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ABSTRACT 

 

MAESTRA2, a species specific mechanistic model, was parameterized to 

estimate water use, carbon accumulation and organ specific respiration of five 

deciduous tree species under both irrigated and water stressed conditions. The 

model was validated using temporally and spatially explicit ecophysiological data 

to account for seasonal changes in species physiology. The following tree 

species: Acer rubrum L. ‘Summer Red’ (A. rubrum), Betula nigra (B. nigra), 

Paulownia elongata (P. elongata), Quercus nuttallii (Q. nuttallii), and Quercus 

phellos (Q. phellos) were intensively measured and organ specific destructively 

harvested samples were compared to modeled estimates of carbon 

accumulation. Among species, we observed variability in carbon dioxide 

exchange rates under well watered and water stressed conditions. A. rubrum 

carbon sequestration under water deficit was 29% less than the well watered 

treatment. The species other than A. rubrum were similar to each other (56%-

63% less carbon sequestered as compared to the well watered). A. rubrum root 

biomass was higher in the drought treatment as compared to the well watered 

control, possibly explaining its carbon sequestration characteristics. Modeling 

validation results indicated that the model does have the capability to down 

regulate photosynthetic capacity on a per species basis. Differences between 

measured values and modeled estimates were within 6% for A. rubrum, 12% for 

B. nigra, 8% for P. elongata, 2% for Q. nuttallii, and 7% for Q. phellos. Therefore, 
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seasonal carbon accumulation estimates adequately represented field 

observations in both well watered and drought treatments. Moreover, sap flux 

measurements confirmed the models ability to estimate diurnal gas exchange 

under both well watered and water stressed conditions. The work provides 

evidence that MAESTRA2 is a process-based model capable of accurately 

quantifying spatially explicit carbon dioxide exchange rates at the species level 

and in response to water stress. 
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INTRODUCTION  

 

Models of carbon exchange between vegetation and the atmosphere are 

important for integrating physiological information across scales of biological and 

physical organization (e.g., Harley & Baldocchi 1995). Several three-dimensional 

models that simulate carbon exchange at the intracanopy scale have been 

proposed (e.g., Thorpe et al. 1978; Wang and Jarvis 1990a; Myneni 1991; Chen 

et al. 1994; Desmarez et al. 2000; Sinoquet et al. 2001). Although application of 

these models involves the same underlying processes, a major uncertainty in 

modeling tree growth is the lack of understanding of whole-plant allocation 

(Reynolds et al. 1996). As a result, growth estimates have traditionally been 

tested against data sets that are temporally sparse (e.g., McMurtrie & Landsberg 

1992). In most cases, models are forced to rely on major simplifications due to 

the paucity of data. Moreover, we know of no intratree model that encompasses 

all organs in the process of calculating tree carbon exchange. Although there has 

been considerable research on carbon exchange of individual trees and forest 

ecosystems, we call into question the use of over simplified carbon exchange 

models that allege to predict whole tree climate change response. 

In the context of climate change, simulation models have proven to be an 

important tool in predicting the carbon sequestration response to environmental 

stress. Unfortunately, few models incorporate soil moisture as a constraint and 

this has been identified as a weakness in their predictive ability under drought 
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stress conditions (Hanson et al. 2004). Subsequently, the three attributes of 

precipitation (low, variable, unpredictable) manifest as unencapsulated dynamics 

of primary productivity predictions (Whitford 2002; Reynolds et al. 2004). Over 

the last four decades, global hydrologic studies have reported that the majority of 

the Earth’s terrestrial component is significantly affected by drought and the 

amount of water stressed land area has more than doubled in that time span (Dai 

et al. 2004). Given the anticipated rate of climate change and the incurred 

atmospheric and terrestrial influence on flora, more comprehensive models must 

be developed and evaluated to ascertain the effects of water stress on the global 

terrestrial carbon budget. 

Trees are genetically diverse and highly complex organisms that must 

endure long-term consequences of climatic variations. In light of these 

complexities, a models’ ability to predict tree growth among a genetically diverse 

population growing across a temporally and spatially diverse environment would 

depend on the models ability to capture both genetic and environmental 

influences. Although ecophysiological modeling has successfully accomplished 

the quantification of phenotypic traits (e.g., biomass accumulation and 

transpiration rate) via genotype specific parameter sets in annual crop species 

(Hoogenboom et al. 1997; Hoogenboom and White 2003; Reymond et al. 2003; 

for a review see White and Hoogenboom, 2003); parameterizing the genetic 

influences on tree growth among species through physiological processes is still 

atypical (Martin et al. 2005). To capture the variation in environmental drivers and 
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biotic response to this forcing, process-based models offer a means to predict 

the growth of a system as complex as a tree (e.g., Weinstein et al. 1991; 

Valentine et al. 1998; Baldwin et al. 1998; Landsberg 2003; Bauerle et al. 2007). 

