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ABSTRACT 

 

 

Melon (Cucumis melo L.) production is significantly affected by Alternaria leaf 

blight, caused by Alternaria cucumerina.  Fungicide application is the primary control 

method; however, this could be mitigated through the increased use of resistant varieties.  

USDA-ARS breeding line MR-1 has been shown to have a high level of resistance to 

Alternaria cucumerina.  However, molecular markers linked MR-1 Alternaria resistance 

have yet to be identified.  In order in identify QTL associated with Alternaria resistance 

MR-1 x Ananas Yokneum (AY) derived recombinant inbred lines (RILs) were 

phenotyped using a modified wounded-leaf assay.  

Elemental sulfur is an effective fungicide for several foliar pathogens in many 

crops and species, but severe phytotoxicity prohibits its use on many melon lines.  Sulfur 

tolerance is a heritable trait and QTL have been identified.  MR-1 is highly susceptible to 

sulfur and AY is completely resistant.  In order to identify sulfur tolerance QTL, MR-1 x 

AY RILs were rated for tolerance using vaporized sulfur.         

A genetic map of MR-1 x AY RILs was constructed using 198 dominant markers 

(1 SCAR, 24 HFO-TAG, 25 ISSR, and 152 RAPD).  This linkage map contains 23 

linkage groups and spans 400cM with a maximum marker interval of 10cM and an 

average marker interval of 2cM.  Quantitative trait analysis of 56 RILs for Alternaria 

resistance  and 57 RILs for sulfur tolerance detected three QTL: one Alternaria resistance 

QTL, ac.1, and two sulfur tolerance QTL, st.1 and st.2.  Ac.1 represents the MR-1 

resistance allele, is located on linkage group 11, and explains 25% of the variance.  St.1 
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and st.2 were located on linkage groups 1 and 12 and explain 30% and 18% of the 

variance, respectively.  MR-1 allele, st.1, increased susceptibility while the MR-1 allele, 

st.2, increased tolerance.  QTL for these important traits will be beneficial for MAS and 

genetic studies.    
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CHAPTER ONE  

LITERATURE REVIEW 

 

Cucumis melo L. 

 

Cucumis melo L., melon, is intensely grown in temperate regions around the 

world and is of the Cucurbitaceae family which includes other well-known crops such 

watermelon (Citrullus lanatus L.), cucumber (Cucumis sativus L.), squash (Cucurbita 

maxima D.), pumpkin (Cucurbita pepo L.) (Fernandez-Silva et al., 2008).  Cucurbitaceae 

ranks second only to Solanaceae in economic importance among vegetable crops around 

the world (Garcia-Mas et al., 2012).  Cucumis melo is further classified into seven groups 

of which Inodorus (Cassaba and Honeydew) and Cantalupensis (Cantaloupe or 

muskmelon) dominate the US and European markets (Staub et al., 2000).  In 2007, 

34,354 hectares of cantaloupe and 7,019 hectares of honeydew melon were harvested 

across the US, generating $312.7 million and $82.5 million, respectively (Economic 

Research Service 2011, USDA/NASS 2007).  World production of melon reached 29 

million tonnes in 2009 (http://faostat.fao.org).  However, 2010 US production represented 

a mere 4% of worldwide production (Economic Research Service 2011).  China produces 

45% of all melons grown worldwide (Economic Research Service 2011).  Melons are an 

important crop, not only because of their value as a sweet fruit or culinary vegetable, but 

also because they are an excellent source of vitamins A and C (Munger et al., 1995).  In 

addition, melons have a seed oil content of 50%, which is comparable to other oilseed 

crops, and seeds stripped of oil are composed of about 60-70% protein and thus are an 

excellent source of protein (Munger et al., 1995).   
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General Breeding for Resistance in Cucumis melo L. 

 

Despite primarily being a cross-pollinating crop, melons perform well in breeding 

programs designed for either cross- or self-pollination (Choudhary and Fageria, 2002).  

Melons, though phenotypically diverse, exhibit relatively low genetic variation (Wang et 

al., 1997) and do not suffer from inbreeding depression.  Traits can be incorporated into a 

cultivar via several crossings, which can then be followed up with the backcross method 

to fix oligogenic traits, or the pedigree method for polygenic traits (Choudhary and 

Fageria, 2002).  Hybrid varieties benefit from the combination of desirable traits, though 

heterosis is minimal (Sitterly, 1972).   

The backcross method has successfully been used to incorporate disease 

resistance genes into melon, as seen in the following commercially-acceptable cultivars 

resistant to gummy stem blight (Didymella bryoniae) (Norton, 1971, 1972; Norton et al., 

1985).  ‘Gulf Coast’, ‘Chilton’, and ‘Aurora’ cultivars were bred specifically to provide 

disease-resistant varieties adapted to the southeastern climate of the US (Norton et al., 

1985).  ‘Chilton’ and ‘Gulf Coast’ were bred to meet the consumer demand of smaller 

melons (Norton, 1971; Norton, 1972) while ‘Aurora’ meets the qualification of a jumbo 

variety (Norton et al., 1985).  All three varieties were derived via the backcross method, 

with the recurrent parent resistant to both Downy Mildew and Powdery Mildew and the 

donor parent [plant introduction (PI) 140471] (Norton, 1971, 1972; Norton et al., 1985) 

having a single dominant gene conferring a high level of resistance to Gummy Stem 

Blight (Mcgrath et al., 1993 citing Prasad and Norton, 1967).  Incidentally, it was found 
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that under extreme disease conditions the resistance did not adequately protect the plants 

from succumbing to the disease (Mcgrath et al., 1993).  Two other PI’s have since been 

identified with resistance to Gummy Stem Blight, one offering a different kind of 

resistance (Mcgrath et al., 1993).  Resistance could be incorporated into commercial 

cultivars via combination with a recurrent elite line (Mcgrath et al., 1993); this could be 

an opportunity to pyramid resistance genes, which may not provide absolute resistance, 

but could, in concert, provide a greater degree of resistance and durability.  Resistance is 

considered more durable when multiple genes, controlling different mechanisms, are 

involved because the likelihood of the pathogen overcoming multiple mechanisms is less 

than if just one mechanism existed (Collard and Mackill, 2008). The general model for 

resistance to specific pathogens is the induction of a signal cascade and defense response 

based on the recognition of pathogen proteins by plant receptors (Joobeur et al., 2004).  

These recognition receptor proteins are coded by resistance (R) genes which are thought 

to be evolving new virulent protein specificities through “diversifying selection, 

interallelic recombination and gene conversion” (Joobeur et al., 2004).     

One of the main difficulties with pyramiding R genes is that the required progeny 

test can be difficult because phenotypes can be challenging to discern (Collard and 

Mackill, 2008).  However, this can be overcome through the use of tightly-linked 

molecular markers (Collard and Mackill, 2008).  There are numerous examples of 

successful introgression in cereal crops via MAB given by Collard and Mackill (2008) 

which include QTLs on 3 chromosomes for maize corn borer resistance and QTLs on 5 

different chromosomes for root traits and aroma in rice.  Pyramiding was also highlighted 
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with examples of powdery mildew resistance in wheat from the cross of two parents, 

each possessing a different resistance gene (Collard and Mackill, 2008).  In each case, 

markers enable breeders to identify parents and progeny possessing genes of interest.   

Alternaria cucumerina 

 

Alternaria Leaf Blight (ALB), caused by Alternaria cucumerina (E. & E.) Elliot is 

a major fungal pathogen that affects melon production throughout the world (Jackson and 

Weber, 1959).  In the U.S., ALB is a significant problem in the melon-producing 

midwestern and eastern states (Evans et al., 1992).  For example, ALB has been 

responsible for yield losses in Indiana approaching 50% (Evans et al., 1992).  The A. 

cucumerina conidia, separated from the mycelia, are elliptical and are generally beaked.  

Both the conidia and mycelia are translucent brown and become darker as they age 

(Sitterly, 1972).  A. cucumerina infects plant tissue via conidia on leaves which produce 

hyphae that directly penetrate the leaf epidermis (Jackson and Weber, 1959).  The hyphae 

then divide within the plant cells and radiate away from the point of infection around and 

through the cells of the epidermis and parenchyma (Jackson and Weber, 1959).  

Rupturing of cell walls and membranes eventually leads to necrosis of the affected cells 

(Jackson and Weber, 1959).  Symptoms of infection in melon leaves first appear as rings 

of yellow to light green chlorosis surrounding necrotic brown flecks which are about 0.5 

mm in diameter on the adaxial surface of the leaf (Jackson and Weber, 1959).    As the 

infection progresses, brown lesions develop (Carmody et al., 1985) which can grow to 5-

20mm and coalesce, killing the leaf (Chandler and Thomas, 1991).  These necrotic rings 
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progress concentrically, giving the appearance of a bull’s eye, though this is not a 

definitive way of diagnosing ALB, because these rings are often absent if the infection 

occurs rapidly (Jackson and Weber, 1959).  The merging of lesions and consequent 

necrosis ultimately lead to defoliation and full exposure of the fruit to the sun (Jackson 

and Weber, 1959).   

Alternaria mycelia persist in infected field debris, but require development of 

conidia for infection (Jackson and Weber, 1959).  Reportedly, the disease can be spread 

through infested seeds, which can contain conidia that infect cotyledons in the developing 

seedling (Jackson and Weber, 1959), though the actual mechanisms of seed transfer and 

seed-based disease development have not been well documented.  Rapid production of 

conidia from overwintered mycelia in the spring was reported to occur when temperature 

ranged 20-32°C during periods of extended wetness by rain or dew (Jackson and Weber, 

1959). The degree of Alternaria lesion formation on leaves is dependent on about 8-10 

hours of foliage wetness and is further enhanced by any physical damage to the leaf such 

as puncturing by insects (Chandler and Thomas, 1991).  Under controlled conditions, 

Evans et al. (1992) found that establishment and lesion formation on plants inoculated 

with conidia was dependent on both temperature and duration of wetness and that an 

initial 24 hrs (maximum wetness period tested) at 18°C, and then maintained at 18°C, 

resulted in the most intense lesion formation in plants under greenhouse conditions.   

In order to meet USDA standards, cantaloupes must have a soluble solid content 

(SSC) of 9% (good internal quality) or greater (11% being considered very good internal 

quality) (USDA Agricultural Marketing Service, 2008).  Latin et al. (1994) found a 
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significant decrease in SSC as Alternaria infection increased and that sub 9% SSC 

occurred in fields with high infection rates.   Decreased fruit yield by Alternaria is 

primarily caused by the rapid defoliation of the plant, leaving the fruit vulnerable to sun 

scalding (Latin et al., 1994).  The resulting rise in the unshaded fruit temperature causes 

an increase in metabolism, leading to a decrease in SSC (Chandler and Thomas, 1991 

citing Bouwkamp et al., 1978).  In addition, under severe disease pressure Alternaria also 

can infect the overripe, sun-scalded fruit (Jackson and Weber, 1959). 

 

Management of Alternaria cucumerina 

 

Fungicides 

 

Current disease control strategies rely on removing melon debris from the field, 

rotating crops, treating with fungicides, and planting resistant varieties (Seebold et al., 

2009).  Crop rotation and plowing provide only limited control; so heavy reliance on 

repeated fungicide applications is required for ALB control in the absence of sufficiently 

resistant commercial melons (Latin et al., 1994; Suheri and Latin, 1991).  Chlorothalonil 

and mancozeb are two common protective fungicides suitable for control of ALB with 

repeated applications (Suheri and Latin, 1991).  Conventionally, fungicides are sprayed at 

7 to14 day intervals, but it was shown that adequate control on ALB in a particular melon 

cultivar can be achieved by rotating Chlorothalonil with “reduced-risk” fungicides (short 

re-entry interval) or using Melcast (Latin and Egel, 2001) to strategically time 
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Chlorothalonil applications (Keinath et al., 2007).  In order to reduce fungicide use while 

maintaining adequate protection, Latin and Egel (2001) introduced MelCast, which 

allows for dynamic fungicide use based on duration of temperature and wetness.  For 

example, maximum ALB severity is observed after 24 hrs of wetness at 180C (Evans et 

al., 1992)  MelCast has been used in Indiana since 1996 and has reduced fungicide use 

10-20% (Latin and Egel, 2001).    

 

Resistance to Alternaria cucumerina 

 

Sitterly (1972) suggested that the absence of breeding for ALB resistance could 

be because earlier, more destructive pathogens attacked the plant so quickly that ALB 

wasn’t viewed as important; as varieties resistant to those earlier pathogens have become 

more available, the effects of ALB have become more apparent.  Alternaria resistant 

melon varieties have markedly decreased lesion growth (2-6% of susceptible lesion 

growth) and sporulation (9-47% of susceptible sporulation per lesion unit area) after 10 

days of infection (Thomas, 1984).  Lesions on resistant plants remained small, while the 

lesions eventually coalesce to overcome leaves of susceptible plants (Thomas, 1984).  

However, melon cultivars, lines, and PIs that exhibit degrees of resistance to ALB have 

been noted in the literature (Thomas et al., 1990; Thomas and Caniglia, 1997; Egel, 

1999ab; Boyhan and Norton, 1992; Sitterly, 1972; Carmody et al., 1985).  During 

preliminary inoculation tests, we found that melon cultivars ‘MR-1’, ‘M024’, and 

‘Jindaozi’ exhibited moderate to significant levels of resistance, respectively, while 
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‘Hales Best Jumbo’,  ‘Perlita’, and ‘Ananas Yokneum’ appeared to be susceptible. 

Notably, ‘Ananas Yokneum’ (AY) has been reported as resistant (Thomas and Caniglia, 

1997), but preliminary inoculations of AY have suggested susceptibility relative to ‘MR-

1’, ‘M024’, and ‘Jindaozi’ (data not published.)     

 

Resistance Screening Methods: Spray, Wounded-leaf, and Field 

 

Spray Method 

 

The spray method evenly distributes conidia onto foliage of seedlings and has 

been the primary method of evaluating disease severity under greenhouse conditions.  

Greenhouse-based tests rely on humidity chambers to incite disease progression and 

simulate field humidity.  Evans et al. (1992) conducted an exhaustive study to determine 

the duration of wetness and temperature at which maximum disease severity occurs using 

dew chambers and found that 180C for 24 hours produced maximum severity.  According 

to Melcast (Latin, 2001), 180C for 24 hours also gives the maximum severity score.   

Alternaria studies using the spray method vary in leaf position, rating scheme, 

and humidity chamber duration. Thomas et al. (1990) rotated inoculated plants between 

dew chambers and greenhouse benches for ten days and evaluated lesion diameters on 

second expanded leaves. Boyhan and Norton (1992) and Carmody et al. (1985) placed 

inoculated plants in a humidity chamber only once for an extended period of time and 

evaluated severity based based on percentage of infected leaf and lesion size and number 
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of lesions, respectively.  Carmody et al. (1985) showed that disease severity of 

greenhouse spray tests correlated with field severity.  The major advantages of this 

method are the high number of young plants that can be tested without the expense of 

growing in the field and the uniformity afforded by greenhouse conditions.   

 

Wounded-leaf Method 

 

This method exploits the rapid infection that occurs when conidia are applied to 

wounded leaf tissue.  Thomas et al. (1990) observed that rapid lesion expansion occurred 

on inoculated plants that had mechanical damage and that the severity was increased in 

susceptible lines.  Batta (2003) demonstrated that lesion diameters on inoculated wound 

sites on cucumber leaf disks distinguished resistant, intermediate resistant, and 

susceptible cucumber lines.   Like the spray method, artificial humidity is required to 

promote lesion expansion.  However, in contrast to the spray method, lesions originate 

from deliberately wounded sites of the leaf tissue, giving the researcher control over 

lesion number and placement.  In early attempts to adapting this leaf disk method to 

melon, we achieved lesion expansion, but the results were confounded by early 

senescence of leaf tissue.  However, when leaf tissue of intact plants were wound-

inoculated and subjected to the same conditions as Thomas et al. (1990), we observed 

uniform lesion expansion that correlated with expected relative resistance levels (data not 

shown).  In this study, the wounded leaf method appeared most effective on the expanded 

third leaves of individually potted plants.  The number of plants that can be tested, similar 
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to the spray method, is limited only by the size of the humidity chamber and available 

greenhouse space.       

Field Method 

 

The most straight-forward method is to allow the natural disease progression 

under untreated field conditions.  Plants can be naturally or artificially inoculated.  This 

method, while highly subject to environmental effects, is a practical measure of disease 

severity.  Because of environmental effects, this method requires a relatively large 

number of plants, investment in field space and resources, multiple testing locations, and 

significant time allotment.  In order to increase the efficiency of field tests, the 

greenhouse-based test can serve as less resource intensive initial screen for interesting 

genotypes.  The field method has been used in a several ALB studies: Egel (1999ab) in a 

two year resistance screen of around 20 melon varieties, in fungicide studies (Keinath et 

al., 2007; Egel and Harmon, 2001; Thomas, 1983), in comparisons of field results to 

greenhouse data (Carmody et al., 1985), and to examine models of ALB severity and 

yield loss (Latin, 1992).   Disease severity scores have been based on visual estimates of 

the percentage of leaf area diseased at prescribed intervals, foliage loss per area, average 

diameter of lesions, and/or number of lesions per leaf (Keinath et al., 2007; Egel and 

Harmon 2001; Thomas, 1983; Egel 1999ab).  Because melons are being grown under 

production conditions, the field method is the ultimate measure of resistant varieties, 

fungicide effectiveness, and the effectiveness of resistance markers.   
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Inheritance of Alternaria Resistance 

 

Alternaria resistance has been reported as oligogenic (Boyhan and Norton, 1992), 

suggesting a model of resistance characterized by multiple genes and a major dominant 

gene, while a single dominant gene conferring resistance has been reported in the MR-1 

breeding line (Thomas et al., 1990).    Boyhan and Norton (1992) examined the progeny 

from crosses and backcrosses of highly susceptible PMR 6 and highly resistant AC-82-

37-2 and estimated that the inheritance had significant additive effects, heterozygote x 

homozygote epistatic interactions, and no significant dominance effects.  Within the 

limits of the plants tested, the broad- and narrow-sense heritabilities were reported as 

0.57 and 0.45, respectively, meaning that resistance could be effectively improved in 

breeding programs based on the pedigree and backcross methods (Boyhan and Norton, 

1992).  ALB resistance screenings on 16 cultivars showed varying levels of resistance 

(Egel 1999ab), further suggesting an oligogenic inheritance.  However, Thomas et al. 

