
Clemson University
TigerPrints

All Theses Theses

12-2013

Knowledge Extraction from Work Instructions
through Text Processing and Analysis
Abhiram Koneru
Clemson University, abhirak@g.clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

Part of the Mechanical Engineering Commons

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized
administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Koneru, Abhiram, "Knowledge Extraction from Work Instructions through Text Processing and Analysis" (2013). All Theses. 1769.
https://tigerprints.clemson.edu/all_theses/1769

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1769&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1769&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1769&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1769&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1769&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/1769?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1769&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

KNOWLEDGE EXTRACTION FROM WORK INSTRUCTIONS THROUGH TEXT

PROCESSING AND ANALYSIS

A Thesis

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

Mechanical Engineering

by

Abhiram Koneru

December 2013

Accepted by:

Dr. Gregory M. Mocko, Committee Chair

Dr. Lonny L. Thompson

Dr. Mary E. Kurz

 ii

ABSTRACT

The objective of this thesis is to design, develop and implement an automated

approach to support processing of historical assembly data to extract useful knowledge

about assembly instructions and time studies to facilitate the development of decision

support systems, for a large automotive original equipment manufacturer (OEM). At a

conceptual level, this research establishes a framework for sustainable and scalable

approach to extract knowledge from big data using techniques from Natural Language

Processing (NLP) and Machine Learning (ML).

Process sheets are text documents that contain detailed instructions to assemble a

portion of the vehicle, specification of parts and tools to be used, and time study. To

maintain consistency in the authorship process, assembly process sheets are required to

be written in a standardized structure using controlled language. To realize this goal, 567

work instructions from 236 process sheets are parsed using Stanford parser using Natural

Language Toolkit (NLTK) as a platform and a standard vocabulary consisting of 31 verbs

is formed.

Time study is the process of estimating assembly times from a predetermined

motion time system, known as MTM, based on factors such as the activity performed by

the associate, difficulty in assembling, parts and tools used, distance covered. The MTM

compromises of a set of tables, constructed through statistical analysis and best-suited for

batch production. These MTM tables are suggested based on the activity described in the

work instruction text. The process of performing time studies for the process sheets is

 iii

time consuming, labor intensive and error-prone. A set of (IF <Verb> AND <object

type> THEN <MTM table>) rules are developed, by analyzing 1019 time study steps

from 236 process sheets, that guide the user to an appropriate MTM table. These rules are

computationally generated by a decision tree algorithm, J48, in WEKA, a machine

learning software package.

A decision support tool is developed to enable testing of the MTM mapping rules.

The tool demonstrates how NLP techniques can be used to read work instructions

authored in free-form text and provides MTM table suggestions to the planner. The

accuracy of the MTM mapping rules is found to be 84.6%.

 iv

DEDICATION

To my parents, Sarada and Gandhi. For their unconditional love towards me, I

will be forever grateful.

 v

ACKNOWLEDGMENTS

First and foremost I would like to express my deepest gratitude to my advisor, Dr.

Gregory Mocko, for his continual support and guidance throughout my time at Clemson.

I wish to thank BMW for funding this research and Dr. Killian Funk for his valuable

suggestions on the project. I would also like to thank Dr. Lonny Thompson and Dr. Mary

Beth Kurz for serving on my committee. A special thanks to the faculty and members of

the CEDAR group for their feedback and encouragement.

I would like to take this opportunity to acknowledge all those who have

contributed in any way, shape or form to the completion of this thesis. A special mention

goes out to the people who contribute to Stack Overflow.

Last but not least, I would like to thank all my friends without whom this thesis

would have definitely finished earlier.

 vi

TABLE OF CONTENTS

Page

Abstract ... ii

Dedication .. iv

Acknowledgments... v

List of Tables ... viii

List of Figures ... x

Chapter One : Motivation and Research Objectives ... 1

1.1 Motivation and Research Objectives .. 2

1.2 Research Objectives Overview ... 4

1.3 Thesis Outline ... 6

Chapter Two : Background and Literature Review .. 8

2.1 Current trends in automotive industry .. 8

2.2 Text Mining .. 15

2.3 Chapter Summary ... 17

Chapter Three : NLP and machine learning approach to extract knowledge from process

sheets ... 18

3.1 Natural Language Processing (NLP) .. 24

3.2 Natural Language Toolkit (NLTK) ... 28

3.3 Text classification ... 33

3.4 WEKA, machine learning workbench .. 41

Chapter Four : Development and Implementation of the Natural Language Processing

(NLP) and Machine Learning (ML) tools ... 49

4.1 Building standard vocabulary and object type classifier .. 49

4.2 MTM mapping rules ... 58

4.3 MTM table generator - GUI to generate MTM table for work instructions 70

 vii

Chapter Five : Testing and validation of tools devloped .. 76

5.1 Validation of Object type classifier .. 76

5.2 Comparisons of WEKA classifiers – JRip, PRISM, and J48 78

5.3 Validation of MTM mapping rules generated through WEKA 79

5.4 Chapter Summary and Conclusions .. 84

Chapter Six : Conclusions and Future work ... 86

6.1 Summary of tools developed to address the research objectives 86

6.2 Broader impact .. 87

6.3 Future Work .. 89

References ... 91

Appendices .. 96

Appendix A: Standard verb vocabulary and MTM mapping rules validation 97

Appendix B: Python program scripts.. 105

 viii

LIST OF TABLES

Table 2.1: Sample MTM Table ... 14

Table 3.1: Obtaining time estimates for sample work instruction statement 21

Table 3.2: Sample MTM mapping rules ... 23

Table 3.3: Analyses in parsing process ... 25

Table 3.4: Sample PoS tag set... 26

Table 3.5: Sample syntactic tag set ... 26

Table 3.6: Compound work instructions split into single action work instructions 29

Table 3.7: Sample edited work instruction text .. 32

Table 4.1: Number of work instructions considered for analysis 52

Table 4.2: Sample set of most frequent verbs ... 53

Table 4.3: OPR classification ... 54

Table 4.4: Sample list of standard verbs ... 55

Table 4.5: Dataset before and after oversampling .. 57

Table 4.6: Number of TVGs and time study steps considered for analysis 60

Table 4.7: Edited time study text .. 61

Table 4.8: Decision trees with varying minimum number of object instances 65

Table 4.9: Decision trees with varying confidence factor .. 65

Table 4.10: Parameters for decision tree pruning ... 66

Table 4.11: Statistics of accuracy and size of decision tree .. 66

Table 4.12: MTM rules - Level 1.. 68

Table 4.13: MTM rules - Level 2.. 69

Table 4.14: MTM rules - Level 3.. 70

Table 5.1: Validation of object type classifier using random split method 77

Table 5.2: Validation of object type classifier using k-fold cross validation 77

Table 5.3: Comparison of accuracy - Random split vs. Cross validation 77

Table 5.4: Summary of results - JRip, PRISM, and J48 ... 78

Table 5.5: Results from testing MTM table generator .. 80

Table 5.6: Relationship matrix between MTM tables identified from TVGs and MTM

tables estimated by MTM generator for test time study steps .. 83

 ix

Table 5.7: Summary of results .. 84

 x

LIST OF FIGURES

Page

Figure 1.1: Framework to extract knowledge from unstructured data 5

Figure 1.2: Thesis outline ... 6

Figure 2.1: Schematic representation of an assembly line .. 10

Figure 2.2: Sample process sheet .. 11

Figure 3.1: Sentence structure of work instructions ... 19

Figure 3.2: Parse tree of sample sentence ... 27

Figure 3.3: Parse tree of sample sentence in upper case ... 29

Figure 3.4: Parse tree of sample sentence in sentence case .. 30

Figure 3.5: Incorrectly tagged WI text .. 31

Figure 3.6: Accurately tagged WI text .. 32

Figure 3.7: Schematic representation of text classification .. 34

Figure 3.8: Input vectorization .. 37

Figure 3.9: WEKA Explorer user interface .. 42

Figure 3.10: Sample ARFF dataset ... 43

Figure 3.11: Sample tree graph ... 45

Figure 3.12: Options window to alter parameters of the J48 algorithm 46

Figure 4.1: Process flow illustrating extraction of verbs and objects 50

Figure 4.2: Extraction of verb and object from sample work instruction 52

Figure 4.3: Development of object type classifier .. 57

Figure 4.4: Process flow illustrating the generation of MTM rules 59

Figure 4.5: Examples of discarded time study steps ... 60

Figure 4.6: Development of MTM mapping rules using a sample time study step 64

Figure 4.7: J48 decision tree with output .. 67

Figure 4.8: Sample rule format ... 67

Figure 4.9: Process flow illustrating the generation of MTM tables 71

Figure 4.10: Screenshot of the GUI .. 73

 xi

Figure 4.11: Screenshot illustrating the MTM tables generated for sample work

instructions .. 74

Figure 4.12: MTM table generation for sample work instruction 74

 1

CHAPTER ONE: MOTIVATION AND RESEARCH OBJECTIVES

The objective of this thesis is to design and implement an automated approach to

support processing of historical assembly data. Specifically, this thesis aims to extract

useful knowledge about assembly instructions and time studies to facilitate the

development of decision support systems, for a large automotive original equipment

manufacturer (OEM). This will reduce the cognitive load on the planner by providing

decision support during the generation of assembly time estimates. This is achieved by

employing the tools and techniques from Natural Language Processing (NLP), Data

Mining (DM) and Machine Learning (ML).

Assembly process sheets or process sheets are documents that contain detailed

steps, known as work instructions, to assemble a portion of the vehicle, specification of

parts and tools to be used, and time study. The consistency in the process sheets can be

maintained by standardizing the authorship process through the use of a standardized

structure and controlled language. To develop a controlled vocabulary, an automated

approach to extract information is required.

Time estimates for each activity described in the process sheets is carried out to

perform line balancing. The time estimates are obtained from a pre-determined motion

time system containing tables describing various activities. Assigning assembly time

estimates is an arduous task dealing with ambiguity. By providing decision support

(directing the planner to an appropriate table in the time standards) and automating the

process of assigning assembly times estimates, the user effort can be reduced.

 2

1.1 Motivation and Research Objectives

This section provides a brief overview of the research objectives and the issues

that are being addressed. A detailed description and the outcomes of each objective will

be presented in further chapters.

1.1.1 Research Objective One

The first research objective is to establish an automated approach to extract

information from assembly process sheets written using unrestricted grammar and

vocabulary [1–4]. The framework processes the unstructured assembly instructions

and captures knowledge to develop a controlled vocabulary of verbs to aid in the

standardization of process sheet authorship.

An assembly process sheet includes a complete set of instructions describing the

sequence of operations to be performed. Authoring assembly process sheets is a labor

intensive process and prone to possible human errors and ambiguity. Currently the

process sheets are authored without any restriction on grammar, structure and controlled

language. Also the level of detail in assembly instructions greatly varies based on the

planner authoring the process sheet. This non-uniformity in authorship between planners

leads to inconsistency in process sheets. To address this problem, Peterson[4] has

proposed a system to author process sheets using standardized structure and controlled

language. The standard vocabulary for the controlled language was developed from data

acquired from a sample set of existing process sheets. The individual process sheets have

been analyzed and the required information was extracted. This process was performed

manually and therefore is a time consuming and error-prone process. Also, manual

 3

extraction of information is not suitable when dealing with many process sheets. The

purpose of first research objective stems directly from trying to automate the process of

knowledge extraction. The system must be quick, capable of analyzing large amounts of

data, and flexible to accommodate different formats in authorship while requiring less

effort from a user.

1.1.2 Research Objective Two

The second research objective is to develop decision support system using

machine learning to aid the planner in estimating assembly times for the work

instructions authored in the process sheets.

The process of standardizing work instruction authoring brings about a viable

opportunity to estimate assembly times. Renu [5] has explored this area and developed

decision support tools to reduce the effort expended by planner during assembly line

planning. The assembly time for work instructions is estimated based on the activity to be

performed by the associate, from a predetermined motion time system called MTM [6].

Large automotive manufacturers use adapted versions of the MTM for time estimation.

The MTM compromises a set of tables, constructed through statistical analysis of

historical data. The planner is provided suggestions regarding the MTM table based on

rules developed by manually analyzing time studies from existing process sheets. The

data analyzed to generate these rules can be overwhelming and be continuously

expanding. Manual generation of the rules could lead to loss of information that is not

explicit. Also only a small sample set of process sheets were analyzed for generation of

rules. The second research objective addresses this issue by developing a decision

 4

support system to automatically and computationally form rules, to assist planners in

assembly time estimation, with the support of machine learning algorithms and data

analysis. The method must be able to process new information added on a regular basis

and generate knowledge for decision support that is reliable.

1.1.3 Research Objective Three

The third goal of this research is to develop and implement a decision

support tool to enable testing of the MTM mapping rules that are generated from

research objective two. The tool is provided with a GUI to demonstrate how NLP

techniques can be used to read work instructions, written in free-form text, and

provide MTM table suggestions to the planner.

The tools developed to address the first two research objectives are integrated to

develop a decision support tool. To standardize the authorship of process sheets Peterson

[4] used text element structures in the controlled language. This system restricts the

planner’s input and the planners cannot freely author process description. A system is

proposed that allows the planners to author work instructions in free form text.

1.2 Research Objectives Overview

The first research objective aims to develop a system capable of extracting

information from thousands of process sheets.. The second research objective aims to

develop a decision support system to automatically form rules that aid the planner in

assembly time estimation. The outcome of the first two research objectives is to

transform unstructured data into useful knowledge that can be utilized to develop tools to

 5

better the processes in domains handling large amounts of data. The third research

objective presents the development and implementation of a tool to test and validate the

knowledge generated from research objective two. Figure 1.1 illustrates the framework to

extract knowledge from unstructured data. The three research objectives are outlined.

Figure 1.1: Framework to extract knowledge from unstructured data

 6

1.3 Thesis Outline

Error! Reference source not found.A summary of the thesis is included in

Error! Reference source not found..

Figure 1.2: Thesis outline

The necessary background and introduction to the current work and processes is

included in Chapter Two. Current literature in related research fields is reviewed to better

•Background on current processes and issues encountered

•Overview of related literature

CHAPTER TWO: BACKGROUND AND LITERATURE
REVIEW

•Introduction of the NLP tools to address the issues encountered

•Introduction to machine learning software to automate the process of
knowledge development

CHAPTER THREE: NLP AND MACHINE LEARNING
APPROACH TO EXTRACT KNOWLEDGE FROM
PROCESS SHEETS

•Process plan to serve as a guide to realizing the tools

•Implementation of NLP techniques to extract knowledge from
process sheets

•Integration of NLP techniques and ML tools to develop decision
support for systems

CHAPTER FOUR: DEVELOPMENT AND
IMPLEMENTATION OF THE NATURAL LANGUAGE
PROCESSING (NLP) AND MACHINE LEARNING (ML)
TOOLS

•Validation of results obtained from tools

CHAPTER FIVE: VALIDATION AND TESTING

•Limitations and drawbacks of the tools

•Further research for improvement

CHAPTER SIX: CONCLUSIONS AND FUTURE WORK

 7

understand the problems at hand. Best possible methods to address these issues are

highlighted.

Chapter Three introduces the NLP tools that are used to perform the necessary

operations to extract knowledge from the process sheets. A brief description of WEKA, a

machine learning software, is provided. WEKA is used to automate the process of

developing knowledge for the decision support tools. A deatiled discussion on each of the

tools and the tasks involved is provided and how these tools are inegrated to achieve the

desired result.

The development of the tools to realize the two research objectives is presented in

Chapter Four. A process plan detailing how each phase serves to solve the problems

identfied is presented. The chapter concludes with the implementation of the tools that

are developed. A GUI is developed that integrates the tools to direct the planner to an

appropriate MTM table based on the work instruction entered.

Chapter Five deals with testing and validation the tools developed in chapter four.

The results obtained from the tools are checked against existing data and decision support

tools to validate the accuracy of the tool.

The closure for the thesis is presented in Chapter Six with a summary of the tools

developed to address the research objectives and the broader reach of the work. This

section identifies certain limitations and drawbacks of the developed tools and provides a

brief discussion on future work.

 8

CHAPTER TWO: BACKGROUND AND LITERATURE REVIEW

This chapter provides the necessary background regarding the current assembly

process in automotive industry. The literature of relevant topics is reviewed to determine

the preferred approach to support the development of tools to address the issues outlined.

2.1 Current trends in automotive industry

The current automotive market is highly competitive, characterized by intense

competition and increasing demands for innovative and customer-oriented products.

Recent automotive manufacturing trend has seen a shift from mass production to a JIT

(Just-In-Time) production to meet the demands of a more wide and diverse customer base

[7]. The customer requirement for product variety needs flexible and intelligent

manufacturing systems to be integrated to the current manufacturing processes to achieve

low-cost of production, high product variety, high productivity and short delivery times

[8].

The application of Artificial Intelligence (AI) in automotive industry is seen in a

wide variety of domains ranging from design, manufacturing, and vehicle functionalities

[3]. Recent advances in CAD and Artificial Intelligence (AI) have further augmented the

manufacturing process by presenting opportunities to perform assembly planning by

functional precedence and connectivity relationships [9].

The integration of AI systems in manufacturing processes in automobile

industries has seen development of applications in areas such as machine translation of

 9

process sheets, robotic alternative to manual operation, and ergonomic analysis of

assembly process [3,10,11].