In this study, we focus on a species specific method of biological process 

model parameterization at the tree organ-level because changes in climate will 

influence specific physiological pathways that then can manifest themselves at 

higher scales (e.g. whole tree). We use clonal plants to make the separation of 

genetic variability less difficult. Furthermore, the use of clonal plants allows the 

exact replication of a given species genotype to environmental stress, which 

makes it possible to differentiate between influences of genetic variability on the 

response of a tree to a given stress. In so doing, we investigate the feasibility and 

validity of using the detailed simulation model MAESTRA2 to predict species 

specific water stress responses in five deciduous tree species. MAESTRA2 is an 

updated version of MAESTRO (Wang and Jarvis 1990a) and MAESTRA (Medlyn 

2004). Recently, Medlyn et al. (2005) demonstrated MAESTRA’s ability to predict 

CO2 exchange in the dominant species of a coniferous forest plantation. We 

expand on her work by parameterizing our version (MAESTRA2) to account for 

photosynthetic and respiration responses to drought stress in several species of 

deciduous trees under precise irrigation control. In so doing, we are able to 

describe the important long term biotic response responsible for variation in 

forest atmosphere carbon exchange (Richardson et al. 2007). 

The species in this study originate from similar climatic conditions. Thus, 
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any species differences in carbon exchange under the same environmental 

conditions can be attributed to the effects of quantitative physiological variation 

brought about by genetic differences and/or variation in gene expression. Using 

specific species parameter sets developed from measurements, we examine 

genetically inherent differences among species. Our specific objectives were to: 

1) investigate whether experimentally derived parameter sets could account for 

the biomass accumulation of individual species, 2) validate the model simulations 

under a range of soil moisture conditions, 3) examine the species variation in 

response to water stress, 4) provide insight into the possibility to parameterize 

species responses from basic organ-level processes, and 5) validate a whole 

tree carbon budget model for deciduous tree species using estimated net carbon 

accumulation versus organ dry weights. The main hypothesis driving this 

research is that genetic constraints among species, brought about by 

evolutionary adaptation, underlie a species response to climate change. 

Although numerous studies have described morphological and 

physiological differences in tree species and the subsequent affect of soil 

moisture stress, we focus on species specific physiological constraints and their 

water stress induced CO2 flux limitations. Therefore, by incorporating species 

specific physiological constraints within a restructured version of the process 

based MAESTRA2 model, we determine the source of biotic variation and/or 

inadequacies in simpler models.  
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MATERIALS AND METHODS  

 

Study Area: 

The duration of the study was from May 15, 2006 to October 15, 2006 

(first signs of leaf senescence), capturing the majority of the 2006 growing 

season. The field site was located at the Clemson University Calhoun Field 

Laboratory in Clemson, South Carolina, USA (latitude 34° 40′ 8′′; longitude 82° 

50′ 40′′). Site attributes involve a gravel pad receiving full sun exposure, outfitted 

with a pressure-regulated micro emitter irrigation system (ML Irrigation Inc., 

Laurens, SC.).  A full site description is provided in Bauerle et al. (2002). 

 

Plant Material: 

In a common garden, South Carolina grown saplings of Acer rubrum L. 

‘Summer Red’ (A. rubrum), Betula nigra (B. nigra), Quercus nuttallii (Q. nuttallii), 

Quercus phellos (Q. phellos), and root cuttings of Paulownia elongata (P. 

elongata), 40 of each, were planted in 57 L plastic containers containing Fafard 

2B custom mix potting substrate (Fafard Inc., Anderson, SC) and fertilized with 9 

Kg m-3 of Osmocoat Pro® 19-5-8 slow release fertilizer (Scotts Inc., Marysville, 

OH). Plants were randomly distributed throughout the plot in a grid pattern (1.5 m 

spacing), initially watered to container capacity, and allowed to drain for 24 h. 

360o micro-emitter irrigation was applied at the base of each tree stem, delivering 

1 L of water three times daily to each of the 200 trees. All trees were kept well 
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watered and allowed to acclimate to the site for 45 d before drought treatments 

began.  