(1990) examined a series of crosses between resistant MR-1 and a susceptible parent, 

‘Perlita’, and reported a clear Mendelian ratio of 3:1, suggesting that inheritance of 

Alternaria resistance in MR-1 was conferred by a single dominant gene.  This MR-1 

resistance gene is designated Ac (Thomas et al., 1990). The MR-1 line was originally 

developed in 1984 from an inbred line of PI124111 for its exceptional level of resistance 

to powdery mildew and downy mildew (Thomas, 1986).  Whether or not Ac is part of the 

multiple genes observed by Boyhan and Norton (1992) is not explicit in the literature.  

Though, the putative oligogenic resistance model had a low dominance effect, which 
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suggests that the dominant gene Ac observed may not be part of the multiple gene 

resistance.  Further evidence would come from identifying markers associated with the 

resistance in MR-1 and validating these markers in lines used by Boyhan and Norton 

(1992).   

Elemental Sulfur as an effective fungicide 

 

Elemental sulfur has been recognized for thousands of years as a potent fungicide 

(Williams and Cooper, 2004).  For cucurbits, sulfur is an inexpensive and effective 

organic method for controlling powdery mildew (Podosphaera xanthii) (Koller, 2010; 

Keinath and DuBose, 2012).  Furthermore, sulfur effectiveness has been shown to be 

significantly enhanced when used on resistant plants (Koller, 2010).  Sulfur can be used 

on many cucurbits, including melon, but phytotoxicity can be extreme in some lines 

(Perchepied et al., 2004; Gogoi et al., 2013; Johnson and Mayberry, 1980).  Sulfur is 

considered a contact fungicide, and hence more effective against fungal pathogens on the 

surface of the leaf (Keinath and DuBose, 2012).  Sulfur interacts with fungal pathogens 

by direct contact, diffusion through water, and by vapor action around sulfur particles 

(Bent, 1967).  Despite thousands of years of experience with sulfur as a fungicide, the 

exact mechanism remains elusive, but it is thought that the sulfur interferes with 

mitochondrial respiration in the fungus (Cooper and Williams, 2004), resulting in 

inhibition of conidia germination (Gogoi et al., 2013).  According to the Fungicide 

Resistance Action Committee (2013), sulfur’s mode of action is defined as “multi-site 

contact activity” and considered “low risk” for pathogen resistance development.  In 
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order to mitigate pathogen fungicide resistance, sulfur and similar low risk fungicides, 

should be used prior to adoption of fungicides with heightened risk for pathogen 

resistance (Keinath and DuBose, 2012). 

“Sulfur induced resistance” (SIR) is the natural deployment of sulfur-containing 

compounds to protect against pests and disease (Bloem et al., 2004).  Heightened 

research interest in sulfur stems from the discovery of sulfur produced in Theobroma 

cacao and localized in the xylem as a resistance reaction to the fungal pathogen 

Verticillium dahlia (Cooper et al., 1996).  Sulfur has also been detected in several plant 

species, primarily in response to pathogens invading the plant vascular system (Cooper 

and Williams, 2004; Williams and Cooper, 2003; Williams et al., 2002).  Innate sulfur 

production in cucurbits remains uninvestigated.        

 

Elemental Sulfur Application methods 

 

Sulfur Dust 

 

Sulfur is applied as a micronized spray or dust, and the various formulations 

(sulfur > 90%) differ primarily in the size of the sulfur particles (Emmett et al., 2003).  

Sulfur primarily forms an eight atom ring (S8) at room temperature (Meyer, 1976).  The 

majority of applied sulfur remains on the leaf surface or intergrates into the cuticle 

(McGrath and Johnston, 1986).  The efficacy and adherence of sulfur increases as the 

particle size decreases and thus its surface area coverage increases (Wilcoxon and 
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McCallan, 1931; Gogoi et al., 2013; Motior et al., 2011).  However, because the 

increased coverage accelerates vaporization and degradation, smaller particles have 

lowered persistence (Emmett et al., 2003).  Through microorganism-mediated oxidation, 

sulfur is also used to amend soil pH, making available nutrients restricted in alkaline 

soils, and providing sulfate to the plants (Grayston and Germida 1991; Motior et al., 

2011).  Also, SIR is influenced by the availability of usable sulfur (Bloem et al., 2004).  

However, repeated applications as a fungicide can inadvertently wash into the soil and 

gradually decrease the pH, leading to diminished nutrient availability (Ngatunga et al., 

2003; Owen et al., 1999).  

Sulfur Vaporization 

 

Sulfur vaporization by means of timer controlled vaporizers is a convenient 

method of powdery mildew control in greenhouses.  Vaporization of sulfur forms a cloud 

of very fine sulfur particles that distribute over nearby plants (Barker and Wallace, 1922).   

Early vaporization of sulfur was done by applying sulfur to hot pipes, but commercial 

sulfur vaporizers can be now be purchased (Barker and Wallace, 1922).  Solid sulfur 

melts at 119.6 0C and boils at 444.6 0C (Meyer, 1976), and sufficient vaporization occurs 

from 1700C and 2300C (Barker and Wallace, 1922).  Vapor pressures at these 

temperatures are respectively ~75 Pa and ~874 Pa (West and Menzies, 1929).  For 

example, the Wilmod Sulphur Evaporator WSE75 (www.wse75.com) heats sulfur (purity 

>99%) to 190 0C, at which point the vapor pressure is ~185 Pa (West and Menzies, 

1929).  This is sufficient for 100-700m2 of greenhouse space, depending on the crop 

http://www.wse75.com/


15 

 

(www.wse75.com).  Vaporization provides an inconspicuous, pervasive fine layer of 

sulfur dust for powdery mildew control in a greenhouse.   

 

Elemental Sulfur Phytotoxicity in Melon 

 

Sulfur application is an effective method to control the casual agents of powdery 

mildew on cucurbits, but some melon cultivars are extremely susceptible to sulfur 

(Perchepied et al., 2004).  The limited research on sulfur phytotoxicity in melon has 

focused on sulfur dust application for tolerance screening and QTL discovery (Johnson 

and Mayberry, 1980; Perchepied et al., 2004).  Sulfur phytotoxicity is manifested as 

necrosis and pronounced “burning” on the leaf tissue starting 4 days after dusting fruiting 

melon plants in field conditions (Johnson and Mayberry, 1980).  In greenhouse 

conditions, vaporized sulfur can cause symptoms within 24 hrs of application in 

susceptible melon lines at the second expanded leave stage.  Symptoms of sulfur 

phytotoxicity appear preferentially on matures leaf tissue of susceptible lines, in a top-

down, tolerance-to-susceptible pattern (Johnson and Mayberry, 1980).  The observations 

by Johnson and Mayberry (1980) of sulfur phytotoxicity progression suggests that there is 

a developmental threshold that determines susceptibility of mature leaf tissue. 

Research on the mechanism of sulfur tolerance and phytotoxicity in cucurbits is, 

as far as can be discerned, nonexistent.  Nevertheless, extensive research (next section) 

on the susceptibility of cucurbits to oxidized and reduced forms of sulfur may provide 

indications of the underlying mechanism of sulfur tolerance in some melon lines.  

http://www.wse75.com/
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Interestingly, it has been demonstrated that higher plants are able to directly metabolize 

foliar sulfur (Legris-Delaporte et al., 1987; Jolivet et al., 1995; Williams and Cooper, 

2004; Vitti et al., 2007; McGrath and Johnston, 1986).  If this also occurs in cucurbits, 

then it is plausible that mechanisms to prevent toxicity from excess sulfur intake from 

other sources could be the same for foliar sulfur intake.          

 

Elemental Sulfur Toxicity and Coping Mechanism in Cucurbits 

 

Plants take in sulfur through their roots as sulfate and through their leaves 

primarily as sulfur dioxide (SO2) and hydrogen sulfide (H2S), but excess sulfur 

accumulation can become toxic at levels that vary by species, varieties, soil-sulfur 

content, and environmental conditions (Rennenberg, 1984; Hawkesford and De Kok, 

2006).  The exact mechanism for phytotoxicity of sulfur in cucurbits is not explicit in the 

literature, but if direct oxidation of foliar sulfur is excessive, it could lead to the toxic 

accumulation of sulfur compounds.  Because of the interest in the effects of excess sulfur 

from pollution on cucurbits; SO2, H2S, sulfate, and sulfur-containing products have been 

the focus of numerous research efforts.  Nevertheless, the elucidated sulfur metabolic 

pathways and, importantly, coping mechanisms provide clues to how cucurbits may 

respond to excess sulfur from possible direct metabolism of foliar sulfur.   

The mechanisms by which plants cope with excess sulfur are multifaceted 

(Rennenberg, 1984).  Plant sulfur metabolism involves balancing sulfur needs with both 

sulfur uptake and source, and it is not completely understood (Hawkesford and De Kok, 
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2006).  Sulfate is reduced through a series of enzymatic reactions to form primarily 

cysteine, methionine, and glutathione (Hawkesford and De Kok, 2006).  Stomatal 

closure, storage, metabolism, emission, and translocation are observed mechanisms of 

sulfur management (Rennenberg, 1984).  Plant SO2 metabolism generally follows one of 

two pathways: oxidized to H2SO4 or reduced to H2S and partially emitted (Heber and 

Hüve, 1997; Sekiya et al., 1982).  Both pathways eventually integrate into sulfur 

metabolism; however, the former pathway increases hydrogen ions and sulfur 

compounds; and the latter pathway alleviates excess hydrogen ions and sulfur through 

partial emission (Heber and Hüve, 1997).  Sub-injurious SO2 concentrations, however, 

can be a valuable source of sulfur for otherwise deficient plants (Cowling et al., 1973); 

H2S can be oxidized by the plant to sulfate, and reintroduced into the sulfur reduction 

pathway (Rennenberg and Filner, 1982).  Emission of H2S in response to excess sulfur is 

a feature of many plant species (Hällgren and Fredriksson, 1982; Rennenberg, 1984).  

Cucumber, pumpkin, and melon release H2S when supplied with excess sulfate, possibly 

as a means to eliminate excess sulfur (Wilson et al., 1978).  When pumpkin was 

fumigated with SO2, it was shown that glutathione, an end product of sulfur metabolism, 

was inhibited, and H2S was emitted as a mechanism to lessen precursor accumulation 

(Rennenberg and Filner, 1982).   Concerns over sulfur pollution from fossil fuels has led 

to extensive desulphurization of natural gas (now the dominant source of sulfur 

production) (Meyer, 1976).  Consequently, sweeping reductions of sulfur emissions 

across Europe have led to widespread sulfur deficiencies in some crops (Zhao et al., 

1997).  In fact, some plant species can rely solely on SO2 or H2S in the absence of sulfate 
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in the soil (Hawkesford and De Kok, 2006).  However, excess sulfur can be toxic, and 

plants vary significantly in susceptibility (Mejstrik, 1980).   

Acute foliar injury and lesion formation isn’t necessarily a reliable method of 

evaluating the often subtle effects of SO2 at low to moderate concentrations on plants 

(Eason et al., 1996; Mejstrik, 1980; Bressan et al., 1978).  Cucumber (C. sativus), 

fumigated at low concentrations of SO2, caused significant reductions in root fresh 

weight (39%) and leaf area (46%) (Mejstrik, 1980).  In another study it was shown that 

environmental concentrations of SO2 decreased the dry mass of roots, without 

significantly affecting foliage of watermelon cultivars (Eason et al., 1996).  

Understanding the underlying mechanisms will guide breeding strategies for SO2 

tolerance (Bressan et al., 1978). 

Among cucurbits, tolerance to SO2 appears to be chiefly affected by absorption 

rates and, to a lesser extent, H2S emission (Rennenberg, 1984; Wilson et al., 1978).  

However, the SO2 tolerance of cucurbit young leaves was shown to be primarily 

determined by emission of H2S in order to prevent toxic precursor accumulation 

(Rennenberg, 1984; Wilson et al., 1978).  Cucurbit SO2 tolerance and hydrogen sulfide 

production is lower in young plants than in old plants, but young leaf tissue, regardless of 

plant age or cultivar susceptibility, is more resistant than mature leaf tissue (Rennenberg, 

1984; Bressan et al., 1978).  Young cucurbit leaves were shown to actually absorb SO2 

faster than mature leaves (Bressan et al., 1979), but young leaf tissue converted 10% of 

absorbed SO2 to H2S (compared only 2% conversion in mature leaves) and emitted 10-

100 times more H2S than mature leaves (Sekiya et al., 1982).  The tolerance of young 
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leaves in susceptible cucurbits leads to defoliation of lower leaves first, similar to the 

observations made by Johnson and Mayberry (1980) when sulfur was applied to 

susceptible melon cultivars.  This young leaf SO2 tolerance mechanism was found to be 

developmentally determined, metabolically controlled, and independent of absorptions 

rates (Bressan et al., 1978; Sekiya et al., 1982).       

    

Inheritance of Elemental Sulfur Tolerance in Melon 

 

Sulfur tolerance in melon is quantitatively inherited (Perchepied et al., 2004).  

Perchepied et al. (2004) successfully mapped one major and two minor QTL affecting 

sulfur tolerance in two recombinant inbred lines sharing a common resistant parent.  The 

strong QTL exerted complete dominance in the cross ‘Vedrantais’ x PI124112 and 

incomplete dominance in ‘Vedrantais’ x PI161375 (Perchepied et al., 2004).  The two 

minor QTL were only detected in the ‘Vedrantais’ x PI124112 population (Perchepied et 

al., 2004).  Breeding for tolerance was first recorded in the 1930’s and eventually led to 

the 1942 introduction of the “V-1 Sulfur Resistant Cantaloupe” (Johnson and Mayberry, 

1980).  In 1979 a screen of 31 melon cultivars by Johnson and Mayberry (1980) showed 

that 23 were resistant and 8 were susceptible and that melons from the inodorous group 

were all tolerance.  Two hundred thirty-six melon accessions from around the world were 

screened and 47% showed complete tolerance (Perchepied et al., 2004).  ‘Top Mark’, a 

variety originally reported as resistant by Johnson and Mayberry (1980), was used as a 

source of sulfur tolerance in one melon breeding program (Zink and Gubler, 1990).   
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Preliminary Observations of Sulfur Tolerance Segregation 

 

Varying degrees of sulfur tolerance were observed in the MR-1 x AY RILs.  

Introduction of sulfur vaporizers as a means of controlling greenhouse PM thwarted early 

attempts to increase and test MR-1 x AY RILs because of sulfur susceptibility in some of 

the RILs.  A special sulfur-free greenhouse had to be utilized.  However, in the presence 

of vaporized sulfur, MR-1, MR-1 x AY F1, and some RILs suffered phytotoxicity to 

varying degrees, with the most susceptible exhibiting rapid defoliation of all but the 

youngest leaf tissue.  AY and many RILs showed no symptoms.  The symptoms of the 

parental lines and F1 range from MR-1 (high damage)  MR-1 x AY F1 (intermediate 

damage)  AY (no damage).  The intermediate nature of the F1 suggests an incompletely 

dominant gene action conferring tolerance, similar to the ‘Vedrantais’ x PI161375 cross 

reported by Perchepied et al. (2004), and the varying degrees of susceptibility suggest the 

effects of minor QTL.  Initial observations of degrees of sulfur tolerance in MR-1 x AY 

RILs, MR-1 susceptibility, complete tolerance in AY, and intermediate susceptibility in 

MR-1 x AY F1 suggest the existence of multiple QTL affecting tolerance to elemental 

sulfur.   

Quantitative Trait Mapping in Melon 

 

Historically, genetic knowledge has advanced through the study of 

‘macromutations’ controlled by single genes; however, the majority of observed variation 

in plants is controlled by multiple loci, resulting in quantitatively inherited traits 
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(Tanksley, 1993).  For example, Cuevas et al. (2008) identified seven quantitative trait 

loci (QTL) contributing to B-carotene accumulation in melon.  Quantitatively inherited 

traits are often controlled by complex arrangements of multiple genes that display a 

continuous distribution of phenotypes (Kearsey, 1998).  QTL contributing to a trait can 

operate in cis- or trans- to the actual gene, adding an additional level of complexity 

(Miles and Wayne, 2008).  The interaction of allelic differences in structural and/or 

regulatory genes combined with additive contributions, gene-gene interactions (epistasis), 

and environmental effects contribute to a highly complex and difficult to describe 

inheritance (Kearsey, 1998).  Even in cases where the number of contributing genes are 

few, the trait can be continuous because of subtle effects of the environment (Kearsey, 

1998).  There are generally three tiers of QTL: a few major genes contributing large 

effects, increasingly more QTL with medium effects, and numerous minor QTL (Semagn 

et al., 2010).    

Because many important agronomic traits are controlled by polygenes, plant 

breeders have utilized statistical genetics to describe quantitative traits, make heritability 

estimates, and develop breeding schemes (Fehr, 1991).  Heritability estimates predict the 

portion of the phenotypic variation (VP) that is explained by genetic factors (VG) that can 

be improved through breeding as opposed to environmental effects (VE) which a breeder 

has no control over.  This relationship is described by the simple equation VP= VG + VE , 

and can be employed to make estimates of the combined effect of QTL, however the 

effects of the individual QTL cannot be described (Kearsey, 1998).  Intricate genetic 

structures are frequently more accurately described by identifying marker linkage 
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patterns than by statistical analysis of inheritance studies (Perchepied et al., 2005)   The 

majority of traits of agronomic interest tend to have heritabilities of less than 50% 

(Kearsey, 1998).  Because traits with high heritabilities are easily distinguished using 

phenotypic selection, it is generally only cost effective to use MAS when heritibilities are 

low (Mauricio, 2001).  Plant breeding schemes are adjusted according to heritability 

estimates and frequently take a conventional breeding approach, utilizing available 

molecular tools (Fehr, 1991).  