Abdullah et al. [12] point out that almost half of all production work comprises of

assembly process and assembly costs amount to 50% of the entire production cost. There

is immense scope of cost cutting, workforce reduction and effective management in the

assembly process of automotive industry. Therefore there has been much research in

development of tools to improve the assembly planning process.

Rychtyckyj [1–3,11,13] discussed the development of a knowledge based system,

known as Direct Labor Management System (DLMS), that supports and manages data

pertaining to all stages of the assembly planning process [1–3,11,13]. Process sheets are

formal documents that contain detailed instructions, called work instruction, to build a

portion of a vehicle. The DLMS allows planners to create process sheets using a

restricted vocabulary that are machine readable. The system makes use of AI to check for

any conflict among the instructions or ergonomic issues that can occur. The work

instructions are mapped onto MODAPTS, a predetermined time standard, to estimate the

time required to complete the activities. Furthermore, the system also provides the

capability of translating the process sheet to other languages to support activities in other

assembly plants that do not use the same language used for writing process sheets as their

main language [1,3,13]. Further discussion on assembly planning is provided in the

following section.

 10

2.1.1 Assembly Process Planning

In an automotive manufacturing industry, the product is carried through a

succession of workstations on moving flow line called an assembly line [12]. The

complete assembly of the vehicle is performed sequentially on this assembly line by

associates allocated to each workstation. This sequence of steps to complete the assembly

of a product based on the connectivity relationship of the parts or subassemblies is known

as assembly planning [12]. The process of assembly planning is a critical activity in the

final production of a vehicle. The cost of assembling a product can be minimized by

optimal process planning [14]. A schematic representation of an assembly line is shown

in Figure 2.1. The base part moves from work station 1 to work station 4 along the work

flow. At each work station, a value adding task is performed and the final product is

obtained at the end of the assembly line.

Figure 2.1: Schematic representation of an assembly line

The result of the assembly process planning is the assembly process sheet.

Process sheets convey the vehicle assembly information from the process planning

department to the shop floor [1–3]. Process sheets, or TVGs, are text documents that

contain detailed instructions required to assemble a portion of the vehicle [1]. In addition,

process sheets also include information regarding the vehicle model, specifications of

parts and tools to be used, quality checks, and assembly time estimates. The complete

 11

assembly of a single vehicle requires about three thousand to five thousand process sheets

[15]. These process sheets are allocated to the respective workstations as a reference

document for the associates during assembly. Figure 2.2 shows a sample assembly

process sheet.

Figure 2.2: Sample process sheet

 12

To realize the automation of process planning, to support machine translation,

assembly time estimation, and perform ergonomic analysis standardization of information

contained within the process sheet is required. Peterson [4] developed a knowledge

database system to support standardization the process of creating process sheets, for a

global automobile manufacturer. Similar to Ford’s DLMS, Peterson [4] standardized the

process of authoring process sheets through controlled language and vocabularies. This

restricted use of language and syntax helps maintain consistency of the structure and also

the level of detail in the work instructions. The use of controlled language and its benefits

has been well documented in Ford’s Direct Labor Management System (DLMS) [1–3].

To develop the standard vocabulary, Peterson and colleagues analyzed a large number of

existing process sheets to extract the most frequently used action verbs to generate a

reduced standard list of verbs. This process can be automated to reduce the effort and

time consumed.

2.1.2 Assembly time estimation

The assembly planning activity is performed prior to the start of the vehicle

production [15]. This is crucial to optimize the layout of the assembly line, work

allocation, and efficient management of personnel. In the conventional method, a process

engineer records the time taken by personnel to complete the task. But this procedure is

time consuming and burdensome. Also when the personnel is aware that he is being

observed and evaluated, his performance can suffer and lead to miscalculation of the time

estimates [1,6]. To eliminate these issues, predetermined motion time systems have been

developed. Boothroyd and Dewhurst, MTM, and MODAPTS are few frequently used

 13

time standards [1,6,16]. The assembly time estimates obtained from the process sheets

allows the users to predict the total time taken to build the vehicle. This time estimation

for each assembly process allows planners to perform optimal line balancing, effectively

procure material, reduce costs incurred by carrying large inventories, and schedule for

shipment to customers, minimize storage costs.

Time study is the process of estimating the time required to carry out a certain

task. Maynard et al. [6] have developed a predetermined motion time system, known as

Methods-Time Measurement (MTM). The MTM comprise of a set of tables, constructed

through statistical analysis, that contain specific codes and time units for all value and

non-value adding manual activities that are performed during assembly process. Large

automotive manufacturers used adapted versions of the MTM as per their requirement.

Based on factors such as the task performed by the associate, difficulty in assembling,

parts and tools used, and distance covered the planners assigns each work instruction a

time estimate by traversing through the tables. Each MTM table consists of various

options that the planner has to narrow down in order to select one code and

corresponding time units that relates to the activity described in the work instruction. A

sample table from the MTM is shown in Table 2.1.

 14

Table 2.1: Sample MTM Table

GET AND PLACE Distance

range in cm

<20 >20

< 50

>50

Weight Conditions Place accuracy Code 1 2 3

< 1 kg Easy Approximate AA 20 35 50

Loose AB 30 45 60

Tight AC 40 55 70

Difficult Approximate AD 20 45 60

Loose AE 30 55 70

Tight AF 40 65 80

> 1 kg < 8 kg Approximate AH 25 45 55

Loose AJ 35 55 65

Tight AK 45 65 75

> 8 kg < 22 kg Approximate AL 80 105 115

Loose AM 95 120 130

Tight AN 120 145 160

Manually performing time studies for all the process sheets involved in the

complete assembly of an automobile is a tedious process. There is a need to automate the

process of estimating the assembly time. This need has been addressed by Ford’s Direct

Labor Management System (DLMS). Ford’s DLMS uses standard language, known as

SLANG to construct all work instructions [1,2]. By standardizing the work instructions

through standard vocabulary, the system is capable of reading and interpreting each work

instruction and assign time estimates. As mentioned earlier, similar work has been carried

out by Peterson [4] and Renu [5].

 15

Peterson’s [4] model to author process sheets using controlled language is

leveraged by Renu [5] to assign time estimates for each work instruction. Peterson’s

model, to standardize the process of writing work instructions and Renu’s tool, for

assembly time estimation are discussed in detail in the following chapter. The basic

elements that constitute a work instruction are Verb and Object. Renu’s decision support

tool gathers the verb and objects information from a work instruction and directs the user

to the MTM table based on a rule set developed from historical data. But these rules have

been developed manually from a small set of data. For effective utilization of the decision

support tool, the generation of rules must be automated and large amounts of data need to

be analyzed. The proposed research aims to bridge the gaps that are encountered. By

automating the process of extracting information from unstructured data and generating

rules through machine learning, this research further augments the work by Peterson and

Renu.

2.2 Text Mining

Exploitation of existing knowledge and knowledge acquisition are a key to

compete at a global level, in any industry. Text mining or text data mining is the process

of extracting useful knowledge from unstructured data. Text mining is a multidisciplinary

field, involving information retrieval, knowledge extraction, machine learning and data

mining [17].

Recent studies indicate that 80% of the data in an industry is stored in textual

format [17]. Though freely available, this data is not availed at the right time and in the

right manner and hence it is not utilized to its full potential. The reason is due the

 16

overwhelming nature of the data collected. This problem has been aptly coined as “rich

data, poor information” [18]. Large amount of data is accumulated from various sources

but no means to filter it into knowledge that can aid in decision making and enhance

productivity. It is evident that the availability of information and the ability to exchange

and process it is the key to success in global market [19]. Knowledge provides the means

to solve problems and predicting future market. Efficient knowledge acquisition

necessitates intelligent systems that are capable of gathering large amounts of

information and deduce patterns that are implicit.

2.2.1 Natural Language Processing (NLP)

As the interaction with computational machines is ever increasing, the need to

reduce the gap between man and machine is predominant. Researchers have observed

very early on that, a machine that can analyze and respond using natural language rather

than a machine language is much more effective and easier to interact with, from a user

perspective. This ideology has culminated into the research and development of systems

capable of processing natural language. Natural language processing (NLP) is the ability

of a system to understand, manipulate and communicate using natural language. The field

of NLP brings together tools and techniques from a number of disciplines, namely,

Artificial Intelligence (AI), linguistics, and computer science [20–22].

Research efforts into NLP have been ongoing for several decades and the roots

trace back to the early 1950’s [20,22–24]. Early application of NLP was seen in

automatic machine translation of phrases from one language to the other. This automation

 17

is a consequence of Turing’s model of algorithmic computation, considered to be the

foundation of modern computer science [20]. NLP involves design and implementation

of computer systems that can effectively read, understand and communicate in human

languages. The applications of NLP extend from speech recognition to cross-language

information retrieval.

The ability of Natural Language Processing (NLP) is exploited within the scope

of this research to extract information from assembly process sheets. Process sheets are a

classic example of a technical document written using natural language. NLP tools and

techniques are best suited to extract information from large unstructured process sheets

and transformed into knowledge to provide decision support within the manufacturing

domain. Further discussion on NLP tools and techniques used to extract knowledge from

process sheets are presented in Chapter Three.

2.3 Chapter Summary

This chapter provides an overview of the assembly process planning in the

automotive industry. The chapter presents how standardization of process sheets will aid

in automation of assembly time estimation process. The chapter concludes by describing

how Information Retrieval (IR) through NLP and Machine Learning (ML) can be used to

automatically extract information and develop knowledge for decision support tools.

 18

CHAPTER THREE: NLP AND MACHINE LEARNING APPROACH TO EXTRACT

KNOWLEDGE FROM PROCESS SHEETS

This chapter lays the framework to realize the research objectives and forms the

core of this thesis. To put this research in context, standardization of process sheets and

decision support tools to estimate assembly time are discussed in detail. This discussion

serves as an introduction to address the gaps identified.

To standardize the process of authoring process sheets, Peterson analyzed the

process sheets for the vocabulary used and the sentence structure used within work

instruction text. A process sheets contains work instruction, tools and parts used, time

studies, and other meta-information that range from details on allotment of the process

sheet to a certain assembly line and location to the diagrammatic representation of the

approximate location of the part in the vehicle. The information required to develop a

standard vocabulary and controlled language is contained in the section consisting

assembly work instructions.

A total of 236 process sheets have been analyzed for this purpose. Each process

sheet contains multiple assembly instructions, averaging about three to four instructions.

A total of 697 assembly instructions are gathered from the 236 process sheets. A list of

frequently used verbs that describe a unique action are gathered. Thus by identifying the

verbs used to describe the work instruction actions, a preliminary list of verbs to be used

in controlled language is developed. The standard vocabulary for verbs consists of 31

unique actions, each describing a certain action performed by the associate during the

assembly process. The sentence structure is developed, based on the existing work

 19

instructions, that is minimalistic while sufficient to clearly write a work instruction. The

standard sentence structure of the work instruction is shown in Figure 3.1.

Figure 3.1: Sentence structure of work instructions

Peterson [4] developed a process sheet authorship tool based on the controlled

language and standard vocabulary. The tool allows the planner to create work instructions

for a process sheet using a standard structure format with the help of drop down menus

and free form entry fields.

The process of developing a standard vocabulary required manual extraction of

verb from each work instruction. This time consuming activity can be simplified by the

NLP approach. NLP tools can be used to automatically read each work instruction from

the process sheets and find the verb that describes the primary action of the assembly

step. This method will also have the advantage of processing a large number of process

sheets in a significantly shorter time since it is a computational method.

In addition to extracting the verb, the primary object from each work instruction is

also extracted. This data is required to generate a tool (Object type classifier) which will

assist in the development of the decision support to estimate assembly time. Further

discussion on the object type classifier will be provided in further chapters.

Each process sheet has several work instructions that are carried out by an

associate on the shop floor for that particular assembly activity. The process sheet also

 20

contains a set of time study steps that list out all the time defining actions that will occur

during the assembly activity. Each time study step provides information on the time

required to carry out a certain action. The combined time of these time study steps

provides an estimate of the time required to complete all the assembly instructions

described within the process sheet. These time estimates are essential in any

manufacturing industry to perform optimal line balancing.

Currently the time studies for each process sheet are written by a planner by

observing an associate performing the assembly activity and recording the action steps.

The corresponding MTM tables are referred and each activity is denoted a code and time

units based on certain parameters. This process is labor intensive and time taking [1].

For example consider the work instruction – ‘Get and place bumper on car body’.

Presume the bumper weighs 3 kg and is place tightly onto the car body. The associate

moves 25 cm in order to pick up the part and place. The steps to determine a suitable

MTM code and time units for the work instruction is as follows.

Step 1: Select the appropriate MTM table based on the activity described. In this

case, the work instruction statement describes picking up a part and placing it on a sub-

assembly. Therefore, the MTM table ‘Get and Place’ is selected.

Step 2: The first column in the MTM table describes the weight of the part. Since

the bumper weighs 3 kg, the rows corresponding to the ‘Weight’ parameter (> 1 kg <

8kg) are chosen.

 21

Step 3: The type of fit is described as tight. Therefore in the ‘Place accuracy’

column, the option ‘Tight’ is chosen. The selection of ‘Weight’ and ‘Place accuracy’

parameters points to the MTM code ‘AK’.

Step 4: The user is provided with three choices for the time units. Since the

distance moved by the associate is 25 cm, the second column in the ‘Distance range’ is

selected and the corresponding time unit of 65TMU is obtained. MTM tables contain

time units in TMU (1 TMU = 0.036s).

The illustration to the example is shown in Error! Reference source not found..

he parameters and the time unit are highlighted.

Table 3.1: Obtaining time estimates for sample work instruction statement

GET AND PLACE Distance

range in cm

<20 >20

< 50

>50

Weight Conditions Place accuracy Code 1 2 3

< 1 kg Easy Approximate AA 20 35 50

Loose AB 30 45 60

Tight AC 40 55 70

Difficult Approximate AD 20 45 60

Loose AE 30 55 70

Tight AF 40 65 80

> 1 kg < 8 kg Approximate AH 25 45 55

Loose AJ 35 55 65

Tight AK 45 65 75

> 8 kg < 22 kg Approximate AL 80 105 115

Loose AM 95 120 130

Tight AN 120 145 160

 22

The process of selecting a MTM table based on the activity described in the work

instruction and determining a single MTM code based on the parameters is a tedious

process. To automate the process of performing time studies, Renu [5] has developed a

set of rules that direct the planner to the appropriate MTM table based on the information

gathered from the assembly instruction. This automation reduces the cognitive load and

repetitive work load on the planner. It is to be noted that these rules only direct the

planner to an appropriated MTM table. Work instructions do not contain all the

information required to narrow down to a single MTM code and time unit but sufficient

information to select a MTM table. Each MTM table has specific set of parameters that

drive the planner to single code. Information regarding the parameters is obtained from

other information sources such as CAD data, which is not within the scope of this

research. The MTM rules are a set of simple IF THEN rules, that utilize the verb and

object to determine the table. The MTM rules are in the format shown below.

IF <verb> AND <object> THEN <MTM table>

During the assembly of the vehicle, the associates interact with thousands of

objects. This would result in a huge list of rules, which is impractical. To reduce the

number and simplify the rules, five object types were created and all the objects belonged

to one and only one type. The five object types being – Part, Tool, Consumable, Fixture,

and Plant item. Each object is assigned to one object type and this resulted in a simplified

rules list as shown below.

IF <verb> AND <object type> THEN <MTM table>

 23

Therefore if the planner chooses the verb ‘Scan’ and an object with type ‘Part’,

the tool will direct the planner to the appropriate table, in this case ‘Marking and

Documenting’. These rules have been manually developed by analyzing 1019 time study

steps from 236 process sheets. The verb, object and the MTM table have been extracted

and the instances with highest frequency, derived through statistical analysis, are used to

form rules. These rules have a mapping accuracy of 75 %. A sample set of the rules are

presented in tabular form in Table 3.2.

Table 3.2: Sample MTM mapping rules

MTM mapping rules

Action verb

& Object Type MTM Table Name

Align

& Fixture Place

& Plant Item Place

& Tool Motion Cycles

Attach

& Consumable Working with Adhesives

& Fixture Get and Place

Clean

& Consumable Cleaning

Since manually extracting verb and object from each time study and then

assigning an object type for each of the extracted object is a burdensome task, NLP tools

can be utilized to process a large set of data in a very short time. Also, the rules when

developed manually are subject to human error. This can be avoided by using machine

learning algorithms to generate rules. Machine learning algorithms are capable of

processing large amounts of data and also bring out the implicit relationships between the

data that may not be noticed by a human.

 24

To better understand the underlying process of knowledge extraction, a brief

description of the NLP techniques and machine learning tools, that are used to develop

the decision support tools, is provided. These NLP techniques and machine learning tools

work in tandem to extract selected information from a large dataset and transform the

data into resourceful knowledge. The following section talks about Natural Language

Processing and few of the techniques within NLP.

3.1 Natural Language Processing (NLP)

The primary intent of NLP is to extract the meaning of text. Text can be a word,

statement, paragraph or an entire document depending on the analysis [25]. In process

sheets, this text is in the form of sentences. NLP provides tools to perform syntactic and

semantic analysis involving text using computational methods. Syntactic analysis is

performed to understand structure of the sentence. It involves the part of speech of the

words and parse trees [25]. Semantic analysis provides the meaning, which involves the

context of the sentence. It provides the relationship between the syntactic elements.