 

Drought Treatment: 

After monitoring trees under well watered conditions for 45 d, a 

randomized drought treatment was applied. Twenty trees per species were 

randomly assigned to a drought treatment and 20 trees to a well watered 

treatment. Water stress treatment trees were outfitted with 360o micro-emitters 

that emit 70% less water than well-watered control emitters. Irrigation times and 

duration were adjusted per tree species and treatment to insure that the soil 

volumetric water content (VWC) in the drought treatment was < 0.3 m3 • m3 and 

the well watered treatment remained > 0.3 m3 • m3 VWC (a predetermined value 

shown to not induce water stress). In addition, all of the containers were wrapped 

in Al foil to reduce the radiation load and outfitted with 3 mil plastic sheeting skirts 

to exclude precipitation recharge.  

 

Substrate Water Measurements: 

Bulk VWC was recorded every 48 h at two locations in the soil profile of 

each container using a Theta Probe type ML2 (Delta-T Devices, Cambridge, 

England) at 10 cm and 20 cm below the potting medium surface. Readings were 

taken by inserting the probe into predrilled holes at two depths, and taking the 

average of the readings to estimate bulk VWC for each container (Bauerle et al. 
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2003). In addition to Theta Probe values, ECH2O probes, type EC-20 (Decagon 

Devices, Pullman, Washington, USA) were installed at a 45o angle in the soil of 

four randomly selected trees per species per treatment and bulk VWC was 

recorded every min and hourly averages output to a CR7X data logger (Campbell 

Scientific, Logan, UT). 

 

Sap-flux Measurements: 

Sap flow gauges (Dynamax Inc., Houston, TX) were installed on four 

randomly selected trees per species (two per treatment). The gauges encircled 

the stem with a flexible heating element equipped with a thermocouple above 

and below the element to measure vertical heat loss as water carries heat up the 

stem in the sap flow process. Saran Wrap® and a thin layer of silicon based 

grease was placed between the stem and the heating element to insure 

adequate contact with the stem as well as to exclude moisture. Weather resistant 

insulation covered the gauges to approximately 15 cm above and below the 

heating element and Al foil covered the foam to further exclude solar radiation. 

Data was colleted by a CR10X data logger (Campbell Scientific, Logan, UT) 

coupled with a multiplexer (AM416, Campbell Scientific, Logan, UT) every 30 

sec, and 15 min averages were stored (SM4M, Campbell Scientific, Logan, UT). 
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Leaf Gas Exchange Measurements: 

Leaf gas exchange measurements were taken at three week intervals on 

recently fully expanded leaves of four replicate trees per species. Measurements 

were taken with a portable gas exchange system (CIRAS-1, PP Systems, 

Haverhill, MA) outfitted with a light and temperature controlled cuvette (Model 

PLC(B), PP Systems). The temperature inside the cuvette was controlled at 25° 

C and humidity was held constant at 19 mb to create a moderate vapor pressure 

deficit of 1.27 kPa. Leaf net photosynthesis (Anet) versus CO2 (Anet-Ci curves, 

were Anet is in umol m-2 s-1 and Ci is the internal CO2 concentration expressed as 

the mol fraction of CO2) were constructed as described in Bauerle et al. (2007). 

In addition to A-Ci curves, light response curves were constructed with the same 

system as described in Bauerle et al. (2003). 

 

Organ Specific Respiration: 

Organ respiration was collected on excised stem, coarse root, and fine 

root tissues immediately at harvest with a portable gas exchange system 

(CIRAS-1, PP Systems) connected to a respiration chamber (SRC-1, PP 

Systems). The chamber was modified with a lid to seal and enclose the organ. 

Respiration was logged after reaching a steady state. Organ chamber volume 

consumption was determined volumetrically after gas exchange measurement. 
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Relative Growth Rate Destructive Sampling: 

Three trees of each species per treatment (30 total) were randomly 

selected and destructively harvested on a three-week interval during the study (7 

total harvests). Leaves were removed and total leaf area was obtained with a leaf 

area scanner (LiCor 3100, Lincoln, NE). The soil was gently washed from the 

roots and fine roots (diameter < 3mm) were separated from the coarse root 

material (diameter > 3mm).  Individual organs (leaves, stem, coarse roots, and 

fine roots) were then placed in paper bags, dried at 70 oC for approximately 21 d, 

and dry weights were measured to the nearest 0.1 g. After each harvest, the 

remaining trees in the plot were randomly repositioned to a solid block in order to 

avoid gap effects in the canopy. 