QTL analysis is a statistical approach that attempts to explain complex traits by 

identifying contributing regions of the chromosomes (Miles and Wayne, 2008).  The 

breakthrough for elucidating QTL was the introduction of molecular marker based 

mapping techniques that could be paired with phenotypic data from a segregating 

population (Kearsey, 1998).  Regardless of the molecular marker type, differences within 

the genetic code can be mapped relative to each other; some of these differences can be 

associated with QTL which have measurable effects on the traits (Miles and Wayne, 

2008).  Subsequently, QTL analysis in plants has been extensive, and it is estimated that, 

as of 2008, 10,000 QTLs have been identified (Bernardo, 2008).  The average observed 

plant trait variance, over a 20 year period up to 2008, attributed to identified QTL range 

from 40% to 60% (Bernardo, 2008).  QTL analysis uses the combination of phenotype 

and genotype to explain gene action, epistatic interaction, level and direction of 

contribution, position, and the number of loci (Semagn et al., 2010).  
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Mapping Populations 

 

There are various mapping population types: F2, F1 backcross (BC), F2:3 (F3 

families), recombinant inbred lines (RILs), near isogenic lines (NILs), and double haploid 

lines (DHLs); but all share the common feature of being based on divergent parental 

phenotype for the trait of interest or are known to contain different alleles for the same 

trait (Miles and Wayne, 2008).  In any case, segregation of a trait is measurable.  Ideally, 

a small number of QTL provide strong cumulative contributions to the phenotype that are 

consistent across multiple environments (Zalapa et al., 2007).  This was the case for six 

QTL identified in melon RILs in which sugar content increased according to the number 

of QTL, irrespective of which of the QTL were present (Harel-Beja et al., 2010).  The 

incorporation of such cumulative QTL into a breeding program would be relatively 

straightforward; however, QTL are often strongly subject to environmental effects (have 

low heritability) and are inconsistent across environments (Harel-Beja et al., 2010; Paris 

et al., 2008; Monforte et al., 2004).  To further complicate the inheritance, QTL can be 

both numerous and varied in their effect; QTL identified in a population under certain 

environmental conditions are sometimes not detected when a population is placed under 

other environmental conditions (Xu and Crouch, 2008).  Studies commonly replicate 

experiments under varied conditions and have demonstrated that while some QTL are 

common to multiple environments, others are unique to particular areas (Xu and Crouch, 

2008; Zalapa et al., 2007; Collard and Mackill, 2008; Monforte et al., 2004; Perchepied et 
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al., 2005).  Common QTL may universally contribute to a particular phenotype and are of 

particular breeding value.       

Experimental populations in melon are F1-derived and are subject to the F1 parent 

marker-QTL linkages (Semagn et al., 2010).  This creates an ideal mapping situation 

because the uniform marker-QTL associations across the subsequent population change 

only by the frequency of recombination events (Semagn et al., 2010).  Thus, 

heterozygous markers and alleles in an F1 segregate and can be mapped given sufficient 

marker coverage, population size, and phenotype measurability (Kearsey, 1998).  Marker 

density beyond one marker per every ten cM is subject to diminishing returns as 

increasing the population becomes more lucrative but is often constrained by resources 

(Kearsey, 1998).  

F2 Population 

The F2 population is the simplest breeding scheme that provides a temporary 

heterozygous population representing a theoretically even distribution of the parental 

alleles (Semagn et al., 2010).  The high heterozygosity makes F2 populations useful for 

studying both additive effects and dominance (Semagn et al., 2010).   However, because 

of limited meiotic events, there are limited crossover opportunities and, thus, low 

resolution of QTL (Takagi et al., 2013).  Decreased resolution also limits epistatic studies 

(Semagn et al., 2010). 

Backcross Population 

Similar to a F2 population, the backcross population is a simple temporary 

population that has a short production time (Semagn et al., 2010). However, because the 
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F1 is crossed with one of the parents, dominance can lead to skewing of the effects 

(Semagn et al., 2010).  As with F2 populations, the few meiotic events in BC creation 

decrease the number of crossover events so that even distant linkages can still exist 

(Semagn et al., 2010). 

F2:3 Family 

The phenotypic mean of the F3 family is used to estimate the phenotype of the F2 

parent (Fehr, 1991).  This type of population is preferable when increased replicates are 

required for traits with low heritability (Fehr, 1991). In order to decrease linkage 

disequilibrium, the F2:3 can be increased to any future generation FX:Y (Semagn et al., 

2010). Limited testing over multiple locations is dependent on the amount of FX:Y seed 

available. 

Recombinant Inbred Lines (RILs) 

Highly inbred lines (F6 or higher) are produced by single seed decent from an F2 

generation.  The advanced generation of F6 or higher increases the resolution of the 

genetic map because of the increased opportunities for crossover events between tightly 

linked markers and genes (Semagn et al., 2010).  The high homozygosity allows 

potentially infinite replenishment of RIL seed; consequently, RILs can be replicated 

under different environments (Fukino et al., 2008; Semagn et al., 2010; Collard and 

Mackill, 2008). However, because of the costs associated with production, the population 

sizes are often smaller than other population types and have diminished QTL positioning 

accuracy (Semagn et al., 2010).  QTL analysis of RILs can provide information about the 

additive effect of the QTL but not dominance of those QTL (Semagn et al., 2010).  
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Unintentional selection during the RIL development can increase heterozygosity and 

skew the distribution of alleles (Harel-Beja et al., 2010).      

Near Isogenic Lines (NILs) 

NILs are produced from repeated backcrossing to the recurrent parent that does 

not have the trait of interest in order to isolate and study the effects of targeted loci 

(Kooke et al., 2012).  BC6 or higher represents at least 99% genetic similarity to the 

recurrent parent and has undergone several recombination events that isolate target loci 

(Semagn et al., 2010).  The genetic background becomes uniform except for the trait of 

interest, and other genetic effects that may have distorted phenotypic expression are 

diminished (Xu and Crouch, 2008).  Being able to isolate QTL makes NILs ideal for 

studying phenotypic effects of individual QTL, high-resolution mapping, and genetic 

studies (Semagn et al., 2010). Development can be very expensive, but permanent 

population that can be transferred to other laboratories and repeatedly tested (Semagn et 

al., 2010).  Like RILs, limited population sizes can affect the accuracy of QTL 

positioning and only the additive component can be quantified (Semagn et al., 2010). 

Double Haploid Lines (DHLs) 

Double haploidy allows the creation of fully homozygous lines in two generations 

(Semagn et al., 2010).  DH production dramatically shortens the time to a RI-like 

population but with not as much recombination and thus lower resolution between even 

distantly linked genes/markers (Semagn et al., 2010).  The sequencing of a DH melon 

and parents revealed that only 17 recombination events had occurred with an average of 

1.4 per linkage group (Garcia-Mas et al., 2012). Consequently, DHL lines require large 
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numbers for increased resolution or bin mapping strategies (Deleu et al., 2009; 

Fernandez-Silva et al., 2008). As long as the lines can be perpetuated, DHLs are 

permanent and can be transferred to other laboratories for repeated testing (Semagn et al., 

2010).  Production costs can be relatively low, but double haploidy is only possible for 

species that have developed protocols (Semagn et al., 2010).  DHL have been shown to 

suffer from high segregation distortion because of inadvertent selection of genes that 

promote DHL creation (Gonzalo et al., 2005).     

 

Molecular Markers 

 

Regardless of the marker type used, the corresponding genetic polymorphism 

represents a single point in the genome that can be positioned relative to other such points 

based on recombination frequencies.  The utility of a genetic map, repeatability, 

codominance, and inter-map transferability of markers add value to the marker type 

chosen (Oliver et al., 2001).   

Molecular marker types are judged useful based on five general criteria: 

reliability, DNA quantity and quality requirements, technical procedures, extent 

polymorphic, and costs (Semagn et al., 2006).  The genetic maps of melon use a variety 

of markers types: random amplified polymorphic DNA (RAPD), sequence characterized 

amplified region marker (SCAR), restriction fragment length polymorphism (RFLP), 

cleaved amplified polymorphic sequences (CAPS), amplified fragment length 

polymorphism (AFLP), sequence-related amplified polymorphism (SRAP), inter simple 
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sequence repeat (ISSR), simple sequence repeats (SSR),  sequence-tagged sites (STS), 

and single nucleotide polymorphism (SNP).  The first molecular maps in melon were 

created using RAPD, RFLP, and AFLP (Baudracco-Arnas and Pitrat, 1996; Wang et al., 

1997).  These marker types can be used without prior knowledge of sequence data 

(Semagn et al., 2006), and are useful for initial genetic mapping.  RAPD markers (and 

ISSR makers) are frequently criticized for reported non-reproducibility, potential 

comigration, and limited extrapolation beyond the studied population (Semagn et al., 

2006; Wang et al., 1997).  However, Park, Hwang, and Crosby (2009) found RAPD 

markers types to be very reliable and desirable because of their simplicity relative to 

other marker types.  Dominant markers (RAPD, AFLP, SRAP, ISSR) provide similar 

information as codominate marker types (RFLP, CAPS, SSR, SNP) in populations devoid 

of heterozygotes (RILs, DHLs, NILs) (Semagn et al., 2006). Homozygous population 

types, particularly RILs, have been used frequently for genetic mapping in melon 

(Appendix D).        

The general trend in molecular mapping in melon, evident in the latest consensus 

map (Díaz Bermúdez et al., 2011), has been toward EST-based RFLP, CAPS, SSR, and 

SNP.  In particular, the latter two types dominate the latest melon consensus map (Díaz 

Bermúdez et al., 2011).  EST-SNPs have successfully been gathered from EST databases 

(ICuGI.org), genome sequences, array hybridization, and amplicon sequencing (Deleu et 

al., 2009).  EST-based markers are especially useful because they are found in gene 

sequences and hence highly conserved between species and valuable for QTL analysis 

(Fernandez-Silva et al., 2008; Collard and Mackill, 2008).  EST-based markers are 
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commonly used as anchors to merge maps of various crosses (Fukino et al., 2008; Díaz 

Bermúdez et al., 2011).  The proliferation of these markers types in melon is partly due to 

the growing EST database maintained by International Cucurbit Genomics Initiative 

(ICuGI, http://www.icugi.org/).  The ICuGI, along with important genomic information 

for cucumber (Cucumis sativus L.), watermelon [Citrullus lanatus (Thunb.) Matsum. & 

Nakai], and Cucumis pepo L., maintains a database of 129,067 melon ESTs from which 

over 3,200 candidate EST-SSRs and 1360 candidate EST-SNPs have been identified 

(May, 2010 EST collection).  EST-based markers have been shown to be universally 

dispersed throughout the genome and very polymorphic, highly reproducible, frequently 

codominant, and amenable to gel based analysis (Fernandez-Silva et al., 2008).    

    

QTL Mapping Methods 

 

QTL are generally mapped for two reasons: (1) to understand the genetic 

mechanisms and inheritance of the trait and (2) for use in marker assisted selection 

(Semagn et al., 2010). Molecular mapping is made possible by recombination during 

meiosis and molecular marker segregation frequencies (Byrne, 2005).  Prior to QTL 

analysis, polymorphic markers are first arranged into linkage groups using recombination 

frequencies at general minimum 3 LOD significance (Mauricio, 2001). The majority of 

melon maps (Appendix D) surveyed use JoinMap 4 (Kyazma B.V., Wageningen, 

Netherlands) or MapMaker (Lander et al., 1987) for linkage group assembly and map 

creation.  While simple statistical models (Single-Factor ANOVA, regression analysis, 
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simple interval mapping, etc.) are sufficient for basic analysis, many statistical methods 

have been, and continue to be, developed to increase precision of extremely complex 

QTL analysis (Kearsey, 1998; Byrne, 2005).  The methods most commonly used are 

variations of the concept on interval mapping (IM)  which calculates the probability of a 

QTL being located in the interval between two markers (Kearsey, 1998). IM, when 

compared other simpler methods gives higher resolution with smaller population 

requirements (Kao et al., 1999).  A popular method based on IM called composite 

interval mapping (CIM) uses probabilities that a marker or the interval between two 

markers is linked to a particular trait while taking into account the presence of other 

markers (Miles and Wayne, 2008; Zeng, 1994).  CIM efficiently decreases the 

background “noise” that would otherwise make some QTL undetectable; and narrows the 

region likely to contain the QTL (Byrne, 2005; Zeng, 1994).  CIM has been used in the 

majority of QTL analysis in melon (see Appendix D) and provides useful information 

about the QTL: likely position on the linkage group, statistical significance (LOD), 

explained variance (R2), parental source of QTL, and dominance and additive effects 

(Byrne, 2005).  However, CIM does not provide information about epistatic effects and 

can be affected by uneven marker dispersion (Semagn et al., 2010).  In order to account 

for epistatic effects, decrease error rates, and improve QTL detection, additional 

statistical methods have been developed: multiple interval mapping (MIM) (Kao et al., 

1999), muItiple-QTL mapping (MQM) (Arends et al., 2010), and inclusive composite 

interval mapping (ICIM) (Li et al. 2008).        
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There are several popular QTL analysis programs such as R/qtl (Broman 2013), 

MapQTL 4 (Van Ooijen, 2004), and QTL IciMapping 3.3 (The Quantitative Genetics 

Group, http://www.isbreeding.net).  Although, the most popular program among the 

melon maps surveyed is the GUI-based software WinQTL cartographer 2.5 (Wang et al., 

2012) provided by North Carolina State University.  The free and easy-to-use interface 

make WinQTL Cartographer 2.5 an effective and user friendly option.  WinQTL 

Cartographer 2.5 offers single maker analysis, IM, CIM, MIM and permutation tests to 

determine significance thresholds (Wang et al., 2012).   

 

Challenges of QTL and their Validation 

 

The identification of QTL relies on statistical procedures that inherently tolerate a 

level of error that can lead to both type 1 and type 2 errors (Semagn et al., 2010).  To 

minimize error, it is generally accepted that an LOD score of at least three should be used 

to declare significance (1000 times more likely than not that a QTL exists in an interval) 

(Mauricio, 2001).  For increased precision to a particular data set permutation tests set 

LOD thresholds at prescribed levels of significance (Mauricio, 2001).   In addition, 

effects of population size, marker density and dispersion, and quality of phenotyping data 

can dramatically affect precision (Mauricio, 2001). Thus, validation of QTL should be 

done prior to employment in expensive breeding schemes (Collard and Mackill, 2008).  

QTL analysis inherently exaggerates the effects (Vg) of detected QTL because minor, 

undetected QTL are obscured. (Kearsey, 1998; Mauricio, 2001).   QTL with opposite 
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effects (in dispersion) that have wide confidence intervals can overlap and diminish the 

perceived effects (Kearsey, 1998).  When closely associated QTL both have a positive 

effect, then the combined effect can trigger a false positive between the two (Kearsey, 

1998).  QTLs with low heritabilities tend to have wide confidence intervals (+- 10-

20cM), and even when the heritability is high, the interval is generally around 10cM; 

however, this level of accuracy can be suitable for MAS (Kearsey, 1998). 

Validating previous QTL studies rely on confirming the effects of the QTL in 

various populations, often by targeting a particular QTL for analysis by means of NILs 

(Flint-Garcia et al., 2003).  However, molecular markers associated with QTL developed 

in a particular cross may not be applicable to other populations even of the same species 

because the polymorphism that created the marker may not exist or may be alternately 

linked (Kearsey, 1998).  Marker validation involves applying the marker to other 

populations and evaluating if the marker predicts the expected phenotype (Semagn et al., 

2010).  For example, markers for powdery mildew resistance QTL identified in a melon 

RI population were also shown to be effective in a F2 population utilizing a related 

resistant parent but a different susceptible parent (Fukino et al., 2008).  In the event that a 

QTL is identified in the region of a known gene, the gene itself can be implicated (Flint-

Garcia et al., 2003).  Testing whether MAS of a QTL is effective in increasing the trait is 

a practical way to validate a marker (Flint-Garcia et al., 2003).  Despite the challenges 

and limitations, QTL analysis can identify contributing regions of the chromosomes that 

can be used for revealing the genetics of the trait or for use in MAS (Kearsey, 1998).   
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Genetic Maps of Melon 

 

A complete genetic map of melon will have 12 linkage groups, corresponding to 

12 chromosomes, and will have a length of 1500-2000 cM (Baudracco-Arnas and Pitrat, 

1996).    One consequence of the relatively high genetic uniformity in melon is the 

decreased efficiency of identifying polymorphic markers (Oliver et al., 2001).  This 

narrow genetic base is in sharp contrast to the remarkable morphological variation that 

makes melon classification based solely on morphology very perplexing (Silberstein et 

al., 1999; Shattuck-Eidens et al., 1990).  Hence, a strategy to increase marker 

polymorphism in melon has been to select genetically diverse parents for population 

development (Oliver et al., 2001). 

Among the 27 leading melon QTL/mapping studies in Appendix D, population 

sizes range from 63 (Perin et al. 2002) to 218 (Baudracco-Arnas and Pitrat, 1996) with an 

average of 109 (bin mapping studies excluded); among immortal population types (RIL 

and DHL) the range is 63 (Perin et al. 2002) to 190 (Boissot et al., 2010) with an average 

size of 109 (bin mapping studies excluded).  Immortal populations have been reused for 

additional QTL analysis, increasing marker saturation, and consensus mapping (Díaz 

Bermúdez et al., 2011; Zalapa et al., 2007; Cuevas et al., 2008; Deleu et al., 2009; Paris 

et al., 2008; Fernandez-Silva et al., 2008; Gonzalo et al., 2005; Boissot et al., 2010; 

Monforte et al., 2004; Perin et al. 2002).  In one case, bin mapping strategy was used on 

DHLs to first identify SSRs and then to identify EST-SNPs (Deleu et al., 2009; 

Fernandez-Silva et al., 2008).  RILs have been frequently have been used at the F6-F8 
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generation though Fukino et al. (2008) used a F8-F12 population.  RILs at the F6 are 

theoretically < 4% heterozygous (Fehr, 1991) and have been used as the minimum level 

of acceptable inbreeding among RIL based melon maps.   Appendix D includes the 

primary maps published to date but does not reflect private maps developed by seed 

companies such as a Syngenta Seed Co. map of 1092 SNPs in PI414723 and Dulce 

(Garcia-Mas et al., 2012). It should also be mentioned that, though not included in 

Appendix D, QTL discovery in melon also has been done using NILs (Moreno et al., 

2008).   One study used SRAP only markers for mapping and found them to provide 

excellent coverage, even distribution, and relatively low segregation distortion (Wang et 

al., 2007).   

Increasingly, anchor markers, particularly SSRs and SNPs, based on the database 

available through the ICUGI website, have led to the formation of consensus maps 

including the most comprehensive and recent map by Díaz Bermúdez et al. (2011).  