3.1.1 Parsing

Parsing is the process of breaking down text into its components, identifying the

part of speech (PoS), outlining the function and syntactic relationship between each

component based on the rules of formal grammar and generating a parse tree structure of

the text. Essentially parsing pertains only to the process of creating tree structures, but in

most cases the entire process is considered parsing. Parsing is preceded by two processes

– Tokenizing and Tagging. The first step involves splitting a sentence into single entities

 25

called tokens, by means of user-specified separator. In the second step, tagging, the

tokens are assigned a part of speech (PoS) depending on the nature of the token in the

sentence. A tree structure is then created based on the grammatical structure of the

sentence. The three analyses of the parsing process are shown in Table 3.3.

Table 3.3: Analyses in parsing process

Analysis Process Definition

Lexical Tokenizing Breaking down a sentence into single

entities, known as tokens.

Syntactic Tagging Assigning a part of speech (PoS) tag to

each of the tokens.

Syntactic Parsing Creating tree structures of the sentence.

The Stanford parser, developed by the Natural Language Processing Group

(NLPG) at Stanford University, is a computational implementation of a statistical parser.

The Stanford parser analyses the input sentence and constructs a constituent structure that

adheres to the syntax [26,27]. The Stanford parser provides Java implementations of

probabilistic natural language parsers. In this research, an unlexicalized PCGF

(Probabilistic Context Free Grammar) parser is used. The PCGF parser is provides in

three different languages apart from English – German, Chinese, and Arabic [26]. The

PCFG parser is trained on a large corpus consisting annotated text. Recent studies have

showed that unlexicalized parsers have higher accuracy than previously thought [26,28].

Klein and Manning’s [26] research has showed that unlexicalized parsers have a high

accuracy of 86.31%, almost as high as state-of-the art parsers.

The parser uses the Penn Treebank schema to denote phrasal categories and

annotate the text with Part of Speech (PoS) tags. The Penn Treebank is a huge corpus

 26

consisting of syntactically bracketed and PoS tagged texts. A list of twelve syntactic tags

and thirty-six Part of Speech (PoS) tags are used within the Penn Treebank and the

Stanford parser to syntactically bracket and annotate the text [29]. Table 3.4 and Table

3.5 show a sample of the PoS and syntactic tag set with their description.

Table 3.4: Sample PoS tag set

Tag Description

NN Noun

VB Verb

JJ Adjective

RB Adverb

CC Conjunction

IN Preposition

CD Cardinal number

Table 3.5: Sample syntactic tag set

The Stanford parser analyzes the input text and provides the user with various outputs –

phrase structure trees, typed dependencies, and plain PoS tagged tokens. The parse tree of

a sample sentence “The quick brown fox jumps over the lazy dog.” is shown below in

Figure 3.2

Tag Description

S Simple declarative clause

NP Noun phrase

VP Verb phrase

PP Prepositional phrase

 27

Figure 3.2: Parse tree of sample sentence

To develop the standard vocabulary and decision support for the tools, it is

required to establish a method to automatically extract the verb and object list from the

existing 236 TVGs. It is observed that in each of the assembly instruction and time study

step, the primary action is a verb (VB) and the object, the verb acts on, is a noun (NN).

The Stanford parser is leveraged to accurately tag the action verb and object from each

assembly instruction and time study step. A program is written in a suitable scripting

language to search for the VB and NN tags from each parsed sentence and extract the

corresponding tokens into a text file. A detailed discussion provided in the following

sections.

 28

3.2 Natural Language Toolkit (NLTK)

The NLTK is a software package for building Python modules to perform

linguistic research in Natural Language Processing (NLP). NLTK consists of a set of

NLP tools and that provides access to corpora and data manipulation. It provides a suite

of text processing libraries for tokenizing, tagging, parsing and classification. Large

number of text files can be imported through NLTK, analyzed and presented in a suitable

format.

The verb (VB) and noun (NN) tokens relate to the corresponding action verb and

objects in an assembly instruction or time study step. Therefore by parsing 236 process

sheets, the verb and object from each work instruction and time study can be extracted

thus avoiding manual work. The required information can be extracted from the parsed

work instructions and time study steps by a python code written using the library of

functions available in NLTK. But to process the text, certain amount of pre-processing

and editing is required to structure the statements. Further discussion on the required pre-

processing is provided below.

Due to the absence of a standard format, many work instructions have been

compounded into a single sentence, describing more than one activity to be performed.

For the purposes of ease and simplicity, these compound work instructions have been

separated into single action steps as shown in Table 3.6. Therefore each step represents

only one action to be performed by the associate. This is the first step in simplifying the

data for effective information extraction.

 29

Table 3.6: Compound work instructions split into single action work instructions

S.No Compound work instruction text S.No Single action work instruction

text

1 Take EMS hanger hook and attach

hanger hook to spring damper

1.a Take EMS hanger hook and

1.b attach hanger hook to damper

2 Get kim-wipe from line side and

apply isoproponal to wipe

2.a Get kim-wipe from line side and

2.b apply isoproponal to wipe

The Stanford parser requires the text input in a certain format to accurately tag

words. The work instructions from the TVGs do not follow a standard structure or

grammar; therefore it is crucial to perform certain text-preprocessing for effective

parsing. Figure 3.3 and Figure 3.4 illustrate the parsed tree structure for work instruction

in upper case and sentence case respectively. It is evident that the parser performs poorly

when the sentence is entered in upper case and tags each token as a noun, the default tag.

The parser performs better while the text is inputted in sentence case and accurately tags

each token with the appropriate tag. Therefore the work instruction text from the TVGs is

converted to a standard format with punctuation rules for better text analysis.

Figure 3.3: Parse tree of sample sentence in upper case

 30

Figure 3.4: Parse tree of sample sentence in sentence case

Parsers are trained on corpuses of hand-parsed and complete sentences and

therefore are able to almost accurately tag each token with a part of speech (PoS) [30].

The work instructions in the existing TVGs and written in bullet point grammar. The

parser cannot adequately identify all the PoS tags of the tokens in a sentence unless

additional information is provided. Figure 3.5 shows the token ‘Align’ is tagged as a

noun (NNP), highlighted in red. But in fact the token describes an action to be performed

by the associate and hence it is a verb (VB).

 31

Figure 3.5: Incorrectly tagged WI text

To address this issue, each work instruction is concatenated with the term “The

associate must” at the start of the sentence to provide contextual meaning. The edited

work instruction is parsed and the token ‘Align’ is accurately tagged as a verb (VB) by

the parser, highlighted in green in Figure 3.6.

 32

Figure 3.6: Accurately tagged WI text

All the work instructions are edited to a suitable format by simple text pre-processing so

as to be accurately parsed. The required data from the process sheets is imported into an

excel worksheet, edited and exported to a text file to be parsed. Table 3.7 shows a sample

of raw work instruction text that has been edited to obtain accurate PoS tags.

Table 3.7: Sample edited work instruction text

Raw work instruction text Edited work instruction text

MOVE TO BUMPER STILLAGE. The associate must move to bumper stillage.

ENSURE BUMPER IS FLUSH WITH FEN
DER

The associate must ensure bumper is flush with fender.

Get the correct roof rail from line side. The associate must get the correct roof rail from line

side.

 33

3.3 Text classification

Text classification is the process of categorizing text documents or text files

among a set of pre-defined groups [31]. Text classification of data is natural language

plays a pivotal role in information retrieval [32]. Text classification goes beyond regular

text categorization and document retrieval and finds its application in many real world

challenges such as sorting emails, sentiment detection, and search engines [32,33]. In

basic text classification, a text document or input is analyzed and then assigned a label

that is most appropriate [27]. The classification tasks are generally carried out by

machine learning algorithms that can identify certain attributes or features extracted from

the input and label the document based on the data the algorithm has been trained on.

A classification process which involves training a classifier model on pre-labeled

data is known as supervised learning. Therefore supervised learning requires a training

set to learn data properties [34]. The training data consists of text documents that are

manually pre-annotated with one or more labels. The feature extractor generates the

features and associates them with the relevant labels. The feature-label pair forms the

basis for the algorithm to generate the classifier model. The features from the test

documents are also extracted and the classifier model and are checked against the feature-

label pair and then assigned one or more labels. Figure 3.7 shows the schematic

representation of the classification process with supervised learning.

 34

Figure 3.7: Schematic representation of text classification

There are three types of text classification – binary classification, multi-class

classification, and multi-label classification. The binary classification involves classifying

a given input into either of the two available classes. Classifying a document into only

one of many labels is known as a multi-class classification. Essentially a multi-class

classification is an extension of binary classification and the same techniques can also be

applied to create a multi-class classifier. The third type of classification is the multi-label

classification, which involves classify the input into one or more labels. A multi-label

classifier can be developed by combining a binary classifier for each label [31].

 35

As discussed previously, each object is assigned one of the five object types that

are proposed. The rules are developed in the following format and consist of the elements

– verb and object type.

{ {

Each unique set of verb and object type narrows down the choice of MTM tables.

Therefore classification of objects into categories is required to provide a mapping

between the standard verb and the MTM table. Text classification is most suitable for this

purpose since it is memory efficient, versatile and a large training set is available. An

object type classifier is developed using the scikit-learn machine learning library to

categorize the objects into their respective classes [34]. The object type classifier is a

multi-class classifier that categorizes the objects into one of the five pre-defined object

types. The main process blocks of text classification are discussed below in detail.

3.3.1 Training dataset

In supervised learning, a training dataset is initially provided as an external data

source to the algorithm. Based on this dataset, the algorithm generates a model which

predicts the label for the test input based on the data properties of the training set [35].

The training set for the object classifier is a manually labeled set of 794 objects with their

respective object types. The training data is inputted as two arrays: an array of objects of

and an array of their corresponding object types [34].

 36

3.3.2 Feature extractor

Feature extraction from text document is a major component of the classification

process. A feature extractor analyzes the text data, identifies the data properties and

transforms them into numerical features. The training data for the object type classifier is

a list of objects with labels, and each object sample represents a document and the

features are extracted from the object.

Machine learning algorithms support only certain formats of the features extracted

from the datasets. And the format of the features is dependent on the type of algorithm

being used to build the model. For a multi-class classification, Support Vector Machines

(SVM) are preferred since they are more robust and its ability to process large data when

compared to conventional text classification methods [33,36]. Support Vector Machines

requires the features to be in the form of vectors [35]. Vectorization involves the process

of transforming text documents into a set of numerical feature vectors [34]. The training

data is vectorized using the modules provided by the scikit-learn library. Support Vector

Machines and machine learning will be discussed in detail in the following sections.

To convert the raw text into feature vectors the text documents are tokenized

using whitespaces as separators. The occurrence of the tokens in each document is

computed and finally the token are normalized and assigned weights based on their

occurrence and importance in the training documents. Each text document in the training

set is transformed into an array of numerical feature vectors as shown in Figure 3.8. The

training set is arranged into a matrix where each row denotes a text document and each

column denotes a feature. Each text document is represented as a binary vector with a

 37

value 1 if the document contains the feature and 0 if the feature does not appear [33]. The

vector matrix is provided as input to the algorithm.

Figure 3.8: Input vectorization

This process of feature set extraction is called the “Bag of Words” representation [31,34].

The bag of words representation is a collection of individual tokens, also called as

unigrams, which disregard word dependencies. Misspelling, phrases, multi-word

expressions, and word derivations are also not taken into consideration in bag of words

representation. To counter this drawback, a consecutive set of unigrams are considered,

known as n-grams representation, to include word dependencies. The feature extraction

module provides parameters that can be modified to extract meaningful features from the

data. The maximum and minimum number of characters for the n-grams, analyzer, and

cut-off parameters are set for the object type classifier.

 38

3.3.3 Machine learning

Machine learning deals with developing systems that are designed to learn and act

without being explicitly programmed. The systems adapt to solve a given problem by

utilizing sample data or past experience [37]. Text classification in machine learning

employs algorithms to generate a decision function that is learned automatically from the

data.

Support Vector Machines (SVM) was introduced by Vapnik [38] as a new

machine learning algorithm that maps the input data vectors onto a high dimensional

feature space and determining a separating hyper-plane between the classes [35,36,38].

They are based on the structural risk minimization principle, which involves finding a

hypothesis that guarantees the least true error [36].

SVMs provide functions to classify data that is not linearly separable, by mapping

the data on a higher dimensional space without the losing relatedness between the data

points. These functions are known as kernel functions [32]. The commonly used kernel

functions are linear, radial based function (RBF), polynomial, and sigmoid [35]. Kernel

functions are specified for decision functions and are capable of multi-class classification.

SVMs are designed to handle high dimensional feature spaces, as is the case of text

classification [34,36]. This is possible since SVMs use overfitting protection, which is

independent of the number of features. Each document contains only few 1s and mostly

0s, where 1 represents an occurrence of a feature and 0 represents that the feature does

not exist in the document. SVMs are capable of handling both dense and sparse vectors as

inputs [36].

 39

For a multi-class classification, two approaches are most common – one-vs-one

(OVO) and One-vs-all (OVA). In one-vs-one (OVO) approach, one classifier per each

pair of classes is constructed and the class which receives the most prediction score is

chosen. One-vs-all (OVA), one classifier per each class is constructed. Each class is fitted

against all the other classes and the class which classifies the test data with greatest

margin is chosen. OVA is the preferred approach for its simplicity, faster processing

time, and computational efficiency [32,34]. LinearSVC class with a linear kernel is used

to generate the object type classifier since it implements a One-vs-all (OVA) approach

[34].

3.3.4 Issues with text classification

Though text classification has been greatly advanced over the last decade, certain

issues are still open to research efforts. Most machine learning algorithms work well with

balanced datasets. But in the case of imbalanced datasets, the overall performance of text

classifier deprecates [39]. Imbalanced datasets refers to situations wherein there are far

fewer instances of one class when compared to the other class. This results in a skewed

classifier that leans towards the majority class. Though the overall accuracy is very high

due to the presence of a large dataset of the majority class, the minority class is

misclassified, which is usually a major concern. Imbalanced datasets are very common in

real world situations like gene profiling and fraudulent credit card detection [40]. The

imbalanced dataset problem has also been encountered while developing the object type

classifier, and hence requires addressing. Techniques to counter the effects of an

 40

imbalanced dataset, both at data level and algorithmic level, have been proposed. The

most commonly used and effective methods are discussed in the following section.

Some of the basic adjustments, done at the data level, to balance the datasets are

sampling techniques - under-sampling and over-sampling. In under-sampling approach,

the majority class is diminished by extracting a smaller set from the large set of data

while maintain the initial dataset of the minority class intact. Under-sampling greatly

reduces the training time but at the same time, a risk of information loss exists due to a

diminished dataset. Over-sampling is the exact opposite of the under-sampling process.

The size of minority class is expanded by replicating the initial instances to reduce the

imbalance ratio between the majority class and the minority class. Although this

technique avoids information loss, it does not address the issue that the minority class

lacks data. New data is not created; rather existing data is duplicated. Also, over-

sampling increases computational cost and the effect of labeling errors are greatly

multiplied [39–41].

Over-sampling is the preferred approach towards balancing the dataset for the following

reasons:

1. The object classifier deals with simple classifying tasks and therefore does

not require extensive, complex and computational costly algorithms.

2. Under-sampling of the training data causes further information loss.

3. As the sample data contains only one object for each instance, labeling

errors are almost nonexistent.

 41

3.4 WEKA, machine learning workbench

The Waikato Environment for Knowledge Analysis (WEKA) is a suite of Java

class libraries that aid in the application of machine leaning and data mining algorithms

to real world problems [42,43]. The principal algorithms in WEKA are the classifiers that

generate decisions trees and rule sets that structure the dataset. WEKA also provides tools

for data manipulation; visualization of results, cross-validation and comparison of rule set

[43]. The WEKA workbench brings together several established algorithms that include

decision trees, data clustering methods, feature selection and data filtering to a common

graphical user interface to extract useful information while providing flexibility to add

new algorithms as desired by the user. It allows the user to perform research pertaining to

data mining and knowledge extraction without burdening the user with machine learning

algorithms. The flexibility and user friendly interface of WEKA workbench is utilized in

this research to generate MTM mapping rules.

The primary graphical interface in WEKA is the “Explorer”, which provides easy

access to the various algorithms and functionalities [44]. The Explorer window has six

different panels that can be accessed from the tabs present at the top as shown in Figure

3.9: WEKA Explorer user interfaceFigure 3.9. The six panels are – Preprocess, Classify,

Cluster, Associate, Select attributes, and Visualize. A brief description of each panel and

the corresponding data mining tasks supported is presented below.

 42

Figure 3.9: WEKA Explorer user interface

WEKA accepts the data in various formats, including ARFF (Attribute-Relation

File Format) and CSV (Comma Separated Values). The ARFF format is WEKA’s native

file format and the preferred format used in this research. The ARFF format defines a

data set in terms of relation or a table with attributes or columns of data [45]. Figure 3.10

shows a sample dataset in ARFF format. The data can be loaded from a file or from a

database using an SQL query or an URL [44].

