; 
                                        else 
                                            intercEMD(bins)=0; 
                                        end 
                                    else 
                                        intercEMD(bins)=10000; 
                                    end 
                                end 
                                if sum(abs(intercEMD-

median(intercEMD))) < 80000, 
                                    intercEMDsum = sum(abs(intercEMD-

median(intercEMD))); 
                                else 
                                    intercEMDsum = 255; 
                                end 
                                groupcEMD(dir,boxcomp)=intercEMDsum; 
                            end 
                        end 

                                  

                      
                        % Calculates Gaussian weighting vector to apply 
                        % outward from the center of the region 
                        gblur=gausswin(2*numboxes)'; 
                        

gblur=repmat(gblur(1,(numboxes+1):(2*numboxes)),8,1);                            
                        

gaussmap(boxnumtype,i,j)=mean(mean(gblur.*groupcEMD)); 
                        avgmap(boxnumtype,i,j)=mean(mean(groupcEMD)); 
                        groupcEMD=[]; 
                    end 

                     
                    %Stores calculated cEMD values in the relevant 
                    %structure 
                    for type=1:4, 
                        if type==1, 
                            

stats.fourier(ftframe).GaussianLocalEMDValues.sep1box16(i,j) = 

gaussmap(type,i,j); 
                            

stats.fourier(ftframe).AverageLocalEMDValues.sep1box16(i,j) = 

avgmap(type,i,j); 
                        elseif type==2, 
                            

stats.fourier(ftframe).GaussianLocalEMDValues.sep4box8(i,j) = 

gaussmap(type,i,j); 
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stats.fourier(ftframe).AverageLocalEMDValues.sep4box8(i,j) = 

avgmap(type,i,j); 
                        elseif type==3, 
                            

stats.fourier(ftframe).GaussianLocalEMDValues.sep8box4(i,j) = 

gaussmap(type,i,j); 
                            

stats.fourier(ftframe).AverageLocalEMDValues.sep8box4(i,j) = 

avgmap(type,i,j);  
                        elseif type==4. 
                            

stats.fourier(ftframe).GaussianLocalEMDValues.sep16box2(i,j) = 

gaussmap(type,i,j); 
                            

stats.fourier(ftframe).AverageLocalEMDValues.sep16box2(i,j) = 

avgmap(type,i,j); 
                        end 
                    end 
                end 
            end 
        end 
    end                
    stats.fourier(ftframe).IndicesOfMinimumEMD = indEMDmin; 
    stats.fourier(ftframe).Combined = comb; 
end 

 

Begin function trimmer 

function [outmat,regmat] = trimmer(inmat) 
    eval([inmat,'c']) = inmat; 
    numframes = 134;   %Change this value to the number of frames in 

the input 
    for i =1:numframes, 
        eval([inmat,'c']).fourier(i).AnalyzedUSImage = 

eval([inmat,'c']).fourier(i).AnalyzedUSImage(8:455,8:482); 
        eval([inmat,'c']).fourier(i).AnalyzedUSImage = 

eval([inmat,'c']).fourier(i).AnalyzedUSImage(33:(448-34),33:(475-34)); 
        eval([inmat,'c']).fourier(i).MaskEMDValues = 

eval([inmat,'c']).fourier(i).MaskEMDValues(33:(448-34),33:(475-34)); 
        eval([inmat,'c']).fourier(i).MIValues = 

eval([inmat,'c']).fourier(i).MIValues(33:(448-34),33:(475-34)); 
        eval([inmat,'c']).fourier(i).STDValues = 

eval([inmat,'c']).fourier(i).STDValues(33:(448-34),33:(475-34)); 
        eval([inmat,'c']).fourier(i).Combined = 

eval([inmat,'c']).fourier(i).Combined(33:(448-34),33:(475-34)); 
        eval([inmat,'c']).fourier(i).GaussianLocalEMDValues.sep4box8 = 

eval([inmat,'c']).fourier(i).GaussianLocalEMDValues.sep4box8(41:422,41:

