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ABSTRACT 

As prediction of the performance and behavior of complex engineering systems 

shifts from a primarily empirical-based approach to the use of complex physics-based 

numerical models, the role of experimentation is evolving to calibrate, validate, and 

quantify uncertainty of the numerical models. Oftentimes, these experiments are 

expensive, placing importance on selecting experimental settings to efficiently calibrate 

the numerical model with a limited number of experiments. The aim of this thesis is to 

reduce the experimental resources required to reach predictive maturity in complex 

numerical models by (i) aiding experimenters in determining the optimal settings for 

experiments, and (ii) aiding the model developers in assessing the predictive maturity of 

numerical models through a new, more refined coverage metric. 

Numerical model predictions entail uncertainties, primarily caused by imprecisely 

known input parameter values and biases, primarily caused by simplifications and 

idealizations in the model. Hence, calibration of numerical models involves not only 

updating of parameter values but also inferring the discrepancy bias, or empirically 

trained error model. Training of this error model throughout the domain of applicability 

becomes possible when experiments conducted at varying settings are available. Of 

course, for the trained discrepancy bias to be meaningful and a numerical model to be 

predictively mature, the validation experiments must sufficiently cover the operational 

domain. Otherwise, poor training of the discrepancy bias and overconfidence in model 

predictions may result. Thus, coverage metrics are used to quantify the ability of a set of 

validation experiments to represent an entire operation domain. 
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This thesis is composed of two peer-reviewed journal articles. The first article 

focuses on the optimal design of validation experiments. The ability to improve the 

predictive maturity of a plasticity material model is assessed for several index-based and 

distance-based batch sequential design selection criteria through a detailed analysis of 

discrepancy bias and coverage.  Furthermore, the effect of experimental uncertainty, 

complexity of discrepancy bias, and initial experimental settings on the performance of 

each criterion is evaluated. Lastly, a technique that integrates index-based and distance-

based selection criteria to both exploit the available knowledge regarding the discrepancy 

bias and explore the operational domain is evaluated. This article is published in 

Structural and Multidisciplinary Optimization in 2013. 

The second article is focused on developing a coverage metric. Four 

characteristics of an exemplar coverage metric are identified and the ability of coverage 

metrics from the literature to satisfy the four criteria is evaluated. No existing coverage 

metric is determined to satisfy all four criteria. As a solution, a new coverage metric is 

proposed which exhibits satisfactory performance in all four criteria. The performance of 

the proposed coverage metric is compared to the existing coverage metrics using an 

application to the plasticity material model as well as a high-dimensional Rosenbrock 

function. This article is published in Mechanical Systems and Signal Processing in 2014. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Motivation 

Design of complex engineering systems is changing from a primarily empirical enterprise 

to the use of complex physics-based numerical models (Jacobson et al. 2009). As such, 

physical experiments once relied upon to reveal the relationship between input and output 

parameters, are now used to calibrate, validate, and quantify uncertainty of complex 

numerical models. Due to the high consequences associated with the use of these 

numerical models, predictive maturity of these models becomes of interest (Unal et al. 

2011). Several attempts have been made to assess the predictive maturity of numerical 

models through qualitative, expert judgment ranking systems (Balci et al. 2002, 

Oberkampf et al. 2007, Green et al. 2008). However, these ranking systems rely on expert 

judgment and therefore are naturally subjective. Herein, the quantitative and objective 

Predictive Maturity Index (PMI) metric proposed by Hemez et al. 2010 is used to define 

predictive maturity. 

 In this thesis, the interest is on improving the predictive maturity of numerical 

models through experimental campaigns. Validation experiments are used to calibrate 

numerical models through comparisons with model predictions (Trucano et al. 2006). 

Calibration entails inference of the uncertain model parameters as well as the discrepancy 

bias, or empirically trained error model (Draper 1995, Kennedy & O’Hagan 2001), 

throughout the operational domain (Hemez et al. 2010). Herein, focus is on design of 

validation experiments to improve the inference of the discrepancy bias throughout the 
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operational domain due to the need to bias-correct the numerical models (Atamturktur et 

al. 2011). Improved inference of the discrepancy bias directly correlates to more accurate 

model predictions. Meanwhile, experimental campaigns are limited by the cost and time 

demands of conducting physical experiments (Rosner 2008), placing an importance on 

efficient experimental designs. Therefore, numerical models must be calibrated with a 

limited number of validation experiments at finite experimental settings within the 

operational domain and then used to make predictions at untested settings throughout the 

domain (Unal et al. 2011, Atamturktur et al. 2011). 

  As the discrepancy bias is empirically trained, limiting validation experiments 

only to a region of the operational domain can result in a poorly trained discrepancy bias, 

and as a result, overconfidence in model predictions (Atamturktur et al. 2011). To 

mitigate this problem, experiments must sufficiently explore the operational domain. To 

capture this phenomenon, the PMI metric incorporates the concept of coverage (Hemez 

et al. 2010). Coverage is the ability of a set of validation experiments to represent the 

entire operational domain. Since coverage is a major component in determining the 

predictive maturity of a numerical model through the PMI, it is important to properly 

identify coverage. 

1.2 Scope 

This thesis, consisting of two peer-reviewed journal articles, aims to reduce the 

experimental resources required to achieve predictive maturity of complex numerical 

models through two tasks (i) improving the efficiency of experimental campaigns, and 

(ii) refining the tools used to determine the predictive maturity of numerical models. 
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 The first article, presented in chapter two and published in Structural and 

Multidisciplinary Optimization
1
, contributes to the first task. Several index-based and 

distance-based batch sequential design (BSD) selection criteria are applied to the Visco 

Plastic Self-Consistent (VPSC) material plasticity model in order to assess the 

performance of various selection criteria from the literature on a nontrivial application. 

The predictive maturity of the VPSC model is evaluated using PMI (Hemez et al. 2010) 

to compare the performance of each selection criterion. Furthermore, a detailed analysis 

of discrepancy bias and coverage reveal the driving factors behind the differences in 

performance. The importance of discrepancy and coverage are varied to simulate possible 

real-world situations in which an analyst may place more significance on discrepancy 

rather than coverage or vice versa. In addition, the study investigates the effect of 

experimental uncertainty, complexity of the discrepancy bias, and settings of initial 

experiments on the performance of each selection criterion. This study provides guidance 

to analysts when determining the best selection criterion to use. Under this guidance, 

analysts are more likely to use a selection criterion that will achieve desired predictive 

maturity using fewer experiments when compared to an alternative selection criterion. 

 The second article, presented in chapter three and published in Mechanical 

Systems and Signal Processing
2
, contributes to the second task. Based on the premise that 

coverage is the ability of a set of validation experiments to represent the entire 

                                                           
1
 Atamturktur S, Williams B, Egeberg M, and Unal C (2013) Batch Sequential Design of Optimal 

Experiments for Improved Predictive Maturity in Physics-Based Modeling. Structural and 

Multidisciplinary Optimization (Springer) 48(3): 549-569 

 
2
 Atamturktur S, Egeberg M, Stevens G, and Hemez F (2014) Defining Coverage of an Operational 

Domain Using a Modified Nearest-Neighbor Metric. Mechanical Systems and Signal Processing (Elsevier), 

DOI 10.1016/j.ymssp.2014.05.040 
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operational domain, four characteristics of an exemplary coverage metric are identified. 

Coverage should (i) improve if a new experiment is added at untested settings, (ii) favor a 

more uniform distribution of experiments over a clustered arrangement, (iii) distinguish 

between interpolation and extrapolation, and (iv) be objective. The inability of any 

coverage metric from the literature to satisfy all four criteria prompts the proposal of a 

new coverage metric which satisfies all four criteria. The effectiveness of the proposed 

metric is demonstrated alongside the existing coverage metrics on the VPSC model as 

well as the high-dimensional Rosenbrock function. This study helps provide a more 

precise quantification of predictive maturity by proposing a refined metric for coverage, a 

crucial component in predictive maturity. A more precise measure of predictive maturity 

reduces uncertainty of whether or not a model has reached predictive maturity; therefore, 

resources may be saved on unnecessary experimentation when a numerical model has in 

fact already reached predictive maturity. 
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CHAPTER TWO 

BATCH SEQUENTIAL DESIGN OF OPTIMAL EXPERIMENTS FOR 

IMPROVED PREDICTIVE MATURITY IN PHYSICS-BASED MODELING 

2.1 Introduction 

Advanced modeling and simulation are increasingly relied upon to predict the 

performance of new generations of nuclear fuels (Jacobson et al. 2009). When fuel 

performance predictions are used in support of high consequence decisions, questions 

naturally arise about the predictive maturity of these models (Unal et al. 2011). An 

intrinsic component for achieving predictive maturity is model calibration, a 

methodology used to infer both the uncertain input model parameters and the discrepancy 

bias of a model (Hemez et al. 2010). Invariably, calibration is achieved through 

systematic comparisons of model predictions against validation experiments (Trucano et 

al. 2006).  

As models are executed to predict fuel performance at vastly different operational 

regimes, for calibration of these advanced models to be meaningful, the entire operational 

domain of the nuclear fuel must be explored through a sufficiently large quantity (and of 

course, quality) of validation experiments. However, proper exploration of the 

operational domain is challenged by the cost and time demands of physical experiments 

which prohibit extensive experimental campaigns (Rosner 2008). The problem is further 

compounded due to the infeasibility of reproducing extreme operational regimes in a 

laboratory environment to obtain physical experiments, as in the case of fusion reactors 

(Yoshiie 2005).  As a result, the current trend is shifting towards calibrating numerical 
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models with a limited number of validation experiments for making predictions with the 

calibrated models at untested settings (Unal et al. 2011). Therefore, the next natural step 

for advancement in fuel performance predictions entails reducing the extent of the 

experimental campaign required to reach the desired predictive maturity in these 

numerical models. With these new trends and goals, the design and execution of 

validation experiments must be closely associated with modeling and simulation efforts 

(Jiang and Mahadevan 2006).  

Validation experiments can help improve the predictive ability of a numerical 

model by (i) mitigating the uncertainty in the model parameters, and (ii) inferring the 

discrepancy bias throughout the domain (Box and Draper 1959). Regarding mitigating 

uncertainty, there is extensive literature on experimental designs for emulator training, 

specifically on various alphabet-optimal designs, such as A-optimality, D-optimality, G-

optimality and V-optimality, all of which focus on improving the calibrated values of the 

input parameters (Evans and Manson 1978, Shao 2007). Of particular interest to the 

current work however, is the second benefit of validation experiments. In particular, we 

implement design approach formulated by Williams et al. (2011) for optimal design of 

experiments that focuses on improving the inference of model discrepancy bias 

throughout the domain. This focus is justified by the need to bias-correct the numerical 

models for interpolative or extrapolative purposes (Atamturktur et al. 2011). Herein, the 

design of validation experiments aims to achieve stability in the inferred discrepancy bias 

as new validation experiments become available. The desired stability in the inferred 
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discrepancy can be quantified with various metrics, which will henceforth be referred to 

as selection criteria. 

Selection criteria define the targeted benefits of future experiments (analogous to 

the utility function in Lindley 1972). In this manuscript, we are concerned with 

evaluating the performance of various selection criteria, including index-based criteria, 

such as the expected improvement for predictive stability, the expected improvement for 

global fit, maximum entropy, and distance-based criteria, such as weighted Euclidean 

distance and Mahalonobis distance. Herein, the performance of these selection criteria is 

judged strictly from the perspective of predictive maturity of the numerical model.  

To provide a quantitative and objective evaluation of predictive maturity, we 

implement the Predictive Maturity Index (PMI) proposed by Hemez et al. (2010). PMI 

integrates three distinct attributes of model development, experimentation and calibration 

efforts: discrepancy, coverage and complexity, where design of optimal experiments has 

a direct influence on two of the three attributes of PMI: coverage and discrepancy. 

