Clemson University TigerPrints

All Theses

Theses

7-2008

ASSESSMENT OF POTENTIAL SITE SELECTION METHODS FOR USE IN PRIORITIZING SAFETY IMPROVEMENTS ON GEORGIA ROADWAYS

Priyanka Alluri *Clemson University*, palluri@clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses Part of the <u>Civil Engineering Commons</u>

Recommended Citation

Alluri, Priyanka, "ASSESSMENT OF POTENTIAL SITE SELECTION METHODS FOR USE IN PRIORITIZING SAFETY IMPROVEMENTS ON GEORGIA ROADWAYS" (2008). *All Theses*. 410. https://tigerprints.clemson.edu/all_theses/410

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

ASSESSMENT OF POTENTIAL SITE SELECTION METHODS FOR USE IN PRIORITIZING SAFETY IMPROVEMENTS ON GEORGIA ROADWAYS

A Thesis Presented to the Graduate School of Clemson University

In Partial Fulfillment of the Requirements for the Degree Master of Science Civil Engineering

> by Priyanka Alluri August 2008

Accepted by: Dr. Jennifer H. Ogle, Committee Chair Dr. Mashrur A. Chowdhury Dr. Scott Brame

ABSTRACT

With over 40,000 people continuing to die on US roads each year, the US government has heightened the awareness of critical safety issues with the passage of SAFETEA – LU legislation in 2005. The plan requires each of the states to develop a Strategic Highway Safety Plan (SHSP) and incorporate data-driven approaches to prioritize and evaluate program outcomes; else federal funds will be redirected. Seeking to meet the new demands for datadriven approaches, many states are struggling to identify data collection/maintenance requirements for satisfying new approaches to highway safety analysis. Recent research has shown that selecting projects on the basis of crash frequencies and rates are misleading due to selection bias (such as greater emphasis on traffic volume and cash severity etc) and Regression-to-mean phenomena. There are several safety analysis techniques that are preferred over traditional rates and frequencies. These include level of service of safety, empirical bayes method using SafetyAnalyst software techniques. While all the above mentioned methods are macroscopic (giving a bigger picture of the complete road), microscopic analysis could be done using the Interactive Highway Safety Design Model (IHSDM). IHSDM is a set of software analysis tools developed by Federal Highway Administration (FHWA) to evaluate safety on two lane rural highways.

This research aims at assessing the usability, data requirements, data availability and expertise required by different techniques that are deemed appropriate for safety analysis in Georgia. To streamline and reduce the scope of work, Cobb County was chosen as the analysis county because it had been used in a prior development effort and was expected to have the best level of completion and accuracy in the state. The procedure of using the state-of-theart analytical tools is considered as the most comprehensive safety analysis method. Cobb County data set will be used to test the applicability of the four analysis methods: crash frequency, crash rate, critical crash rate and level of service of safety (LOSS). The results from various ranking criteria (crash frequency, crash rate, critical crash rate and LOSS) will be compared to the actual available crash data and enhanced *SafetyAnalyst* data.

SafetyAnalyst uses the Safety Performance Functions generated for northern states and it calibrated to Georgia data. SPFs applicable to Georgia data (generated from Cobb County) are compared to the non-calibrated and calibrated SPFs used in *SafetyAnalyst*. Analysis of costs and potential benefit of using various network screening methods is carried out to weigh the capabilities and limitations of various ranking methods.

DEDICATION

This thesis is dedicated to my mother, Lakshmi Alluri who inspired me to take this enlightening path. Her continuous support made this work possible.

ACKNOWLEDGMENTS

It is my pleasure to thank all the people who in one way or the other helped me in making this thesis possible. Primarily, its my privilege to thank my advisor Dr. Jennifer Harper Ogle for her expert advice and continuous encouragement. She made "crash data analysis" fun, thus, increasing my interest in the field of transportation safety.

I would like to express my sincere thanks to my committee member, Dr. Mashrur A. Chowdhury, for helping me with the benefit cost analysis. I would like to thank my committee member, Dr. Scott Brame, for getting me started on GIS and for helping me with GIS whenever I am clueless.

Its my pleasure to thank Dr. Wayne Sarasua for his friendly advice and for his invaluable help with GIS in the initial stages.

My thesis would have been incomplete without statistical analysis, and in this context, I would like to express my deepest appreciation to Dr. Julia Sharp from the Statistics Department for helping me in understanding the statistical concepts and in running SAS software. A very special thanks to Mrs. Barbara Ramirez, of the English Department, for her constructive criticism and for helping me in polishing the language in my thesis. On the same grounds, I would like to thank the students at Academic Writing Center for helping me with the grammar.

My sincere thanks go to GDOT (Georgia Department of Transportation) for funding this project. I would like to express my deepest appreciation to Mr. Norm Cressman from GDOT for his timely response to all my queries about crash data.

This project became very interesting and challenging with the use of software *SafetyAnalyst*. I would like express my sincere thanks to *SafetyAnalyst* development team for continually making improvements to the software. I take this opportunity to thank Tom Robbins, Peter Holm, and Daniel Tomich from ITT for helping me understand *SafetyAnalyst* and for answering at least a hundred questions with a lot of patience. Their continuous and timely support made it possible to finish the data analysis in time. Also, I would like to thank Karen Richard from MRI who helped me in developing the Safety Performance Functions. Her suggestions are invaluable to this thesis. I would like to thank Angie Rios for helping me in understanding the crash database.

No project can be done in isolation. This thesis was only possible because of the help rendered by my project mates Swathi, Aimee and Chamanie. Their friendship and support are invaluable. A very special

vii

thanks to Johnatan for being my friend and for alleviating my tensions towards the end of writing this thesis. I would like to thank Jo Ann, Pranoy, Sukumar, Tabrez and Vijay for creating a friendly work environment in the department.

Sumalatha Yaski stood by my side during tough times. Its my pleasure to thank her for her friendship and support. A very special thanks to Bhanu Durga Paladugu for raising my confidence levels during difficult times. Thanks to Arpita Biswas for listening patiently to my "exciting developments in my research" everyday. I would like to thank Pavan Seemakurthy alias "Kaki" for his confidence in me, for lightening the situations when I am down and for giving me company in the department during my work. I would like to thank Sindhu Bobba for reviewing the document. I would also like to thank Anusha Pokuri for helping me with SAS.

Siva Chavali is a friend, advisor, guide, mentor, teacher and a critic to me. His continuous advice kept me on track and helped me write this thesis document. I would like to thank him for everything.

Finally, Its my pleasure to thank my best friend Aditya Pokuri for his support, guidance and inspiration. Without him, its near to impossible to pull things together to complete this thesis.

TABLE OF CONTENTS

TITLE PAGEi
ABSTRACTii
DEDICATIONv
ACKNOWLEDGMENTSvi
LIST OF FIGURES xi
LIST OF TABLES
CHAPTER 1 INTRODUCTION
1.1 Introduction:11.2 Problem Statement:61.3 Objectives:71.4 Organization of the Thesis:8
CHAPTER 2 LITERATURE REVIEW10
2.1 Basic Site Selection Criteria and Issues:14
2.2 Advanced Site Selection Criteria:21
CHAPTER 3 METHODOLOGY
3.1 Review Georgia datasets:
3.1.1 Crash Data:
3.1.2 Roadway Characteristics and associated GIS shape files:
3.1.2.1 Identify analysis selection set:
3.1.3 Discuss all selection criteria:
3.2 Site selection:
3.2.1 Use of SafetyAnalyst:40
3.2.1.1 Generate import files that are compatible with <i>SafetyAnalyst</i> :40
3.2.1.2 Import, post process and calibrate the input files in <i>SafetyAnalyst</i> :43

Table of Contents (Continued)

3.2.1.3 Run Analytical tool on the calibrated files in SafetyAnalyst:	46
3.2.1.4 Interpret the <i>SafetyAnalyst</i> output:	48
3.2.2: Use of other ranking criteria to identify SWiP:	51
3.2.2.1 High Crash Frequency:	54
3.2.2.2 High Crash Rate:	54
3.2.2.3 Critical Crash Rate:	54
3.2.2.4 Level Of Service of Safety (LOSS):	55
3.3 Generate Georgia specific SPFs:	57
3.3.1 Compare Georgia specific SPFs to SPFs used by SafetyAnalyst:	60
3.4 Consider benefits and costs for all ranking criteria:	62
CHAPTER 4 ANALYSIS AND RESULTS	65
Phase 1: Review crash data and roadway characteristics data:	66
Phase 2: Site Selection Methods:	79
Phase 3: Comparison of Safety Performance Functions generated for Cobb County and the calibrated	
and non calibrated SPFs used in SafetyAnalyst	87
Phase 4: Consider benefits and costs for all ranking criteria:	103
CHAPTER 5 CONCLUSIONS AND FUTURE RECOMMENDATIONS .	107
5.1 Conclusions:	107
5.2 Future Recommendations:	112
REFERENCES	187

LIST OF FIGURES

Figure Page
1: Components of Highway Safety Improvement Program (HSIP., 2007)
2: Traffic fatality trends in GA and US (TSP., 2008)5
3: Rate Misleading Effect (Qin, et al., 2005)18
4: Regression-to-Mean effect
(iTRANS and Human Factors North Inc., 2003)20
5: Various phases and steps taken towards achieving the objectives
6: Summary of crashes found in crash database and also spatially located35
7: Add Route Events along a spatially referenced map
8: Roadway Segments and Intersections
9: Screenshot of the Edit/View Homogeneous Segment Aggregation
Parameters and their threshold limits45
10: Cobb County with missing routes (Highlighted in blue)74
11: Cobb County with missing roadway segments after
importing into <i>SafetyAnalyst</i> (highlighted in red)75
12: A detailed example of the missing Roadway segment after
importing into <i>SafetyAnalyst</i> 76
13: All the crashes are located on I 75 North and none on I 75 South

List of Figures (Continued)

Figure Page	!
14: An example of coding error related to area type7	78
15: The calibrated and non calibrated SPFs (used by SA and generated for	
Georgia) for the year 2004 for site subtype 103 considering total	
crashes)3
16: The calibrated and non calibrated SPFs (used by SA and generated for	
Georgia) for the year 2004 for site subtype 152 considering total	
crashes9	94
17: The calibrated and non calibrated SPFs (used by SA and generated for	
Georgia) for the year 2005 for site subtype 103 considering total	
crashes9	95
18: The calibrated and non calibrated SPFs (used by SA and generated for	
Georgia) for the year 2005 for site subtype 152 considering total	
crashes9	96
19: The calibrated and non calibrated SPFs (used by SA and generated for	
Georgia) for the year 2006 for site subtype 103 considering total	
crashes9	<i></i> 7
20: The calibrated and non calibrated SPFs (used by SA and generated for	
Georgia) for the year 2006 for site subtype 152 considering total	
crashes	98

List of Figures (Continued)

Figure Page
21: The calibrated and non calibrated SPFs (used by SA and generated for
Georgia) for three years 04-06 for site subtype 103 considering total
crashes
22: The calibrated and non calibrated SPFs (used by SA and generated for
Georgia) for three years 04-06 for site subtype 152 considering total
crashes

LIST OF TABLES

Table Page
1: Considerations for each selection method (HSM., 20008)
2: Data requirements for various site selection methods (HSM., 2008)
3: Site subtype code and description used for roadway segments
4: Various columns in the output from <i>SafetyAnalyst</i>
5: Logic to create site subtypes 103 and 152 for roadway segments
6: Various LOSS, their conditions and descriptions (HSM., 2008)56
7: Alphanumeric unique ID generated from the route name, start location
and end location68
8: Table showing issues with coding structure related to route type
9: The closest match to coding used in GDOT to identify jurisdiction
10: Table showing the differences in coding structure for
Roadway Class in GDOT and <i>SafetyAnalyst</i> 71
11: Table showing the differences in coding structure for
Median Type in GDOT and <i>SafetyAnalyst</i>
12: Table showing the differences in coding structure for
Shoulder Type by GDOT and in <i>SafetyAnalyst</i>
13: An example showing the difference between
LOC_ACC_MI and locOffset77
14: Ranking based on different selection criteria for all site subtypes

List of Tables (Continued)

Table Pa	age
15: Ranking based on different selection criteria for site subtype 103	
(Rural multilane divided roadways)	84
16: Ranking based on different selection for site subtype 152 (Urban	
multilane undivided roadways)	85
17: Various parameters for the SPFs used for the two site subtypes	89
18: Year wise calibration factors generated by SafetyAnalyst	
and manually from Cobb County data	91
19: Color-coding used in the following graphs	92
20: Ranking differences in the high ranked sites between GA specific SPFs	
and <i>SafetyAnalyst</i> specific SPFs for Site subtype 103	. 102
21: Ranking differences in the high ranked sites between GA specific SPFs	
and <i>SafetyAnalyst</i> specific SPFs for Site subtype 152	. 102
22: Resources and expertise required for various ranking methods	. 104

CHAPTER 1 INTRODUCTION

<u>1.1 Introduction:</u>

In 1990, the World Health Organization (WHO) identified the top 20 reasons for death; in the 9th place was road traffic crashes. On an average, 1.2 million lives are lost worldwide every year and 50 million people are injured annually. By the year 2020, it is predicted that traffic crashes will become the third cause of death from non-communicable diseases (WHO Summary report., 2007).

Traffic crashes are costing American motorists more than \$160 billion each year considering property damage, travel delays, medical costs, and environmental degradation cost etc (Fox News., 2008) and nearly 117 people are dying each day on average on US roads. The severity of the situation is hence evident. Even though the statistics state that the total number of fatalities across the country has decreased from 52,627 in 1970 to 42,642 in the year 2006, road crashes are still one of the main reasons for death in the country (BTS., 2008).

Close inspection of the present transportation system in US reveals the many challenges confronting the transportation profession. Traffic

1

management, highway safety improvement and environmental protection are some of the many major issues to be addressed. The introduction of SAFETEA – LU (*Safe Accountable Flexible Efficient Transportation Equity Act – A Legacy for Users*) in the year 2005 is a positive step in the direction to improve the country's current transportation system. The act emphasizes the following aspects: safety, equity, innovative finance, congestion relief, mobility and productivity, efficiency, environmental stewardship and environmental streamlining (Federal Highway Administration., 2008).

As the name implies, safety is the key focus of the act's overall program goals and objectives. The act requires states to develop Strategic Highway Safety Plans (SHSP) and comprehensive Highway Safety Improvement Programs (HSIP) to improve safety on highways. The states are required to submit SHSP by October 1st every year to receive safety funds. Beginning in the fiscal year 2006, HSIP authorizes federal funds to reduce traffic crashes, fatalities and serious injuries on all public roads (Federal Highway Administration., 2008). According to the Code of Federal Regulations, Title 23, Part 924, *"Each State is required to develop and implement, on a continuing basis, a Highway Safety Improvement Program (HSIP), which has*

the overall objective of reducing the number and severity of crashes and decreasing the potential for crashes on all highways." (Epstein, et al., 2002)

According to SAFETEA-LU, all state DOTs are required to develop a Strategic Highway Safety Plan and implement Highway Safety Improvement Program emphasizing on safety improvements on highways and addressing the 4 E's (Engineering, Education, Enforcement and Emergency response) of highway safety to qualify for federal funding. It also requires the states to identify new and intense data driven approaches to crash data analysis, network screening and countermeasure selection and their evaluation.

The three main components of a Highway Safety Improvement Program that aid in achieving it's final goal are:

PLANNING	 Determine list of highway projects for implementation 			
IMPLEMENTATION	 Schedule and implement safety improvements 			
EVALUATION	 Determine effect of highway safety improvements 			

Figure 1: Components of Highway Safety Improvement Program (HSIP., 2007)

The planning phase includes collecting and maintaining data, identifying problematic locations (sites with potential for safety improvements), conducting engineering studies and establishing project priorities. The implementation phase includes scheduling projects, their design and construction and conducting operational review. The final phase, evaluation phase includes determining the effect of completed projects. SHSP must show the effectiveness of treatments through formal HSIP process. Thus, it is important to ensure proper selection of sites for countermeasure implementation (HSIP., 2007).

Newer approaches to crash data analysis and site safety improvements include the use of software like *SafetyAnalyst*, IHSDM (Interactive Highway Safety Design Module) and HSM (Highway Safety Manual). Different states have different approaches towards the highway safety problem with the bottom line of reducing the frequency and severity of crashes and improving safety. If sites are not chosen using proper methods, the effectiveness of the countermeasures will be reduced or eliminated.

For the state of Georgia, a *Strategic Highway Safety Plan* was prepared in October 2006 with a motto "Every Life counts - Strive for Zero deaths and injuries on Georgia Roads" and a goal of 1.0 fatalities per 100 million vehicle miles traveled by the year 2010 (Georgia SHSP., 2006). Comparison of the fatality trends in traffic crashes in the country and Georgia reveal the fact that since 2004, fatality rates have been above the national averages. The following figure shows the trends in Georgia and across the United States.

Figure 2: Traffic fatality trends in GA and US (TSP., 2008)

To continue to be eligible for safety improvement funding, Georgia (as with all states) must show continued improvement in the numbers with positive steps towards meeting their goals. To aid in this process, Georgia DOT sought the help of Clemson University to help identify appropriate data analysis techniques that will work with existing data and also to identify data needs to take advantage of new safety analysis methods. With varying levels of available crash data, roadway characteristics, and traffic data, different states have developed different methods for analyzing crash data. Some of the most popular analytical methods include using crash frequencies and crash rates. But crash rate/crash frequency have major drawbacks like regression-to-mean effect and bias to high volume areas which can be rectified by rigorous analysis tools like the Empirical Bayes method. The notion of automation of such rigorous tools led to the creation of *"SafetyAnalyst"*. *SafetyAnalyst* is a set of software tools used for highway safety management that integrates all parts of the Safety Management System. Georgia, being one among the 22 beta test states for *SafetyAnalyst* asked Clemson University to compare the traditional methods of network screening to the newer approaches.

<u>1.2 Problem Statement:</u>

For the state of Georgia, the total number of motor vehicle fatalities and fatal crash rates are above the national average and increasing. With limited resources, Georgia must make the best decisions about where to put its resources. For the crash data analysis and site selection, many different approaches are in practice today, some basic and some more advanced. Each approach has its own advantages and limitations. While many states are

6

using the basic analysis methods like crash rates, crash frequencies and high proportion methods these have been shown recently to be subpar to their advanced counterparts. The Georgia Department of Transportation (GDOT) is interested in assessing new data-driven approaches for site identification and prioritization with the currently available data resources. The different approaches GDOT is interested in comparing include crash frequency, crash rate, critical crash rate, LOSS and Empirical Bayes using *SafetyAnalyst*. GDOT is concerned about the data requirements and the benefits and costs for adopting each of the above mentioned methods. In addition, there is concern that the base models (safety performance functions) included in *SafetyAnalyst* are not appropriate for Georgia because they were developed primarily for northern states.

1.3 Objectives:

Given the aforementioned needs and requirements of GDOT, the objectives of this study are:

• Review data availability, format and completeness for use in different safety data analysis methods

7

• Assess whether safety performance functions employed in *SafetyAnalyst* software can be properly calibrated to reflect crash distribution and conditions in Georgia

• Analyze costs and potential benefits of implementing and maintaining various methods (crash frequency, crash rate, Level Of Service of Safety and Empirical Bayes method using *SafetyAnalyst*) for selecting and prioritizing problematic crash sites by implementing these methods for Cobb County using 2004-2006 crash data.

<u>1.4 Organization of the Thesis:</u>

The remaining thesis describes the work completed to meet the objectives of the research. Chapter 2 provides with a brief literature review related to various network screening criteria (including crash frequencies, crash rates, generation of Safety Performance functions and *SafetyAnalyst*) and the problems, benefits and issues related to each method. Chapter 3 discusses the approach and methodology dealing with crash data analysis, generating files to be imported into *SafetyAnalyst*, generating SPFs applicable to Cobb County and benefit cost analysis of various network screening methods. Chapter 4 presents various problems and issues identified with the crash data. It also discusses the output from *SafetyAnalyst* and the identification of

sites with potential for safety improvement (PSI) using various ranking criteria. Results from the comparison between the SPFs generated for Cobb County, and the non-calibrated and calibrated SPFs obtained from *SafetyAnalyst* are explained in this chapter along with the costs and potential benefits for using various network screening methods. Chapter 5 summarizes conclusions of this thesis and provides recommendations for future research.

CHAPTER 2

LITERATURE REVIEW

Transportation Safety can be defined as a transportation system lacking motor vehicle crashes and the losses resulting from property damage, injuries and fatalities (Hauer, E., 2000). Motor vehicle crashes involve a sudden collision between a vehicle and another vehicle(s) or a living or a non-living object. Individual crashes are random, unpredictable and can be difficult to evaluate. For some time, national resource constraints for safety improvements have made it impractical to implement countermeasures on all existing roadways in the country. Thus, safety analysts have, over many years, developed numerous methods for selecting intersections and road segments, referred to as sites, for further analysis and improvements. These sites should represent the shortest segments of road sections with a given set of homogeneous characteristics, at which the estimate of the expected accident frequency is largest while the coefficient of variation is smaller than a specified limiting value (Hauer, et al., 2002). The process of identifying these sites to obtain the most cost-effective solutions to safety problems is a science in itself, and also the first step in the highway safety improvement process (Hauer, et al., 2002, Hauer, et al., 2004). This process involves a multifold

approach consisting of site identification, detailed engineering survey, treatments selection and prioritization. Of all the afore mentioned steps, identification of sites is the most fundamental and crucial step, since the improper identification of high priority sites result in less cost-effective solutions (Hauer, et al., 2002). Hence, site identification must be conducted with specific objectives in mind. Sites can be selected within a region, across a state, by functional classification of roads or crash types or by particular safety issues. According to Hauer (1996), the objectives of site selection should include economic efficiency, professional and institutional responsibility and fairness. These objectives help in identifying and prioritizing sites where countermeasures would prove cost effective, where engineering at the site is defective and where sites are deteriorated due to usage and where sites are unacceptably hazardous to the users.

Network or site screening identifies sites with potential for safety improvement and results in a number of sites that are priority ranked. Over the years, these sites have been referred to as Black Spots, High Crash Locations (HCLs), Hazardous Locations, Priority Investigation Locations (PILs), or Sites With Promise (SWiP) depending on the researcher (Hauer, et al., 2002, Hauer, et al., 2004). Several of these terms have been defined as follows:

• "Black Spot" is the general term used to recognize a hazardous location based on accident frequency and crash rates. These are the sections of roadway that are designated as being accident prone (Mandloi, et al., 2003).