Notably, the only marker type not included in the consensus map are SRAP, though they 

have been shown to be efficient and reliable (Wang et al., 2007).  Consensus mapping 

rapidly creates high density genetic maps, increases marker accuracy, and can be used to 

predict phenotypes (Díaz Bermúdez et al., 2011).  The consensus map merged by Díaz 

Bermúdez et al. (2011) includes 1592 markers at a density of .72 cM/marker and 370 

QTL affecting 62 traits. A map that contains >1 marker/cM is considered high density 

(Howad, Yamamoto et al. 2005).  The consensus map also makes it possible to identify 

collinear QTL (Díaz Bermúdez et al., 2011). 
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The Genome of Melon 

 

The sequencing of the melon genome in 2012 by Garcia-Mas et al. represents an 

important step in melon genetic tool development.  Using a DHL, ~375Mb of the 

estimated 450Mb of melon were sequenced via 454 pyrosequencing (Garcia-Mas et al., 

2012).  The melon genome sequence provides information about the organization of 

genes, SNP/INDEL locations, and a physical map on which to anchor genetic maps 

(Garcia-Mas et al., 2012).  In addition, the sequence allows for comparative studies with 

other sequenced genomes from which gene functions can be inferred and phylogeny can 

be studied (Garcia-Mas et al., 2012). Of particular interest to this research is the 

identification and localization of 411 R-genes of various types, 79 of which are found in 

16 clusters (Garcia-Mas et al., 2012).  Also, 63 putative genes involved in sugar 

accumulation; and 26 genes affecting carotenoid accumulation were identified (Garcia-

Mas et al., 2012).  In total, 27,427 genes were predicted with EST/protein confirmation of 

18,948 genes (Garcia-Mas et al., 2012).  Important to genetic map saturation and genetic 

studies, 2.1 million SNPs and 413,000 INDELS, 4.0% and 3.1% in exons, were identified 

between Piel de Sapo and PI161375 at a density of one SNP per 176 bp and one INDEL 

per 907 bp (Garcia-Mas et al., 2012).  This reference genome will provide a vast array of 

additional SNPs and SSRs that will complement the information found the ICuGI 

database.   

The sequence of melon is not a panacea of gene identification and QTL analysis, 

but it does provide a vast array of potential markers and predicted genes by which QTL 
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analysis will be drastically enhanced.  Importantly, various marker types can be 

purposefully created to target specific regions of the genome and used to map in other 

melon lines.  For example, Weng et al. (2010) successfully used the cucumber genome to 

assemble polymorphic markers for mapping in another cucumber cultivar.   Relevant to 

this research, it is reasonable to suppose that QTL for ALB resistance may also be 

associated with one of the identified R-gene clusters and that a strategic set of 

corresponding markers could accelerate QTL discovery.  Garcia-Mas et al. (2012) were 

able to collocate resistance genes Vat and Fom-1 with R-gene clusters.  Similarly fruit 

quality genes could be associated with marker types for mapping analysis.  Resequencing 

other melon lines would provide additional markers for analysis (Garcia-Mas et al., 

2012).   However, phenotyping a sufficiently large segregating population remains 

essential to any attempt at QTL analysis. 
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CHAPTER TWO  

MAPPING RESISTANCE TO ALTERNARIA CUCUMERINA IN CUCUMIS MELO 

 

Introduction 

 

Melon (Cucumis melo L.) is an economically important crop found around the 

world and is severely affected by fungal pathogens.  Alternaria cucumerina, the causal 

agent of Alternaria leaf blight (ALB), is one such pathogen that has the potential to cause 

extensive damage (Latin, Egel 2001).  In the United States, ALB is a significant problem 

in the melon-producing midwestern and eastern states (Evans et al., 1992).  ALB has 

been responsible for yield losses in Indiana approaching 50% (Evans et al., 1992).  A. 

cucumerina infects plant tissue via conidia which produce hyphae that penetrate the leaf 

epidermis, leading to lesion formation (Jackson and Weber, 1959).  Under severe 

infection the merging of rapidly expanding lesions causes defoliation and sun-scalding of 

the fruit (Jackson and Weber, 1959).  Decreased fruit yield by Alternaria is primarily 

caused by the rapid defoliation of the plant, leaving the fruit vulnerable to sun scalding 

(Latin et al., 1994).  The severity of infection has been shown to vary according to the 

presence of overwintered mycelia in the field (Jackson and Weber, 1959), leaf wetness 

duration, temperature (Chandler and Thomas, 1991; Evans et al., 1992), damage to the 

foliage by insects (Chandler and Thomas, 1991), fungicide treatments (Thomas, 1984), 

and degree of cultivar resistance (Boyhan and Norton, 1992; Egel 1999ab; Thomas and 

Caniglia, 1997; Carmody et al., 1985).  Fungicide application is the primary control 

method and has been enhanced by the introduction of MelCast by Latin and Egel (2001), 

a tool which allows for strategic fungicide use based on duration of temperature and 

wetness.  However ALB severity could be further mitigated through the use of resistant 
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varieties (Thomas and Caniglia, 1997), which would have immediate financial benefits 

for growers who would potentially require no fungicide applications to control ALB.   

Resistance to ALB has been identified in several muskmelons lines (Egel, 

1999ab; Sitterly, 1972; Thomas et al., 1990; Thomas and Caniglia, 1997; Boyhan and 

Norton, 1992).  Alternaria resistant melons, after 10 days of infection, were shown to 

have markedly decreased lesion growth (2-6% of susceptible plant lesion growth) and 

sporulation of lesion area (9-47% of susceptible plant sporulation) (Thomas, 1984).  The 

genetic basis of resistance has been shown to be additive and multifactorial (Boyhan and 

Norton, 1992); in addition, Thomas, et al. (1990) described the inheritance of a single, 

dominant resistance gene, Ac, which confers a high degree of resistance in the USDA 

MR-1 breeding line.  However, markers linked to ALB resistance in melon have yet to be 

identified. 

There are two greenhouse inoculation methods used to evaluate resistance: spray 

and wounded-leaf.  The spray method evenly distributes conidia onto foliage followed by 

exposure to high humidity in order to create favorable growth conditions for Alternaria.  

Following inoculation, lesion expansion occurs over a set amount of time.  Spray-

inoculated plants are then evaluated using rating schemes based on percent leaf damage, 

number of lesions present, or lesion size.  This inoculation method has been the dominant 

method used in both greenhouse and field assays for resistance.  However, spray 

inoculation tests can be partially confounded by enhanced infection caused by 

mechanical leaf injury, early leaf senescence, insect damage, or leaf necrosis (Thomas et 

al., 1990; Chandler and Thomas, 1991).   
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The second type of inoculation is called the wounded-leaf method and has been 

shown to be effective on cucumber leaf disks (Batta, 2003).  This method involves 

placing droplets of inoculum on artificial foliar wounds and exposing plants to high 

humidity to encourage disease progression over a set period of time.  This method allows 

for definitive evaluation of resistance by direct measurement of lesion area.  The 

wounded-leaf method increases control of lesion placement to enhance uniformity of 

lesion expansion and thus increase overall differentiation between resistant and 

susceptible plants.  The wounded-leaf method has been shown to be effective in 

cucumber (Batta, 2003), but has yet to be demonstrated in melon.  Using a wounded-leaf 

inoculation assay on melon would exploit the rapid, differential lesion expansion 

observed by Thomas et al. (1990) on injured resistant and susceptible plants and allow for 

greater clarity in phenotyping. 

In this study, a genetic map of MR-1 x AY recombinant inbred lines (RIL) was 

constructed through the use of dominant markers, and QTL analysis was conducted to 

detect QTL affecting Alternaria lesion area.  In order to increase consistency of the 

phenotyping, RILs were evaluated using a modified wounded-leaf inoculation method.  

The effects of MR-1 alleles on Alternaria resistance was analyzed using both the 

wounded-leaf and spray inoculation methods.  In addition, inoculation method correlation 

was tested.  Lesion areas of first, second, and third leaves were measured to determine 

their relative efficiency in resolving resistant, intermediate resistant, and susceptible 

melon lines.   
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Materials and Methods 

 

Plant Materials 

MR-1 was selected and inbred from a plant introduction (PI) 124111, an Indian 

melon line, with high levels of disease resistance (Thomas, 1986).  MR-1 has been shown 

to possess resistance to powdery mildew, downy mildew, Fusarium wilt Fusarium 

oxysporum f.sp melonis, and ALB, making it an excellent source for resistance breeding 

(Kuzuya et al., 2006; Thomas, 1986; Thomas et al., 1990).  Ananas Yokneum (AY) is 

reported as susceptible to powdery mildew, downy mildew, and Fusarium wilt (Wang et 

al., 1997).  Though AY is reported as resistant to A. cucumerina (Thomas and Caniglia, 

1997), our preliminary results indicate susceptibility relative to MR-1.  In order to exploit 

contrasting resistance levels to Alternaria, MR-1 x AY RILs (F6-F10) were used for 

genotyping and phenotyping.    

Leaf position comparisons were conducted on the 1st, 2nd, and 3rd leaves of 

individual MR-1, AY, and (AY x MR-1) F1 plants.  In addition the effects of MR-1 

alleles on resistance in susceptible lines were analyzed using Hales Best Jumbo (HBJ), 

Perlita, AY, MR-1 hybrids [(MR-1 x HBJ) F1, (AY x MR-1) F1, and (Perlita x MR-1) F1], 

MR-1, Jindaozi, and RIL61. Also, using these same lines, the two inoculation methods 

(wounded-leaf and spray) were compared using Spearman’s correlation.     

 Plants were grown using Metro-mix 360 (Sun Gro Horticulture, Agawam, MA) in 

50 cell trays (PRO050R5; Myers Industries Lawn & Garden Group, Middlefield, OH) 

until the 1-2 fully expanded leaf at which time they were transferred to 4 inch plastic pots 

(SVT-400 4 x 5; T.O. Plastics, Inc., Clearwater, MN) and fertilized (Peters Professional 
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Water Soluble Fertilizer 20-20-20; Everris International B.V., Geldermalsen, 

Netherlands) at 10 g/L.  Plants were grown in a temperature controlled greenhouse and 

year-round day-night temperatures averaged 22oC and ranged 18-38 oC.  Pesticides were 

applied using a Mini AutoFog™ (Dramm Corporation, Manitowoc, WI) to control 

greenhouse pests.  In preparation for inoculation, pesticides were no longer applied when 

plants reached the third-expanding leaf.   

 

A. cucumerina Preparation 

 

 

The A. cucumerina isolate, AC-4B, used in this study was collected in South 

Carolina in 2001 from melon (Anthony Keinath, 2014, personal communication).  A. 

cucumerina cultures were grown for 30-40 days on quarter strength potato dextrose agar 

(Becton, Dickinson and Company; Franklin Lakes, NJ) on a 12hr light/dark cycle at room 

temperature under fluorescent lights.  In order to avoid CO2 inhibition of sporulation, the 

petri dishes were not sealed (Cotty, 1987).  Conidia were harvested by flooding the 100 

mm x 15 mm petri dish with sterile distilled H2O to approximately half the volume and, 

using a 1ml pipette, repeatedly aspirating and pipetting directly into the dish across the 

range of culture for 30 sec in order to dislodge conidia.  The dish was then poured into a 

250 ml media bottle and vigorously shaken for 30 sec to separate clumped conidia.  

Conidia counts were performed using a hemacytometer.  The concentration was adjusted 

with sterile dH2O according to the test and immediately used for inoculation.   
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A. cucumerina Wounded-Leaf Inoculation and Lesion Measurements 

 

 The adaxial side of the third expanded leaf was lightly scratched using a 22 gauge 

needle to produce narrow perforating wounds that averaged 3.8mm in length.  A series of 

these wounds were placed approximately equidistant between the midrib and margin.  

Additionally, a buffer zone of approximately 15mm between wound locations allowed for 

lesion expansion in even the most susceptible lines to occur unimpeded by the expansion 

of nearby lesions.  The number of wounds per leaf ranged from 3-8, dependent on leaf 

area, which varied between recombinant inbred lines.  A 10μl droplet of 2.5 x 104 

conidia/ml inoculum (~250 condia) was pipetted directly on each wound and allowed to 

dry prior to be being placed in a humidity chamber.  Lesion areas were recorded by 

measuring the length and width and using the equation for the area of an ellipse 

[(Diameter_A/2) * (Diameter_B/2) * π], because lesions were occasionally elliptical.   

All measurements were recorded in millimeters using digital calipers (Digimatic Caliper 

CD-6”B; Mitutoyo Corporation, Aurora, IL).  Controls were wounded and inoculated 

with sterile dH2O using both methods.      

 

A. cucumerina Spray Inoculation and Evaluation 

 

The adaxial side of third leaves were sprayed to runoff at 275 kPa with a 

suspension of 1.0 x 104 conidia/ml of Alternaria cucumerina, in accordance with Thomas 

and Caniglia (1997).  Control plants were sprayed with sterile dH2O.  Spray-inoculated 
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plants were rated 1-5 based on the criteria used by Thomas and Caniglia (1997): 1= 

leaves necrotic with few to many large lesions, rapidly expanding lesions; 2 = leaves 

chlorotic with few to many large, rapidly expanding lesions; 3 = leaves green, but few to 

many large (6-8mm), expanding lesions; 4 = leaves green with few to many moderate-

sized (5-6mm) expanding lesions; 5 = leaves green with few to many restricted, small (1-

2mm) non-expanded lesions   

 

Humidity Chamber Conditions 

 

Inoculum on both wounded and spray inoculated plants was allowed to dry onto 

the leaf surface prior to being randomized and placed in a humidity chamber.  The plastic 

covered humidity chamber (4.6m x 2.4m x 1.2m) had a capacity of ~500 plants and was 

arranged in two tiers with four expanded metal platforms.  The humidifier (PA-600; 

Pharos Inc., Springdale, AR) was centrally located on one short end and was set to 

humidify for an initial 60 min and then evenly distributed 30 min intervals for a total of 3 

hrs.  The humidity chamber was located in a temperature controlled headhouse which 

nightly averaged 21oC and ranged 16-27 oC.   Inoculated plants were placed on an 

alternating 10-day regimen used by Thomas et al. (1990): 16 hrs in the humidity chamber 

followed by 8 hrs of natural daylight in the greenhouse.  On day ten, lesion areas of 

wounded plants were measured and 1-5 ratings (Thomas and Caniglia, 1997) of spray 

inoculated plants were recorded. 
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Experimental Design and Data Analysis: Effects Leaf Position on Lesion Area 

 

A complete randomized design was used to analyze the effect of the 1st, 2nd, and 

3rd leaf position of individual MR-1, AY, and (AY x MR-1) F1 on lesion area.  MR-1, 

AY, Hales Best Jumbo (HBJ), MR-1 hybrids [(Perlita x MR-1) F1, (MR-1 x HBJ) F1, and 

(AY x MR-1) F1], Jindaozi, and RIL61 were replicated >7 times and the test was repeated 

once.  Fischer’s Protected LSD (P=0.05) was used to determine significance.  All 

statistical analyses were conducted using JMP® Pro 10 (SAS Institute Inc., Cary, NC) 

software.    

 

Experimental Design: Effects of MR-1 Alleles on Alternaria Resistance 

 

 A complete randomized design was used to analyze the effects of MR-1 alleles on 

Alternaria resistance using two Alternaria inoculation techniques: wounded-leaf and 

spray.  In addition, Spearman’s correlation was used to determine the strength of the 

relationship between the two inoculation techniques.  MR-1, AY, Hales Best Jumbo 

(HBJ), MR-1 hybrids [(Perlita x MR-1) F1, (MR-1 x HBJ) F1, and (AY x MR-1) F1], 

Jindaozi, and RIL61 were replicated >7 times and the test was repeated once.  Fischer’s 

Protected LSD (P=0.05) was used to determine significance.   
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Experimental Design: MR-1 x AY RILs Lesion Areas 

 

Statistical analysis of RIL lesion area was conducted using augmented incomplete 

blocks.  The RILs were divided into incomplete blocks (planting date) in which lines 

were completely randomized with at least 8 replications per line.  Lines were repeated at 

least once in separate blocks; and MR-1, AY, and (AY x MR-1) F1 checks were included 

in every test.  The use of checks in every block is a fundamental facet of augmented 

block design and provides an estimate of the blocking effect and experimental error 

variance, significantly reducing error (Federer and Raghavarao, 1975).  Planting date and 

planting date x line effects were designated as a random and the means of individual 

plants from each planting date were compared using Fischer’s Protected LSD (P=0.05).  

This statistical strategy was utilized because the recombinant populations at the 

beginning of testing included 59 individuals with the remaining 30 individuals being 

inbred to the F7 generation, so the augmented design allowed genotypes to be tested as 

they became available.  

DNA Isolation 

 

Melon DNA was extracted using the method outlined by Dellaporta, etal. (1983) 

with some modifications.  Leaf tissue (50mg) was placed in 1.5ml microcentrifuge tubes 

and either DNA-extracted immediately or stored at -800C.  The extraction buffer contains 

100mM Tris-EDTA ph 8, 50 mM EDTA ph 8, 500 mM sodium chloride, 1% SDS, 10 

mM beta-mercaptoethanol.  Tissue was ground by hand in 1.5ml microcentrifuge using a 
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polypropylene pestle after adding 566µl of extraction buffer and 10µl RNase.  After 

30sec of tissue grinding the tubes were vortexed for 30sec.  All tubes were incubated at 

65°C for 10mins.  After incubation, 165µl 5 M potassium acetate was added, and the 

tubes were vortexed for 30 sec and centrifuged at 13,500 G for 15 min.  The supernatant 

was transferred to new tubes.  One half of the volume (~400µl) cold isopropanol (>99%) 

was added to the supernatant and mixed by inversion until DNA strands form, then 

centrifuged at 13,500 G for 5 mins.  The supernatant was discarded, and the DNA pellet 

was dislodged from the bottom of the tube and washed twice 500µl ethanol (70%). The 

pellet was briefly spun down in order to aspirate off any remaining liquid and placed in 

the hood for 10 min.  The DNA was resolublized with 100 µl of H2O.  For the 

quantification of DNA, 1ul of DNA was prepared using the Quant-iT™ dsDNA Assay 

Kit, broad range (Thermo Fisher Scientific Corporation, Waltham, MA) and quantified 

on a Qubit Fluorometer (Thermo Fisher Scientific Corporation, Waltham, MA).  DNA 

concentration was adjusted to 10ng/µl for marker analysis.   

 

Molecular Markers 

 

The random amplified polymorphic DNA (RAPD) protocol optimized by Levi et 

al. (1993), with slight modifications, was used for PCR-based analysis of RAPD, 

sequence characterized amplified region marker (SCAR), cleaved amplified polymorphic 

sequences (CAPS), inter simple sequence repeat (ISSR), sequence-tagged sites (STS), 

high-frequency oligonucleotides-targeting active genes (HFO-TAG) (Levi et al., 2010) 
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markers.  All RAPD markers were annealed at 48.50C, and HFO-TAG and ISSR markers 

were annealed at varying temperatures (Table 1.4).  Ten µl reactions were composed of 

5.3µl dH2O, 1μl reaction buffer (200 μM NaCl, 500 mM Tris-HCl pH 9, 10% Triton-X-

100, 0.1% Gelatin), 0.8µl MgCL2 [25mM] (Promega Corporation, Madison, WI), 0.8µl 

dNTP Mix [2.5 mM] (Life Technologies, Carlsbad, CA), 0.1 Taq 5u/µl (GoTaq® DNA 

Polymerase; Promega Corporation, Madison, WI; FIREPol® DNA Polymerase; Solis 

Byodyne, Tartu, Estonia), 1µl DNA 10ng/µl and 1µl primer [10µM].  HFO-TAG primers 

and FOM1 (Wechter et al., 1998) (1µl per 24-mer) PCR samples used 2µl primer [10µM] 

and 4.3µl dH2O. Samples were amplified via a MJ Research PTC 200 thermocycler (MJ 

Research, Waltham, MA) set to an initial denaturing at 94oC for 4mins followed by 45 

cycles: 92°C for 60sec (denaturation), 48.5°C (varied for ISSR and HFO-TAG markers) 

for 70 sec (annealing), and 72°C for 120sec (elongation).  FOM1, composed two 24-mer 

primers MUSKFOM I (5’TCGACCAGACGAAGTTCTTCGAGC3’ ) and MUSKFOM II 

(5’GAACTAAGGTCACGTTTATCGATC3’), was amplified using an initial 96oC for 

5min followed by 37 cycles and a last 5min 72oC extension: 94°C for 60sec 

(denaturation), 68°C for 60 sec (annealing), and 72°C for 120sec (Wechter et al., 1998).  