449); 
        eval([inmat,'c']).fourier(i).AverageLocalEMDValues.sep4box8 = 

eval([inmat,'c']).fourier(i).AverageLocalEMDValues.sep4box8(41:422,41:4

49); 
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        eval([inmat,'c']).fourier(i).GaussianLocalEMDValues.sep1box16 = 

eval([inmat,'c']).fourier(i).GaussianLocalEMDValues.sep1box16(41:422,41

:449); 
        eval([inmat,'c']).fourier(i).GaussianLocalEMDValues.sep8box4 = 

eval([inmat,'c']).fourier(i).GaussianLocalEMDValues.sep8box4(41:422,41:

449); 
        eval([inmat,'c']).fourier(i).GaussianLocalEMDValues.sep16box2 = 

eval([inmat,'c']).fourier(i).GaussianLocalEMDValues.sep16box2(41:422,41

:449); 
        eval([inmat,'c']).fourier(i).AverageLocalEMDValues.sep1box16 = 

eval([inmat,'c']).fourier(i).AverageLocalEMDValues.sep1box16(41:422,41:

449);      
        eval([inmat,'c']).fourier(i).AverageLocalEMDValues.sep8box4 = 

eval([inmat,'c']).fourier(i).AverageLocalEMDValues.sep8box4(41:422,41:4

49); 
        eval([inmat,'c']).fourier(i).AverageLocalEMDValues.sep16box2 = 

eval([inmat,'c']).fourier(i).AverageLocalEMDValues.sep16box2(41:422,41:

449); 
    end 

     
    %Below this line relates to image display for a frame of interest 

and 
    %image registration 
    F1US = eval([inmat,'c']).fourier(1).AnalyzedUSImage; 
    F1Comb = eval([inmat,'c']).fourier(1).Combined; 
    F1STD = eval([inmat,'c']).fourier(1).STDValues; 
    F1CGS4B8 = 

eval([inmat,'c']).fourier(1).Combined.*eval([inmat,'c']).fourier(1).Gau

ssianLocalEMDValues.sep4box8; 
    F1GS4B8 = 

eval([inmat,'c']).fourier(1).GaussianLocalEMDValues.sep4box8; 
    GS4B8F1F2avg = 

eval([inmat,'c']).fourier(1).GaussianLocalEMDValues.sep4box8.*eval([inm

at,'c']).fourier(2).GaussianLocalEMDValues.sep4box8; 

  
    figure(1); colormap gray; imagesc(F1US); %ultrasound image 
    figure(2); colormap gray; imagesc(F1Comb); %combined mi/std image 
    figure(3); colormap gray; imagesc(F1GS4B8); %gaussian emd first 

frame 
    figure(4); colormap gray; imagesc(F1CGS4B8); %comb.*gaussian 
    figure(5); colormap gray; imagesc(log10(F1GS4B8)); %log10 gaussian 
    figure(6); colormap gray; imagesc(log10(GS4B8F1F2avg)); %2 frame 

avg gaussian log 10 

     
    %image registration process 
    [optimizer,metric] = imregconfig('multimodal'); 
    for x=1:numframes, 
        RegMat(:,:,x) = 

eval([inmat,'c']).fourier(x).GaussianLocalEMDValues.sep4box8; 
    end 
    regGS4B8avg = RegMat(:,:,1); 
    for y=2:numframes, 
        fixed = RegMat(:,:,y-1); 
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        moving = RegMat(:,:,y); 
        movingReg = 

imregister(moving,fixed,'translation',optimizer,metric); 
        regGS4B8avg = regGS4B8avg.*movingReg; 
        RegMat(:,:,y) = movingReg; 
    end 
    GS4B8avg = 

eval([inmat,'c']).fourier(1).GaussianLocalEMDValues.sep4box8; 
    for j = 2:numframes, 
        GS4B8avg = 

eval([inmat,'c']).fourier(j).GaussianLocalEMDValues.sep4box8.*GS4B8avg; 
    end 
    %end image registration process 

     

     
    %display figures and store outputs 
    figure(7); colormap gray; imagesc(log10(GS4B8avg)); %log10 total 

gaussian avg no correction 
    figure(8); colormap gray; imagesc(log10(regGS4B8avg)); %log10 total 

gaussian avg with correction 
    outmat = eval([inmat,'c']); 
    regmat = RegMat; 
end 
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