• "High Crash Locations (HCLs)" are the areas that would potentially receive the largest benefit if safety funds were allocated (Pulugurtha, et al., 2003).

• "Hazardous Locations" are the sites having a potential for accident reduction based on crash frequency (Kononov, J., 2002).

• "Sites With Promise (SWiP)" are the sites in which safety can be improved cost-effectively based on Empirical Bayes methods and using Safety Performance Functions (Hauer, et al., 2004).

All the terms defined are very similar and could be used to identify problematic sites, but the underlying screening criteria are very different.

An ideal screening criterion is the one where the actual deviant sites and the sites selected for closer inspection overlap exactly (Hauer, E. and Persaud B.N., 1984). The more stringent the criteria of site selection, the more difficult it is to identify sites and the smaller are the number of inferior sites

12

captured by the screening method. Recently, many problems have been identified with screening methods that are widely used by Departments of Transportation (DOTs) to rank problematic sites.

One of the biggest problems is with the use of just three years of crash data to identify problematic sites. At a particular site, crashes are random and it takes numerous years (for example 10 years) of crash data to identify a true average number of crashes. A mere three years of crash data is insufficient in most cases to identify problematic sites. However, using a larger number of years may have its own problems, over time, roads change, and older records may not reflect the current traffic and geometric situation (Hauer, E. and Persaud, B.N., 1984). In this situation, the data for the prior condition cannot be compared with current. The trends in the crash database reflect the changes in the factors (daily traffic, population changes) that affect the accident frequency and crash severity (vehicle fleet characteristics, speed trends). Using fewer years of crash data and a relatively fewer number of crashes for analysis results in a greater probability of error. For this reason, a practically feasible amount of crash data (5-10 years) needs to be considered for further analysis.

2.1 Basic Site Selection Criteria and Issues:

Based on the accident history and crash data, sites with potential for safety improvement can be ranked using many basic site selection criteria, such as crash frequency, crash rates, excess crash frequencies and excess crash rates, or by another criteria called "target crashes," which consider the crashes that can be affected by the proposed countermeasure (Hauer, et al., 2004). In all the screening methods, crash frequency and crash rates (or some index based thereon) are most widely used as ranking criterion (Hauer, E., 1996, Hauer, et al., 2002, Hauer, et al., 2004). Newer approaches involve more advanced statistical methods and sites are categorized as Sites With Promise (SWiP) if their long term accident record is within a multiple of a standard deviation from the normal value, which is calculated by examining similar sites within the required confidence interval (Hauer, E. and Persaud, B.N., 1984, Higle, J.L. and Witkowski, J.M., 1988). The following table briefly summarizes different site selection criteria and gives a brief description of their advantages, limitations and data requirements.

Considerations						
Methods	Categorize Sites	Descriptive Information	Accounts for RTM	Does not assume a linear crash- exposure relationship	Predicts Expected Performance	Need SPF
	C	Category 1 - Scre	eening Based	l on Counts		
Frequency	Yes	Yes	No	Yes	No	No
EPDO	Yes	Yes	No	Yes	No	No
Rate	Yes	Yes	No	No	No	No
Rate						
Quality						
Control	Yes	Yes	No	No	No	No
LOSS	Yes	N/A	No	Yes	Yes	Yes
Category 2 - Screening Based on Proportions						
High						
Proportion						
of Crashes	Yes	Yes	No	Yes	No	No
Category 3 - Screening Based on Potential for Safety Improvement						
Safety Analyst						
(EB Method)	Yes	Yes	Yes	Yes	Yes	Yes

Table 1: Considerations for each selection method (HSM., 20008)

As summarized in the above table, the basic ranking criteria have many limitations. Regression-to-mean effect is not accounted for by most of the selection criteria except for *SafetyAnalyst*. Rate and rate quality method assumes a linear relationship between crashes and exposure while the relation is non-linear. This limitation is accounted for in most of the other ranking methods like crash frequency, LOSS, High proportion of crashes and *SafetyAnalyst*. Expected performance is predicted only by LOSS and *SafetyAnalyst* and both the methods need Safety Performance Functions (SPFs). LOSS does not consider the severity of crashes while identifying problematic sites which is its major limitation. *SafetyAnalyst* uses Empirical Bayes method for predicting the expected performance which weighs the severity of a crash. Hence, *SafetyAnalyst* accounts for most of the limitations of other rankling criteria.

Ranking the problematic sites is based on an unwritten rule referred to as the Most Bang for the Buck (MBB) theory. According to Hauer (Hauer, et al., 2002), this principle emphasizes that "the money should go to where it achieves the greatest safety effect." It implies that spending money is not justified at a site where one accident can be eliminated when the same amount can eliminate several similar accidents at another site. According to this theory, network screening will tend to divert attention to sites at which the accident reduction potential is greatest. When crash frequencies are considered for site selection, accident reduction potential will be greater for sites with higher crash frequency (crashes per year). It is obvious that the crash frequencies will be comparatively higher for sites with heavier traffic such as urban roads and interstates. Thus being a biased estimate, crash frequency is not the best ranking criterion that could be used.

Further, ranking based on accident rates has its own disadvantages. "Rate measures the risk road users face while driving on specific roads" (Hauer, E., 1996). Crash rate is defined as the number of crashes per unit exposure. When proper random variables like average annual daily traffic, length of segment, lane width, shoulder width, median type etc for determining rates are not selected, crash rates appear to be misleading (Hauer, et al., 2002). Crash rates assume a linear relationship between exposure and crash frequency, but in most cases the actual relationship is non-linear (iTRANS and Human Factors North Inc., 2003). Due to this incorrect assumption, crash rates tend to identify sites that have lower traffic volumes. When traffic volumes are very low, any crash on the segment will produce a large rate. In addition, segment rates are dependent on segment length, and very short segments have the same effect on rates as do small traffic volumes- thus leading to high rate.

Figure 3: Rate Misleading Effect (Qin, et al., 2005)

Moreover, crash rates at different sites cannot be compared because different sites have different AADT (Average Annual Daily Traffic). To make such comparisons, accident frequencies for the same exposure need to be considered. The Rate and Number Method makes use of both of the abovementioned approaches by comparing accident rates at sites with a predetermined minimum accident frequency (Hauer, E. and Persaud, B.N., 1984, Hauer, E., 1996). Even though this method seems to be better than considering rate alone, it is not very reliable when the minimum (or normal) accident frequency is taken into consideration as the normal accident frequency for a set of similar sites may not be normal for another set of sites (Hauer, E. and Persaud, B.N., 1984, Hauer, E., 1996). In another screening criterion called Rate and Quality Method, the observed accident rate is compared to its critical crash rates which are specific to each site type and which depend on the degree of confidence desired for that location (Higle, J.L. and Witkowski, J.M., 1988).

Ezra Hauer, in another paper, "Identification of Sites With Promise", mentioned that importance has to be given to the sites where severe accidents occur (Hauer, E., 1996). Analysis of crashes based on severity is deceiving since a fatal crash is given an extremely high weightage over a PDO crash (property damage only crash) that might result in false identification of SWiP. This approach resulted in the introduction of the Safety Index (Tamburri, and Smith., 1970). Safety Index requires all the crashes to be expressed as Equivalent PDO crashes (EPDOs) that could be used in ranking the SWiP based on crash severity. The reliability of this method is questionable as it is clear from research that different accident types (based on severity) have different dependencies on AADT (Hauer, et al., 2004). In the same paper, he introduced and explained the term "safety effect", which can be estimated by the product of count of past crashes and the estimated percent reduction, severity wise. This estimation is very simple except that it has a few severe drawbacks like the exaggeration of random noise by the severity weighing of fatal accidents and the Regression-to-mean bias (Hauer, et al., 2004) that is discussed in the following paragraphs.

When the basic site selection criteria is used for network screening along with a small period of crash data (i.e. 2-3 years of crash data), a problem called "Regression-to-mean" needs to be addressed to. "Regression-to-mean bias is the phenomenon of repeated measures of data in the long run drifting towards a mean value" (iTRANS and Human Factors North Inc., 2003).

Figure 4: Regression-to-Mean effect (iTRANS and Human Factors North Inc., 2003)

The three-year average crash occurrence at a site is generally either higher or lower than the long-term average (assuming a 10-year accident history). Considering the 3-year average crash occurrence after the
implementation of safety improvement, the observed safety effect (comparing the 3-year before and 3-year after periods) will be different from the true safety effect (in comparison to the long-term average crash occurrence). In the above figure, three-year observed safety effect appears larger than it really is based on 10-year data due to the random variation in year to year crash counts. Locations that have extreme variation in crash numbers are likely to have a stronger regression-to-mean effect resulting in comparatively less "practical safety effect" or vice versa depending on random increase in fluctuation or random decrease in fluctuation (Hauer, E. and Persaud, B.N., 1984). Most of the basic site selection criteria are applied to single years of crash data, and do not address this error, resulting in false identification of problematic sites. The screening methods that take into consideration the aforementioned Regression-to-mean bias will better identify Sites With Promise.

2.2 Advanced Site Selection Criteria:

Regression-to-mean effect can be corrected using advanced site selection criteria such as Empirical Bayes method of estimation (Hauer, et al., 2002). The Empirical Bayes (EB) approach is a probabilistic identification method which determines the probability that the accident rate exceeds the

21

normal rate (Higle, J.L. and Witkowski, J.M., 1988). This method assumes that safety can only be estimated in degrees of precision which is the error measured in standard deviations (Hauer, et al., 2002). EB method is mainly based on two assumptions. First, the actual number of accidents at a site follow a Poisson distribution. The second assumption is that a site is considered to be hazardous if the probability of crash occurrence is greater than δ , that is the site's true accident rate exceeds the observed average rate across the region (Higle, J.L. and Witkowski, J.M., 1988). The traditional methods discussed earlier are also based on the assumptions that the site is deemed to be hazardous if the observed accident rate exceeds the observed average rate within an acceptable level of confidence, which is more susceptible to identifying false negatives (truly deviant sites that are not identified as SWiP) (Hauer, E. and Persaud, B.N., 1984) or if it exceeds the site's critical rate (which is a function of observed regional accident rate, traffic volumes and the desired level of confidence) (Higle, J.L. and Witkowski, J.M., 1988).

One of the drawbacks of the EB method is that it requires Safety Performance Functions. "A Safety Performance Function (SPF) is a mathematical function that describes the relationship between the number of

22

crashes per year and the measure of exposure (usually AADT but hourly flow rate by direction is more significant (Qin, et al., 2005))." (iTRANS and Human Factors North Inc., 2003). SPFs, used to identify locations with potential for accident occurrence, have no information related to the nature of the crashes. They just explain the magnitude of the problem (Kononov, J. and Janson, B.N., 2002). The nature of the problem can only be determined through direct diagnostics & pattern recognition techniques (Kononov, J. and Allery, B., 2003). The use of Safety Performance Functions is very efficient based on the fact that the relation between exposure and traffic safety (in terms of traffic crashes) is non-linear (Kononov, J. and Janson, B.N., 2002, Kononov, J., 2002, Kononov, J. and Allery, B., 2003, Qin, et al., 2005). As risk is dependent on the type of crash, different SPFs can be built for the same roadway section by disaggregating the types of crashes into four categories (single vehicle crashes, multiple vehicle crashes in the same direction, multiple vehicle crashes in opposite direction, and crashes at intersections) (Qin, et al., 2005). Research concluded that the SPFs for the above sections are also not linear (Kononov, J. and Allery, B., 2003). Further disaggregating the problem may result in other sites being selected for additional investigation.

Considering the methodological problems and resulting bias discussed earlier, EB method is reliable when limited 2-3 years accident history is available, since it increases the precision of the estimates. It uses a weight factor (which is based on logic and real data and which is a function of dispersion parameter) along with safety performance functions for predicting the expected performance at a site. This weight factor calculated based on the dispersion parameter of the SPF, addresses Regression-to-mean issues proving to be stronger (HSM., 2008).

Level Of Service of Safety (LOSS) also uses SPFs to reflect how the roadway segment is performing with regard to its expected accident frequency at a specific level of AADT. For performing these functions, the accident data is assumed to be normally distributed and a two way ANOVA test can be used to confirm this. A Poisson distribution is not suggested as the actual accident data has more widely dispersed values than its tolerable limits, it also has a limiting assumption that variance equals mean and with the accident data, variance is always greater than its mean (Hauer, E., 1996, Kononov, J. and Allery, B., 2003). According to Jake Kononov (Kononov, J. and Allery, B., 2003), LOSS uses qualitative measures that characterize safety of a roadway segment to its expected performance. An SPF that is built considering traffic accidents as random Bernoulli trials for different levels of AADT (low, medium and high) can be used to qualitatively measure the site safety from crash severity and crash frequency perspective.

While the nature of crashes needs to be considered to better understand the scenario, the above discussion helps in elucidating the magnitude of the safety problem. As mentioned earlier, such analysis of the nature can be done using direct diagnostics & pattern recognition techniques. Once sites have been selected for safety improvement, diagnostic techniques can be applied to determine appropriate countermeasures. "Detection of an accident pattern suggests a presence of an element in the roadway environment that triggered a deviation from a random statistical process in the direction of reduced safety" (Kononov, J. and Janson, B.N., 2002). Considering that the probability of success is same for all crashes and a finite number of trials, all the assumptions for Bernoulli trials are satisfied and hence the Bernoulli method can be used for calculating the probability of occurrence of an accident. (Kononov, J. and Janson, B.N., 2002, Kononov, J., 2002). The probability obtained, aided with the pattern recognition techniques, help in better analyzing the problematic sites. Even though the overall accident frequency and rate are both represented within the safety performance function, crash patterns still need to be observed. These patterns are examined visually using the crash report data sheet and sometimes specific sites are viewed on the video log. These accident patterns are considered "to provide a direct link to the development of a counter measure strategy" (Kononov, J., 2002). The limits of sections with accident patterns, if any, can be identified using the "sliding scale" technique in a Geographic Information Systems (GIS).

Geographic Information Systems, defined as a collection of hardware and software used to edit, analyze, and display geographical information stored in a spatial database, plays a vital role in transportation safety analysis (FHWA., 1999). Most of the screening methods (using accident frequency, crash rates, weight factors etc), used in combination with latest GIS tools, result in more accurate and faster identification of problematic sites. Spot or intersection analysis, strip analysis, sliding scale analysis and corridor analysis can be used for screening based on the type of analysis (FHWA., 1999).

The discussion about various screening methods, their strengths, and limitations point towards the use of Empirical Bayes approach and Safety Performance Functions as the most effective method currently available to

26

safety analysts. The rigorous calculations involved in EB method make it tedious and automation of this process would be required for widespread adoption. Thus, twenty highway agencies along with FHWA (Federal Highway Administration) are working together in developing a software application, *SafetyAnalyst*, to aid the implementation and maintenance of a site safety improvement process on the basis of EB approach and use of Safety Performance Functions (Turner-Fairbank Highway Research Center., 2007).

SafetyAnalyst "provides state-of-the-art analytical tools for use in the decision-making process to identify and manage a system wide program of site-specific improvements to enhance highway safety by cost-effective means" (Turner-Fairbank Highway Research Center., 2007). Even though the data requirements are more cumbersome compared to other conventional methods of site selection, this approach, will offset the major drawbacks like Regression-to-mean effect, over dispersion effects, non-linear relationship between crashes and exposure that were to some extent unavoidable until now (Turner-Fairbank Highway Research Center., 2007). However, *SafetyAnalyst* uses safety performance functions to identify SWiP. In the development of *SafetyAnalyst*, standard SPFs were developed from data obtained from a limited number of states (California, Minnesota, Ohio and

Washington) (Turner-Fairbank Highway Research Center., 2007). To make the SPFs applicable to specific region or states, *SafetyAnalyst* uses calibration factors to fit the areas data to the pre defined SPFs. However, *SafetyAnalyst* documentation indicates that states should consider developing their own SPFs to obtain an even better fit.

The prior discussion of various ranking criteria concludes that there is no "best" ranking criterion to adopt for all situations. Ezra Hauer et al, in his paper "How Best to Rank Sites With Promise," explains the importance of consistency in judgment while identifying the best ranking criterion suitable for a particular situation. The paper concludes that each site needs to be judged the same way with regard to the possible countermeasures and the ranking criterion (Hauer, et al., 2004).

Since no one ranking criteria is the best and each ranking criteria has its own advantages and limitations, another method categorizes sites based on two or more ranking criteria. Pair wise comparison of the results from the ranking criteria gives two sets of ranked sites. Choosing both common sites and applying a detailed engineering survey to the top ranked sites that are not common gives better SWiPs. This step is followed by estimating the anticipated costs and safety benefits at each site and calculating the benefit cost ratio. The ranking criterion that leads to the most cost effective projects is considered to be better. The larger the correlation between the rank based on screening and the rank based on cost effectiveness as established by a detailed engineering survey, the better the screening method (Hauer, et al., 2004).

The various screening methods discussed have their own data requirements that strongly influence the site selection method that is chosen for network screening. Following is the summary table of the data requirements for all the ranking criteria discussed.

Method	Data and Inputs				
	Crash data by Type, Location and date Category 1: So	Roadway Characteristics by Location creening Based or	Traffic Volume n Crash Co	SPF ounts	Other
Frequency	X	X			
EPDO	x	X			EPDO Weighting factors
Rate	Х	х	Х		
Rate Quality Control	Х	Х	х		
LOSS	Х	Х	Х	Х	
Category 2: Screening Based on Proportions					
High Proportion of	Y	Y			
Crashes A A Category 3: Screening Based on Potential for Safety Improvement					ovement
SafetyAnalyst	X	X	X	X	

Table 2: Data requirements for various site selection methods (HSM., 2008)

It is clear from the above discussion that traditional ranking criteria has limitations that need to be overcome to obtain better SWiP, while at the same time advanced ranking criteria have more intense data requirements. However, the benefits of advanced methods should outweigh the added labor and time commitments to develop and maintain the data. These developments will also likely require different levels of expertise due to the nature of the advanced statistical methods and model development. It is likely that individual states or regions will need to develop their own SPFs to achieve the greatest benefit. This is particularly true for southern states which were not included in the initial model development activities.

CHAPTER 3

METHODOLOGY

The approach towards this research is taken in stages. Figure 5 briefly

mentions the various stages.

Figure 5: Various phases and steps taken towards achieving the objectives

For this project, only data from one county is considered due to time and resource constraints. Recently, GDOT has converted all Cobb County crash records to electronic format and thus they are considered to be more reliable. Moreover GDOT had an initial version of the data files for Cobb County to be imported into *SafetyAnalyst*. Hence, Cobb County is considered for further analysis.

3.1 Review Georgia datasets:

For the current study, the following datasets are reviewed and analyzed. All the datasets are obtained from Georgia Department of Transportation (GDOT).

- Crash data of Georgia for a period of three years (2004-2006)
- Roadway Characteristics data (snap shot from December 2007)
- GIS base map (snap shot from 2007)

3.1.1 Crash Data:

Georgia crash data was obtained for a period of three years (2004 - 2006). The crash database contains detailed information about the crash event, vehicles, drivers and occupants involved. A second and separate listing of crashes was also obtained which contains a spatial reference for most crashes in the state that occurred in the time period between 2004 and 2006. The crash database consisted of 1,033,517 reported crashes during the three-year period for the entire state of Georgia. Of those, 7.75 % totaling to 80,169 were reported in Cobb County. During the years 2004 through 2006, 1,032,445 crashes were spatially located for the whole state of Georgia including 80,736 crashes in Cobb County. Of the two datasets, there were some crashes in each that were not present in the other, therefore, to continue with GIS analysis, the

subset of the two datasets which intersect were used. ArcGIS and Microsoft Access were used to compare the list of spatially referenced crashes with the crash database and it was found that 5% of the crashes in Georgia were not spatially located due to various reasons such as insufficient street name information. Of the 80,169 reported crashes and 80,736 spatially located crashes, only 79,726 reported crashes in Cobb County have a spatial reference attached to it. Specifically, 1,010 crashes are spatially located but not reported in the detailed crash database and 446 reported crashes were not spatially located.

Figure 6: Summary of crashes found in crash database and also spatially located

<u>3.1.2 Roadway Characteristics and associated GIS shape files:</u>

Georgia DOT maintains a linear referencing file (LRS) for the complete state and it contains shape information for most of the roads in the state. There are 153,308 routes' records in this database. This LRS file is a shape file compatible with ArcGIS and has data stored in a dbf format to be used with other DBMS. For Cobb County, 9,109 records exist in LRS file. Each route has a unique ID or the "RCLink". The RCLink ID consists of ten digits. The first three digits represent the county number, followed by one digit representing route type and the last six digits represent the route name. The RCLink ID is used to associate detailed roadway characteristics from the roadway characteristics file (RC file).

GDOT also maintains a roadway characteristic file with detailed information about the roads such as number of lanes, type and width of shoulders, type and width of medians etc. Each route (with a unique RCLink) in LRS is divided into smaller segments consisting of similar roadway characteristics. There are 49,041 roadway segments in Cobb County which are obtained by querying the roadway characteristics table in Microsoft Access using a county code of "067". The average length of the roadway segments Cobb is 0.062 miles. Thus, one or more road characteristics changes on average every 0.062 miles. However, there are some point segments with "0" length. Each roadway segment has an RCLink, beginning milepost and an ending milepost. A unique ID is created to identify each roadway segment. The unique ID generated consisted of 15 digits. It has route type followed by the six digit route name followed by the beginning milepost (represented by four digits) and the ending milepost (represented by four digits). However, RC data is just an Access database and has no spatial reference attached to it. To obtain a spatial dimension to the RC data, a concept called "Dynamic Segmentation" is used. To carry out this, a new project in ArcGIS is created and RC_Cobb text file is imported into ArcGIS. Based on LRS data, a spatial reference is attached to this file by adding route events (by going to Tools \rightarrow

Add Route Events). The segments are added along each RCLink based on start offset (beginning milepost) and end offset (ending milepost). The following is the screen shot of this step.