Investigation of this influence for various selection criteria is the focus of this paper. 

The problem of optimal design of experiments has been widely studied for the 

development of fast running emulators that are used in lieu of computationally 

demanding physics-based models (Dersjö and Olsson 2012; Li, Aute and Azarm 2010). 

However, until recently methods for designing optimal validation experiments have been 

lacking. This manuscript aims to contribute to the recent advancements in optimal design 

of validation experiments, focusing on a practical, non-trivial problem of predicting poly-

crystal plasticity (Lebensohn et al. 2010). Visco Plastic Self-Consistent (VPSC) is a 
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meso-scale code for modeling the creep of core reactor clad and duct components 

subjected to in-service conditions of irradiation, stress, and thermal cycling. The 

performance of alternative selection criteria is compared for both exact and inexact 

versions of the VPSC plasticity model, with a parametric study undertaken not only for 

the complexity and variance of the model discrepancy but also for the experimental 

uncertainty.  

2.2 Discrepancy Bias 

Draper (1995) emphasizes the two aspects of developing a numerical model, ƞ 

that links known quantities of x to unknown quantities of y, the first involving the physics 

or engineering principles invoked to establish a link between these two quantities, x and 

y; and the second involving unknown parameters, t associated with the chosen physics or 

engineering principles, such that y(x)= ƞ(x,t). Here, x represents the control parameter 

settings defining the domain of applicability
3
, within which the model will be executed in 

predictive capacity. Model form error arises due to the inevitable incompleteness of 

physics or engineering principles in ƞ, which often also leads to missing parameters 

(Farajpour and Atamturktur 2012). This section demonstrates the role of the model form 

error and missing parameters in predictive modeling through a proof of concept example.  

Herein, we compare the predictions of a numerical model, ƞ(x,t) to its 

corresponding truth. The truth function is executed to generate five experiments at 

randomly selected control parameter settings (indicated by squares in Figure 2.1). The 

numerical model includes an imprecise parameter, t with a value falling between -1 and 

                                                           
3
 Note that validation experiments must be conducted to explore this domain. 
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1. In Figure 2.1 (Left), an ensemble of model predictions obtained with sampled values of 

t is compared to the five available physical experiments. This comparison shows that 

ƞ(x,t) fails to reproduce the physical experiments to within observational uncertainty 

regardless of the parameter value used for t. Therefore, the numerical model is 

incomplete and possibly missing input parameters that are necessary to fully describe the 

truth. Figure 2.1 (Right) gives a quantitative representation of the degree of inaccuracy 

and incompleteness (herein referred to as model form error) of this hypothetical 

numerical model if the true values for the uncertain input parameters were known with 

certainty. 

 

Fig. 2.1 (Left) Comparison of ensemble simulation model predictions against physical 

experiments, (Right) Model form error representing the degree of incompleteness of a 

simulation model 

Kennedy and O’Hagan (2001) emphasizes that due to the inevitable inexactness 

of numerical models, calibration of model parameters and estimation of the inherent 

model form error must be completed simultaneously. Failing to do so can result in 

parameters being calibrated to mathematically viable but physically incorrect values to 
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compensate for model form error. Such compensating effects typically lead to over-

confidence in the predictive ability of the model. Accordingly, we utilize a Bayesian 

implementation (Higdon et al. 2008) of the equality originally proposed by Kennedy and 

O’Hagan (2001), which simultaneously considers parameter uncertainty and model bias. 

In this formulation, physical observations, y(x), are defined as the summation of truth, 

ξ(x), and experimental error, (x): 

y (x) = ξ(x)+ (x)    (2.1) 

If the model form error is known, the truth ξ(x) is defined as the sum of model 

predictions, ƞ(x, θ) obtained with best fitted input parameter values (t=θ, where θ is the 

best fitted value for t) and the model form error.  

Model form error is unknown however, and thus, must be estimated exploiting the 

experiments.  The empirically trained model form error‒henceforth referred to as 

discrepancy bias (x)‒can be obtained by quantifying the disagreement between 

experiments and the model predictions with the best fitted input values. The best estimate 

of truth can then be defined over the entire operational domain in terms of the model 

predictions ƞ(x, θ), the discrepancy bias (x), and experimental error, (x): 

y  (x) = ƞ (x, θ) + (x) + (x)    (2.2) 

In a fully Bayesian interpretation of Eq. 2.2, the posteriors for θ and (x) can be 

explored via Markov Chain Monte Carlo (MCMC) (Metropolis 1953, Higdon et al. 

2003).  For computationally demanding numerical models, in which MCMC explorations 

are infeasible, the physics model can be replaced with a fast-running surrogate model 

(van Keulen and Vervenne 2004, Hemez and Atamturktur  2011). We replace the 
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numerical model,  ƞ(x, θ) with a constant mean Gaussian Process Model (GPM) and the 

independent error model for discrepancy bias, (x) with a zero mean GPM (see Williams 

et al. 2006 for further discussion on GPM). 

2.3 Batch Sequential Design: Selection Criteria 

Myers et al. (1989) advocates the use of sequential approaches in optimal design 

of experiments. Design augmentation in an iterative, sequential manner uses the 

information learned from the available set of experiments to improve upon the existing 

design with future experiments. Moreover, the sequential approach allows the previously 

existing experiments to be incorporated into the optimal design process (Thompson 

2010). Sequential designs can be performed in either a batch sequential or fully 

sequential (one at a time) manner (Müller and Pötscher 1989). While batch sequential 

design is sub-optimal compared to fully sequential approach, the practical aspects of 

conducting physical experiments may suggest the use of the batch-sequential approach 

with an experimenter-defined batch size (Williams et al. 2011). Herein, we will 

implement a batch-sequential design (BSD) approach for selecting future optimal 

experiments according to the stability of the discrepancy bias. 

The BSD selects optimum settings for the future validation experiments based 

upon an existing set of validation experiments, where the optimality condition (i.e., 

objective function) is defined by a selection criterion. The experiments are selected in the 

batches of predefined size. BSD continues the selection of batches of experiments until 

the experimental budget is consumed or a threshold gain in stability of posterior density 

of discrepancy bias fails to be met.  
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For optimization of the design criteria, the implemented BSD algorithm uses an 

exchange algorithm, specifically modified Fedorov exchange method (Fedorov 1972). 

Exchange algorithms update an experiment in the initial design to improve the desired 

benefit, as quantified by the selection criteria. Design updates are continued until the 

relative improvement falls below a given threshold level (Bulutoglu and Ryan 2009, 

Ogungbenro et al. 2005), which herein is set to 10
-4

. While the original Fedorov exchange 

algorithm only performs the ‘best’ exchange, the modified Fedorov algorithm, 

implemented herein, executes any beneficial exchange increasing the efficiency of the 

algorithm (Cook and Nachtsheim 1980). 

This section reviews several selection criteria from the literature (see Loeppky et 

al. 2010 and Williams et al. 2011), while the next section discusses the implementation of 

these selection criteria for optimal design of experiments for the VPSC code.  

2.3.1 Index- based criteria: 

Index-based criteria are related to the information content of the design, which is 

proportional to the inverse of the covariance matrix. Crudely put, an optimal design 

minimizing the variance maximizes the information content of the experimental design.  

Expected Improvement for Predictive Stability (EIPS): 

The EIPS criterion evaluates stability of the discrepancy term based upon the 

expected Kullback-Leibler distance between the current and the proposed future 

predictive distributions of discrepancy. The maximum expected improvement represents 

the largest entropy loss between the initial predictive density and the predictive density 

obtained if proposed experiments at new settings are indeed conducted. Design settings 
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are chosen to minimize the maximum entropy loss, which approaches smaller values as 

additional experiments are conducted, resulting in a greater stability in the predictive 

distribution of discrepancy.  

Expected Improvement for Global Fit (EIGF): 

In Lam and Notz (2008), the goal of the EIGF algorithm is to obtain one-step 

sequential additions of simulation runs that efficiently train surrogate models so that 

predictions at unsampled control parameter settings adequately represent simulation 

model output. This concept has been further developed to obtain batches of settings for 

future experiments specifically for application to discrepancy prediction.  The criterion 

chooses the batch of new design settings for future experiments to improve discrepancy 

prediction by balancing the potential for variance reduction and bias mitigation using 

information in currently available experimental data.  

Maximum Entropy (ENT): 

Originally developed to select data that minimizes entropy in predictions at un-

sampled settings in a finite system (Shewry and Wynn 1987), the ENT criterion has been 

extended to accommodate batch updates of existing designs to maximize information in 

the predictive distribution of discrepancy at untested design settings.  In the context of 

generalized regression modeling, ENT selects new design settings to maximize the 

determinant of the correlation matrix associated with the distribution for predicting 

discrepancy at the proposed new design settings conditional on currently available 

experimental data. 
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(Integrated- and Maximum) Mean Square Error (MSE) Criteria: 

The mean square error (MSE) criteria are used to select design points by 

minimizing functions of posterior discrepancy variance.  The integrated MSE (IMSE) 

criterion selects a batch of experiments that minimizes the closed form integration of 

discrepancy variance over the input domain whereas the maximum MSE criterion adds 

design settings to minimize the maximum discrepancy variance over the input domain 

(Sacks et al. 1988; Sacks et al. 1989). 

2.3.2 Distance- based criteria: 

Distance-based criteria view the experimental designs as candidate points spread 

in the n-dimensional domain of applicability defined by control parameters, x, where n is 

the number of  control parameters of the numerical model, ƞ(xi, θ), i=1,…,n. The 

objective is then to explore the domain as uniformly and broadly as possible. 

Weighted Distance (WDIST) Criteria: 

Distance-based approaches have been proposed as batch sequential design criteria 

to select future experiments to improve discrepancy prediction when calibrating computer 

models (Johnson et al. 1990; Morris and Mitchell 1995). Two measures of weighted 

distance are considered:  Euclidean (EDIST) and Mahalonobis (MDIST), with weights 

related to sensitivities of the control parameters.  More sensitive control parameters have 

greater weight and thus, are allowed to be more densely sampled.  The sensitivity-

weighted distance criterion chooses new design settings that minimize the maximum 

correlation between predicted discrepancy values on the proposed design and between the 

proposed and existing designs. That is to say, new design settings are placed in locations 
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where the ability to borrow strength from available data for discrepancy inference is most 

limited.  

  Compared to the index-based criteria, the distance-based criteria are more 

computationally efficient in that they avoid the slower matrix manipulations required by 

the index-based criteria.  Conversely, distance-based criteria are only indirectly related to 

the more explicit notions of variance and bias reduction embodied by the index-based 

criteria.   

2.4 Predictive Maturity of Numerical Models 

Over the last decade, there have been numerous efforts to assess the predictive 

maturity of numerical models developed in academic institutions, industry (Balci et al., 

2002), National Laboratories (Oberkampf et al., 2007), and NASA (Green et al., 2008). 

These frameworks seek to assess the overall predictive capability of a numerical model 

for intended use through qualitative, expert-judgment based ranking systems. In an effort 

to supply a holistic and quantitative metric for assessing the predictive capability of a 

simulation model, the PMI metric proposed by Hemez et al. (2010), integrates three 

distinct aspects of the model development, experimentation and model calibration 

processes. These aspects are:  

 The extent to which experiments cover the domain of applicability; referred to as 

‘coverage;’ 

 The fundamental inability of the model to represent the underlying physics; 

referred to as ‘discrepancy bias;’ 

 The degree of physics sophistication of the model; referred to as ‘complexity.’ 
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An obvious advantage of PMI is its quantitative nature, which results in a 

repeatable and scientifically defendable metric removing the subjective nature of expert 

opinion from the assessment of simulation model predictability. The basic formulation of 

the PMI index is expressed as: 
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where the parameters (1, 2, 3) are user-defined weighting coefficients that control the 

relative impact of coverage, c, scaled discrepancy, δS, and complexity, NK on PMI. Here, 

1, 2 and 3 values are taken as 0.5, 0.25 and 2, respectively, to provide uniform weight 

for coverage and discrepancy as suggested by Hemez et al. (2010). These weight 

coefficients are kept constant to maintain uniformity between the PMI of various 

selection criteria.   