In the Preprocess panel, data is loaded and transformed using filters available. The

filters perform further preprocessing on the data such as delete certain attributes or row

 43

instances with a particular attribute value [46]. The Preprocess panel also provides a

histogram of the attributes and statistics of the dataset as seen in Figure 3.9.

Figure 3.10: Sample ARFF dataset

The second panel in WEKA Explorer interface is the Classify panel. It provides

the user with access to classification and regression algorithms for analysis. The panel

also provides cross-validation tools to analyze the outcome of the algorithm. The Classify

panel consists of various machine learning algorithms including decision trees, rule sets,

Bayesian classifiers, support vector machines, and nearest-neighbor methods [46]. The

Classify panel displays the result of the algorithm used on the data set and also provides

the performance of the classifier namely accuracy and confusion matrix.

Clustering is the process of grouping or organizing a set of objects or data

instances such that all the members in a group are closely related or similar to each other

than objects in other groups. The Association panel consists of algorithms for generating

association rules used to identify the relationships between the attributes of the data.

Association helps the user to identify the attribute that have the most impact on the

prediction model.

 44

WEKA provides several evaluation schemes to identify the most effective

attributes in a dataset. Cross validation allows validation of the selected set of attributes.

Evaluation methods involve latent semantic analysis and decision tree learner for a

specific subset of attributes [44,46]. The last panel in WEKA Explorer is the Visualize

panel. This panel allows the user to view the results of the analysis is various color coded

matrix of scatter plots.

3.4.1 Decision Trees

As discussed in the previous sections, the MTM mapping rules are formed by

extracting the verb, object and the MTM table from the time study steps and performing

statistical analysis of the extracted data to find patterns. But the manual generation of

rules is exhaustive and also certain implicit relationships can be easily overlooked. Also

there is a need to automate the process and establish a concrete method to extend it over

large set of data. The functionality of WEKA is utilized for this process.

The Classify panel in the WEKA Explorer consists of several machine learning

algorithms and generates simple rules using classification and regression analysis.

Decision trees are one of the most often used decision based classification algorithms for

their ease of use, understandability, ability to handle both numerical and categorical data,

and ability to perform well on large datasets [47–49]. Decision trees are supervised

learning algorithms. The main objective of a decision tree is to generate a model to

predict a target or output value based on several input variables provided. Decision tree

algorithms generate a tree like structure wherein each internal node represents a test and

each branch is an outcome. The leaf nodes represent the net result. Each path from the

 45

root node to the leaf node denotes a rule. Figure 3.11 shows a sample tree graph

generated by a decision tree algorithm.

Figure 3.11: Sample tree graph

WEKA contains several decision tree algorithms including Random Tree, J48,

Decision Stump, and Naïve Bayesian Tree. Zhao and Zhang [49] compared various

decision trees in WEKA using data gathered from astronomical surveys. Based on their

results, one of the best performing decision trees is J48 decision tree.

3.4.1.1 J48 decision tree

C4.5 is a widely used decision tree algorithm developed by Ross Quinlan

[50][51]. It uses the principle of divide-and-conquer to construct a decision tree structure.

The algorithm examines all tests that can split the data and selects the test that gives the

best gain [49]. The C4.5 technique is one of the decision tree algorithms that is capable of

generating a decision tree and produces rules that are easy to interpret. J48 classifier is

 46

the WEKA implementation of C4.5 technique. J48 classifier is one of the most preferred

and efficient decision tree classifiers in WEKA [51]. These factors establish J48 as

favorable classifier for generating MTM mapping rules. Furthermore, the J48 algorithm

provides the user with option to trim the decision tree to reduce noise and improve

accuracy. This process is known as pruning.

Several options are available to the user to provide better control on the

parameters of the algorithm. Figure 3.12 shows the options to alter the parameters of the

J48 algorithm.

Figure 3.12: Options window to alter parameters of the J48 algorithm

During the construction of a decision tree, the size of the tree is dependent on the

dataset supplied. Many nodes and branches reflect the noise and outliers contained within

 47

the dataset [47]. This results in a huge tree structure with an effect on the accuracy of the

model. Therefore certain pruning measures are required to identify and eliminate such

branches that do not add value and lower the overall accuracy. Pruning decisions trees is

an essential step to reduce the complexity of the tree. It aids is optimizing the

computational efficiency and also improves the classification accuracy of the model [48].

Also pruning is performed to avoid over-fitting of new data. The two most often used

pruning methods are – Post-pruning and Online pruning.

3.4.1.2 Post-pruning

Post-pruning is generally applied to an induced decision tree and it works to

remove insignificant branches and nodes. The probabilities of existing sibling leaf nodes

is compared and if one leaf node is statistically dominating the other leaf, then the

dominating leaf node replaces the two existing nodes. The parent node error is calculated

for both cases and compared. This comparison decides if pruning is advantageous at the

certain node [48]. The parameter that determines the post-pruning process in WEKA is

classified as the confidence factor. Lowering or increasing the confidence factors decides

the post-pruning process of the J48 classifier. At each node junction, the algorithm

compares the weighted error of each child node and the misclassification error in parent

node if the child nodes assigned the majority class. The misclassification error is

approximation of the actual error based on incomplete data. The actual error is not an

exact value and varies over a range and the confidence factor decides whether the error

should lean toward the upper bound or lower bound [48]. The actual error assigned is

inversely proportional to the confidence factor. Therefore a low confidence factor relates

 48

to a high actual error assigned. The confidence factor ranges from a scale of 0 to 1. Based

on the confidence factor assigned, pruning is carried out.

3.4.1.3 Online pruning

Online pruning is carried out while the decision tree is being induced unlike post-

pruning. During the construction of the decision tree, a split in the parent node is made if

the child node has sufficient number of data instances. If there exists a case wherein one

sibling child node has fewer instances than the minimum required, the child node and the

parent node are combined into a single leaf node. The parameter that decides the value

for the minimum required data instances is known as minimum number of object

instances (minNumObj). Higher the value of minimum number of object instances,

higher the pruning and hence smaller the size of the decision tree.

Pruning methods and techniques help in reducing the complexity of the decision

trees, improve the accuracy of the model, filtering out the outliers in data. But pruning

can also lead to misclassification errors and can have a detrimental effect on accuracy if

chosen poorly [48]. Various factors have to be considered and tested while pruning and

the parameters are to be adjusted based on individual dataset.

 49

CHAPTER FOUR: DEVELOPMENT AND IMPLEMENTATION OF THE NATURAL

LANGUAGE PROCESSING (NLP) AND MACHINE LEARNING (ML) TOOLS

This chapter details the development of the methods to realize the research

objectives, using the NLP tools and machine learning techniques that are reviewed in the

Chapter Three. Explicitly, this chapter presents how these NLP tools and machine

learning algorithms are integrated to achieve the desired outcome.

The purpose of the first research objective is to develop a method to automatically

extract information from TVGs to build a standard vocabulary for a consistent structure

and format of work instructions and standardizing the TVG authorship process.

4.1 Building standard vocabulary and object type classifier

The Stanford parser is capable of identifying the action verbs in an assembly

instruction, but requires the sentences to be in a particular format for accurate parsing.

Therefore the all the assembly instructions from the TVGs are edited to fit the desired

format. To generate a standard vocabulary and sentence structure for the authorship tool,

236 TVGs consisting of 566 work instructions are analyzed. As discussed earlier, these

work instructions are compounded and are thus required to be broken down to single

action conveying statements. These work instructions are edited as per the desired format

required for parsing and exported to a text file. The Stanford parser is available as an

online tool at http://nlp.stanford.edu:8080/parser/. The work instruction text is tokenized,

tagged and parsed. The tagged work instruction text is then extracted into a text file for

further analysis. A function for extracting all the verb and object tokens from the text file

http://nlp.stanford.edu:8080/parser/

 50

is developed in Python. Figure 4.1 shows the process flow of the extraction of verbs and

objects from the work instructions text.

Figure 4.1: Process flow illustrating extraction of verbs and objects

A step by step discussion detailing each stage of the process is provided below.

Step 1: The work instruction text from the process sheets, TVGs, is extracted

and the necessary text pre-processing is performed.

Step 2: The tokenizer splits the work instruction text to form single entities

based on user specified separator, in this case the whitespace.

Step 3: The tagger assigns a PoS (Part of Speech) to each token. The PoS tag

is adjoined at the end of each token separated by a forward slash (‘/’). The

parsing process is complete.

Step 4: The tokens with their corresponding PoS tags is supplied as input to

the python program. The program extracts the tokens with verb (‘VB’) and

noun (‘NN’) tag.

 51

Step 5: The verb tokens are manually analyzed to generate a standard

vocabulary based on domain knowledge.

Step 6: The noun tokens are the primary object in each work instruction text.

The object instances are manually categorized into one of the five object

types.

Step 7: The labeled set of object instances are used as training set to develop a

classifier using support vector machines.

Step 8: An object type classifier is developed that is capable of assigning an

object type to new object instances.

Figure 4.2 illustrates the process of developing a standard vocabulary of verbs

(Step 1 - Step 5) with the help of a sample work instruction – “Get bumper from rack.”.

The illustration highlights the core mechanism of the process and hence the pre-

processing performed on the work instruction is not shown. The work instruction is

tokenized and tagged in that order by the parser. The output from the parser is a list

containing each entity as a token along with its tag- [‘Get/VB’, ‘bumper/NN’, ‘from//IN’,

‘rack/NN’, ‘./.’]. The entity ‘./.’ indicates the end of each work instruction statement. The

python function searches the entire list and extracts the token with verb tag (‘Get’) and

noun tag (‘bumper’, ‘rack’) and exports them into two separate csv (comma separated

values) files as shown.

 52

Figure 4.2: Extraction of verb and object from sample work instruction

Some of the work instructions were found to contain inadequate information for

analysis. To reduce the noise and capture only work instructions statements that will aid

the analysis process, it is determined that each work instruction statement must contain at

least one verb and one object on which the verb acts upon. The python program discards

all parsed work instruction statements that do not adhere to this condition. The reduced

number of valid work instruction statements considered for analysis is 522. The code for

the program is provided in Appendix B. NLTK is used as a programming tool to support

the analysis. Table 4.1 provides a comprehensive view of the number of work

instructions considered for analysis.

Table 4.1: Number of work instructions considered for analysis

Number of TVGs analyzed 236

Number of compound work instructions 566

Number of single-action work instructions (broken down) 697

Number of work instruction considered for analysis 522

 53

4.1.1 Standard verb vocabulary

The verbs extracted from the work instructions are exported to a Comma-

separated values (.csv) file. The list consists of 522 verbs with multiple instances of 84

unique verbs. Table 4.2 shows a sample of the most frequently used verbs.

Table 4.2: Sample set of most frequent verbs

Verb Count Percentage Cumulative percentage

Get 44 8.42 8.42

Secure 44 8.42 16.85

Align 36 6.89 23.75

Place 34 6.51 30.26

Take 31 5.93 36.20

Walk 31 5.93 42.14

Fit 18 3.44 45.59

Check 13 2.49 48.08

Insert 13 2.49 50.57

Connect 12 2.29 52.87

Collect 11 2.10 54.98

Install 11 2.10 57.08

Pick up 11 2.10 59.19

Fasten 10 1.91 61.11

Push 9 1.72 62.83

Remove 9 1.72 64.55

Handstart 8 1.53 66.09

Pick 8 1.53 67.62

Press 7 1.34 68.96

Ensure 6 1.14 70.11

Snap 6 1.14 71.26

Tighten 6 1.14 72.41

Verify 6 1.14 73.56

 54

It is observed that many verbs are synonyms of each other and describe the same

activity since each planner has his/her own style of authoring process sheets and no

restriction on grammar or vocabulary exists. This method introduces redundancy and

hence a standard list of verbs is developed to contain only sufficient and necessary verbs.

The controlled vocabulary also serves towards standardizing the process sheet authorship

process. Therefore the list of 84 unique verbs is further pruned to obtain a set of 31

standard verbs that are sufficient and can distinctly describe all the work instructions that

are analyzed from the 236 TVGs. The standard verb vocabulary is manually developed

since it requires expert domain knowledge and is specific to the assembly activities

carried out in the manufacturing plant of the OEM. The standard verbs are also assigned

an OPR class. The OPR class consists of four primary categories that describe the type of

process. Each standard verb is assigned one or more OPR class based on the type of

physical motions the standard verb describes. The OPR classes are shown below in Table

4.3

Table 4.3: OPR classification

OPR class Description

M Assembly

ZH Additional Handling

ZW Additional Walking

PF Functional Inspection

A sample list of standard verbs with their definitions and OPR classification is shown in

Table 4.4. The complete list of standard verbs is provided in Appendix A.

 55

Table 4.4: Sample list of standard verbs

Standard verb vocabulary

S.

No
Verb Definition Example

OPR

class

1 Align Accurate Positioning of a part

or tool over another part

Align bumper to BIW M

2 Apply Putting on a medium on an

object with or without the aid

of a tool

Apply headlight seal

initial

M

3 Attach Setting or binding two parts

with each other using only the

features on each part

Attach hook to ARB M

4 Clean Includes all performances, to

clean an object with a tool.

Clean windshield with

wipe

M

5 Connect Includes all activities to

connect/ locking or unlocking

a cable, with or without tool.

Connect cable to

harness

M

6 Disengage Unlocking a fixture or

removing a part from the

fixture or tool.

Disengage the fixture /

Remove Jig

M, ZH

7 Engage Locking a fixture or engaging

a tool onto a part.

Engage a fixture or

clamp.

M, ZH

8 Exchange Involves exchanging empty

bins containing parts and

supplies with full bins.

Exchange container

nuts

M, ZH

9 Get Picking up a part or tool from

around 1 m or does not

necessitate getting up or

walking from position.

Get torque tool M, ZH

10 Handstart Screwing in 2 rounds, the bolt

or nut by hand or with the aid

of tools, to set it in position.

Handstart first screw

on tool holder at lift

assist

M

11 Insert Includes all activities to

assemble clips with hands

and/or tool

Insert clip to Y-strut M

12 Inspect Carrying out a check on a part

or process, in order to make a

decision.

Inspect bumper for

damages

M, PF

13 Lay Laying a cable by hand and/or

fastening exactly

Route Bowden cable M

14 Move Moving with/without a Move to front bumper M

 56

Standard verb vocabulary

S.

No
Verb Definition Example

OPR

class

part/tool around the car or

actions like bending down,

squatting.

15 Open

(Preparatory

)

Includes all activities to

handle packaging, separating

layers and opening package to

take contents.

Open bag with tool ZH

The next section discusses the development of the object type classifier using the

objects extracted from the work instruction text in addition to forming a standard

vocabulary of verbs.

4.1.2 Object type classifier

As discussed in the previous chapter, the MTM mapping rules are generated by

analyzing the historical data and formalizing the rules based on the standard verb and

object type. Since, manually assigning each object with one of the five object types is

tedious and labor intensive; there is a need to automate the process. Therefore, an object

classifier is developed to address this issue. To build an object classifier through text

classification, an initial dataset with labeled instances, in this case objects, is required to

train and build. Figure 4.1 also shows the process of extracting objects (Step 6 – Step 7)

from work instructions in addition to extracting the verbs. The list of objects is then

manually labeled with an object type each. This dataset acts as a basis for developing a

classifier to label new objects that the program encounters. The object type classifier is

developed using support vector machines and an OVA (one-versus-all) approach. The

 57

code to developing the classifier is presented in Appendix B. Figure 4.3 shows the

process flow illustrating the development of the object type classifier.

Figure 4.3: Development of object type classifier

The training data presented the problem of an imbalanced dataset. This issue is addressed

by over sampling the data set, as discussed in Chapter 3. The initial dataset consists of

794 object instances with majority class being ‘Part’. The dataset is oversampled to have

almost equal number of instances for each label. The instances of minority classes were

randomly duplicated several times keeping the majority class almost intact. Table 4.5

shows the number of part instances before and after over-sampling.

Table 4.5: Dataset before and after oversampling

 Total

number

of

instances

Instances

with label

– Part

Instances

with label

- Tool

Instances

with label -

Consumable

Instances

with label

-

Plantitem

Instances

with label

- Fixture

Before

Over-

sampling

794 464 148 29 122 31

 58

 Total

number

of

instances

Instances

with label

– Part

Instances

with label

- Tool

Instances

with label -

Consumable

Instances

with label

-

Plantitem

Instances

with label

- Fixture

After

Over-

sampling

2303 498 455 441 475 434

The new dataset obtained after over-sampling is used to build the classifier. The

object type classifier is developed and stored as a function, which can be invoked when

required. The development of the standard vocabulary and object type classifier

concludes this section.

4.2 MTM mapping rules

This section discusses the process to automatically generate the MTM mapping

rules from the time study steps of the process sheets using machine learning algorithms.

The MTM mapping rules are formed by analyzing the time study steps from the

aforementioned 236 process sheets that are used to generate standard vocabulary and

object type classifier. The process for the development of the MTM rules is shown in

Figure 4.4.

 59

Figure 4.4: Process flow illustrating the generation of MTM rules

A step by step discussion detailing each stage of the process is provided below.

Step 1: The time study steps from the process sheets, TVGs, are extracted and

the necessary text pre-processing is performed.