~		
Specify the routes refer	enced by the events in the tal	ble
Route Reference:	LRS	I 🖻
Route Identifier:	INV_ROUTE_	•
Specify the table contai	ning the route events	
Choose a table from th	e map or browse for another t	able.
<u>E</u> vent Table:	RC_Cobb1	💌 💌
<u>B</u> oute Identifier:	RCLINK	•
Choose the type of eve	ents the table contains:	
C D.:	ccur at a precise location alor	na a route
Events: U		
 Eoint Events: 0 Line Events: De 	fine a discontinuous portion o	f a route
<u>Fourt Events: U</u> <u>Line Events: De</u> Choose the measure fi	fine a discontinuous portion c elds for line events:	f a route
<u>Four Events: U</u> <u>Line Events: De</u> Choose the measure fi <u>From-Measure:</u>	fine a discontinuous portion o elds for line events: BEG_MEASUR	f a route
Choose the measure fi <u>From</u> -Measure: <u>I</u> o-Measure:	fine a discontinuous portion o elds for line events: BEG_MEASUR END_MEASUR	f a route
 Four Events: U Line Events: De Choose the measure fi From-Measure: Io-Measure: Choose the offset field. 	fine a discontinuous portion o elds for line events: BEG_MEASUR END_MEASUR Events can be offset from th	f a route

Figure 7: Add Route Events along a spatially referenced map

3.1.2.1 Identify analysis selection set:

A Microsoft Access database was created by importing the 79,726 crashes (both reported and spatially located) and the Roadway Characteristic database for the Cobb County. A crash was coded as an "intersection related crash" if it occurs within 200 ft from an intersection. All the non-intersection related crashes were identified in ArcGIS by creating a buffer of 200ft around the intersections and excluding all the crashes that fall within the buffer region. The following figure shows roadways and intersections on a typical road.

Figure 8: Roadway Segments and Intersections

32,357 spatially referenced crashes were considered to be nonintersection related for the years 2004-2006 in Cobb County. These records were imported into Microsoft Access for further analysis.

3.1.3 Discuss all selection criteria:

As mentioned in section 3.1.1, each crash had to be in crash database and spatially located to be included in the analysis. Also, to reduce the scope of the research, the analysis was limited to segment crashes only. Thus, intersection crashes were eliminated.

The other selection criteria that could be analyzed to identify sites with potential for safety improvements are intersections and ramps which are beyond the scope of this research.

3.2 Site selection:

Network screening is the process of identifying sites for further engineering study and potential countermeasure implementation. Over the past few decades, many site selection criteria are used to identify SWiP. Basic site selection methods include the use of crash frequency, crash rate, critical crash rate and high proportion of crashes. As discussed in the previous chapter, the traditional methods have many limitations like Regression-tomean, random noise and assumption of linear relationship between crashes and exposure. These limitations are accounted for in some of the advanced ranking criteria like generation of Safety Performance Functions, use of Level Of Service of Safety, Empirical Bayes Method by using *SafetyAnalyst* software. The following sections provide details regarding implementation requirements of various basic and advanced site selection methods. The ranking criteria assessed in this project include crash frequency, crash rate, critical crash rate, generation of Cobb County specific SPFs, LOSS, and *SafetyAnalyst*.

3.2.1 Use of SafetyAnalyst:

SafetyAnalyst is a set of analytical tools to aid in identifying site specific improvements to improve highway safety in a more cost effective manner. The following paragraphs discuss the process required to generate, import, post process and calibrate the files in *SafetyAnalyst* and to run the analysis.

<u>3.2.1.1 Generate import files that are compatible with SafetyAnalyst:</u>

The data requirements for *SafetyAnalyst* are comprehensive and specific. Separate files were created for the accident, roadway segment and segment traffic data and were imported into the software. SQL queries were used to pull data from GDOT crash tables (Accident, Location, Pedestrian and Occupant) and to create the import tables that have column layout and data format that is compatible. The SQL queries used are included in Appendices A and B (for accident and roadway characteristic files respectively). After

running the SQL queries, data recoding is done. Following are the detailed descriptions of each import file.

a) Accident file:

Initially, a skeleton "Accident" file was generated to define the column layout and data format for the files. Next, a series of SQL queries were run in the order shown in Appendix A to populate the data file. The required fields in the SafetyAnalyst Accident file and the corresponding data fields in the GDOT datasets are attached in Appendix A. SafetyAnalyst has a very specific set of codes for each data element. Many of these variable sets had to be recoded to match the formats required by SafetyAnalyst. In addition, some of the required *SafetyAnalyst* elements required joining data from multiple fields and/or elements in the Georgia datasets. The data mapping guide is shown in Appendix A. The mandatory fields include accident case identifier, route type, route name, county number, accident date, accident time, relationship of accident location to junction, accident type and manner of collision, number of vehicles involved and accident severity level. The file was saved as AltAccident in csv format. This csv file contains 32,357 crashes.

b) Roadway Segment file:

Similar to Accident file, the roadway segment file started as a skeleton file structured based on *SafetyAnalyst* format. The Roadway Segment file was then generated by running a series of SQL queries on GDOT datasets to populate the skeleton file. The list of queries that were run are included in Appendix B. The fields in the Roadway Segment file to be imported into *SafetyAnalyst* and the fields in the GDOT data from where the data is taken, along with the selection criteria are attached in Appendix B. The data mapping issues are also addressed in Appendix B. The mandatory fields include agency ID, route type, route name, county number, segment length, area type, roadway class level 1, number of thru lanes in direction 1 and 2, median type level 1 and 2, shoulder type and operation type. The file was saved as AltRoadwaySegment in csv format. This csv file contains 48,565 roadway segments.

c) Segment Traffic file:

The fields in the Segment Traffic file to be imported into *SafetyAnalyst* and the fields in the GDOT data from where the data is taken, along with the selection criteria are attached in appendix C. The data mapping issues are also addressed in appendix C. The mandatory fields include agency ID (similar to

the agency ID in Roadway Segment file), calendar year and the AADT for each year. The file was saved as AltSegmentTraffic in csv format. This csv file contains 242, 809 records.

Once the three files were generated, the files were opened in notepad for cleaning. In the notepad, the first row consists of the respective file name followed by many commas (","). All but one comma in the first row beside the filename was deleted and the file saved again.

The modified csv files were saved in a folder and the folder was placed in the c:drive (Note: There is a limitation in the number of characters in the file path).

3.2.1.2 Import, post process and calibrate the input files in *SafetyAnalyst*:

SafetyAnalyst version 1.4.11 was used for this project to implement the EB site selection method. Within the *SafetyAnalyst*, the Data Management tool was opened and a new dataset was created. In the import tab, the three files (AltRoadwaySegment, AltSegmentTraffic and AltAccident) were added in this specific order. (Note: Alterations in the order result in errors). The import process for Cobb County took about 12 minutes. The time required depends on the computer processor speed and the programs that were simultaneously run on the machine. At the end of the import process, *SafetyAnalyst* outputs a

log of warnings and errors associated with the import process. Warnings may include zero traffic volumes for roadway segments etc. Once the import was completed without significant errors, the post process was carried out. The minimum and maximum years of the accident data to be processed needs to be given. The range of 2004 - 2006 was used for this project. For the current project, the traffic data was available for the years 2000 through 2004. If this information is left unchanged, only one year (2004) has both accident data and traffic data and SafetyAnalyst runs analysis for just one year. For running the analysis on all three years, maximum year of traffic data to be processed was changed to 2006. For 2005 and 2006, the software projects traffic data based on 2000-2004 trends. During post processing, homogeneous segments were created. These segments were formed by joining two or more continuous roadway segment into one depending on similar characteristics. The threshold limits for aggregating roadway segments as homogeneous segments can be input into the software. The following figure shows the screenshot of the window for editing and viewing threshold limits for homogeneous segment aggregation.

44

Edit/View Homogeneous Segment Aggregation Parameters		
Percent Thresholds		
Average Annual Traffic Volume (%) :	20.00	
Driveway Density (%) :	5.00	
Absolute Thresholds		
Median Width (ft) :	1.00	
Posted Speed (mph) :	5	
Average Lane Width (ft) :	1.00	
Average Shoulder Width (ft) :	1.00	
√ <u>O</u> k	Cancel	

Figure 9: Screenshot of the Edit/View Homogeneous Segment Aggregation Parameters and their threshold limits

The 48,565 imported roadway segments were grouped to form 19,041 homogeneous roadway segments. For this project, post processing took about 16 minutes. Since the default SPFs used in *SafetyAnalyst* were generated from northern states' data, the SPFs need to be calibrated to the southern data to reflect the crash trends of the south. This is done in the calibration step which followed the post process step. The calibration for Cobb County data took about 2 minutes. The calibration log was saved for further reference. The calibrated data was exported to a file for import into ArcGIS to check for missing roadway segments. The exported files were automatically saved in the folder "export" in "SafetyAnalyst". *SafetyAnalyst* will not run on segments

that do not have all the three components – crash, traffic volume and roadway characteristics.

The exported non-homogeneous Roadway Segment file consisted of 48,543 records. The missing 22 segments were spatially located using ArcGIS. These are found to be insignificant roads which either close as a loop or have a negligible length. The exported AltAccident file consisted of 30,023 crashes. Missing crashes were found to be on roadway segments that do not have roadway characteristics data.

3.2.1.3 Run Analytical tool on the calibrated files in *SafetyAnalyst*:

SafetyAnalyst analytical tool was used to carry out analysis on the roadway segments and accidents. This tool helps in conducting Network Screening, Diagnosis and Countermeasure Selection, Economic Appraisal and Priority Ranking and Countermeasure Evaluation. For the present project, only network screening was carried out due to the lack of sufficient data and resources for other modules. The 'Getting Started Wizard' walks users through the analytical tool. When the network screening analysis module was selected, a new workbook was created to store the dataset that was generated in the data management tool. Site lists can be created and saved based on the user requirements. On the other hand, site lists can be generated by selecting sites based on queries. For the present project, all the roadway segments were selected for analysis. The types of network screening available include:

- Basic network screening (with peak searching on roadway segments and CV test)
- Basic network screening (with sliding window on roadway segments)
- High proportion of specific accident type
- Sudden increase in mean accident frequency
- Steady increase in mean accident frequency

Of all the above mentioned types, the *SafetyAnalyst* development team recommended "Basic Network Screening with peak searching on roadway segments" method for analysis since its results and method were verified compared to other types (Note: This research was conducted while the *SafetyAnalyst* tool was still under development). Total (Fatal, injury and PDO) crashes for all available years were considered to increase the sample size. *SafetyAnalyst* will also run for fatal and injury crashes only. Potential for safety improvement (PSI) could be calculated based on expected accident frequency and for this project, PSI is calculated based on expected accident frequency. Rural and urban areas are weighted equally. To exclude some of the roadway segments that have zero to

minimal crashes, the crash frequency limiting values were set to 5.00 accidents/mile/year. Coefficient of variation (CV) for the roadway segments determines the number of sites to be included in the output report (the lesser the CV limit, the fewer are the sites displayed in the output report). CV limit is set to 0.50. The accident screening attribute, based on which the analysis could be done is selected and for this attribute, accident type and manner of collision was selected and all the values were selected within the attribute. Appendix D includes the screenshots of all the steps in "Analytical module" of *SafetyAnalyst*.

The network screening analysis ran for 15 minutes for this scenario. A sample of the report is attached in the appendix E.

3.2.1.4 Interpret the *SafetyAnalyst* output:

The output was saved in an excel file. *SafetyAnalyst* identified 850 roadway segments as SWiP based on total crashes. However, the software sub classifies the sites into different site subtypes. Following are the various site subtype codes for roadway segments:

Site Subtype	
Code	Site subtype description
101	Rural two-lane roads
102	Rural multilane undivided roads
103	Rural multilane divided roads
104	Rural freeways4 lanes
105	Rural freeways6+ lanes
106	Rural freeways within interchange area4 lanes
107	Rural freeways within interchange area6+ lanes
151	Urban two-lane arterial streets
152	Urban multilane undivided arterial streets
153	Urban multilane divided arterial streets
154	Urban one-way arterial streets
155	Urban freeways - 4 lanes
156	Urban freeways - 6 lanes
157	Urban freeways - 8+ lanes
158	Urban freeways within interchange area - 4 lanes
159	Urban freeways within interchange area - 6 lanes
160	Urban freeways within interchange area - 8+ lanes

Table 3: Site subtype code and description used for roadway segments

The various columns in the output are explained in the following table:

ID		Roadway Segment ID	
Site Type		Whether Segment/ Intersection/ Ramp	
Site Subtype		Sub-categories in the site type	
		County where the roadway segment is	
County		located	
Route		Route number of the roadway segment	
Site Start Location		Start location of the roadway segment	
Site End Location		End location of the roadway segment	
Average Observed Accidents		Observed crashes for the entire site in	
for Entire Site		crashes/mile/year	
	Average		
	Observed	Observed crashes for the roadway sub	
	Accidents	segment in crashes/mile/year	
	Predicted		
	Accident	Predicted crash frequency in	
	Frequency	crashes/mile/year	
PSI Expected			
Accident		PSI Expected accident frequency in	
Frequency		crashes/mile/year	
Variance**		Variance in crashes/square mile/ year	
		Start location of the roadway sub	
	Start Location	segment where PSI is greater	
		End location of the roadway sub	
	End Location	segment where PSI is greater	
	No. of		
Location with	Expected	Total number of expected fatalities per	
Highest	Fatalities	mile per year	
Potential for	No. of		
Safety	Expected	Total number of expected injuries per	
Improvement	Injuries	mile per year	
Rank		Overall Rank based on PSI	
		Additional windows whose PSI	
		exceeded the threshold limits, but the	
		expected accident frequencies are	
		between the limiting accident threshold	
Additional Windows of Interest		& the highest calculated PSI for the site	

 Table 4: Various columns in the output from SafetyAnalyst

The observed crashes obtained from *SafetyAnalyst* and displayed in the output were normalized by mile. This is because, sites are generally less than one mile in length and normalization results in consistency.

For detailed analysis, only two site subtypes are considered due to the limited sample size. These include rural multilane divided highways (site subtype code: 103) and urban multilane undivided arterial streets (site subtype code: 152). The following table explains the logic to create site subtype codes 103 and 152 for roadway segments.

Site	Site Subtype		
Subtype ID	code	Conversion Logic	
		Area Type = Rural	
103	Rural multi- Number of Through Lanes >= 4		
	lane divided	Median Type Level 2 = Divided	
		Two-Way Operation	
		Area Type = Urban	
152	Urban multi- Number of Through Lanes >= 4		
	lane undivided	Median Type Level 2 = Undivided	
		Two-Way Operation	

Table 5: Logic to create site subtypes 103 and 152 for roadway segments

3.2.2: Use of other ranking criteria to identify SWiP:

A manual analysis of crash data to identify sites for study included several methods: high crash frequency, high crash rate, critical crash rate, and Level Of Service of Safety (LOSS). All manual analysis methods used three sets of data while LOSS used two sets of data. The first set (set A), consisted of all roadway segments in Cobb County. The second set (set B), includes all roadway segments that belong to site subtype 103 (Rural multilane divided highways) as defined by *SafetyAnalyst*. The third set (set C), includes all segments that belong to site subtype 152 (Urban multilane undivided arterial streets). For manual analysis, the number of crashes occurring on each homogeneous roadway segment is required. The following steps were followed to obtain the crash count on each site.

- All the roadway segment information in Cobb County exported from *SafetyAnalyst* was saved in an excel workbook.
- The excel file was imported into Microsoft Access. AADT field needs to be added to the file.
- AltSegmentTraffic file was also imported into Microsoft Access and a cross tab query was written to obtain the average AADT of each site. This query was then linked to the Roadway Segment information. However, the exported segments were homogeneous segments while AltSegementTraffic file has non homogeneous segment information. One to one linking was done between the AltSegementTraffic file and the Roadway segment table based on the first roadway segment on

homogeneous sections since the same traffic flows through all roadway segments in a homogeneous section.

- The saved query was exported into a txt file.
- The .txt file was added to GIS. It was just another table and has no spatial reference attached to it. Spatial reference was attached to it using the concept called "Dynamic Segmentation" which is explained in the earlier sections.
- Accident file was spatially joined to this layer.
- The joined shape file was exported as a dbf and later saved as an excel file
- Other workbooks were created from the excel file for datasets B and C. Once the number of crashes occurring on each roadway segment were determined, crash frequency, crash rate, critical crash rates and LOSS can be calculated as described in the following paragraphs. Based on the number of crashes and other characteristics of roadway segment, SAS software is run and Cobb County specific SPFs are generated.

The methodology considered for identifying crashes based on crash frequency, crash rate, critical crash rate and LOSS is based on the procedures set in Highway Safety Manual Chapter 14.

3.2.2.1 High Crash Frequency:

For each set of data (A, B, and C), sites were sorted based on crash count in descending order and ranked. With this method, the site with highest crash count was ranked number 1 and the site with second highest crash count was ranked number 2 and so on.

3.2.2.2 High Crash Rate:

Total segment length for each site was calculated as the difference between the start milepost of the first segment and the end milepost of the last segment in a homogeneous segment. Exposure (EXPO) also called, million vehicle miles of travel (MVMT), was calculated using the formula,

EXPO = AADT * 365 * 3 * Total Segment Length / 1,000,000(Equation 1)

Where, 3 is the number of years for which crash data is available.

The ratio between crash count and exposure was termed as "crash rate". The calculated crash rate was sorted in descending order. The site with highest crash rate was ranked number 1 and the site with second highest crash rate was ranked number 2 and so on.

3.2.2.3 Critical Crash Rate:

Critical crash rate for a set of sites is calculated using the formula:

$$R_{Ci} = R_A + K_C * \sqrt{(R_A / (EXPO)) + (1/(2 * EXPO))}$$
 (Equation 2)

Where:

Rci: Critical crash rate for site i

RA: Average crash rate for each reference population

K_c: 1.645 (the probability constant based on the confidence interval of 95%)

EXPO: Million vehicle miles of travel

The difference between the observed crash rate and the critical crash rate was calculated and sorted in descending order. The site with highest positive difference was ranked number 1 and the site with second highest positive difference was ranked number 2 and so on. However, sites are ranked only if their observed crash rate is greater than the critical crash rate.

3.2.2.4 Level Of Service of Safety (LOSS):

Safety Performance Functions are required to rank sites with potential for safety improvement based on LOSS. SPFs generated for Cobb County data and the calibrated SPFs used by *SafetyAnalyst* (which are discussed in the later sections) are used to perform LOSS. SPFs are applied to each site to obtain an estimate of the number of crashes, k, for the site under consideration. The standard deviation ($\sigma(k)$) of the above obtained estimate is calculated using the formula,

$$\sigma(\mathbf{k}) = \sqrt{(\Phi^*(\mathbf{k}^2))}$$
 (Equation 3)

Where,

 $\sigma(\mathbf{k})$ = Standard deviation of the estimate of the expected number of crashes

 Φ = dispersion parameter of the SPF used

k = the estimated number of crashes from the SPF

The observed number of crashes, K, is compared to the limits to be categorized into any one of the four categories of LOSS.

The following table describes the condition and the LOSS category along with description.

LOSS Condition Description Indicates a low potential for crash reduction Ι $0 \le K \le (k-1.5\sigma(k))$ Indicates better than expected safety Π (k-1.5σ(k))≤K<k performance Indicates less than expected safety III k≤K<(k+1.5σ(k)) performance Indicates a high potential for accident reduction IV K≥(k+1.5σ(k))

Table 6: Various LOSS, their conditions and descriptions (HSM., 2008)
All the sites with LOSS IV are flagged and identified as SWiP. However, it is difficult to prioritize the top ranked sites without conducting a detailed engineering study.

3.3 Generate Georgia specific SPFs:

SafetyAnalyst identifies sites with potential for safety improvement using Empirical Bayes method. The default SPFs used by *SafetyAnalyst* are generated from northern states' data. Thus, researchers thought it important to determine if the models had an appropriate fit for Georgia data. A Safety Performance Function that fits the GDOT data needs to be generated to analyze crashes. The logic used to identify SWiP in *SafetyAnalyst* is also applied to generate SPFs to maintain consistency. Negative Binomial Regression method and not Poisson distribution is used for generating SPFs. This is mainly due to considerable difference in the mean and variance of crash data.

Number of expected crashes (crashes per mile per year) is predicted as a function of Average Annual Daily Traffic (AADT) alone. The functional form for roadway segments is found to be:

57

$$k = (e^{\alpha})^* (ADT)^{\beta}$$
 (Equation 4)

Where

k – Predicted number of target crashes per mile per year

ADT – Average Annual Daily Traffic (veh/day) for roadway segments in both directions of travel.

To obtain the predicted crashes per site per year, the formula used is:

$$N = (e^{\alpha})^* (ADT)^{\beta*} L$$
 (Equation 5)

Where

N - Predicted number of target crashes per site per year

L – Length of the roadway segment in miles

To generate SPFs, all the sites in each site subtype are required. For this project, SPFs are generated for two site subtypes. They are:

103 - Rural multilane divided roads

152 - Urban multilane undivided arterial streets

Site subtype 103 had 562 homogeneous segments and site subtype 152 had 325 homogeneous segments in total. However, there were many roadway segments that are less than 0.1 miles in length. There were 315 and 185 roadway segments from site subtypes 103 and 152 respectively that were excluded due to a segment length of less than 0.1 miles. Three segments in site subtype 103 have "zero" AADT and hence, they are excluded from further analysis. Three roadway segments from site subtype 152 have extremely high AADT of about 350,000 while the AADT in this subtype range from 2031 to 50,000. Year wise and overall SPFs are generated based on the remaining segment information, AADT information and crash data. For generating SPFs, 244 roadway segments from site subtype 103, and 137 roadway segments from site subtype 152 are considered.

Statistical software, SAS, is used to generate SPFs using Negative Binomial Regression technique. Data requirements for running SAS include:

- Roadway segment ID
- Site Subtype (whether site subtype 103 or site subtype 152)
- Start Offset (starting milepost of the homogeneous segment)
- End Offset (ending milepost of the homogeneous segment)
- Segment Length (Difference between end offset and start offset)
- Log(ADT) (where ADT is the Average Annual Daily Traffic for the respective year or the average value for the three years depending on the year of analysis)
- Offset (= Log(Segment Length *Number of years of crash data available))

 Total crashes (The total number of crashes occurred on each homogenous roadway segment during a particular year or for the three years depending on the year of analysis)

SAS is used to generate SPFs specific to each year and to the complete data (for the three years 2004-2006) for the site subtypes 103 and 152.

The example of a SAS code used for this analysis is shown in Appendix F.

Appendix G includes the SAS output for the two site subtypes.