Coverage is related to the settings of physical experiments performed in the 

domain of applicability. The adopted strategy to quantitatively measure coverage of the 

domain is based on the convex hull—that is the smallest convex domain, within which all 

physical experiments fit. In this study, coverage is calculated as the ratio of the convex 

hull of the physical experiments to that of the operational domain.  As coverage of the 

operational domain increases, the predictive maturity naturally increases. Discrepancy, 

δ(x) as introduced earlier, supplies an independent estimate of errors due to either 

missing or inaccurate numerical modeling. To maintain a standard definition of 

discrepancy, the estimated discrepancy values are normalized with respect to the mean 

value of the corresponding simulation predictions (η(x, θ) in Eq.2). A scaled discrepancy, 
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δS is obtained over the entire domain of applicability. Herein, the complexity attribute is 

constant for all investigated cases, and thus will not influence the PMI calculations. 

We envision that BSD selection criteria will elicit various effects on the 

discrepancy and coverage attributes of PMI. We are particularly interested in classifying 

the selection criteria introduced in Section 2.2 for their tendency to improve normalized 

discrepancy versus coverage attributes.    

2.5 Visco-Plastic Self Consistent (VPSC) Plasticity Model 

Here, VPSC plasticity model is used to predict the creep strain rate in face-

centered cubic (FCC) steel (Lebensohn et al. 2010). In VPSC, the plastic deformation 

mechanism is established considering both climb and glide dislocation at the single-

crystal level. VPSC fully accounts for the anisotropic properties and response of the 

constituent single crystals. For polycrystalline aggregates, VPSC supplies a non-linear 

homogenization-based polycrystal model while fully accounting for aggregate subjected 

to external strain-rate or stresses. The fundamental equation dominating the plastic strain 

rate in a single crystal r, deforming by climb and glide is given in Eq.2.4: 
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In Eq. 2.4, 
( )r

ij  denotes the plastic strain-rate induced by climb and glide 

dislocation, while 
( )r

ij  denotes the stress tensor applied to the crystal r. The plastic strain 

rate is calculated by summing the strain for all active slip systems Ns. The threshold 
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resolved shear stress for glide is denoted with 
gl
o  and the threshold normal stress for 

climb is denoted with  clo  associated with system s. Terms n
gl

 and n
cl
 are the rate-

sensitivity exponents of glide and climb dislocation, respectively. In Eq. 2.4, mij is the 

symmetric glide tensor while kij is the symmetric climb tensor. The products m:σ denote 

the resolved shear stresses, which must reach the predefined threshold value for slip 

activation.  o is the normalization factor.  

VPSC is used to calculate the strain-rate in the grains and the aggregate for a 

given stress input. The climb dislocation orientation and deviatoric stress input define the 

domain of applicability (recall control parameters x in Eq. 2.2). Climb dislocation 

orientation loosely defines the importance of climb phenomena in the crystallographic 

thermal creep. It varies between 0-90⁰. Climb dislocation remains inactive for a 0⁰ angle, 

while it is fully activated for a 90⁰ angle. Deviatoric stress is the stress input of the 

specimen to induce creep strain. The upper and lower bounds of the control parameters, 

which define the operational domain, are given in Table 2.1. 

Table 2.1 The range of control parameters also known as domain of applicability 

Control Parameters Min Value Max Value 

Climb Dislocation 

Orientation 
0.1 rad 0.6 rad 

Deviatoric stress input 900 MPa 1100 MPa 

 

In Eq. 2.4, rate-sensitivity exponents of glide and climb dislocation, n
gl

 and n
cl
, 

and the ratio of threshold resolved shear stress for glide and the threshold normal stress 
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for climb, /cl gl

o o  ,
 
are uncertain. These three parameters are calibrated by comparing the 

VPSC predictions with the experimental measurements (recall calibration parameters θ in 

Eq. 2.2). A uniform prior distribution is assigned for each calibration parameter between 

upper and lower bounds determined according to expert judgment (see Table 2.2). Note 

that the rate-sensitivity exponents are powers in Eq. 2.4, exercising significant influence 

on the predictions and thus resulting in a very difficult inference problem for discrepancy 

bias. 

Table 2.2 Range of calibration parameters 

Calibration Parameters Min Value 
Max 

Value 

True 

Value 

Rate sensitivity exponent for glide  2 4 3 

The ratio of threshold stress 

for glide and for climb 
 8000 12000 11000 

Rate sensitivity exponent for climb  2 4 3 

 

2.6 Batch Sequential Calibration  

Executing the VPSC code with theoretical “true values” of the three calibration 

parameters, a synthetic representation of “truth” is generated. First, we investigate the 

selection of optimal experiments with an exact numerical model (i.e. the representation of 

physics or engineering principles is complete), in which the only difference between the 

model and the truth is the experimental variability. Specifically, we focus on the 

dispersion of the experiments within the domain. Next, we study an (artificially) inexact 

version of VPSC model, where the synthetic experiments are obtained by adding not only 

experimental variability but also an artificial discrepancy bias to the truth. The variance 
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and the complexity of discrepancy bias are varied to investigate the generality of the BSD 

approach (see Table 2.3). Though both exact and inexact models are calibrated 

considering four levels of experimental uncertainty (see Table 2.3), only the results for 

the minimum (0.1%) and maximum (5%) experimental uncertainty are presented here. 

Table 2.3 Analysis Case Configurations 

Analysis Case 

Configurations 
Variations 

Experimental 

Uncertainty  
[0.1%; 1.0%; 3.0%; 5.0%] 

Variance in 

discrepancy 
[5.0%; 10.0%] 

Complexity in 

discrepancy 
Low[.05 .05];  Med-I[.05 .5];Med-II[.5 .05]; High[ .5 .5] 

 

Our parametric analysis includes every combination in Table 2.3 for every BSD 

selection criterion introduced earlier in the manuscript. However, for brevity, we present 

the findings for one index-based criterion, Expected Improvement for Predictive Stability 

(EIPS); and one distance-based criterion, Euclidean Distance Criterion (EDIST) and later 

supply a separate discussion for all investigated selection criteria.  

The BSD algorithm is initiated with a starting set of validation experiments 

selected using a space-filling, Latin hypercube maxi-min sampling (Table 2.4) (Rennen et 

al. 2010). This initial set of physical experiments, i.e. the starting point for BSD 

algorithm, provides only a 5% initial coverage and is kept identical for all cases evaluated 

herein. The potential influence of initial coverage on PMI is investigated later in the 
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manuscript, in which the BSD procedure is repeated with a higher initial coverage. The 

BSD augmentation is completed in ten batches with two new experiments in each batch 

yielding a total of 23 experiments. The procedure is repeated five times to assure the 

repeatability of findings. 

Table 2.4 Settings for the initial three physical experiments, i.e. starting point for BSD 

Test 

No. 

Climb Dislocation 

Orientation (rad) 

Deviatoric Stress 

(MPa) 

1 0.1556 922 

2 0.3222 1100 

3 0.2111 1056 

 

2.7 Exact Model: Coverage of the Domain 

The dispersion of EIPS and EDIST selected optimal experiments throughout the 

domain is investigated considering solely the calibration of the three uncertain parameters 

of the VPSC code (also known as parameter estimation).  

Expected Improvement for Predictive Stability (EIPS) 

Figure 2.2 is a representative plot for one of the five repeats showing the 

distribution of EIPS selected validation experiments in the operational domain as ten new 

batches are added to the starting experiments. In Figure 2.2, the location of all 23 

experiments and the domain coverage, ΩCH corresponding to the addition of every other 

batch are also indicated. While the initial stage has coverage of only 5%, with the 

addition of ten EIPS selected batches, the coverage steadily increases to 80%.  As is 
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clearly evident in Figure 2.2 however, the EIPS criterion has a tendency to clump the 

experiments (see for instance experiments 6, 9, 11 and 16 in Figure 2.2). 

 

Fig. 2.2 Coverage and domain of applicability of experiments with EIPS (a representative 

plot, one of the five repeats) with 5% initial coverage 

Euclidean Distance Criterion (EDIST) 

Compared to EIPS, EDIST selects experiments that explore a greater percentage 

of the domain and has a tendency to distribute the experiments more uniformly without 

any noticeable clumping (Figure 2.3). With EDIST, the coverage attribute of PMI 

immediately increases as the experiments selected for the first batch (experiments 4 and 

5) are at significantly distant points from the three starting experiments, resulting in an 

increase in coverage from 5% to 60% in a single step. After the last batch, the convex 

hull is nearly equal to the entire domain of applicability, reaching coverage of 99%. Such 

rapid improvement in coverage is consistently observed for all repeats of the EDIST 

criterion. 
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Fig. 2.3 Coverage and domain of applicability of experiments with EDIST 

2.8 Inexact Model: Considering Discrepancy 

In this section, optimal experiments are selected considering both variance 

reduction (i.e. parameter calibration) and bias correction (i.e. discrepancy inference). In 

practical applications, the discrepancy bias assumes a myriad of complexities (smoothly 

varying, i.e. long correlation length, versus rapidly varying, i.e. short correlation length) 

and variances depending upon the nature of the missing physics phenomena. We are 

concerned with the effect of discrepancy variance and complexity on the performance of 

selection criteria for BSD optimization. Thus, various possible forms of discrepancy bias 

are represented through a parametric analysis of complexity and variance of the 

discrepancy function. Recall Eq. 2.2, in which the discrepancy is defined as a function of 

control parameters i.e., climb dislocation orientation and deviatoric stress input; 

therefore, the complexity of discrepancy must be defined separately for each of the two 

control parameters of the VPSC code, resulting in four distinct combinations as given in 

Table 2.3.  



26 
 

Discrepancy bias of the calibrated model is calculated with reference to the 

“truth” at 26x26 grid points evenly distributed in the domain of applicability (see Table 

2.1 for the bounds of the domain of applicability). The discrepancy estimated for all grid 

points is then normalized with respect to corresponding mean predictions and evaluated 

as percentage values.  

Expected Improvement for Predictive Stability (EIPS) 

Figure 2.4 presents the PMI values for four combinations of discrepancy 

complexity and variance for 0.1% experimental uncertainty. Visually, the PMI exhibits a 

convergent behavior towards a value of 90% at the 10
th

 batch for all cases. Figure 2.5 

illustrates the improvements in discrepancy and coverage attributes of PMI as ten new 

EIPS selected batches become available for model calibration. In all four cases of 

discrepancy variance and complexity, the discrepancy is improved to a level below 6% 

through ten BSD selected batches. Simultaneously, the coverage of the domain is 

increased from 5% at the starting set of experiments to above 80%. Generally speaking, 

the variance and complexity of discrepancy is observed to have minimal influence on the 

coverage and scaled discrepancy attributes.  
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Fig. 2.4 PMI with EIPS for inexact model with 0.1% experimental uncertainty: (a) 

Discrepancy with 5% variance and low complexity, (b) Discrepancy with 5% variance 

and high complexity, (c) Discrepancy with 10% variance and low complexity, (d) 

Discrepancy with 10% variance and high complexity 
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Fig. 2.5 Normalized discrepancy vs. coverage for EIPS for inexact model with 0.1% 

experimental uncertainty: (a) Discrepancy with 5% variance and low complexity, (b) 

Discrepancy with 5% variance and high complexity, (c) Discrepancy with 10% variance 

and low complexity, (d) Discrepancy with 10% variance and high complexity 

Figure 2.6 illustrates the PMIs calculated for four combinations of discrepancy 

variance and complexity when the experimental uncertainty is 5%. The improvement in 

PMIs is non-monotonic with less clear stabilization compared to Figure 2.4. The five 

repeats on average reach 85% PMI value at the 10
th

 batch. From comparing Figures 2.6 

and 2.8, it is evident that the PMIs obtained with the EIPS selected experiments are 

influenced significantly by experimental uncertainties. Poor PMI values of Figure 2.6 can 

be explained by the high scaled discrepancy values (approximately 150% at the early 
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batches) shown in Figure 2.7. The EIPS criterion provides a consistent improvement in 

discrepancy with every batch and a coverage level consistently around 80% after the 10
th

 

batch. 