Step 2: The parser performs both tokenizer and tagger functionalities. The

time study steps are split and tagged to acquire the PoS (Part of Speech) tags

for each token in the text.

Step 3: The token with a verb tag (‘VB’) is extracted and checked against the

standard vocabulary of verbs the equivalent standard verb is obtained

Step 4: The tokens with noun (‘NN’) tag is extracted. The token denotes the

object. The object is supplied to the object type classifier to determine the type

of object.

Step 5: The MTM table name is extracted from the corresponding time study

step.

 60

Step 6, Step 7: The {Standard verb, object type, MTM table} tuple set is

supplied to WEKA workbench in an Attribute-Relation file format (ARFF).

Step 8: WEKA classifier analyzes the dataset and generates a decision tree

using the J48 classifier

Step 9: The decision tree is interpreted and the MTM mapping rules are

derived.

The data required to generate the MTM mapping rules is extracted from 1019

time study steps from 236 process sheets. In order to reduce the noise and eliminate

insignificant data, it is determined that each time study statement must contain at least

one verb, one object and a MTM code. The python program discards all parsed time

study steps that do not adhere to this condition. Figure 4.5 shows examples of time study

steps that are discarded by the Python program since they do not contain a verb and/ or an

object.

Figure 4.5: Examples of discarded time study steps

The reduced number of valid time study steps considered for analysis is 870.

Table 4.6 provides a comprehensive view of the number of TVGs and time study steps

considered for analysis

Table 4.6: Number of TVGs and time study steps considered for analysis

Number of TVGs analyzed 236

Number of time study steps 1019

 61

Number of time study steps considered for analysis 870

The first step in generating MTM rules is to extract the verb, object and MTM

table from each time study step. This data is analyzed to map standard verb and object

type to an MTM table as shown below.

{ {

Similar to the process of extracting information from the work instruction text,

certain text pre-processing tasks are performed on the time study text before parsing.

Each time study step is concatenated with ‘The associate must’ at the beginning of each

sentence without altering the time study text. In addition to the general text pre-

processing, the MTM information is linked to each sentence. Each time study step is

associated with a MTM code. The corresponding MTM table for each code is found from

the MTM charts. The MTM table name of each time study step is concatenated at the end

of the sentence as shown in Table 4.7. The MTM table name is integrated to the sentence

in a pair of square brackets to separate the MTM information from the time study step

and to act as an identifier for the python code while extracting information hence any

format can be employed.

Table 4.7: Edited time study text

Raw time study step MTM code Edited time study step

COLLECT SPEED NUTS AND

BOLTS

S-AGHR The associate must collect speed

nuts and bolts [MTM Get and

Place].

Fit speed nuts to bumper S-ACE The associate must fit speed nuts to

bumper [MTM Get and Place].

Take screws and fit to bumper. M-SAK E The associate must take screws and

fit to speed nuts [MTM Working

 62

with Screws/ Bolts].

These time study steps are edited for accurate parsing and exported to a text file.

The text file is then parsed using the Stanford parser. As mentioned above, each time

study step is associated with a MTM code. Therefore, the time study steps that contain

more than one verb cannot be split into two separate sentences. All the verbs in a single

statement that describe the activity are extracted as a single entry. It is observed that the

maximum number of verbs present in a time study step is two. This results in a slight

variation of the rule. The format of the MTM mapping rules is adjusted to accommodate

time study steps with two action verbs as shown below.

{ {

The Python code extracts the verb(s), object and MTM table from the parsed time

study steps using NLTK as a programming tool. However, if the Python program

encounters time study steps with two verbs, it extracts both verbs and concatenates them

using an ampersand – ‘&’. For example, consider the time study step – ‘Get and Place

bumper to car body’. The two verbs in this case are ‘Get’ and ‘Place’. Therefore the

Python program extracts the verbs and concatenates them into a single entry – ‘Get &

Place’. The verb is mapped onto a standard verb from the verb vocabulary, developed by

extracting verbs from work instructions. The object type for the direct object, on which

the verb acts, is generated from the object type classifier developed in the previous stage.

The standard verb, object type and MTM table tuple set is supplied to the WEKA

platform. The WEKA rules classifier, using the J48 decision tree algorithm, analyzes the

data and outputs a set of rules.

 63

Figure 4.6 shows the process of extracting data and formation of rules from a

sample time study step. The sample time study step – ‘Go to storage area’ is extracted

from the process sheet and the necessary text pre-processing is performed. The sentence

is then concatenated with the corresponding MTM table name in a pair of square

brackets. This text file is then supplied to the Stanford parser which tags and tokenizes

the sentence. The parser outputs the parsed time study step in a text file. This text file is

further analyzed to obtain the {verb, object type, MTM table} tuple for generating the

MTM mapping rules. The python code extracts the verb token (‘Go to’), object token

(‘storage area’) and MTM table name (‘Advanced Level / Car Body’), which is present

within the pair of square brackets.

 The verb ‘Go to’ is looked up against the list of standard vocabulary of verbs and

replaced with a standard verb – ‘Walk’. The object is supplied as an input to the object

type classifier to obtain the object type class. In this case, the object type classifier

assigned the type ‘Plant item’ to the object ‘storage area’. The program then generates a

tuple consisting of the standard verb, object type and MTM table – {Walk, Plant item,

Advanced Level / Car Body}. The code to extract the tuple from the time study step is

presented in Appendix B. The next stage in the process is to supply the tuple set to

WEKA to generate the MTM mapping rules.

 64

Figure 4.6: Development of MTM mapping rules using a sample time study step

4.2.1 MTM mapping rule generation through WEKA

WEKA accepts input in the form of ARFF (Attribute-Relation File Format). The

three attributes of the input file are standard verb, object type and MTM table name. The

{standard verb, object type, MTM table name} tuple from each of the 870 time study

steps that are analyzed is supplied as input to WEKA.

J48 is used to generate the rules. As mentioned earlier in Chapter Three, the

parameters for the pruning process is based on the individual dataset and preliminary

tests have to be performed to understand the effect of each pruning process on the

decision tree. There several decision trees are generated varying both confidence factor

and the number of object instances to determine the best conditions.

Table 4.8 shows the percentage of correctly classified instances, relative absolute

error and size of tree for five decision trees generated by increasing the minimum number

of object instances from 1 to 5 in steps of 1, while maintaining the confidence factor

 65

constant at a value of 0.25. The decision trees are evaluated with a cross-validation

number of 10. This analysis compares the variations in online pruning without

performing post-pruning.

Table 4.8: Decision trees with varying minimum number of object instances

Decision

tree

Confidence

factor

Minimum

number of

Object

instances

Correctly

classified

instances

(%)

Relative

absolute

error (%)

Size of

tree

#1 0.25 1 71.72 43.05 103

#2 0.25 2 71.37 43.48 83

#3 0.25 3 71.26 43.58 78

#4 0.25 4 71.26 43.58 73

#5 0.25 5 70.68 44.32 73

In the second analysis, the minimum number of object instances is kept constant

while varying the confidence factor from 0.1 to 0.5 in incremental steps of 0.1. Table 4.9

shows the five decision trees with the correctly classified instances, relative absolute

error and size of tree.

Table 4.9: Decision trees with varying confidence factor

Decision

tree

Confidence

factor

Minimum

number of

Object

instances

Correctly

classified

instances

(%)

Relative

absolute

error (%)

Size of

tree

#1 0.1 1 70.80 44.05 88

#2 0.2 1 71.91 43.79 103

#3 0.3 1 71.60 42.60 103

#4 0.4 1 71.95 42.05 108

#5 0.5 1 71.95 41.92 113

The first analysis shows that as the minimum number of object instances

increases, the absolute relative error also increases thereby affecting the accuracy of the

 66

model. The second analysis proves that as the confidence factor increase, the relative

absolute error decreases thereby having a positive effect on accuracy. Also, the accuracy

of each decision tree is relatively constant throughout. However, a noticeable difference

is observed in the size of tree. The size of the decision trees greatly differs without any

significant change in accuracy of the model. Therefore the deciding factor in choosing the

parameters is the size of the decision tree. The number of rules generated is directly

proportional the number of rules. Therefore, a smaller size tree generates fewer rules.

Based on the above analysis, the parameters for both post-pruning and online pruning is

determined for the decision tree and is shown in Table 4.10.

Table 4.10: Parameters for decision tree pruning

Pruning process Parameter Value

Post-pruning Confidence factor 0.3

Online pruning Minimum number of object

instances

3

Table 4.11 show the accuracy of the decision tree along with the size of tree. The

cross –validation for the algorithm is set at 10.

Table 4.11: Statistics of accuracy and size of decision tree

Confidence

factor

Minimum

number of

Object

instances

Correctly

classified

instances (%)

Relative

absolute error

(%)

Size of tree

0.3 3 71.14 43.14 78

A decision tree is generated using the above mentioned parameters as shown in

Figure 4.7. The output window in the classifier panel displays the pruned tree in text

format.

 67

Figure 4.7: J48 decision tree with output

WEKA outputs the decision tree of the J48 algorithm in a rule format along with

the number of instances encountered as shown in Figure 4.8.

 Figure 4.8: Sample rule format

The rule implies, IF <Standard verb= ‘Get’> AND <Object type= ‘Part’> THEN <MTM

Table= ‘Get and Place’>. The first number in the bracket indicates the number of

instances that follow the particular rule in the dataset supplied and the second indicates

 68

the number of incorrectly classified instances as a result of the rule. The MTM mapping

rules generated from the decision tree present three different types of rules.

In Level 1, the standard verb directly maps onto the MTM table without requiring

the object type information. This means that the standard verbs always maps to a specific

MTM table irrespective of the object it acts on. An illustration of Level 1 rule is shown

below.

{ {

The Level 1 MTM rules are presented in Table 4.12

Table 4.12: MTM rules - Level 1

MTM mapping rules – Level 1

Standard verb MTM table

Align Place

Apply Motion Cycles

Connect Laying Cables

Clean Cleaning

Disengage Operate

Engage Operate

Exchange Handling Containers

Handstart Working with Screws\ Bolts

Insert Working with Clips

Inspect Visual Control

Lay Laying Cables

Move Body Motions

Press Operate

Read Read

Remove (Preparatory) Preparatory Activities

Restock Parts Supply

Scan Marking and Documenting

Secure Handling Auxiliary Materials\ Tools

Tighten Handling Auxiliary Materials\ Tools

Unscrew Motion Cycles

Walk Body Motions

 69

Certain standard verbs map to several MTM tables and therefore require object

type information to further narrow down the mapping. Therefore the standard verb and

object type together drive the user to a particular MTM table. This is represented as Level

2 rules and is shown below.

{ {

The Level 2 MTM rules are presented in Table 4.13

Table 4.13: MTM rules - Level 2

MTM mapping rules – Level 2

Standard verb Object type MTM table

Get Part Get and Place

Get Tool Handling Auxiliary Materials\ Tools

Get Plant item Get and Place

Get Fixture Get and Place

Get Consumable Get and Place

Operate Part Operate

Operate Tool Handle Tool

Place Part Place

Place Tool Handling Auxiliary Materials\ Tools

Place Plant item Place

Place Fixture Place

Push Part Working with Clips

Push Tool Operate

Attach Part Working with Clips

Attach Tool Working with Clips

Attach Plant item Get and Place

Attach Consumable Working with Adhesives

Remove Part Get and Place

Remove Tool Get and Place

Remove Plant item Get and Place

Remove Fixture Get and Place

Remove Consumable Preparatory Activities

 70

The final type, Level 3, corresponds to the compound time study steps that

contain two verbs. The two standard verbs and the object type directly map onto a MTM

table.

{ {

The Level 2 MTM rules are presented in Table 4.14

Table 4.14: MTM rules - Level 3

MTM mapping rules – Level 3

Standard verbs Object type MTM table

Get & Attach Part Working with Clips

Get & Attach Tool Get and Place

Get & Attach Fixture Get and Place

Get & Operate Tool Handle Tool

Get & Connect Part Laying Cables

Get & Insert Part Get and Place

Get & Apply Part Get and Place

4.3 MTM table generator - GUI to generate MTM table for work instructions

This section discusses the development of a GUI to generate MTM tables for the

work instructions authored by the planner. The GUI is developed using NLTK as a

platform to and utilizes the Stanford parser, object type classifier and the MTM rules

developed through WEKA. It aids the user in suggesting the appropriate MTM table and

reduces the cognitive load and ambiguity.

The GUI is written in Python using the library of functions provided by NLTK.

The tools and decision support generated in Chapter 4 -Stanford parser, object classifier

and MTM mapping rules are integrated within the GUI which provides the functionality

 71

to author work instruction in free form and generate MTM table for each work instruction

authored. The process flow for generating MTM tables for a set of work instruction

authored by the planner is shown Figure 4.9.

Figure 4.9: Process flow illustrating the generation of MTM tables

A step by step discussion detailing each stage of the process is provided below.

Step 1: The user inputs a work instruction, in free form text, in the input box

of the GUI.

Step 2: The program performs the necessary text pre-processing on the work

instruction text. The phrase “The associate must” is concatenated at the start

of the sentence. The work instruction statement is edited to the desired format.

Step 3: The parser performs both tokenizer and tagger functionalities. The

time study steps are split and tagged to acquire the PoS (Part of Speech) tags

for each token in the text.

 72

Step 4: The token with a verb tag (‘VB’) is extracted and checked against the

standard vocabulary of verbs and the equivalent standard verb is obtained

Step 5: The tokens with noun (‘NN’) tag, denoting the objects, is extracted.

The object is supplied to the object type classifier to determine the type of

object.

Step 6, Step 7: The standard verb and object type is gathered from the

standard vocabulary and object type classifier.

Step 8: The {Standard verb, object type} pair is checked against the existing

MTM mapping rules.

Step 9: The appropriate MTM table is determined and displayed in the output

box of the GUI.

The planner input the desired work instruction in free text in the upper input

window of the GUI as shown in Figure 4.10. Multiple work instruction can be written at

one instance. The work instructions must be input subject to the following rules.

1. The work instruction should start with a valid standard verb.

2. The work instruction should contain at least one object on which the

standard verb acts on.

3. A period at the end of each work instruction to indicate that the sentence is

complete.

 73

Figure 4.10: Screenshot of the GUI

The GUI collects the work instructions and passes it to the Python program. The

Python program performs text pre-processing before parsing. Pre-processing the work

instruction is essential since the parser can only analyzed complete and grammatically

correct sentences. The phrase “The associate must” is concatenated at the start of each

sentence to provide contextual meaning to the sentence. The pre-processing does not alter

the intent of the work instruction.

The Stanford parser tags and tokenizes the processed work instructions. Once the

work instructions have been parsed, the Python program extracts the verb and object from

the sentences. The object is classified and assigned an object type using the object type

classifier. This results in the formulation of verb and object type information pair. The

{standard verb, object type} is searched against the MTM rules and the appropriate MTM

table is displayed along with the work instructions in the output window of the GUI as

shown in Figure 4.11.

 74

Figure 4.11: Screenshot illustrating the MTM tables generated for sample work

instructions

Figure 4.12: MTM table generation for sample work instruction

 75

Figure 4.12 shows the generation of the MTM table for a sample work instruction.

The user inputs the sample work instruction “Align bumper to car body.” The GUI

supplies the work instruction text to the Python program, wherein the sentence is

restructured to meet the requirements of the parser. The parser tokenizes and tags the

work instruction. The verb (VB) token in the sample work instruction is ‘Align’ and the

primary object (NN) token is ‘bumper’. The object is classified by the object type

classifier and assigned the label ‘Part’. The standard verb and object type pair is then

checked against the MTM rules. The {standard verb, object type} maps on to the MTM

table ‘Place’. The MTM table is coupled to the work instruction and displayed in the

output window of the GUI. The code for the development of the MTM table generator is

provided in Appendix B.

 76

CHAPTER FIVE: TESTING AND VALIDATION OF TOOLS DEVLOPED

This chapter discusses the validation of the object type classifier and MTM

mapping rules developed. The MTM mapping rules are tested against a set of time study

steps (from TVGs that are not considered for the initial analysis) to obtain the accuracy of

mapping.

5.1 Validation of Object type classifier

The Object type classifier is developed using Support Vector Machines (SVM)

with a linear kernel, a supervised machine learning algorithm. The accuracy of the

classifier is tested using random split method and cross-validation.

5.1.1 Random split

In random split testing method, the training set is randomly split into two sets

based on an attribute value supplied by the user. One set is used to train the model and

the other set is used to test the model. The criterion to split the data is based on a

percentage split ratio, established by the user. If the percentage to test the object type

classifier is set at 40%, then 60% of the dataset is used to train the model and the

remaining 40% is reserved to test the classifier. The accuracy of the classifier is tested

using 30%, 40% and 50% split ratios. Table 5.1 shows the accuracy for each split ratio

employed and the average accuracy when tested using random split. The average

accuracy of the classifier when tested using random split method is determined to be

94.3%

 77

Table 5.1: Validation of object type classifier using random split method

Percentage split ratio Accuracy (%)

30 % 95.0

40 % 94.0

50 % 94.0

5.1.2 Cross-validation

By portioning the dataset to create train and test data, the available dataset to train

the model is considerably reduced. To counter this, cross-validation of the classifier is

performed and compared against the result from random split. In k-fold cross-validation,

the dataset is first divided into k smaller but equal datasets. Of these k sets, k-1 sets are

used to train the model and tested on the remaining set. This procedure is repeated k

times (number of smaller datasets). The accuracy from each test is then averaged. The

classifier is tested using 5-fold, 10-fold, and 15-fold cross validation. The accuracy

results for each k value is presented in Table 5.2

Table 5.2: Validation of object type classifier using k-fold cross validation

Value of k Accuracy

5 94% +/- 2%

10 94% +/- 3%

15 94% +/- 4%

Table 5.3 shows the average accuracy results obtained from each test. Both testing

methods prove that the object type classifier has a very high accuracy of 94%.