3.3.1 Compare Georgia specific SPFs to SPFs used by SafetyAnalyst:

SafetyAnalyst uses SPFs that are generated from the northern states data calibrated to Georgia data while Cobb County specific SPFs are generated manually through negative binomial regression. Calibrated SPFs used in *SafetyAnalyst* are generated from the non calibrated SPFs by using a multiplying factor called calibration factor. The calibration factor is defined as the ratio of total number of observed crashes to the total number of expected crashes. (The number of expected crashes at each site is predicted from the SPFs). These calibrated SPFs used in *SafetyAnalyst* and Cobb County specific SPFs that were generated are used to estimate the expected number of crashes from AADT. SPFs generated for Georgia, non-calibrated and calibrated SPFs used in *SafetyAnalyst* are plotted and compared against the observed crash data. The interpretations and results are discussed in the following chapter. Freeman Tukey R² coefficient was used to determine the goodness of fit for the two SPFs (Fridstrom, et al, 1994). The following formulae were used for calculating Freeman Tukey R² coefficient (R²_{FT}).

$$R^{2}_{FT} = 1 - ((\sum_{i} \hat{e}_{i}^{2}) / (\sum_{i} (f_{i} - f_{i}^{2})))$$
(Equation 6)

Where,

$$f_i = \sqrt{(y_i)} + \sqrt{(y_i+1)}$$
 (Equation 7)

The statistic is approximately normally distributed with mean,

$$\Phi_{i} = \sqrt{(4\hat{y}_{i} + 1)}$$
 (Equation 8)

The deviation of the Freeman Tukey Coefficient is estimated by the corresponding residual

$$\hat{\mathbf{e}}_{i} = \sqrt{(y_{i})} + \sqrt{(y_{i}+1)} - \sqrt{(4\hat{y}_{i}+1)}$$
 (Equation 9)

In the above equations,

y_i is the observed number of crashes at site i

 \hat{y}_i is the mean of the observed number of crashes at all sites similar to site i

 $f_{\rm i}\, is$ the value obtained from Equation 7

⁻f is the average of all the fⁱ for sites considered (Fridstrom, et al, 1994).

R²_{FT} was calculated for both the calibrated SPFs used in *SafetyAnalyst* and for the SPFs manually generated for Cobb County for the two site subtypes (site subtype 103: Rural Multilane Divided Highways and site subtype 152: Urban Multilane Undivided Arterial). The results are explained in the next chapter.

After generating Georgia specific SPFs, *SafetyAnalyst* was run again to identify SWiP using the Georgia specific SPFs. The administration tool in *SafetyAnalyst* was used to change the default SPFs to agency specific SPFs for the two site subtypes under consideration. Once the SPF values were changed, the previously saved dataset was recalibrated in the Data Management tool and the calibration log was checked for updated SPFs. Analytical tool is run and the SWiP are obtained. The difference in the ranks are presented in the next chapter.

3.4 Consider benefits and costs for all ranking criteria:

Given roadway characteristics, AADT, and crash data, for Cobb County several different sets of sites were selected for further study using various ranking criteria and methods. Conventional ranking criteria considered in this project include crash frequency, crash rate and critical crash rate. The advanced ranking criteria include LOSS and the use of *SafetyAnalyst*.

62

A significant amount of time, resources and money were spent in cleaning the data and generating accident, roadway segment and segment traffic files that could be imported into *SafetyAnalyst* and for use in other methods.

Since, crash data is available only for a period of three years, and information about countermeasure selection, implementation and evaluation is unavailable, this thesis dealt only with network screening. The traditional benefit cost analysis (calculation of benefits based on the number of lives saved by implementing countermeasures on the high priority sites identified by the various network screening methods) is beyond the scope of this research and hence potential benefits are analyzed theoretically.

A lot of work that is done towards *SafetyAnalyst* overlapped with the work that needed to be done for most of the other ranking criteria. Basic ranking criteria like crash rate benefitted by creation of homogeneous segments (by joining continuous shorter segments with similar characteristics as one homogeneous segment). When calculating crash rates, short segment lengths with even just one crash generate extremely high crash rates. LOSS was carried out using both northern states' SPFs (default SPFs used by *SafetyAnalyst*) and Georgia specific SPFs (generated manually for using in *SafetyAnalyst*) saving a lot of time for this method.

To carry out any of the advanced ranking criteria, a safety specialist, a GIS professional and a statistician are required for understanding and cleaning the crash data, analyzing the problems spatially and for doing statistical tests respectively. Expertise required depends on the type of analysis. Potential benefits were analyzed in terms of data requirements, systematic procedure, ability to repeat and defend the methods and the accuracy/limitations of these methods. The resources required for various ranking criteria and potential benefits for using each method are detailed in the next chapter.

CHAPTER 4

ANALYSIS AND RESULTS

The analysis for this project was done in four phases. Following are the four phases:

- 1. Review Georgia datasets and identifying analysis datasets. This phase also deals with identifying potential problems and issues with the crash data and roadway characteristics data and data cleaning requirements.
- 2. Compare various site selection methods. The various basic site selection criteria, advanced site selection criteria like LOSS and *SafetyAnalyst* are compared. Additional problems that arose while generating, importing and post processing data into *SafetyAnalyst* are also presented in this phase.
- 3. Assess the fit of Safety Performance Functions to Georgia. This is carried out by developing SPFs that are applicable to Georgia and Cobb county in particular and comparing them with the default and calibrated SPFs used in *SafetyAnalyst*.
- 4. Considering benefits and costs for all ranking criteria

Phase 1: Review crash data and roadway characteristics data:

a) Crash data:

Two crash databases exist for each reported crash: the access database and the GIS database. Both the databases were compared to obtain a final database of crashes that were spatially located. It was found that 79,726 reported crashes were spatially located. Some of the issues that were identified include:

1. A total of **80,736** crashes were spatially located in Cobb County between years 2004 and 2006 and during the same period, **80,169** crashes were reported in Cobb County. Only **79,726** of the reported crashes were spatially located. Some crashes were identified in spatial analysis which were not in the final state crash database. Reasons for these exclusions are unknown.

2. Since the crashes were linearly referenced along routes, it is nearly impossible to cross check whether the crash is correctly located or not. The crash location completely depends on the police perception noted in the crash report form. However, researchers found that a large number of crashes can be found at 0.1 miles beyond the route start point. Thus, these

66

sites may produce biased results in analysis if the crashes do not actually occur at these locations.

3. The county codes used were found to be different in the accident database and in the GIS database. The accident database uses DPS (Department of Public Safety) codes for counties. The list is in alphabetic order and the Cobb County code is "033". The GIS database uses FIPS (Federal Information Processing Standard) code and the Cobb County code is "067".

4. In the accident database, for each crash, the accident mile log is noted which is later used as the basis for linear referencing in GIS. The accident mile log for 3,223 crashes is found to be "999.99". This is assumed to be a missing or unknown value since the largest route is 23.910 miles in length.

b) Roadway Characteristics data:

1. Generating a unique agency ID for each roadway characteristic record was cumbersome due to the alphanumeric nature of the route name. The unique ID generated was of the form: Route type followed by six digit "route name" followed by four digits representing the start milepost of the roadway segment followed by four digits representing the end milepost of

67

the roadway segment. Some of the examples of the unique ID are shown in

the following table:

Table 7: Alphanumeric unique ID generated from the route name, star	t
location and end location	

	Route	Route		
unique ID	Туре	Name	Start Location	End Location
10005CO01280134	1	0005CO	1.28	1.34
10005CO01340138	1	0005CO	1.34	1.38
10005CO01470152	1	0005CO	1.47	1.52
10005CO01520159	1	0005CO	1.52	1.59
10005CO01830190	1	0005CO	1.83	1.9
10005SP00830087	1	0005SP	0.83	0.87

2. All Interstates are termed as state routes due to the limitations

of the coding structure.

ROUTE TYPE				
SafetyAnalyst	GDOT			
Field Name:	Field Name:			
routeType	LOC_ROUTE_TYPE			
I - Interstate				
US - US route				
SR - State route				
BR - Business route	0-Accident Not			
BL - Business loop	Located			
SP - Spur route	1-State Route			
CR - County road	2-County Road			
L - Local road	3-City Street			
O - Other	8-Public Road			
NA - Not applicable	9-Collector-			
X – Unknown	Distributor			

Table 8: Table showing issues with coding structure related to route type

3. The coding for jurisdiction is confusing. The following table shows the variations in coding structure between GDOT and *SafetyAnalyst*. Determining jurisdiction based on the route type is not a reliable way.

JURISDICTION				
SafetyAnalyst	GDOT			
	Field Name:			
Field Name:	ROUTE_TYPE or			
jurisdiction	DESIGNATED_WAY			
	1 State Route			
	2 County Road			
1 - Federal maintained	3 City Street			
2 - State maintained	4 Col Road			
3 - County maintained	5 Unofficial Road			
6 - Township maintained	6 Ramp			
4 - Local maintained	7 Private Road			
5 - Other maintained	8 Public Road			
99 – Unknown	9 Collector – Distributor			

Table 9: The closest match to coding used in GDOT to identify jurisdiction

4. While classifying roadways, *SafetyAnalyst* needs a more detailed coding. The following table describes the coding structure in GDOT and *SafetyAnalyst*.

 Table 10: Table showing the differences in coding structure for Roadway Class

 in GDOT and SafetyAnalyst

ROADWAYCLASS1				
SafetyAnalyst	GDOT			
Field Name:	Field Name:			
roadwayclass1	FUNC_CLASS			
1 - Principal arterial-interstate				
2 - Principal arterial-other				
freeway or expressway				
3 - Principal arterial-other				
4 - Minor arterial	11-Urban-Interstate Principal			
5 - Major Collector	Arterial			
6 - Minor Collector	14-Urban Principal Arterial			
7 - Local	16-Urban-Minor Arterial Street			
0 - Other	17-Urban-Collector Street			
99 - Unknown	19-Urban-Local			

5. Coding for the type of median in GDOT does not match well with *SafetyAnalyst* coding and GDOT data could be more specific. To fully code this variable, other GDOT variables must be used to separate the divided and undivided roadways. In addition, HOV lanes and other specialty facilities cannot be defined using Georgia data.

 Table 11: Table showing the differences in coding structure for Median Type in

 GDOT and SafetyAnalyst

MEDIAN TYPE1					
SafetyAnalyst	GDOT				
Field Name:	Field Name:				
medianType1	MEDIAN_TYPE				
1 - Rigid barrier system (i.e., concrete)					
2 - Semi - rigid barrier system (i.e., box beam,					
W - beam strong post, etc.)					
3 - Flexible barrier system (i.e., cable, W -	0-No Barrier				
beam weak post, etc.)	1-Curb				
4 - Raised median with curb	2-Guardrail				
5 - Depressed median	3-Curb and				
6 - Flush paved median [at least 4 ft in width]	Guardrail				
7 - HOV lane(s)	4-Fence				
8 - Railroad or rapid transit	5-New Jersey				
9 - Other divided	Concrete				
0 - Undivided	Barrier				
98 - Not applicable	6-Cable				
99 – Unknown	7-Other				

6. GDOT has different coding for the shoulder type compared to

SafetyAnalyst. The following table describes the differences in coding by GDOT and

SafetyAnalyst.

 Table 12: Table showing the differences in coding structure for Shoulder Type

 by GDOT and in SafetyAnalyst

SHOULDER TYPE				
SafetyAnalyst	GDOT			
Field Name:	Field Name:			
shoulderType	DIV_HWY_SHLDR_TYPE			
	G- Grass or Sod			
	S- Gravel or Stone			
	F- Bit. Surf. Treatment (Low)			
	I- Bit. Conc. (High)			
	J- Portland Cement (High)			
	K- Curb and Gutter (Width of the gutter is			
	not coded. Always code 00C.)			
1 - Paved	N- No Identifiable Shoulder or Curb. All of			
2 - Composite	roadbed used as Roadway (Soil or Gravel			
3 - Gravel	Road). Also if less than 1 foot paved road.			
4 - Turf	D- Gutter (only)			
5 - Curb	O-Bit. Conc. (High) with curb and gutter			
6 - No shoulder	P-Bit. Surface treatment (Low) with curb			
98 - Not applicable	and gutter			
99 – Unknown	C- Curb only			

Geographic Information System (GIS) software is used to map the roadway characteristics file (named as RC_Cobb) to LRS file. Many errors were found during this step. The errors and constraints are discussed below:

1. It was difficult to determine whether a crash occurred at an intersection or on a road segment given the current Georgia dataset. All crashes that occurred within a distance of 200ft from an intersection were considered as "intersection related crashes".

2. RC_Cobb has 49,041 records. The AltRoadwaySegment file (file that is imported into SafetyAnalyst) has only 48,565 records. The missing records were found to be of route type 6 which are the ramps at interchanges. There are 446 ramp segments in total. The map below shows the type of roadway segments missing.

Figure 10: Cobb County with missing routes (Highlighted in blue)

3. 9,822 segments in AltRoadwaySegment file were of zero length. Some of these zero length segments were located at intersections. This problem is rectified to some extent by creating homogeneous segments while post processing. Homogeneous segments are the segments where more than one segment with similar characteristics are combined together to form a longer segment.

4. The exported AltRoadwaySegment file consisted of 19,041 records. Twenty-two roadway segments were missing. These were found to be short loop segments. Figures 11 and 12 show the missing road segments and a detail section of one of the segments.

Figure 11: Cobb County with missing roadway segments after importing into *SafetyAnalyst* (highlighted in red)

Figure 12: A detailed example of the missing Roadway segment after importing into *SafetyAnalyst*

5. When the AltAccident file from *SafetyAnalyst* was imported into GIS, dynamic segmentation should be based on the variable loc_offset (found in the AltAccident file) and not based on Acc_mile_log (found in the GIS database of the crash) due to the differences in the two columns. The following table shows several accident IDs with differing Accident Mile log and locOffset values.

	LOC_ACC_MI	locOffset
	(from crash	(from GIS
agency ID	database)	database)
41220645	2.70	22.70
41470446	2.70	22.70
54580273	0.20	20.20
50030699	8.90	28.90
41120229	9.30	29.30
44270184	8.60	28.60
40740003	8.90	28.90

Table 13: An example showing the difference between LOC_ACC_MI and locOffset

6. Crashes are located only on one side of the roadway on some

divided roadways. This is mainly due to the missing direction coding. The screenshot of an example is shown below:

Figure 13: All the crashes are located on I 75 North and none on I 75 South

7. Coding errors were also found with the area type. Some roadways have a rural segment of 0.01 mile length in the middle of what is

otherwise coded as an urban road and vice versa. The following figure shows an example.

Figure 14: An example of coding error related to area type

8. Some roadway segments have missing AADTs.

9. In the Georgia roadway characteristics file, the median width, type and shoulder width can change abruptly for short segments of 0.01 miles. This caused a number of problems while generating homogeneous segments in *SafetyAnalyst*. Hence, while generating homogeneous segments, the median width and shoulder width were not considered. *SafetyAnalyst* has included a threshold level for each of these elements, whereby, a threshold of 1 ft for shoulder width would not separate two segments if their shoulder width was within 1 ft of previous. However, this function was not used for

this analysis, as a special effort would be required to determine the sensitivity levels for these attributes.

10. For predicting AADTs for the years 2005 and 2006, *SafetyAnalyst* is assuming its own growth factors since none were available from Georgia DOT. These may or may not reflect the actual trends.

Phase 2: Site Selection Methods:

The site selection methods used in this project include crash frequency, crash rate, critical crash rate, Level Of Service of Safety, *SafetyAnalyst* with the default SPFs and the SPFs manually generated from Cobb County data. This phase in the analysis is divided into the following sub sections.

- a) Problems that arose while generating files to be imported into *SafetyAnalyst*.
 - i) Accident table
 - ii) Roadway Segment table
- b) Generating SPFs specific to Cobb County to be imported into *SafetyAnalyst* and to perform LOSS analysis.
- c) SafetyAnalyst with default SPFs and with Cobb County specific SPFs

 d) Perform basic site selection criteria on homogeneous segments and non homogeneous segments and compare the high ranked sites in each method

The aforementioned subsections are discussed in detail in the following paragraphs:

- a) Problems that arose while generating files to be imported into *SafetyAnalyst*.
 - i) Accident file:

SafetyAnalyst software is run on all the non-intersection related crashes in Cobb County. It identified and ranked the top 850 sites (sites with potential for safety improvement) based on total crashes. These 850 sites belong to all site subtypes. For further analysis, two site subtypes, rural multilane divided highways (site subtype 103) and urban multilane undivided highways (site subtype 152) were considered separately since these were the only two subtypes with significant sample size.

For all the homogenous roadway segments, ranking was completed based on crash frequency, crash rate, critical crash rate and Level Of Service of Safety. Crash rates were calculated based on the exposure (in million vehicle miles travelled) of each roadway segment. For network screening based on critical crash rate, average crash rate for each reference group of population was calculated which was used to calculate the critical crash rate. Ranking was conducted based on the difference between the observed crash rate and critical rash rate. The following table describes the ranks based on the above discussed site selection criteria.

RANKING FOR ALL SITE SUBTYPES					
	SA using default SPFs	SA using GA			
	calibrated	specific	EDEO	DATE	Critical
SEGMENT ID	to GA	SPFs	FREQ	KATE	rate
104010005480549	1	1	62	65	54
104010015661567	2	2	832	719	824
104010002560257	3	3	90	97	75
223730002890291	4	4	840	551	836
10005001111112	5	5	151	15	15
10005SP00830087	6	6	76	38	33
100030003260337100030003370342	7	7	101	177	131
228960000720074	8	8	803	182	734
220910002360237	9	10	837	45	846
104010011561161	10	11	51	157	110
217200003220323217200003240326	11	9	605	340	551
104070003830384	12	12	237	146	121
100030002540256100030002890295	13	13	3	101	74
104010012121213104010012131224	14	14	37	240	155
102800012941297102800012981301	15	15	30	34	28
104070006240625104070006250636	16	17	112	446	287
100030001820189100030001890192	17	16	260	321	267
100030006430651	18	18	326	307	283
100030009490950100030009510952	19	23	127	48	43
104010003650368	20	19	102	254	179
102800006930697	21	20	139	50	45
217820005100511	22	21	284	29	29
101760000710074	23	22	829	653	832
100030018041805100030018121815	24	25	42	66	52
10005CO00160023.10005CO01210128	25	24	4	266	166

Table 14: Ranking based on different selection criteria for all site subtypes

The above table shows the top ranked sites according to five different ranking

criteria. Assuming that SafetyAnalyst generates the list of "true deviant sites",

these were compared to site ranking lists obtained using SafetyAnalyst with Georgia specific SPFs crash frequency, crash rate and critical crash rate. When all the roadway segments in Cobb County are considered for ranking, none of the top 10 ranked sites identified by SafetyAnalyst using either default SPFs or Cobb County specific SPFs are identified by any of the basic site selection methods. This demonstrates the limitations of traditional site selection methods. However, traditional ranking methods do a relatively better job of identifying problematic sites when the sites to be analyzed are regrouped into their respective site subtypes. This observation is supported with tables 17 and 18. Along with the three ranking criteria discussed above, another ranking criteria, LOSS was also considered since analysis was conducted based on particular subtypes. LOSS cannot be used on all subtypes due to the lack of the associated SPFs. Ranking based on LOSS is conducted using both calibrated default SPFs from SafetyAnalyst and Cobb County specific SPFs developed manually. Tables 17 and 18 show the ranks of roadway segments for the site subtypes 103 and 152 for various ranking criteria.

Table 15: Ranking based on different selection criteria for site subtype 103	
(Rural multilane divided roadways)	

RANKING FOR SITE SUBTYPE 103							
SEGMENT ID	SA using default SPFs calibrated to GA	SA using GA specific SPFs	FRE Q	RA TE	Critic al rate	LOSS with GA SPF	LOSS with default SA SPF
100030001820189100030							
001890192	1	1	3	4	4	4	4
10005CO0016002310005 CO01210128	2	2	2	38	27	4	4
101200001080117101200							
001220123	3	3	6	6	6	4	4
100030001510154	4	4	19	3	3	3	4
228350002790281228350 003520412	5	5	9	53	37	4	4
100030021682174100030							
021742180	6	6	11	5	5	4	4
100050003250333100050							
005210527	7	7	1	28	21	4	4
103600003500376103600 006050649	8	8	4	70		4	4
228350001330136228350 001360141	9	9	14	11	8	3	4
100030001240132100030 001320134	10	10	12	7	7	4	4
100030001370144100030							
001490151	11	11	15	12	9	3	4
100050007930796100050 008440851	12	12	10	30	22	4	4
100050008510856100050	13	13	5	45	30	4	4
100050005270531100050	14	1/	-7	20	24	1	I
006370657	14	14		32	24	4	4
101200006910694	15	15	45	13	11	2	2
100050009500952100050	17	17	10	10	22	2	А
1005007220727 100050	16	16	13	46	32	3	4
007380747	17	17	16	29	25	3	4
101200001820195101200 002780293	18	19	17	94		3	4

Table 16: Ranking based on different selection for site subtype 152 (Urba	n
multilane undivided roadways)	

	SA using default SPFs calibrated	SA using GA specific			CR.	LOSS with GA	LOSS with SA default
ID	to GA	SPFs	FREQ	RATE	RATE	SPFs	SPFs
10005SP00830087	1	6	22	4	4	4	4
100030003260337100030003370342	2	7	28	27	28	4	4
217200003220323217200003240326	3	9	126	63	81	3	3
100030002540256100030002890295	4	13	2	16	15	4	4
100030006430651	5	18	80	56	56	3	3
100030009490950100030009510952	6	23	32	7	7	4	4
102800005960600102800006450650	7	26	4	25	23	4	4
100030008630869	8	27	64	36	36	3	4
100030002200224100030002430245	9	42	25	43	40	3	4
102800004810485102800005070509	10	39	7	19	17	4	4
100050012681275100050012891303	11	44	79	145	107	2	2
217200005300533	12	47	37	6	6	4	4
100030006510653100030007020703	13	49	6	30	27	3	4
10120LO0452045410120LO05420547	14	54	10	64	46	3	3
100030005920600100030006380643	15	57	3	23	18	4	4
100030003730377100030003780380	16	58	73	50	47	3	4
101200011721187101200012461250	17	74	16	70	54	3	3
100060003150324100060003440347	18	73	21	35	34	3	4
102800003220323102800004680473	71	71	8	79	58	2	3
101200015641569101200016211635	73	75	9	62	45	3	3
217200005380540	78	70	85	18	21	4	4
217820002530255217820003130318	79	82	15	54	43	3	4
100050013031306100050013181322	85	85	23	34	33	3	4
100030003000306100030003220326	86	88	1	9	9	4	4
217200001890191217200002350238	108	109	5	26	25	4	4

For site subtypes 103 (rural multilane divided roadways), crash frequency identified just 3 of the top 10 ranked *SafetyAnalyst* sites, whereas rates and critical rate identified only 1 out of 10 sites. The LOSS criteria based on the *SafetyAnalyst* default SPFs identified 9 out of 10 of the top ranked *SafetyAnalyst* sites and LOSS criteria based on SPFs generated specifically for Cobb County identified one out of 10 sites. It would seem to make sense that Cobb County specific SPFs would perform better than default *SafetyAnalyst* SPFs, however, the limited data used to generate Cobb County specific SPFs negatively impacts the predictive capability of the SPFs. This could be improved by using more data for generating SPFs rather than using only Cobb County data.