 

Fig. 2.6 PMI with EIPS for inexact model with 5% experimental uncertainty: (a) 

Discrepancy with 5% variance and low complexity, (b) Discrepancy with 5% variance 

and high complexity, (c) Discrepancy with 10% variance and low complexity, (d) 

Discrepancy with 10% variance and high complexity 
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Fig. 2.7 Normalized discrepancy vs. coverage for EIPS for inexact model with 5% 

experimental uncertainty: (a) Discrepancy with 5% variance and low complexity, (b) 

Discrepancy with 5% variance and high complexity, (c) Discrepancy with 10% variance 

and low complexity, (d) Discrepancy with 10% variance and high complexity 

Euclidean Distance Criterion (EDIST) 

Figure 2.8 illustrates the PMI obtained by the EDIST criterion for the 0.1% 

experimental uncertainty. Regardless of the discrepancy variance and complexity, the 

PMI consistently reaches a level of 80-85% after the 1
st
 batch and a level of 90%-95% 

after the 10
th

 batch. In Figure 2.9, we observe that EDIST provides coverage around 60% 

immediately after the 1
st
 batch and around 95% after the 10

th
 batch. Discrepancy attribute 
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however, is variable between 3% and 12% for EDIST after the 10
th

 batch. These 

observations are consistent for every level of complexity and variance of discrepancy. 

 

Fig. 2.8 PMI with EDIST for inexact model with 0.1% experimental uncertainty: (a) 

Discrepancy with 5% variance and low complexity, (b) Discrepancy with 5% variance 

and high complexity, (c) Discrepancy with 10% variance and low complexity, (d) 

Discrepancy with 10% variance and high complexity 
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Fig. 2.9 Normalized discrepancy vs. coverage for EDIST for inexact model with 0.1% 

experimental uncertainty: (a) Discrepancy with 5% variance and low complexity, (b) 

Discrepancy with 5% variance and high complexity, (c) Discrepancy with 10% variance 

and low complexity, (d) Discrepancy with 10% variance and high complexity 

Figure 2.10 illustrates the PMI obtained by BSD when the experimental 

uncertainty is 5%. PMIs improve in a non-monotonic manner across the ten
 
batches and 

reach a range between 85%-95% after the 10
th

 batch. The improvement in PMI in this 

case is slower than the case of 0.1% experimental uncertainty. Generally, PMIs do not 

exceed 60% until after the 6
th

 batch. Figure 2.11 illustrates that EDIST successfully 

improves the coverage from 60% to 100% and the discrepancy from 150% to below 15% 

in four variance and complexity combinations of discrepancy. 
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Fig. 2.10 PMI with EDIST for inexact model with 5% experimental uncertainty: (a) 

Discrepancy with 5% variance and low complexity, (b) Discrepancy with 5% variance 

and high complexity, (c) Discrepancy with 10% variance and low complexity, (d) 

Discrepancy with 10% variance and high complexity 
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Fig. 2.11 Normalized discrepancy vs. coverage for EDIST for inexact model with 5% 

experimental uncertainty: (a) Discrepancy with 5% variance and low complexity, (b) 

Discrepancy with 5% variance and high complexity, (c) Discrepancy with 10% variance 

and low complexity, (d) Discrepancy with 10% variance and high complexity 

Compared to EIPS, the discrepancy bias obtained with EDIST is higher. However, 

the ability of the EDIST criterion to explore the operational domain is particularly 

noticeable for all combinations of variance and complexity of discrepancy, and 

experimental uncertainty. 

2.9 Discussion and Findings  

In the previous section, BSD optimization proved to be successful in yielding 

simultaneous improvement in discrepancy and coverage attributes. This is no surprise, 
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however. Allocating resources to experimentation is expected to result in better coverage 

and model parameters are typically better conditioned with increased amounts of 

experimental data. However, the benefit of BSD lies in the efficiency of this 

improvement. To illustrate the efficiency of BSD selection, Figure 2.12 compares the 

improvement in PMI obtained by BSD selected experiments with the same number of 

experiments selected through a single-stage space-filling design strategy. Specifically for 

comparison, we use maximin Latin-Hypercube design, which is concluded to be 

comparable to sequential approaches in Williams et al. (2011). As seen, PMI converges 

with a higher rate and more consistently when BSD is implemented to iteratively select 

the optimal experiments. This observation is especially obvious at early batches when the 

number of experiments is inadequate. 

 

Fig. 2.12 Predictive Maturity achieved by BSD algorithm versus PMI with user-selected 

test settings 

The previous section reveals the strong dependence of PMI values to the 

experimental uncertainty. In general, for both index-based and distance-based criteria, we 

observe higher PMI values and a more rapid convergence when the experimental 
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uncertainty is low. For the 0.1% experimental uncertainty, it is common for PMI to 

converge as early as three batches; while for the 5% experimental uncertainty; no less 

than 11 batches are required for convergence (see Figure 2.13). The sensitivity of the 

PMI values to experimental uncertainty may be explained by two of the three calibration 

parameters of the VPSC model being exponents (recall Eq. 2.4). The inferred discrepancy 

bias is therefore very sensitive to the proper calibration of these two parameters, 

posteriors of which are influenced by the uncertainty in the validation experiments. 

 

Fig. 2.13 Convergence of PMI through 20 batches by EDIST for exact model with 5% 

experimental uncertainty 

For the discrepancy complexity and variance, trends are less recognizable. For 

EIPS, the point clouds of coverage tend toward lower values as the discrepancy variance 

increases (see Figure 2.7, for instance). For EDIST however, no particular trend is 

recognized in normalized discrepancy and coverage attributes for varying levels of 

discrepancy complexity and variance.  
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The index-based EIPS criterion is observed to favor improving discrepancy over 

coverage, since even after ten batches, the coverage remains less than 90% for all cases 

evaluated in Section 2.6. The distance-based EDIST criterion however, exhibits an 

immediate increase in the coverage after the first batch and consistently reaches 99% 

coverage. The index-based EIPS criterion, however, consistently yields lower normalized 

discrepancy compared to the distance-based EDIST criterion. Thus, the EIPS criterion 

can be considered to be more successful than EDIST in improving the discrepancy at low 

coverage; while the EDIST criterion to be more successful than EIPS in improving the 

coverage. To test the performance of EIPS and EDIST criteria from the perspective of 

discrepancy inference, we provide a mathematical proof-of-concept example: 

Discrepancy Comparison: Index- and Distance- Based Criteria 

Here, the discrepancy biases inferred from the optimal experiments selected by 

EIPS and EDIST are compared against the artificially generated “true” 

discrepancy (i.e., model form error), a smoothly varying analytical function of a 

sine wave.  Similar to the proof-of-concept example discussed in Section 2.2, the 

“true” discrepancy is known at every point in the domain of applicability. The 

goal however, is to retrieve this discrepancy bias by exploiting the availability of a 

sound physics model and validation experiments.  

The discrepancy bias is estimated twice with fifteen validation experiments 

selected in six batches by the EIPS and EDIST criteria. Figure 2.14 compares the 

true values of discrepancy with those that are inferred from the validation 

experiments. Ideally, this comparison yields a 45° angle; that is if the true 
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discrepancy is perfectly identified from experiments. For EIPS estimated 

discrepancy values line up around an angle of 34°, while for EDIST, the angle 

drops down to 21°. This illustration highlights that EIPS should be favored over 

EDIST in obtaining a proper inference of discrepancy bias. 

 

Fig. 2.14 Comparison between true and estimated discrepancy using (a) EIPS, (b) 

EDIST 

The performance of the EIPS criterion in improving the discrepancy inference is 

observed as a common characteristic of index-based criteria. For instance, on the 

VPSC polycrystalline plasticity model, the EIGF criterion is observed to yield 

similar discrepancy levels as EIPS with slightly higher coverage of the domain. 

Similarly, the IMSE criterion is observed to favor discrepancy over coverage with 

a lesser performance for both of these attributes compared to EIPS. This is 

consistent with the observations of Sacks et al. (1989), who reports IMSE’s lack 

of attraction to the boundaries of the domain. While consistent with the EIPS 

criterion in the reduction of the discrepancy, the ENT criterion, however, is 
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observed to yield very high coverage (as high as 100%), once again in agreement 

with the findings of Sacks et al. (1989). In this study, ENT provided the most 

favorable results among the index-based criteria from the point of view of PMI.  

However, results in Williams et al. (2011) indicate that ENT has increasing 

difficulty in stabilizing discrepancy as the dimension of the control variable, x 

increases, a trend not seen with other BSD criteria. 

The index-based EIPS criterion and distance-based EDIST criterion are indicated 

to provide low discrepancy and high coverage, respectively. To benefit from both of 

these criteria, the BSD optimization can be performed by mixed strategy; i.e. switching to 

a different criterion when the discrepancy is reduced below or coverage is increased 

above a certain threshold. Our investigation of the concept of this mixed strategy is 

detailed below: 

Mixed BSD Strategy: Index- and Distance- Based Criteria 

EDIST is first implemented to improve coverage to above 90%, at which point the 

design criteria is switched to EIPS to reduce the discrepancy. Figure 2.15 

illustrates the PMI values through BSD cases for the inexact model solution for 

the case with 5% experimental uncertainty, 5% discrepancy variance and low 

complexity. EDIST reaches the 90% coverage after the 6
th

 batch and the EIPS is 

employed to investigate the further improvement in scaled discrepancy. The mean 

scaled discrepancy values of the mixed strategy are compared with those that are 

obtained solely with EIPS and EDIST criteria at the 9
th

 and 10
th

 batch. EIPS and 

EDIST discrepancy is reduced to 20% and 19% respectively, while the mixed 
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strategy provides 16% discrepancy. As the low discrepancy values are predicted 

in the presence of high coverage, the mixed strategy provides improvement in the 

PMI. 

 

Fig. 2.15 Mixed criteria strategy with EIPS and EDIST for 5% experimental 

uncertainty in inexact model: (a) PMI vs. number of batches, (b) Normalized 

discrepancy vs. coverage attributes 

A significant difference is observed between the EIPS and EDIST criteria: EDIST 

provides an immediate increase in coverage after the first batch, while EIPS needs several 

batches to improve the coverage to a similar level. In all the cases presented in this 

section, the BSD optimization is initiated with the same initial set of three experiments. 

As discussed earlier, this initial set provides a very low coverage of the domain, 5%. It is 

of interest to investigate if the initial coverage of the domain has an impact on the 

performance of BSD optimization and associated selection criteria. 
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Effect of Initial Experimental Settings 

The starting set of three experiments are set to [0.105rad, 910MPa], [0.125rad, 

1100MPa] and [0.6rad, 910MPa] to provide a relatively high coverage level 

(47%). Figures 2.16a and 2.16b illustrate the PMI values for the EIPS criterion for 

the inexact model with discrepancy variance of 5% and low complexity, with 

0.1% experimental uncertainty and 5% experimental uncertainty, respectively. 

The high initial coverage improves the PMIs at the early batches for 0.1% 

experimental uncertainty. When the experimental uncertainty is 5%, the scaled 

discrepancy becomes higher (150%-200%) at the early batches; and the improved 

initial coverage is insufficient to yield a significant improvement in PMI values. 