 

Allometric Measurements: 

Three dimensional tree canopy characteristics were measured one day 

prior to each destructive harvest throughout the season. Measurements included 

total tree height, trunk diameter, trunk length, and three dimensional live crown 

size (x, y, and z direction in m). Tree mensuration data, along with site 

parameters such as slope and aspect, were used to parameterize the model 

MAESTRA2 (details below).  
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MAESTRA2 Parameterization: 

 The essence of this study is a species specific modeling analysis that 

aims to quantify the differences in growth among species and their subsequent 

response to water stress. The analysis consists of a series of simulations in 

which species specific parameters encapsulated a species response. In this 

study, MAESTRA2 (see Medlyn 2004 for a retrospective of the process model 

MAESTRA), a three-dimensional model for calculating photosynthesis, 

transpiration, and absorbed radiation was parameterized for the experimental site 

with a suite of measurements taken during the course of the study. MAESTRO, a 

prior version of MAESTRA2, was originally developed and validated on 

coniferous trees (Wang and Jarvis 1990a,b). More recently, Bauerle et al., (2002; 

2004a) updated the model to run on a 15 minute time step, incorporated a soil 

moisture response function, and parameterized and validated the model on 

deciduous trees using measurements of leaf-level gs, photosynthetic rates, crown 

transpiration, and crown light interception. A detailed description of MAESTRA2, 

however, is beyond the scope of this article. Specific to our version of 

“MAESTRA2”, we updated the gs response by incorporating physical and 

hormonal drought response functions (Bauerle et al., 2002; 2004c), maximum 

rate of Rubisco activity (Vcmax), mesophyll conductance, and maximum electron 

transport rate (Jmax) leaf temperature response functions (Bernacchi et al., 2001; 

2002; and 2003; Bauerle et al. 2007), and deciduous tree light transfer (Bauerle 

et al., 2004b). The application of MAESTRA2 in this study is grounded in the 
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work of others where prior versions of the model have been validated and used 

to estimate species specific photosynthesis and transpiration; interested readers 

are referred to Wang and Jarvis (1990a,b), Kruijt et al., 1999; Luo et al. (2001); 

Medlyn (1998; 2004), Bauerle et al. (2002; 2004b; 2006; 2007), and Medlyn et al. 

(2005) for detailed descriptions of applications.  

 Specific to this study, the models spatial explicitness was critical, where 

MAESTRA2 allows canopy parameterization at the individual crown and sub 

crown level. The photosynthetic radiation response of a “target crown”, therefore, 

depends on the structure of the crown and the distribution of irradiance over the 

crown. Spatial characteristics are accounted for with a Cartesian coordinate 

system. To integrate PAR absorption over temporal and spatial distributions of 

irradiance, each crown layer is treated as unifacial and the assimilating leaf area 

is defined as one-sided. The positions and dimensions of the trees surrounding 

the target crown are used to calculate the sunlit and shaded fractions of leaf area 

after passing through the neighboring tree canopies, where the canopy is 

represented by an array of ellipsoidal tree crowns. In our study, the intercepted 

and absorbed radiation was calculated for each crown, with each crown divided 

into 3 layers, resulting in 12 sectors of 30o with each layer forming 36 equal sub-

volumes. 

 Another critical aspect of the model is the ability to parameterize the 

physiological genetics on a species by species basis. Thus, our sampling 

structure and measurements allowed us to describe each species genetic 
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difference with clonal-specific parameters and control equations using process-

based physiological models such as the Ball-Berry (Ball et al. 1987) and the 

Farquhar and von Caemmerer (1982). The response of a species to an 

environmental condition was thus represented by ‘meta-mechanisms’ that 

represent quantitative variation in species differences via species specific 

experimental response curve parameters (e.g., Reymond et al., 2003; Tardieu, 

2003).   