For site subtypes 152 (rural multilane divided roadways), crash frequency identified just 3 of the top 10 ranked *SafetyAnalyst* sites, whereas rates and critical rate identified only 2 out of 10 sites. The LOSS criteria based on the *SafetyAnalyst* default SPFs identified 8 out of 10 of the top ranked *SafetyAnalyst* sites and LOSS criteria based on SPFs generated specifically for Cobb County identified six out of 10 sites. It would be unfair to predict whether Cobb County specific SPFs perform better than default *SafetyAnalyst* SPFs based on a small sample size of just one county. This prediction could be improved by using more data for generating SPFs rather than using only Cobb County data.

<u>Phase 3: Comparison of Safety Performance Functions generated for Cobb</u> <u>County and the calibrated and non calibrated SPFs used in SafetyAnalyst</u>

One of the main objectives of this research is to generate Safety Performance Functions (SPFs) that fit Georgia data and to compare them with the SPFs used by *SafetyAnalyst. SafetyAnalyst* uses SPFs that are generated from data of northern states data (California, Minnesota, Ohio and Washington) and then calibrated with Georgia data. Hence, the SPFs generated manually using Cobb County data were compared to the noncalibrated and calibrated SPFs from *SafetyAnalyst*. Due to time and resource constraints, only the three-year (2004-2006) crash and roadway inventory data from Cobb County was used for SPFs generation.

Due to the small sample size of site subtypes in Cobb County, SPFs for only two site subtypes (103 – Rural multilane divided highways and 152-Urban multilane undivided arterials) are generated. Along with the overall SPF (generated by considering three years of data), separate SPFs are generated for each year and compared to the SPFs used in *SafetyAnalyst*.

The statistical software tool, SAS (Statistical Analysis Software) is used for generating SPFs. The predicted number of crashes is considered to be a function of the traffic volume or AADT (Average Annual Daily Traffic). Because the relationship between the traffic volumes and the predicted number of crashes is typically non-linear, the independent variable is considered to be natural logarithm of AADT. The scale factor needs to be used to normalize the crash frequency to a per mile per year basis and hence an offset/ scale parameter is used. The parameter is

Offset =
$$Log(3^* Segment Length)$$
 (Equation 6)

Where,

3 is the number of years for which crash data is available

As explained in the methodology section, for more reliable results, all the roadway segments with less than 0.1 mile length and the roadway segments with extremely high or low AADT are excluded from running the analysis because these increase potential errors. In addition to the overall 3 year PFs for site subtypes 103 and 152, SPFs are generated for every year individually. As explained in the methodology section, the form of the equation used by *SafetyAnalyst* is:

$$\mathbf{k} = (\mathbf{e}^{\alpha})^* (ADT)^{\beta}$$

And the equation generated for GDOT data is of the form:

Ln(expected Number of crashes) = Intercept + Coefficient*Ln (AADT)

- → Expected number of crashes = e^{(intercept + coefficient * Ln (AADT)}
- → Expected number of crashes = (e^(intercept))*AADT^(coefficient)

The following table shows the values of intercept, coefficient, over dispersion parameter and Freeman Tukey R² Coefficient for Georgia specific SPFs and the calibrated SPFs used in *SafetyAnalyst*.

				Over	
	Site	Intercept	coefficient	dispersion	
	Subtype	(alpha)	(Beta)	parameter	$R^2_{\rm FT}$
GA_SPF	103	-7.0809	1.0023	3.6284	-0.019
SA_SPF_calibrated	103	-5.05	0.66	0.32	0.0364
GA_SPF	152	-3.9323	0.7409	1.8119	0.06
SA_SPF_calibrated	152	-10.24	1.29	0.85	0.0874

Table 17: Various parameters for the SPFs used for the two site subtypes

Freeman Tukey R² value is smaller for both the site subtypes. But, lower R² values are considered to be acceptable since the expected crashes are predicted as a function of AADT alone. It is observed from the past research that many variables like speed, weather, age of driver, etc. influence predictions of expected crashes, however, these are not considered in the model for simplicity sake and to maintain model forms accepted by SafetyAnalyst software. For site subtype 103, R²_{FT} value for Georgia specific SPF is 0.13 while the SPFs used by *SafetyAnalyst* has an R² of 0.27. This suggests that the calibrated SPFs used by *SafetyAnalyst* better fit Cobb County data. The lower fit by Georgia SPFs could be explained by the small sample size. However, for site subtype 152, as explained by the negative R²_{FT} *SafetyAnalyst* specific SPFs do not represent the Georgia data well. Crashes on urban roads were explained well by Georgia specific SPF and this could be backed up with a positive R²_{FT} value. The graphs in the following sheets explain how well each SPF fits the Cobb County data. The graphs also show the SPFs calibrated by *SafetyAnalyst*.

For 2006, the calibration factors calibrated by *SafetyAnalyst* and to predict yearly SPFs for site subtypes 103 and 152 are 3.597162 and 1.84415 respectively. When the *SafetyAnalyst* default SPF is plotted against the GDOT data, the default SPF falls well below the observed crashes. Hence, a calibration factor of greater than 1.00 is expected. To test to see if the data vary greatly on a yearly basis, calibration factors for the 3-year models were compared. The calibration factors for each year generated from Cobb County data and obtained from *SafetyAnalyst* are compared in the following table.

	Site subtype 103		Site subtype 152		
		Manual		Manual	
Year	SafetyAnalyst	Calculation	SafetyAnalyst	Calculation	
2004	3.629126	0.9136	1.98708	1.1036	
2005	3.442261	0.8976	1.953128	0.9191	
2006	3.597162	0.8104	1.844125	0.9398	

Table 18: Year wise calibration factors generated by SafetyAnalyst andmanually from Cobb County data

The default and calibrated SPFs from *SafetyAnalyst* and Cobb County 3year SPFs are plotted against the observed crashes. All the graphs are plotted with AADT on the X-axis and expected and observed crashes (in crashes per mile per year) on the Y-axis. Expected crashes refer to SPFs and the observed crashes refer to Cobb County site scatter points. For better visibility and consistency, the maximum value on Y-axis is kept constant at 200 crashes per mile per year and all the observed crashes beyond 200 crashes per mile per year are clipped. Rural multilane divided highways have higher AADT and the maximum AADT that is shown on graph is 400,000 vehicles/day. Urban multilane undivided arterials have a comparatively less AADT and the maximum AADT that is shown on graph is 60,000 vehicles/day. Consistency is maintained throughout the graphs with colors.

The following table describes the colors used to plot various SPFs.

Table 19: Color-coding used in the following graphs

Color	SPF
Black	Non calibrated SPF used in SafetyAnalyst
Green	SPF used in <i>SafetyAnalyst</i> that is calibrated to Georgia data and for a particular year
Blue	Non calibrated SPF manually generated for Georgia using three year crash data
Orange	SPF manually generated for Georgia using three year crash data calibrated for a particular year

Figure 20: The calibrated and non calibrated SPFs (used by SA and generated for Georgia) for the year 2006 for site subtype 152 considering total crashes

Figures 15, 17, 19 represent the SPFs and the observed crashes for the site subtype 103 for the three years 2004, 2005 and 2006 respectively while figure 21 represents the average crashes for three years (04-06) for site subtype 103. From the graphs, it is clear that the shapes of the SPFs used in *SafetyAnalyst* are similar to those generated for Georgia. However, *SafetyAnalyst* SPFs fit the data well compared to Cobb County specific SPFs. The fit of SPFs generated from Cobb County data could be improved by using more years of crash data and from more counties within the state.

Figures 16, 18, 20 represent the site subtype 152 for the three years 04,05 and 06 respectively while figure 22 represent the average crashes for three years (04-06) for site subtype 152. From the graphs, it is clear that the shapes of the SPFs are slightly different between those used in *SafetyAnalyst* and those generated for Cobb County, mostly due to the high crash sites in lower AADT levels. The R²_{FT} coefficient for the *SafetyAnalyst* SPF is negative, while the SPF generated based on Cobb County data is positive, although neither has a particularly good fit. Additional data and sites would likely improve the results.

While the fit of the default *SafetyAnalyst* SPFs and Cobb County SPFs are not the same and one appears to be better than the other, no significant differences are apparent in the rankings produced by the different SPFs as shown in table 22 and table 23 for site subtypes 103 and 152 respectively.

Table 20: Ranking differences in the high ranked sites between GA specificSPFs and SafetyAnalyst specific SPFs for Site subtype 103

S				
Ν		Site	SA_SP	GA
0	ID	subtype	F Rank	Rank
1	100030001820189100030001890192	103	17	16
2	10005CO0016002310005CO0121012			
	8	103	25	24
3	101200001080117101200001220123	103	30	29
4	100030001510154	103	41	38
5	228350002790281228350003520412	103	52	51
6	100030021682174100030021742180	103	54	52
7	100050003250333100050005210527	103	65	62
8	103600003500376103600006050649	103	72	65
9	228350001330136228350001360141	103	74	69
10	100030001240132100030001320134	103	90	86

Table 21: Ranking differences in the high ranked sites between GA specificSPFs and SafetyAnalyst specific SPFs for Site subtype 152

		Site	Fed	GA
S No	ID	subtype	Rank	Rank
1	100030003260337100030003370342	152	7	7
2	217200003220323217200003240326	152	11	9
3	100030002540256100030002890295	152	13	13
4	100030006430651	152	18	18
5	100030009490950100030009510952	152	19	23
6	102800005960600102800006450650	152	26	26
7	100030008630869	152	27	27
8	100030002200224100030002430245	152	39	42
9	102800004810485102800005070509	152	42	39
10	100050012681275100050012891303	152	46	44

Phase 4: Consider benefits and costs for all ranking criteria:

The various costs required to use various ranking methods are briefly discussed in the following table:

SITE					
SELECTION					
METHOD		RESO	URCES		
MEINOD	Timo to	KL50			
	clean		Time to	Number	
	data and		run	of	
	to import		analysis	neonle	
	data (brs)	Expertise required	(hrs)	read	Resources
		Expertise required	(1113)	lequ	Resources
		enalyst L CIS			Computor
Froquonau	6	analyst + GIS	1	2	Computer,
riequency	0	Entry loval actaty	1	2	GIS
		Entry level salety			Commutan
Create rate	(analyst + GIS	1	2	Computer,
Crash rate	0		1	2	GIS
		Niid level safety			<u> </u>
Critical	<i>c</i>	analyst + GIS		0	Computer,
Crash rate	6	professional	2	2	GIS
	6	Senior level safety			
	(assumin	analyst + GIS			
	g that	professional+			
	SPFs	Senior level			Computer,
LOSS	exist)	statistician	10	3	GIS, SAS
					Computer,
					SafetyAnal
					yst, GIS,
SafetyAnalyst					Access or
for the first		Expert + GIS			other
time	80	professional	10	2	DBMS
					Computer,
					SafetyAnal
					yst, GIS,
					Access or
SafetyAnalyst:		Intermediate + GIS			other
Repetition	20	professional	4	2	DBMS

Table 22: Resources and expertise required for various ranking methods

The above table very briefly summarizes the minimum resources required for selecting sites using each ranking method. GIS is required for using every method mostly to determine the number of crashes occurring on each roadway segment. Entry level safety analyst is required for identifying SWiP based on crash frequency and crash rate. Critical crash rate requires a safety analyst with mid-level skills and a GIS professional. The Level Of Service of Safety method requires the use of SPFs, the development of which requires the expertise of a senior level statistician. A senior level safety analyst can use the LOSS methodology without statistician assuming that the SPFs for each subtype are provided. Compared to basic traditional ranking methods, LOSS and *SafetyAnalyst* require many resources and expertise to select sites. In addition to the requirements for LOSS, *SafetyAnalyst* also requires a safety analyst with proficiency in Microsoft Access. Both require a GIS specialist.

In terms of methodological limitations, *SafetyAnalyst* is assumed to be the best method for identifying SWiP because it addresses to some of the major drawbacks of traditional methods. It accounts for Regression-to-mean effect and unlike in crash rate method, linear relationship between observed number of crashes and AADT is not considered thus identifying better SWiP.

Network Screening is one of the many modules that are capable within the *SafetyAnalyst*. Diagnosis and countermeasure selection and countermeasure evaluation could also be done more systematically. The Empirical Bayes approach used in *SafetyAnalyst* is considered to be the best available method for identifying sites with greater potential for safety improvement. *SafetyAnalyst* approach is repeatable and defensible. Some of the issues dealing with small segment lengths are dealt in *SafetyAnalyst* since *SafetyAnalyst* generates homogeneous segments, thus reducing the number of shorter segments and also increasing the length of similar roadway segments. Subdivision of roadway segments based on the type of facility improves the results of the basic ranking criteria like frequency and rate.

Moreover, several types of analysis could be done with *SafetyAnalyst* very easily once the data is imported and calibrated. The process is tedious and time consuming only for the first time and its repetition doesn't require the same amount of work.

CHAPTER 5 CONCLUSIONS AND FUTURE RECOMMENDATIONS

5.1 Conclusions:

From reviewing the literature and the past work that is carried out in the area of network screening and site selection, it is clear that the conventional methods of selecting "sites with potential for safety improvement" has their own drawbacks and limitations. However, most of the DOTs use conventional methods like crash frequency and crash rate to identify SWiP resulting in improper site selection and lesser safety effect for the money spent. This research project reinforces the fact that advanced site selection methods like the use of Empirical Bayes approach, generation of Safety Performance Functions and the use of software like *SafetyAnalyst* addresses most of the limitations of traditional methods. *SafetyAnalyst* is stateof-the-art analytical tool to identify and rank SWiP, prioritize safety improvements, suggest countermeasures and evaluate countermeasures.

Cobb County is considered for analysis for this project. Most of the conventional methods and advanced site selection methods are compared to obtain the top priority sites for safety improvement. *SafetyAnalyst* uses rigorous calculations, Empirical Bayes approach and SPFs to predict the expected number of crashes in the future and to rank sites based on PSI (Potential for Safety Improvement). Assuming that the SWiP identified by *SafetyAnalyst* are the sites with greatest potential for safety improvement, These ranks are compared to the ranks obtained by frequency, rate and critical crash rate and it is found that only 50% of the top ranked crashes in *SafetyAnalyst* are identified in all the other conventional ranking criteria.

It is seen in the results that conventional ranking criteria used on a particular reference group of roadway segments yield more reliable results compared to the ranking on all site subtypes. However, serious drawbacks like Regression-to-mean and shorter segment length exists resulting in increasing the unreliability of traditional ranking methods. Use of advanced ranking criteria helps in identifying sites with greater "potential for safety improvement". Of many advanced selection criteria, SafetyAnalyst is a stateof-the-art analytical tool that could be used to identify and rank SWiP. This software uses SPFs generated using northern state data for the years 1997-2002. These SPFs are calibrated to the data used (for Cobb County data in this project). However, most of the factors like traffic trends, accident patterns, climate, population, geography etc change considerably among different regions. Hence, same SPFs (either calibrated or non calibrated) might not represent the "same" relationship between AADT and predicted crashes. Therefore, SPFs for each state, need to be developed and used in SafetyAnalyst

to better identify and rank problematic sites. This observation is backed up in this research project where Cobb County data is used to compare the basic and advanced site selection criteria. The non calibrated and calibrated SPFs used in *SafetyAnalyst* are compared to the Cobb County specific SPFs generated and found that the SPFs differ considerably reinforcing the idea of generating SPFs from Georgia data to be used in *SafetyAnalyst*.

For the objectives set forth in this research project, the following conclusions are drawn:

a) Review data availability, format and completeness for use in different safety data analysis methods

- GDOT has sufficient data to conduct the basic ranking criteria. But, for advanced ranking criteria, SPFs are required along with the classification of roadway into subtypes. However, these are unavailable for Georgia.
- For LOSS, all the sites need to be divided into site subtypes and SPFs generated. This requires a lot of time and data resources.
- For *SafetyAnalyst*, the data requirements are intense. Georgia has most of the data. However, the data needs to be recoded to the format required to be imported into *SafetyAnalyst*.

- b) Assess whether safety performance functions employed in *SafetyAnalyst* software can be properly calibrated to reflect crash distribution and conditions in Georgia
 - The default SPFs used in *SafetyAnalyst* are generated from northern states data and they don't seem to fit well with GA data. This can be explained by larger yearly calibration factors for GA data. This reinforces the need for Georgia specific SPFs.
 - The SPFs manually generated from Cobb County data do not fit well enough compared to the calibrated default SPFs. This is mainly because of lesser data. Conclusions cannot be drawn about the fit of SPFs on complete state just from using one county data. When the complete state's data is used in *SafetyAnalyst*, the SPF's fit might be improved.
- c) Analyze costs and potential benefits of implementing and maintaining various methods (crash frequency, crash rate, Level Of Service of Safety and Empirical Bayes method using *SafetyAnalyst*) for selecting and prioritizing problematic crash sites by implementing these methods for Cobb County using 2004-2006 crash data.
 - The basic site selection methods are easier to implement compared to the advanced methods. Entry level to mid level safety analysts are sufficient to conduct the basic selection methods. However, they do not account to some of

the major drawbacks like Regression-to-mean, shorter segment length, higher AADTs and random fluctuation in crash counts over time.

- LOSS, an advanced selection criteria requires a senior level safety analyst and statistician for developing SPFs and for categorizing sites into subtypes. LOSS accounts for some of the aforementioned drawbacks, but it does not account for the severity of crashes.
- *SafetyAnalyst,* the most advanced selection criteria requires comparatively more time and resources for initial setup. A senior level safety analyst is required to generate, import, post process and calibrate files required for safety analysis. Once, this is done, the process is easily repeatable compared to other methods.
- Several types of analyses could be done easily in *SafetyAnalyst* to compare different results and to prioritize sites based on the user requirements.
- Identification of sites is just the first step. Countermeasure selection and evaluation is only possible with *SafetyAnalyst*.
- The roadway segments in Georgia are divided into small segments and in Cobb County, the average segment length is 0.062miles. Such smaller segments drastically increase rates resulting in biased results. This is accounted for in *SafetyAnalyst* since it creates homogeneous

segments based on the threshold set by the users. The following table briefly mentions the potential benefits of using various ranking criteria.

5.2 Future Recommendations:

Despite of the initial and operational costs for using SafetyAnalyst for network screening, it could be concluded that it better identifies and ranks sites with potential for safety improvements since it uses the most advanced and data driven Empirical Bayes approach which accounts for most of the drawbacks of basic screening methods. However, the default SPFs used in SafetyAnalyst were developed from northern states (California, Minnesota, Ohio and Washington). It is evident that the traffic trends, crash patterns, geography, etc are completely different in the south when compared to the north. Hence, the SPFs developed from the northern states might not exactly fit the southern crash data. SafetyAnalyst uses a calibration factor to fit the default SPFs to Georgia data. However, a calibration factor of about 1.00 might represent a good fit which is not the case. Higher calibration factors and graphs of the default and calibrated SPFs plotted against the observed crashes along with the R square values reinforce the fact that the calibrated SPFs do not fit the Georgia data well. In this context, SPFs were manually generated for Cobb County and were compared to the default and calibrated SPFs used in SafetyAnalyst. Even these SPFs do not represent the data well. This is evidently seen from the graphs and R square values. However, conclusions cannot be drawn just based on the results obtained from this research since only one county data is used for SPF generation.

The future research for the present study might include the use of data from the whole state for generating SPFs manually and for checking the fit of the default and calibrated SPFs used in *SafetyAnalyst*. When the complete state is considered for analysis, the calibrated SPFs might fit the data well discouraging the idea of generating Georgia specific SPFs.

In this research, SPFs were generated manually considering the form of default SPFs used in *SafetyAnalyst* as a basis. This might not be the best way to develop SPFs for a southern state like Georgia since we are confining the dependant and independent variables and also the relation between them. The future research might include a study on the relationship between the dependant and independent variables.

In this research, two site subtypes (rural multilane divided roadways and urban multilane undivided roadways) are considered for generating SPFs. Sites with low AADT and high crashes are fewer in number, but, their influence is enormous and to some extent define the shapes of SPFs. Hence, sensitivity analysis might be of help to determine the effect of these "outliers" on the calibration factors and SPF development.

