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ABSTRACT 

The objective of this thesis is to design, develop and implement an automated 

approach to support processing of historical assembly data to extract useful knowledge 

about assembly instructions and time studies to facilitate the development of decision 

support systems, for a large automotive original equipment manufacturer (OEM). At a 

conceptual level, this research establishes a framework for sustainable and scalable 

approach to extract knowledge from big data using techniques from Natural Language 

Processing (NLP) and Machine Learning (ML). 

Process sheets are text documents that contain detailed instructions to assemble a 

portion of the vehicle, specification of parts and tools to be used, and time study. To 

maintain consistency in the authorship process, assembly process sheets are required to 

be written in a standardized structure using controlled language. To realize this goal, 567 

work instructions from 236 process sheets are parsed using Stanford parser using Natural 

Language Toolkit (NLTK) as a platform and a standard vocabulary consisting of 31 verbs 

is formed. 

Time study is the process of estimating assembly times from a predetermined 

motion time system, known as MTM, based on factors such as the activity performed by 

the associate, difficulty in assembling, parts and tools used, distance covered. The MTM 

compromises of a set of tables, constructed through statistical analysis and best-suited for 

batch production. These MTM tables are suggested based on the activity described in the 

work instruction text. The process of performing time studies for the process sheets is 
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time consuming, labor intensive and error-prone. A set of (IF <Verb> AND <object 

type> THEN <MTM table>) rules are developed, by analyzing 1019 time study steps 

from 236 process sheets, that guide the user to an appropriate MTM table. These rules are 

computationally generated by a decision tree algorithm, J48, in WEKA, a machine 

learning software package. 

A decision support tool is developed to enable testing of the MTM mapping rules. 

The tool demonstrates how NLP techniques can be used to read work instructions 

authored in free-form text and provides MTM table suggestions to the planner. The 

accuracy of the MTM mapping rules is found to be 84.6%. 
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CHAPTER ONE: MOTIVATION AND RESEARCH OBJECTIVES 

The objective of this thesis is to design and implement an automated approach to 

support processing of historical assembly data. Specifically, this thesis aims to extract 

useful knowledge about assembly instructions and time studies to facilitate the 

development of decision support systems, for a large automotive original equipment 

manufacturer (OEM). This will reduce the cognitive load on the planner by providing 

decision support during the generation of assembly time estimates. This is achieved by 

employing the tools and techniques from Natural Language Processing (NLP), Data 

Mining (DM) and Machine Learning (ML). 

Assembly process sheets or process sheets are documents that contain detailed 

steps, known as work instructions, to assemble a portion of the vehicle, specification of 

parts and tools to be used, and time study. The consistency in the process sheets can be 

maintained by standardizing the authorship process through the use of a standardized 

structure and controlled language. To develop a controlled vocabulary, an automated 

approach to extract information is required. 

Time estimates for each activity described in the process sheets is carried out to 

perform line balancing. The time estimates are obtained from a pre-determined motion 

time system containing tables describing various activities. Assigning assembly time 

estimates is an arduous task dealing with ambiguity. By providing decision support 

(directing the planner to an appropriate table in the time standards) and automating the 

process of assigning assembly times estimates, the user effort can be reduced.  
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1.1 Motivation and Research Objectives 

This section provides a brief overview of the research objectives and the issues 

that are being addressed. A detailed description and the outcomes of each objective will 

be presented in further chapters.  

1.1.1 Research Objective One 

The first research objective is to establish an automated approach to extract 

information from assembly process sheets written using unrestricted grammar and 

vocabulary [1–4]. The framework processes the unstructured assembly instructions 

and captures knowledge to develop a controlled vocabulary of verbs to aid in the 

standardization of process sheet authorship. 

An assembly process sheet includes a complete set of instructions describing the 

sequence of operations to be performed. Authoring assembly process sheets is a labor 

intensive process and prone to possible human errors and ambiguity. Currently the 

process sheets are authored without any restriction on grammar, structure and controlled 

language. Also the level of detail in assembly instructions greatly varies based on the 

planner authoring the process sheet. This non-uniformity in authorship between planners 

leads to inconsistency in process sheets. To address this problem, Peterson[4] has 

proposed a system to author process sheets using standardized structure and controlled 

language. The standard vocabulary for the controlled language was developed from data 

acquired from a sample set of existing process sheets. The individual process sheets have 

been analyzed and the required information was extracted. This process was performed 

manually and therefore is a time consuming and error-prone process. Also, manual 
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extraction of information is not suitable when dealing with many process sheets. The 

purpose of first research objective stems directly from trying to automate the process of 

knowledge extraction. The system must be quick, capable of analyzing large amounts of 

data, and flexible to accommodate different formats in authorship while requiring less 

effort from a user. 

1.1.2 Research Objective Two 

The second research objective is to develop decision support system using 

machine learning to aid the planner in estimating assembly times for the work 

instructions authored in the process sheets. 

The process of standardizing work instruction authoring brings about a viable 

opportunity to estimate assembly times. Renu [5] has explored this area and developed 

decision support tools to reduce the effort expended by planner during assembly line 

planning. The assembly time for work instructions is estimated based on the activity to be 

performed by the associate, from a predetermined motion time system called MTM [6]. 

Large automotive manufacturers use adapted versions of the MTM for time estimation. 

The MTM compromises a set of tables, constructed through statistical analysis of 

historical data. The planner is provided suggestions regarding the MTM table based on 

rules developed by manually analyzing time studies from existing process sheets. The 

data analyzed to generate these rules can be overwhelming and be continuously 

expanding. Manual generation of the rules could lead to loss of information that is not 

explicit. Also only a small sample set of process sheets were analyzed for generation of 

rules. The second research objective addresses this issue by developing a decision 
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support system to automatically and computationally form rules, to assist planners in 

assembly time estimation, with the support of machine learning algorithms and data 

analysis. The method must be able to process new information added on a regular basis 

and generate knowledge for decision support that is reliable. 

1.1.3 Research Objective Three 

The third goal of this research is to develop and implement a decision 

support tool to enable testing of the MTM mapping rules that are generated from 

research objective two. The tool is provided with a GUI to demonstrate how NLP 

techniques can be used to read work instructions, written in free-form text, and 

provide MTM table suggestions to the planner. 

The tools developed to address the first two research objectives are integrated to 

develop a decision support tool. To standardize the authorship of process sheets Peterson 

[4] used text element structures in the controlled language. This system restricts the 

planner’s input and the planners cannot freely author process description. A system is 

proposed that allows the planners to author work instructions in free form text. 

1.2 Research Objectives Overview 

The first research objective aims to develop a system capable of extracting 

information from thousands of process sheets.. The second research objective aims to 

develop a decision support system to automatically form rules that aid the planner in 

assembly time estimation. The outcome of the first two research objectives is to 

transform unstructured data into useful knowledge that can be utilized to develop tools to 
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better the processes in domains handling large amounts of data. The third research 

objective presents the development and implementation of a tool to test and validate the 

knowledge generated from research objective two. Figure 1.1 illustrates the framework to 

extract knowledge from unstructured data. The three research objectives are outlined. 

 

Figure 1.1: Framework to extract knowledge from unstructured data 
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1.3 Thesis Outline 

Error! Reference source not found.A summary of the thesis is included in 

Error! Reference source not found.. 

 

Figure 1.2: Thesis outline 

The necessary background and introduction to the current work and processes is 

included in Chapter Two. Current literature in related research fields is reviewed to better 

•Background on current processes and issues encountered 

•Overview of related literature 

CHAPTER TWO: BACKGROUND AND LITERATURE 
REVIEW 

•Introduction of the NLP tools to address the issues encountered 

•Introduction to machine learning software to automate the process of 
knowledge development 

CHAPTER THREE: NLP AND MACHINE LEARNING 
APPROACH TO EXTRACT KNOWLEDGE FROM 
PROCESS SHEETS 

•Process plan to serve as a guide to realizing the tools 

•Implementation of NLP techniques to extract knowledge from 
process sheets 

•Integration of NLP techniques and ML tools to develop decision 
support for systems  

CHAPTER FOUR: DEVELOPMENT AND 
IMPLEMENTATION OF THE NATURAL LANGUAGE 
PROCESSING (NLP) AND MACHINE LEARNING (ML) 
TOOLS 

•Validation of results obtained from tools 

CHAPTER FIVE: VALIDATION AND TESTING 

•Limitations and drawbacks of the tools 

•Further research for improvement  

CHAPTER SIX: CONCLUSIONS AND FUTURE WORK 
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understand the problems at hand. Best possible methods to address these issues are 

highlighted. 

Chapter Three introduces the NLP tools that are used to perform the necessary 

operations to extract knowledge from the process sheets. A brief description of WEKA, a 

machine learning software, is provided. WEKA is used to automate the process of 

developing knowledge for the decision support tools. A deatiled discussion on each of the 

tools and the tasks involved is provided and how these tools are inegrated to achieve the 

desired result. 

The development of the tools to realize the two research objectives is presented in 

Chapter Four. A process plan detailing how each phase serves to solve the problems 

identfied is presented. The chapter concludes with the implementation of the tools that 

are developed. A GUI is developed that integrates the tools to direct the planner to an 

appropriate MTM table based on the work instruction entered. 

Chapter Five deals with testing and validation the tools developed in chapter four. 

The results obtained from the tools are checked against existing data and decision support 

tools to validate the accuracy of the tool.  

The closure for the thesis is presented in Chapter Six with a summary of the tools 

developed to address the research objectives and the broader reach of the work. This 

section identifies certain limitations and drawbacks of the developed tools and provides a 

brief discussion on future work.  
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CHAPTER TWO: BACKGROUND AND LITERATURE REVIEW 

This chapter provides the necessary background regarding the current assembly 

process in automotive industry. The literature of relevant topics is reviewed to determine 

the preferred approach to support the development of tools to address the issues outlined. 

2.1 Current trends in automotive industry 

The current automotive market is highly competitive, characterized by intense 

competition and increasing demands for innovative and customer-oriented products. 

Recent automotive manufacturing trend has seen a shift from mass production to a JIT 

(Just-In-Time) production to meet the demands of a more wide and diverse customer base 

[7]. The customer requirement for product variety needs flexible and intelligent 

manufacturing systems to be integrated to the current manufacturing processes to achieve 

low-cost of production, high product variety, high productivity and short delivery times 

[8]. 

The application of Artificial Intelligence (AI) in automotive industry is seen in a 

wide variety of domains ranging from design, manufacturing, and vehicle functionalities 

[3]. Recent advances in CAD and Artificial Intelligence (AI) have further augmented the 

manufacturing process by presenting opportunities to perform assembly planning by 

functional precedence and connectivity relationships [9]. 

The integration of AI systems in manufacturing processes in automobile 

industries has seen development of applications in areas such as machine translation of 
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process sheets, robotic alternative to manual operation, and ergonomic analysis of 

assembly process [3,10,11]. 

Abdullah et al. [12] point out that almost half of all production work comprises of 

assembly process and assembly costs amount to 50% of the entire production cost. There 

is immense scope of cost cutting, workforce reduction and effective management in the 

assembly process of automotive industry. Therefore there has been much research in 

development of tools to improve the assembly planning process. 

Rychtyckyj [1–3,11,13] discussed the development of a knowledge based system, 

known as Direct Labor Management System (DLMS), that supports and manages data 

pertaining to all stages of the assembly planning process [1–3,11,13].  Process sheets are 

formal documents that contain detailed instructions, called work instruction, to build a 

portion of a vehicle. The DLMS allows planners to create process sheets using a 

restricted vocabulary that are machine readable. The system makes use of AI to check for 

any conflict among the instructions or ergonomic issues that can occur. The work 

instructions are mapped onto MODAPTS, a predetermined time standard, to estimate the 

time required to complete the activities. Furthermore, the system also provides the 

capability of translating the process sheet to other languages to support activities in other 

assembly plants that do not use the same language used for writing process sheets as their 

main language [1,3,13]. Further discussion on assembly planning is provided in the 

following section. 
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2.1.1 Assembly Process Planning 

In an automotive manufacturing industry, the product is carried through a 

succession of workstations on moving flow line called an assembly line [12]. The 

complete assembly of the vehicle is performed sequentially on this assembly line by 

associates allocated to each workstation. This sequence of steps to complete the assembly 

of a product based on the connectivity relationship of the parts or subassemblies is known 

as assembly planning [12]. The process of assembly planning is a critical activity in the 

final production of a vehicle. The cost of assembling a product can be minimized by 

optimal process planning [14]. A schematic representation of an assembly line is shown 

in Figure 2.1. The base part moves from work station 1 to work station 4 along the work 

flow. At each work station, a value adding task is performed and the final product is 

obtained at the end of the assembly line. 

 

Figure 2.1: Schematic representation of an assembly line 

The result of the assembly process planning is the assembly process sheet. 

Process sheets convey the vehicle assembly information from the process planning 

department to the shop floor [1–3]. Process sheets, or TVGs, are text documents that 

contain detailed instructions required to assemble a portion of the vehicle [1]. In addition, 

process sheets also include information regarding the vehicle model, specifications of 

parts and tools to be used, quality checks, and assembly time estimates. The complete 
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assembly of a single vehicle requires about three thousand to five thousand process sheets 

[15]. These process sheets are allocated to the respective workstations as a reference 

document for the associates during assembly. Figure 2.2 shows a sample assembly 

process sheet.  

 

 

Figure 2.2: Sample process sheet 



 12 

To realize the automation of process planning, to support machine translation, 

assembly time estimation, and perform ergonomic analysis standardization of information 

contained within the process sheet is required. Peterson [4] developed a knowledge 

database system to support standardization the process of creating process sheets, for a 

global automobile manufacturer. Similar to Ford’s DLMS, Peterson [4] standardized the 

process of authoring process sheets through controlled language and vocabularies. This 

restricted use of language and syntax helps maintain consistency of the structure and also 

the level of detail in the work instructions. The use of controlled language and its benefits 

has been well documented in Ford’s Direct Labor Management System (DLMS) [1–3]. 

To develop the standard vocabulary, Peterson and colleagues analyzed a large number of 

existing process sheets to extract the most frequently used action verbs to generate a 

reduced standard list of verbs. This process can be automated to reduce the effort and 

time consumed. 

2.1.2 Assembly time estimation 

The assembly planning activity is performed prior to the start of the vehicle 

production [15]. This is crucial to optimize the layout of the assembly line, work 

allocation, and efficient management of personnel. In the conventional method, a process 

engineer records the time taken by personnel to complete the task. But this procedure is 

time consuming and burdensome. Also when the personnel is aware that he is being 

observed and evaluated, his performance can suffer and lead to miscalculation of the time 

estimates [1,6]. To eliminate these issues, predetermined motion time systems have been 

developed. Boothroyd and Dewhurst, MTM, and MODAPTS are few frequently used 
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time standards [1,6,16]. The assembly time estimates obtained from the process sheets 

allows the users to predict the total time taken to build the vehicle. This time estimation 

for each assembly process allows planners to perform optimal line balancing, effectively 

procure material, reduce costs incurred by carrying large inventories, and schedule for 

shipment to customers, minimize storage costs. 

Time study is the process of estimating the time required to carry out a certain 

task. Maynard et al. [6] have developed a predetermined motion time system, known as 

Methods-Time Measurement (MTM). The MTM comprise of a set of tables, constructed 

through statistical analysis, that contain specific codes and time units for all value and 

non-value adding manual activities that are performed during assembly process. Large 

automotive manufacturers used adapted versions of the MTM as per their requirement. 