Table 5.3: Comparison of accuracy - Random split vs. Cross validation

Testing method Average accuracy

Random split 94.3 %

Cross-validation 94% +/- 3%

 78

5.2 Comparisons of WEKA classifiers – JRip, PRISM, and J48

WEKA contains several machine learning algorithms to classify data and generate

rules. These classifiers are divided into groups based on the technique employed to

classify data. The J48 classifier, used to generate the MTM mappings, is a decision tree

algorithm. This section compares the results from J48 with two rule based classifiers –

JRip and PRISM.

JRip is an inference and rule based learner which implements a propositional rule

learner. JRip and PRISM can be accessed from the classify panel, under the rules sub-

category. PRISM is also a rule based learned which is closely based on ID3 algorithm.

The rule based classifiers generate rules directly from the data when compared to J48

which is an indirect approach to generate rules since the rules are derived from the

decision tree.

To determine the performance of each classifier the number of correctly classified

instances and relative absolute error is used as criteria. It is found that the J48 classifier

performs better than the two rule based classifier. JRip classifier generated 26 rules

whereas PRISM produced 132 rules. The summary of results from the classifiers is

shown in Table 5.4.

Table 5.4: Summary of results - JRip, PRISM, and J48

Classifier
Correctly classified

instances

Relative absolute

error
Number of rules

JRip 68.50 52.93 26

PRISM 53.33 53.35 132

J48 71.14 43.14 50

 79

JRip produced far too few rules whereas PRISM generated far too many. It can

also be observed that J48 performs better than JRip and PRISM by comparing the relative

absolute error and correctly classified instances.

5.3 Validation of MTM mapping rules generated through WEKA

The accuracy of the MTM mapping rules generated through WEKA are tested

using the time study steps extracted from TVGs, that were not used for the initial

analysis. The MTM table names generated by the MTM table generator are checked

against the MTM table information associated with each time study step contained in the

TVGs.

The time study steps extracted from the TVGs did not contain the standard

vocabulary. Hence the sentences are restructured to meet the requirements of the MTM

generator. The verbs from the time study steps are replaced with a Standard verb that

closely matches the original verb used to describe the activity. A total of 71 time study

steps, extracted from 17 TVGs, are used to test the accuracy of the MTM rules. These 71

time study steps are inputted to the MTM generator. The MTM tables generated for each

time study step is then checked against the MTM table information from the TVGs and

the number of accurately estimated time study steps is obtained. Table 5.5 shows a

sample list of time study steps used for the testing purpose along with the original MTM

table information as found in the TVG and also the MTM table estimated by the MTM

table generator. The complete list of time study steps used for the validation of MTM

generator is provided in Appendix A.

 80

Table 5.5: Results from testing MTM table generator

S. No. Time study step
MTM table

(from TVG)

MTM table

(from MTM

table

generator)

Check

1 READ VEHICLE INFORMATION

AS REQUIRED ALL PROCESSES

MODEL, 4UBA. Read Read Y

2 PLACE PROTECTOR CARRIED

FROM CAR TO CAR DURING

WALK TO NEXT CAR

REMOVAL SEPARATE. Place Place Y

3 GET AND PLACE PLUG. Get and Place Get and Place Y

4 GET AND PLACE SEAT BELT

RECEIVER. Get and Place Get and Place Y

5 WALK FROM CAR TO PARTS

AND THEN BACK. Body Motions Body Motions Y

6 GET REAR SEAT AND PLACE IN

CAR INITIAL. Get and Place Get and Place Y

7 GET AND TURN SEAT UP AND

PLACE UNDER BRACKETS. Get and Place Get and Place Y

8 GET REAR SEAT AND PLACE IN

CAR INITIAL. Get and Place Get and Place Y

9 GET AND TURN SEAT UP AND

PLACE UNDER BRACKETS. Get and Place Get and Place Y

10 WALK TO CART THEN CAR. Body Motions Body Motions Y

11 REMOVE BAGS FROM

BETWEEN SEATS / SEPARATE

AND DISCARD. Get and Place Get and Place Y

12 PRESS BUTTON ON LIFT

ASSIST FOR 3RD ROW SEATS /

THEN BACK WHEN DONE. Operate Operate Y

13 PRESS FORWARD SWITCH

/GRAB TRIGGER UNDER

HANDLE. Operate Operate Y

14 PLACE LIFT TO SEAT / THEN

MOVE ACROSS TO FINAL

POSITION.

Place

Handling

Auxiliary

Materials \

Tools N

15 APPLY PRESSURES TO STOP

LIFT AND THEN PUSH OVER.

Motion

Cycles Motion cycles Y

16 PRESS SWITCH FOR DOWN Operate Operate Y

 81

AND SWITCH FOR CLAMP.

17 PT (TIME FOR CLAMPS TO

CLOSE).

Process

Verb does not

exist

Rule

does

not

exist

 82

Table 5.6 presents a relationship matrix between the MTM tables identified from

the TVGs and the MTM tables estimated by the MTM table generator for the test time

study steps. The number in each cell denotes the number of time study steps that relate to

the particular MTM table in the corresponding row and column. The presence of a linear

relationship between the MTM tables from TVGs and MTM tables estimated through the

mapping rules indicates that a high number of time study steps have been accurately

estimated by the MTM generator. It can be observed that 55 time study steps, covering 7

MTM tables, have been accurately estimated by the MTM generator. 6 time study steps

have been incorrectly mapped and MTM generator did not provide a MTM table

suggestion for the remaining 10 time study steps since a mapping rule for the particular

{Verb, object type} information pair does not exist.

 83

Table 5.6: Relationship matrix between MTM tables identified from TVGs and

MTM tables estimated by MTM generator for test time study steps

G
et

 a
n

d
 P

la
ce

P
la

ce

B
o
d

y
 M

o
ti

o
n

s

R
ea

d

O
p

er
a
te

M
o
ti

o
n

 C
y
cl

es

P
ro

ce
ss

V
is

u
a
l

C
o
n

tr
o
l

P
re

p
a
ra

to
ry

A
ct

iv
it

ie
s

H
a
n

d
li

n
g

A
u

x
il

ia
ry

M
a
te

ri
a
ls

/
T

o
o
ls

H

a
n

d
li

n
g

C
o
n

ta
in

er
s

W
o
rk

in
g
 w

it
h

C
li

p
s

R
u

le
 d

o
es

 n
o
t

ex
is

t

Get and

Place
17 2 1

Place 1 1

Body

Motions
 10

Read 3

Operate 1 17 2 2

Motion

Cycles
 5

Process 6

Visual

Control
 2

Preparatory

Activities
 1

Handling

Auxiliary

Materials/

Tools

Handling

Containers

Working

with Clips

Some of the time study steps mapped on to the MTM table ‘Process’. The MTM

table ‘Process’ relates to the time elapsed during a multitude of activities such as wait

MTM

table

(TVG)

MTM

table

(Rules)

 84

time for a lift assist to move to place, time required to tighten nuts/bolts, operation of

tools. The time elapsed during such activities is provided by the planner and is not

derived from the MTM charts. Therefore a need is recognized to provide planners with an

option to include process time where they seem fit.

Out of the 71 time study steps used for testing, 6 time study steps mapped on to

the MTM table ‘Process’. Therefore only 65 valid time study steps are considered to

determine the accuracy of the MTM mapping rules. From these 65 time study steps, 6

instances are incorrectly mapped and the remaining 4 time study steps do not have a rule

yet and therefore have also been considered as a negative outcome. The summary of the

results is presented in Table 5.7.

Table 5.7: Summary of results

Total number of time study steps analyzed 71

Number of valid time study steps 65

Number of accurately estimated time study steps 55

Incorrectly estimated time study steps 10

Accuracy 84.6 %

5.4 Chapter Summary and Conclusions

This chapter presents the validation of the object type classifier and the MTM

mapping rules. The MTM mapping rules are tested using 71 test time study steps. These

time study steps are gathered from 17 TVGs that have not been used for the initial

analysis.

The object type classifier is validated using random split method and k-fold cross

validation. The average accuracy is found to be 94%. This high accuracy could be the

result of oversampling the data pool. Therefore, to further validate the classifier,

 85

additional TVGs must be analyzed to observe if there is a considerable change in

accuracy. However, the object type classifier performs better when trained on a larger

dataset. Therefor accuracy will also increase.

The MTM mapping rules have significant accuracy of 84.6% but they do not

cover all valid time study steps, thus requiring further analysis to generate rules that will

encapsulate all time study steps authored. Also, it is observed that the time study steps

used for testing the rules mapped onto 12 MTM tables out of the 22 MTM tables present.

This indicates that only a subset of the MTM mapping rules has been tested. Therefore,

further testing of time study steps, covering a wide range of activities, is required to

determine the overall accuracy of the rules.

 86

CHAPTER SIX: CONCLUSIONS AND FUTURE WORK

This chapter provides a summary of the thesis by reviewing the research objective

and the tools developed to address them. The broader reach of the research work is

presented. This chapter also identifies certain limitations of the developed tools and

provides a brief discussion on future work.

6.1 Summary of tools developed to address the research objectives

This thesis presents the development of tools to extract information from

assembly process sheets and transform the information into knowledge to support

decision making. The tools address each of the research objectives.

6.1.1 Research Objective One: Automated extraction of knowledge to develop Standard

vocabulary

The first tool extracts the information from process sheets using tools and

techniques from Natural Language Processing (NLP) and Machine Learning (ML). The

tool integrates techniques from NLP and ML to extract information; in this case verbs

contained in work instruction text, and generate a standard vocabulary for authoring work

instructions. A standard vocabulary of thirty one verbs is developed. Along with the

standard vocabulary, an object type classifier is developed that assigns an object type to

the objects. The object type classifier is validated using random split method and cross

validation. The accuracy is found to be 94%. The development of the tools is discussed in

Chapter Four and the necessary background to the NLP and ML techniques is presented

in Chapter Three.

 87

6.1.2 Research Objective Two: Automated generation of MTM mapping rules

The second research objective is addressed by the development of the tool to

automatically generate rules that map process descriptions to MTM tables. The MTM

mapping rules provide decision support to the planner while estimating assembly times.

The MTM mapping rules are developed using time study information from existing

process sheets. The machine learning platform, WEKA, is employed to generate the rules

using decision tree classifiers. The development of the tool to generate MTM mapping

rules is presented in Section 4.2Error! Reference source not found..

The accuracy of the MTM rules are validated, in Chapter Five, using 71 time

study steps and the accuracy of mapping is found to be 84.6%.

6.1.3 Research Objective Three: MTM table generator

The tools developed to address the first two research objectives are integrated and

a decision support system is developed that allows the planners to author work

instructions in free form text and provides MTM tables suggestions for each work

instruction. The decision support system is developed to enable testing of the MTM

mapping rules. The tool also demonstrates how NLP techniques can be used to read work

instructions and provide MTM table suggestions to the planner.

6.2 Broader impact

This research lays a framework to show how Natural Language Processing (NLP)

tools and techniques can be used to extract information from unstructured text data. The

use of NLP techniques presented in this thesis to extract information regarding verbs and

objects from process sheets can be extended to obtain any information contained within

 88

the process sheets. NLP tools and techniques provide an opportunity to automate the

process of extracting textual information from technical documents written using natural

language. This automation will considerably reduce the amount of effort to generate

knowledge required to develop decision support systems. In many multinational

organizations, a large number of technical documents are hand written using natural

language thereby requiring techniques that are capable of analyzing and interpreting the

information. This thesis addresses one such issue encountered for a specific OEM. The

use of NLP can also be leveraged to translate process descriptions into other natural

languages.

The application of Machine Learning (ML) to develop MTM mapping rules

demonstrates the use of Artificial Intelligence (AI) in flexible manufacturing systems.

ML is capable of replicating the domain knowledge of an expert by analyzing historical

data and developing models that mimic the decision making process of a human. Systems

have access to a large network of other systems and data. In a global organization, each

member is connected to every other member through a network of systems. Utilizing the

accessibility to information from various sources, intelligent systems can be developed to

support decision making process

Peterson [4] standardized the TVG authorship process through the use of text

element structures in the controlled language. This methodology minimizes human error

and regulates a set format, but it does so at the cost of restricting the planner’s input. The

planners cannot freely author work instructions. Also, controlled language for authoring

of process sheets requires additional training for planners and frequent updating of the

 89

system to accommodate variations. The GUI of the MTM table generator presented in

this research allows planners partial, if not fully, free-form authorship of work

instructions. This approach attempts to reduce the gap between a restricted controlled

language and unrestricted free-form syntax, while still restricting the planner from

ambiguous and inconsistent work instruction authoring.

6.3 Future Work

The work instruction text and time study steps, required to develop the tools, is

obtained from process sheets that are present in Portable Document Format (PDF). Since

Natural Language Toolkit (NLTK) does not support PDF files, the information is

extracted from the process sheets, pre-processed, and exported to a text file. This is

performed manually. To move towards a more automated process of extracting

information, the system should be capable of obtaining the required information from a

database containing process sheets and pre-processing it to the desired format.

The standard vocabulary presented in this thesis is developed by extracting the

verbs from existing process sheets. The list of verbs is further pruned to generate a

standard vocabulary of verbs that is sufficient to describe all the work instructions. The

pruning of the verbs is performed manually. Latent Semantic Analysis (LSA) is a NLP

technique that deals with grouping concepts that are similar to each other. This

functionality can be employed to group verbs that are synonyms of each other or convey

similar meaning.

During validation of MTM mapping rules, it is observed that certain mapping

between the standard verbs and MTM tables do not exist. To encapsulate all existing

 90

relationships, additional process sheets must be analyzed. Also, additional sources of

information regarding objects used during the assembly must be analyzed to improve the

accuracy of the object type classifier. The system should be dynamic in nature, such that

as new process sheets are authored, MTM mapping rules and object type classifier are

automatically generated and updated.

The MTM table generator only provides suggestion regarding the MTM table to

the planner based on the work instruction authored. One area of future work is to further

augment the tool to provide the planner with complete MTM information including MTM

code and time units. To estimate the assembly time further information regarding the part

attributes such as weight and size, the quantity of parts required, the distance travelled by

the associate, and the motion of the associate is required. The first step towards

developing an integrated system is to identify the sources of information and extract the

required data to further narrow down the selection to a single MTM code.

 91

REFERENCES

[1] Rychtyckyj N., 1999, “DLMS : Ten Years of AI for Vehicle Assembly Process

Planning,” National Conference on Artificial Intelligence, pp. 821–828.

[2] Rychtyckyj N., Standard Language at Ford Motor Company : A Case Study in

Controlled Language Development and Deployment, Dearborn, MI.

[3] Rychtyckyj N., 2005, “Intelligent manufacturing applications at Ford Motor

Company,” NAFIPS 2005 2005 Annual Meeting of the North American Fuzzy

Information Processing Society, pp. 298–302.

[4] Peterson M. G., 2012, “Standardization of Process Sheet Infomration to Support

Automated Translation of Assembly Instructions and Product-Process Coupling,”

M.S. thesis, Department of Mechanical Engineering, Clemson University, SC.

[5] Renu R. S., 2013, “Decision Support Systems for Assembly Line Planning

Modular Subsystems for a Large-Scale Production Management System,” M.S.

thesis, Department of Mechanical Engineering, Clemson University, SC.

[6] Maynard H. B., Stegemerten G. J., and Schwab J. L., 1948, Methods-time

measurement, McGraw-Hill, New York, NY, USA.

[7] Meziane F., Vadera S., Kobbacy K., and Proudlove N., 2000, “Intelligent systems

in manufacturing: current developments and future prospects,” Integrated

Manufacturing Systems, 11(4), pp. 218–238.

[8] Feldmann K., and Slama S., 2001, “Highly flexible Assembly – Scope and

Justification,” CIRP Annals Manufacturing Technology, 50(2), pp. 489–498.

[9] Huang Y. F., and Lee C. S. G., 1989, “Precedence knowledge in feature mating

operation assembly planning,” Proceedings of the 1989 International Conference

on Robotics and Automation.

[10] Mantegh I., and Darbandi N. S., 2010, “Knowledge-based Task Planning Using

Natural Language Processing for Robotic Manufacturing,” Proceedings of the

ASME/IDETC CIE 2010, pp. 1–8.

[11] Rychtyckyj N., 2002, “An assessment of Machine Translation for Vehicle

Assembly Process Planning at Ford Motor Company,” Association for Machine

Translation in the Americas, pp. 207–215.

 92

[12] Abdullah T. A., Popplewell K., and Page C. J., 2003, “A review of the support

tools for the process of assembly method selection and assembly planning,”

International Journal of Production Research, 41(11), pp. 2391–2410.