Model inputs included spatially explicit plot and tree measurements and 

organ specific physiology data. Meteorological data to drive the model was 

collected by an on site weather station on a 15 min time step with a CR10X data 

logger (Campbell Scientific, Logan UT). Soil moisture data were input into a 

physical drought response equation described in Bauerle et al. (2002). Model 

output in g of carbon exchange was estimated on a 15 min, hourly and daily time 

step and estimates were validated with field collected measurements. 
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RESULTS 

 

Species Specific Variation: 

The model was parameterized slightly different for each species and 

treatment based on differences in physiology, leaf area, and soil moisture  

(Table 1). At the end of the season, water stress was observed to have caused 

significant reductions in height, leaf area, and dry weight among species, 

although seasonal carbon fluxes and the severity of carbon reduction due to 

water stress at specific time points throughout the season also differed among 

species. Figure 1 illustrates the seasonal changes in carbon reduction as a 

percentage of the well watered control. After the drought treatment was initiated, 

carbon sequestration constraints responded relatively quickly with a dry weight 

decline in the range of 20%- 48% over a 17 day period when compared to the 

well watered control trees. All species except for A. rubrum reached a peak 

carbon accumulation in the range of 56%- 63% lower than that of the well 

watered controls by Julian day 253, while at the same time, A. rubrum’s 

maximum drought effect was only 29% lower by dry weight when compared to 

the well watered treatment. In addition, a slight decrease in percent dry weight 

reduction was observed for all species except Q. nuttallii from Julian day 253 to 

283, at which time an increase in root carbon storage offset the large carbon 

reductions observed in the previous month. 
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Species exhibited specific differences in organ specific carbon partitioning 

in response to drought stress. Figure 2 illustrates the organ specific carbon 

partitioning in response to well watered and water stressed conditions. Although 

all species showed a marked decrease in leaf carbon accumulation under 

drought stress, Q. nuttallii responded to water stress with the overall greatest 

decline in leaf carbon, 84%, while P. elongata retained the highest leaf carbon 

under drought, 46% reduction. B. nigra reduced carbon allocated to stem growth 

by 75%, while maintaining relatively equal carbon allocation to coarse root 

growth when compared to the well watered control. In addition to having the 

lowest overall carbon decrease in response to drought stress, A. rubrum 

increased fine root production by 46% relative to the well watered treatment.  

 

Modeling Results: 

Measured sap flux reveals species diurnal transpiration differences 

(Figure 3). Furthermore, Figure 3 illustrates sap flow of well watered trees 

compared to MAESTRA2 model estimates of transpiration during seven 

representative days of the study period, Julian day 206 to 213. The results 

indicate that P. elongata transpires approximately twice as much water, a weekly 

sum of 26.73 Kg m-2, as compared to the other four species, where their water 

use ranged from a weekly sum of 12.09 to 14.09 Kg m-2 (Figure 3). Sap flow 

under water deficit conditions shows a lower water use for all species that range 

from 33% (Q. nuttalli) to 79% (Q. phellos) decrease in weekly water use. Most 
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importantly, the comparison of model estimates of transpiration to sap flow under 

both the well watered and drought treatment validate MAESTRA2’s ability to 

diurnally estimate gas exchange on a species specific basis and respond to a 

range of water deficit conditions (Figure 3 and 4).  

The dry weight data from each of the seven harvests were used to 

compare to model carbon estimates (Figure 5). Multiple comparisons between 

the measured and modeled data under both well watered and drought were 

made at each harvest. Comparisons were also made between the carbon 

accumulated in the well watered and drought treatments to indicate the time that 

a significant treatment effect was observed. Figure 5 illustrates that the model 

has the ability to predict both intraseasonal and seasonal net carbon gain in well 

watered deciduous tree species and also has the capability to down-regulate net 

carbon assimilation in response to drought on a species specific basis. Thus, we 

found no significant differences in modeled versus measured net primary 

production under water stress conditions (Figure 5). 

The percent of carbon allocated to each organ was used to partition total 

tree carbon estimates among organs (Figure 6). Figure 6 further illustrates organ-

specific carbon of well watered trees in comparison to model estimates. Modeled 

estimates slightly under predicted leaf carbon for B. nigra by 7% and Q. phellos 

by 20%, and over predicted coarse root carbon for Q. phellos by 13% and  

P. elongata by 27%. Modeled estimates of fine root production accounted for 

actual fine root carbon accumulation in all species and estimated stem carbon 
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was not significantly different from the measured data for A. rubrum, B. nigra, 

and Q. nuttallii. 

Measured organ-specific dry weight data were compared with model 

estimates for the drought treatment on Julian day 283 (Figure 7). Model 

estimates overestimated actual stem and leaf carbon in P. elongata by 34% and 

35% respectively, stem carbon in Q. phellos by 36%, and fine root and leaf 

carbon in A. rubrum by 24% and 25%. Model predictions of carbon accumulation 

compared to measured values showed no significant difference for all other 

organ specific comparisons. 