Based on factors such as the task performed by the associate, difficulty in assembling, 

parts and tools used, and distance covered the planners assigns each work instruction a 

time estimate by traversing through the tables. Each MTM table consists of various 

options that the planner has to narrow down in order to select one code and 

corresponding time units that relates to the activity described in the work instruction. A 

sample table from the MTM is shown in Table 2.1. 
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Table 2.1: Sample MTM Table 

GET AND PLACE Distance 

range in cm 

<20 >20  

< 50 

>50 

Weight Conditions Place accuracy Code 1 2 3 

< 1 kg Easy Approximate AA 20 35 50 

Loose AB 30 45 60 

Tight AC 40 55 70 

Difficult Approximate AD 20 45 60 

Loose AE 30 55 70 

Tight AF 40 65 80 

> 1 kg  < 8 kg Approximate AH 25 45 55 

Loose AJ 35 55 65 

Tight AK 45 65 75 

> 8 kg < 22 kg Approximate AL 80 105 115 

Loose AM 95 120 130 

Tight AN 120 145 160 

 

Manually performing time studies for all the process sheets involved in the 

complete assembly of an automobile is a tedious process. There is a need to automate the 

process of estimating the assembly time. This need has been addressed by Ford’s Direct 

Labor Management System (DLMS). Ford’s DLMS uses standard language, known as 

SLANG to construct all work instructions [1,2]. By standardizing the work instructions 

through standard vocabulary, the system is capable of reading and interpreting each work 

instruction and assign time estimates. As mentioned earlier, similar work has been carried 

out by Peterson [4] and Renu [5]. 
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Peterson’s [4] model to author process sheets using controlled language is 

leveraged by Renu [5] to assign time estimates for each work instruction. Peterson’s 

model, to standardize the process of writing work instructions and Renu’s tool, for 

assembly time estimation are discussed in detail in the following chapter. The basic 

elements that constitute a work instruction are Verb and Object. Renu’s decision support 

tool gathers the verb and objects information from a work instruction and directs the user 

to the MTM table based on a rule set developed from historical data. But these rules have 

been developed manually from a small set of data. For effective utilization of the decision 

support tool, the generation of rules must be automated and large amounts of data need to 

be analyzed. The proposed research aims to bridge the gaps that are encountered. By 

automating the process of extracting information from unstructured data and generating 

rules through machine learning, this research further augments the work by Peterson and 

Renu. 

2.2 Text Mining 

Exploitation of existing knowledge and knowledge acquisition are a key to 

compete at a global level, in any industry. Text mining or text data mining is the process 

of extracting useful knowledge from unstructured data. Text mining is a multidisciplinary 

field, involving information retrieval, knowledge extraction, machine learning and data 

mining [17]. 

Recent studies indicate that 80% of the data in an industry is stored in textual 

format [17]. Though freely available, this data is not availed at the right time and in the 

right manner and hence it is not utilized to its full potential. The reason is due the 
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overwhelming nature of the data collected. This problem has been aptly coined as “rich 

data, poor information” [18]. Large amount of data is accumulated from various sources 

but no means to filter it into knowledge that can aid in decision making and enhance 

productivity. It is evident that the availability of information and the ability to exchange 

and process it is the key to success in global market [19]. Knowledge provides the means 

to solve problems and predicting future market. Efficient knowledge acquisition 

necessitates intelligent systems that are capable of gathering large amounts of 

information and deduce patterns that are implicit. 

2.2.1 Natural Language Processing (NLP) 

As the interaction with computational machines is ever increasing, the need to 

reduce the gap between man and machine is predominant. Researchers have observed 

very early on that, a machine that can analyze and respond using natural language rather 

than a machine language is much more effective and easier to interact with, from a user 

perspective. This ideology has culminated into the research and development of systems 

capable of processing natural language. Natural language processing (NLP) is the ability 

of a system to understand, manipulate and communicate using natural language. The field 

of NLP brings together tools and techniques from a number of disciplines, namely, 

Artificial Intelligence (AI), linguistics, and computer science [20–22]. 

Research efforts into NLP have been ongoing for several decades and the roots 

trace back to the early 1950’s [20,22–24]. Early application of NLP was seen in 

automatic machine translation of phrases from one language to the other. This automation 
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is a consequence of Turing’s model of algorithmic computation, considered to be the 

foundation of modern computer science [20]. NLP involves design and implementation 

of computer systems that can effectively read, understand and communicate in human 

languages. The applications of NLP extend from speech recognition to cross-language 

information retrieval. 

The ability of Natural Language Processing (NLP) is exploited within the scope 

of this research to extract information from assembly process sheets. Process sheets are a 

classic example of a technical document written using natural language. NLP tools and 

techniques are best suited to extract information from large unstructured process sheets 

and transformed into knowledge to provide decision support within the manufacturing 

domain. Further discussion on NLP tools and techniques used to extract knowledge from 

process sheets are presented in Chapter Three. 

2.3 Chapter Summary 

This chapter provides an overview of the assembly process planning in the 

automotive industry. The chapter presents how standardization of process sheets will aid 

in automation of assembly time estimation process. The chapter concludes by describing 

how Information Retrieval (IR) through NLP and Machine Learning (ML) can be used to 

automatically extract information and develop knowledge for decision support tools. 
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CHAPTER THREE: NLP AND MACHINE LEARNING APPROACH TO EXTRACT 

KNOWLEDGE FROM PROCESS SHEETS 

This chapter lays the framework to realize the research objectives and forms the 

core of this thesis. To put this research in context, standardization of process sheets and 

decision support tools to estimate assembly time are discussed in detail. This discussion 

serves as an introduction to address the gaps identified. 

To standardize the process of authoring process sheets, Peterson analyzed the 

process sheets for the vocabulary used and the sentence structure used within work 

instruction text. A process sheets contains work instruction, tools and parts used, time 

studies, and other meta-information that range from details on allotment of the process 

sheet to a certain assembly line and location to the diagrammatic representation of the 

approximate location of the part in the vehicle. The information required to develop a 

standard vocabulary and controlled language is contained in the section consisting 

assembly work instructions.  

A total of 236 process sheets have been analyzed for this purpose. Each process 

sheet contains multiple assembly instructions, averaging about three to four instructions. 

A total of 697 assembly instructions are gathered from the 236 process sheets. A list of 

frequently used verbs that describe a unique action are gathered. Thus by identifying the 

verbs used to describe the work instruction actions, a preliminary list of verbs to be used 

in controlled language is developed. The standard vocabulary for verbs consists of 31 

unique actions, each describing a certain action performed by the associate during the 

assembly process. The sentence structure is developed, based on the existing work 
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instructions, that is minimalistic while sufficient to clearly write a work instruction.  The 

standard sentence structure of the work instruction is shown in Figure 3.1. 

 

Figure 3.1: Sentence structure of work instructions 

Peterson [4] developed a process sheet authorship tool based on the controlled 

language and standard vocabulary. The tool allows the planner to create work instructions 

for a process sheet using a standard structure format with the help of drop down menus 

and free form entry fields.  

The process of developing a standard vocabulary required manual extraction of 

verb from each work instruction. This time consuming activity can be simplified by the 

NLP approach. NLP tools can be used to automatically read each work instruction from 

the process sheets and find the verb that describes the primary action of the assembly 

step. This method will also have the advantage of processing a large number of process 

sheets in a significantly shorter time since it is a computational method. 

In addition to extracting the verb, the primary object from each work instruction is 

also extracted. This data is required to generate a tool (Object type classifier) which will 

assist in the development of the decision support  to estimate assembly time. Further 

discussion on the object type classifier will be provided in further chapters. 

Each process sheet has several work instructions that are carried out by an 

associate on the shop floor for that particular assembly activity. The process sheet also 
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contains a set of time study steps that list out all the time defining actions that will occur 

during the assembly activity. Each time study step provides information on the time 

required to carry out a certain action. The combined time of these time study steps 

provides an estimate of the time required to complete all the assembly instructions 

described within the process sheet. These time estimates are essential in any 

manufacturing industry to perform optimal line balancing. 

Currently the time studies for each process sheet are written by a planner by 

observing an associate performing the assembly activity and recording the action steps. 

The corresponding MTM tables are referred and each activity is denoted a code and time 

units based on certain parameters. This process is labor intensive and time taking [1].  

For example consider the work instruction – ‘Get and place bumper on car body’. 

Presume the bumper weighs 3 kg and is place tightly onto the car body. The associate 

moves 25 cm in order to pick up the part and place. The steps to determine a suitable 

MTM code and time units for the work instruction is as follows. 

Step 1: Select the appropriate MTM table based on the activity described. In this 

case, the work instruction statement describes picking up a part and placing it on a sub-

assembly. Therefore, the MTM table ‘Get and Place’ is selected. 

Step 2: The first column in the MTM table describes the weight of the part. Since 

the bumper weighs 3 kg, the rows corresponding to the ‘Weight’ parameter (> 1 kg < 

8kg) are chosen. 
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Step 3: The type of fit is described as tight. Therefore in the ‘Place accuracy’ 

column, the option ‘Tight’ is chosen. The selection of ‘Weight’ and ‘Place accuracy’ 

parameters points to the MTM code ‘AK’. 

Step 4: The user is provided with three choices for the time units. Since the 

distance moved by the associate is 25 cm, the second column in the ‘Distance range’ is 

selected and the corresponding time unit of 65TMU is obtained. MTM tables contain 

time units in TMU (1 TMU = 0.036s). 

The illustration to the example is shown in Error! Reference source not found.. 

he parameters and the time unit are highlighted. 

Table 3.1: Obtaining time estimates for sample work instruction statement 

GET AND PLACE Distance 

range in cm 

<20 >20 

< 50 

>50 

Weight Conditions Place accuracy Code 1 2 3 

< 1 kg Easy Approximate AA 20 35 50 

Loose AB 30 45 60 

Tight AC 40 55 70 

Difficult Approximate AD 20 45 60 

Loose AE 30 55 70 

Tight AF 40 65 80 

> 1 kg  < 8 kg Approximate AH 25 45 55 

Loose AJ 35 55 65 

Tight AK 45 65 75 

> 8 kg < 22 kg Approximate AL 80 105 115 

Loose AM 95 120 130 

Tight AN 120 145 160 
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The process of selecting a MTM table based on the activity described in the work 

instruction and determining a single MTM code based on the parameters is a tedious 

process. To automate the process of performing time studies, Renu [5] has developed a 

set of rules that direct the planner to the appropriate MTM table based on the information 

gathered from the assembly instruction. This automation reduces the cognitive load and 

repetitive work load on the planner. It is to be noted that these rules only direct the 

planner to an appropriated MTM table. Work instructions do not contain all the 

information required to narrow down to a single MTM code and time unit but sufficient 

information to select a MTM table. Each MTM table has specific set of parameters that 

drive the planner to single code. Information regarding the parameters is obtained from 

other information sources such as CAD data, which is not within the scope of this 

research. The MTM rules are a set of simple IF THEN rules, that utilize the verb and 

object to determine the table. The MTM rules are in the format shown below. 

IF <verb> AND <object> THEN <MTM table> 

During the assembly of the vehicle, the associates interact with thousands of 

objects. This would result in a huge list of rules, which is impractical. To reduce the 

number and simplify the rules, five object types were created and all the objects belonged 

to one and only one type. The five object types being – Part, Tool, Consumable, Fixture, 

and Plant item. Each object is assigned to one object type and this resulted in a simplified 

rules list as shown below. 

IF <verb> AND <object type> THEN <MTM table> 
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Therefore if the planner chooses the verb ‘Scan’ and an object with type ‘Part’, 

the tool will direct the planner to the appropriate table, in this case ‘Marking and 

Documenting’. These rules have been manually developed by analyzing 1019 time study 

steps from 236 process sheets. The verb, object and the MTM table have been extracted 

and the instances with highest frequency, derived through statistical analysis, are used to 

form rules. These rules have a mapping accuracy of 75 %. A sample set of the rules are 

presented in tabular form in Table 3.2. 

Table 3.2: Sample MTM mapping rules 

MTM mapping rules 

Action verb 

& Object Type MTM Table Name 

Align 

& Fixture Place 

& Plant Item Place 

& Tool Motion Cycles 

Attach 

& Consumable Working with Adhesives 

& Fixture Get and Place 

Clean 

& Consumable Cleaning 

Since manually extracting verb and object from each time study and then 

assigning an object type for each of the extracted object is a burdensome task, NLP tools 

can be utilized to process a large set of data in a very short time. Also, the rules when 

developed manually are subject to human error. This can be avoided by using machine 

learning algorithms to generate rules. Machine learning algorithms are capable of 

processing large amounts of data and also bring out the implicit relationships between the 

data that may not be noticed by a human. 
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To better understand the underlying process of knowledge extraction, a brief 

description of the NLP techniques and machine learning tools, that are used to develop 

the decision support tools, is provided. These NLP techniques and machine learning tools 

work in tandem to extract selected information from a large dataset and transform the 

data into resourceful knowledge. The following section talks about Natural Language 

Processing and few of the techniques within NLP. 

3.1 Natural Language Processing (NLP) 

The primary intent of NLP is to extract the meaning of text. Text can be a word, 

statement, paragraph or an entire document depending on the analysis [25]. In process 

sheets, this text is in the form of sentences. NLP provides tools to perform syntactic and 

semantic analysis involving text using computational methods. Syntactic analysis is 

performed to understand structure of the sentence. It involves the part of speech of the 

words and parse trees [25]. Semantic analysis provides the meaning, which involves the 

context of the sentence. It provides the relationship between the syntactic elements. 

3.1.1 Parsing 

Parsing is the process of breaking down text into its components, identifying the 

part of speech (PoS), outlining the function and syntactic relationship between each 

component based on the rules of formal grammar and generating a parse tree structure of 

the text. Essentially parsing pertains only to the process of creating tree structures, but in 

most cases the entire process is considered parsing. Parsing is preceded by two processes 

– Tokenizing and Tagging. The first step involves splitting a sentence into single entities 
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called tokens, by means of user-specified separator. In the second step, tagging, the 

tokens are assigned a part of speech (PoS) depending on the nature of the token in the 

sentence. A tree structure is then created based on the grammatical structure of the 

sentence. The three analyses of the parsing process are shown in Table 3.3.  

Table 3.3: Analyses in parsing process 

Analysis Process Definition 

Lexical Tokenizing Breaking down a sentence into single 

entities, known as tokens. 

Syntactic Tagging Assigning a part of speech (PoS) tag to 

each of the tokens. 

Syntactic Parsing Creating tree structures of the sentence. 

 

The Stanford parser, developed by the Natural Language Processing Group 

(NLPG) at Stanford University, is a computational implementation of a statistical parser. 

The Stanford parser analyses the input sentence and constructs a constituent structure that 

adheres to the syntax [26,27]. The Stanford parser provides Java implementations of 

probabilistic natural language parsers. In this research, an unlexicalized PCGF 

(Probabilistic Context Free Grammar) parser is used. The PCGF parser is provides in 

three different languages apart from English – German, Chinese, and Arabic [26]. The 

PCFG parser is trained on a large corpus consisting annotated text.  Recent studies have 

showed that unlexicalized parsers have higher accuracy than previously thought [26,28]. 

Klein and Manning’s [26] research has showed that unlexicalized parsers have a high 

accuracy of 86.31%, almost as high as state-of-the art parsers.  

The parser uses the Penn Treebank schema to denote phrasal categories and 

annotate the text with Part of Speech (PoS) tags. The Penn Treebank is a huge corpus 
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consisting of syntactically bracketed and PoS tagged texts. A list of twelve syntactic tags 

and thirty-six Part of Speech (PoS) tags are used within the Penn Treebank and the 

Stanford parser to syntactically bracket and annotate the text [29]. Table 3.4 and Table 

3.5 show a sample of the PoS and syntactic tag set with their description. 

Table 3.4: Sample PoS tag set 

Tag Description 

NN Noun 

VB Verb 

JJ Adjective 

RB Adverb 

CC Conjunction 

IN Preposition 

CD Cardinal number 

 

 

Table 3.5: Sample syntactic tag set 

 

 

 

The Stanford parser analyzes the input text and provides the user with various outputs – 

phrase structure trees, typed dependencies, and plain PoS tagged tokens. The parse tree of 

a sample sentence “The quick brown fox jumps over the lazy dog.” is shown below in 

Figure 3.2 

Tag Description 

S Simple declarative clause 

NP Noun phrase 

VP Verb phrase 

PP Prepositional phrase 
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Figure 3.2: Parse tree of sample sentence 

To develop the standard vocabulary and decision support for the tools, it is 

required to establish a method to automatically extract the verb and object list from the 

existing 236 TVGs. It is observed that in each of the assembly instruction and time study 

step, the primary action is a verb (VB) and the object, the verb acts on, is a noun (NN). 