113

APPENDICES

APPENDIX A: ALTACCIDENT FILE

SQL QUERIES, DATA MAPPING AND DATA RECODING

#	Name	SQL	Description	Note
01	Create Accident s Table	CREATE TABLE ACCIDENT_SA (ACC_CASE Text,RTE_TYPE Text,RTE_NAME Text,CNTY_NUM Text, ACC_LOC Text,LOC_IDSYS Text,DIST_NUM Text,CITY_NUM Text, ACC_DATE Text,ACC_TIME Text,REL_JUNC Text,DIRVWY_IND Text, LGT_COND Text,WTR_COND Text,SURF_COND Text,ACC_TYPE Text, CIRCUM_ENV Text,CIRCUM_ROAD Text,SCHLBUS_REL Text,WRKZN_REL Text, NUM_VEH Text,ACC_SEV1 Text,SCHLBUS_REL Text,WRKZN_REL Text, NUM_VEH Text,ACC_SEV1 Text,SCHLBUS_REL Text,MRKZN_REL Text, NUM_VEH Text,ACC_SEV1 Text,SCHLBUS_REL Text,MRKZN_REL Text, NUM_VEH Text,HEN_IND Text,RUNOFF_IND Text,FID_IND Text,ACC_SEV2 Text,ALC_DRUG Text, TOW_IND Text,RUNOFF_IND Text,PED_IND Text,BIKE_IND Text, DIVHWY_FLAG Text,RTENUM_DISP Text,MLPOST_DISP Text,VEHTURN_MVT Text, DAY_WK Text,RDSEG_NUM Text,INTR_NUM Text,RAMP_NUM Text, INIT_DIR1 Text,VEH_MAN1 Text,VEH_CONF1 Text,FIRST_EVNT1 Text, DRVR_AGE1 Text,INIT_DIR2 Text,VEH_CONF1 Text,VEH_CONF2 Text, FIRST_EVNT2 Text,DRVR_AGE2 Text);	Creates the table ACCIDENT_SA	
02	Insert Inital	INSERT INTO ACCIDENT_SA (ACC_CASE, CITY_NUM, ACC_DATE, ACC_TIME, LGT_COND, WTR_COND, SURF_COND, ACC_TYPE, CIRCUM_ROAD, WRKZN_REL, NUM_VEH, RUNOFF_IND, PED_IND, DAY_WK) SELECT ACC_ID, ACC_ICO_TYPE, ACC_JULDT, ACC_ATIME, ACC_LITE_TYPE, ACC_WEAT_TYPE, ACC_SURF_TYPE, ACC_JHE1_TYPE, ACC_RDD_TYPE, ACC_RDD_TYPE, ACC_TNV, ACC_LOI_TYPE, ACC_HE1_TYPE, ACC_DAYOFWEEK_TYPE FROM ACC_LOI_TYPE, ACC_HE1_TYPE, ACC_DAYOFWEEK_TYPE FROM	Inserts all the one-to- one matches from ACCIDENT_TBL	
03	Update tTE_TYPE	UPDATE ACCIDENT_SA INNER JOIN LOCATION_TBL ON ACCIDENT_SA.ACC_CASE=LOCATION_TBL.LOC_ACC_ID SET ACCIDENT_SA.RTE_TYPE = LOCATION_TBL.LOC_ROUTE_TYPE;	Updates route type based on a match with the accident ID in the LOCATION_TBL	

#	Name	SQL	Description	Note
04	Update Dr. NAME	UPDATE ACCIDENT_SA INNER JOIN LOCATION_TBL ON ACCIDENT_SA.ACC_CASE=LOCATION_TBL.LOC_ACC_ID SET ACCIDENT_SA.RTE_NAME =	Updates route name based on a match with	
	KIE_NAME	LOCATION_TBL.LOC_ROUTE_IDENTIFIER+LOCATION_TBL. LOC_ROUTE_SUFFIX;	the accident ID in the LOCATION_TBL	
05	Update	UPDATE ACCIDENT_SA INNER JOIN LOCATION_TBL ON ACCIDENT_SA.ACC_CASE=LOCATION_TBL.LOC_ACC_ID	Updates accident location based on a	
8	ACC_LOC	SET ACCIDENT_SA.ACC_LOC = LOCATION_TBL.LOC_ACC_MILELOG;	match with the accident ID in LOCATION_TBL	
	1 Tradata			This will need to be adjusted
90	DIST_NUM	UPDATE ACCIDENT_SA SET ACCIDENT_SA.DIST_NUM = '7';	Sets district number to	for other counties' data
				sets.
0_0	Update REL_JUNC - Inter related	UPDATE ACCIDENT_SA INNER JOIN LOCATION_TBL ON ACCIDENT_SA.ACC_CASE=LOCATION_TBL.LOC_ACC_ID SET ACCIDENT_SA.REL_JUNC = LOCATION_TBL.LOC_INTERROUTE_IDENTIFIER;	Updates relationship to junction to LOC_INTERROUTE_ID ENTIFIER based on a match with accident ID	
			in LOCATION_TBL	

#	Name	SQL	Description N	Note
07_1	Update REL_JUNC - At Inter	UPDATE ACCIDENT_SA INNER JOIN LOCATION_TBL ON ACCIDENT_SA.ACC_CASE=LOCATION_TBL.LOC_ACC_ID SET ACCIDENT_SA.REL_JUNC = LOCATION_TBL.LOC_SIGNAL_TYPE;	Updates relationship to junction to LOC_SIGNAL_TYPE based on a match with accident ID in LOCATION_TBL	
07_2	Update REL_JUNC - At Ramp	UPDATE ACCIDENT_SA INNER JOIN RAMP_TBL ON ACCIDENT_SA.ACC_CASE=RAMP_TBL.RMP_ACC_ID SET ACCIDENT_SA.REL_JUNC = 'Ramp';	Updates relationship to junction to "Ramp" based on a match with accident ID in RAMP_TBL	
07_3	Update REL_JUNC - At RRX	UPDATE ACCIDENT_SA INNER JOIN RRX_TBL ON ACCIDENT_SA.ACC_CASE=RRX_TBL.RRX_ACC_ID SET ACCIDENT_SA.REL_JUNC = 'Rrx';	Updates relationship to junction to "Rrx" based on a match with accident ID in RRX_TBL	
08	Update ACC_TYPE	UPDATE ACCIDENT_SA INNER JOIN ACCIDENT_TBL ON ACCIDENT_SA.ACC_CASE=ACCIDENT_TBL.ACC_ID SET ACCIDENT_SA.ACC_TYPE = ACCIDENT_SA.ACC_MNRC_TYPE;	Updates accident type to ACC_MNRC_TYPE based on a match with accident ID in ACCIDENT_TBL	

#	Name	SQL	Description	Note
0 ⁻ 60	Update CIRCUM_ENV - Factor4	UPDATE ACCIDENT_SA INNER JOIN VEHICLE_TBL ON ACCIDENT_SA.ACC_CASE=VEHICLE_TBL.VEH_ACC_ID SET ACCIDENT_SA.CIRCUM_ENV = VEHICLE_TBL.VEH_CONF4_TYPE;	Updates circum env to VEH_CONF4_TYPE based on a match with accident id in VEHICLE_TBL	
09_1	Update CIRCUM_ENV - Factor3	UPDATE ACCIDENT_SA INNER JOIN VEHICLE_TBL ON ACCIDENT_SA.ACC_CASE=VEHICLE_TBL.VEH_ACC_ID SET ACCIDENT_SA.CIRCUM_ENV = VEHICLE_TBL.VEH_CONF3_TYPE;	Updates circum env to VEH_CONF3_TYPE based on a match with accident id in VEHICLE_TBL	
09_2	Update CIRCUM_ENV - Factor2	UPDATE ACCIDENT_SA INNER JOIN VEHICLE_TBL ON ACCIDENT_SA.ACC_CASE=VEHICLE_TBL.VEH_ACC_ID SET ACCIDENT_SA.CIRCUM_ENV = VEHICLE_TBL.VEH_CONF2_TYPE;	Updates circum env to VEH_CONF2_TYPE based on a match with accident id in VEHICLE_TBL	
09_3	Update CIRCUM_ENV - Factor1	UPDATE ACCIDENT_SA INNER JOIN VEHICLE_TBL ON ACCIDENT_SA.ACC_CASE=VEHICLE_TBL.VEH_ACC_ID SET ACCIDENT_SA.CIRCUM_ENV = VEHICLE_TBL.VEH_CONF1_TYPE;	Updates circum env to VEH_CONF1_TYPE based on a match with accident id in VEHICLE_TBL	
09_4	Update CIRCUM_ENV - Vision	UPDATE ACCIDENT_SA INNER JOIN VEHICLE_TBL ON ACCIDENT_SA.ACC_CASE=VEHICLE_TBL.VEH_ACC_ID SET ACCIDENT_SA.CIRCUM_ENV = VEHICLE_TBL.VEH_VOBS_TYPE;	Updates circum env to VEH_VOBS_TYPE based on a match with accident id in VEHICLE_TBL	

#	Name	SQL	Description	Note
10	Update SCHLBUS_REL	UPDATE ACCIDENT_SA INNER JOIN VEHICLE_TBL ON ACCIDENT_SA.ACC_CASE=VEHICLE_TBL.VEH_ACC_ID SET ACCIDENT_SA.SCHLBUS_REL = VEHICLE_TBL.VEH_CLASS_TYPE;	Updates schoolbus related to VEH_CLASS_TYPE based on a match with accident ID in VEHICLE_TBL	
11_0	Update ACC_SEV1 - Pedestrian	UPDATE ACCIDENT_SA INNER JOIN PEDESTRIAN_TBL ON ACCIDENT_SA.ACC_CASE=PEDESTRIAN_TBL. PED_ACC_ID SET ACCIDENT_SA.ACC_SEV1 = PEDESTRIAN_TBL.PED_INJC_TYPE;	Updates accident severity1 to PED_INJC_TYPE based on a match with accident ID in PEDESTRIAN_TBL	
11_1	Update ACC_SEV1 - Passenger	UPDATE ACCIDENT_SA INNER JOIN PASSENGER_TBL ON ACCIDENT_SA.ACC_CASE=PASSENGER_TBL.OCC_ACC_ID SET ACCIDENT_SA.ACC_SEV1 = PASSENGER_TBL.OCC_INJC_TYPE;	Updates accident severity1 to OCC_INJC_TYPE based on a match with accident ID in PASSENGER_TBL	
11_2	Update ACC_SEV1 - OccDrvier	UPDATE ACCIDENT_SA INNER JOIN OCCDRIVER_TBL ON ACCIDENT_SA.ACC_CASE=OCCDRIVER_TBL.OCC_ACC_ID SET ACCIDENT_SA.ACC_SEV1 = OCCDRIVER_TBL. OCC_INJC_TYPE;	Updates accident severity1 to OCC_INJC_TYPE based on a match with accident ID in OCCDRIVER_TBL	
12_0	Update ALC_DRUG - Pedestrian	UPDATE ACCIDENT_SA INNER JOIN PEDESTRIAN_TBL ON ACCIDENT_SA.ACC_CASE=PEDESTRIAN_TBL.PED_ACC_I D SET ACCIDENT_SA.ALC_DRUG = PEDESTRIAN_TBL.PED_DRVCND_TYPE;	Updates alcohol drug involvement to PED_DRVCND_TYPE based on a match with accident ID in PEDESTRIAN_TBL	

#	Name	SQL	Description	Note
		UPDATE ACCIDENT_SA INNER JOIN OCCDRIVER_TBL	Updates alcohol drug	
	Update	ON	involvement to	
12_{-1}	ALC_DRUG -	ACCIDENT_SA.ACC_CASE=OCCDRIVER_TBL.OCC_AC	OCC_DRVCND_TYPE based	
	OccDriver	C_ID SET ACCIDENT_SA.ALC_DRUG =	on a match with accident ID	
		OCCDRIVER_TBL.OCC_DRVCND_TYPE;	in OCCDRIVER_TBL	
		UPDATE ACCIDENT_SA INNER JOIN VEHICLE_TBL		
	IIndata	ON	Updates bike indicator to	
13	Upuale BIVE IND	ACCIDENT_SA.ACC_CASE=VEHICLE_TBL.VEH_ACC_I	VEH_TYPE_TYPE based on a	
		D SET ACCIDENT_SA.BIKE_IND =	match with accident ID in	
		VEHICLE_TBL.VEH_TYPE_TYPE;	VEHCILE_TBL	
		UPDATE ACCIDENT_SA INNER JOIN LOCATION_TBL	Updates roadseg number to	
	IImdata	ON	LOC_RCLINK_IDENTIFIER	
14	Upuale DDGEC NITM	ACCIDENT_SA.ACC_CASE=LOCATION_TBL.LOC_ACC	based on a match with	
		_ID SET ACCIDENT_SA.RDSEG_NUM =	accident ID in	
		LOCATION_TBL.LOC_RCLINK_IDENTIFIER;	LOCATION_TBL	
		UPDATE ACCIDENT_SA INNER JOIN LOCATION_TBL		
		ON		
		ACCIDENT_SA.ACC_CASE=LOCATION_TBL.LOC_ACC		
н Т	Update	_ID SET ACCIDENT_SA.INTR_NUM =		
01	INTR_NUM	LOCATION_TBL.LOC_INTERROUTE_TYPE+LOCATION	Updates intersection number	
		_TBL.LOC_INTERROUTE_IDENTIFIER+LOCATION_TBL	to a concatenation based on a	
		.LOC_INTERROUTE_SUFFIX+LOCATION_TBL.LOC_SIG	match with accident ID in	
		NAL_TYPE;	LOCATION_TBL	

#	Name	SQL	Description	Note
		UPDATE ACCIDENT_SA INNER JOIN RAMP_TBL ON ACCIDENT_SA.ACC_CASE=RAMP_TBL.RMP_ACC_ID SET ACCIDENT_SA.RAMP_NUM =		
16	RAMP NIIM	RAMP_TBL.RMP_INTERCHANGE_ADDIDENTIFIER+RAMP_TB	Updates ramp number to a	
		L.RMP_INTERCHANGE_IDENTIFIER+RAMP_TBL.RMP_QUAD P a NIT_IDENTIFIER+R AND_TRI_PMP_P AND_IDENTIFIERP+P A	concatenation based on a	
		MP_TBL.RMP_RAMPSECTION_IDENTIFIER;	RAMP_TBL	
1	I Indate	UPDATE ACCIDENT_SA INNER JOIN VEHICLE_TBL ON ACCIDENT SA ACC CASE=VEHICI E TRI VEH ACC ID SET	Updates initial direction1 to VEH_DIRT_TYPE based	
0 ⁰	INIT_DIR1	ACCIDENT_SA.INIT_DIR1 = VEHICLE_TBL.VEH_DIRT_TYPE WHERE VEHICLE_TBL.VEH_NO='01';	on a match with accident ID in VEHICLE_TBL and VEH NO = "01"	
		UPDATE ACCIDENT SA INNER IOIN VEHICLE TBL ON	Updates initial direction2	
17	Update INIT DIR2	ACCIDENT_SA.ACC_CASE=VEHICLE_TBL.VEH_ACC_ID SET ACCIDENT_SA_INIT_DIR7 = VEHICLE_TBL_VEH_DIRT_TVPF	to VEH_DIRT_TYPE based on a match with accident	
1		WHERE VEHICLE_TBL.VEH_NO='02';	ID in VEHICLE_TBL and VEH_NO = "02"	
		UPDATE ACCIDENT_SA INNER JOIN VEHICLE_TBL ON	Updates initial manuever1 to VEH_MANV_TYPE	
18	Update	ACCIDENT_SA.ACC_CASE-VEITICLE_IDL.VEIT_ACC_ID SET ACCIDENT SA.VEH MAN1 =	based on a match with	
0	VEH_MAN1	VEHICLE_TBL.VEH_MANV_TYPE	accident ID in	
		WHERE VEHICLE_TBL.VEH_NO='01';	VEHLCLE_IDL and VEH_NO = "01"	

#	Name	SQL	Description	Note
18_1	Update VEH_MAN2	UPDATE ACCIDENT_SA INNER JOIN VEHICLE_TBL ON ACCIDENT_SA.ACC_CASE= VEHICLE_TBL.VEH_ ACC_ID SET ACCIDENT_SA.VEH_MAN2 = VEHICLE_TBL.VEH_MANV_TYPE WHERE VEHICLE_TBL.VEH_NO='02';	Updates initial manuever2 to VEH_MANV_TYPE based on a match with accident ID in VEHICLE_TBL and VEH_NO = "02"	
19_0	Update VEH_CONF1 - ComVehicle	UPDATE ACCIDENT_SA INNER JOIN COMVEHICLE_TBL ON ACCIDENT_SA.ACC_CASE=COMVEHICLE_TBL.COMV_ ACC_ID SET ACCIDENT_SA.VEH_CONF1 = COMVEHICLE_TBL.COMV_CONFIG_TYPE WHERE COMVEHICLE_TBL.COMV_VEHNO='01';	Updates vehicle config1 to COMV_CONFIG_TYPE based on a match with accident ID in COMVEHICLE_TBL and COMV_VEHNO = "01"	
19_1	Update VEH_CONF1 - Vehicle	UPDATE ACCIDENT_SA INNER JOIN VEHICLE_TBL ON ACCIDENT_SA.ACC_CASE=VEHICLE_TBL.VEH_ACC_I D SET ACCIDENT_SA.VEH_CONF1 = VEHICLE_TBL.VEH_TYPE_TYPE WHERE VEHICLE_TBL.VEH_NO='01';	Updates vehicle config1 to VEH_TYPE_TYPE based on a match with accident ID in VEHICLE_TBL and VEH_NO = "01"	
19_2	Update VEH_CONF2 - ComVehicle	UPDATE ACCIDENT_SA INNER JOIN COMVEHICLE_TBL ON ACCIDENT_SA.ACC_CASE=COMVEHICLE_TBL.COMV_ ACC_ID SET ACCIDENT_SA.VEH_CONF2 = COMVEHICLE_TBL.COMV_CONFIG_TYPE WHERE COMVEHICLE_TBL.COMV_VEHNO='02';	Updates vehicle config2 to COMV_CONFIG_TYPE based on a match with accident ID in COMVEHICLE_TBL and COMV_VEHNO = "02"	

#	Name	TQ2	Description	Note
		UPDATE ACCIDENT_SA INNER JOIN VEHICLE_TBL		
	Update	ON ACCIDENT SA.ACC CASE=VEHICLE TBL.VEH AC	Updates vehicle config2 to	
19_3	VEH_CONF2 -	C_ID SET ACCIDENT_SA.VEH_CONF2 =	VEH_TYPE_TYPE based on a match	
	Venicle	VEHICLE_TBL.VEH_TYPE_TYPE	with accident ID in VEHICLE_TBL	
		WHERE VEHICLE_TBL.VEH_NO='02';	and VEH_NO = "02	
		UPDATE ACCIDENT_SA INNER JOIN VEHICLE_TBL		
		ON		
	Update	ACCIDENT_SA.ACC_CASE=VEHICLE_TBL.VEH_AC	Updates first event1 to	
0 ⁻ 07	FIRST_EVNT1	C_ID SET ACCIDENT_SA.FIRST_EVNT1 =	VEH_MHE_TYPE based on a match	
		VEHICLE_TBL.VEH_MHE_TYPE	with accident ID in VEHICLE_TBL	
		WHERE VEHICLE_TBL.VEH_NO='01';	and $VEH_NO = "01"$	
		UPDATE ACCIDENT_SA INNER JOIN VEHICLE_TBL		
		ON		
	Update	ACCIDENT_SA.ACC_CASE=VEHICLE_TBL.VEH_AC	Updates first event2 to	
T_U2	FIRST_EVNT2	C_ID SET ACCIDENT_SA.FIRST_EVNT2 =	VEH_MHE_TYPE based on a match	
		VEHICLE_TBL.VEH_MHE_TYPE	with accident ID in VEHICLE_TBL	
		WHERE VEHICLE_TBL.VEH_NO='02';	and $VEH_NO = "02"$	
		UPDATE ACCIDENT_SA INNER JOIN		
		OCCDRIVER_TBL ON		
с С	Update	ACCIDENT_SA.ACC_CASE=OCCDRIVER_TBL.OCC_	Updates driver age1 to OCC_DOB	
0-17	DRVR_AGE1	ACC_ID SET ACCIDENT_SA.DRVR_AGE1 =	based on a match with accident ID	
		OCCDRIVER_TBL.OCC_DOB	in OCCDRIVER_TBL and	
		WHERE OCCDRIVER_TBL.OCC_VEHNO='01';	$OCC_VEHNO = "01"$	

#	Name	SQL	Description	Note
21_1	Update DRVR_AGE2	UPDATE ACCIDENT_SA INNER JOIN OCCDRIVER_TBL ON ACCIDENT_SA.ACC_CASE=OCCDRIVER_TBL.OCC_ACC_I D SET ACCIDENT_SA.DRVR_AGE2 = OCCDRIVER_TBL.OCC_DOB WHERE OCCDRIVER_TBL.OCC_VEHNO='02';	Updates driver age2 to OCC_DOB based on a match with accident ID in OCCDRIVER_TBL and OCC_VEHNO = "02"	
22	Update CNTY_NUM	UPDATE ACCIDENT_SA INNER JOIN LOCATION_TBL ON ACCIDENT_SA.ACC_CASE=LOCATION_TBL.LOC_ACC_ID SET ACCIDENT_SA.CNTY_NUM = LOCATION_TBL.LOC_COUNTY_IDENTIFIER;	Updates county number to IOC_COUNTY_IDENTIFIER based on a match with accident ID in LOCATION_TBL	

		SafetyAnalyst			GDOT		
		, (;	Existing/ To be		Data from	Criteria for	
5 No.	SA field name AgencyID	SA Code initiate number for each accident	created Existing	GDUI field Name Microfilm	table ACCIDENT	selection -	GDUI Code
4 0	LocSvstem	A - Route/milepost B - Route/county/milepost C - Route/section identifier/distance D - Segment identifier/distance	New field: To be created			1	
		I – Interstate US - US route SR - State route BR - Business route BL - Business loop					
		SP - Spur route CR - County road L - Local road O - Other					0-Accident Not Located 1-State Route 2-County Road 3-City Street
3	RouteType	NA - Not applicable X – Unknown	Existing and to be changed	LOC_ROUTE_TYPE	LOCATION	1	8-Public Road 9-Collector-Distributor
4	routeName	# or name of the route	To be created	LOC_ROUTE_IDENTIFIER + LOC_ROUTE_SUFFIX	LOCATION	1	1
J	county	county number	Existing	Accident County	ACCIDENT		1
9	locOffset	- (a floating number)	Existing	LOC_ACC_MILELOG	LOCATION	1	1
7	accidentDate	YYYYMMDD	Existing	ACC_DATE	ACCIDENT	1	1
8	accidentTime	HHMM (24 hr clock)	Existing and to be changed	ACC_TIME	ACCIDENT	1	-
		K - Fatal Injury A - Incapacitating Injury B - Non-Incapacitating Injury			ACCIDENT,		0 - Not Injured 1 - Killed
		C - Possible Injury		PED_INJC_TYPE,	PEDESTRIAN,		2 - Serious
9	accident Severity1	r - rropeny-Damage-Only X – Unknown	Existing and to be changed	OCC_INJC_TYPE	OCCDRIVER	ı	o - Visidie Injury 4 - PDO

		SafetyAnalyst			GDOT		
S No.	SA field name	SA Code	Existing/ To be created	GDOT field Name	Data from table	Criteria for selection	GDOT Code
10	numberOf Fatalities	total # of fatalities in each crash	Existing	ACC_TNF	ACCIDENT	1	
11	numberOf Injuries	total # of injuries in each crash	Existing	ACC_TNI	ACCIDENT	-	
13 13	junction Relationship driveway Indicator	 1 - Non-junction 2 - At intersection 2 - At intersection 3 - Intersection-related 4 - At driveway or driveway-related 5 - Entrance/exit ramp 6 - Other part of interchange 7 - Railroad/highway grade crossing 8 - Crossover related 9 - Other 1 - No - No 2 - Yes, at driveway 9 - Unknown 2 - Yes, near driveway 9 - Unknown 	To be created To be created	LOC_INTERROUTE_IDENTIFIER, LOC_SIGNAL_TYPE	LOCATION	, ,	 A - STOP B - Over Head Flashing Amber C-All direction Stop Sign F - Flasher other than Overhead L - Traffic Control Device with turn arrow O - Stop sign in Opposite direction of inventory P - Traffic control with Pedestrian signal R - Overhead Flashing Red Ramp - Ramp Rrx- Railroad crossing S - Traffic Control Sign W - Yield Sign in Opposite direction of inventory Y - Yield
14	light Condition	 1 - Daylight 2 - Dawn 2 - Dawk 3 - Dusk 4 - Dark-lighted 5 - Dark-unknown lighting 6 - Dark-unknown lighting 7 - Other 	Existing and to be changed	ACC_LITE_TYPE	ACCIDENT	1	1-Daylight 2-Dusk 3-Dawn 4-Dark-Lighted 5-Dark-Not Lighted