Samples were then removed and prepared for agarose gel electrophoresis by adding 2 µl 

Blue/Orange Loading Dye, 6X (Promega Corporation, Madison, WI) to each 10µl 

sample.  One Kb DNA Ladder (Life Technologies, Carlsbad, CA) was used to estimate 

band size.  Electrophoresis was run at 180V for 90min at 40C on a HE99X Max 

Horizontal Unit (Hoefer Inc., Holliston, MA) using 1.5% agarose gel (Agarose BP160-

500; Thermo Fisher Scientific Inc., Waltham, MA).  Each marker was screened for 
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polymorphism between the MR-1 and AY parents, and markers that produced strong 

polymorphisms were selected for mapping and run against the full population and 

parents.    

 

Marker Nomenclature 

 

 RAPD markers (Operon Technologies, Alameda, CA) were designated by the 

prefix ‘OP’ followed by the Operon kit letter(s), Operon primer number, and amplicon bp 

(e.g., OPW07_650).  ISSR markers were designated by the prefix ‘ISSR’ followed by a 

number corresponding to Table 1.4 and amplicon bp (e.g., ISSR32_325).  HFO-TAG 

markers are designated ‘HFSW’ or ‘HFOWEC’ followed by a number corresponding to 

Table 1.4 and amplicon bp (e.g., HFSW67_900 and HFOWEC33_725).  The single 

SCAR is designated ‘FOM1’. 

 

Genotyping by Sequencing 

 

DNA aliquots of 89 MR-1 x AY RILs, 3 MR-1 plants, and 3 AY plants were 

submitted for to Cornell University Institute for Genomic Diversity (IGD) for 

Genotyping by Sequencing (GBS).  DNA was extracted using the ChargeSwitch gDNA 

Plant Kit (Life Technologies, Carlsbad, CA) from 100 mg of tissue from the same 59 

MR-1 x AY RILs used for agarose-based genotyping (above), 30 addition MR-1 x AY 

RILs, and three individual MR-1 and AY plants.  The tissues were first homogenized in 
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1.5ml microcentrifuge tubes in a solution containing 100 µl Reagent A [300 mM CaCl2, 

15% polyvinylpyrolidone (10,000 average molecular weight) and ChargeSwitch Lysis 

Buffer], 100 µl 10% SDS, 2 µl RNase A, and 900 µl ChargeSwitch Lysis Buffer using a 

FastPrep FP120 homogenizer (Thermo Fisher Scientific, Waltham, MA) with a ¼” 

Ceramic Sphere (MP Biomedicals, Santa Ana, CA) in each microcentrifuge tube.  The 

manufacturer's recommended protocol was then followed to completion.  For the 

quantification of DNA, 1 ul of DNA was prepared using the Quant-iT™ dsDNA Assay 

Kit, broad range (Thermo Fisher Scientific Corporation, Waltham, MA) and quantified 

on a Qubit Fluorometer (Thermo Fisher Scientific Corporation, Waltham, MA). 

Concentrations over 100 ng/µl were diluted to 50-100 ng/µl by adding more 

ChargeSwitch Elution Buffer.         

DNA quality checks were conducted according to IGD instructions 

(http://sorghumdiversity.maize.cornell.edu/), and images submitted were for review.  

Once approved, 50 µl aliquots of the extracted DNA were pipetted into a 96 well plate 

(VWR 83007-374; VWR International, Radnor, PA) and sealed using PCR tube strip 

caps (VWR 20170-000; VWR International, Radnor, PA).  The samples were 

immediately placed on dry-ice and shipped overnight to IGD for GBS. 

GBS data is pending receipt and results will not be presented in this thesis. 
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Linkage Map Construction and QTL Analysis 

 

 The linkage map was constructed using JoinMap® 3.0 (Kyazma B.V., 

Wageningen, Netherlands), and linkage groups were assembled with a minimum LOD 

score of 4.0, Kosambi mapping function, with a recombination frequency of 0.4.  The 

expected 1:1 segregation was tested using a chi-squared test to identify segregation 

distortion (p-value 0.01) (Zalapa et al., 2007), and markers exhibiting segregation 

distortion were excluded from linkage map construction.   

 QTL analysis was performed using the composite interval mapping function on 

WinQTL Cartographer 2.5 (North Carolina State University, Raleigh, NC).  Alternaria 

mean lesion areas (Appendix A) were used as trait values for QTL analysis.  Model 6 was 

selected using the forward regression procedure with a walking speed of 1cM and the 

default settings of a 10cM window and up to 5 background markers.  QTL significance 

was declared based on a 1,000 permutations at a p-value = 0.05.  Confidence intervals 

(95%) were calculated automatically with at least 10cM distance between QTL, and R2 

values were determined using the highest point within the confidence interval.  QTL were 

be named after the putative resistance gene, Ac (Thomas et al., 1990). 
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Results 

 

Linkage Map Assembly 

 

 

 A total of 198 dominant markers (1 SCAR, 24 HFO-TAG, 25 ISSR, and 152 

RAPD) were mapped onto 23 linkage groups of 59 MR-1 x AY RILs using the Kosambi 

function and a recombination value of 0.4 (Figure 1.3).  Out of 223 markers initially 

scored, 11 markers failed to map onto any linkage group and 14 showed linkage 

distortion using JoinMap® 3.0 (Kyazma B.V., Wageningen, Netherlands) χ2 analysis (p-

value 0.01) and were excluded.  Linkage groups were assembled using LOD 3 (102 

markers) and LOD 4 (96 markers), and total map coverage was 400cM with the largest 

marker interval of 10 cM and an average interval of 2 cM.  Of the linkage-distorted 

markers, 8 were predominantly MR-1 and 6 were predominantly AY. The 198 markers 

mapped among the 59 individuals were equally distributed between the two parents: 

49.9% MR-1; 50.1% AY. 

 

Alternaria resistance screening of AY x MR-1 RILs 

 

 Lesion areas of among 88 MR-1 x AY RILs was continuous and ranged from 

20mm2 to 111mm2;  MR-1, (AY x MR-1) F1, and AY had respective means of 25mm2, 

37mm2, and 72mm2 (Table 1.1; Appendix A).  Lesion formation at a wound site was 

visually detectable generally on day three post inoculation.  Initially the wound site 

would show a slight chlorosis, progressing to minor lesion formation, symptomatically 



64 

 

similar to spray inoculation.  Over the course of the infection, lesions expanded and dark 

brown rings, characteristic of Alternaria cucumerina infection, would often become 

evident within the lesion.  In resistant lines, lesion formation was slower and often 

surrounded by a noticeable wider chlorotic ring.  The perforations from the wounding 

expanded as lesions expanded, leading to ragged, gaping holes in highly susceptible 

plants.  Spray inoculated plants usually did not have holes within their lesion sites after 

the ten day assay.  Water-inoculated control plants showed no signs of infection 

(chlorotic ring and lesion formation).  

 

Effect of Leaf Position of Wounded-leaf Lesion Area 

 

 Leaf position significantly affected lesion area means and statistical separation of 

resistant, intermediate resistant, and susceptible lines when inoculated using the 

wounded-leaf method (Figure 1.1). On planting date 1 MR-1 and (AY x MR-1) F1 lesion 

means were significantly different from AY across all leaves, but MR-1 was significantly 

different from (AY x MR-1) F1 only when second and third leaves were examined.  

Planting date 1 MR-1 lesion means significantly trended smaller from 1st leaves (48mm2) 

to 3rd leaves(27mm2), while (AY x MR-1) F1 mean lesions remained static (44-45mm2).  

Planting date 1 AY lesion means were significantly higher in 3rd leaves (89mm2) than 1st 

(61mm2) and 2nd leaves (64mm2).  Planting date 2 results were similar to planting 1 

except that MR-1 was only significantly different from (AY x MR-1) F1 in the in third 

leaves and AY lesion  area compared to planting date 1 was significantly increased in 
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first leaves (76mm2) and significantly decreased in the 3rd leaves (64mm2).  MR-1 lesion 

area, again, trended significantly smaller from 1st leaves (46mm2) to 3rd leaves(27mm2), 

while (AY x MR-1) F1 mean lesions remained static (44 to 45mm2).  In both planting 

dates 3rd leaves provided superior lesion mean separation.  

 

Effect of MR-1 Alleles on Alternaria Resistance 

 

 Alternaria spray and wounded-leaf inoculations were conducted on two planting 

dates on three MR-1 hybrids [(AY x MR-1) F1, (MR-1 x HBJ) F1, and (Perlita x MR-1) 

F1], parents (MR-1, AY, HBJ, and Perlita), Jindaozi, and RIL61 (Table 1.2 and Figure 

1.2).  Spray resistance ratings correlated with wounded-leaf mean lesion areas (r = -.67, p 

< .0001, Spearman correlation).  Spray inoculation ratings did not differ significantly 

between planting dates, separating the lines into four groups: resistant [(Perlita x MR-1) 

F1, 5.0; Jindaozi, 5.0; (MR-1 x HBJ) F1, 4.9; and MR-1, 4.8], intermediate resistant [(AY 

x MR-1) F1, 4.5], intermediate susceptible (Perlita, 4.2 and HBJ, 4.0), and highly 

susceptible (AY, 3.1 and RIL61, 2.9).  On both planting dates AY, Perlita, and HBJ all 

significantly increased in resistance when crossed with MR-1.  Wounded-leaf inoculated 

plants differed significantly between planting dates as the second planting mean lesion 

area (43mm2) was significantly lower than the first planting date mean lesion area 

(54mm2), and there were Planting date x Line interactions, notably Perlita and Jindaozi 

which were both significantly larger in the first planting date when compared to the 

second planting date.  Planting date 1 mean lesion area ranged from 111mm2 (RIL61) to 
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14mm2 [(Perlita x MR-1) F1] and susceptible lines AY (89mm2), Perlita (66mm2),and 

HBJ (54mm2) all significantly decreased in mean lesion area when crossed with MR-1: 

(AY x MR-1) F1 (44mm2), (MR-1 x HBJ) F1 (37mm2), and (Perlita x MR-1) F1 (14mm2).  

Planting date 2 mean lesion area ranged from 81mm2 (RIL61) to 23 (Jindaozi), and 

susceptible lines AY (64mm2), Perlita (41mm2), and HBJ (57mm2) all significantly 

decreased in mean lesion area when crossed with MR-1: (AY x MR-1) F1 (39mm2), (MR-

1 x HBJ) F1 (35mm2), and (Perlita x MR-1) F1 (25mm2).  

 

QTL Analysis of RILs for Alternaria Resistance 

 

 Eighty-nine lines were tested for Alternaria resistance; the mean lesion area 

(Appendix A) was used for QTL analysis.  Of the mapping population, 56 of the 59 

individuals had mean lesion data useful for QTL analysis (Appendix C).  Composite 

interval mapping, WinQTL Cartographer 2.5 (North Carolina State University, Raleigh, 

NC), detected one QTL, ac.1, affecting Alternaria resistance with opposite additive 

effects located on linkage group 11 (Table 1.3).  QTL significance, LOD 2.9, was 

determined by using 1,000 permutations at p-value 0.05.  The approximate position of 

ac.1 on the linkage map is shown in Appendix D.  The MR-1 allele at the ac.1 has a R2 

value of 0.25 and an additive effect of -10.43, decreasing lesion area.   
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Discussion 

 

 

Wounded-leaf inoculated resistant and susceptible lines differed significantly in 

lesion area, analogous to observations by Batta (2003) in cucumber leaf disk assays.  

Lesion size differences among the RILs became increasingly noticeable over the 10-day 

assay, thus clear differences between resistant, intermediate resistance, and susceptibility 

could be statistically determined.  However, in leaf position and MR-1 hybrid tests, a 

significant environmental effect between the two planting dates was observed, although 

greenhouse temperatures throughout both dates ranged from 190C to 300C.  In future 

testing, environmental conditions may have to be compensated for by dynamically 

adjusting the duration of the test to allow susceptible control lines (e.g., AY, Perlita, HBJ, 

or RIL61) to reach predetermined severity thresholds (lesion size) prior to evaluating the 

population.  Also, although rare, some AY controls were excluded from analysis because 

of high levels of powdery mildew on third leaves, which severely restricted lesion area 

relative to the other AY controls.    

Comparison of the first, second, and third leaves resulted in a significant effect of 

leaf position on differentiation between MR-1, AY, and (AY x MR-1) F1 lesion sizes.  In 

other greenhouse-based resistance assays in melon, leaf selection ranged from 4th leaf 

(Evans et al., 1992), to 2nd leaf (Thomas et al., 1990; Thomas and Caniglia, 1997; 

Chandler and Thomas, 1991) to 1st leaves and cotyledons (Carmody et al., 1985).  In this 

study, 1st and 2nd leaves were often smaller and irregular, thus the number of possible 

wound sites was limited. In some cases, the size of the first leaves only permitted a single 

lesion, whereas third leaves were large enough to accommodate six or more lesions.  
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Lesion expansion on the first leaves was often accompanied by early senescence, 

particularly in MR-1 plants, which led to abnormal lesion expansion and inconsistent 

results, similar to observations by Thomas et al. (1990).  Wounded-leaf inoculation of 3rd 

leaves provided superior resolution when compared to 1st and 2nd leaves in 4th expanding 

leaf stage plants. 

Spray inoculated resistance ratings correlated to lesion size observed in the 

wounded-leaf tests, indicating that the wounded-leaf method is also a valid measure of 

resistance under greenhouse conditions.  However, with the spray method only four 

resistance groups were identified, whereas the wounded-leaf method identified seven 

resistance levels in the first planting date and five in the second planting date.  Compared 

to the spray method, the wounded-leaf method direct lesion measurement is likely more 

suited for QTL analysis where phenotyping precision enhances quality (Cobb et al., 

2013).  However, when large populations make direct lesion measurements impractical 

(e.g., a breeding program for Alternaria resistance or resistance screening), an arbitrary 

rating scheme or lesion size reference could be used. 

  Carmody et al. (1985) reported that lesion size and mean number of lesions on 

cotyledons were predictive of lesion size, number of lesions, and resistance rating in field 

conditions.  In addition, Carmody et al. (1985) rated Perlita and HBJ as susceptible in 

both greenhouse and field conditions, comparable to our ratings for these two cultivars in 

third leaf spray and wounded-leaf assays. The similarities suggests that the wounded-leaf 

method may also be predictive of resistance and susceptibility under field conditions.  

Nevertheless, future field comparison studies will need to be conducted.  
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Contrary to expectations, MR-1 Alternaria resistance did not exert complete 

dominance in an MR-1 x AY RILs as was reported in a (Perlita x MR-1) F2 inheritance 

study (Thomas et al., 1990) and supported by our observations of high resistance in 

(Perlita x MR-1) F1 (Table 1.2; Figure 1.2).  Because of the continuous distribution of 

lesion areas among the RILs and intermediate resistance of (AY x MR-1) F1, we expected 

to identify several contributing QTL; however, only one major QTL was detected 

corresponding to an MR-1 resistance allele, ac.1 (Table 1.3; Figure 1.3).  It is very likely 

that with the increased population and marker density that will be provided by GBS other 

major/minor QTL affecting lesion area will be detected.  However, ac.1 poses interesting 

questions as to the inheritance of the Alternaria resistance.  Additional molecular testing 

would be required, but the putative resistance gene, Ac, identified by Thomas (1990) 

could be located within the confidence intervals of ac.1.  However, indicating that the 

dominance of Ac is dependent on the cross, this study found that both (AY x MR-1) F1 

and (MR-1 x HBJ) F1 increased in resistance compared to AY and HBJ, respectively, but 

were both significantly less resistant than MR-1 while (Perlita x MR-1) F1 was equal to 

or slightly more resistant than MR-1 (Figure 1.2).  However, due to the observed overall 

additive nature of Alternaria resistance and the effects of ac.1 in the MR-1 x AY RILs, 

this study is in agreement with Boyhan and Norton (1992) that a pedigree or backcross 

method would lead to improved resistance to Alternaria cucumerina in melon.  MAS 

targeting ac.1 would significantly accelerate the introgression of Alternaria resistance 

into commercial melon lines. 
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Tables and Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1.1 Lesion areas of the five most susceptible and the five resistant RILs 

and parental checks [MR-1, AY, and (AY x MR-1) F1].   

  

 

Line 
Planting 

Dates 

 

Total plants  Mean Lesion Area (mm2) 

 61 2 22 111 a 

 7 3 29 101 ab 

 17 2 17 100 a-c 

 9 2 41 90 a-e 

 45 2 20 89 a-e 

 AY 9 136 72 e-l 

 (AY x MR-1) F1 9 120 37 m-q 

 58 2 24 32 m-r 

 75 2 22 30 m-r 

 19 3 43 30 n-r 

 89 2 23 26 o-r 

 MR-1 9 138 25 p-r 

  93 2 19 20 q-r 

Mean lesion areas were selected from the full population analysis across nine 

planting dates utilizing an augmented block design (Appendix A).  Planting 

dates refers to the number of planting dates the line was tested and total plants 

is the number of plants tested across all planting dates.  Mean lesion areas with 

different letters indicate a significant difference (Fischer’s Protected LSD; 

P=0.05).    
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Table 1.2 Alternaria spray resistance ratings of three MR-1 

hybrids, parents, RIL61 and Jindaozi     

 Line Total Plants Rating   

 (PERLITA x MR-1) F1 16 5.0a   

 JINDAOZI 22 5.0a   

 (MR-1 x HBJ) F1 20 4.9ab   

 MR-1 20 4.8ab   

 (AY x MR-1) F1 13 4.5b   

 PERLITA 24 4.2c   

 HBJ 19 4.0c   

 AY 22 3.1d   

 RIL61 21 2.9d   

Lines from two planting dates (1 = 1/22/2014;  

2 = 1/31/2014) were tested.  The effects of plant date and 

line x plant date were insignificant, so data across the 

planting dates were combined.  Ratings with different letters 

indicate a significant difference (Fischer’s Protected LSD; 

P=0.05). 
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Table 1.3 Summary of QTL analysis of Alternaria cucumerina resistance (Ac).   