 

Fig. 2.16 PMI for inexact model by EIPS with 47% initial coverage settings for: 

(a) 0.1% experimental uncertainty, (b) 5% experimental uncertainty 

Throughout the paper, the PMI values were calculated with equal weight for the 

coverage and discrepancy attributes. However, the user-defined weighting coefficients of 

PMI provide flexibility in analysis in cases where coverage or discrepancy may be 
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assigned higher importance over the other. Next, we investigate the effect of these user-

defined gamma values on the performance of EIPS and EDIST criteria: 

Selection of Gamma Values 

First, we obtain gamma,   values through an ANOVA-based global sensitivity 

analysis, which yield two distinct cases: (1) a PMI that is more sensitive to the 

coverage attribute. (2) a PMI that is more sensitive to the discrepancy attribute. To 

investigate the influence of the gamma values, the PMIs are compared for EIPS 

and EDIST for an inexact VPSC model with 5% discrepancy variance, low 

complexity and 5% experimental uncertainty. 

In Figure 2.17a, the gamma values are adjusted to 2 =0.5 and 3 =5.0 to increase 

the weight of coverage in the PMI calculations. The slower pace of EIPS in 

improving coverage becomes more evident in PMI. Similarly, in Figure 17b, the 

gamma values are adjusted to 2 =2.0 and 3 =2.0 to increase the weight of 

discrepancy in the PMI calculations. Here, the PMI values yield comparable 

results to the default settings. 
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Fig. 2.17 PMI for inexact model by: (a) EIPS with coverage dominant gamma 

values, (b) EIPS with discrepancy dominant gamma values, (c) EDIST with 

coverage dominant gamma values, (d) EDIST with discrepancy dominant gamma 

values 

The same procedure is also repeated using the EDIST criterion. In Figure 2.17c, 

for the coverage dominant case, the PMI exhibits a convergent trend in a generally 

monotonic manner and reaches as high as 85-90% (in comparison to the non-

convergent behavior observed in Figure 2.17a). However, when the weight is 

shifted towards discrepancy, the improvement in PMI is observed to be less 
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consistent, due to the fluctuations of the estimated discrepancy bias (see Figure 

2.17d).  

2.10 Conclusions 

The accuracy and precision of model predictions can be improved through the 

availability of validation experiments and in turn, the design of validation experiments 

can be improved through the availability of sound numerical models. In this case, the 

central question concerns how to exploit a sound, physics based numerical model for 

designing validation experiments that are useful for calibrating the model such that a 

desired level of predictive maturity can be achieved with the least possible number of 

validation experiments. In this study, we tackle this question through the use of BSD 

approach. Our particular interest is in the evaluation of various selection criteria that 

define the desired benefits from future experiments. Depending on the selection criteria, 

BSD results in designs that either favor exploration of the domain or exploitation of 

variance and bias. 

EIPS is observed to be more favorable for cases where discrepancy is critical, 

while EDIST is observed to be superior where a high coverage of the domain of 

applicability is needed. To enhance BSD optimization and benefit from the disparate 

influences of EIPS and EDIST on the PMI attributes, we recommend mixing these design 

criteria. The mixed strategy is observed to lower the discrepancy level at the further 

batches after obtaining a sufficient amount of coverage.  

In the application to VPSC, both index- and distance- based criteria are observed 

to exhibit sensitivity to experimental uncertainty. This can be explained by the significant 
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influence of the two calibration parameters, climb and glide exponents, have on the 

inferred discrepancy bias. Both index- and distance- based criteria exhibit negligible 

sensitivity to the variance and complexity levels of discrepancy considered herein. The 

comparisons in this study can provide guidance for the analyst selecting the design 

criteria in the BSD application in future applications. 

In this study, it is assumed that experimentation is possible throughout the entire 

domain. In reality, experimentation may be prohibited in particular regions of the domain 

due to testing restrictions or infeasibility of recreating extreme operational conditions 

within a laboratory. In future studies, BSD algorithm will be configured to select 

validation experiments within a restricted region of the domain. Furthermore, for 

multivariate models in which different types of experiments may be used in the 

calibration, the BSD criteria would be needed to be applied to the selection of not only 

the experimental settings but also the types. For example, in Atamturktur et al. (2014), 

maturity of the VPSC model is achieved using three types of experiments: stress-strain 

measurements and two different texture intensities. The application of BSD to select the 

optimal type as well as settings of validation experiments will be investigated in the 

future. 
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CHAPTER THREE 

DEFINING COVERAGE OF AN OPERATIONAL DOMAIN USING A 

MODIFIED NEAREST-NEIGHBOR METRIC 

3.1 Introduction 

Numerical models are executed to predict within a range of settings known as the 

operational domain. The inability of the model to match observations within this domain 

can be represented by an empirically trained error model, known as discrepancy bias [1, 

2]. The discrepancy can be used to evaluate the predictive maturity of a model [3] and to 

bias correct the model predictions [1, 2, 4 – 6]. As the discrepancy bias is empirically 

trained from the available validation experiments, limiting validation experiments only to 

a region of the domain can result in a poor training of the discrepancy bias (Figure 3.1), 

which in turn, can result in overconfidence in model predictions [7]. This potential 

oversight is illustrated in Figure 3.1 by the dashed line suggesting a notional curve, which 

represents the underestimated predictions of the trained discrepancy bias in untested 

regions of the domain. To mitigate this problem, it is essential to conduct validation 

experiments at settings that provide a representation of the entire operational domain. A 

quantitative measure of the ability of a set of validation experiments to represent the 

entire domain is referred to as coverage. 
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Fig. 3.1 Potential Error in Discrepancy Estimation (reprinted with permission from [23]) 

The concept of coverage has recently been included in Predictive Maturity Index 

(PMI), a metric developed to quantify the predictive capability of a numerical model [3]. 

Predictive capability, which is concerned with the ability of predictions to reproduce 

experimental measurements, inherently requires consideration of the coverage of 

validation experiments. Thus, coverage is treated as one of four components in the PMI 

and has a major role in quantifying the predictive maturity of a model. With such 

importance placed upon coverage, it is critical for coverage to be determined using the 

most refined definition available. In Section 3.2 of this paper, we identify four essential 

criteria for a satisfactory coverage metric. 

Several coverage metrics are discussed in the literature (see for instance, 

Atamturktur et al. [8], Hemez et al. [3], and Stull et al. [9]) all of which have drawbacks. 

The metric developed in Atamturktur et al. [8] supplies a counterintuitive value and does 

not discern between interpolative and extrapolative regions of the domain. The metric 

from Hemez et al. [3] does not account for validation experiments added within the 

bounds of existing validation experiments, and the coverage metric in Stull et al. [9] is 

subjective, possibly leading to different conclusions between experts. In Section 3.3, we 
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overview these three abovementioned coverage metrics from the literature and investigate 

the ability of each metric to meet the identified criteria from Section 3.2.  

In Section 3.4 of this paper, a new coverage metric is proposed that alleviates the 

drawbacks of the existing metrics and satisfies all identified criteria. Section 3.5 

demonstrates the applications of the proposed metric on a non-trivial problem of 

polycrystal plasticity and compares it to existing coverage metrics. In Section 3.6, the 

effect of dimensionality on the proposed coverage metrics is investigated focusing on a 

high-dimensional Rosenbrock function. Section 3.7, concludes the paper suggesting 

alternative uses of the proposed coverage metric. 

3.2 Characteristics of Exemplar Coverage Definition 

Four criteria can be identified as essential characteristics for any coverage metric: 

1. Coverage should improve if a new validation experiment is conducted at 

new, untested settings within the domain; 

2. Poorer coverage should result from a clustered arrangement of validation 

experiments that limits exploration to certain regions of the domain, than 

an equal number of validation experiments spread more evenly throughout 

the domain; 

3. Coverage should distinguish between interpolation and extrapolation, due 

to the lack of finite bounds for extrapolation;  

4. Coverage should be objective, not subjective. 

The first criterion is based on the postulation that conducting new validation 

experiments at untested settings provides additional information for model validation, 
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leading to a greater predictive maturity. If a validation experiment has already been 

conducted at that setting, then a repeated validation experiment should provide no 

additional coverage.
4
 

The second criterion is focused on even distribution of validation experiments as 

suggested by distance-based experimental designs [10]. Design strategies that spread 

points throughout the domain, particularly in input dimensions that have significant 

influence on the output of the model, result in lower average prediction errors [11]. This 

is due to the fact that space-filling designs focus on global approximation of the model 

[12]. The second criterion therefore attempts to incorporate the benefits of space-filling 

designs into the coverage metric, which are favorable in the presence of systematic error 

[13].  

The third criterion is motivated by the assertion from experts that empirical 

models should not be used outside the range of calibration experiments [14-17]. As 

Montgomery [17] warns, it is possible for a model to provide poor predictions outside the 

region of the available data even though the model may fit the observations well. Such 

objections to extrapolation are primarily due to the lack of clear bounds for extrapolation, 

which are well defined for an interpolative problem.
5
 Experimental design strategies that 

concentrate runs near the boundaries of the domain, similar to an entropy-based 

                                                           
4
 While conducting experiments at previously sampled settings may provide information about the 

experimental variability, coverage metrics neglect the benefits of replication.  
 
5
 In the context of this work, “interpolation” refers to all predictions made within the region of validation 

experiments defined by a convex hull, and “extrapolation” refers only to predictions made outside the 

corresponding range of validation experiments. Under this definition, it is assumed that the mechanics or 

physics principles do not change within the region of validation experiments relative to those captured by 

the model. If the phenomenology changes “between” these validation experiments, then one can no longer 

distinguish an interpolative prediction of the model from an extrapolative prediction. 
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experimental design as described in [13], tend to reduce the maximum prediction error 

[11]. Thus, the third criterion encourages experiments to be located near the boundaries 

of the domain, which is particularly favorable in the presence of random error [13]. 

The fourth criterion is straightforward; a coverage based upon hard evidence 

should be more credible and reliable than one based on an individual’s opinion. A metric 

that heavily relies on expert opinion may lead to different conclusions between different 

experts, whereas an objective metric is consistent and repeatable. Implementing methods 

that probabilistically quantify an expert’s opinion, such as those discussed in [18] 

however may alleviate the inconsistencies one might face due to subjectivity.  

3.3 Earlier Definitions of Coverage 

This section reviews and compares coverage metrics defined earlier in published 

literature. Herein, the suitability of a coverage metric is measured by the ability to satisfy 

the four aforementioned criteria. 

3.3.1 Atamturktur et al. [8] 

Coverage is determined in Atamturktur et al. [8] using a sensitivity adjusted 

nearest-neighbor metric. By definition of this metric, control parameter ranges that define 

the operational domain are first normalized between 0 and 1. Next, each control 

parameter dimension is scaled according to the sensitivity of the model output to that 

particular control parameter, where a greater sensitivity causes the control parameter 

dimension to dilate placing focus on more sensitive model inputs. To approximate the 

sensitivity of each control parameter, Atamturktur et al. [8] exploits the correlation length 
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of the Gaussian Process Model (GPM) emulators trained to replace the computationally 

demanding physics models.  

The scaled hyper-dimensional domain is covered by a sufficient number of 

uniformly distributed grid points and each grid point is appointed to the nearest validation 

experiment.
6
 Figure 3.2a shows the partitioning of the domain into nearest-neighbor 

regions. The distance between each grid point and the associated nearest validation 

experiment is summed for all grid points and normalized by the total number of grid 

points, as shown in Eq (3.1): 

,1

1
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g

E ii
d

g
nnm


   

 

(3.1) 

 

where parameter nnm represents the nearest-neighbor metric value, g represents the total 

number of grid points, and min( ,E id ) is the minimum distance of the i
th

 grid point to the 

nearest validation experiment calculated within a sensitivity scaled multidimensional 

domain. The result is a value that represents the average normalized and sensitivity-

scaled distance between each point in the domain to the corresponding nearest validation 

experiment. Decreasing this value improves the coverage. 