[13] Rychtyckyj N., 2005, “Ergonomic Analysis for Vehicle Assembly Using Artificial

Intelligence,” AI Magzine, 26(3), pp. 41–50.

[14] Zhao J., and Masood S., 1999, “An Intelligent Computer-Aided Assembly Process

Planning System,” The International Journal of Advanced Manufacturing

Technology, 15(5), pp. 332–337.

[15] Miller M. G., 2011, “Product and Process based Assembly Time Estimnation In

Engineering Design,” M.S. thesis, Department of Mechanical Engineering,

Clemson University, SC.

[16] Boothroyd G., Knight W., Inc B., and Wakefield R., 1993, “Design for assembly,”

IEEE Spectrum, 30(9), pp. 53–55.

[17] Tan A., 1999, “Text Mining : The state of the art and the challenges,” Proceedings

of the PAKDD 1999 Workshop on Knowledge Disocovery from Advanced

Databases, 8, pp. 65–70.

[18] Huai Y., 2011, “Study on ontology-based personalized user modeling techniques

in intelligent information retrievals,” 2011 IEEE 3rd International Conference on

Communication Software and Networks, pp. 204–207.

[19] Monostori L., Kumara S. R. T., and Váncza J., 2006, “Agent-Based Systems for

Manufacturing,” CIRP Annals - Manufacturing Technology, 55(2), pp. 697–720.

[20] Jurafsky D., and Martin J. H., 2000, Speech and Language Processing: An

Introduction to Natural Language Processing, Speech Recognition, and

Computational Linguistics, Prentice Hall.

[21] Choudhary A. K., Harding J. A., and Tiwari M. K., 2008, “Data mining in

manufacturing: a review based on the kind of knowledge,” Journal of Intelligent

Manufacturing, 20(5), pp. 501–521.

[22] Chowdhury G. G., 2005, “Natural language processing,” Annual Review of

Information Science and Technology, 37(1), pp. 51–89.

[23] Nadkarni P. M., Ohno-Machado L., and Chapman W. W., 2011, “Natural language

processing: an introduction.,” Journal of the American Medical Informatics

Association, 18(5), pp. 544–551.

 93

[24] Chowdhury G., 2005, “Natural language processing,” Fifth International

Conference on Hybrid Intelligent Systems HIS05, 37(1), pp. 460–471.

[25] Lash A. V., 2013, “Computational Representation of Linguistics Semantics for

Requirement Analysis in Engineering Design,” M.S. thesis, Department of

Mechanical Engineering, Clemson University, SC.

[26] Klein D., and Manning C. D., 2003, “Accurate Unlexicalized Parsing”

Proceedings of the 41st Meeting of the Association for Computational Linguistics,

pp. 423-430.

[27] Bird S., Klein E., Loper E., and Bird C. S., 2009, Natural Language Processing

with Python, O’Reilly Media, Incorporated.

[28] Petrov S., and Klein D., 2007, “Improved Inference for Unlexicalized Parsing,”

North American Chapter of the Association for Computational Linguistics (HLT-

NAACL 2007), pp. 404–411.

[29] Marcus M. P., Santorini B., and Marcinkiewicz M. A., 1993, “Building a Large

Annotated Corpus of English : The Penn Treebank,” Computational Linguistics,

19(2), pp. 313–330.

[30] Marneffe M. De, Maccartney B., and Manning C. D., 2006, “Generating Typed

Dependency Parses from Phrase Structure Parses,” Linguistics in the Netherlands,

Citeseer, pp. 449–454.

[31] Perkins J., 2011, Python Text Processing with Nltk 2.0 Cookbook: LITE Edition,

Packt Publishing.

[32] Manning, Christopher D., Raghavan P., and Schütze H., 2008, “Introduction to

information retrieval”, Cambridge: Cambridge University Press.

[33] Ikonomakis M., Kotsiantis S., and Tampakas. V., 2005, “Text Classification Using

Machine Learning Techniques,” WSEAS Transactions on Computers, 4(8), pp.

966–974.

[34] Pedregosa F., Weiss R., and Brucher M., 2011, “Scikit-learn : Machine Learning in

Python,” The Journal of Machine Learning Research, 12, pp. 2825–2830.

[35] Hsu C., Chang C., and Lin C., 2010, “A Practical Guide to Support Vector

Classification”.

[36] Joachims T., 1998, “Text Categorization with Support Vector Machines: Learning

with Many Relevant Features” pp. 137-142, Springer Berlin Heidelberg

 94

[37] Alpaydin E., 2004, Introduction to machine learning, MIT press.

[38] Cortes C., and Vapnik V., 1995, “Support-Vector Networks,” Machine learning,

297, pp. 273–297.

[39] Wang B. X., Japkowicz N., Ave K. E., and A P. O. B. S., “Boosting Support

Vector Machines for Imbalanced Data Sets,” Knowledge and Information Systems,

25(1), pp. 1–10.

[40] Akbani R., Kwek S., and Japkowicz N., 2004, “Applying Support Vector

Machines to Imbalanced Datasets,” Machine Learning: ECML 2004, Springer

Berlin Heidelberg, pp. 39–50.

[41] Phung S. L., 2009, “Learning pattern classification tasks with imbalanced data

sets,” pp. 193–208.

[42] Holmes G., Donkin A., and Witten I. H., 1994, WEKA: a machine learning

workbench, Intelligent Information Systems, Proceedings of the 1994 Second

Australian and New Zealand Conference on IEEE, pp. 357–361.

[43] Witten I. H., Frank E., Trigg L., Hall M., Holmes G., and Cunningham S. J., 1999,

“Weka : Practical Machine Learning Tools and Techniques with Java

Implementations,” Proceedings of ANNES'99 International Workshop on

emerging Engineering and Connectionnist-based Information Systems, pp. 192–

196.

[44] Hall M., Frank E., Holmes G., Pfahringer B., Reutemann P., and Witten I. H.,

2009, “The WEKA data mining software: an update,” SIGKDD Explorations,

11(1), pp. 10–18.

[45] Garner S. R., 1995, “WEKA: The Waikato Environment for Knowledge

Analysis,” Proceedings of the New Zealand computer science research students

conference, pp. 57–64.

[46] Frank E., Hall M., Trigg L., Holmes G., and Witten I. H., 2004, “Data mining in

bioinformatics using Weka,” Bioinformatics, 20(15), pp. 2479–2481.

[47] Entezari-maleki R., Rezaei A., and Minaei-bidgoli B., “Comparison of

Classification Methods Based on the Type of Attributes and Sample Size,”

JCIT, 4(3), pp. 94-102.

[48] Drazin S., 2010, “Decision Tree Analysis using Weka,” Machine Learning-Project

II, University of Miami, pp. 1–3.

 95

[49] Zhao Y., and Zhang Y., 2008, “Comparison of decision tree methods for finding

active objects,” Advances in Space Research, 41(12), pp. 1955–1959.

[50] Quinlan J. R., 1993, C4.5: Programs for Machine Learning, Morgan Kaufmann.

[51] Rajput A., Aharwal R. P., Dubey M., Saxena S. P., and Raghuvanshi M., 2011,

“J48 and JRIP Rules for E-Governance Data,” International Journal of Computer

Science and Security (IJCSS), 5(2), p. 201.

 96

APPENDICES

 97

Appendix A: Standard verb vocabulary and MTM mapping rules validation

The following table presents the entire standard verb vocabulary along with definition,

examples and OPR classification.

S. No Verb Definition Example
OPR

class

1 Align Accurate Positioning of a part

or tool over another part

Align bumper to BIW M

2 Apply Putting on a medium on an

object with or without the aid

of a tool

Apply headlight seal

initial

M

3 Attach Setting or binding two parts

with each other using only the

features on each part

Attach hook to ARB M

4 Clean Includes all performances, to

clean an object with a tool.

Clean windshield with

wipe

M

5 Connect Includes all activities to

connect/ locking or unlocking

a cable, with or without tool.

Connect cable to

harness

M

6 Disengage Unlocking a fixture or

removing a part from the

fixture or tool.

Disengage the fixture /

Remove Jig

M, ZH

7 Engage Locking a fixture or engaging

a tool onto a part.

Engage a fixture or

clamp.

M, ZH

8 Exchange Involves exchanging empty

bins containing parts and

supplies with full bins.

Exchange container

nuts

M, ZH

9 Get Picking up a part or tool from

around 1 m or does not

necessitate getting up or

walking from position.

Get torque tool M, ZH

10 Handstart Screwing in 2 rounds, the bolt

or nut by hand or with the aid

of tools, to set it in position.

Handstart first screw

on tool holder at lift

assist

M

11 Insert Includes all activities to

assemble clips with hands

and/or tool

Insert clip to Y-strut M

12 Inspect Carrying out a check on a part

or process, in order to make a

decision.

Inspect bumper for

damages

M, PF

13 Lay Laying a cable by hand and/or Route Bowden cable M

 98

S. No Verb Definition Example
OPR

class

fastening exactly

14 Move Moving with/without a

part/tool around the car or

actions like bending down,

squatting.

Move to front bumper M

15 Open

(Preparator

y)

Includes all activities to

handle packaging, separating

layers and opening package to

take contents.

Open bag with tool ZH

16 Operate Operating is to getting control

over adjusting elements with a

hand or foot and performing a

single operation or a combined

operation.

Operate to lower EMS

onto hook

M, ZH

17 Place Position a part or tool that is

already in hand and requires

no additional walking

Place ems hanger on

third coil

M

18 Press(Switc

h/button)

Pushing a button or switching

on a control to operate a tool.

Press button to release M, ZH

19 Push Manipulating a tool or part to

align or start motion.

Push seat into place M

20 Read Reading information carrier,

data cards to comprehend the

information.

Read option list M

21 Remove

(Preparator

y)

Includes all activities to

handle packaging, separating

layers and opening package to

take contents.

Remove flex layer M, ZH

22 Remove Take a part off an assembly or

piece of a part.

Remove a round cut

out

M

23 Restock Refilling storage containers,

toolboxes and/or containers.

Restock rivets to carts ZH

24 Restrict Bind or guard cables, wires,

electrical components etc.

Restrict cables. M

25 Scan Includes all activities to mark

an object with a marking

device or to document an

object with a scanner.

Get scanner and scan

label on IP skin

M

26 Screw in Involves screwing in a bolt or

nut completely with hand.

Screw in by hand total

depth

M

27 Secure Securing a cable with Secure cable for M

 99

S. No Verb Definition Example
OPR

class

stationary or moveable

fastening elements. With or

without tools.

foglight

28 Snap Clipping in parts with clips

and onto other parts

Snap I-

Panel Finisher into

console stack

M

29 Tighten Fastening screws and bolts

with manual tools or torque

tools.

Tighten 4 off screws

with torque tool.

M

30 Unscrew Unscrewing bolts/nuts

manually or with help of a

tool.

Unscrew adjuster 3

half turns 3mm gap

M

31 Walk Walk from car body to car

body or supply area without

picking up part or any action.

(and)

Walk to supply area to pick up

a part.

Walk to cart and back ZW

The seventy one time study steps extracted from TVGs to test the accuracy of the MTM

mapping rules are shown below in tabular format.

S. No. Time study step
MTM table

(from TVG)

MTM table

(from MTM

table

generator)

Check

1 READ VEHICLE INFORMATION

AS REQUIRED ALL PROCESSES

MODEL, 4UBA. Read Read Y

2 PLACE PROTECTOR CARRIED

FROM CAR TO CAR DURING

WALK TO NEXT CAR

REMOVAL SEPARATE. Place Place Y

3 GET AND PLACE PLUG. Get and Place Get and Place Y

4 GET AND PLACE SEAT BELT

RECEIVER. Get and Place Get and Place Y

5 WALK FROM CAR TO PARTS

AND THEN BACK. Body Motions Body Motions Y

6 GET REAR SEAT AND PLACE IN Get and Place Get and Place Y

 100

S. No. Time study step
MTM table

(from TVG)

MTM table

(from MTM

table

generator)

Check

CAR INITIAL.

7 GET AND TURN SEAT UP AND

PLACE UNDER BRACKETS. Get and Place Get and Place Y

8 GET REAR SEAT AND PLACE IN

CAR INITIAL. Get and Place Get and Place Y

9 GET AND TURN SEAT UP AND

PLACE UNDER BRACKETS. Get and Place Get and Place Y

10 WALK TO CART THEN CAR. Body Motions Body Motions Y

11 REMOVE BAGS FROM

BETWEEN SEATS / SEPARATE

AND DISCARD. Get and Place Get and Place Y

12 PRESS BUTTON ON LIFT

ASSIST FOR 3RD ROW SEATS /

THEN BACK WHEN DONE. Operate Operate Y

13 PRESS FORWARD SWITCH

/GRAB TRIGGER UNDER

HANDLE. Operate Operate Y

14 PLACE LIFT TO SEAT / THEN

MOVE ACROSS TO FINAL

POSITION.

Place

Handling

Auxiliary

Materials \

Tools N

15 APPLY PRESSURES TO STOP

LIFT AND THEN PUSH OVER.

Motion

Cycles Motion cycles Y

16 PRESS SWITCH FOR DOWN

AND SWITCH FOR CLAMP. Operate Operate Y

17 PT (TIME FOR CLAMPS TO

CLOSE).

Process

Verb does not

exist

Rule

does

not

exist

18 PRESS SWITCH TO RAISE SEAT

OFF LIFT TABLE. Operate Operate Y

19 PT (TIME TO RAISE SEAT UP TO

CLEAR TABLE).

Process

Verb does not

exist

Rule

does

not

exist

20 PRESS LATCH SWITCH / PRESS

REVERSE SWITCH. Operate Operate Y

21 PRESS ROTATE SWITCH. Operate Operate Y

 101

S. No. Time study step
MTM table

(from TVG)

MTM table

(from MTM

table

generator)

Check

22 APPLY PRESSURE TO TURN

LIFT.

Motion

Cycles Motion cycles Y

23 PT (TIME TO ROTATE SEAT).

Process

Verb does not

exist

Rule

does

not

exist

24 PRESS BRAKE BUTTON. Operate Operate Y

25 GET AND PLACE PROTECTOR

FROM LIFT TO C-PILLAR ON

CAR. Get and Place Get and Place Y

26 PRESS CLAMP SWITCH AND

DOWN BUTTON. Operate Operate Y

27 PT (UNCLAMP).

Process

Verb does not

exist

Rule

does

not

exist

28 APPLY PRESSURE TO START

AND STOP LIFT.

Motion

Cycles Motion cycles Y

29 PRESS UP BUTTON. Operate Operate Y

30 PT (TIME FOR SEAT TO RAISE).

Process

Verb does not

exist

Rule

does

not

exist

31 PRESS LATCH SWITCH. Operate Operate Y

32 APPLY PRESSURE TO SWING

LIFT AROUND.

Motion

Cycles Motion cycles Y

33 PRESS FORWARD SWITCH. Operate Operate Y

34 PRESS BRAKE BUTTON. Operate Operate Y

35 READ SEQ NUMBER ON RACK

TO ENSURE IT IS THE

CORRECT ONE. Read Read Y

36 MOVE TO PRESS CYCLE

BUTTON AND BACK. Body Motions Body Motions Y

37 EXCHANGE CARTS PUSH

CYCLE BUTTON. Operate

Handling

Containers N

38 OPEN LATCH HOLDING

PALLET WITH SEAT.

Operate

Verb does not

exist

Rule

does

not

 102

S. No. Time study step
MTM table

(from TVG)

MTM table

(from MTM

table

generator)

Check

exist

39 PRESS BUTTON TO RAISE LIFT

TABLE. Operate Operate Y

40 GET AND PULL PALLET WITH

SEAT ONTO TABLE. Get and Place Get and Place Y

41 PUSH BUTTON TO ACTIVATE

SEAT STOP ON LIFT TABLE. Operate Operate Y

42 PUSH EMPTY PALLET BACK

ONTO CART AFTER SEAT

REMOVED. Get and Place

Working with

Clips N

43 APPLY PRESSURE TO HELP

GUIDE SLIDES OFF AND ON

SEAT RACK.

Motion

Cycles Motion cycles Y

44 PUSH BUTTON TO RELEASE

SEAT STOP ON LIFT. Operate Operate Y

45 PRESS BUTTON TO LOWER

TABLE. Operate Operate Y

46 PT (TIME FOR TABLE TO

LOWER).

Process

Verb does not

exist

Rule

does

not

exist

47 INSPECT PARTS. Visual

Control Visual Control Y

48 WALK TO GET BAG ON BACK

OF RACK AND BACK AVERAGE

1 TIME PER RACK. Body Motions Body Motions Y

49 GET AND HOLD BAG WITH

ONE HAND. Get and Place Get and Place Y

50 GET AND PULL VELCRO OPEN

WITH OTHER HAND . Get and Place Get and Place Y

51 WALK TO CAR WITH PARTS. Body Motions Body Motions Y

52 GET AND PLACE TO CARRY

FROM CAR TO CAR . Get and Place Get and Place Y

53 MOVE BRACKETS ON SEAT UP. Operate Body Motions N

54 GET AND PLACE PROTECTOR

FROM LIFT TO C-PILLAR ON

CAR. Get and Place Get and Place Y

55 INSPECT PART. Visual Visual Control Y

 103

S. No. Time study step
MTM table

(from TVG)

MTM table

(from MTM

table

generator)

Check

Control

56 WALK TO GET BAG FROM LIFT

AVERAGE AND BACK TO

FRONT OF RACK (1 TIME PER

PACK). Body Motions Body Motions Y

57 OPEN VELCRO FLAP ON BAG.

Get and Place

Verb does not

exist

Rule

does

not

exist

58 GET AND PLACE SECOND SET

TO SEAT ON RACK

TEMPORARILY (1 TIME PER

PACK). Get and Place Get and Place Y

59 GET BOTH BOLSTER AND

PLACE IN CAR. Get and Place Get and Place Y

60 WALK TO CAR TO PLACE

PARTS. Body Motions Body Motions Y

61 OPEN PACK.

Preparatory

Activities

Verb does not

exist

Rule

does

not

exist

62 EXCHANGE CARTS PUSH

CYCLE BUTTON. Operate

Handling

Containers N

63 OPEN LATCH HOLDING

PALLET WITH SEAT.