 Trait QTL Linkage Group Position LOD R2  a 

 Ac ac.1 LG11 6.0cM 5.41 0.25 -10.43 

 Additive effects, a, for the MR-1 allele are given. 
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Table 1.4 HFO-TAG (HFOWEC; HFSW) and ISSR sequence, annealing 

temperatures, and number of markers mapped. 

  Marker Sequence (5' -> 3') 

Annealing 

Temp oC 

Number of 

Markers 

 HFOWEC161 GACGGCCAGTCTCCGGCGA 50 3 

 HFOWEC170 GACGGCCAGTGCCGGCCA 50 1 

 HFOWEC33 GACGGCCAGTGCGGCGGAA 50 4 

 HFOWEC40 GACGGCCAGTTCGCCGTCG 50 1 

 HFOWEC46 GACGGCCAGTCCCTCCTCC 50 1 

 HFOWEC49 GACGGCCAGTGCCTCCTCC 50 1 

 HFOWEC65 GACGGCCAGTATCGCCGCCG 50 3 

 HFOWEC86 GACGGCCAGTTGCCGGCG 50 1 

 HFOWEC99 GACGGCCAGTGCGGCTGC 50 1 

 HFSW04 GGCGGCGG 48 1 

 HFSW113 GAGGCGGC 40 2 

 HFSW67 GCCGCTGC 45 5 

 HFWS112 GCCGCCTC 40 1 

 ISSR06 CTCTCTCTCTCTCTCTG 44 1 

 ISSR10 ACACACACACACACACT 50 3 

 ISSR11 ACACACACACACACACG 50 1 

 ISSR17 ACACACACACACACACGT 47 3 

 ISSR19 AGAGAGAGAGAGAGAGYC 52 1 

 ISSR21 GAGAGAGAGAGAGAGACTA 52 1 

 ISSR27 TGTGTGTGTGTGTGTGGA 50 2 

 ISSR31 ACACACACACACACACYA 50 1 

 ISSR32 TCCTCCTCCTCCTCCGT 50 3 

 ISSR33 ATGATGATGATGATGGA 50 1 

 ISSR35 GACAGACAGACAGACAGT 50 1 

 ISSR36 CTTCACTTCACTTCA 52 1 

  ISSR37 AGACAGACAGACAGACGC 50 1 
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Figure 1.1 Alternaria lesion areas (mm2) of wounded-leaf inoculated first, second, and 

third leaves of individual MR-1, AY, and (AY x MR-1) F1 plants.  The test was 

conducted on two groups from two different planting dates (1 = 1/22/2014; 2 = 

1/31/2014).  Plant date 1 included 11 AY, 12 (AY X MR-1) F1, and 13 MR-1 plants; 

plant date 2 included 10 AY, 7 (AY X MR-1) F1, 11 MR-1 plants. Different letters within 

a planting date indicate a significant difference (Fischer’s Protected LSD; P=0.05).  

Errors bars indicate standard errors of the mean.  
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Figure 1.2 Alternaria lesion areas (mm2) of wounded-leaf inoculated MR-1 hybrids [(AY 

x MR-1) F1, (MR-1 x HBJ) F1, and (Perlita x MR-1) F1], parents (MR-1, AY, HBJ, and 

Perlita, Jindaozi, and RIL61.  The test was conducted on two groups from two different 

planting dates (1 = 1/22/2014; 2 = 1/31/2014).  Planting date 1 included 10 RIL61, 11 

AY, 12 (AY x MR-1) F1, 10 HBJ, 13 (MR-1 x HBJ) F1, 10 Jindaozi, 13 MR-1, 13 Perlita, 

and 10 (Perlita x MR-1) F1 plants; planting date 2 included 11 RIL61, 13 AY, 7 (AY x 

MR-1) F1, 13 HBJ, 10 (MR-1 x HBJ) F1, 12 Jindaozi, 11 MR-1, 11 Perlita, and 12 

(Perlita x MR-1) F1 plants. Different letters within a planting date indicate a significant 

difference (Fischer’s Protected LSD; P=0.05).  Errors bars indicate standard errors of the 

mean.  
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Figure 1.3 Linkage map of 59 (AY x MR-1) RIL and QTL locations (95% CI) for 

elemental sulfur tolerance (red), st.1 and st.2, and Alternaria resistance (blue), ac.1. 
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CHAPTER THREE 

MAPPING TOLERANCE TO ELEMENTAL SULFUR IN CUCUMIS MELO 

 

Introduction 

 

Elemental Sulfur is widely used as an organic fungicide in fruit and vegetable 

crops for control of powdery mildew and rusts (Williams and Cooper, 2004).  For 

cucurbits, sulfur is an inexpensive and effective method for controlling powdery mildew 

(Podosphaera xanthii) (Koller, 2010; Keinath and DuBose, 2012).  Sulfur is considered a 

contact fungicide, and hence more effective against fungal pathogens on the outside of 

the leaf (Keinath and DuBose, 2012).  Sulfur makes contact with fungal pathogens by 

direct contact, diffusion through water, and by vapor action (Bent, 1967).  Despite 

thousands of years of experience with sulfur as a fungicide, the exact mechanism remains 

elusive, but is thought that the sulfur permeates into the fungus and interferes with 

mitochondrial respiration (Cooper and Williams, 2004).  The result is inhibition of 

conidia germination (Gogoi et al., 2013).  According to the Fungicide Resistance Action 

Committee (2013), sulfur’s mode of action is defined as “multi-site contact activity” and 

considered “low risk” for pathogen resistance development. 

Sulfur can be used on many cucurbits, including melon, but phytotoxicity can be 

extreme in some lines while other lines are completely tolerant (Perchepied et al., 2004; 

Gogoi et al., 2013; Johnson and Mayberry, 1980).  In a sulfur tolerance screen of 31 

melon cultivars by Johnson and Mayberry (1980) 23 were shown to be tolerant and 8 

were susceptible.  In another study, melon 236 accessions from around the world were 

screened for sulfur tolerance, and 47% showed complete tolerance (Perchepied et al., 
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2004).  Sulfur phytotoxicity is manifested as necrosis and pronounced “burning” on the 

leaf tissue starting four days after dusting fruiting melon plants in field conditions 

(Johnson and Mayberry, 1980).  In greenhouse conditions, vaporized sulfur causes 

symptoms in as little as 24hrs post-application in highly susceptible melon lines.  

Symptoms of sulfur phytotoxicity appear preferentially on matures leaf tissue of 

susceptible lines, in a top-down tolerance-to-susceptible pattern (Johnson and Mayberry, 

1980).  The observations by Johnson and Mayberry (1980) of phytotoxicity progression 

suggests that there is a developmental threshold that determines susceptibility of mature 

leaf tissue.   

Sulfur tolerance in melon is quantitatively inherited (Perchepied et al., 2004).  

Perchepied et al. (2004) successfully mapped one major and two minor QTL affecting 

sulfur tolerance in two recombinant inbred lines (RILs) sharing a common resistant 

parent.  The major QTL exerted complete dominance in the cross (Vedrantais x 

PI124112) F1 and incomplete dominance in (Vedrantais x PI161375) F1 (Perchepied et 

al., 2004).  The two minor QTL were only detected in the Vedrantais x PI124112 

population (Perchepied et al., 2004).  Breeding for sulfur tolerance was first recorded in 

the 1930’s and eventually led to the introduction of sulfur resistant commercial melon 

lines (Johnson and Mayberry, 1980).   

Sulfur is generally applied as a micronized spray or dust, and the various 

formulations (sulfur >90%) differ primarily in the size of the sulfur particles (Emmett et 

al., 2003).  Sulfur vaporization by means of timer controlled vaporizers is a convenient 

method of greenhouse powdery mildew control, as well as a means to screen for sulfur 
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tolerance.  Vaporization of sulfur (>99%) forms very fine cloud of sulfur particles that 

distribute over nearby plants (Barker and Wallace, 1922).   Early vaporization of sulfur 

was done by applying sulfur to hot pipes (Barker and Wallace, 1922), but commercial 

sulfur vaporizers can be now be purchased.  The introduction of sulfur vaporizers as a 

means of controlling greenhouse powdery mildew led to discovery that USDA-ARS 

breeding line MR-1 is highly susceptible to sulfur, Ananas Yokneum (AY) is completely 

resistant, (AY x MR-1) F1 was partially susceptible, and MR-1 x AY RILs were mixed 

resistant and susceptible.   

In this study, MR-1 x AY RILs were rated for tolerance to vaporized sulfur and 

quantitative trait analysis was conducted to detect quantitative trait loci (QTL) affecting 

sulfur tolerance in melon.  Additionally, the effects of sulfur vaporization and micronized 

sulfur spray were compared. 

 

Materials and Methods 

 

Plant Materials 

 

MR-1 x AY derived RILs were used for linkage map construction, phenotypic 

analysis, and QTL analysis. Vaporized and micronized sulfur comparison tests used MR-

1, AY, (AY x MR-1) F1, and variously susceptible and tolerant RILs- 2, 18, 21, 23, 29, 

30, 31, 44.  The effects of MR-1 alleles on sulfur susceptibility were studied using MR-1, 

AY, Hales Best Jumbo (HBJ), MR-1 hybrids [(Perlita x MR-1) F1, (MR-1 x HBJ) F1, and 
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(AY x MR-1) F1], Jindaozi, and RIL61.  All control plants remained in a sulfur-free 

greenhouse.   

 Plants were grown using Metro-mix 360 (Sun Gro Horticulture, Agawam, MA) in 

50 cell trays (PRO050R5; Myers Industries Lawn & Garden Group, Middlefield, OH) 

until the 1-2 fully expanded leaf at which time they were transferred to 4 inch plastic pots 

(SVT-400 4 x 5; T.O. Plastics, Inc., Clearwater, MN) and fertilized (Peters Professional 

Water Soluble Fertilizer 20-20-20; Everris International B.V., Geldermalsen, 

Netherlands) at 10 g/L.  Plants were fertilized a second time at the same rate just prior to 

being moved for sulfur screening.  Plants were grown in a temperature controlled 

greenhouse and year-round day-night temperatures averaged 22oC and ranged 18-38 oC.  

Pesticides were applied using a Mini AutoFog™ (Dramm Corporation, Manitowoc, WI) 

to control greenhouse pests.  During the testing period no pesticides were used.   

 

Sulfur Vaporization 

 

 At approximately the 7th leaf stage (RILs ranged from 6-9th leaf stage) plants were 

moved to a greenhouse utilized a vaporizer (Wilmod Sulfur Evaporator WSE75; 

Zoetermeer, Netherlands) to vaporize sulfur (>99% purity) nightly for 2.5 hrs.  On the 5th 

day, vaporized-sulfur plants were visually rated 0 – 4 based on the percent of damaged 

foliage: 0 = No damage; 1 = 1-25%; 2 = 26-50%; 3 = 51-75% 4 = 76-100%.   
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Sulfur spray 

 

 Micronized sulfur dust (Bonide Products Inc., Oriskany, NY) was sprayed using a 

medium-high rate for listed fruits and vegetables (9 g/L).  Sprayed plants were grown and 

rated under the same conditions as vapor-treated plants.  Water spray controls remained 

in a sulfur-free greenhouse.      

 

Experimental Design: Sulfur Tolerance Screening 

 

 Sulfur tolerance was evaluated using a complete randomized design.  The RILs, 

MR-1, AY, and (AY x MR-1) F1 were replicated four times, and the test was repeated 

once, and Fischer’s Protected LSD (P=0.05) was used to declare significance.  Control 

plants remained in a sulfur-free environment.  All statistical analyses were conducted 

using JMP® Pro 10 (SAS Institute Inc., Cary, NC) software.   

      

Experimental Design: Comparing the Effects of Sulfur Vaporization and Spray 

 

 A complete randomized design was used to compare two elemental sulfur 

application methods: vaporization and spray, and Spearman’s correlation was used to 

determine the strength of the relationship between the two application methods.  MR-1, 

AY, (AY x MR-1) F1, and a subset of (AY x MR-1) RILs (Table 2.1) of known tolerance 
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level were replicated four times and the test was repeated once.  Fischer’s Protected LSD 

(P=0.05) was used to declare significance.    

 

Effects of MR-1 Alleles on Sulfur Susceptibility 

 

A complete randomized design was used to analyze the effects of MR-1 alleles on 

sulfur susceptibility.  MR-1, AY, Hales Best Jumbo (HBJ), MR-1 hybrids [(Perlita x MR-

1) F1, (MR-1 x HBJ) F1, and (AY x MR-1) F1], Jindaozi, and RIL61 were replicated >9 

times and the test was repeated once.  Fischer’s Protected LSD (P=0.05) was used to 

declare significance.   

 

DNA Isolation 

 

Melon DNA was extracted using the method outlined by Dellaporta, etal. (1983) 

with some modifications.  Leaf tissue (50mg) was placed in 1.5ml microcentrifuge tubes 

and either DNA-extracted immediately or stored at -800C.  The extraction buffer contains 

100mM Tris-EDTA ph 8, 50 mM EDTA ph 8, 500 mM sodium chloride, 1% SDS, 10 

mM beta-mercaptoethanol.  Tissue was ground by hand in 1.5ml microcentrifuge using a 

polypropylene pestle after adding 566µl of extraction buffer and 10µl RNase.  After 

30sec of tissue grinding the tubes were vortexed for 30sec.  All tubes were incubated at 

65°C for 10mins.  After incubation, 165µl 5 M potassium acetate was added, and the 

tubes were vortexed for 30 sec and centrifuged at 13,500 G for 15 min.  The supernatant 
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was transferred to new tubes.  One half of the volume (~400µl) cold isopropanol (>99%) 

was added to the supernatant and mixed by inversion until DNA strands form, then 

centrifuged at 13,500 G for 5 mins.  The supernatant was discarded, and the DNA pellet 

was dislodged from the bottom of the tube and washed twice 500µl ethanol (70%). The 

pellet was briefly spun down in order to aspirate off any remaining liquid and placed in 

the hood for 10 min.  The DNA was resolublized with 100 µl of H2O.  For the 

quantification of DNA, 1ul of DNA was prepared using the Quant-iT™ dsDNA Assay 

Kit, broad range (Thermo Fisher Scientific Corporation, Waltham, MA) and quantified 

on a Qubit Fluorometer (Thermo Fisher Scientific Corporation, Waltham, MA).  DNA 

concentration was adjusted to 10ng/µl for marker analysis.   

 

Molecular Markers 

 

The random amplified polymorphic DNA (RAPD) protocol optimized by Levi et 

al. (1993), with slight modifications, was used for PCR-based analysis of RAPD, 

sequence characterized amplified region marker (SCAR), cleaved amplified polymorphic 

sequences (CAPS), inter simple sequence repeat (ISSR), sequence-tagged sites (STS), 

high-frequency oligonucleotides-targeting active genes (HFO-TAG) (Levi et al., 2010) 

markers.  All RAPD markers were annealed at 48.50C, and HFO-TAG and ISSR markers 

were annealed at varying temperatures (Table 1.4).  Ten µl reactions were composed of 

5.3µl dH2O, 1μl reaction buffer (200 μM NaCl, 500 mM Tris-HCl pH 9, 10% Triton-X-

100, 0.1% Gelatin), 0.8µl MgCL2 [25mM] (Promega Corporation, Madison, WI), 0.8µl 
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dNTP Mix [2.5 mM] (Life Technologies, Carlsbad, CA), 0.1 Taq 5u/µl (GoTaq® DNA 

Polymerase; Promega Corporation, Madison, WI; FIREPol® DNA Polymerase; Solis 

Byodyne, Tartu, Estonia), 1µl DNA 10ng/µl and 1µl primer [10µM].  HFO-TAG primers 

and FOM1 (Wechter et al., 1998) (1µl per 24-mer) PCR samples used 2µl primer [10µM] 

and 4.3µl dH2O. Samples were amplified via a MJ Research PTC 200 thermocycler (MJ 

Research, Waltham, MA) set to an initial denaturing at 94oC for 4mins followed by 45 

cycles: 92°C for 60sec (denaturation), 48.5°C (varied for ISSR and HFO-TAG markers) 

for 70 sec (annealing), and 72°C for 120sec (elongation).  FOM1, composed two 24-mer 

primers MUSKFOM I (5’TCGACCAGACGAAGTTCTTCGAGC3’ ) and MUSKFOM II 

(5’GAACTAAGGTCACGTTTATCGATC3’), was amplified using an initial 96oC for 

5min followed by 37 cycles and a last 5min 72oC extension: 94°C for 60sec 

(denaturation), 68°C for 60 sec (annealing), and 72°C for 120sec (Wechter et al., 1998).  

Samples were then removed and prepared for agarose gel electrophoresis by adding 2 µl 

Blue/Orange Loading Dye, 6X (Promega Corporation, Madison, WI) to each 10µl 

sample.  One Kb DNA Ladder (Life Technologies, Carlsbad, CA) was used to estimate 

band size.  Electrophoresis was run at 180V for 90min at 40C on a HE99X Max 

Horizontal Unit (Hoefer Inc., Holliston, MA) using 1.5% agarose gel (Agarose BP160-

500; Thermo Fisher Scientific Inc., Waltham, MA).  Each marker was screened for 

polymorphism between the MR-1 and AY parents, and markers that produced strong 

polymorphisms were selected for mapping and run against the full population and 

parents.    
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Marker Nomenclature 

 

 RAPD markers (Operon Technologies, Alameda, CA) were designated by the 

prefix ‘OP’ followed by the Operon kit letter(s), Operon primer number, and amplicon bp 

(e.g., OPW07_650).  ISSR markers were designated by the prefix ‘ISSR’ followed by a 

number corresponding to Table 1.4 and amplicon bp (e.g., ISSR32_325).  HFO-TAG 

markers are designated ‘HFSW’ or ‘HFOWEC’ followed by a number corresponding to 

Table 1.4 and amplicon bp (e.g., HFSW67_900 and HFOWEC33_725).  The single 

SCAR is designated ‘FOM1’. 