                                                           
6
 Sufficiency of the number of grid points will be discussed later in Section 3.4. 
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Fig. 3.2 Division of Domain into Nearest-Neighbor Regions 

The nearest-neighbor metric of Atamturktur et al. [8] is sensitive to the addition of 

a new validation experiment as well as the clustering of validation experiments. The 

metric is also objective. However, the metric is incapable of showing preference to 

interpolation over extrapolation. As shown in Figure 3.2b, both grid point A and B are an 

equal distance from the nearest neighboring validation experiment and thus, are treated 

similarly by the nearest neighbor metric even though point A involves an interpolative 

prediction, while point B involves extrapolative prediction. Furthermore, the nearest-

neighbor metric supplies a counter-intuitive value where improvement in coverage is 

represented by a decreasing value, whereas the coverage defined using the methods 

presented in Hemez et al. [3] and Stull et al. [9], as discussed in the following sections, 

supply intuitive indicators of coverage. 

3.3.2 Hemez et al. [3] 

In Hemez et al. [3], coverage is quantified in two steps. First, the convex hull, or 

multidimensional domain with the smallest convex volume, of the validation experiments 
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is defined. Next, the ratio between the volume of the convex hull and the volume of the 

operational domain is calculated. The metric can be calculated according to Eq. 3.2: 

( )

( )

CH
c

V

V

V






 

(3.2) 

where c  represents the coverage and V(·) is a function that calculates the volume of a 

multidimensional domain. CH is the convex hull that surrounds the validation 

experiments while V denotes the operational domain. The metric proposed by Hemez et 

al. [3] has a profound ability to show the distinction between interpolation and 

extrapolation. Moreover, the metric is objective. This metric however, is controlled by 

the positioning of the experiments at the boundaries of the domain, where the addition of 

experiments within the convex hull fails to reflect improvement in the coverage, as 

shown with experiment A in Figure 3.3. Hemez et al. [19] suggests that better definitions 

of coverage could be developed and applied to the PMI to account for the number and 

overall spread of validation experiments. 

 

Fig. 3.3 Convex Hull Encompassing Validation Experiments 
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3.3.3 Stull et al. [9] 

The metric defined in Stull et al. [9] creates a convex hull around each individual 

validation experiment rather than a single convex hull containing every experiment. The 

coverage is then defined as the ratio of the summation of the convex hulls surrounding 

the validation experiments to the convex hull defining the domain. This is defined as: 
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(3.3) 

where E,i is the convex hull surrounding the k
th

 validation experiment and N is the total 

number of validation experiments. Note that in Eq. 3.3, the intersecting convex hulls that 

double count the coverage are accounted for according to the well-known principle of 

inclusion and exclusion [20]. Therefore, if the convex hulls from more than one 

validation experiment overlap, the area is only counted once. 

The metric proposed by Stull et al. [9] is subjective as the size of the convex hull 

surrounding each validation experiment is based on expert opinion.
7
 Furthermore, with 

this metric, a validation experiment could be added without improving the coverage, 

provided that the existing convex hulls completely engulf the convex hull of an additional 

validation experiment, as shown in Figure 3.4 with experiment A. 

                                                           
7
 A more objective criterion could also be used, where the size of each convex hull surrounding a validation 

experiment is based on a gradient-based sensitivity analysis. The size of the convex hull can be inversely 

proportional to the gradient of the model predictions around that particular experiment. 
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Fig. 3.4 Possible Effect of Adding Validation Experiments on Coverage Metric Proposed 

by Stull et al. [9] 

Stull et al. [9]’s metric neither recognizes large unexplored regions in the domain 

nor differentiates between interpolation and extrapolation as the validation experiments 

could be clustered in one region of the domain and achieve the same coverage as a more 

distributed arrangement provided that there is no overlap of the convex hulls, as shown in 

Figures 3.5 and 3.6. 

 

Fig. 3.5 Coverage of Clustered Versus Uniform Arrangement of Validation Experiments 
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Fig. 3.6 Effect of Interpolation/Extrapolation Ratio on Coverage 

The metric proposed by Stull et al. [9] should be given more credit than Figures 

3.4, 3.5, and 3.6 suggest, which present carefully-chosen, problematic situations for this 

metric. Using expert opinion to vary the size of the convex hull associated with each 

individual validation experiment may alleviate some limitations and provide an improved 

quantification of coverage. However, doing so forces the metric to rely heavily on expert 

opinion and increases subjectivity. 

The discussion presented in this section is summarized in Table 3.1. Note that 

each metric fails at least one criterion but each criterion is passed by at least one metric. 

Table 3.1 Criterion Satisfaction for Atamturktur et al. [8], Hemez et al. [3], and Stull et 

al. [9] 

Criterion Atamturktur et al. [8] Hemez et al. [3] Stull et al. [9] 

1 Pass Fail 
Improved but 

Imperfect 

2 Pass Fail 
Improved but 

Imperfect 

3 Fail Pass Fail 

4 Pass Pass Fail 
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3.4 Proposed Coverage Definition 

Due to the ability to already pass three of the four criteria, the coverage metric 

presented in Atamturktur et al. [8] is modified to account for the difference between 

interpolative and extrapolative predictions by adding an extrapolation penalty based upon 

the convex hull utilized in Hemez et al. [3]. Additionally, the metric is transformed to 

provide a more intuitive coverage value, in which a greater value indicates improved 

coverage of the domain. 

3.4.1 Penalizing Extrapolative Predictions in the Coverage Metric 

The nearest-neighbor metric is first modified to account for extrapolative 

predictions. A convex hull encompasses the validation experiments as in Hemez et al. [3], 

dividing zones of interpolation and extrapolation, as shown in Figure 3.7. Grid points that 

lie outside the zone of interpolation are subject to an extrapolation penalty equal to the 

minimum distance between the grid point and the zone of interpolation. This penalty is 

added to the distance between the grid point and the nearest validation experiment, as 

shown in Eq. 3.4: 

, ,1

1
min( )

g

E i ZI ii
d d

g
nnm


   (3.4) 

where dZI,i is minimum distance between the i
th

 grid point and the zone of interpolation. 

Distances dE and dZI are shown in Figure 3.7. Applying this extrapolation penalty 

increases nnm and thus, reduces coverage. Through this penalty, validation experiments 

are encouraged to be positioned nearer the boundaries of the domain, reducing the zone 

of extrapolation. 
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Fig. 3.7 Example Zone of Interpolation and Extrapolation for a Two Dimensional 

Domain 

3.4.2 Transforming the Proposed Coverage Metric into an Intuitive Indicator 

The modified nearest-neighbor value yields a counterintuitive description of 

coverage that decreases as the number of experiments increases. To provide a more 

intuitive interpretation of coverage that can be straightforwardly integrated in the PMI, 

the metric value is transformed, utilizing the upper and lower bounds of the modified 

nearest-neighbor value. 

The lower bound of the nearest-neighbor value (nnmmin) occurs if a validation 

experiment is located at each grid point, producing a metric value equal to 0. However, 

for the grid points to sufficiently represent the entire operational domain, there must be 

more grid points than validation experiments; therefore, as the number of validation 

experiments increases, the metric value asymptotically approaches 0.  

The upper limit of the nearest-neighbor metric value (nnmmax) is achieved using 

only one validation experiment. For a rectangular domain, defined by the minimum and 

maximum values of each input parameter, the location for an experiment that yields the 

worst coverage occurs at a corner of the domain. With a single experiment, the convex 
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hull encompasses zero volume; hence, the extrapolation penalty is equal to the nearest 

distance between each grid point and the validation experiment. The average distance 

between the validation experiment and each grid point is equal to the integration of the 

distance from the validation experiment over the entire domain, divided by the 

multidimensional volume of the domain: 

1,
1

max

n

i
i

d d

nnm
d












 

 

(3.5) 

where   represents the multidimensional volume of the domain. For a rectangular 

domain as the grid is refined, the numerically obtained maximum value converges to the 

theoretical value from Eq. 3.5. This is demonstrated in Figure 3.8 for a two-dimensional 

domain with the total number of grid points increasing from four to 40,000. In Figure 3.8, 

the numerical value converges to the theoretical value of 1.5304 as the grid is refined. As 

expected, the maximum metric value increases with increased dimensionality of the 

domain (see Figure 3.9). 

 

Fig. 3.8 Convergence of maximum metric value to the theoretical value as the number of 

grid points increases 
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Fig. 3.9 Maximum metric value as a function of dimensionality (for unit sensitivity in 

each direction) 

The metric is transformed to range between zero and infinity with zero 

representing the poorest possible coverage and infinity representing perfect coverage. 

This transformation is accomplished using the following functional form:  

max

1 1
c

nnm nnm
    

(3.6) 

Under this definition, when one experiment is located in the worst possible location, the 

coverage will equal zero. As more experiments are added at new, untested settings, the 

coverage will increase up to infinity. 

3.4.3 Incorporation of the Proposed Coverage Metric in the Predictive Maturity Index 

(PMI) 

The PMI has been established as a quantitative and objective metric to evaluate 

predictive capabilities of numerical models and has been applied to the Preston-Tonks-

Wallace model of plastic deformation [3], the Viscoplastic Self-Consistent (VPSC) 

material model [21], and the nuclear fuel performance code, LIFEIV [22]. Recently 
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modified by Stull et al. [9], the PMI includes four attributes: coverage of the domain, c, 

robustness to model parameter uncertainty, S, scaled discrepancy bias, S, and model 

complexity, NK, as described in Eq. 3.7: 

 
5

1

; ; ;C K S S i

i

PMI N  



   (3.7) 

where i  are shown in Table 3.2, with positive, user-defined coefficients γ1, γ2, γ3, and 

γ4. The purpose of the gamma values is to weigh the effect of each attribute on the PMI. 

Note NR in Table 3.2 represents a reference number of knobs, or uncertain model 

parameters. As each attribute is bounded between 0 and 1, the PMI is naturally bounded 

between 0 and 1. The exponential or hyperbolic tangent functions in Table 3.2 are used to 

provide asymptotic limits between 0 and 1. 

Table 3.2 PMI Term Definitions [9] 

Term Definition 
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 The functional terms shown in Table 3.2 are designed around the coverage 

definition in Stull et al. [9] in which coverage is allowed to vary between 0 and infinity. 
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This range is equal to the range for the proposed coverage metric and allows 

incorporation of the proposed coverage metric into the PMI in a straightforward manner.
8
 

3.5 Demonstrating the use of Coverage Metric  

The proposed coverage metric is applied to quantify the coverage of the domain 

achieved by synthetic experiments selected through Batch Sequential Design. These 

synthetic experiments are used to calibrate the Viscoplastic Self-Consistent (VPSC) code 

for modeling stress-strain response and textural evolution of 5182 aluminum alloy. 

3.5.1 VPSC Material Model 

The VPSC code developed in [23] predicts plastic deformations considering both 

climb and glide dislocation at the single-crystal level. The governing equation is written 

as [23]: 

   
1

: :
sgn : sgn :

g c

s

n n
s sN

s s s s

o s s
s o o

m cd
m m c c

dt

 
  

 

     
       
        

  
(3.8) 

 

where 
d

dt


 denotes the strain rate, and   represents the stress applied to the crystal. The 

terms sc  and s

o  are the climb tensor and critical stress associated with climb, 

respectively. Similarly, 
sm  and s

o  are the Schmid tensor and critical resolved shear 

stress associated with glide. In Eq. 3.8, gn  is the glide stress exponent and 
cn  is the 

                                                           
8
 Under the Stull et al. [9] definition, a coverage value greater than 1 indicates that the coverage exceeds the 

dimensions of the domain. Hence, the 1  term is equal to 1 for all coverage values equal to or greater than 

1. In the proposed coverage metric, a coverage value equal to 1 does not represent perfect coverage of the 

domain. Therefore, the condition that 
1  equals 1 if the coverage equals or exceeds 1 is removed.  
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climb stress exponent. The single crystal equation is summed over all active slip systems, 

sN . Finally, 0  is a normalization factor [23]. A large number of parameters are required 

to completely describe the crystallographic textures using weights associated with a 

partition of 3-D orientation space [21]. However, for calibration and validation purposes, 

the final textures can be characterized by two components: (i) intensity associated with a 

retained (001) cube texture and (ii) intensity associated with a (101) compression texture. 