The Stanford parser is leveraged to accurately tag the action verb and object from each 

assembly instruction and time study step. A program is written in a suitable scripting 

language to search for the VB and NN tags from each parsed sentence and extract the 

corresponding tokens into a text file. A detailed discussion provided in the following 

sections. 
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3.2 Natural Language Toolkit (NLTK) 

The NLTK is a software package for building Python modules to perform 

linguistic research in Natural Language Processing (NLP). NLTK consists of a set of 

NLP tools and that provides access to corpora and data manipulation. It provides a suite 

of text processing libraries for tokenizing, tagging, parsing and classification. Large 

number of text files can be imported through NLTK, analyzed and presented in a suitable 

format. 

The verb (VB) and noun (NN) tokens relate to the corresponding action verb and 

objects in an assembly instruction or time study step. Therefore by parsing 236 process 

sheets, the verb and object from each work instruction and time study can be extracted 

thus avoiding manual work. The required information can be extracted from the parsed 

work instructions and time study steps by a python code written using the library of 

functions available in NLTK. But to process the text, certain amount of pre-processing 

and editing is required to structure the statements. Further discussion on the required pre-

processing is provided below. 

Due to the absence of a standard format, many work instructions have been 

compounded into a single sentence, describing more than one activity to be performed. 

For the purposes of ease and simplicity, these compound work instructions have been 

separated into single action steps as shown in Table 3.6. Therefore each step represents 

only one action to be performed by the associate. This is the first step in simplifying the 

data for effective information extraction. 
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Table 3.6: Compound work instructions split into single action work instructions 

S.No Compound work instruction text S.No Single action work instruction 

text 

1 Take EMS hanger hook and attach 

hanger hook to spring damper 

1.a Take EMS hanger hook and 

1.b attach hanger hook to damper 

2 Get kim-wipe from line side and 

apply isoproponal to wipe 

2.a Get kim-wipe from line side and 

2.b apply isoproponal to wipe 

 

The Stanford parser requires the text input in a certain format to accurately tag 

words. The work instructions from the TVGs do not follow a standard structure or 

grammar; therefore it is crucial to perform certain text-preprocessing for effective 

parsing. Figure 3.3 and Figure 3.4 illustrate the parsed tree structure for work instruction 

in upper case and sentence case respectively. It is evident that the parser performs poorly 

when the sentence is entered in upper case and tags each token as a noun, the default tag. 

The parser performs better while the text is inputted in sentence case and accurately tags 

each token with the appropriate tag. Therefore the work instruction text from the TVGs is 

converted to a standard format with punctuation rules for better text analysis. 

 

Figure 3.3: Parse tree of sample sentence in upper case 
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Figure 3.4: Parse tree of sample sentence in sentence case 

Parsers are trained on corpuses of hand-parsed and complete sentences and 

therefore are able to almost accurately tag each token with a part of speech (PoS) [30]. 

The work instructions in the existing TVGs and written in bullet point grammar. The 

parser cannot adequately identify all the PoS tags of the tokens in a sentence unless 

additional information is provided. Figure 3.5 shows the token ‘Align’ is tagged as a 

noun (NNP), highlighted in red. But in fact the token describes an action to be performed 

by the associate and hence it is a verb (VB). 
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Figure 3.5: Incorrectly tagged WI text 

To address this issue, each work instruction is concatenated with the term “The 

associate must” at the start of the sentence to provide contextual meaning. The edited 

work instruction is parsed and the token ‘Align’ is accurately tagged as a verb (VB) by 

the parser, highlighted in green in Figure 3.6. 
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Figure 3.6: Accurately tagged WI text 

All the work instructions are edited to a suitable format by simple text pre-processing so 

as to be accurately parsed. The required data from the process sheets is imported into an 

excel worksheet, edited and exported to a text file to be parsed. Table 3.7 shows a sample 

of raw work instruction text that has been edited to obtain accurate PoS tags. 

Table 3.7: Sample edited work instruction text 

Raw work instruction text Edited work instruction text 

MOVE TO BUMPER STILLAGE.  The associate must move to bumper stillage. 

ENSURE BUMPER IS FLUSH WITH FEN
DER 

The associate must ensure bumper is flush with fender. 

Get the correct roof rail from line side. The associate must get the correct roof rail from line 

side. 
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3.3 Text classification 

Text classification is the process of categorizing text documents or text files 

among a set of pre-defined groups [31]. Text classification of data is natural language 

plays a pivotal role in information retrieval [32]. Text classification goes beyond regular 

text categorization and document retrieval and finds its application in many real world 

challenges such as sorting emails, sentiment detection, and search engines [32,33]. In 

basic text classification, a text document or input is analyzed and then assigned a label 

that is most appropriate [27]. The classification tasks are generally carried out by 

machine learning algorithms that can identify certain attributes or features extracted from 

the input and label the document based on the data the algorithm has been trained on. 

A classification process which involves training a classifier model on pre-labeled 

data is known as supervised learning. Therefore supervised learning requires a training 

set to learn data properties [34]. The training data consists of text documents that are 

manually pre-annotated with one or more labels. The feature extractor generates the 

features and associates them with the relevant labels. The feature-label pair forms the 

basis for the algorithm to generate the classifier model. The features from the test 

documents are also extracted and the classifier model and are checked against the feature-

label pair and then assigned one or more labels. Figure 3.7 shows the schematic 

representation of the classification process with supervised learning. 
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Figure 3.7: Schematic representation of text classification 

There are three types of text classification – binary classification, multi-class 

classification, and multi-label classification. The binary classification involves classifying 

a given input into either of the two available classes. Classifying a document into only 

one of many labels is known as a multi-class classification. Essentially a multi-class 

classification is an extension of binary classification and the same techniques can also be 

applied to create a multi-class classifier. The third type of classification is the multi-label 

classification, which involves classify the input into one or more labels. A multi-label 

classifier can be developed by combining a binary classifier for each label [31]. 
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As discussed previously, each object is assigned one of the five object types that 

are proposed. The rules are developed in the following format and consist of the elements 

– verb and object type. 

{                   {           

Each unique set of verb and object type narrows down the choice of MTM tables. 

Therefore classification of objects into categories is required to provide a mapping 

between the standard verb and the MTM table. Text classification is most suitable for this 

purpose since it is memory efficient, versatile and a large training set is available. An 

object type classifier is developed using the scikit-learn machine learning library to 

categorize the objects into their respective classes [34]. The object type classifier is a 

multi-class classifier that categorizes the objects into one of the five pre-defined object 

types. The main process blocks of text classification are discussed below in detail. 

3.3.1 Training dataset 

In supervised learning, a training dataset is initially provided as an external data 

source to the algorithm. Based on this dataset, the algorithm generates a model which 

predicts the label for the test input based on the data properties of the training set [35]. 

The training set for the object classifier is a manually labeled set of 794 objects with their 

respective object types. The training data is inputted as two arrays: an array of objects of 

and an array of their corresponding object types [34]. 
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3.3.2 Feature extractor 

Feature extraction from text document is a major component of the classification 

process. A feature extractor analyzes the text data, identifies the data properties and 

transforms them into numerical features. The training data for the object type classifier is 

a list of objects with labels, and each object sample represents a document and the 

features are extracted from the object. 

Machine learning algorithms support only certain formats of the features extracted 

from the datasets. And the format of the features is dependent on the type of algorithm 

being used to build the model. For a multi-class classification, Support Vector Machines 

(SVM) are preferred since they are more robust and its ability to process large data when 

compared to conventional text classification methods [33,36]. Support Vector Machines 

requires the features to be in the form of vectors [35]. Vectorization involves the process 

of transforming text documents into a set of numerical feature vectors [34]. The training 

data is vectorized using the modules provided by the scikit-learn library. Support Vector 

Machines and machine learning will be discussed in detail in the following sections. 

To convert the raw text into feature vectors the text documents are tokenized 

using whitespaces as separators. The occurrence of the tokens in each document is 

computed and finally the token are normalized and assigned weights based on their 

occurrence and importance in the training documents. Each text document in the training 

set is transformed into an array of numerical feature vectors as shown in Figure 3.8. The 

training set is arranged into a matrix where each row denotes a text document and each 

column denotes a feature. Each text document is represented as a binary vector with a 
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value 1 if the document contains the feature and 0 if the feature does not appear [33]. The 

vector matrix is provided as input to the algorithm. 

 

Figure 3.8: Input vectorization 

This process of feature set extraction is called the “Bag of Words” representation [31,34]. 

The bag of words representation is a collection of individual tokens, also called as 

unigrams, which disregard word dependencies. Misspelling, phrases, multi-word 

expressions, and word derivations are also not taken into consideration in bag of words 

representation. To counter this drawback, a consecutive set of unigrams are considered, 

known as n-grams representation, to include word dependencies. The feature extraction 

module provides parameters that can be modified to extract meaningful features from the 

data. The maximum and minimum number of characters for the n-grams, analyzer, and 

cut-off parameters are set for the object type classifier. 
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3.3.3 Machine learning 

Machine learning deals with developing systems that are designed to learn and act 

without being explicitly programmed. The systems adapt to solve a given problem by 

utilizing sample data or past experience [37]. Text classification in machine learning 

employs algorithms to generate a decision function that is learned automatically from the 

data. 

Support Vector Machines (SVM) was introduced by Vapnik [38] as a new 

machine learning algorithm that maps the input data vectors onto a high dimensional 

feature space and determining a separating hyper-plane between the classes [35,36,38]. 

They are based on the structural risk minimization principle, which involves finding a 

hypothesis that guarantees the least true error [36]. 

SVMs provide functions to classify data that is not linearly separable, by mapping 

the data on a higher dimensional space without the losing relatedness between the data 

points. These functions are known as kernel functions [32]. The commonly used kernel 

functions are linear, radial based function (RBF), polynomial, and sigmoid [35]. Kernel 

functions are specified for decision functions and are capable of multi-class classification. 

SVMs are designed to handle high dimensional feature spaces, as is the case of text 

classification [34,36]. This is possible since SVMs use overfitting protection, which is 

independent of the number of features. Each document contains only few 1s and mostly 

0s, where 1 represents an occurrence of a feature and 0 represents that the feature does 

not exist in the document. SVMs are capable of handling both dense and sparse vectors as 

inputs [36]. 
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For a multi-class classification, two approaches are most common – one-vs-one 

(OVO) and One-vs-all (OVA). In one-vs-one (OVO) approach, one classifier per each 

pair of classes is constructed and the class which receives the most prediction score is 

chosen. One-vs-all (OVA), one classifier per each class is constructed. Each class is fitted 

against all the other classes and the class which classifies the test data with greatest 

margin is chosen. OVA is the preferred approach for its simplicity, faster processing 

time, and computational efficiency [32,34]. LinearSVC class with a linear kernel is used 

to generate the object type classifier since it implements a One-vs-all (OVA) approach 

[34]. 

3.3.4 Issues with text classification 

Though text classification has been greatly advanced over the last decade, certain 

issues are still open to research efforts. Most machine learning algorithms work well with 

balanced datasets. But in the case of imbalanced datasets, the overall performance of text 

classifier deprecates [39]. Imbalanced datasets refers to situations wherein there are far 

fewer instances of one class when compared to the other class. This results in a skewed 

classifier that leans towards the majority class. Though the overall accuracy is very high 

due to the presence of a large dataset of the majority class, the minority class is 

misclassified, which is usually a major concern. Imbalanced datasets are very common in 

real world situations like gene profiling and fraudulent credit card detection [40]. The 

imbalanced dataset problem has also been encountered while developing the object type 

classifier, and hence requires addressing. Techniques to counter the effects of an 
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imbalanced dataset, both at data level and algorithmic level, have been proposed. The 

most commonly used and effective methods are discussed in the following section. 

Some of the basic adjustments, done at the data level, to balance the datasets are 

sampling techniques - under-sampling and over-sampling. In under-sampling approach, 

the majority class is diminished by extracting a smaller set from the large set of data 

while maintain the initial dataset of the minority class intact. Under-sampling greatly 

reduces the training time but at the same time, a risk of information loss exists due to a 

diminished dataset. Over-sampling is the exact opposite of the under-sampling process. 

The size of minority class is expanded by replicating the initial instances to reduce the 

imbalance ratio between the majority class and the minority class. Although this 

technique avoids information loss, it does not address the issue that the minority class 

lacks data. New data is not created; rather existing data is duplicated. Also, over-

sampling increases computational cost and the effect of labeling errors are greatly 

multiplied [39–41]. 

Over-sampling is the preferred approach towards balancing the dataset for the following 

reasons: 

1. The object classifier deals with simple classifying tasks and therefore does 

not require extensive, complex and computational costly algorithms. 

2. Under-sampling of the training data causes further information loss. 

3. As the sample data contains only one object for each instance, labeling 

errors are almost nonexistent. 
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3.4 WEKA, machine learning workbench 

The Waikato Environment for Knowledge Analysis (WEKA) is a suite of Java 

class libraries that aid in the application of machine leaning and data mining algorithms 

to real world problems [42,43]. The principal algorithms in WEKA are the classifiers that 

generate decisions trees and rule sets that structure the dataset. WEKA also provides tools 

for data manipulation; visualization of results, cross-validation and comparison of rule set 

[43]. The WEKA workbench brings together several established algorithms that include 

decision trees, data clustering methods, feature selection and data filtering to a common 

graphical user interface to extract useful information while providing flexibility to add 

new algorithms as desired by the user. It allows the user to perform research pertaining to 

data mining and knowledge extraction without burdening the user with machine learning 

algorithms. The flexibility and user friendly interface of WEKA workbench is utilized in 

this research to generate MTM mapping rules. 

The primary graphical interface in WEKA is the “Explorer”, which provides easy 

access to the various algorithms and functionalities [44]. The Explorer window has six 

different panels that can be accessed from the tabs present at the top as shown in Figure 

3.9: WEKA Explorer user interfaceFigure 3.9. The six panels are – Preprocess, Classify, 

Cluster, Associate, Select attributes, and Visualize. A brief description of each panel and 

the corresponding data mining tasks supported is presented below. 
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Figure 3.9: WEKA Explorer user interface 

 

WEKA accepts the data in various formats, including ARFF (Attribute-Relation 

File Format) and CSV (Comma Separated Values). The ARFF format is WEKA’s native 

file format and the preferred format used in this research. The ARFF format defines a 

data set in terms of relation or a table with attributes or columns of data [45]. Figure 3.10 

shows a sample dataset in ARFF format. The data can be loaded from a file or from a 

database using an SQL query or an URL [44].  

In the Preprocess panel, data is loaded and transformed using filters available. The 

filters perform further preprocessing on the data such as delete certain attributes or row 
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instances with a particular attribute value [46]. The Preprocess panel also provides a 

histogram of the attributes and statistics of the dataset as seen in Figure 3.9. 

 

Figure 3.10: Sample ARFF dataset 

The second panel in WEKA Explorer interface is the Classify panel. It provides 

the user with access to classification and regression algorithms for analysis. The panel 

also provides cross-validation tools to analyze the outcome of the algorithm. The Classify 

panel consists of various machine learning algorithms including decision trees, rule sets, 

Bayesian classifiers, support vector machines, and nearest-neighbor methods [46]. The 

Classify panel displays the result of the algorithm used on the data set and also provides 

the performance of the classifier namely accuracy and confusion matrix. 

Clustering is the process of grouping or organizing a set of objects or data 

instances such that all the members in a group are closely related or similar to each other 

than objects in other groups. The Association panel consists of algorithms for generating 

association rules used to identify the relationships between the attributes of the data. 

Association helps the user to identify the attribute that have the most impact on the 

prediction model.  
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WEKA provides several evaluation schemes to identify the most effective 

attributes in a dataset. Cross validation allows validation of the selected set of attributes. 