SafetyAnalyst			GDOT		
SA Code	Existing/ To be created	GDOT field Name	Data from table	Criteria for selection	GDOT Code
 Clear Cloudy Fog, smog, smoke Rain Sleet, hail (freezing rain or drizzle) Sleet, hail (freezing rain or drin or drizzle) Sleet, hail (f	Existing and to be changed	ACC_WEAT_TYPE	ACCIDENT		1- Clear 2- Cloudy 3-Rain 4-Snow 5-Sleet 6-Fog 7-Other
1 - Dry 2 - Wet 3 - Snow 4 - Slush 5 - Ice/frost 6 - Water (standing, moving) 7 - Sand 8 - Mud, dirt, gravel 9 - Oil 10 - Other 99 - Unknown	Existing and to be changed	ACC_SURF_TYPE	ACCIDENT	1	1-Dry 2-Wet 3-Snowy 4-Icy 5-Other

SA field name	weather Condition	surface Condition					
S No.	1 נו	16					
	SafetyAnalyst		GDOT				
-------	---------------	---	-----------------	-----------------	-----------	--------------	--
			Existing/ To be		Data from	Criteria for	
S No.	SA field name	SA Code	created	GDOT field Name	table	selection	GDOT Code
		1 - Collision with parked motor vehicle					
		2 - Collision with railroad train					
		3 - Collision with bicyclist					
		4 - Collision with pedestrian					
		5 - Collision with animal					
		6 - Collision with fixed object					
		7 - Collision with other object					
		8 - Other single-vehicle collision					
		9 - Overturn					
		10 - Fire or explosion					
		11 - Other single-vehicle non-collision					
		21 - Rear-end					
		22 - Head-on					
		23 - Rear-to-rear					1-Angle
		24 - Angle					2-Head On
		25 - Sideswipe, same direction					3-Rear End
		26 - Sideswipe, opposite direction					4-Sideswipe - Same Direction
	collision	27 - Other multiple-vehicle collision	Existing and to				5-Sideswipe - Opposite Direction
17	Type	99 - Unknown	be changed	ACC_MNRC_TYPE	ACCIDENT	I	6-Not A Collision With A Motor Vehicle

S No. SA field n			GDOT				
	ame	SA Code	Existing/ To be created	GDOT field Name	Data from table	Criteria for selection	GDOT Code
							01-No Contributing Factors
							02-D.U.I
							03-Following too Close
							04-Failed to Yield
							05-Exceeding Speed Limit
							06-Disregard Stop Sign/Signal
							07-Wrong Side of Road
							08-Weather Conditions
							09-Improper Passing
							10-Driver Lost Control
							11-Changed Lanes Improperly
							12-Object or Animal
							13-Improper Turn
							14-Parked Improperly
							15-Mechanical or Vehicle Failure
							16-Surface Defects
							17-Misjudged Clearance
							18-Improper Backing
							19-No Signal/Improper Signal
		1 - None					20-Driver Condition
		2 - Weather conditions					21-Driverless Vehicle
		3 - Physical obstruction(s)					22-Too Fast for Conditions
		4 - Glare		VEH_CONF1_TYPE,			23-Improper Passing of School Bus
		5 - Animal(s) in roadway		VEH_CONF2_TYPE,			24-Disregard Police Officer
environme	ant	6 - Other	Existing and to	VEH_CONF3_TYPE,			25-Distracted
18 Condition		99 – Unknown	be changed	VEH_CONF4_TYPE	VEHICLE	ı	26-Other

		SafetyAnalyst			GDC)T	
S No.	SA field name	SA Code	Existing/ To be created	GDOT field Name	Data from table	Criteria for selection	GDOT Code
19	road Condition	 None Road surface condition (wet, icy, snow, slush, etc.) Debris Debris Nork some (construction/maintenance/utility) Work zone (construction/maintenance/utility) Work zone (construction/maintenance/utility) Work zone (construction/maintenance/utility) Some (construction/maintenance/uti	Existing and to be changed	ACC_RDD_TYPE	ACCIDENT		 No Defects 2-Defective Shoulders 3-Holes, Deep Ruts, Bumps 4-Loose Material on Surface 5-Water Standing 6-Road Under Construction 7-Running Water
20	school Bus	1 - No 2 - Yes, school bus directly involved 3 - Yes, school bus indirectly involved 99 - Unknown	To be created	VEH_CLASS_TYPE	VEHICLE	VEH_CLASS_TYPE = 4	0-Unknown 1-Privately Owned 2-Police 3-Fire 4-School 5-Other Government Owned 6-Military 7-Commercial Vehicle 8-Other 8-Other 9-Commercial Vehicle (No Carrier ID Available)
21	work Zone	Y - Yes N - No X - Unknown	Existing and coding error				X
22	num Vehicles	total number of vehicles involved	Existing	ACC_TNV	ACCIDENT	1	-

		SafetyAnalyst			GDOT		
S No.	SA field name	SA Code	Existing/ To be created	GDOT field Name	Data from table	Criteria for selection	GDOT Code
23	drug Involved	 Neither alcohol nor other drugs Yes (alcohol) Yes (drugs) Yes (alcohol and drugs) Ves (alcohol and drugs) 	Existing and to be changed	OCC_DRVCND_TYPE	OCCUPANT		 1-Not Drinking 2-Not Known if U.I 3-Drinking, Not Impaired 4-U.I. Alcohol 5-U.I. Drugs 6-U.I. Alcohol and Drugs 7-Physical Impairment 8-Apparently Fell Asleep
24	v1initial Travel Direction	NB - Northbound SB - Southbound - FB - Fasthound	Existing and to be changed	VEH_DIRT_TYPE	VEHICLE	VEH_NUM = 1	1-North
25	v2initial Travel Direction	WB - Westbound NO - Not on roadway XX - Unknown	Existing and to be changed	VEH_DIRT_TYPE	VEHICLE	VEH_NUM = 2	2-South 3-East 4-West
26	v1vehicle Maneuver	 Movements essentially straight ahead Backing Changing lanes Overtaking/passing Turning right Turning left 	Existing and to be changed	VEH_MANV_TYPE	VEHICLE	VEH_NUM = 1	01-Turning Left 02-Turning Right 03-Making U-Turn
		 7 - Making U-turn 8 - Entering traffic lane 9 - Leaving traffic lane 10 - Parked 11 - Slowing 					04-Stopped 05-Straight 06-Changing Lanes 07-Backing 08-Parked
	v2vehicle	12 - Stopped in traffic 13 - Negotiating a curve					09-Passing 10-Negotiating a Curve
27	Maneuver	14 - Other 99 – Unknown	Existing and to be changed	VEH_MANV_TYPE	VEHICLE	VEH_NUM = 2	11-Entering/Leaving Parking 12-Entering/Leaving Driveway

		SafetyAnalyst				GDOT	
S No.	SA field name	SA Code	Existing/ To be created	GDOT field Name	Data from table	Criteria for selection	GDOT Code
28	v1vehicle Configuration v2vehicle Configuration	 Passenger car Light truck, only four tires Sport utility vehicle A Motorcycle/Moped Sport utility vehicle Motorcycle/Moped Motor home/recreational vehicle Single-unit truck - 2-axle and GVWR over 10,000 pounds Single-unit truck - 3-or-more axles Truck pulling trailer or trailers Truck tractor (bobtail) Truck tractor/doubles Truck tractor/doubles Truck tractor/doubles Truck tractor/fuples Truck tractor/fuples Truck tractor/fuples Suslarge van - Seats for more than 15 people, including driver Bus - Seats for 7-15 people, including driver Bus - Seats for 7-15 people, including driver Sustency vehicle - Fire, police, ambulance Other 	Existing and to be changed Existing and to be changed	VEH_TYPE_TYPE	VEHICLE	VEH_NUM = 1 VEH_NUM = 2	 01-Passenger Car 02-Pickup Truck 02-Pickup Truck 03-Truck Tractor (Bobtail) 04-Tractor/V/Twin Trailers 05-Tractor W/Twin Trailers 05-Logging Truck 06-Logging Truck 07-Logging Truck 09-Panel Truck 09-Panel Truck 10-Van 11-Utility Passenger Vehicle 12-Vehicle With Trailer 13-Bus 14-Truck Towing House Trailer 13-Bus 14-Truck Recreational Vehicle 15-Ambulance 16-Motorized Recreational Vehicle 17-Motorcycle, Scooter, Minibike 18-Moped 19-Pedalcycle, Bicycle 20-Farm or Construction Equipment 22-Other

		GDOT Code	01-Overturn	02-Fire/Explosion	03-Immersion	04-Jackknife	05-Other Non-Collision	06-Pedestrian	07-Pedalcycle	08-Railway Train	09-Animal	10-Parked Motor Vehicle	11-Motor Vehicle in Motion	12-Motor Vehicle in Motion - In	Other Roadway	13-Other Object (Not Fixed)	14-Deer	15-Impact Attenuator	16-Bridge Pier/Abutment	17-Bridge Parapet End	Note: GDOT code continued on	next row
JΤ	Criteria for	selection																				$VEH_NUM = 1$
GDC	Data from	table																				VEHICLE
		GDOT field Name																				VEH_MHE_TYPE
	Existing/ To be	created																			Existing and to	be changed
SafetyAnalyst		SA Code	1 - Overturn/rollover - Noncollision	2 - Fire/explosion - Noncollision	3 - Immersion - Noncollision	4 - Jackknife - Noncollision	5 - Cargo/equipment loss or shift - Noncollision	6 - Fell/jumped from vehicle - Noncollision	7 - Thrown or falling object - Noncollision	8 - Other noncollision	9 - Unknown noncollision	10 - Pedestrian - Collision	11 - Bicyclist - Collision	12 - Railway vehicle - Collision	13 - Animal - Collision	14 - Motor vehicle in transport - Collision	15 - Parked motor vehicle - Collision	16 - Work zone maintenance equipment - Collision	17 - Other non-fixed object - Collision	18 - Unknown non-fixed object - Collision	19 - Impact attenuator/crash cushion - Collision	Note: SA Code continued on next row
		SA field name																			v1first	Event
_		S No.		_	_	_			_							_	_	_				30

		SafetyAnalyst			GDO	L	
S No.	SA field name	SA Code	Existing/ To be created	GDOT field Name	Data from table	Criteria for selection	GDOT Code
		Note: SA Code continued from previous row 20 - Bridge overhead structure - Collision 21 - Bridge pier or support - Collision 22 - Bridge rail - Collision 23 - Culvert - Collision 24 - Curb - Collision 25 - Ditch - Collision 25 - Ditch - Collision 26 - Embankment - Collision 27 - Guardrail face - Collision 28 - Guardrail end - Collision 29 - Concrete traffic barrier (Jersey barrier) - Collision 30 - Other traffic barrier - Collision 31 - Standing tree - Collision 33 - Highway traffic sign or signpost - Collision 34 - Overhead sign or sign support - Collision 35 - Other post, pole, or support - Collision 36 - Fence - Collision					Note: GDOT code continued form previous row 18-Bridge Rail 19-Guardrail Face 20-Guardrail End 21-Median Barrier 22-Highway Traffic Sign Post 23-Overhead Sign Support 23-Overhead Sign Support 23-Overhead Sign Support 23-Utility Pole 26-Other Post 29-Ditch
		37 - Mailbox - Collision 38 - Other fixed object - Collision					30-Embankment 31-Fence
		39 - Unknown fixed object - Collision					32-Mailbox
	v2first	41 - Other	Existing and to				33-Tree
31	Event	99 – Unknown	be changed	VEH_MHE_TYPE	VEHICLE	$VEH_NUM = 2$	34-Other Fixed Object
	vldriver						
32	DOB	YYYYMMDD	Existing	OCC_DOB	OCCUPANT	$VEH_NUM = 1$	
33	v2driver DOB	YYYYMMDD	Existing	OCC_DOB	OCCUPANT	VEH_NUM = 2	

		AltAccident	
		Mapping	GDOT Code
Sno	Field Name	required??	SA Code
1	agencyID	No	
2	locSystem	No	
			1 SR
			2 CR
			3 L
			7 O
			8 O
			9 O
3	routeType	Yes	Inter-SR
4	routeName	No	
5	county	No	
6	locOffset	No	
7	accidentDate	No	
8	accidentTime	No	
			0 O
			1 K
			2 A
			3 B
9	accidentSeverity1	Yes	4 C
10	numberOfFatalities	No	
11	numberOfInjuries	No	
			A 2
			B 2
			C 2
			F 2
			L 2
			O 2
			P 2
			R 2
			Ramp 5
			Rrx 7
			S 2
			W 1
			Y 1
12	junctionRelationship	Yes	"Blank" 99

			GDOT Code
S no	Field Name	Mapping required??	SA Code
13	DrivewayIndicator	No	
			1 1
			2 3
			3 2
			4 4
14	lightCondition	Yes	5 5
			1 1
			2 2
			3 4
			4 6
			5 5
			6 3
15	weatherCondition	Yes	7 10
			1 1
			22
			3 3
			4 5
			5 10
			6 8
			77
			8 4
16	surfaceCondition	Yes	9 9
			1 24
			2 22
			3 23
			4 25
			5 26
17	collisionType	Yes	6 8
			1 1
			2 4
			3 4
			4 3
			5 3
			6 2
18	environmentCondition	Yes	7 6

		Mapping	GDOT Code SA
Sno	Field Name	required??	Code
			1 1
			2 9
			3 4
			4 6
			6 5
19	roadCondition	Yes	8 11
			VEH_CLASS_TYPE =
20	schoolBus	Yes	4
21	workZone	No	
22	numVehicles	No	
			1 1
			2 99
			3 2
			4 2
			5 3
23	drugInvolved	Yes	6 4
			1 NB
			2 SB
			3 EB
24	v1initialTravelDirection	Yes	4 WB
			1 NB
			2 SB
			3 EB
25	v2initialTravelDirection	Yes	4 WB
			1 6
			2 5
			3 7
			4 12
26	uluopido Monouror	Vac	5 1
20	Viveniciewianeuver	ies	6 3
			7 2
			8 10
			9 4
			10 13
			11 14
27	v2vehicleManeuver	Yes	12 14

		Mapping	GDOT Code
Sno	Field Name	required??	- SA Code
			1 1
			2 2
			3 9
			4 10
			5 11
			6 17
			7 17
			8 6
			9 2
28	v1vehicleConfiguration	Yes	10 14
	0		11 17
			12 17
			13 15
			14 13
			15 16
			16 15
			17 4
			18 4
			19 17
			20 17
			21 3
29	v2vehicleConfiguration	Yes	22 17

		Mapping	GDOT Code
Sno	Field Name	required??	SA Code
			01 1
			02 2
			03 3
			04 4
			05 8
			06 10
			07 11
			08 12
			09 13
			10 15
			11 14
			12 14
			13 17
			14 13
			15 19
30	vlfirstFyont	Ves	16 21
50		105	17 21
			18 22
			19 27
			20 28
			21 29
			22 33
			23 34
			25 32
			26 35
			27 23
			28 24
			29 25
			30 26
			31 36
			32 37
			33 34
31	v2firstEvent	Yes	34 38
32	v1driverDOB	No	
33	v2driverDOB	No	

APPENDIX B: ALTROADWAYSEGMNT FILE

SQL QUERIES, DATA MAPPING AND DATA RECODING

#	Name	SQL	Description	Note
#	Name Create RC_SA Table	SQL CREATE TABLE RC_SA (SA_ID COUNTER, COUNTY Text, ROUTE_TYPE Text, ROUTE_NUM Text, BEG_MEASURE Text, END_MEASURE Text, SECTION_LENGTH Text, DESCRIPTION Text, DISTRICT Text, MAINT_AREA Text, POPULATION Text, INVENTORY_DATE Text, DESIGNATED_WAY Text, TRUCK_ROUTE Text, TRAVEL_WAY Text, RURAL_URAN Text, SPEED_LIMIT Text, FAS_NUM Text, TRUCK_ROUTE_ID Text, CONGRESS_DIST Text, STATE_ROUTE_SEQ Text, ACCESS_CONTROL Text, OPERATION Text, STATE_ROUTE_SEQ Text, ACCESS_CONTROL Text, OPERATION Text, DIV_HWY_SHLDR_TYPE_LFT Text, DIV_HWY_SURF_WIDTH_RT Text, DIV_HWY_SURF_TYPE_LFT Text, DIV_HWY_SURF_WIDTH_RT Text, DIV_HWY_SURF_TYPE_RT Text, DIV_HWY_SHLDR_WIDTH_RT Text, DIV_HWY_SHLDR_TYPE_RT Text, DIV_HWY_SHLDR_WIDTH_RT Text, DIV_HWY_SHLDR_TYPE_RT Text, DIV_HWY_SHLDR_WIDTH_RT Text, DIV_HWY_SHLDR_TYPE_RT Text, DIV_HWY_SHLDR_WIDTH_RT Text, DIV_HWY_SHLDR_TYPE_TEXT Text, DIV_HWY_SHLDR_TYPE Text, UDIV_HWY_SHLDR_TYPE_RT Text, DIV_HWY_SHLDR_TYPE Text, UDIV_HWY_SHLDR_TYPE_RT Text, DIV_HWY_SHLDR_TYPE Text, UDIV_HWY_SHLDR_TYPE_RT Text, UDIV_HWY_SHLDR_TYPE_LFT Text, UDIV_HWY_SHLDR_WIDTH_LFT Text, UDIV_HWY_SHLDR_TYPE_LFT	Description	Note
		Text, UDIV_HWY_SHLDR_WIDTH_RT Text, UDIV_HWY_SHLDR_TYPE_RT Text, AUX_LANE_WIDTH_LFT Text, AUX_LANE_TYPE_LFT Text, AUX_LANE_WIDTH_RT Text, AUX_LANE_TYPE_RT Text, MAINT_YEAR Text, MAINT_TYPE Text, IMPROVE_YEAR Text, FUNC_CLASS Text, TRAFFIC_COUNT_TYPE Text, TRAFFIC_COUNT_YEAR Text, RIGHT_OF_WAY Text, RW_TYPE Text, TVDBER Text, MAINTENANCE_SUR_DES Text, SIDEWALK_LEFT Text, SIDEWALK_RIGHT Text, IMPROVE_TYPE Text, TRUCK_PERCENT Text, TRUCK_PERCENT_TYPE Text, SIGNAL Text, AADT_OLD Text, INTERSECT_ROAD2 Text, S-FUNCLASS_ID Text, DUAL_MAINT_RATING		

Text,ROAD_WIDTH Text,DIVIDED Text,OPEN_TO_TRAFFIC Text,CITY_CODE Text,T_LANES_LEFT Text,T_LANES_RIGHT Text,LAND_DOMAIN Text,RCLINK Text,STEVE_MIN Text,STEVE_MAX Text);5	#	Name	SQL	Description	Note
Text,T_LANES_LEFT Text,T_LANES_RIGHT Text,LAND_DOMAIN Text,RCLINK Text,STEVE_MIN Text,STEVE_MAX Text);S			Text,ROAD_WIDTH Text,DIVIDED Text,OPEN_TO_TRAFFIC Text,CITY_CODE		
Text,STEVE_MIN Text,STEVE_MAX Text);S			Text,T_LANES_LEFT Text,T_LANES_RIGHT Text,LAND_DOMAIN Text,RCLINK		
			Text,STEVE_MIN Text,STEVE_MAX Text);S		

#	Name	SQL	Description	Note
		INSERT INTO RC_SA (COUNTY, ROUTE_TYPE, ROUTE_NUM,		
		DEG_MEASUKE, ENU_MEASUKE, SECTION_LENGTH, DESCKIPTION, DISTRICT MAINIT AREA POPIT ATION INIVENITORY DATE		
		DESIGNATED WAY, TRUCK ROUTE, TRAVEL WAY, RURAL URAN,		
		SPEED_LIMIT, FAS_NUM, TRUCK_ROUTE_ID, CONGRESS_DIST,		
		STATE_ROUTE_SEQ, ACCESS_CONTROL, OPERATION, TOTAL_LANES,		
		SPECIAL_CLASS, DIV_HWY_SHLDR_WIDTH_LFT,		
		DIV_HWY_SHLDR_TYPE_LFT, DIV_HWY_SURF_WIDTH,		
		DIV_HWY_SURF_TYPE, DIV_HWY_SHLDR_WIDTH_RT,		
		DIV_HWY_SHLDR_TYPE_RT, DIV_HWY_MEDIAN_WIDTH,		
		DIV_HWY_MEDIAN_TYPE, DIV_HWY_BARRIER_TYPE,		
101	Insert	UDIV_HWY_SHLDR_WIDTH_LFT, UDIV_HWY_SHLDR_TYPE_LFT,		
	KC_5A	UDIV_HWY_SURFACE_WIDTH, UDIV_HWY_SURFACE_TYPE,		When a county
		UDIV_HWY_SHLDR_WIDTH_RT, UDIV_HWY_SHLDR_TYPE_RT,		dataset other
		AUX_LANE_WIDTH_LFT, AUX_LANE_TYPE_LFT,		than Cobb is
		AUX_LANE_WIDTH_RT, AUX_LANE_TYPE_RT, MAINT_YEAR,		used,
		MAINT_TYPE, IMPROVE_YEAR, FUNC_CLASS, TRAFFIC_COUNT_TYPE,		COBB_RC will
		TRAFFIC_COUNT_YEAR, RIGHT_OF_WAY, RW_TYPE, TC_NUMBER,		need to be
		MAINTENANCE_SUR_DES, SIDEWALK_LEFT, SIDEWALK_RIGHT,		changed in the
		IMPROVE_TYPE, TRUCK_PERCENT, TRUCK_PERCENT_TYPE, SIGNAL,	Copy data	SQL to the
		AADT_OLD, HPMS_ID, PACES_RATING, AADT, INTERSECT_ROAD1,	from	name of the
		INTERSECT_ROAD2, S_FUNCLASS_ID, DUAL_MAINT_RATING,	COBB_RC into	new county
			RC_SA.	table.