 

Genotyping by Sequencing 

 

DNA aliquots of 89 MR-1 x AY RILs, 3 MR-1 plants, and 3 AY plants were 

submitted for to Cornell University Institute for Genomic Diversity (IGD) for 

Genotyping by Sequencing (GBS).  DNA was extracted using the ChargeSwitch gDNA 

Plant Kit (Life Technologies, Carlsbad, CA) from 100 mg of tissue from the same 59 

MR-1 x AY RILs used for agarose-based genotyping (above), 30 additional MR-1 x AY 

RILs, and three individual MR-1 and AY plants.  The tissues were first homogenized in 

1.5ml microcentrifuge tubes in a solution containing 100 µl Reagent A [300 mM CaCl2, 

15% polyvinylpyrolidone (10,000 average molecular weight) and ChargeSwitch Lysis 

Buffer], 100 µl 10% SDS, 2 µl RNase A, and 900 µl ChargeSwitch Lysis Buffer using a 
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FastPrep FP120 homogenizer (Thermo Fisher Scientific, Waltham, MA) with a ¼” 

Ceramic Sphere (MP Biomedicals, Santa Ana, CA) in each microcentrifuge tube.  The 

manufacturer's recommended protocol was then followed to completion.  For the 

quantification of DNA, 1ul of DNA was prepared using the Quant-iT™ dsDNA Assay 

Kit, broad range (Thermo Fisher Scientific Corporation, Waltham, MA) and quantified 

on a Qubit Fluorometer (Thermo Fisher Scientific Corporation, Waltham, MA). 

Concentrations over 100 ng/µl were diluted to 50-100 ng/µl by adding more 

ChargeSwitch Elution Buffer.         

DNA quality checks were conducted according to IGD instructions 

(http://sorghumdiversity.maize.cornell.edu/), and images submitted were for review.  

Once approved, 50 µl aliquots of the extracted DNA were pipetted into a 96 well plate 

(VWR 83007-374; VWR International, Radnor, PA) and sealed using PCR tube strip 

caps (VWR 20170-000; VWR International, Radnor, PA).  The samples were 

immediately placed on dry-ice and shipped overnight to Cornell University Institute for 

Genomic Diversity for GBS.  GBS data is pending receipt and results will not be 

presented in this thesis. 

 

Linkage Map Construction and QTL Analysis 

 

 The linkage map was constructed using JoinMap® 3.0 (Kyazma B.V., 

Wageningen, Netherlands), and linkage groups were assembled with a minimum LOD 

score of 4.0, Kosambi mapping function, with a recombination frequency of 0.4.  The 
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expected 1:1 segregation was tested using a chi-squared test to identify segregation 

distortion (p-value 0.01) (Zalapa et al., 2007), and markers exhibiting segregation 

distortion were excluded from linkage map construction.   

 QTL analysis was performed using the composite interval mapping function on 

WinQTL Cartographer 2.5 (North Carolina State University, Raleigh, NC).  Average 

sulfur ratings (0-4) (Appendix B) were considered trait values and directly used for QTL 

analysis.  Model 6 was selected using the forward regression procedure with a walking 

speed of 1cM and the default settings of a 10cM window and up to 5 background 

markers.  QTL significance was declared based on a 1,000 permutations at a p-value = 

0.05.  Confidence intervals (95%) were calculated automatically with at least 10cM 

distance between QTL, and R2 values were determined using the highest point within the 

confidence interval.   

 

Results 

 

 

Linkage Map Assembly 

 

 

 A total of 198 dominant markers (1 SCAR, 24 HFO-TAG, 25 ISSR, and 152 

RAPD) were assembled into 23 linkage groups of 59 MR-1 x AY RILs using the 

Kosambi function and a recombination value of 0.4 (Figure 2.2).  Out of 223 markers 

initially scored, 11 markers failed to map onto any linkage group and 14 showed linkage 

distortion using JoinMap® 3.0 (Kyazma B.V., Wageningen, Netherlands) χ2 analysis (p-

value 0.01) and were excluded.  Linkage groups were assembled using LOD 3 (102 
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markers) and LOD 4 (96 markers), and total map coverage was 400cM with the largest 

marker interval of 10 cM and an average interval of 2 cM.  Of the linkage-distorted 

markers, 8 were predominantly MR-1 and 6 were predominantly AY. The 198 markers 

mapped among the 59 individuals were equally distributed between the two parents: 

49.9% MR-1; 50.1% AY.  

 

Recombinant inbred line elemental sulfur tolerance screening 

 

 Varying degrees of sulfur phytotoxicity were observed among the MR-1 x AY 

RILs in both spray and vaporized experiments.  The phytotoxicity severity (0-4) of 107 

RILs incited by sulfur vaporization was dominated by resistant lines, with 77 lines 

asymptomatic and 25 lines showing some degree of symptoms (Appendix B; Figure 2.1).  

Of the susceptible lines, 0 lines rated at 1 (0-25% damage); 3 lines rated at 2 (25-50% 

damage); 8 lines rated at 3 (50-75% damage); and 14 lines rated at 4 (75-100% damage).  

In less susceptible lines (rating 1 & 2), the damage was an slow leaf bronzing and 

marginal necrosis that progressed from the lower mature foliage upward over the five day 

period leading to dry, brittle lower leaves, while upper expanding leaf tissue remained 

asymptomatic.  Of the highly susceptible lines (rating 3 & 4), MR-1 X AY F1 and MR-1 

showed symptoms of bronzing and even dry, brittle leaf tissue 24hrs after exposure and 

were rapidly damaged up to the youngest expanding and emerging leaf tissue by the end 

of the five day trial.  Intermediate susceptible plants that remained in sulfur conditions 

beyond the five day trial eventually succumbed to the upward damage (data not shown). 
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Resistant lines, AY, and control plants (in a sulfur-free greenhouse) remained 

asymptomatic.    

 

Comparing the Effects of Vaporization and Spray 

 

 Spray and vaporization application methods correlated (r = .97, p <  .0001, 

Spearman correlation), though sulfur spray did incite significantly less severity than 

sulfur vaporization across both planting dates (p = .0003; p < .0001) (Table 2.1).  This 

decreased severity of sprayed individuals compared to vaporized individuals is likely the 

result of dosage as arbitrary spray and vaporization rates were selected.  Phytotoxicity 

symptoms for sprayed lines were the same as vaporization.  Sulfur sprayed plants had 

visible foliar deposits of sulfur from the evaporation of sulfur-containing droplets which 

corresponded to pronounced areas of burning on some susceptible lines. Sulfur vaporized 

plants had no visible accumulation of sulfur and the only evidence that vaporization had 

occurred was a slight odor upon entry into the greenhouse.  Control plants remained 

asymptomatic.   

 

Effects of MR-1 Alleles on sulfur Susceptibility 

 

Sulfur resistant (Perlita, AY) and moderately susceptible (HBJ) lines significantly 

increased in susceptibility when crossed with MR-1 (Table 2.2).  (AY x MR-1) F1 and 

(MR-1 x HBJ) F1 plants increased from 1.0 to 2.9 and 1.3 to 3.3, respectively.  Perlita had 
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the largest increase (0 to 4) in sulfur susceptibility when crossed with MR-1, and the 

(Perlita x MR-1) F1 response to sulfur was similar to the MR-1 sulfur response.  Sulfur 

tolerance observed in Perlita corresponds to observations by Johnson and Mayberry 

(1980).  Jindaozi and RIL61 were included for comparison and were rated as 1.1 and 0 

respectively.  Control plants remained asymptomatic.  

 

QTL Analysis of RILS for Vaporized Sulfur 

 

 

 Of the 109 lines rated for sulfur tolerance one was excluded for segregation and 

seven only appeared one of the two planting dates because of low germination (Appendix 

B).  Phenotypic data, the average rating across the planting dates, was used for QTL 

analysis.  Of the mapping population of 59 individuals, 58 had sulfur data from at least 

one planting date, which was used for QTL analysis (Appendix C).  One line, 37, showed 

segregation across the two planting dates and was excluded from the analysis (data not 

shown).  Composite interval mapping, WinQTL Cartographer 2.5 (North Carolina State 

University, Raleigh, NC), detected two QTL affecting sulfur tolerance, st.1 and st.2, with 

opposite additive effects located on linkage groups 1 and 12, respectively (Table 2.3).  

QTL significance, LOD 2.8, was determined by using 1,000 permutations at p-value 0.05.  

The approximate positions of st.1 and st.2 on the linkage map are shown in Figure 2.2.  

Interestingly, the direction of allelic effects at two QTL was opposite.  The MR-1 allele at 

the stronger QTL, st.1, has a R2 value of 0.45 and an additive effect of 1.1, increasing 

susceptibility.  In contrast the MR-1 allele at st.2 has an R2 value of 0.18 and an additive 

effect of -0.8, decreasing susceptibility.   
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Discussion 

 

 

Varying degrees of sulfur susceptibility were observed with the most susceptible 

suffering rapid defoliation of all but the youngest leaf tissue and the most resistant 

showing slight bronzing and necrosis on mature leaves.  Other studies also report varying 

degrees of susceptibility and the distinct pattern of defoliation of leaf tissue starting on 

mature leaves and progressing upward toward young leaf tissue (Perchepied et al., 2004, 

Johnson and Mayberry, 1980).  The observations of this study and those reported by 

Johnson and Mayberry (1980) of phytotoxicity progression suggests that there is a 

developmental threshold that determines susceptibility of mature leaf tissue, though the 

exact mechanism of elemental sulfur tolerance in melon, as far as can be discerned, has 

yet to be elucidated.  However, it has been shown that the air pollutant sulfur dioxide 

(SO2) at high enough concentrations can lead to acute injury in cucurbits, affecting the 

mature leaves first (Sekiya et al., 1982), resembling symptoms of sulfur phytotoxicity.  

The young cucurbit leaf tissue SO2 tolerance mechanism has been explained as a 

heightened capability to reduce SO2 to, and emit, hydrogen sulfide (H2S), ridding excess 

sulfur.  In another study, cucurbits emitted H2S when exposed to excess sulfate through 

their roots and that when detached petioles were fed a sulfate solution, H2S emission 

increased substantially (Wilson et al., 1978).  In addition, it has been demonstrated that 

higher plants are able to directly metabolize foliar sulfur (Legris-Delaporte et al., 1987; 

Jolivet, et al., 1995; Williams and Cooper, 2004; Vitti et al., 2007; McGrath, 1986). 

However, the exact mechanism for phytotoxicity of sulfur in cucurbits is not explicit in 

the literature, but if direct oxidation of foliar sulfur is excessive, it could lead to the toxic 
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accumulation of sulfur compounds. If foliar sulfur occurs at significant levels in 

cucurbits, then it is conceivable that the biomechanical mechanism of H2S emission to 

expel excess sulfur could partly explain the observed sulfur tolerance of certain melon 

lines. Hence, it is possible that sulfur tolerance loci, st.1 and st.2, may affect melon H2S 

emission.     

MR-1 is known to be highly resistant to powdery mildew, downy mildew, 

Fusarium wilt Fusarium oxysporum  f.sp melonis, and Alternaria leaf blight, making it an 

excellent source for resistance breeding (Kuzuya et al., 2006; Thomas, 1986; Thomas et 

al., 1990); however, breeders will need to take measures to avoid inadvertent 

introgression of sulfur susceptibility.   The degree of sulfur susceptibility increase when 

MR-1 was crossed with relatively resistant varieties depended on the cross.  

Unexpectedly, when crossed with MR-1 the already susceptible HBJ only moderately 

increased in susceptibility, whereas completely resistant Perlita became as susceptible as 

MR-1 (Table 2.1).  

St.1 and st.2, appear to segregate independent of each other, as well as Alternaria 

resistance QTL (ac.1) and the Fusarium race 1 resistance marker, FOM1 (Wechter et al., 

1998) (Figure 2.2), indicating favorable conditions for selecting against the MR-1 allele 

at st.1. Indeed, the breeding value of MR-1 itself would be enhanced by the introgression 

of sulfur tolerance.  This could be accomplished through marker-assisted-backcrossing 

with MR-1 as the recurrent parent, or from the identification of elite lines among the MR-

1 x AY RILs.  In this regard, MR-1 x AY RIL6 has already been found to be sulfur 

resistant (Appendix B), resistant to Alternaria leaf blight (Appendix A), resistant to 
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powdery mildew race 1 (unpublished data), and has the SCAR marker for Fusarium wilt 

race 1 resistance.  Further testing will be required, but RIL6 could already contain all of 

the known fungal resistance of MR-1.    

Sulfur tolerance is an important trait for melon production that can be selected for 

by means of phenotypic assays using micronized sulfur application or vaporization.  

Additionally, st.1 and st.2 provide interesting insight into the underlying genetic structure 

of sulfur tolerance and the potential to accelerate sulfur tolerance breeding through MAS. 
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Tables and Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.1 Comparison of sulfur vaporization and sulfur spray tolerance 

ratings of a subset RILs with parental controls [MR-1, AY, and (AY x MR-1) 

F1]. 

   11/20/2013 Planting Date 1/31/2014 Planting Date   

 Line Spray Vaporization Spray Vaporization 

 2 3.0 3.8 1.2 3.0  

 18 0.0 0.0 0.0 0.0  

 21 4.0 4.0 2.5 3.8  

 23 0.0 0.0 0.0 0.0  

 29 3.3 4.0 1.0 3.3  

 30 0.0 0.0 0.0 0.0  

 31 0.0 0.0 0.0 0.0  

 44 4.0 4.0 1.0 3.0  

 AY 0.0 0.0 - 0.0  

 

(AY x MR-1) 

F1 2.5 3.1 - 3.3  

 MR-1 3.8 4.0 - 4.0  

Lines from two planting dates (1 = 11/20/2014; 2 = 1/31/2014) were tested.  

Each line included four test plant and one control plant. Tolerance ratings (0-

4) values, representative of the percent foliar damage after five days in a 

greenhouse with nightly sulfur vaporization or one spray application in a 

sulfur-free greenhouse.     
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Table 2.2 Sulfur vaporization tolerance ratings of three MR-1 

hybrids [(AY x MR-1) F1, (MR-1 x HBJ) F1, and (Perlita x MR-1) 

F1], parents (MR-1, AY, HBJ, and Perlita), Jindaozi, and RIL 61. 

  Line Total Plants Rating 

 (Perlita x MR-1) F1 23 4.0a 

 MR-1 20 4.0a 

 (MR-1 x HBJ) F1 20 3.3b 

 (AY x MR-1) F1 19 3.0c 

 HBJ 21 1.5d 

 Jindaozi 24 1.1e 

 Perlita 20 0.0f 

 AY 24 0.0f 

 RIL 61 22 0.0f 

Lines from two planting dates (1/22/2014; 1/31/2014) were tested.  

The effects of plant date and line x plant date were insignificant, so 

data across the planting dates were combined.  Tolerance ratings (0-

4) values, representative of the percent foliar damage after five days 

in a greenhouse with nightly sulfur vaporization.  Ratings with 

different letters indicate a significant difference (Fischer’s 

Protected LSD; P=0.05). 
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Table 2.3 QTL analysis of sulfur tolerance (St).    

 Trait QTL Linkage Group Position LOD R2  a 

 St st.1 LG1 6.0cM 5.56 0.30  0.95 

  st.2 LG12 14.7cM 3.30 0.18 -0.81 

 Additive effects, a, for the MR-1 allele are given. 
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Table 2.4 HFO-TAG (HFOWEC; HFSW) and ISSR sequence, annealing 

temperatures, and number of markers mapped. 

  Marker Sequence (5' -> 3') 

Annealing 

Temp oC 

Number of 

Markers 

 HFOWEC161 GACGGCCAGTCTCCGGCGA 50 3 

 HFOWEC170 GACGGCCAGTGCCGGCCA 50 1 

 HFOWEC33 GACGGCCAGTGCGGCGGAA 50 4 

 HFOWEC40 GACGGCCAGTTCGCCGTCG 50 1 

 HFOWEC46 GACGGCCAGTCCCTCCTCC 50 1 

 HFOWEC49 GACGGCCAGTGCCTCCTCC 50 1 

 HFOWEC65 GACGGCCAGTATCGCCGCCG 50 3 

 HFOWEC86 GACGGCCAGTTGCCGGCG 50 1 

 HFOWEC99 GACGGCCAGTGCGGCTGC 50 1 

 HFSW04 GGCGGCGG 48 1 

 HFSW113 GAGGCGGC 40 2 

 HFSW67 GCCGCTGC 45 5 

 HFWS112 GCCGCCTC 40 1 

 ISSR06 CTCTCTCTCTCTCTCTG 44 1 

 ISSR10 ACACACACACACACACT 50 3 

 ISSR11 ACACACACACACACACG 50 1 

 ISSR17 ACACACACACACACACGT 47 3 

 ISSR19 AGAGAGAGAGAGAGAGYC 52 1 

 ISSR21 GAGAGAGAGAGAGAGACTA 52 1 

 ISSR27 TGTGTGTGTGTGTGTGGA 50 2 

 ISSR31 ACACACACACACACACYA 50 1 

 ISSR32 TCCTCCTCCTCCTCCGT 50 3 

 ISSR33 ATGATGATGATGATGGA 50 1 

 ISSR35 GACAGACAGACAGACAGT 50 1 

 ISSR36 CTTCACTTCACTTCA 52 1 

  ISSR37 AGACAGACAGACAGACGC 50 1 
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Figure 2.1 Distribution of MR-1 x AY RILs and parental controls (above bars) according to 
vaporized sulfur tolerance ratings rounded to the nearest whole number.   
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Figure 2.2  Linkage map of 59 (AY x MR-1)  RIL and QTL locations (95% CI) for 

elemental sulfur tolerance (red), st.1 and st.2, and Alternaria resistance (blue), ac.1
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 Line 
Planting 
Dates 

Total 
plants 

Mean Lesion  
Area (mm2) 

 61 2 22 111 a  
 7  3 29 101 ab  

 17 2 17 100 a-c  

 9 2 41 90 a-e  

 45 2 20 89 a-e  

 96 2 23 88 a-f  

 59 4 40 87 b-d  

 29 2 21 86 b-h  

 44 2 20 85 b-g  

 82 2 21 85 b-h  

 5 3 45 85 b-f  

 50 3 35 83 b-h  

 28 3 35 82 b-i  

 18 3 44 80 c-j  

 55 3 55 78 c-k  

 39 2 21 77 c-m  

 13 2 27 75 d-o  

 80 3 34 73 d-n  

 99 3 30 73 d-o  

       

       

       

       

       

       

       

       

 

 
AY 9 136 72 e-l  

 41 2 20 72 d-p  

 36 2 11 72 d-q  

 11 4 22 72 d-o  

 51 2 19 71 d-q  

 37 2 18 70 d-r  

 16 2 23 67 d-s  

 15 3 35 64 g-t  

 12 2 32 64 f-u  

 88 5 56 63 j-s  

 68 2 23 62 g-w  

 115 2 21 61 h-x  

 85 3 40 61 j-v  

 14 3 31 61 j-v  

 78 2 23 60 i-x  

 46 2 41 60 k-x  

 64 2 26 59 i-y  

 67 2 23 59 j-z  

 10 2 31 58 j-aa  

 87 2 23 58 j-ab  

Appendix A 

 