Evaluation methods involve latent semantic analysis and decision tree learner for a 

specific subset of attributes [44,46]. The last panel in WEKA Explorer is the Visualize 

panel. This panel allows the user to view the results of the analysis is various color coded 

matrix of scatter plots.  

3.4.1 Decision Trees 

As discussed in the previous sections, the MTM mapping rules are formed by 

extracting the verb, object and the MTM table from the time study steps and performing 

statistical analysis of the extracted data to find patterns. But the manual generation of 

rules is exhaustive and also certain implicit relationships can be easily overlooked. Also 

there is a need to automate the process and establish a concrete method to extend it over 

large set of data. The functionality of WEKA is utilized for this process. 

The Classify panel in the WEKA Explorer consists of several machine learning 

algorithms and generates simple rules using classification and regression analysis. 

Decision trees are one of the most often used decision based classification algorithms for 

their ease of use, understandability, ability to handle both numerical and categorical data, 

and ability to perform well on large datasets [47–49]. Decision trees are supervised 

learning algorithms. The main objective of a decision tree is to generate a model to 

predict a target or output value based on several input variables provided. Decision tree 

algorithms generate a tree like structure wherein each internal node represents a test and 

each branch is an outcome. The leaf nodes represent the net result. Each path from the 
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root node to the leaf node denotes a rule. Figure 3.11 shows a sample tree graph 

generated by a decision tree algorithm. 

 

Figure 3.11: Sample tree graph 

WEKA contains several decision tree algorithms including Random Tree, J48, 

Decision Stump, and Naïve Bayesian Tree. Zhao and Zhang [49] compared various 

decision trees in WEKA using data gathered from astronomical surveys. Based on their 

results, one of the best performing decision trees is J48 decision tree. 

3.4.1.1 J48 decision tree 

C4.5 is a widely used decision tree algorithm developed by Ross Quinlan 

[50][51]. It uses the principle of divide-and-conquer to construct a decision tree structure. 

The algorithm examines all tests that can split the data and selects the test that gives the 

best gain [49]. The C4.5 technique is one of the decision tree algorithms that is capable of 

generating a decision tree and produces rules that are easy to interpret. J48 classifier is 
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the WEKA implementation of C4.5 technique. J48 classifier is one of the most preferred 

and efficient decision tree classifiers in WEKA [51]. These factors establish J48 as 

favorable classifier for generating MTM mapping rules. Furthermore, the J48 algorithm 

provides the user with option to trim the decision tree to reduce noise and improve 

accuracy. This process is known as pruning. 

Several options are available to the user to provide better control on the 

parameters of the algorithm. Figure 3.12 shows the options to alter the parameters of the 

J48 algorithm. 

 

Figure 3.12: Options window to alter parameters of the J48 algorithm 

During the construction of a decision tree, the size of the tree is dependent on the 

dataset supplied. Many nodes and branches reflect the noise and outliers contained within 
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the dataset [47]. This results in a huge tree structure with an effect on the accuracy of the 

model. Therefore certain pruning measures are required to identify and eliminate such 

branches that do not add value and lower the overall accuracy. Pruning decisions trees is 

an essential step to reduce the complexity of the tree. It aids is optimizing the 

computational efficiency and also improves the classification accuracy of the model [48]. 

Also pruning is performed to avoid over-fitting of new data. The two most often used 

pruning methods are – Post-pruning and Online pruning. 

3.4.1.2 Post-pruning 

Post-pruning is generally applied to an induced decision tree and it works to 

remove insignificant branches and nodes. The probabilities of existing sibling leaf nodes 

is compared and if one leaf node is statistically dominating the other leaf, then the 

dominating leaf node replaces the two existing nodes. The parent node error is calculated 

for both cases and compared. This comparison decides if pruning is advantageous at the 

certain node [48]. The parameter that determines the post-pruning process in WEKA is 

classified as the confidence factor. Lowering or increasing the confidence factors decides 

the post-pruning process of the J48 classifier. At each node junction, the algorithm 

compares the weighted error of each child node and the misclassification error in parent 

node if the child nodes assigned the majority class. The misclassification error is 

approximation of the actual error based on incomplete data. The actual error is not an 

exact value and varies over a range and the confidence factor decides whether the error 

should lean toward the upper bound or lower bound [48]. The actual error assigned is 

inversely proportional to the confidence factor. Therefore a low confidence factor relates 
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to a high actual error assigned. The confidence factor ranges from a scale of 0 to 1. Based 

on the confidence factor assigned, pruning is carried out.  

3.4.1.3 Online pruning 

Online pruning is carried out while the decision tree is being induced unlike post-

pruning. During the construction of the decision tree, a split in the parent node is made if 

the child node has sufficient number of data instances. If there exists a case wherein one 

sibling child node has fewer instances than the minimum required, the child node and the 

parent node are combined into a single leaf node. The parameter that decides the value 

for the minimum required data instances is known as minimum number of object 

instances (minNumObj). Higher the value of minimum number of object instances, 

higher the pruning and hence smaller the size of the decision tree. 

Pruning methods and techniques help in reducing the complexity of the decision 

trees, improve the accuracy of the model, filtering out the outliers in data. But pruning 

can also lead to misclassification errors and can have a detrimental effect on accuracy if 

chosen poorly [48]. Various factors have to be considered and tested while pruning and 

the parameters are to be adjusted based on individual dataset. 
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CHAPTER FOUR: DEVELOPMENT AND IMPLEMENTATION OF THE NATURAL 

LANGUAGE PROCESSING (NLP) AND MACHINE LEARNING (ML) TOOLS 

This chapter details the development of the methods to realize the research 

objectives, using the NLP tools and machine learning techniques that are reviewed in the 

Chapter Three. Explicitly, this chapter presents how these NLP tools and machine 

learning algorithms are integrated to achieve the desired outcome. 

The purpose of the first research objective is to develop a method to automatically 

extract information from TVGs to build a standard vocabulary for a consistent structure 

and format of work instructions and standardizing the TVG authorship process. 

4.1 Building standard vocabulary and object type classifier 

The Stanford parser is capable of identifying the action verbs in an assembly 

instruction, but requires the sentences to be in a particular format for accurate parsing. 

Therefore the all the assembly instructions from the TVGs are edited to fit the desired 

format. To generate a standard vocabulary and sentence structure for the authorship tool, 

236 TVGs consisting of 566 work instructions are analyzed. As discussed earlier, these 

work instructions are compounded and are thus required to be broken down to single 

action conveying statements. These work instructions are edited as per the desired format 

required for parsing and exported to a text file. The Stanford parser is available as an 

online tool at http://nlp.stanford.edu:8080/parser/. The work instruction text is tokenized, 

tagged and parsed. The tagged work instruction text is then extracted into a text file for 

further analysis. A function for extracting all the verb and object tokens from the text file 

http://nlp.stanford.edu:8080/parser/


 50 

is developed in Python. Figure 4.1 shows the process flow of the extraction of verbs and 

objects from the work instructions text. 

 

Figure 4.1: Process flow illustrating extraction of verbs and objects 

A step by step discussion detailing each stage of the process is provided below. 

Step 1: The work instruction text from the process sheets, TVGs, is extracted 

and the necessary text pre-processing is performed.  

Step 2: The tokenizer splits the work instruction text to form single entities 

based on user specified separator, in this case the whitespace. 

Step 3: The tagger assigns a PoS (Part of Speech) to each token. The PoS tag 

is adjoined at the end of each token separated by a forward slash (‘/’). The 

parsing process is complete. 

Step 4: The tokens with their corresponding PoS tags is supplied as input to 

the python program. The program extracts the tokens with verb (‘VB’) and 

noun (‘NN’) tag. 
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Step 5: The verb tokens are manually analyzed to generate a standard 

vocabulary based on domain knowledge. 

Step 6: The noun tokens are the primary object in each work instruction text. 

The object instances are manually categorized into one of the five object 

types. 

Step 7: The labeled set of object instances are used as training set to develop a 

classifier using support vector machines.  

Step 8: An object type classifier is developed that is capable of assigning an 

object type to new object instances. 

Figure 4.2 illustrates the process of developing a standard vocabulary of verbs 

(Step 1 - Step 5) with the help of a sample work instruction – “Get bumper from rack.”. 

The illustration highlights the core mechanism of the process and hence the pre-

processing performed on the work instruction is not shown. The work instruction is 

tokenized and tagged in that order by the parser. The output from the parser is a list 

containing each entity as a token along with its tag- [‘Get/VB’, ‘bumper/NN’, ‘from//IN’, 

‘rack/NN’, ‘./.’]. The entity ‘./.’ indicates the end of each work instruction statement. The 

python function searches the entire list and extracts the token with verb tag (‘Get’) and 

noun tag (‘bumper’, ‘rack’) and exports them into two separate csv (comma separated 

values) files as shown. 
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Figure 4.2: Extraction of verb and object from sample work instruction 

Some of the work instructions were found to contain inadequate information for 

analysis. To reduce the noise and capture only work instructions statements that will aid 

the analysis process, it is determined that each work instruction statement must contain at 

least one verb and one object on which the verb acts upon. The python program discards 

all parsed work instruction statements that do not adhere to this condition. The reduced 

number of valid work instruction statements considered for analysis is 522. The code for 

the program is provided in Appendix B. NLTK is used as a programming tool to support 

the analysis. Table 4.1 provides a comprehensive view of the number of work 

instructions considered for analysis. 

Table 4.1: Number of work instructions considered for analysis 

Number of TVGs analyzed 236 

Number of compound work instructions 566 

Number of single-action work instructions (broken down) 697 

Number of work instruction considered for analysis 522 
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4.1.1 Standard verb vocabulary  

The verbs extracted from the work instructions are exported to a Comma-

separated values (.csv) file. The list consists of 522 verbs with multiple instances of 84 

unique verbs. Table 4.2 shows a sample of the most frequently used verbs. 

Table 4.2: Sample set of most frequent verbs 

Verb Count Percentage Cumulative percentage 

Get 44 8.42 8.42 

Secure 44 8.42 16.85 

Align 36 6.89 23.75 

Place 34 6.51 30.26 

Take 31 5.93 36.20 

Walk 31 5.93 42.14 

Fit 18 3.44 45.59 

Check 13 2.49 48.08 

Insert 13 2.49 50.57 

Connect 12 2.29 52.87 

Collect 11 2.10 54.98 

Install 11 2.10 57.08 

Pick up 11 2.10 59.19 

Fasten 10 1.91 61.11 

Push 9 1.72 62.83 

Remove 9 1.72 64.55 

Handstart 8 1.53 66.09 

Pick 8 1.53 67.62 

Press 7 1.34 68.96 

Ensure 6 1.14 70.11 

Snap 6 1.14 71.26 

Tighten 6 1.14 72.41 

Verify 6 1.14 73.56 
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It is observed that many verbs are synonyms of each other and describe the same 

activity since each planner has his/her own style of authoring process sheets and no 

restriction on grammar or vocabulary exists. This method introduces redundancy and 

hence a standard list of verbs is developed to contain only sufficient and necessary verbs. 

The controlled vocabulary also serves towards standardizing the process sheet authorship 

process. Therefore the list of 84 unique verbs is further pruned to obtain a set of 31 

standard verbs that are sufficient and can distinctly describe all the work instructions that 

are analyzed from the 236 TVGs. The standard verb vocabulary is manually developed 

since it requires expert domain knowledge and is specific to the assembly activities 

carried out in the manufacturing plant of the OEM. The standard verbs are also assigned 

an OPR class. The OPR class consists of four primary categories that describe the type of 

process. Each standard verb is assigned one or more OPR class based on the type of 

physical motions the standard verb describes. The OPR classes are shown below in Table 

4.3 

Table 4.3: OPR classification 

OPR class Description 

M Assembly 

ZH Additional Handling 

ZW Additional Walking 

PF Functional Inspection 

 

A sample list of standard verbs with their definitions and OPR classification is shown in 

Table 4.4. The complete list of standard verbs is provided in Appendix A.  
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Table 4.4: Sample list of standard verbs 

Standard verb vocabulary 

S. 

No 
Verb Definition Example 

OPR 

class 

1 Align Accurate Positioning of a part 

or tool over another part 

Align bumper to BIW M 

2 Apply Putting on a medium on an 

object with or without the aid 

of a tool 

Apply headlight seal 

initial 

M 

3 Attach Setting or binding two parts 

with each other using only the 

features on each part  

Attach hook to ARB M 

4 Clean Includes all performances, to 

clean an object with a tool. 

Clean windshield with 

wipe 

M 

5 Connect Includes all activities to 

connect/ locking or unlocking 

a cable, with or without tool. 

Connect cable to 

harness 

M 

6 Disengage Unlocking a fixture or 

removing a part from the 

fixture or tool. 

Disengage the fixture / 

Remove Jig 

M, ZH 

7 Engage Locking a fixture or engaging 

a tool onto a part. 

Engage a fixture or 

clamp. 

M, ZH 

8 Exchange Involves exchanging empty 

bins containing parts and 

supplies with full bins. 

Exchange container 

nuts 

M, ZH 

9 Get Picking up a part or tool from 

around 1 m or does not 

necessitate getting up or 

walking from position. 

Get torque tool M, ZH 

10 Handstart Screwing in 2 rounds, the bolt 

or nut by hand or with the aid 

of tools, to set it in position. 

Handstart first screw 

on tool holder at lift 

assist 

M 

11 Insert Includes all activities to 

assemble clips with hands 

and/or tool 

Insert clip to Y-strut M 

12 Inspect Carrying out a check on a part 

or process, in order to make a 

decision. 

Inspect bumper for 

damages 

M, PF 

13 Lay Laying a cable by hand and/or 

fastening exactly 

Route Bowden cable M 

14 Move Moving with/without a Move to front bumper M 



 56 

Standard verb vocabulary 

S. 

No 
Verb Definition Example 

OPR 

class 

part/tool around the car or 

actions like bending down, 

squatting. 

15 Open 

(Preparatory

) 

Includes all activities to 

handle packaging, separating 

layers and opening package to 

take contents. 

Open bag with tool ZH 

The next section discusses the development of the object type classifier using the 

objects extracted from the work instruction text in addition to forming a standard 

vocabulary of verbs. 

4.1.2 Object type classifier 

As discussed in the previous chapter, the MTM mapping rules are generated by 

analyzing the historical data and formalizing the rules based on the standard verb and 

object type. Since, manually assigning each object with one of the five object types is 

tedious and labor intensive; there is a need to automate the process. Therefore, an object 

classifier is developed to address this issue. To build an object classifier through text 

classification, an initial dataset with labeled instances, in this case objects, is required to 

train and build. Figure 4.1 also shows the process of extracting objects (Step 6 – Step 7) 

from work instructions in addition to extracting the verbs. The list of objects is then 

manually labeled with an object type each. This dataset acts as a basis for developing a 

classifier to label new objects that the program encounters. The object type classifier is 

developed using support vector machines and an OVA (one-versus-all) approach. The 
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code to developing the classifier is presented in Appendix B. Figure 4.3 shows the 

process flow illustrating the development of the object type classifier.  

 

 

Figure 4.3: Development of object type classifier 

The training data presented the problem of an imbalanced dataset. This issue is addressed 

by over sampling the data set, as discussed in Chapter 3. The initial dataset consists of 

794 object instances with majority class being ‘Part’. The dataset is oversampled to have 

almost equal number of instances for each label. The instances of minority classes were 

randomly duplicated several times keeping the majority class almost intact. Table 4.5 

shows the number of part instances before and after over-sampling. 

Table 4.5: Dataset before and after oversampling 

 Total 

number 

of 

instances 

Instances 

with label 

– Part 

Instances 

with label 

- Tool 

Instances 

with label - 

Consumable 

Instances 

with label 

- 

Plantitem 

Instances 

with label 

- Fixture 

Before 

Over-

sampling 

794 464 148 29 122 31 
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 Total 

number 

of 

instances 

Instances 

with label 

– Part 

Instances 

with label 

- Tool 

Instances 

with label - 

Consumable 

Instances 

with label 

- 

Plantitem 

Instances 

with label 

- Fixture 

After 

Over-

sampling 

2303 498 455 441 475 434 

The new dataset obtained after over-sampling is used to build the classifier. The 

object type classifier is developed and stored as a function, which can be invoked when 

required. The development of the standard vocabulary and object type classifier 

concludes this section. 