 

Respiration Results: 

Woody respiration was analyzed as the average of three trees per species 

per treatment and compared to the average of three model simulations per 

species per treatment. Figure 8 illustrates respiration (g CO2 d
-1). In all cases but 

one, measured respiration was higher in the well watered treatments as 

compared to the drought treatments. The exception was the root respiration of A. 

rubrum. Due to the increase in fine root production in response to drought,  

A. rubrum was observed to have higher total root respiration in the drought 

treatments than in the well watered control. In general, the model responded to 

increased soil moisture deficit with a decrease in total woody respiration. 

Figure 9 illustrates the seasonal respiration rates of the five study species 

compared with model estimates of foliar respiration. Measured values indicate a 
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decrease in foliar respiration as the season progressed beyond Julian day 253. 

Model estimates, on the other hand, do not show the same decrease after Julian 

day 253.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

       Species     Ps      Rday        Amax        Jmax        VCmax        Go         G1        Lcomp         Lsat 

       A. rubrum          16.2CD       2.1AB      14.8AB      196.6AB       67.7BC       0.14A       1.7D       21.1AB       157.3A 

      B. nigra                     26.3A       2.1AB      20.6BC      251.6A       83.2A       0.69B       2.5CD       11.7A       321.9BC 

      P. elongata         19.9BC       3.5C      27.5C      242.8A       73.7AB       0.14A       5.8AB       29.2B       467.8C 
      Q. nuttallii           18.5BC       1.7B      12.1AB      142.8BC       58.4CD       0.15A       3.3BC       17.8AB       201.3AB 

      Q. phellos           12.8D       1.8B      10.2A      127.4C       52.0D       0.11A       2.4CD       16.1AB       192.0AB 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Leaf level photosynthetic parameters. (A) photosynthetic rate (µmol m-2 s-1) , (Rd) foliage 
maintenance respiration (µmol m-2 s-1), (Jmax) maximum rate of electron transport (µmol m-2 s-1), (Vcmax) 
maximum rate of Rubisco activity (µmol m-2 s-1), (go) minimum stomatal conductance (µmol m-2 s-1), (g1) 
stomatal opening slope coefficient, (Lc) light compensation point (µmol m-2 s-1),  (Lsat) light saturation point.  
Different letters within a parameter indicate differences among species (P<0.05). 
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   Species    Watered (g)    Drought (g)    % Reduction 
 
A. rubrum        2817        1989          29%   
B. nigra        1615         590          63% 
P. elongata       3173        1338          58% 
Q. nuttallii        2163        796          63% 
Q. phellos       1921        849          58% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Dry weight reduction of droughted trees as compared to well-
watered over the coarse of the experiment (Julian day 283). Data 
represent the average of three replicates per species and treatment  
(n = 3). 
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Fig. 1. The percent of carbon sequestration below that of the well watered 
control after the drought treatment was initiated. The dashed line indicates 
the start of the drought treatment (Julian day 181). 
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Fig. 2. Organ specific carbon partitioning in response to well watered and 
drought treatments on Julian day 283. Symbol (W) represents the well watered 
treatment and symbol (D) represents the drought treatment. 
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Fig. 3. Diurnally measured versus modeled sap flux under well watered 
conditions. Data illustrate mean hourly transpiration during a representative 
seven day time period. Closed circles (●) represent measured data and open 
circles (○) represent model predictions. 
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Fig. 4. Diurnally measured versus modeled sap flux under drought stress 
conditions. Data illustrate mean hourly transpiration during a representative 
seven day time period. Closed circles (●) represent measured data and open 
circles (○) represent model predictions. 
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Fig. 5. Measured versus modeled net carbon accumulation throughout the 
study period. Data are the mean of three trees per harvest date. Symbol (a) 
indicates no significant difference between measured and modeled data in 
the well watered treatment at α= 0.05. Symbol (b) indicates no significant 
difference between modeled and measured data in the drought treatment at 
α= 0.05 and (*) indicates a significant treatment effect between measured 
data at α= 0.05. The dashed line indicates the time at which the drought 
treatment was initiated. 
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Fig. 6. Organ specific carbon accumulation under well watered conditions. 
Within a species, bars below the letter (a) represent measured data and (b) 
represent modeled data.  
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Fig. 7. Organ specific carbon accumulation under drought stress conditions. 
Within a species, bars below the letter (a) represent measured data and (b) 
represent modeled data.  
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Fig. 8. Measured versus modeled stem, coarse root and fine root 
respiration in well watered and drought treatments for the five tree species.   
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Fig. 9. Measured vs. modeled seasonal foliar maintenance respiration rate. 
Dashed line indicates the time at which the drought treatment was initiated. 
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DISCUSSION 