The 001 and 101 poles represent corners of the inverse pole figure [21]. 

The VPSC model has two control parameters (temperature and strain rate) and 

three outputs (stress-strain response, pole 001 texture, and pole 101 texture) that define 

the operational domain. Two calibration parameters ( s

o  and s

o ) are found to exhibit a 

dependency on both temperature and strain rate and therefore are each replaced by four 

parameters that describe the functional relationship [21]. As a result, the VPSC model 

possesses ten total calibration parameters. In [21], the ten calibration parameters are 

calibrated against physical validation experiments measuring stress at a strain equal to 

0.6, textural intensity of the 001 pole, and textural intensity of the 101 pole. In [24], these 

calibrated values are considered to be “true” values to allow for a simulated Batch 

Sequential Design (BSD) study as discussed in the following section. 

3.5.2 Selection of Experimental Settings through Batch Sequential Design (BSD) for 

VPSC Model 

In BSD, information from available experiments is used to select the optimum 

(according to a predefined criterion) settings of future experiments sequentially in 

batches of user-selected sizes [11]. Numerous different criteria are available to be used in 
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the optimization process of the BSD approach [25]. In application to the VPSC model, 

BSD is deployed to determine the optimal locations of experiments through use of the 

Euclidean distance EDIST criterion [24]. EDIST is a sensitivity-weighted, distance-based 

criterion that selects design settings that minimize the maximum correlation between 

discrepancy values of the proposed design and existing design.  

The initial experimental settings (batch 0) as well as the BSD selected settings 

(batches 1-10) are shown in Figure 3.10. These experiments are simulated by running the 

VPSC code using the settings of control parameters (temperature and strain-rate) selected 

by BSD and the so-called exact values of the calibration parameters determined in [21]. 

With the addition of new experimental data, the model is recalibrated and the process is 

repeated until completion of the tenth batch. During model calibration, a fast-running 

Gaussian Process Model (GPM) emulator [2, 5] is trained to replace the VPSC code. Of 

course, in the use of an emulator it is necessary to validate the adequacy of the emulator. 

In this study, closely following the approach taken in [5], hold-out experiments are used 

to validate that the GPM is trained sufficiently well. 

 

Fig. 3.10 Experimental Settings Selected through BSD (marker number denotes batch 

number) 
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3.5.3 Coverage obtained through Batch Sequential Design (BSD) Selected Experiments 

In our application, the operational domain is defined by temperatures between 200 

and 550°C and strain-rates between 0.001 and 1 s
-1

 [24]. The VPSC code predicts stress-

strain response, texture 001 evolution, and texture 101 evolution, and thus the metric 

value is determined for each output separately [21]. In this application, the sensitivity of 

each control parameter to each of the three model outputs is determined by the spatial 

dependence parameter,  of the GPM emulator for each output separately. The  

parameter describes the dependence of the output on each particular input; therefore, a 

control parameter with greater influence on the output yields a larger  value than a 

control parameter with less influence. In this application, this sensitivity is determined 

after the tenth batch. 

The coverage obtained using the proposed metric for each batch is shown in 

Figure 3.11. The coverage of each individual output as well as the average coverage 

monotonically improves as the number of batches increases. 

 

Fig. 3.11 Proposed Coverage vs. Number of Batches 
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The coverage is also evaluated using the metrics presented in Hemez et al. [3] and 

Stull et al. [9]. The metric from Atamturktur et al. [8] is omitted, as the proposed metric 

is a close revision. The results using the Hemez et al. [3] metric are presented in Figure 

3.12. Between the second and third batches, as well as between the fifth and ninth 

batches, the coverage is not affected by the addition of new validation experiments. This 

is because the validation experiments added in those batches are located inside the 

existing convex hull (Figure 3.10). In contrast, the coverage metric proposed herein 

yields improvement of coverage between every batch (Figure 3.11), recognizing the 

experiments located inside the convex hull. 

 

Fig. 3.12 Coverage vs. Number of Batches using Hemez et al. [3] coverage metric 

Several alternative coverage values can be obtained using the Stull et al. [9] 

metric depending on the bound chosen by the expert (Figure 3.13). Accordingly, the 

convergent properties of the coverage may change. For example, assuming each 

experiment covers 45% of the domain in each dimension causes the coverage to reach a 

value of 1 (perfect coverage) after the sixth batch. However, if 25% bounds are used, the 

gain in coverage is nearly linear from the first batch to the tenth and a final coverage 
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equal to 0.7959 is achieved after the final batch. In contrast, the coverage metric 

proposed herein is objective and thus insusceptible to the potential variability between the 

opinions of two experts. 

 

Fig. 3.13 Coverage vs. Number of Batches using Stull et al. [9] coverage metric 

3.6 Dimensionality 

In this section, the effect of dimensionality on the proposed metric is investigated 

and compared to existing metrics. 

3.6.1 Effect of Dimensionality 

As a constant number of experiments are used to cover a domain of increasing 

dimensionality, the coverage is expected to decrease as the density of experiments 

decreases. To investigate this phenomenon known as curse of dimensionality, domains 

ranging between two and ten dimensions are populated by 100 experiments selected 

using Latin Hypercube Sampling (LHS). The Stull et al. [9] metric is evaluated assuming 

25% bounds around each experiment and the proposed coverage metric is evaluated using 

four grid points for each dimension to keep computational time reasonable at high 

dimensions. Sensitivity values equal to one for all dimensions are assumed. The 
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simulation is repeated 50 times and coverage is computed for each using the proposed 

coverage metric as well as the Hemez et al. [3] and Stull et al. [9] metrics. The results are 

shown in Figure 3.14. 

 

Fig. 3.14 Average Coverage (solid line) ± 3 standard deviations (dashed lines) achieved 

with 50 simulations of a 100 experiment LHS design 

Using the Hemez et al. [3] metric, the coverage quickly decreases. When eight 

dimensions are analyzed, only 2.5% of the domain is covered, and when 10 dimensions 

are being analyzed, only 0.3% of the domain is covered. Therefore, for a high-

dimensional problem with 100 dimensions, the coverage achieved using the Hemez et al. 

[3] metric is nearly negligible, as expected. Similarly, the Stull et al. [9] metric displays a 

steep decline in coverage as the dimensionality increases and quickly becomes 

computationally prohibitive.
9
 The coverage metric proposed herein is shown in Figure 

                                                           
9
 Data can only be collected for a large sample size for up to four dimensions due to the high computational 

cost at high dimensions. Using an Intel Core 2 Quad CPU (Q9400) at 2.66 GHz with 4.00 GB memory, 

results for a single LHS design are obtained in 0.36, 1.38, and 88.4 seconds for two, three, and four 

dimensions, respectively. Results for five dimensions cannot be obtained in under one hour. A small 

number of LHS runs yield an average metric value of 0.0686 at five dimensions, consistent with the trend 

shown in Figure 3.14b. 
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3.14(c).
10

 The rate of decrease in coverage is largest when the number of dimensions is 

still low. As with the Hemez et al. [3] and Stull et al. [9] metrics, the proposed coverage 

metric suffers from the curse of dimensionality, displaying a decreasing value as the 

number of dimensions increases. Therefore, Figure 3.14 demonstrates that a greater 

number of experiments are required in a higher dimensional domain to achieve the same 

coverage as a lower dimensional domain, as expected. 

In addition to the computational constraints of the Stull et al. [9] metric, the 

Hemez et al. [3] metric requires a greater number of experiments than the number of 

dimensions in order to evaluate the metric. Therefore, it would not be possible to evaluate 

the Hemez et al. [3] metric if there were ten or fewer experiments. Alternatively, the 

proposed coverage metric may be evaluated using a few as one experiment. Therefore, 

for a high-dimensional domain with an equal or fewer number of experiments, the 

proposed coverage metric may be used to evaluate the coverage.  

6.2 Coverage of High-Dimensional Domain: Application to the Rosenbrock Function 

The performance of the proposed coverage metric for a higher dimensional 

domain (i.e. ten dimensional domain) is studied using the Rosenbrock function: 

1
2 2 2

1 1
1

(1 ) ( )
N

k k K k
k

Y X C X X


 


     
(3.9) 

In Eq. 3.9, N represents the number of dimensions while Ck are user defined 

coefficients to weigh the effect of each input. Predictions generated by a two-level, full-

factorial (2
10

 = 1,024 runs) design of experiments are analyzed with an analysis-of-

                                                           
10

  For eight or more dimensions, the proposed coverage metric is evaluated assuming that the entirety of 

the domain is an extrapolative regime.  
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variance (ANOVA) to determine the statistical significance of each input. A larger R
2
 

value indicates a parameter that exhibits greater influence. As such, the main effect R
2
 

value is scaled as a percentage and used as the sensitivity scaling factor for each 

dimension. Values of Ck and results from the ANOVA are given in Table 3.3. 

Table 3.3 Coefficients of the Rosenbrock function and statistics for main-effect analysis 

Variable (Xk) Coefficient (Ck) R
2
 Statistic (%) 

1 1.0 22.5% 

2 5.0 3.6% 

3 2.0 11.2% 

4 3.0 10.8% 

5 4.0 10.4% 

6 5.0 10.0% 

7 6.0 6.0% 

8 5.0 4.9% 

9 2.0 15.4% 

10 6.0 5.2% 

Experimental data are generated from a LHS design. The proposed coverage 

metric is evaluated under the assumption that all grid points are penalized for 

extrapolation. The coverage calculations, repeated 50 times for different LHS designs, are 

shown in Figure 3.15. 

 

Fig. 3.15 Average Coverage (solid line) ± 3 standard deviations (dashed lines) 
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The coverage metric proposed herein displays diminishing returns as the number 

of experiments increases. The increase in coverage from 1 experiment to 3 experiments is 

greater than the gain realized from increasing the number of experiments from 75 to 200. 

In other words, two experiments when the coverage is poor are more valuable to 

improving the coverage than 125 experiments after 75 experiments have already been 

conducted. Analysts may use a plot similar to Figure 3.15 to help determine when the 

gains in coverage do not justify the cost of further experiments, thus the experimental 

campaign should be terminated. The proposed coverage metric may be most useful for 

high-dimensional applications where the Hemez et al. [3] and Stull et al. [9] metrics 

experience limitations either in the form of high computational cost or the inability to 

evaluate the metric with fewer experiments than dimensions. 

3.7 Conclusions 

A quantitative metric is defined to assess the coverage provided by a set of 

validation experiments within an operational domain. The proposed coverage metric is 

designed around four criteria: (i) coverage should improve if a new validation experiment 

is conducted at new, untested settings within the domain, (ii) poorer coverage should 

result from a clustered arrangement of validation experiments that limits exploration to 

certain regions of the domain, than an equal number of validation experiments spread 

more evenly throughout the domain, (iii) coverage should distinguish between 

interpolation and extrapolation, and (iv) coverage should be objective, not subjective. 

This paper modifies the sensitivity adjusted nearest neighbor metric developed in 

Atamturktur et al. [8] to encourage experimental designs with validation experiments 
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nearer the boundaries of the domain, thus reducing extrapolation. The authors also 

propose a transformation of the proposed coverage metric which allows the metric to be 

implemented in the Predictive Maturity Index (PMI). The proposed coverage metric is 

demonstrated on the multivariate Viscoplastic Self-Consistent code as well as a high-

dimensional variant of the Rosenbrock function. 