4.2 MTM mapping rules 

This section discusses the process to automatically generate the MTM mapping 

rules from the time study steps of the process sheets using machine learning algorithms. 

The MTM mapping rules are formed by analyzing the time study steps from the 

aforementioned 236 process sheets that are used to generate standard vocabulary and 

object type classifier. The process for the development of the MTM rules is shown in 

Figure 4.4.   
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Figure 4.4: Process flow illustrating the generation of MTM rules 

A step by step discussion detailing each stage of the process is provided below. 

Step 1: The time study steps from the process sheets, TVGs, are extracted and 

the necessary text pre-processing is performed.  

Step 2: The parser performs both tokenizer and tagger functionalities. The 

time study steps are split and tagged to acquire the PoS (Part of Speech) tags 

for each token in the text. 

Step 3: The token with a verb tag (‘VB’) is extracted and checked against the 

standard vocabulary of verbs the equivalent standard verb is obtained 

Step 4: The tokens with noun (‘NN’) tag is extracted. The token denotes the 

object. The object is supplied to the object type classifier to determine the type 

of object. 

Step 5: The MTM table name is extracted from the corresponding time study 

step. 
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Step 6, Step 7: The {Standard verb, object type, MTM table} tuple set is 

supplied to WEKA workbench in an Attribute-Relation file format (ARFF).  

Step 8: WEKA classifier analyzes the dataset and generates a decision tree 

using the J48 classifier 

Step 9: The decision tree is interpreted and the MTM mapping rules are 

derived. 

The data required to generate the MTM mapping rules is extracted from 1019 

time study steps from 236 process sheets. In order to reduce the noise and eliminate 

insignificant data, it is determined that each time study statement must contain at least 

one verb, one object and a MTM code. The python program discards all parsed time 

study steps that do not adhere to this condition. Figure 4.5 shows examples of time study 

steps that are discarded by the Python program since they do not contain a verb and/ or an 

object. 

 

Figure 4.5: Examples of discarded time study steps 

The reduced number of valid time study steps considered for analysis is 870. 

Table 4.6 provides a comprehensive view of the number of TVGs and time study steps 

considered for analysis 

Table 4.6: Number of TVGs and time study steps considered for analysis 

Number of TVGs analyzed 236 

Number of time study steps 1019 
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Number of time study steps considered for analysis 870 

 

The first step in generating MTM rules is to extract the verb, object and MTM 

table from each time study step. This data is analyzed to map standard verb and object 

type to an MTM table as shown below. 

{                   {           

Similar to the process of extracting information from the work instruction text, 

certain text pre-processing tasks are performed on the time study text before parsing. 

Each time study step is concatenated with ‘The associate must’ at the beginning of each 

sentence without altering the time study text.  In addition to the general text pre-

processing, the MTM information is linked to each sentence. Each time study step is 

associated with a MTM code. The corresponding MTM table for each code is found from 

the MTM charts. The MTM table name of each time study step is concatenated at the end 

of the sentence as shown in Table 4.7. The MTM table name is integrated to the sentence 

in a pair of square brackets to separate the MTM information from the time study step 

and to act as an identifier for the python code while extracting information hence any 

format can be employed. 

Table 4.7: Edited time study text 

Raw time study step MTM code Edited time study step 

COLLECT SPEED NUTS AND 

BOLTS 

S-AGHR The associate must collect speed 

nuts and bolts [MTM Get and 

Place]. 

Fit speed nuts to bumper S-ACE The associate must fit speed nuts to 

bumper [MTM Get and Place]. 

Take screws and fit to bumper. M-SAK E The associate must take screws and 

fit to speed nuts [MTM Working 
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with Screws/ Bolts]. 

These time study steps are edited for accurate parsing and exported to a text file. 

The text file is then parsed using the Stanford parser. As mentioned above, each time 

study step is associated with a MTM code. Therefore, the time study steps that contain 

more than one verb cannot be split into two separate sentences. All the verbs in a single 

statement that describe the activity are extracted as a single entry. It is observed that the 

maximum number of verbs present in a time study step is two. This results in a slight 

variation of the rule. The format of the MTM mapping rules is adjusted to accommodate 

time study steps with two action verbs as shown below. 

{                           {           

The Python code extracts the verb(s), object and MTM table from the parsed time 

study steps using NLTK as a programming tool. However, if the Python program 

encounters time study steps with two verbs, it extracts both verbs and concatenates them 

using an ampersand – ‘&’. For example, consider the time study step – ‘Get and Place 

bumper to car body’. The two verbs in this case are ‘Get’ and ‘Place’. Therefore the 

Python program extracts the verbs and concatenates them into a single entry – ‘Get & 

Place’. The verb is mapped onto a standard verb from the verb vocabulary, developed by 

extracting verbs from work instructions. The object type for the direct object, on which 

the verb acts, is generated from the object type classifier developed in the previous stage. 

The standard verb, object type and MTM table tuple set is supplied to the WEKA 

platform. The WEKA rules classifier, using the J48 decision tree algorithm, analyzes the 

data and outputs a set of rules. 
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Figure 4.6 shows the process of extracting data and formation of rules from a 

sample time study step. The sample time study step – ‘Go to storage area’ is extracted 

from the process sheet and the necessary text pre-processing is performed. The sentence 

is then concatenated with the corresponding MTM table name in a pair of square 

brackets. This text file is then supplied to the Stanford parser which tags and tokenizes 

the sentence. The parser outputs the parsed time study step in a text file. This text file is 

further analyzed to obtain the {verb, object type, MTM table} tuple for generating the 

MTM mapping rules. The python code extracts the verb token (‘Go to’), object token 

(‘storage area’) and MTM table name (‘Advanced Level / Car Body’), which is present 

within the pair of square brackets.  

 The verb ‘Go to’ is looked up against the list of standard vocabulary of verbs and 

replaced with a standard verb – ‘Walk’. The object is supplied as an input to the object 

type classifier to obtain the object type class. In this case, the object type classifier 

assigned the type ‘Plant item’ to the object ‘storage area’. The program then generates a 

tuple consisting of the standard verb, object type and MTM table – {Walk, Plant item, 

Advanced Level / Car Body}. The code to extract the tuple from the time study step is 

presented in Appendix B. The next stage in the process is to supply the tuple set to 

WEKA to generate the MTM mapping rules. 
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Figure 4.6: Development of MTM mapping rules using a sample time study step 

4.2.1 MTM mapping rule generation through WEKA 

WEKA accepts input in the form of ARFF (Attribute-Relation File Format). The 

three attributes of the input file are standard verb, object type and MTM table name. The 

{standard verb, object type, MTM table name} tuple from each of the 870 time study 

steps that are analyzed is supplied as input to WEKA.  

J48 is used to generate the rules. As mentioned earlier in Chapter Three, the 

parameters for the pruning process is based on the individual dataset and preliminary 

tests have to be performed to understand the effect of each pruning process on the 

decision tree. There several decision trees are generated varying both confidence factor 

and the number of object instances to determine the best conditions. 

Table 4.8 shows the percentage of correctly classified instances, relative absolute 

error and size of tree for five decision trees generated by increasing the minimum number 

of object instances from 1 to 5 in steps of 1, while maintaining the confidence factor 
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constant at a value of 0.25. The decision trees are evaluated with a cross-validation 

number of 10. This analysis compares the variations in online pruning without 

performing post-pruning. 

Table 4.8: Decision trees with varying minimum number of object instances 

Decision 

tree 

Confidence 

factor 

Minimum 

number of 

Object 

instances 

Correctly 

classified 

instances 

(%) 

Relative 

absolute 

error (%) 

Size of 

tree 

#1 0.25 1 71.72 43.05 103 

#2 0.25 2 71.37 43.48 83 

#3 0.25 3 71.26 43.58 78 

#4 0.25 4 71.26 43.58 73 

#5 0.25 5 70.68 44.32 73 

In the second analysis, the minimum number of object instances is kept constant 

while varying the confidence factor from 0.1 to 0.5 in incremental steps of 0.1. Table 4.9 

shows the five decision trees with the correctly classified instances, relative absolute 

error and size of tree. 

Table 4.9: Decision trees with varying confidence factor 

Decision 

tree 

Confidence 

factor 

Minimum 

number of 

Object 

instances 

Correctly 

classified 

instances 

(%) 

Relative 

absolute 

error (%) 

Size of 

tree 

#1 0.1 1 70.80 44.05 88 

#2 0.2 1 71.91 43.79 103 

#3 0.3 1 71.60 42.60 103 

#4 0.4 1 71.95 42.05 108 

#5 0.5 1 71.95 41.92 113 

 

The first analysis shows that as the minimum number of object instances 

increases, the absolute relative error also increases thereby affecting the accuracy of the 
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model. The second analysis proves that as the confidence factor increase, the relative 

absolute error decreases thereby having a positive effect on accuracy. Also, the accuracy 

of each decision tree is relatively constant throughout. However, a noticeable difference 

is observed in the size of tree. The size of the decision trees greatly differs without any 

significant change in accuracy of the model. Therefore the deciding factor in choosing the 

parameters is the size of the decision tree. The number of rules generated is directly 

proportional the number of rules. Therefore, a smaller size tree generates fewer rules. 

Based on the above analysis, the parameters for both post-pruning and online pruning is 

determined for the decision tree and is shown in Table 4.10.  

Table 4.10: Parameters for decision tree pruning 

Pruning process Parameter Value 

Post-pruning Confidence factor 0.3 

Online pruning Minimum number of object 

instances 

3 

Table 4.11 show the accuracy of the decision tree along with the size of tree. The 

cross –validation for the algorithm is set at 10. 

Table 4.11: Statistics of accuracy and size of decision tree 

Confidence 

factor 

Minimum 

number of 

Object 

instances 

Correctly 

classified 

instances (%) 

Relative 

absolute error 

(%) 

Size of tree 

0.3 3 71.14 43.14 78 

A decision tree is generated using the above mentioned parameters as shown in 

Figure 4.7. The output window in the classifier panel displays the pruned tree in text 

format. 
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Figure 4.7: J48 decision tree with output 

WEKA outputs the decision tree of the J48 algorithm in a rule format along with 

the number of instances encountered as shown in  Figure 4.8. 

 

 Figure 4.8: Sample rule format 

The rule implies, IF <Standard verb= ‘Get’> AND <Object type= ‘Part’> THEN <MTM 

Table= ‘Get and Place’>. The first number in the bracket indicates the number of 

instances that follow the particular rule in the dataset supplied and the second indicates 
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the number of incorrectly classified instances as a result of the rule. The MTM mapping 

rules generated from the decision tree present three different types of rules.  

In Level 1, the standard verb directly maps onto the MTM table without requiring 

the object type information. This means that the standard verbs always maps to a specific 

MTM table irrespective of the object it acts on. An illustration of Level 1 rule is shown 

below. 

{       {           

The Level 1 MTM rules are presented in Table 4.12 

Table 4.12: MTM rules - Level 1 

MTM mapping rules – Level 1 

Standard verb MTM table 

Align Place 

Apply Motion Cycles 

Connect Laying Cables 

Clean Cleaning 

Disengage Operate 

Engage Operate 

Exchange Handling Containers 

Handstart Working with Screws\ Bolts 

Insert Working with Clips 

Inspect Visual Control 

Lay Laying Cables 

Move Body Motions 

Press Operate 

Read Read 

Remove (Preparatory) Preparatory Activities 

Restock Parts Supply 

Scan Marking and Documenting 

Secure Handling Auxiliary Materials\ Tools 

Tighten Handling Auxiliary Materials\ Tools 

Unscrew Motion Cycles 

Walk Body Motions 
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Certain standard verbs map to several MTM tables and therefore require object 

type information to further narrow down the mapping. Therefore the standard verb and 

object type together drive the user to a particular MTM table. This is represented as Level 

2 rules and is shown below. 

{                   {           

The Level 2 MTM rules are presented in Table 4.13 

Table 4.13: MTM rules - Level 2 

MTM mapping rules – Level 2 

Standard verb Object type MTM table 

Get Part Get and Place 

Get Tool Handling Auxiliary Materials\ Tools 

Get Plant item Get and Place 

Get Fixture Get and Place 

Get Consumable Get and Place 

Operate Part Operate 

Operate Tool Handle Tool 

Place Part Place 

Place Tool Handling Auxiliary Materials\ Tools 

Place Plant item Place 

Place Fixture Place 

Push Part Working with Clips 

Push Tool Operate 

Attach Part Working with Clips 

Attach Tool Working with Clips 

Attach Plant item Get and Place 

Attach Consumable Working with Adhesives 

Remove Part Get and Place 

Remove Tool Get and Place 

Remove Plant item Get and Place 

Remove Fixture Get and Place 

Remove Consumable Preparatory Activities 
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The final type, Level 3, corresponds to the compound time study steps that 

contain two verbs. The two standard verbs and the object type directly map onto a MTM 

table. 

{                            {           

The Level 2 MTM rules are presented in Table 4.14 

Table 4.14: MTM rules - Level 3 

MTM mapping rules – Level 3 

Standard verbs Object type MTM table 

Get & Attach Part Working with Clips 

Get & Attach Tool Get and Place 

Get & Attach Fixture Get and Place 

Get & Operate Tool Handle Tool 

Get & Connect Part Laying Cables 

Get & Insert Part Get and Place 

Get & Apply Part Get and Place 

  

4.3 MTM table generator - GUI to generate MTM table for work instructions 

This section discusses the development of a GUI to generate MTM tables for the 

work instructions authored by the planner.  The GUI is developed using NLTK as a 

platform to and utilizes the Stanford parser, object type classifier and the MTM rules 

developed through WEKA. It aids the user in suggesting the appropriate MTM table and 

reduces the cognitive load and ambiguity. 

The GUI is written in Python using the library of functions provided by NLTK. 

The tools and decision support generated in Chapter 4 -Stanford parser, object classifier 

and MTM mapping rules are integrated within the GUI which provides the functionality 
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to author work instruction in free form and generate MTM table for each work instruction 

authored. The process flow for generating MTM tables for a set of work instruction 

authored by the planner is shown Figure 4.9.  

 

Figure 4.9: Process flow illustrating the generation of MTM tables 

A step by step discussion detailing each stage of the process is provided below. 

Step 1: The user inputs a work instruction, in free form text, in the input box 

of the GUI. 

Step 2: The program performs the necessary text pre-processing on the work 

instruction text. The phrase “The associate must” is concatenated at the start 

of the sentence. The work instruction statement is edited to the desired format. 

Step 3: The parser performs both tokenizer and tagger functionalities. The 

time study steps are split and tagged to acquire the PoS (Part of Speech) tags 

for each token in the text. 
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Step 4: The token with a verb tag (‘VB’) is extracted and checked against the 

standard vocabulary of verbs and the equivalent standard verb is obtained 

Step 5: The tokens with noun (‘NN’) tag, denoting the objects, is extracted. 

The object is supplied to the object type classifier to determine the type of 

object. 

Step 6, Step 7: The standard verb and object type is gathered from the 

standard vocabulary and object type classifier. 

Step 8: The {Standard verb, object type} pair is checked against the existing 

MTM mapping rules. 

Step 9: The appropriate MTM table is determined and displayed in the output 

box of the GUI. 

The planner input the desired work instruction in free text in the upper input 

window of the GUI as shown in Figure 4.10. Multiple work instruction can be written at 

one instance. The work instructions must be input subject to the following rules.  

1. The work instruction should start with a valid standard verb. 

2. The work instruction should contain at least one object on which the 

standard verb acts on. 