 

Numerous plant simulation models have been used to model net primary 

production of forests and ecosystems. However, the majority of the models fall 

short in that they do not account for species specific contributions to net 

ecosystem carbon fluxes (e.g., Sinoquet et al. 2001; Badeck 2001 et al.; 

Baldocchi et al. 2002). The results of our study indicate that significant 

physiological distinctions can be made among species and that the incorporation 

of species specific physiology is important in modeling carbon fluxes and 

response to environmental stresses. In addition, a large portion of process 

models do not allow for spatially explicit physiological parameterization and 

instead use meteorological inputs to drive physiology sub-models in their attempt 

to estimate canopy CO2 and water vapor flux. Although the use of such 

methodology has a variety of applications in monocultures, models that use 

generalized physiological responses fall short in estimating species specific 

carbon fluxes at the organ and species stress response level, thereby 

oversimplifying the detail required to capture the dynamics of a mixed forest 

response to environmental stimuli. The MAESTRA2 model has the capability to 

be parameterized using individual species physiology and the prior version, 

MAESTRA, has been demonstrated to meet the criteria of predicting carbon 

fluxes in several species (Medlyn et al. 2005; Janssens et al. 2005; Ibrom et al. 

2006). In our study, significant physiological differences measured in the field 
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provided the opportunity to parameterize MAESTRA2 among species, test the 

responsiveness of model output to changes in physiology inputs, and test the 

ability of MAESTRA2 to estimate carbon and water fluxes an a species specific 

basis. The modeling validation results indicate that the model was responsive to 

changes in physiological parameterization and adequately estimated carbon and 

water vapor fluxes amongst five deciduous species. 

Apart from individual species’ inherent physiology being an important 

component for accurate model predictions at the species level, we found it 

necessary to account for seasonal changes in species physiological activity. The 

seasonal variation of physiological parameters such as apparent quantum yield, 

maximum photosynthetic capacity and respiration has been shown to be 

especially critical in characterizing seasonality of temperate broad leaved 

deciduous as opposed to evergreen forests (Zhang 2006). Model predictions of 

carbon accumulation have also been shown to be more accurate when 

deciduous models are parameterized to account for seasonal fluctuations in leaf 

physiological response (Kosugi et al. 2003 & 2006). We too found this to be 

evident and therefore, parameterized MAESTRA2 at seven different time points 

over the course of the growing season. Thus, MAESTRA2 interpolated between 

seasonally distributed physiological responses per species to account for 

seasonal changes in physiological activity. Due to the significant variance in both 

seasonal fluctuations and species specific physiological model parameters, our 

findings reinforce those of Kosugi et al. (2003) and Kosugi et al. (2006) in that the 
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incorporation of species seasonal response models into larger ecosystem carbon 

models is warranted. 

Studies that deployed MAESTRA or other similar process models have 

acknowledged the deficiency of a soil moisture response (Hanson et al. 2004).  

Most process models, MAESTRA included, either assume that soil moisture 

availability is non-limiting or are incapable of accounting for stomatal regulatory 

feedback effects on carbon dioxide exchange rates in response to soil water 

deficits. Therefore, process models such as MAESTRA have had a tendency to 

over predict carbon sequestration under water stress conditions (Hanson et al. 

2004). The results of our study are novel in that we not only present and validate 

a modified version of MAESTRA that can capture species carbon sequestration 

on both an organ and whole plant scale, but additionally validate it in response to 

alterations in soil moisture. Furthermore, the ability of our version of MAESTRA 

(MAESTRA2) to simulate individual species carbon assimilation values as a 

function of inherent species specific attributes (e.g., photosynthetic capacity and 

respiration) is substantiated under both well watered and water stressed 

conditions.  