Operate

Verb does not

exist

Rule

does

not

exist

64 PRESS BUTTON TO RAISE LIFT

TABLE. Operate Operate Y

65 GET AND PULL PALLET WITH

SEAT ONTO TABLE. Get and Place Get and Place Y

66 PUSH BUTTON TO ACTIVATE

SEAT STOP ON LIFT TABLE. Operate Operate Y

67 PUSH EMPTY PALLET BACK

ONTO CART AFTER SEAT

REMOVED. Get and Place

Working with

Clips N

68 MOVE WITH LIFT ONCE SEAT

IS LOADED AND TURN. Body Motions Body Motions Y

69 MOVE TO CAR AND BACK TO Body Motions Body Motions Y

 104

S. No. Time study step
MTM table

(from TVG)

MTM table

(from MTM

table

generator)

Check

PLACE PROTECTOR.

70 MOVE SEAT INTO CAR. Body Motions Body Motions Y

71 READ SEQ NUMBER ON RACK

TO ENSURE IT IS THE

CORRECT ONE. Read Read Y

 105

Appendix B: Python program scripts

This appendix contains the entire code to develop the NLP tools and techniques.

1. Code for extraction of verbs and objects from parsed work instruction text

import nltk
from nltk.tokenize import *

text=open('wi_parsed.txt','r').read()

tokenizer = RegexpTokenizer('\s+', gaps=True)
text_token = tokenizer.tokenize(text)
j = [item for item in range(len(text_token)) if text_token[item] == './.']
verbs = []
verb = ''
space=' '
obj_join=''
objects = []
for current_index in j[0:]:

 if (text_token[current_index+1]== 'The/DT') & (text_token[current_index+2]==

'associate/NN') & (text_token[current_index+3]== 'must/MD'):

 master_index=current_index+4
 for vb in text_token[master_index:] :
 if vb.endswith('/VB'):
 verb += vb.split('/')[0]
 if text_token[master_index+1].endswith('/RP') :
 verb += space
 verb += text_token[master_index+1].split('/')[0]
 break

 else :
 break

 if verb == '':
 continue

 106

 else :
 verbs.append(verb)
 verb = ''

 found = False

 for obj in text_token[master_index:] :

 if obj.endswith('/JJ') or obj.endswith('/NN') or obj.endswith('/NNS') :
 found = True
 obj_join += obj.split('/')[0] + space
 continue

 else :
 if found :
 obj_join=obj_join.rstrip()
 objects.append(obj_join)
 obj_join=''
 break
 else :
 continue

 else :
 print 'error'

results=[]
results.append(verbs)
results.append(objects)
print results

import csv

item_length = len(results[0])

with open('verb_obj2.csv', 'wb') as test_file:
 file_writer = csv.writer(test_file)

 107

 for i in range(item_length):
 file_writer.writerow([x[i] for x in results])

2. Code for developing object type classifier

import numpy as np
import pandas as pd
import sklearn
from sklearn import cross_validation
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.multiclass import OneVsRestClassifier
from sklearn.svm.sparse import LinearSVC
import csv
import pickle

labeleddata = pd.read_csv("training_data_oversampling.csv")
target = labeleddata["Object type"]
data = labeleddata.ix[:,:-1]
x_train, x_test, y_train, y_test = cross_validation.train_test_split(data,target,

test_size=0.4, random_state=17)

x_train = [item for sublist in x_train for item in sublist]
x_test = [item for sublist in x_test for item in sublist]

ngram_vectorizer = CountVectorizer(analyzer='char_wb',ngram_range=(5,5),min_df=1)
x_train_count = ngram_vectorizer.fit_transform(x_train)
x_train_vector = ngram_vectorizer.transform(x_train).toarray()
x_test_count = ngram_vectorizer.fit_transform(x_train)
x_test_vector = ngram_vectorizer.transform(x_test).toarray()
base_clf = sklearn.svm.LinearSVC(class_weight= 'auto')
clf = OneVsRestClassifier(base_clf).fit(x_train_vector, y_train)

f = open('my_classifier.pickle', 'wb')
pickle.dump(clf,f)
f.close

3. Code for extraction of verbs, objects and MTM table name from parsed time study

steps

import nltk
from nltk.tokenize import *

 108

import csv

text= open('ts_parsed.txt','r').read()

tokenizer = RegexpTokenizer('\s+', gaps=True)
text_token = tokenizer.tokenize(text)
j = [item for item in range(len(text_token)) if text_token[item] == './.']
verbs = []
table = []
space=' '
verb = ''
obj_join=''
tbl_join=''
objects = []
for current_index in j[0:]:

 if (text_token[current_index+1]== 'The/DT') & (text_token[current_index+2]==

'associate/NN') & (text_token[current_index+3]== 'must/MD'):

 master_index=current_index+4
 for vb in text_token[master_index:] :
 if vb.endswith('/VB'):
 verb += vb.split('/')[0]
 if text_token[master_index+1].endswith('/RP') :
 verb += space
 verb += text_token[master_index+1].split('/')[0]

 temp_index=master_index
 while (text_token[temp_index] != 'MTM/NNP'):
 temp_index +=1
 if (text_token[temp_index]== 'and/CC') &

(text_token[temp_index+1].endswith('/VB')):
 verb += space
 # check if its verb or not
 verb += text_token[temp_index+1].split('/')[0]
 break

 else :
 continue

 109

 else :
 break
 verbs.append(verb)
 verb = ''

 found= False
 for obj in text_token[master_index:] :
 if obj.endswith('/JJ') or obj.endswith('/NN') or obj.endswith('/NNS') or obj

=='of/IN' :
 found = True
 obj_join += obj.split('/')[0] + space
 continue

 else :
 if found :
 obj_join=obj_join.rstrip()
 objects.append(obj_join)
 obj_join=''
 test = 'lrb not encountered'
 break
 else :
 if (obj !='-LRB-/-LRB-'):
 test = 'lrb not encountered'
 continue
 else :
 test = 'lrb encountered'
 del verbs[-1]
 break
 if (test == 'lrb encountered'):
 continue
 else :
 count=0
 for tbl in text_token[master_index:] :
 count+=1
 if (tbl == 'MTM/NNP'):
 break

 found2 = False
 new_index=master_index+count
 for tbl in text_token[new_index:] :

 110

 if (tbl !='-RRB-/-RRB-') :
 found2 = True
 tbl_join += tbl.split('/')[0] + space
 continue

 else :
 if found2 :
 tbl_join=tbl_join.rstrip()
 table.append(tbl_join)
 tbl_join=''
 break

 else :
 print 'error'

results=[]
results.append(verbs)
results.append(objects)
results.append(table)
print results

item_length = len(results[0])
with open('ts_full2.csv', 'wb') as test_file:
 file_writer = csv.writer(test_file)
 for i in range(item_length):
 file_writer.writerow([x[i] for x in results])

4. Code for developing MTM table generator

import nltk
from nltk.tokenize import *
import Tkinter
from Tkinter import *
import stanford_parser
from stanford_parser.parser import Parser
import numpy as np
import pandas as pd
import sklearn
from sklearn import cross_validation

 111

from sklearn.feature_extraction.text import CountVectorizer
#from sklearn.multiclass import OneVsRestClassifier
#from sklearn.svm.sparse import LinearSVC
import csv
import pickle
root = Tkinter.Tk()
root.title("MTM table generator")
root.geometry('650x300+200+200')

def restructure_wi():
 raw_wi = input_wi.get('0.0', END)
 restructured_wi = "The associate must "+raw_wi.lower()
 restructured_wi = restructured_wi.replace('\n','')
 restructured_wi = restructured_wi.replace('.','. The associate must ')
 restructured_wi = restructured_wi[:-21]
 parsing(restructured_wi)

 return

def parsing(restructured_wi):

 stanford_parser = Parser()
 parsed_wi = stanford_parser.justTags(restructured_wi)
 extract_verb_object(parsed_wi)
 return

def extract_verb_object(parsed_wi):
 text = parsed_wi
 tokenizer = RegexpTokenizer('\s+', gaps=True)
 text_token = tokenizer.tokenize(text)
 text_token.insert(0, './.')
 print text_token

 j = [item for item in range(len(text_token)) if text_token[item] == './.']
 verbs = []
 verb = ''
 space=' '
 obj_join=''
 objects = []

 112

 for current_index in j[0:]:

 if (text_token[current_index+1]== 'The/DT') & (text_token[current_index+2]==

'associate/NN') & (text_token[current_index+3]== 'must/MD'):

 master_index=current_index+4
 for vb in text_token[master_index:] :
 if vb.endswith('/VB'):
 verb += vb.split('/')[0]
 if text_token[master_index+1].endswith('/RP') :
 verb += space
 verb += text_token[master_index+1].split('/')[0]
 break

 else :
 break

 if verb == '':
 continue
 else :
 verbs.append(verb)
 verb = ''

 found = False

 for (e,obj) in list(enumerate(text_token[master_index:])) :

 if obj.endswith('/JJ') or obj.endswith('/NN') or obj.endswith('/NNP') or

obj.endswith('/NNS') or obj =='of/IN' :
 found = True
 obj_join += obj.split('/')[0] + space

 if (e+1) == len(text_token[master_index:]) :
 obj_join=obj_join.rstrip()
 objects.append(obj_join)
 obj_join=''
 break

 else :

 113

 continue

 else :
 if found :
 obj_join=obj_join.rstrip()
 objects.append(obj_join)
 obj_join=''
 break
 else :
 continue

 else :
 print 'error'

 results=[]
 results.append(verbs)
 results.append(objects)
 print results
 object_classifier(results)
 return

def object_classifier(results):
 labeleddata = pd.read_csv("training_data_oversampling.csv")
 target = labeleddata["Object type"]
 data = labeleddata.ix[:,:-1]
 x_train, x_test, y_train, y_test = cross_validation.train_test_split(data,target,

test_size=0.4, random_state=17)

 x_train = [item for sublist in x_train for item in sublist]

 ngram_vectorizer =

CountVectorizer(analyzer='char_wb',ngram_range=(5,5),min_df=1)

 f= open('my_classifier.pickle', 'rb')
 clf = pickle.load(f)

 114

 f.close()

 test_list = results[1]
 print results[1]
 test_set = np.array(test_list)
 test_set_count = ngram_vectorizer.fit_transform(x_train)
 test_set_vector = ngram_vectorizer.transform(test_set).toarray()
 list_obj_type = []
 list_obj_type = clf.predict(test_set_vector)
 MTM_rules(results,list_obj_type)
 return

def MTM_rules(results,list_obj_type):
 sverb = results[0]
 list_obj = results[1]
 obj_type = list_obj_type
 print list_obj_type
 MTM_table_list = []
 print sverb

 for count in range(len(sverb)):

 if sverb[count] == 'get' :
 if obj_type[count] == 'Part' or obj_type[count] == 'Plant item' or

obj_type[count] == 'Fixture' :
 MTM_table = 'Get and Place'
 elif obj_type[count] == 'Tool':
 MTM_table = 'Handling Auxiliary Materials \ Tools'
 elif obj_type[count] == 'Consumable':
 MTM_table = 'Working with Adhesives'
 else :
 MTM_table = 'No MTM table found / MTM rule does not

exist'

 elif sverb[count] == 'operate' :
 if obj_type[count] == 'Part' :
 MTM_table = 'Operate'
 elif obj_type[count] == 'Tool' :
 MTM_table = 'Handle Tool'
 else :
 MTM_table = 'No MTM table found / MTM rule does not exist'

 115

 elif sverb[count] == 'attach' :
 if obj_type[count] == 'Part' :
 MTM_table = 'Working with Clips'
 elif obj_type[count] == 'Plant item' or obj_type[count] == 'Fixture'

or obj_type[count] == 'Tool' :
 MTM_table = 'Get and Place'
 elif obj_type[count] == 'Consumable':
 MTM_table = 'Working with Adhesives'
 else :
 MTM_table = 'No MTM table found / MTM rule does not

exist'

 elif sverb[count] == 'move' :
 MTM_table = 'Body Motions'

 elif sverb[count] == 'place' :
 if obj_type[count] == 'Part' or obj_type[count] == 'Plant item' or

obj_type[count] == 'Fixture' or obj_type[count] == 'Consumable' :
 MTM_table = 'Place'
 elif obj_type[count] == 'Tool':
 MTM_table = 'Handling Auxiliary Materials \ Tools'
 else :
 MTM_table = 'No MTM table found / MTM rule does not

exist'

 elif sverb[count] == 'push' :
 if obj_type[count] == 'Part' or obj_type[count] == 'Plant item' or

obj_type[count] == 'Fixture' or obj_type[count] == 'Consumable' :
 MTM_table = 'Working with Clips'
 elif obj_type[count] == 'Tool':
 MTM_table = 'Operate'
 else :
 MTM_table = 'No MTM table found / MTM rule does not

exist'

 elif sverb[count] == 'align' :
 MTM_table = 'Place'

 116

 elif sverb[count] == 'disengage' :
 MTM_table = 'Operate'

 elif sverb[count] == 'press' :
 MTM_table = 'Operate'

 elif sverb[count] == 'apply' :
 MTM_table = 'Motion Cycles'

 elif sverb[count] == 'walk' :
 MTM_table = 'Body Motions'

 elif sverb[count] == 'inspect' :
 MTM_table = 'Visual Control'

 elif sverb[count] == 'engage' :
 MTM_table = 'Operate'

 elif sverb[count] == 'clean' :
 MTM_table = 'Cleaning'

 elif sverb[count] == 'read' :
 MTM_table = 'Read'

 elif sverb[count] == 'insert' :
 MTM_table = 'Working with Clips'

 elif sverb[count] == 'remove (preparatory)' :
 MTM_table = 'Preparatory Activities'

 elif sverb[count] == 'remove' :
 if obj_type[count] == 'Part' or obj_type[count] == 'Plant item' or

obj_type[count] == 'Fixture' or obj_type[count] == 'Tool' :
 MTM_table = 'Get and Place'
 elif obj_type[count] == 'Consumable':
 MTM_table = 'Preparatory Activities'
 else :
 MTM_table = 'No MTM table found / MTM rule does not

exist'

 117

 elif sverb[count] == 'connect' :
 MTM_table = 'Laying Cables'

 elif sverb[count] == 'handstart' :
 MTM_table = 'Working with Screws \ Bolts'

 elif sverb[count] == 'tighten' :
 MTM_table = 'Handling Auxiliary Materials \ Tools'

 elif sverb[count] == 'unscrew' :
 MTM_table = 'Motion Cycles'

 elif sverb[count] == 'restock' :
 MTM_table = 'Parts Supply'

 elif sverb[count] == 'lay' :
 MTM_table = 'Laying Cables'

 elif sverb[count] == 'scan' :
 MTM_table = 'Marking and Documenting'

 elif sverb[count] == 'exchange' :
 MTM_table = 'Handling Containers'

 elif sverb[count] == 'secure' :
 MTM_table = 'Handling Auxiliary Materials \ Tools'
 else :
 MTM_table = 'No MTM table found / MTM rule does not

exist'

 else :
 MTM_table = 'Verb does not exist'

 MTM_table_list.append(MTM_table)
 MTM_table = ''
 print MTM_table_list
 display_ts(MTM_table_list)

 return

 118

def display_ts(MTM_table_list):
 output_ts.delete('0.0', END)
 a = input_wi.get('0.0', END)
 output_ts.insert('0.0', a)

 for i in range(len(MTM_table_list)):
 output_ts.insert('%d.end' %(i+1), "[MTM table -")
 output_ts.insert('%d.end' %(i+1), MTM_table_list[i])
 output_ts.insert('%d.end' %(i+1), "]")
 return

input_wi = Text(height = 8, wrap = WORD)
input_wi.insert(INSERT, "Enter WI text here...")
input_wi.place(relx= 0, rely = 0)

submitbutton = Button(text="SUBMIT", fg="black", activebackground = "blue",

command = restructure_wi)
submitbutton.place(relx= 0.45, rely= 0.45)

output_ts = Text(height = 8, wrap = WORD)
output_ts.insert(INSERT, "Output window")
output_ts.place(relx = 0, rely =0.55)

root.mainloop()

	Clemson University
	TigerPrints
	12-2013

	Knowledge Extraction from Work Instructions through Text Processing and Analysis
	Abhiram Koneru
	Recommended Citation

	tmp.1391436364.pdf.D35JE