3. A period at the end of each work instruction to indicate that the sentence is 

complete. 
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Figure 4.10: Screenshot of the GUI 

The GUI collects the work instructions and passes it to the Python program. The 

Python program performs text pre-processing before parsing. Pre-processing the work 

instruction is essential since the parser can only analyzed complete and grammatically 

correct sentences. The phrase “The associate must” is concatenated at the start of each 

sentence to provide contextual meaning to the sentence. The pre-processing does not alter 

the intent of the work instruction.  

The Stanford parser tags and tokenizes the processed work instructions. Once the 

work instructions have been parsed, the Python program extracts the verb and object from 

the sentences. The object is classified and assigned an object type using the object type 

classifier. This results in the formulation of verb and object type information pair. The 

{standard verb, object type} is searched against the MTM rules and the appropriate MTM 

table is displayed along with the work instructions in the output window of the GUI as 

shown in Figure 4.11. 
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Figure 4.11: Screenshot illustrating the MTM tables generated for sample work 

instructions 

 

 

Figure 4.12: MTM table generation for sample work instruction 
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Figure 4.12 shows the generation of the MTM table for a sample work instruction. 

The user inputs the sample work instruction “Align bumper to car body.” The GUI 

supplies the work instruction text to the Python program, wherein the sentence is 

restructured to meet the requirements of the parser. The parser tokenizes and tags the 

work instruction. The verb (VB) token in the sample work instruction is ‘Align’ and the 

primary object (NN) token is ‘bumper’. The object is classified by the object type 

classifier and assigned the label ‘Part’. The standard verb and object type pair is then 

checked against the MTM rules. The {standard verb, object type} maps on to the MTM 

table ‘Place’. The MTM table is coupled to the work instruction and displayed in the 

output window of the GUI. The code for the development of the MTM table generator is 

provided in Appendix B. 
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CHAPTER FIVE: TESTING AND VALIDATION OF TOOLS DEVLOPED 

This chapter discusses the validation of the object type classifier and MTM 

mapping rules developed. The MTM mapping rules are tested against a set of time study 

steps (from TVGs that are not considered for the initial analysis) to obtain the accuracy of 

mapping. 

5.1 Validation of Object type classifier 

The Object type classifier is developed using Support Vector Machines (SVM) 

with a linear kernel, a supervised machine learning algorithm. The accuracy of the 

classifier is tested using random split method and cross-validation.  

5.1.1 Random split 

In random split testing method, the training set is randomly split into two sets 

based on an attribute value supplied by the user. One set is used to train the model and 

the other set is used to test the model. The criterion to split the data is based on a 

percentage split ratio, established by the user. If the percentage to test the object type 

classifier is set at 40%, then 60% of the dataset is used to train the model and the 

remaining 40% is reserved to test the classifier. The accuracy of the classifier is tested 

using 30%, 40% and 50% split ratios. Table 5.1 shows the accuracy for each split ratio 

employed and the average accuracy when tested using random split. The average 

accuracy of the classifier when tested using random split method is determined to be 

94.3% 
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Table 5.1: Validation of object type classifier using random split method 

Percentage split ratio Accuracy (%) 

30 % 95.0 

40 % 94.0 

50 % 94.0 

5.1.2 Cross-validation 

By portioning the dataset to create train and test data, the available dataset to train 

the model is considerably reduced. To counter this, cross-validation of the classifier is 

performed and compared against the result from random split. In k-fold cross-validation, 

the dataset is first divided into k smaller but equal datasets. Of these k sets, k-1 sets are 

used to train the model and tested on the remaining set. This procedure is repeated k 

times (number of smaller datasets). The accuracy from each test is then averaged. The 

classifier is tested using 5-fold, 10-fold, and 15-fold cross validation. The accuracy 

results for each k value is presented in Table 5.2 

Table 5.2: Validation of object type classifier using k-fold cross validation 

Value of k Accuracy 

5 94% +/- 2% 

10 94% +/- 3% 

15 94% +/- 4% 

 

Table 5.3 shows the average accuracy results obtained from each test. Both testing 

methods prove that the object type classifier has a very high accuracy of 94%.  

Table 5.3: Comparison of accuracy - Random split vs. Cross validation 

Testing method Average accuracy 

Random split 94.3 % 

Cross-validation 94% +/- 3% 
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5.2 Comparisons of WEKA classifiers – JRip, PRISM, and J48 

WEKA contains several machine learning algorithms to classify data and generate 

rules. These classifiers are divided into groups based on the technique employed to 

classify data. The J48 classifier, used to generate the MTM mappings, is a decision tree 

algorithm. This section compares the results from J48 with two rule based classifiers – 

JRip and PRISM. 

JRip is an inference and rule based learner which implements a propositional rule 

learner.  JRip and PRISM can be accessed from the classify panel, under the rules sub-

category. PRISM is also a rule based learned which is closely based on ID3 algorithm.  

The rule based classifiers generate rules directly from the data when compared to J48 

which is an indirect approach to generate rules since the rules are derived from the 

decision tree.  

To determine the performance of each classifier the number of correctly classified 

instances and relative absolute error is used as criteria. It is found that the J48 classifier 

performs better than the two rule based classifier. JRip classifier generated 26 rules 

whereas PRISM produced 132 rules. The summary of results from the classifiers is 

shown in Table 5.4. 

Table 5.4: Summary of results - JRip, PRISM, and J48 

Classifier 
Correctly classified 

instances 

Relative absolute 

error 
Number of rules 

JRip 68.50 52.93 26 

PRISM 53.33 53.35 132 

J48 71.14 43.14 50 
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JRip produced far too few rules whereas PRISM generated far too many. It can 

also be observed that J48 performs better than JRip and PRISM by comparing the relative 

absolute error and correctly classified instances. 

5.3 Validation of MTM mapping rules generated through WEKA 

The accuracy of the MTM mapping rules generated through WEKA are tested 

using the time study steps extracted from TVGs, that were not used for the initial 

analysis. The MTM table names generated by the MTM table generator are checked 

against the MTM table information associated with each time study step contained in the 

TVGs.  

The time study steps extracted from the TVGs did not contain the standard 

vocabulary. Hence the sentences are restructured to meet the requirements of the MTM 

generator. The verbs from the time study steps are replaced with a Standard verb that 

closely matches the original verb used to describe the activity. A total of 71 time study 

steps, extracted from 17 TVGs, are used to test the accuracy of the MTM rules. These 71 

time study steps are inputted to the MTM generator. The MTM tables generated for each 

time study step is then checked against the MTM table information from the TVGs and 

the number of accurately estimated time study steps is obtained. Table 5.5 shows a 

sample list of time study steps used for the testing purpose along with the original MTM 

table information as found in the TVG and also the MTM table estimated by the MTM 

table generator. The complete list of time study steps used for the validation of MTM 

generator is provided in Appendix A. 
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Table 5.5: Results from testing MTM table generator 

S. No. Time study step 
MTM table 

(from TVG) 

MTM table 

(from MTM 

table 

generator) 

Check 

1  READ VEHICLE INFORMATION 

AS REQUIRED ALL PROCESSES 

MODEL, 4UBA. Read Read Y 

2  PLACE PROTECTOR CARRIED 

FROM CAR TO CAR DURING 

WALK TO NEXT CAR 

REMOVAL SEPARATE. Place Place Y 

3  GET AND PLACE PLUG. Get and Place Get and Place Y 

4  GET AND PLACE SEAT BELT 

RECEIVER. Get and Place Get and Place Y 

5  WALK FROM CAR TO PARTS 

AND THEN BACK. Body Motions Body Motions Y 

6  GET REAR SEAT AND PLACE IN 

CAR INITIAL. Get and Place Get and Place Y 

7  GET AND TURN SEAT UP AND 

PLACE UNDER BRACKETS. Get and Place Get and Place Y 

8  GET REAR SEAT AND PLACE IN 

CAR INITIAL. Get and Place Get and Place Y 

9  GET AND TURN SEAT UP AND 

PLACE UNDER BRACKETS. Get and Place Get and Place Y 

10  WALK TO CART THEN CAR. Body Motions Body Motions Y 

11  REMOVE BAGS FROM 

BETWEEN SEATS / SEPARATE 

AND DISCARD. Get and Place Get and Place Y 

12  PRESS BUTTON ON LIFT 

ASSIST FOR 3RD ROW SEATS / 

THEN BACK WHEN DONE. Operate Operate Y 

13  PRESS FORWARD SWITCH 

/GRAB TRIGGER UNDER 

HANDLE. Operate Operate Y 

14  PLACE LIFT TO SEAT / THEN 

MOVE ACROSS TO FINAL 

POSITION. 

Place 

Handling 

Auxiliary 

Materials \ 

Tools N 

15  APPLY PRESSURES TO STOP 

LIFT AND THEN PUSH OVER. 

Motion 

Cycles Motion cycles Y 

16  PRESS SWITCH FOR DOWN Operate Operate Y 



 81 

AND SWITCH FOR CLAMP. 

17  PT (TIME FOR CLAMPS TO 

CLOSE). 

Process 

Verb does not 

exist 

Rule 

does 

not 

exist 
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Table 5.6 presents a relationship matrix between the MTM tables identified from 

the TVGs and the MTM tables estimated by the MTM table generator for the test time 

study steps. The number in each cell denotes the number of time study steps that relate to 

the particular MTM table in the corresponding row and column. The presence of a linear 

relationship between the MTM tables from TVGs and MTM tables estimated through the 

mapping rules indicates that a high number of time study steps have been accurately 

estimated by the MTM generator. It can be observed that 55 time study steps, covering 7 

MTM tables, have been accurately estimated by the MTM generator. 6 time study steps 

have been incorrectly mapped and MTM generator did not provide a MTM table 

suggestion for the remaining 10 time study steps since a mapping rule for the particular 

{Verb, object type} information pair does not exist. 
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Table 5.6: Relationship matrix between MTM tables identified from TVGs and 

MTM tables estimated by MTM generator for test time study steps 
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Some of the time study steps mapped on to the MTM table ‘Process’. The MTM 

table ‘Process’ relates to the time elapsed during a multitude of activities such as wait 

MTM 

table 

(TVG) 

MTM 

table 

(Rules) 
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time for a lift assist to move to place, time required to tighten nuts/bolts, operation of 

tools. The time elapsed during such activities is provided by the planner and is not 

derived from the MTM charts. Therefore a need is recognized to provide planners with an 

option to include process time where they seem fit. 

Out of the 71 time study steps used for testing, 6 time study steps mapped on to 

the MTM table ‘Process’. Therefore only 65 valid time study steps are considered to 

determine the accuracy of the MTM mapping rules. From these 65 time study steps, 6 

instances are incorrectly mapped and the remaining 4 time study steps do not have a rule 

yet and therefore have also been considered as a negative outcome. The summary of the 

results is presented in Table 5.7. 

Table 5.7: Summary of results 

Total number of time study steps analyzed 71 

Number of valid time study steps 65 

Number of accurately estimated time study steps 55 

Incorrectly estimated time study steps 10 

Accuracy 84.6 % 

5.4 Chapter Summary and Conclusions 

This chapter presents the validation of the object type classifier and the MTM 

mapping rules. The MTM mapping rules are tested using 71 test time study steps. These 

time study steps are gathered from 17 TVGs that have not been used for the initial 

analysis. 

The object type classifier is validated using random split method and k-fold cross 

validation. The average accuracy is found to be 94%. This high accuracy could be the 

result of oversampling the data pool. Therefore, to further validate the classifier, 
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additional TVGs must be analyzed to observe if there is a considerable change in 

accuracy. However, the object type classifier performs better when trained on a larger 

dataset. Therefor accuracy will also increase. 

The MTM mapping rules have significant accuracy of 84.6% but they do not 

cover all valid time study steps, thus requiring further analysis to generate rules that will 

encapsulate all time study steps authored. Also, it is observed that the time study steps 

used for testing the rules mapped onto 12 MTM tables out of the 22 MTM tables present. 

This indicates that only a subset of the MTM mapping rules has been tested. Therefore, 

further testing of time study steps, covering a wide range of activities, is required to 

determine the overall accuracy of the rules. 
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CHAPTER SIX: CONCLUSIONS AND FUTURE WORK 

This chapter provides a summary of the thesis by reviewing the research objective 

and the tools developed to address them. The broader reach of the research work is 

presented. This chapter also identifies certain limitations of the developed tools and 

provides a brief discussion on future work. 

6.1 Summary of tools developed to address the research objectives 

This thesis presents the development of tools to extract information from 

assembly process sheets and transform the information into knowledge to support 

decision making. The tools address each of the research objectives. 

6.1.1 Research Objective One: Automated extraction of knowledge to develop Standard 

vocabulary 

The first tool extracts the information from process sheets using tools and 

techniques from Natural Language Processing (NLP) and Machine Learning (ML). The 

tool integrates techniques from NLP and ML to extract information; in this case verbs 

contained in work instruction text, and generate a standard vocabulary for authoring work 

instructions. A standard vocabulary of thirty one verbs is developed. Along with the 

standard vocabulary, an object type classifier is developed that assigns an object type to 

the objects. The object type classifier is validated using random split method and cross 

validation. The accuracy is found to be 94%. The development of the tools is discussed in 

Chapter Four and the necessary background to the NLP and ML techniques is presented 

in Chapter Three. 
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6.1.2 Research Objective Two: Automated generation of MTM mapping rules 

The second research objective is addressed by the development of the tool to 

automatically generate rules that map process descriptions to MTM tables. The MTM 

mapping rules provide decision support to the planner while estimating assembly times. 

The MTM mapping rules are developed using time study information from existing 

process sheets. The machine learning platform, WEKA, is employed to generate the rules 

using decision tree classifiers. The development of the tool to generate MTM mapping 

rules is presented in Section 4.2Error! Reference source not found.. 

The accuracy of the MTM rules are validated, in Chapter Five, using 71 time 

study steps and the accuracy of mapping is found to be 84.6%.  

6.1.3 Research Objective Three: MTM table generator 

The tools developed to address the first two research objectives are integrated and 

a decision support system is developed that allows the planners to author work 

instructions in free form text and provides MTM tables suggestions for each work 

instruction. The decision support system is developed to enable testing of the MTM 

mapping rules. The tool also demonstrates how NLP techniques can be used to read work 

instructions and provide MTM table suggestions to the planner. 

6.2 Broader impact 

This research lays a framework to show how Natural Language Processing (NLP) 

tools and techniques can be used to extract information from unstructured text data. The 

use of NLP techniques presented in this thesis to extract information regarding verbs and 

objects from process sheets can be extended to obtain any information contained within 
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the process sheets. NLP tools and techniques provide an opportunity to automate the 

process of extracting textual information from technical documents written using natural 

language. This automation will considerably reduce the amount of effort to generate 

knowledge required to develop decision support systems. In many multinational 

organizations, a large number of technical documents are hand written using natural 

language thereby requiring techniques that are capable of analyzing and interpreting the 

information. This thesis addresses one such issue encountered for a specific OEM. The 

use of NLP can also be leveraged to translate process descriptions into other natural 

languages. 

The application of Machine Learning (ML) to develop MTM mapping rules 

demonstrates the use of Artificial Intelligence (AI) in flexible manufacturing systems. 

ML is capable of replicating the domain knowledge of an expert by analyzing historical 

data and developing models that mimic the decision making process of a human. Systems 

have access to a large network of other systems and data. In a global organization, each 

member is connected to every other member through a network of systems. Utilizing the 

accessibility to information from various sources, intelligent systems can be developed to 

support decision making process 

Peterson [4] standardized the TVG authorship process through the use of text 

element structures in the controlled language. This methodology minimizes human error 

and regulates a set format, but it does so at the cost of restricting the planner’s input. The 

planners cannot freely author work instructions. Also, controlled language for authoring 

of process sheets requires additional training for planners and frequent updating of the 
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system to accommodate variations. The GUI of the MTM table generator presented in 

this research allows planners partial, if not fully, free-form authorship of work 

instructions. This approach attempts to reduce the gap between a restricted controlled 

language and unrestricted free-form syntax, while still restricting the planner from 

ambiguous and inconsistent work instruction authoring. 