At the individual organ or whole tree, variation in soil moisture status plays 

an important role in regulating the carbon exchange rate between the vegetation 

and the atmosphere. In fact, drought has been shown to be a major constraint of 

net ecosystem exchange among species as well as a significant limitation to 

carbon sequestration in forest systems (Granier et al. 2006). Furthermore, the 
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response to decreasing water availability is not homogeneous among species 

and is associated with inherent physiological and genetic constraints. Similar to 

Manes et al. (2006), who investigated the differences in oak species drought 

tolerance via their morphological and physiological response; we observed 

morphological changes that permitted A. rubrum to tolerate water stress 

conditions. However, the morphological root growth response was not observed 

in any of our other study species. For example, under well watered conditions, P. 

elongata was the fastest growing species in this study and accumulated the most 

carbon when water was not limiting. In contrast, the changes in A. rubrum shoot 

to root carbon partitioning allowed it to accumulate the greatest amount of carbon 

under water stress conditions. Specifically, A. rubrum deployed a drought 

avoidance strategy where it shifted carbon allocation to root production under 

water deficits. Furthermore, we observed a coarse to fine root ratio shift in the 

drought treatment when compared to the well watered control that is supported 

by a previous study by Canham et al. (1996). A. rubrum was observed to 

preferentially allocate carbon to above ground biomass in productive soils and to 

below ground biomass in soils deficient in water and nutrients. 

Overall, the carbon sequestration due to water stress varied from 29% (A. 

rubrum) to 56-63% (Q. phellos, P. elongata, B. nigra, and Q. nuttallii) lower than 

the respective well watered control. Most importantly, MAESTRA2 was able to 

capture the large variation in drought, which further substantiates the use of 

MAESTRA2 as a species specific model for predicting ecosystem carbon 
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dynamics in response to environmental stresses such as precipitation deficits. 

The MAESTRA model has been demonstrated to be capable of estimating 

transpiration on a per species basis (Bowden et al. unpublished data), we 

expand on this work by testing the capability of MAESTRA2 to model carbon 

exchange for several species under a variety of soil moisture conditions. Model 

validation results illustrate that the model was able to adjust species specific 

carbon exchange in response to drought.   

Previous studies have demonstrated that ecosystem respiration is 

drastically reduced by drought (e.g., Reichstein et al. 2007). Specific to root 

organs, Burton et al. (1998) reported a decline in sugar maple root respiration as 

soil moisture became more limited. Measured values and modeled estimates of 

photosynthesis and woody respiration rates in our study concur with this 

observation and indicate that the soil moisture response incorporated in the 

model is effective in down regulating root system respiration rates under soil 

water deficits. Moreover, MAESTRA2 has the capability to budget whole tree and 

organ specific carbon across a range of soil moisture conditions. Although 

Janssens et al. (2005) compared MAESTRA estimates of net carbon 

accumulation and woody respiration to dry weight data from a single destructive 

harvest of P. sylvestris exposed to elevated atmospheric CO2, our study is the 

first to predict drought stress responses of multiple deciduous tree species within 

and over the course of an entire growing season. 
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Numerous carbon flux studies use eddy covariance to validate model 

estimates of seasonal carbon flux (Baldocchi et al. 2002 & 2003; Medlyn et al. 

2005). Though the method is prone to uncertainty due to site topography, a 

further drawback is the inability to differentiate individual species responses in 

heterogeneous forest ecosystems (Hollinger and Richardson 2005).  An 

investigation into the validation of carbon models by eddy covariance reveals that 

uncertainty in the eddy covariance data accuracy originates from a variety of 

sources that include random natural fluctuations in an ecosystem, 

instrumentation error, and the lack of sufficient replicate eddy covariance data to 

quantify measurement error (Medlyn et al. 2005). Aside from these eddy 

covariance shot comings that make model validation at the ecosystem scale 

problematic, eddy covariance cannot quantify carbon fluxes at the tree or organ 

level. Therefore, an alternative method to quantify tree level flux would be to 

calibrate whole canopy gas exchange chambers with sap flow (Dragoni et al. 

2005). However, canopies enclosed in the chambers alter the environment and 

the instrumentation is not trivial to deploy under outdoor conditions. Our 

destructive harvest method, therefore, aimed to reduce or eliminate these 

factors, as well as enable us to simultaneously examine multiple species and 

organ responses under the same environmental conditions.  
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CONCLUSIONS 

 

MAESTRA2 is the latest rendering of the MAESTRO/MAESTRA model 

evolution. The predicted versus measured comparison indicates that the species 

specific detail in model parameterization allowed MAESTRA2 to adequately 

predict net carbon accumulation among species. The merit of detailed model 

parameterization, especially with the aim to scale up to the stand or ecosystem 

level, has been expressed by others (e.g., Baldocchi et al. 2002; Janssens et al. 

2005). Thus, MAESTRA2’s ability to predict at the species and organ level and in 

response to soil water deficits could be useful in deciphering the dynamics of 

deciduous forest response to precipitation.  
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