The usefulness of the proposed coverage metric extends beyond implementation 

in the PMI. The metric can be used to directly compare multiple designs of experiments. 

Furthermore, the metric could be implemented as a Batch Sequential Design selection 

criterion to select the future settings of validation experiments. As a distance-based 

criterion, the metric could be combined with an index-based criterion to create a selection 

condition, similar to the Coverage Augmented Expected Improvement for Predictive 

Stability (C-EIPS) criterion developed in [24], which simultaneously explores the entire 

domain and exploits regions with high variance in the discrepancy bias.  

References 

[1] Draper D. Assessment and propagation of model uncertainty. Journal of the Royal 

Statistical Society B 1995; 57(1): 45-97. 

[2] Kennedy MC, O’Hagan A. Bayesian Calibration of Computer Models. Journal of the 

Royal Statistical Society 2001; 63: 425-464. 

[3]  Hemez F, Atamturktur S, Unal C. Defining predictive maturity for validated 

numerical simulations. Computers and Structures Journal 2010; 88: 497-505. 



79 
 

[4] Higdon D, Gattiker J, Williams B, Rightley M. Computer model calibration using 

high-dimensional output. Journal American Statistical Association 2008; 103(482): 

570-83. 

[5] Higdon D, Nakhleh C, Gattiker J, Williams B. A Bayesian calibration approach to the 

thermal problem. Computer Methods in Applied Mechanics and Engineering 2008; 

197(29-32): 2431-2441. 

[6] Farajpour I, Atamturktur S. Error and Uncertainty Analysis of Inexact and Imprecise 

Computer Models. Journal of Computing in Civil Engineering 2013; 27(4): 407-418. 

[7]  Atamturktur S, Hemez F, Williams B, Tome C, Unal C. A forecasting metric for 

predictive modeling. Computers and Structures 2011; 89(23,24): 2377-2387. 

[8]  Atamturktur S, Hemez F, Unal C, William B. Predictive Maturity of Computer 

Models Using Functional and Multivariate Output. In Proceedings of the 27
th

 SEM 

International Modal Analysis Conference, Orlando, FL. 2009. 

[9]  Stull CJ, Hemez F, Williams B, Unal C, Rogers ML. An improved description of 

predictive maturity for verification and validation activities. Los Alamos National 

Laboratory Technical Report 2011; LA-UR-11-05659. 

[10] Johnson ME, Moore LM. Ylvisaker D, Minimax and Maximin Distance Designs. 

Journal of Statistical Planning and Inference 1990; 26(2): 131-148. 



80 
 

[11]  Williams BJ, Loeppky JK, Moore LM, Macklem MS,. Batch sequential design to 

achieve predictive maturity with calibrated computer models. Reliability Engineering 

System Safety 2011; 96: 1208-1219. 

[12] Shao T. Toward a structured approach to simulation-based engineering design under 

uncertainty. University of Massachusetts Amherst), ProQuest Dissertations and 

Theses 2007; 265. Retrieved from 

http://search.proquest.com/docview/304846542?accountid=6167. (304846542). 

[13] Sacks J, Welch W, Mitchell T, Wynn H. Designs and analysis of computer 

experiments. Statistical Science 1989; 4: 409-435. 

[14] Fryer RJ, Shepherd JG. Models of codend size selection. J. Northw. Fish. Sci. 1996; 

19: 51-58. 

[15] Logan RW, Nitta CK, Chidester SK. Risk Reduction as the Product of Model 

Assessed Reliability, Confidence, and Consequence. Lawrence Livermore National 

Laboratory Technical Report November 2003; UCRL-AR-200703. 

[16] Oberkampf WL, Pilch M, Trucano TG. Predictive capability maturity model for 

computational modeling and simulation. Sandia National Laboratory Technical 

Report 2007; SAND-2007-5948. 

[17] Montgomery DC. Design and analysis of experiments (5
th

 edn). John Wiley & Sons: 

New York, NY, 1997; 416-417. 



81 
 

[18] O’Hagan A, Oakley JE. Probability is perfect, but we can’t elicit it perfectly. 

Reliability Engineering & System Safety 2004; 85: 239-248 

[19] Hemez F, Atamturktur S, Unal C. Defining predictive maturity for validated 

numerical simulations. In Proceedings of the IMAC-XXVII, Orlando, FL, USA. 

February 9-12, 2009. 

[20] Cameron, Peter J. (1994), Combinatorics: Topics, Techniques, Algorithms, 

Cambridge University Press. 

[21] Atamturktur S, Hegenderfer J, Williams B, Egeberg M, Lebensohn R, Unal C. A 

Resource Allocation Framework for Experiment-Based Validation of Numerical 

Models. Mechanics of Advanced Materials and Structures 2014; DOI 

10.1080/15376494.2013.828819. 

[22] Stull C, Williams B, Unal C. Assessing the Predictive capability of the LIFEIV 

nuclear fuel performance code using sequential calibration. Los Alamos National 

Laboratory Technical Report 2012;  LA-UR-12-22712. 

[23] Lebensohn RA, Hartley CS, Tomé CN, Castelnau O. Modeling the mechanical 

response of polycrystals deforming by climb and glide. Phil Mag 2010; 90(5): 567-

83. 

[24] Atamturktur S, Hegenderfer, J, and Williams B. (accepted, in print), A Selection 

Criterion Based on Exploration-Exploitation Approach for Batch Sequential Design. 

Journal of Engineering Mechanics (ASCE); (accepted, in print). 



82 
 

 [25] Atamturktur S, Williams B, Egeberg M, and Unal C. Batch Sequential Design of 

Optimal Experiments for Improved Predictive Maturity in Physics-Based Modeling. 

Structural and Multidisciplinary Optimization (Springer) 2013; 48(3): 549-569. 

  



83 
 

CHAPTER FOUR 

CONCLUSIONS 

 The two journal articles presented in this thesis aim to reduce the experimental 

resources required to reach predictive maturity of complex numerical models.  

 In chapter two, several batch sequential design (BSD) selection criteria are 

applied to the Visco Plastic Self-Consistent material plasticity model. The Predictive 

Maturity Index (PMI), influenced herein by discrepancy bias and coverage, is used to 

evaluate the performance of each selection criteria. Index-based selection criteria such as 

expected improvement for predictive stability (EIPS) are observed to favor exploitation 

of variance and bias, making these criteria more favorable when discrepancy is of high 

importance such as when model fidelity is critical. Meanwhile, distance-based selection 

criteria such as Euclidean distance (EDIST) favor exploration of the operational domain 

and are therefore more favorable when coverage of the operational domain is of high 

importance such as when the underlying physics differ between regions of the operational 

domain. An effective technique is to use a mixed approach in which a distance-based 

selection criterion is initially used to provide sufficient coverage of the operational 

domain, next an index-based selection criterion is used to achieve a desired discrepancy 

bias. This study provides guidance to analysts when selecting a selection criterion to most 

efficiently improve the predictive maturity of a given numerical model. 

 In chapter three, four characteristics of an exemplar coverage metric are 

identified. Coverage should (i) improve if a new experiment is added at untested settings, 

(ii) favor a more uniform distribution of experiments over a clustered arrangement, (iii) 
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distinguish between interpolation and extrapolation, and (iv) be objective. The coverage 

metrics from the literature are found to be unsuitable for all four criteria, thus a new 

coverage metric is proposed. The proposed coverage metric is found to exhibit 

satisfactory performance in all four criteria and shows aptitude when applied to high-

dimensional operational domains. Through the refined coverage metric, this study helps 

decision makers quantify coverage, an important component in determining when a 

numerical model has reached predictive maturity. This may save unnecessary 

experimental resources from being used after predictive maturity has been achieved. 

 Future work may build from this thesis to further improve BSD techniques. In 

chapter two, the coverage metric used in the PMI is shown in chapter three to have 

several shortcomings. A possible investigation would be to repeat the study in chapter 

two while using the coverage metric proposed in chapter three in the formulation of the 

PMI. This would provide a more refined evaluation of predictive maturity of the 

numerical models and allow a more accurate comparison between selection criteria. Also, 

the coverage metric proposed in chapter three could be used as a BSD selection criterion 

alone. Furthermore, the coverage metric could be combined with an index-based 

selection criterion to simultaneously explore the operational domain and exploit the 

discrepancy bias. 
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APPENDIX 

In chapter two, the findings are presented considering EIPS as representative of 

index-based criteria. The appendix summarizes the findings for the three other index-

based criteria: EIGF, ENT and IMSE. The PMIs along with coverage and scaled 

discrepancy attributes are given for the exact model solution. Figures A.1a and A.1c 

illustrate the PMI for the EIGF criterion when the experimental uncertainty is 0.1% and 

5%, respectively. For 0.1% experimental uncertainty, EIGF successfully provides a 

converging PMI value (see Figure A.1a) and the improvement in discrepancy is similar to 

that obtained by EIPS (see Figure A.2b). The coverage reaches the range of 83%-92%. 

For the 5% experimental uncertainty, the PMI monotonically increases and the 

discrepancy is reduced below 20% after the 10
th

 batch (see Figure A.1d). The coverage 

range after the 10
th

 batch is between 76% and 86%.   
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Fig. A.1 Exact model by EIGF: (a) PMI for 0.1% experimental uncertainty: (b) 

Normalized discrepancy vs. coverage attributes for 0.1% experimental uncertainty, (c) 

PMI for 5% experimental uncertainty, (d) Normalized discrepancy vs. coverage attributes 

for 5% experimental uncertainty 
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Fig. A.2 Exact model by EIPS: (a) PMI for 0.1% experimental uncertainty: (b) 

Normalized discrepancy vs. coverage attributes for 0.1% experimental uncertainty, (c) 

PMI for 5% experimental uncertainty, (d) Normalized discrepancy vs. coverage attributes 

for 5% experimental uncertainty 

Figures A.3a and A.3c illustrate the improvement in PMI through batches using 

the index- based criterion ENT for 0.1% and 5% experimental uncertainty.  The specific 

characteristic of this criterion is the high coverage when compared to the other index-

based criteria. The ENT criterion is observed to select experimental settings at the 

boundary of the domain in early batches regardless of the level of experimental 

uncertainty (see Figures A.3b and A.3d). For 0.1% experimental uncertainty, the 

improvement in discrepancy by ENT, however, is not as high as that of EIPS and EIGF 
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(above 12%). For 5% experimental uncertainty, after the 10
th

 batch discrepancy is 

reduced below 30% and PMI has increased to over 95%. 

 

Fig. A.3 Exact model by ENT: (a) PMI for 0.1% experimental uncertainty: (b) 

Normalized discrepancy vs. coverage attributes for 0.1% experimental uncertainty, (c) 

PMI for 5% experimental uncertainty, (d) Normalized discrepancy vs. coverage attributes 

for 5% experimental uncertainty 

Figures A.4a and A.4c illustrate the PMI for the IMSE criterion when the 

experimental uncertainty is 0.1% and 5%, respectively. PMI values converge to a range 

between 85% and 90%. The cloud of normalized discrepancy and coverage is centered 

between a range from 10% to 12% for discrepancy and 60%-85% for coverage (see 

Figure A4b). However, the concentration of the cloud in EIPS in Figure A.2b is denser 
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between 6%-10% for discrepancy and 75%- 82% for coverage. For 5% experimental 

uncertainty, the coverage of IMSE (between 65%-80%) is lower compared to EIPS after 

the 10
th

 batch. 

 

Fig. A.4 Exact model by IMSE: (a) PMI for 0.1% experimental uncertainty: (b) 

Normalized discrepancy vs. coverage attributes for 0.1% experimental uncertainty, (c) 

PMI for 5% experimental uncertainty, (d) Normalized discrepancy vs. coverage attributes 

for 5% experimental uncertainty 
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