6.3 Future Work 

The work instruction text and time study steps, required to develop the tools, is 

obtained from process sheets that are present in Portable Document Format (PDF). Since 

Natural Language Toolkit (NLTK) does not support PDF files, the information is 

extracted from the process sheets, pre-processed, and exported to a text file. This is 

performed manually. To move towards a more automated process of extracting 

information, the system should be capable of obtaining the required information from a 

database containing process sheets and pre-processing it to the desired format. 

The standard vocabulary presented in this thesis is developed by extracting the 

verbs from existing process sheets. The list of verbs is further pruned to generate a 

standard vocabulary of verbs that is sufficient to describe all the work instructions. The 

pruning of the verbs is performed manually. Latent Semantic Analysis (LSA) is a NLP 

technique that deals with grouping concepts that are similar to each other. This 

functionality can be employed to group verbs that are synonyms of each other or convey 

similar meaning. 

During validation of MTM mapping rules, it is observed that certain mapping 

between the standard verbs and MTM tables do not exist. To encapsulate all existing 
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relationships, additional process sheets must be analyzed. Also, additional sources of 

information regarding objects used during the assembly must be analyzed to improve the 

accuracy of the object type classifier. The system should be dynamic in nature, such that 

as new process sheets are authored, MTM mapping rules and object type classifier are 

automatically generated and updated. 

The MTM table generator only provides suggestion regarding the MTM table to 

the planner based on the work instruction authored. One area of future work is to further 

augment the tool to provide the planner with complete MTM information including MTM 

code and time units. To estimate the assembly time further information regarding the part 

attributes such as weight and size, the quantity of parts required, the distance travelled by 

the associate, and the motion of the associate is required. The first step towards 

developing an integrated system is to identify the sources of information and extract the 

required data to further narrow down the selection to a single MTM code. 
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Appendix A: Standard verb vocabulary and MTM mapping rules validation 

The following table presents the entire standard verb vocabulary along with definition, 

examples and OPR classification. 

S. No Verb Definition Example 
OPR 

class 

1 Align Accurate Positioning of a part 

or tool over another part 

Align bumper to BIW M 

2 Apply Putting on a medium on an 

object with or without the aid 

of a tool 

Apply headlight seal 

initial 

M 

3 Attach Setting or binding two parts 

with each other using only the 

features on each part  

Attach hook to ARB M 

4 Clean Includes all performances, to 

clean an object with a tool. 

Clean windshield with 

wipe 

M 

5 Connect Includes all activities to 

connect/ locking or unlocking 

a cable, with or without tool. 

Connect cable to 

harness 

M 

6 Disengage Unlocking a fixture or 

removing a part from the 

fixture or tool. 

Disengage the fixture / 

Remove Jig 

M, ZH 

7 Engage Locking a fixture or engaging 

a tool onto a part. 

Engage a fixture or 

clamp. 

M, ZH 

8 Exchange Involves exchanging empty 

bins containing parts and 

supplies with full bins. 

Exchange container 

nuts 

M, ZH 

9 Get Picking up a part or tool from 

around 1 m or does not 

necessitate getting up or 

walking from position. 

Get torque tool M, ZH 

10 Handstart Screwing in 2 rounds, the bolt 

or nut by hand or with the aid 

of tools, to set it in position. 

Handstart first screw 

on tool holder at lift 

assist 

M 

11 Insert Includes all activities to 

assemble clips with hands 

and/or tool 

Insert clip to Y-strut M 

12 Inspect Carrying out a check on a part 

or process, in order to make a 

decision. 

Inspect bumper for 

damages 

M, PF 

13 Lay Laying a cable by hand and/or Route Bowden cable M 



 98 

S. No Verb Definition Example 
OPR 

class 

fastening exactly 

14 Move Moving with/without a 

part/tool around the car or 

actions like bending down, 

squatting. 

Move to front bumper M 

15 Open 

(Preparator

y) 

Includes all activities to 

handle packaging, separating 

layers and opening package to 

take contents. 

Open bag with tool ZH 

16 Operate Operating is to getting control 

over adjusting elements with a 

hand or foot and performing a 

single operation or a combined 

operation. 

Operate to lower EMS 

onto hook 

M, ZH 

17 Place Position a part or tool that is 

already in hand and requires 

no additional walking 

Place ems hanger on 

third coil 

M 

18 Press(Switc

h/button) 

Pushing a button or switching 

on a control to operate a tool. 

Press button to release M, ZH 

19 Push Manipulating a tool or part to 

align or start motion. 

Push seat into place M 

20 Read Reading information carrier, 

data cards to comprehend the 

information. 

Read option list M 

21 Remove 

(Preparator

y) 

Includes all activities to 

handle packaging, separating 

layers and opening package to 

take contents. 

Remove flex layer M, ZH 

22 Remove Take a part off an assembly or 

piece of a part. 

Remove a round cut 

out 

M 

23 Restock Refilling storage containers, 

toolboxes and/or containers. 

Restock rivets to carts ZH 

24 Restrict Bind or guard cables, wires, 

electrical components etc. 

Restrict cables. M 

25 Scan Includes all activities to mark 

an object with a marking 

device or to document an 

object with a scanner. 

Get scanner and scan 

label on IP skin 

 

M 

26 Screw in Involves screwing in a bolt or 

nut completely with hand. 

Screw in by hand total 

depth 

M 

27 Secure Securing a cable with Secure cable for M 
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S. No Verb Definition Example 
OPR 

class 

stationary or moveable 

fastening elements. With or 

without tools. 

foglight 

28 Snap Clipping in parts with clips 

and onto other parts 

Snap I-

Panel Finisher into 

console stack 

M 

29 Tighten Fastening screws and bolts 

with manual tools or torque 

tools. 

Tighten 4 off screws 

with torque tool. 

M 

30 Unscrew Unscrewing bolts/nuts 

manually or with help of a 

tool. 

Unscrew adjuster 3 

half turns 3mm gap 

M 

31 Walk Walk from car body to car 

body or supply area without 

picking up part or any action. 

(and) 

Walk to supply area to pick up 

a part. 

Walk to cart and back ZW 

 

The seventy one time study steps extracted from TVGs to test the accuracy of the MTM 

mapping rules are shown below in tabular format. 

S. No. Time study step 
MTM table 

(from TVG) 

MTM table 

(from MTM 

table 

generator) 

Check 

1  READ VEHICLE INFORMATION 

AS REQUIRED ALL PROCESSES 

MODEL, 4UBA. Read Read Y 

2  PLACE PROTECTOR CARRIED 

FROM CAR TO CAR DURING 

WALK TO NEXT CAR 

REMOVAL SEPARATE. Place Place Y 

3  GET AND PLACE PLUG. Get and Place Get and Place Y 

4  GET AND PLACE SEAT BELT 

RECEIVER. Get and Place Get and Place Y 

5  WALK FROM CAR TO PARTS 

AND THEN BACK. Body Motions Body Motions Y 

6  GET REAR SEAT AND PLACE IN Get and Place Get and Place Y 
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S. No. Time study step 
MTM table 

(from TVG) 

MTM table 

(from MTM 

table 

generator) 

Check 

CAR INITIAL. 

7  GET AND TURN SEAT UP AND 

PLACE UNDER BRACKETS. Get and Place Get and Place Y 

8  GET REAR SEAT AND PLACE IN 

CAR INITIAL. Get and Place Get and Place Y 

9  GET AND TURN SEAT UP AND 

PLACE UNDER BRACKETS. Get and Place Get and Place Y 

10  WALK TO CART THEN CAR. Body Motions Body Motions Y 

11  REMOVE BAGS FROM 

BETWEEN SEATS / SEPARATE 

AND DISCARD. Get and Place Get and Place Y 

12  PRESS BUTTON ON LIFT 

ASSIST FOR 3RD ROW SEATS / 

THEN BACK WHEN DONE. Operate Operate Y 

13  PRESS FORWARD SWITCH 

/GRAB TRIGGER UNDER 

HANDLE. Operate Operate Y 

14  PLACE LIFT TO SEAT / THEN 

MOVE ACROSS TO FINAL 

POSITION. 

Place 

Handling 

Auxiliary 

Materials \ 

Tools N 

15  APPLY PRESSURES TO STOP 

LIFT AND THEN PUSH OVER. 

Motion 

Cycles Motion cycles Y 

16  PRESS SWITCH FOR DOWN 

AND SWITCH FOR CLAMP. Operate Operate Y 

17  PT (TIME FOR CLAMPS TO 

CLOSE). 

Process 

Verb does not 

exist 

Rule 

does 

not 

exist 

18  PRESS SWITCH TO RAISE SEAT 

OFF LIFT TABLE. Operate Operate Y 

19  PT (TIME TO RAISE SEAT UP TO 

CLEAR TABLE). 

Process 

Verb does not 

exist 

Rule 

does 

not 

exist 

20  PRESS LATCH SWITCH / PRESS 

REVERSE SWITCH. Operate Operate Y 

21  PRESS ROTATE SWITCH. Operate Operate Y 
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S. No. Time study step 
MTM table 

(from TVG) 

MTM table 

(from MTM 

table 

generator) 

Check 

22  APPLY PRESSURE TO TURN 

LIFT. 

Motion 

Cycles Motion cycles Y 

23  PT (TIME TO ROTATE SEAT). 

Process 

Verb does not 

exist 

Rule 

does 

not 

exist 

24  PRESS BRAKE BUTTON. Operate Operate Y 

25  GET AND PLACE PROTECTOR 

FROM LIFT TO C-PILLAR ON 

CAR. Get and Place Get and Place Y 

26  PRESS CLAMP SWITCH AND 

DOWN BUTTON. Operate Operate Y 

27  PT (UNCLAMP). 

Process 

Verb does not 

exist 

Rule 

does 

not 

exist 

28  APPLY PRESSURE TO START 

AND STOP LIFT. 

Motion 

Cycles Motion cycles Y 

29  PRESS UP BUTTON. Operate Operate Y 

30  PT (TIME FOR SEAT TO RAISE). 

Process 

Verb does not 

exist 

Rule 

does 

not 

exist 

31  PRESS LATCH SWITCH. Operate Operate Y 

32  APPLY PRESSURE TO SWING 

LIFT AROUND. 

Motion 

Cycles Motion cycles Y 

33  PRESS FORWARD SWITCH. Operate Operate Y 

34  PRESS BRAKE BUTTON. Operate Operate Y 

35  READ SEQ NUMBER ON RACK 

TO ENSURE IT IS THE 

CORRECT ONE. Read Read Y 

36  MOVE TO PRESS CYCLE 

BUTTON AND BACK. Body Motions Body Motions Y 

37  EXCHANGE CARTS PUSH 

CYCLE BUTTON. Operate 

Handling 

Containers N 

38  OPEN LATCH HOLDING 

PALLET WITH SEAT. 

Operate 

Verb does not 

exist 

Rule 

does 

not 
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S. No. Time study step 
MTM table 

(from TVG) 

MTM table 

(from MTM 

table 

generator) 

Check 

exist 

39  PRESS BUTTON TO RAISE LIFT 

TABLE. Operate Operate Y 

40  GET AND PULL PALLET WITH 

SEAT ONTO TABLE. Get and Place Get and Place Y 

41  PUSH BUTTON TO ACTIVATE 

SEAT STOP ON LIFT TABLE. Operate Operate Y 

42  PUSH EMPTY PALLET BACK 

ONTO CART AFTER SEAT 

REMOVED. Get and Place 

Working with 

Clips N 

43  APPLY PRESSURE TO HELP 

GUIDE SLIDES OFF AND ON 

SEAT RACK. 

Motion 

Cycles Motion cycles Y 

44  PUSH BUTTON TO RELEASE 

SEAT STOP ON LIFT. Operate Operate Y 

45  PRESS BUTTON TO LOWER 

TABLE. Operate Operate Y 

46  PT (TIME FOR TABLE TO 

LOWER). 

Process 

Verb does not 

exist 

Rule 

does 

not 

exist 

47  INSPECT PARTS. Visual 

Control Visual Control Y 

48  WALK TO GET BAG ON BACK 

OF RACK AND BACK AVERAGE 

1 TIME PER RACK. Body Motions Body Motions Y 

49  GET AND HOLD BAG WITH 

ONE HAND. Get and Place Get and Place Y 

50  GET AND PULL VELCRO OPEN 

WITH OTHER HAND . Get and Place Get and Place Y 

51  WALK TO CAR WITH PARTS. Body Motions Body Motions Y 

52  GET AND PLACE TO CARRY 

FROM CAR TO CAR . Get and Place Get and Place Y 

53  MOVE BRACKETS ON SEAT UP. Operate Body Motions N 

54  GET AND PLACE PROTECTOR 

FROM LIFT TO C-PILLAR ON 

CAR. Get and Place Get and Place Y 

55  INSPECT PART. Visual Visual Control Y 
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S. No. Time study step 
MTM table 

(from TVG) 

MTM table 

(from MTM 

table 

generator) 

Check 

Control 

56  WALK TO GET BAG FROM LIFT 

AVERAGE AND BACK TO 

FRONT OF RACK (1 TIME PER 

PACK). Body Motions Body Motions Y 

57  OPEN VELCRO FLAP ON BAG. 

Get and Place 

Verb does not 

exist 

Rule 

does 

not 

exist 

58  GET AND PLACE SECOND SET 

TO SEAT ON RACK 

TEMPORARILY (1 TIME PER 

PACK). Get and Place Get and Place Y 

59  GET BOTH BOLSTER AND 

PLACE IN CAR. Get and Place Get and Place Y 

60  WALK TO CAR TO PLACE 

PARTS. Body Motions Body Motions Y 

61  OPEN PACK. 

Preparatory 

Activities 

Verb does not 

exist 

Rule 

does 

not 

exist 

62  EXCHANGE CARTS PUSH 

CYCLE BUTTON. Operate 

Handling 

Containers N 

63  OPEN LATCH HOLDING 

PALLET WITH SEAT. 

Operate 

Verb does not 

exist 

Rule 

does 

not 

exist 

64  PRESS BUTTON TO RAISE LIFT 

TABLE. Operate Operate Y 

65  GET AND PULL PALLET WITH 

SEAT ONTO TABLE. Get and Place Get and Place Y 

66  PUSH BUTTON TO ACTIVATE 

SEAT STOP ON LIFT TABLE. Operate Operate Y 

67  PUSH EMPTY PALLET BACK 

ONTO CART AFTER SEAT 

REMOVED. Get and Place 

Working with 

Clips N 

68  MOVE WITH LIFT ONCE SEAT 

IS LOADED AND TURN. Body Motions Body Motions Y 

69  MOVE TO CAR AND BACK TO Body Motions Body Motions Y 
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S. No. Time study step 
MTM table 

(from TVG) 

MTM table 

(from MTM 

table 

generator) 

Check 

PLACE PROTECTOR. 

70  MOVE SEAT INTO CAR. Body Motions Body Motions Y 

71  READ SEQ NUMBER ON RACK 

TO ENSURE IT IS THE 

CORRECT ONE. Read Read Y 
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Appendix B: Python program scripts 

 

This appendix contains the entire code to develop the NLP tools and techniques. 