Alternaria Resistance Screening of MR-1 x AY RILs 

 

Alternaria resistance screening of the RILs with parental checks [MR-1, AY, and (AY x MR-1) F1] on nine planting dates 
using an augmented block design.  Planting dates is the number of planting dates the line was tested and total plants is 
the number of plants tested across all planting dates.  Different letters indicate a significant difference (Fischer’s 
Protected LSD; P=0.05).     
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 Appendix A continued  

 Line 
Planting 
Dales 

Total 
Plants 

Mean Lesion  
Area (mm2)  

 72 3 27 58       l-y  

 23 2 32 57 k-ac  

 52 2 24 57 k-ae  

 57 2 19 57 k-ae  

 98 2 24 53 m-af  

 25 2 28 53 o-af  

 35 2 16 52 n-af  

 76 2 22 52 m-ag  

 40 3 25 51 p-af  

 49 3 38 50 p-ae  

 22 2 16 49 p-ah  

 71 1 14 49 l-ai  

 8 8 23 49 p-ah 
 62 2 19 47 q-ah  

 34 2 22 47 q-ah  

 60 2 21 46 r-ah 
 70 2 18 45 r-ah  

 43 2 15 45 r-ah  

 102 3 34 44 t-ah  

 32 2 8 44 s-ak  

 4 2 35 43 t-ak  

 79 2 20 43 s-ak  

 77 2 24 42 t-ak  

 1 3 17 42 u-aj  

 26 3 31 42 v-aj  

 31 2 16 42 t-ak  

 2 2 41 41 u-ak  

 92 2 23 41 u-ak  

 83 2 21 39 u-ak  

 24 2 22 39 w-ak  

 27 2 19 38 w-ak  

 54 2 18 38 w-ak  

 AYxMR-1 F1 9 120 37 af-aj  

 21 2 19 37 x-ak  

 56 2 20 36 y-ak  

 100 3 27 36 aa-ak  

 119 2 21 35 y-ak  

 33 2 33 35 aa-ak  

 86 2 23 34 z-ak  

 81 2 20 34 aa-ak  

 6 3 24 34        ad-ak 

 3 2 31 34 af-ak 

 30 2 21 33 ab-ak 
 65 3 32 33 af-ak 
 20 2 21 33 ad-ak  

 74 2 23 33 ac-ak  

 66 3 30 32 af-ak  

 58 2 24 32 af-ak 
 75 2 22 30 af-ak  

 19 3 43 30 af-ak 
 89 2 23 26 ah-ak  

 MR-1 9 138 25 ai-ak 
 93 2 19 20 aj-ak 
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Line 11/20/2014 1/8/2014 AVG 

1 -  4.0a  4.0  

2 3.0  3.8  3.4  

3 4.0  4.0  4.0  

4 0.0  0.0  0.0  

5 0.0  0.0  0.0  

6 0.0  0.0  0.0  

7 -  4.0  4.0  

8 4.0  4.0  4.0  

9 2.5  3.4  3.0  

10 1.6  1.8  1.7  

11 4.0  4.0  4.0  

13 0.0  0.0  0.0  

14 0.0  0.0  0.0  

15 0.0  0.0  0.0  

16 0.0  0.0  0.0  

17 0.0  0.0  0.0  

18 0.0  0.0  0.0  

19 0.0  0.0  0.0  

20 0.0  0.0  0.0  

21 4.0  4.0  4.0  

22 0.0  0.0  0.0  

23 0.0  0.0  0.0 

24 0.0  0.0  0.0 

 

 

 

 

 

 

  

25 4.0  4.0  4.0  

26 0.0  0.0  0.0  

27 0.0  0.0  0.0  

28 0.0  0.0  0.0  

29 4.0  4.0  4.0  

30 0.0  0.0  0.0  

31 0.0  0.0  0.0  

32 0.0  0.0  0.0  

33 0.0  0.0  0.0  

34 3.2  4.0  3.6  

35 0.0  0.0  0.0  

36 0.0  0.0  0.0  

38 0.0  0.0  0.0  

39 0.0  0.0  0.0 

40 3.7  2.8  3.2  

41 0.0  0.0  0.0  

43 0.0  0.0  0.0  

44 2.8  4.0  3.4  

45 3.8  4.0  3.9  

46 0.0  0.0  0.0  

47 0.0  0.0  0.0  

49 0.0  0.0  0.0  

50 2.5  2.8  2.6  

51 0.0  0.0  0.0  

Appendix B 

 

Sulfur vaporization resistance ratings of MR-1 x AY RILs 

 

Resistance ratings (0-4) values, representative of the percent foliar damage, were averaged across the testing dates and used 

for QTL analysis.    
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Appendix B continued 

Line 3/6/2014 1/8/2014 AVG 

52 -  3.0  3.0 

53 0.0  0.0  0.0  

54 0.2  0.0  0.1 

55 0.0  0.0  0.0  

56 0.0  0.0  0.0  

57 0.0  0.0  0.0  

58 0.0  0.0  0.0  

59 0.0  0.0  0.0 

60 0.0  0.0  0.0  

61 0.0  0.0  0.0  

62 0.0  0.0  0.0  

64 0.0  0.0  0.0  

65 0.0  0.0  0.0  

66 0.0  0.0  0.0  

67 0.0  0.0  0.0  

68 2.0  2.8  2.4  

69 0.0  -  0.0  

70 0.0  0.0  0.0  

71 0.0  0.0  0.0  

72 0.0  0.0  0.0  

74 -  0.0  0.0  

76 -  0.0  0.0  

77 0.0  0.0  0.0  

78 0.0  0.0  0.0  

79 0.0  0.0  0.0  

80 0.0  0.0  0.0  

81 0.0  0.0  0.0  

82 0.0  0.0  0.0  

83 0.0  0.0  0.0  

85 0.0  0.0  0.0  

86 0.0  0.0  0.0  

87 0.0  0.0  0.0  

88 0.0  0.0  0.0 

89 0.0  0.0  0.0  

92 0.0  0.0  0.0  

93 0.0  0.0  0.0  

95 2.8  3.0  2.9  

96 3.0  4.0  3.5  

98 0.0  0.0  0.0  

99 0.0  0.0  0.0  

100 0.0  0.0  0.0  

102 0.0  0.0  0.0  

104 3.8  4.0  3.9  

109 2.5  2.5  2.5  

111 0.0  0.0  0.0  

112 0.0  -  0.0  

114 0.0  0.0  0.0  

115 0.0  0.0  0.0  

117 0.0  0.0  0.0  

119 0.0  0.0  0.0  

121 0.0  0.0  0.0  

123 0.0  0.0  0.0  

131 3.8  4.0  3.9  

134 3.8  3.8  3.8  

135 3.5  3.2  3.4  

136 0.0  0.0  0.0  

137 0.0  0.0  0.0  

141 -  0.0  0.0  

146 1.5  2.5  2.0  

147 0.0  0.0  0.0  
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Appendix B continued 

Line 3/6/2014 1/8/2014 AVG 

148 3.8  4.0  3.9  

150 0.0  0.0  0.0  

160 3.8  3.8  3.8  

162 -  2.8  2.8  

AY 0.0  0.0  0.0  

AYF1b 2.6  3.1  2.9  

MR-1 3.9  4.0  3.9 
a Due to low germination, rating based on one plant. 
b (AY x MR-1) F1 
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RIL Gen Fruit Map Alternaria  Sulfur  

1 9  X X X 
2 9  X X X 

3 8 B X X X 
4 10  X X X 
5 9  X X X 
6 10  X X X 
7 7  X X X 
8 8 1 X X X 
9 9  X X X 
10 9  X X X 

11 8 1 X X X 
12 10  X X  
13 9  X X X 
14 9  X X X 
15 9  X X X 
16 7   X X 
17 10  X X X 
18 9  X X X 
19 10  X X X 

20 10  X X X 
21 7   X X 
22 10  X X X 
23 10  X X X 
24 9  X X X 

      
      
      
      
25 9  X X X 
26 10  X X X 

27 10  X X X 
28 9  X X X 
29 7 1 X X X 
30 8   X X 
31 8  X X X 
32 8  X X X 
33 8   X X 
34 8   X X 
35 8  X X X 

36 9  X X X 
37 10 A X X  

39 9  X X X 
40 8 1 X X X 
41 8 1 X X X 
43 9 B X X X 
44 9   X X 
45 8  X X X 
46 10  X X X 

47 6    X 
49 9  X X X 
50 8 1 X X X 
51 10  X X X 

Appendix C 

 

Overview of MR-1xAY RILs: Included in Genetic Map, Alternaria Resistance Screened, and Sulfur Resistance Screened  
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Appendix C continued 
RIL Gen Fruit Map Alternaria  Sulfur  

52 8  X X X 
53 9  X  X 
54 8  X X X 
55 10  X X X 

56 8  X X X 
57 10  X X X 
58 9  X X X 
59 10  X X X 
60 8 2 X X X 
61 7  X X X 
62 8 1  X X 
64 8   X X 
65 7 1 X X X 

66 8   X X 
67 7   X X 
68 7   X X 
69 6    X 
70 8 1  X X 
71 7 1 X X X 
72 7   X X 
74 7   X X 

75 7   X  
76 7   X X 
77 7 A  X X 
78 8 1 X X X 
79 8  X X X 

 
80 8  X X X 
81 7   X X 
82 7   X X 
83 7 2  X X 
85 8   X X 

86 8 2 X X X 
87 8   X X 
88 7  X X X 
89 8   X X 
92 7 1  X X 
93 8   X X 
95 6    X 
96 6   X X 
98 8   X X 

99 7   X X 
100 7   X X 

102 7    X 
104 6   X X 
109 6    X 
111 6    X 
112 6    X 
114 6    X 
115 6   X X 

117 6    X 
119 6   X X 
121 6    X 
123 6    X 
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Appendix C continued 
RIL Gen Fruit Map Alternaria  Sulfur  

131 6    X 
134 6    X 
135 6    X 
136 6    X 

137 6    X 
141 6    X 
146 6    X 
147 6    X 
148 6    X 
150 6    X 
160 6    X 
162 6    X 
148 6    X 

150 6    X 
160 6    X 
162 6       X 
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Appendix D 

 

Survey of Melon Genetic Maps 

 
Parents Population 

Type 

Number 

of Ind. 

Marker Types 

and Number 

Map 

Length 

(cM) 

Marker 

Density 

Linkage 

Groups 

Trait and QTLs Identified  QTL R2 Range & 

Mapping Method 

Reference 

TGR-1661 (agrestis) & 

Bola de O  

F2 195 AFLP- 188 

RAPD- 39 

SSR- 111 
SCAR, CAPS- 

14 

Trait- 2 

1285 3.6 14 Podosphaera xanthii race 1,2,5 

resistance- 1  

8.2-65.9% 

ICIM 

MQM 

(Yuste-

Lisbona, 

Capel et al. 
2011) 

Vedrantais & Songwhan 

Charmi 

F2 218 RFLP- 34 

RAPD- 64 

Isozyme- 1 
Trait- 5 

1390 13.3 14 N/A N/A (Baudracco-

Arnas and 

Pitrat, 1996) 

AR 5 & Harukei 3 RILs (F8-

F12) 

93 SSR-157 

SCAR/CAPS-7 

Trait-3 

877 5.3 20 Podosphaera xanthii resistance – 

2 

12-46% 

CIM 

(Fukino et 

al., 2008) 

Chinese Q 3-2-2 &Top 

Mark (cantalupensis) 

F2:3 116 SSR- 154 

CAPS- 8 

SNP- 7 
 

 

1095 6.5 12 Early Fruit Maturity (FM) - 3  

B-carotene (Flesh Color) - 3  

4-50% 

CIM 

(Cuevas, 

Staub et al. 

2009) 

PI414723 (subsp. agrestis 
var. momordica) & 

Dulce (subsp. reticulatus) 

RIL (F6-
F8) 

99 SSR-386 
SNP- 76 

INDEL- 6 

AFLP- 200 

1,222 2.7 12 Fruit Quality traits- 44 
Fruit Sugar- 6 

Carotenoid Content- 3 

.01-61.7% 
IM 

MQM 

(Harel-Beja 
et al., 2010) 

PI414723-S5 (var. 
acidulous) & Dulce (var. 

reticulatus) 

 

F2 112 SSR- 22 
RAPD- 46 

ISSR- 2 

Trait- 4 

  14 N/A N/A (Danin-
Poleg, 

Tadmor et al. 

2002) 

Piel de Sapo  & PI161375 F2 93 RFLP- 234 

AFLP- 94 

RAPD- 47 

SSR- 29 

ISSR- 5 

Isozyme- 2 
Trait- 1 

1197 3 12 N/A N/A (Oliver et al., 

2001) 

PI414723 (momordica) & 

Top Mark (cantalupensis) 

F2 113 RAPD-74 

AFLP-42 

ISSR-3 
SSR-16 

1421 7.9 24 N/A N/A (Silberstein, 

Kovalski et 

al. 2003) 
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RFLP-41   

Trait –3 

Ano2 & K413 F2 143 AFLP- 121 
SSR- 16 

STS- 3 

Trait- 2 

1014.2 7.1 12 Fruit length- 1 
Fruit width- 1 

Fruit shape- 4 

Center sugar- 1  
Edge sugar- 3 

Seed length- 2 

Seed width- 2 
Seed shape- 4 

Seed weight- 4 

6-56% 
CIM 

(Wang, Gao 
et al. 2011) 

MR-1 & Ananas Yokneum BC  
 

66 AFLP- 197 
RAPD- 6 

SSR- 1 

 

1942 10 20 N/A N/A (Wang et al., 
1997) 

USDA 846-1 & Top Mark RIL  (F6) 81 RAPD – 114 
SSR – 43 

AFLP – 32 

Trait – 1  

1116 5.9 15 Primary Branching - 6  
Fruit number - 9 

Fruit weight per plant- 12 

Average fruit weight per plot -5 
Mature fruit per plot - 5 

4-43% 
CIM 

(Zalapa et 
al., 2007) 

Vedrantais & PI124111 RIL (F6-

F8) 

120 AFLP- 28 

SSR- 45 
IMA- 12 

Trait- 2 

1150 4.2 35 Psuedoperonospora cubensis 

resistance - 9 
Podosphaera xanthii race 1 

resistance- 2 

Podosphaera xanthii race 2 
resistance- 2 

Podosphaera xanthii race 3 

resistance- 1 
Podosphaera xanthii race 5 

resistance- 1 

Golovinomyces cichoracearum 
race 1 resistance-1 

14-93% 

IM 
CIM 

(Perchepied, 

Bardin et al. 
2005) 

USDA 846 & Top Mark 

 

RIL (F7) 81 RAPD- 104 

AFLP- 29 
SSR-111 

CAPS- 7 

SNP- 4  
Trait- 1 

 

1180 4.6 12 B-Carotene- 7 8-31% 

CIM 

(Cuevas et 

al., 2008) 

Piel de Sapo & PI161375 DHL, F2  77, 93 RFLP- 226 

SSR- 97 
SNP- 3 

Trait- 1 

1021 3.1 12 N/A N/A (Gonzalo et 

al., 2005) 

Piel de Sapo & PI161375 DHL, F2  77, 93 107 992 9.3 12 Earliness- 9 
Fruit shape- 8 

Fruit weight- 6 

7-34% 
CIM 

(Monforte et 
al., 2004) 
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Sugar Content- 5 

External color- 1 
Flesh color- 2 

Deltex (reticulatus) & 

TGR1551 (PI482420) 

F2 108 RAPD-  

Deltex- 171 

TGR1551- 138 
Combined-76 

Trait-1 

1182 

1163 

1394 
 

6.9 

8.4 

18.3 

12 

12 

12 

Sucrose- 6 

TSS- 3 

RSTS- 4 
Ascorbic Acid- 1 

N/A (Park, 

Hwang et al. 

2009) 

Vedrantais & PI161375 
 

 

Vedrantais & PI414723 
 

 

 
 

 

Composite Map 
 

RIL (F6-
F7) 

 

 
RIL (F6-

F7) 

163 
 

 

63 
 

 

 
 

 

226 
 

AFLP- 346 
IMA- 113 

 

AFLP-233 
IMA- 65 

SSR- 5 

RFLP- 2 
Trait- 13 

 

668 

1411 
 

 

1180 
 

 

 
 

 

1654 

3.2 
 

 

3.7 
 

 

 
 

 

2.5 

12 
 

 

19 
 

 

 
 

 

12 

N/A N/A (Perin et al. 
2002) 

Piel de Sapo & PI161375 DHL  14 SNP- 200 

RFLP- 80 

SSR- 212 
SNP- 3 

Trait- 35 

1240 2.35 145 bins N/A N/A (Deleu et al., 

2009) 

Piel de Sapo & PI161375 DHL 14 RFLP- 80 
SSR- 212 

SNP- 3 

Trait- 1 

1244 4.2 122 bins N/A N/A (Fernandez-
Silva et al., 

2008) 

Vedrantais & PI161375 RIL 190 SSR- 88 

AFLP- 98 

ISSR- 17 
RFLP- 5 

RAPD- 3 

Trait- 5 

1312 6.1 12 Aphis gossypii resistance- 6  

Bemisia tabaci resistance- 2 

 

2.9-71% 

CIM 

(Boissot et 

al., 2010) 

Vedrantais & Isabelle RIL (F6-
F8) 

120 AFLP- 39 
SSR- 45 

IMA- 46 

SCAR- 2 

641 4.9 16 Fusarium oxysporum f. sp. 
melonis race 1.2- 9 

44-66% (total) 
CIM 

(Perchepied 
et al., 2005) 

USDA-846-1 & Top Mark RIL (F7) 81 RAPD – 114 

SSR – 43 

AFLP – 32 
Trait – 1  

1116 5.9 15 Soluble solid content- 10 

Mesocarp pressure- 8 

Fruit diameter- 6 
Seed cavity diameter- 9 

Cavity/fruit diameter- 9 

Fruit shape- 10 
Netting- 6 

4-29% 

CIM 

(Paris et al., 

2008) 
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4G21 (chinensis) & 3A832 

(saccherinus) 

F2  114 SRAP- 152 2077 13.7 12 N/A N/A (Wang et al., 

2007) 

Consensus Map N/A N/A SSR- 640 
SNP- 330 

AFLP- 252 

RFLP- 239 
RAPD- 89 

ISSR- 15 

INDEL- 16 
Trait- 11 

1150 .73 12 370 N/A (Díaz 
Bermúdez et 

al., 2011) 
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