 

1. Code for extraction of verbs and objects from parsed work instruction text 

 

import nltk 
from nltk.tokenize import * 
 
text=open('wi_parsed.txt','r').read() 
 
tokenizer = RegexpTokenizer('\s+', gaps=True) 
text_token = tokenizer.tokenize(text) 
j = [item for item in range(len(text_token)) if text_token[item] == './.'] 
verbs = [] 
verb = '' 
space=' ' 
obj_join='' 
objects = [] 
for current_index in j[0:]: 
 
    if (text_token[current_index+1]== 'The/DT') & (text_token[current_index+2]== 

'associate/NN') & (text_token[current_index+3]== 'must/MD'): 
 
        master_index=current_index+4 
        for vb in text_token[master_index:] : 
            if vb.endswith('/VB'): 
                verb += vb.split('/')[0] 
                if text_token[master_index+1].endswith('/RP') : 
                    verb += space 
                    verb += text_token[master_index+1].split('/')[0] 
                break 
 
 
            else : 
                break 
 
        if verb == '': 
            continue 
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        else : 
            verbs.append(verb) 
            verb = '' 
     
            found = False 
         
            for obj in text_token[master_index:] : 
             
                if obj.endswith('/JJ') or obj.endswith('/NN') or obj.endswith('/NNS') : 
                    found = True 
                    obj_join += obj.split('/')[0] + space 
                    continue 
 
 
                else : 
                    if found : 
                        obj_join=obj_join.rstrip() 
                        objects.append(obj_join) 
                        obj_join='' 
                        break 
                    else : 
                        continue 
         
 
 
 
    else : 
        print 'error' 
     
 
results=[] 
results.append(verbs) 
results.append(objects) 
print results 
 
import csv 
 
item_length = len(results[0]) 
 
with open('verb_obj2.csv', 'wb') as test_file: 
  file_writer = csv.writer(test_file) 
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  for i in range(item_length): 
    file_writer.writerow([x[i] for x in results]) 
 
2. Code for developing object type classifier 

 
import numpy as np 
import pandas as pd 
import sklearn 
from sklearn import cross_validation 
from sklearn.feature_extraction.text import CountVectorizer 
from sklearn.multiclass import OneVsRestClassifier 
from sklearn.svm.sparse import LinearSVC 
import csv 
import pickle 
 
labeleddata = pd.read_csv("training_data_oversampling.csv") 
target = labeleddata["Object type"] 
data = labeleddata.ix[:,:-1] 
x_train, x_test, y_train, y_test = cross_validation.train_test_split(data,target, 

test_size=0.4, random_state=17) 
 
x_train = [item for sublist in x_train for item in sublist] 
x_test = [item for sublist in x_test for item in sublist] 
 
ngram_vectorizer = CountVectorizer(analyzer='char_wb',ngram_range=(5,5),min_df=1) 
x_train_count = ngram_vectorizer.fit_transform(x_train) 
x_train_vector = ngram_vectorizer.transform(x_train).toarray() 
x_test_count = ngram_vectorizer.fit_transform(x_train) 
x_test_vector = ngram_vectorizer.transform(x_test).toarray()  
base_clf = sklearn.svm.LinearSVC(class_weight= 'auto') 
clf = OneVsRestClassifier(base_clf).fit(x_train_vector, y_train) 
 
f = open('my_classifier.pickle', 'wb') 
pickle.dump(clf,f) 
f.close 
 

 

3. Code for extraction of verbs, objects and MTM table name from parsed time study 

steps 

 

import nltk 
from nltk.tokenize import * 
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import csv 
 
text= open('ts_parsed.txt','r').read() 
 
tokenizer = RegexpTokenizer('\s+', gaps=True) 
text_token = tokenizer.tokenize(text) 
j = [item for item in range(len(text_token)) if text_token[item] == './.'] 
verbs = [] 
table = [] 
space=' ' 
verb = '' 
obj_join='' 
tbl_join='' 
objects = [] 
for current_index in j[0:]: 
 
    if (text_token[current_index+1]== 'The/DT') & (text_token[current_index+2]== 

'associate/NN') & (text_token[current_index+3]== 'must/MD'): 
 
        master_index=current_index+4     
        for vb in text_token[master_index:] : 
            if vb.endswith('/VB'): 
                verb += vb.split('/')[0] 
                if text_token[master_index+1].endswith('/RP') : 
                    verb += space 
                    verb += text_token[master_index+1].split('/')[0] 
 
                temp_index=master_index 
                while (text_token[temp_index] != 'MTM/NNP'): 
                    temp_index +=1 
                    if (text_token[temp_index]== 'and/CC') & 

(text_token[temp_index+1].endswith('/VB')): 
                        verb += space 
                        # check if its verb or not 
                        verb += text_token[temp_index+1].split('/')[0] 
                        break 
 
                    else : 
                        continue 
 
 



 109 

            else : 
                break 
            verbs.append(verb) 
            verb = '' 
             
            found= False 
            for obj in text_token[master_index:] : 
                if obj.endswith('/JJ') or obj.endswith('/NN') or obj.endswith('/NNS') or obj 

=='of/IN' : 
                    found = True 
                    obj_join += obj.split('/')[0] + space 
                    continue 
 
 
                else : 
                    if found : 
                        obj_join=obj_join.rstrip() 
                        objects.append(obj_join) 
                        obj_join='' 
                        test = 'lrb not encountered' 
                        break 
                    else : 
                        if (obj !='-LRB-/-LRB-'): 
                            test = 'lrb not encountered' 
                            continue 
                        else : 
                            test = 'lrb encountered' 
                            del verbs[-1] 
                            break 
            if (test == 'lrb encountered'): 
                continue 
            else : 
                count=0 
                for tbl in text_token[master_index:] : 
                    count+=1 
                    if (tbl == 'MTM/NNP'): 
                        break 
 
                found2 = False 
                new_index=master_index+count         
                for tbl in text_token[new_index:] : 
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                    if (tbl !='-RRB-/-RRB-') : 
                        found2 = True 
                        tbl_join += tbl.split('/')[0] + space 
                        continue                 
 
                    else : 
                        if found2 :         
                            tbl_join=tbl_join.rstrip() 
                            table.append(tbl_join) 
                            tbl_join=''  
                            break 
                     
 
 
    else : 
        print 'error' 
 
results=[] 
results.append(verbs) 
results.append(objects) 
results.append(table) 
print results 
 
item_length = len(results[0]) 
with open('ts_full2.csv', 'wb') as test_file: 
  file_writer = csv.writer(test_file) 
  for i in range(item_length): 
    file_writer.writerow([x[i] for x in results])  
 

 

4. Code for developing MTM table generator 
 

import nltk 
from nltk.tokenize import * 
import Tkinter 
from Tkinter import * 
import stanford_parser 
from stanford_parser.parser import Parser 
import numpy as np 
import pandas as pd 
import sklearn 
from sklearn import cross_validation 
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from sklearn.feature_extraction.text import CountVectorizer 
#from sklearn.multiclass import OneVsRestClassifier 
#from sklearn.svm.sparse import LinearSVC 
import csv 
import pickle 
root = Tkinter.Tk() 
root.title("MTM table generator") 
root.geometry('650x300+200+200') 
 
def restructure_wi(): 
    raw_wi = input_wi.get('0.0', END) 
    restructured_wi = "The associate must "+raw_wi.lower() 
    restructured_wi = restructured_wi.replace('\n','') 
    restructured_wi = restructured_wi.replace('.','. The associate must ') 
    restructured_wi = restructured_wi[:-21] 
    parsing(restructured_wi) 
     
    return 
 
 
def parsing(restructured_wi): 
  
 stanford_parser = Parser() 
 parsed_wi = stanford_parser.justTags(restructured_wi) 
 extract_verb_object(parsed_wi) 
 return 
  
 
def extract_verb_object(parsed_wi): 
 text = parsed_wi 
 tokenizer = RegexpTokenizer('\s+', gaps=True) 
 text_token = tokenizer.tokenize(text) 
 text_token.insert(0, './.') 
 print text_token 
 
 j = [item for item in range(len(text_token)) if text_token[item] == './.'] 
 verbs = [] 
 verb = '' 
 space=' ' 
 obj_join='' 
 objects = [] 
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 for current_index in j[0:]: 
 
     if (text_token[current_index+1]== 'The/DT') & (text_token[current_index+2]== 

'associate/NN') & (text_token[current_index+3]== 'must/MD'): 
 
         master_index=current_index+4 
         for vb in text_token[master_index:] : 
             if vb.endswith('/VB'): 
                 verb += vb.split('/')[0] 
                 if text_token[master_index+1].endswith('/RP') : 
                     verb += space 
                     verb += text_token[master_index+1].split('/')[0] 
                 break 
 
 
             else : 
                 break 
 
         if verb == '': 
             continue 
         else : 
             verbs.append(verb) 
             verb = '' 
      
             found = False 
          
             for (e,obj) in list(enumerate(text_token[master_index:])) : 
 
              
                 if obj.endswith('/JJ') or obj.endswith('/NN') or obj.endswith('/NNP') or 

obj.endswith('/NNS') or obj =='of/IN' : 
                     found = True 
                     obj_join += obj.split('/')[0] + space 
 
                     if (e+1) == len(text_token[master_index:]) : 
                      obj_join=obj_join.rstrip() 
                      objects.append(obj_join) 
                      obj_join='' 
                      break 
                      
                     else : 



 113 

                      continue 
 
 
                 else : 
                     if found : 
                         obj_join=obj_join.rstrip() 
                         objects.append(obj_join) 
                         obj_join='' 
                         break 
                     else : 
                         continue 
 
 
 
     else : 
         print 'error' 
      
 
 results=[] 
 results.append(verbs) 
 results.append(objects) 
 print results 
 object_classifier(results) 
 return 
 
 
def object_classifier(results): 
 labeleddata = pd.read_csv("training_data_oversampling.csv") 
 target = labeleddata["Object type"] 
 data = labeleddata.ix[:,:-1] 
 x_train, x_test, y_train, y_test = cross_validation.train_test_split(data,target, 

test_size=0.4, random_state=17) 
 
 x_train = [item for sublist in x_train for item in sublist] 
  
 ngram_vectorizer = 

CountVectorizer(analyzer='char_wb',ngram_range=(5,5),min_df=1) 
  
 
 f= open('my_classifier.pickle', 'rb') 
 clf = pickle.load(f) 
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 f.close() 
 
 test_list = results[1] 
 print results[1] 
 test_set = np.array(test_list) 
 test_set_count = ngram_vectorizer.fit_transform(x_train) 
 test_set_vector = ngram_vectorizer.transform(test_set).toarray() 
 list_obj_type = [] 
 list_obj_type = clf.predict(test_set_vector) 
 MTM_rules(results,list_obj_type) 
 return 
 
def MTM_rules(results,list_obj_type): 
 sverb = results[0] 
 list_obj = results[1] 
 obj_type = list_obj_type 
 print list_obj_type 
 MTM_table_list = [] 
 print sverb 
 
 for count in range(len(sverb)): 
   
  if sverb[count] == 'get' : 
   if obj_type[count] == 'Part' or obj_type[count] == 'Plant item' or 

obj_type[count] == 'Fixture' : 
    MTM_table = 'Get and Place' 
   elif obj_type[count] == 'Tool': 
    MTM_table = 'Handling Auxiliary Materials \ Tools' 
   elif obj_type[count] == 'Consumable': 
    MTM_table = 'Working with Adhesives' 
   else : 
    MTM_table = 'No MTM table found / MTM rule does not 

exist' 
 
  elif sverb[count] == 'operate' : 
   if obj_type[count] == 'Part' : 
    MTM_table = 'Operate' 
   elif obj_type[count] == 'Tool' :  
   MTM_table = 'Handle Tool' 
  else : 
   MTM_table = 'No MTM table found / MTM rule does not exist' 
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  elif sverb[count] == 'attach' : 
   if obj_type[count] == 'Part' : 
    MTM_table = 'Working with Clips' 
   elif obj_type[count] == 'Plant item' or obj_type[count] == 'Fixture' 

or obj_type[count] == 'Tool' : 
    MTM_table = 'Get and Place' 
   elif obj_type[count] == 'Consumable': 
    MTM_table = 'Working with Adhesives' 
   else : 
    MTM_table = 'No MTM table found / MTM rule does not 

exist' 
 
  
  elif sverb[count] == 'move' : 
   MTM_table = 'Body Motions' 
 
  elif sverb[count] == 'place' : 
   if obj_type[count] == 'Part' or obj_type[count] == 'Plant item' or 

obj_type[count] == 'Fixture' or obj_type[count] == 'Consumable' : 
    MTM_table = 'Place' 
   elif obj_type[count] == 'Tool': 
    MTM_table = 'Handling Auxiliary Materials \ Tools' 
   else : 
    MTM_table = 'No MTM table found / MTM rule does not 

exist' 
 
 
  elif sverb[count] == 'push' : 
   if obj_type[count] == 'Part' or obj_type[count] == 'Plant item' or 

obj_type[count] == 'Fixture' or obj_type[count] == 'Consumable' : 
    MTM_table = 'Working with Clips' 
   elif obj_type[count] == 'Tool': 
    MTM_table = 'Operate' 
   else : 
    MTM_table = 'No MTM table found / MTM rule does not 

exist' 
 
 
  elif sverb[count] == 'align' : 
   MTM_table = 'Place' 
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  elif sverb[count] == 'disengage' : 
   MTM_table = 'Operate' 
 
  elif sverb[count] == 'press' : 
   MTM_table = 'Operate' 
 
  elif sverb[count] == 'apply' : 
   MTM_table = 'Motion Cycles' 
 
  elif sverb[count] == 'walk' : 
   MTM_table = 'Body Motions' 
 
  elif sverb[count] == 'inspect' : 
   MTM_table = 'Visual Control' 
 
  elif sverb[count] == 'engage' : 
   MTM_table = 'Operate' 
 
  elif sverb[count] == 'clean' : 
   MTM_table = 'Cleaning' 
 
  elif sverb[count] == 'read' : 
   MTM_table = 'Read' 
 
  elif sverb[count] == 'insert' : 
   MTM_table = 'Working with Clips' 
 
  elif sverb[count] == 'remove (preparatory)' : 
   MTM_table = 'Preparatory Activities' 
 
  elif sverb[count] == 'remove' : 
   if obj_type[count] == 'Part' or obj_type[count] == 'Plant item' or 

obj_type[count] == 'Fixture' or obj_type[count] == 'Tool' : 
    MTM_table = 'Get and Place' 
   elif obj_type[count] == 'Consumable': 
    MTM_table = 'Preparatory Activities' 
   else : 
    MTM_table = 'No MTM table found / MTM rule does not 

exist' 
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  elif sverb[count] == 'connect' : 
   MTM_table = 'Laying Cables' 
 
  elif sverb[count] == 'handstart' : 
   MTM_table = 'Working with Screws \ Bolts' 
 
  elif sverb[count] == 'tighten' : 
   MTM_table = 'Handling Auxiliary Materials \ Tools' 
 
  elif sverb[count] == 'unscrew' : 
   MTM_table = 'Motion Cycles'   
 
  elif sverb[count] == 'restock' : 
   MTM_table = 'Parts Supply' 
 
  elif sverb[count] == 'lay' : 
   MTM_table = 'Laying Cables' 
 
  elif sverb[count] == 'scan' : 
   MTM_table = 'Marking and Documenting' 
 
  elif sverb[count] == 'exchange' : 
   MTM_table = 'Handling Containers' 
 
  elif sverb[count] == 'secure' : 
    MTM_table = 'Handling Auxiliary Materials \ Tools' 
   else : 
    MTM_table = 'No MTM table found / MTM rule does not 

exist' 
 
  else : 
   MTM_table = 'Verb does not exist' 
  
  
  MTM_table_list.append(MTM_table) 
  MTM_table = '' 
  print MTM_table_list 
  display_ts(MTM_table_list) 
 
  
 return 
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def display_ts(MTM_table_list): 
 output_ts.delete('0.0', END) 
 a = input_wi.get('0.0', END) 
 output_ts.insert('0.0', a) 
  
 for i in range(len(MTM_table_list)): 
  output_ts.insert('%d.end' %(i+1), "[MTM table -") 
  output_ts.insert('%d.end' %(i+1), MTM_table_list[i]) 
  output_ts.insert('%d.end' %(i+1), "]") 
 return 
 
input_wi = Text(height = 8, wrap = WORD) 
input_wi.insert(INSERT, "Enter WI text here...") 
input_wi.place(relx= 0, rely = 0) 
 
submitbutton = Button(text="SUBMIT", fg="black", activebackground = "blue", 

command = restructure_wi) 
submitbutton.place(relx= 0.45, rely= 0.45) 
 
output_ts = Text(height = 8, wrap = WORD) 
output_ts.insert(INSERT, "Output window") 
output_ts.place(relx = 0, rely =0.55 ) 
 
root.mainloop() 
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