#	Name	SQL	Description	Note
		ROAD_WIDTH, DIVIDED, OPEN_TO_TRAFFIC, CITY_CODE,		
		T_LANES_LEFT, T_LANES_RIGHT, LAND_DOMAIN, RCLINK)		
		SELECT COUNTY, ROUTE_TYPE, ROUTE_NUM, BEG_MEASURE,		
		END_MEASURE, SECTION_LENGTH, DESCRIPTION, DISTRICT,		
		MAINT_AREA, POPULATION, INVENTORY_DATE,		
		DESIGNATED_WAY, TRUCK_ROUTE, TRAVEL_WAY, RURAL_URAN,		
		SPEED_LIMIT, FAS_NUM, TRUCK_ROUTE_ID, CONGRESS_DIST,		
		STATE_ROUTE_SEQ, ACCESS_CONTROL, OPERATION, TOTAL_LANES,		
		SPECIAL_CLASS, DIV_HWY_SHLDR_WIDTH_LFT,		
		DIV_HWY_SHLDR_TYPE_LFT, DIV_HWY_SURF_WIDTH,		
101	Insert	DIV_HWY_SURF_TYPE, DIV_HWY_SHLDR_WIDTH_RT,		
101	RC_SA	DIV_HWY_SHLDR_TYPE_RT, DIV_HWY_MEDIAN_WIDTH,		When a county
		DIV_HWY_MEDIAN_TYPE, DIV_HWY_BARRIER_TYPE,		dataset other
		UDIV_HWY_SHLDR_WIDTH_LFT, UDIV_HWY_SHLDR_TYPE_LFT,		than Cobb is
		UDIV_HWY_SURFACE_WIDTH, UDIV_HWY_SURFACE_TYPE,		used,
		UDIV_HWY_SHLDR_WIDTH_RT, UDIV_HWY_SHLDR_TYPE_RT,		COBB_RC will
		AUX_LANE_WIDTH_LFT, AUX_LANE_TYPE_LFT,		need to be
		AUX_LANE_WIDTH_RT, AUX_LANE_TYPE_RT, MAINT_YEAR,		changed in the
		MAINT_TYPE, IMPROVE_YEAR, FUNC_CLASS,	Copy data	SQL to the
		TRAFFIC_COUNT_TYPE, TRAFFIC_COUNT_YEAR, RIGHT_OF_WAY,	from	name of the
		RW_TYPE, TC_NUMBER, MAINTENANCE_SUR_DES, SIDEWALK_LEFT,	COBB_RC into	new county
		SIDEWALK_RIGHT, IMPROVE_TYPE, TRUCK_PERCENT,	RC_SA.	table.

#	Name	SQL	Description	Note
				When a county
				dataset other
				than Cobb is
				used,
	Insert			COBB_RC will
101	RC SA	TRUCK_PERCENT_TYPE, SIGNAL, AADT_OLD, HPMS_ID,		need to be
	1	PACES_RATING, AADT, INTERSECT_ROAD1, INTERSECT_ROAD2,		changed in the
		S_FUNCLASS_ID, DUAL_MAINT_RATING, ROAD_WIDTH, DIVIDED,	Copy data	SQL to the
		OPEN_TO_TRAFFIC, CITY_CODE, T_LANES_LEFT, T_LANES_RIGHT,	from	name of the
		LAND_DOMAIN, RCLINK	COBB_RC into	new county
		FROM COBB_RC;	RC_SA.	table.

#r	Name	SQL	Description	Note
102_0	Alter Table RC_SA	ALTER TABLE RC_SA ALTER COLUMN SA_ID Text(100);	Change the column SA_ID from type COUNTER to Text.	
102_1	Update BEG_MEASURE	UPDATE RC_SA SET RC_SA.BEG_MEASURE = '0.0' WHERE RC_SA.BEG_MEASURE='0' Or RC_SA.BEG_MEASURE='' Or IsNuIl(RC_SA.BEG_MEASURE);	Update BEG_MEASURE to "0.0" where it is missing or it is "0"	
102_2	Update END_MEASURE	UPDATE RC_SA SET RC_SA.END_MEASURE = '0.0' WHERE RC_SA.END_MEASURE='0' Or RC_SA.END_MEASURE='' Or IsNuII(RC_SA.END_MEASURE);	Update END_MEASURE to "0.0" where it is missing or it is "0"	

#	Name	SQL	Description	Note
103	Create ROADSE G_SA Table	CREATE TABLE ROADSEG_SA (SA_ID Text,RTE_TYPE Text, RTE_NAME xt,CNTY_NUM Text, BEG_MLPOST Text,END_MLPOST Text, SEG_LEN xt,DIST_NUM Text, CITY_NUM Text,JURISDICT Text, AREA_TYPE xt,DIST_NUM Text, CITY_NUM THRU1 Text,NUM_THRU2 Text, AUX_LANE1 xt,AUX_LANE2 Text, AVE_LANE_WIDTH Text,NUM_THRU2 Text, AUX_LANE1 xt,AUX_LANE2 Text, AVE_LANE_WIDTH Text,MED_TYPE1 Text, MED_WIDTH xt,SHLDR_TYPE_OUT1 Text, SHLDR_TYPE_IN1 Text,SHLDR_TYPE_OUT2 Text, HLDR_TYPE_IN2 Text,SHLDR_WIDTH_OUT1 Text, SHLDR_WIDTH_IN1 xt,SHLDR_TYPE_OUT1 Text, SHLDR_WIDTH_IN2 Text,ACC_CNTRL Text, ADT_2000 Text,AADT_2001 Text, AADT_2002 Text,AADT_2003 Text, ADT_2004 Text,GRWTH_FCTR Text, PCT_HEAVY Text,POST_SPD Text, PERATION Text,INTRCHG_INFL Text, RD_SURF Text,PED_FAC Text);	Create the table ROADSEG_SA.	
104	Insert ROADSE G_SA	INSERT INTO ROADSEG_SA (SA_ID, RTE_NAME, CNTY_NUM, BEG_MLPOST, END_MLPOST, SEG_LEN, DIST_NUM, CITY_NUM, AREA_TYPE, RDWY_CLASS1, NUM_THRU1, NUM_THRU2, AUX_LANE1, AUX_LANE2, MED_WIDTH, ACC_CNTRL, PCT_HEAVY, POST_SPD, OPERATION, AADT_2003, AADT_2004) SELECT SA_ID, ROUTE_NUM, COUNTY, BEG_MEASURE, END_MEASURE, SECTION_LENGTH, DISTRICT, CITY_CODE, RURAL_URAN, FUNC_CLASS, T_LANES_RIGHT, T_LANES_LEFT, AUX_LANE_TYPE_RT, AUX_LANE_TYPE_LFT, DIV_HWY_MEDIAN_WIDTH, ACCESS_CONTROL, TRUCK_PERCENT, SPEED_LIMIT, OPERATION, AADT_OLD, AADT FROM RC_SA WHERE Not RC_SA.ROUTE_TYPE='6';	Insert all the one-to-one matches from RC_SA into ROADSEG_SA	

#	Name	SQL	Description	Note
105_0	Update RTE_TYPE - Route Num	UPDATE ROADSEG_SA INNER JOIN RC_SA ON ROADSEG_SA.SA_ID=RC_SA.SA_ID SET ROADSEG_SA.RTE_TYPE = right(RC_SA.ROUTE_NUM,2);	Update RTE_TYPE to the right 2 characters of ROUTE_NUM based on a match on SA_ID	
105_1	Update RTE_TYPE - Route Type	UPDATE ROADSEG_SA INNER JOIN RC_SA ON ROADSEG_SA.SA_ID=RC_SA.SA_ID SET ROADSEG_SA.RTE_TYPE = RC_SA.ROUTE_TYPE WHERE Not RC_SA.ROUTE_TYPE=";	Update RTE_TYPE to ROUTE_TYPE when RTE_TYPE is "" based on a match on SA_ID	
105_2	Update RTE_TYPE – Interstate	UPDATE ROADSEG_SA SET ROADSEG_SA.RTE_TYPE = "Inter" WHERE left(ROADSEG_SA.RTE_NAME,1)="4";	Update RTE_TYPE to "Inter" when the first character of RTE_NAME is "4" based on a match on SA_ID	
106_0	Update JUSRIDICT - Route Type	UPDATE ROADSEG_SA INNER JOIN RC_SA ON ROADSEG_SA.SA_ID=RC_SA.SA_ID SET ROADSEG_SA.JURISDICT = RC_SA.ROUTE_TYPE;	Update JURISDICT to ROUTE_TYPE based on a match on SA_ID	
106_1	Update JURISDICT - Designated Way	UPDATE ROADSEG_SA INNER JOIN RC_SA ON ROADSEG_SA.SA_ID=RC_SA.SA_ID SET ROADSEG_SA.JURISDICT = 'F' WHERE RC_SA.DESIGNATED_WAY='3' Or RC_SA.DESIGNATED_WAY='4' Or RC_SA.DESIGNATED_WAY='6' Or RC_SA.DESIGNATED_WAY='6' Or RC_SA.DESIGNATED_WAY='6' Or RC_SA.DESIGNATED_WAY='6' Or	Update JURISDICT to "F" when DESIGNATED_WAY is "3" or "4" or "5" or "6" or "7" based on a match on SA_ID	

##	Name	SQL	Description	Note
107_0	Update AVE_LANE_W IDTH	UPDATE ROADSEG_SA INNER JOIN RC_SA ON ROADSEG_SA.SA_ID=RC_SA.SA_ID SET ROADSEG_SA. AVE_LANE_WIDTH = CStr(CInt(RC_SA.ROAD_WIDTH)/ CInt(RC_SA.TOTAL_LANES)) WHERE RC_SA.TOTAL_LANES \$\$`0' Or Not IsNull(RC_SA.TOTAL_LANES);	Update AVE_LANE WIDTH to ROAD_WIDTH / TOTAL_LANES based on a match on SA_ID	
107_1	Update AVE_LANE_W IDTH - Missing	UPDATE ROADSEG_SA SET ROADSEG_SA.AVE_LANE_ WIDTH = '0' WHERE ROADSEG_ SA.AVE_LANE_WIDTH=" Or IsNull(ROADSEG_SA.AVE_LANE_WIDTH);	Update AVE_LANE_WIDTH to "0" where it is missing	
108_0	Update MED_TYPE1 - Barrier Type	UPDATE ROADSEG_SA INNER JOIN RC_SA ON ROADSEG_ SA.SA_ID=RC_SA.SA_ID SET ROADSEG_SA.MED_TYPE1 = RC_SA.DIV_HWY_BARRIER_TYPE;	Update MED_TYPE_1 to DIV_HWY_BARRIER_TYPE based on a match on SA_ID	
108_1	Update MED_TYPE1 - Median Type	UPDATE ROADSEG_SA INNER JOIN RC_SA ON ROADSEG_SA.SA_ID=RC_SA.SA_ID SET ROADSEG_SA.MED _TYPE1 = 'U' WHERE RC_SA.DIV_HWY _MEDIAN_TYPE='0';	Update MED_TYPE_1 to "U" when DIV_HWY_MEDIAN_TYPE = "0" based on a match on SA_ID	
109_0	Update SHLDR_TYPE_ OUT1 - Udiv	UPDATE ROADSEG_SA INNER JOIN RC_SA ON ROADSEG_SA.SA_ID=RC_SA.SA_ID SET ROADSEG_SA.SHLDR_TYPE_OUT1 = RC_SA.UDIV_HWY_SHLDR_TYPE_RT;	Update SHLDR_TYPE_OUT1 to UDIV_HWY_SHLDR_TYPE_RT based on a match on SA_ID	
109_1	Update SHLDR_TYPE_ OUT1 - Div	UPDATE ROADSEG_SA INNER JOIN RC_SA ON ROADSEG_SA.SA_ID=RC_SA.SA_ID SET ROADSEG_SA.SHLDR_TYPE_OUT1 = RC_SA.DIV_HWY_SHLDR_TYPE_RT WHERE Not RC_SA.DIV_HWY_SHLDR_TYPE_RT=";	Update SHLDR_TYPE_OUT1 to DIV_HWY_SHLDR_TYPE_RT based on a match on SA_ID	

1 #	Name	SQL	Description	Note
	Update	UPDATE ROADSEG_SA INNER JOIN RC_SA ON	Update SHLDR_TYPE_IN1 to	
$110_{-}0$	SHLDR_TYPE_IN1	ROADSEG_SA.SA_ID=RC_SA.SA_ID SET ROADSEG	UDIV_SHLDR_TYPE_RT	
	– Udiv	_SA.SHLDR_TYPE_IN1 = RC_SA.UDIV_HWY_SHLDR_TYPE_RT;	based on a match on SA_ID	
		UPDATE ROADSEG_SA INNER JOIN RC_SA ON ROADSEG_		
110.1	CPUAIE CULI DD TVDE IN1	SA.SA_ID=RC_SA.SA_ID SET ROADSEG_SA.SHLDR_TYPE_IN1	Update SHLDR_TYPE_IN1 to	
1_011		= RC_SA.DIV_HWY_SHLDR_TYPE_RT	DIV_SHLDR_TYPE_RT based	
	- NIU	WHERE Not RC_SA.DIV_HWY_SHLDR_TYPE_RT=";	on a match on SA_ID	
	Update	UPDATE ROADSEG_SA INNER JOIN RC_SA ON ROADSEG_	Update SHLDR_TYPE_OUT2	
111_0	SHLDR_TYPE_OU	SA.SA_ID=RC_SA.SA_ID SET ROADSEG_SA.SHLDR_	to UDIV_SHLDR_TYPE_LFT	
	T2 - Udiv	TYPE_OUT2 = RC_SA.UDIV_HWY_SHLDR_TYPE_LFT;	based on a match on SA_ID	
		UPDATE ROADSEG_SA INNER JOIN RC_SA ON ROADSEG_		
	CPUAIE CUT DD TVDE OLI	SA.SA_ID=RC_SA.SA_ID SET ROADSEG_SA.SHLDR	Update SHLDR_TYPE_OUT2	
1-111		_TYPE_OUT2 = RC_SA.DIV_HWY_SHLDR_TYPE_LFT	to DIV_SHLDR_TYPE_LFT	
	AIU - 21	WHERE Not RC_SA.DIV_HWY_SHLDR_TYPE_LFT=";	based on a match on SA_ID	
	Update	UPDATE ROADSEG_SA INNER JOIN RC_SA ON ROADSEG	Update SHLDR_TYPE_IN2 to	
112_0	SHLDR_TYPE_IN2	SA.SA_ID=RC_SA.SA_ID SET ROADSEG_SA.SHLDR_TYPE_IN2	UDIV_HWY_SHLDR_TYPE_L	
	- Udiv	= RC_SA.UDIV_HWY_SHLDR_TYPE_LFT;	FT based on a match on SA_ID	
		UPDATE ROADSEG_SA INNER JOIN RC_SA ON		
	Update	ROADSEG_SA.SA_ID=RC_SA.SA_ID SET		
112_{-1}	SHLDR_TYPE_IN2	ROADSEG_SA.SHLDR_TYPE_IN2 =	Update SHLDR_TYPE_IN2 to	
	- Div	RC_SA.DIV_HWY_SHLDR_TYPE_LFT	DIV_HWY_SHLDR_TYPE_LF	
		WHERE Not RC_SA.DIV_HWY_SHLDR_TYPE_LFT=";	T based on a match on SA_ID	

#	Name	TOS	Description	Note
113_0	Update SHLDR_WIDTH _OUT1 - Udiv	UPDATE ROADSEG_SA INNER JOIN RC_SA ON ROADSEG_SA.SA_ID=RC_SA.SA_ID SET ROADSEG _SA.SHLDR_WIDTH_OUT1 = RC_SA.UDIV_HWY SHLDR_WIDTH_RT:	Update SHLDR_WIDTH _OUT1 to UDIV_HWY _SHLDR_WIDTH_RT based on a match on SA_ID	
113_1	Update SHLDR_WIDTH _OUT1 - Div	UPDATE ROADSEG_SA INNER JOIN RC_SA ON ROADSEG_SA.SA_ID=RC_SA.SA_ID SET ROADSEG_SA.SHLDR_WIDTH_OUT1 = RC_SA.DIV_HWY_SHLDR_WIDTH_RT WHERE Not RC_SA.DIV_HWY_SHLDR_WIDTH_RT=00';	Update SHLDR_WIDTH_OUT1 to DIV_HWY_SHLDR_WIDT H_RT based on a match on SA_ID	
114_0	Update SHLDR_WIDTH _IN1 - Udiv	UPDATE ROADSEG_SA INNER JOIN RC_SA ON ROADSEG_SA.SA_ID=RC_SA.SA_ID SET ROADSEG_SA.SHLDR_WIDTH_IN1 = RC_SA.UDIV_HWY_SHLDR_WIDTH_RT;	Update SHLDR_WIDTH_IN1 to UDIV_HWY_SHLDR_ WIDTH_RT based on a match on SA_ID	
114_1	Update SHLDR_WIDTH _IN1 - Div	UPDATE ROADSEG_SA INNER JOIN RC_SA ON ROADSEG_SA.SA_ID=RC_SA.SA_ID SET ROADSEG_SA.SHLDR_WIDTH_IN1 = RC_SA.DIV_HWY_SHLDR_WIDTH_RT WHERE Not RC_SA.DIV_HWY_SHLDR_WIDTH_RT='00';	Update SHLDR_WIDTH_IN1 to DIV_HWY_SHLDR_WIDT H_RT based on a match on SA_ID	

#	Name	IQL	Description	Note
C L T	Update Update	UPDATE ROADSEG_SA INNER JOIN RC_SA ON ROADSEG_SA.SA_ID=RC_SA.SA_ID SET	Update SHLDR_WIDTH _OUT2 to UDIV_HWY_	
0_611		ROADSEG_SA.SHLDR_WIDTH_OUT2 =	SHLDR_WIDTH_LFT based	
	U 12 - UUIV	RC_SA.UDIV_HWY_SHLDR_WIDTH_LFT;	on a match on SA_ID	
		UPDATE ROADSEG_SA INNER JOIN RC_SA ON		
	IIndato	ROADSEG_SA.SA_ID=RC_SA.SA_ID SET	Update	
115	ориане сти по митити О	ROADSEG_SA.SHLDR_WIDTH_OUT2 =	SHLDR_WIDTH_OUT2 to	
1 ⁻ C11		RC_SA.DIV_HWY_SHLDR_WIDTH_LFT	DIV_HWY_SHLDR_WIDT	
	VIG - 210	WHERE Not	H_LFT based on a match on	
		RC_SA.DIV_HWY_SHLDR_WIDTH_LFT='00';	SA_ID	
	Update	UPDATE ROADSEG_SA INNER JOIN RC_SA ON	Update INTRCHG_INFL to	
117_0	INTRCHG_INFL -	ROADSEG_SA.SA_ID=RC_SA.SA_ID SET	"N" based on a match on	
	Z	ROADSEG_SA.INTRCHG_INFL = 'N';	SA_ID	
			Update INTRCHG_INFL to	
	Update	UPDATE ROADSEG_SA INNER JOIN RC_SA ON	"Y" when the left 2	
117_{-1}	INTRCHG_INFL -	ROADSEG_SA.SA_ID=RC_SA.SA_ID SET	characters of	
	RP	ROADSEG_SA.INTRCHG_INFL = 'Y'	DESCRIPTION = "RP" based	
		WHERE left(RC_SA.DESCRIPTION,2)='RP';	on a match on SA_ID	

#	Name	TOS	Description	Note
		UPDATE ROADSEG_SA INNER JOIN RC_SA ON		
118 0	Update RD_SURF –	ROADSEG SA.RD SURF =	DIV HWY SURF TYPE	
l	DIV	RC_SA.DIV_HWY_SURF_TYPE	based on a match on	
		WHERE Not RC_SA.DIV_HWY_SURF_TYPE=";	SA_ID	
		UPDATE ROADSEG_SA INNER JOIN RC_SA ON		
		ROADSEG_SA.SA_ID=RC_SA.SA_ID SET	Update RD_SURF to	
118_{-1}		ROADSEG_SA.RD_SURF =	UDIV_HWY_SURF_TYPE	
	UalV	RC_SA.UDIV_HWY_SURFACE_TYPE	based on a match on	
		WHERE Not RC_SA.UDIV_HWY_SURFACE_TYPE=";	SA_ID	
	IIndate PED FAC -	UPDATE ROADSEG_SA INNER JOIN RC_SA ON	Update PED_FAC to	
$119_{-}0$		ROADSEG_SA.SA_ID=RC_SA.SA_ID SET	SIDEWALK_LEFT based	
		ROADSEG_SA.PED_FAC = RC_SA.SIDEWALK_LEFT;	on a match on SA_ID	
		UPDATE ROADSEG_SA INNER JOIN RC_SA ON		
119 1	Update PED_FAC -	ROADSEG_SA.SA_ID=RC_SA.SA_ID SET	Update PED_FAC to	
	Right	ROADSEG_SA.PED_FAC = RC_SA.SIDEWALK_RIGHT	SIDEWALK_RIGHT based	
		WHERE Not RC_SA.SIDEWALK_RIGHT=";	on a match on SA_ID	
	1 Indate	UPDATE ROADSEG_SA SET		
	Upuale	ROADSEG_SA.AVE_LANE_WIDTH = '0'	Update	
N7T	AVE_LANE_WIUIN blanlo	WHERE ROADSEG_SA.AVE_LANE_WIDTH=" Or	AVE_LANE_WIDTH to "0"	
	DIGUERS	IsNull(ROADSEG_SA.AVE_LANE_WIDTH);	where it is missing	

#	Name	TQ2	Description	Note
		UPDATE ROADSEG_SA INNER JOIN AADT ON		
		(ROADSEG_SA.RTE_NAME=AADT.ADT_ROUTE_IDE		
		NTIFIER) AND		
		(ROADSEG_SA.CNTY_NUM=AADT.ADT_COUNTY_I		
		DENTIFIER) AND		
121	Update AADT_2002	(Clnt(ROADSEG_SA.BEG_MLPOST)>=AADT.ADT_BE		
		G_MILELOG) AND		
		(Chht(ROADSEG_SA.END_MLPOST)<=AADT.ADT_EN	Update AADT_2002 to	
		D_MILELOG) SET ROADSEG_SA.AADT_2002 =	ADT_ADT_COUNT based	
		AADT.ADT_ADT_COUNT	on matches with AADT	
		WHERE AADT.ADT_YEAR='2002';	table	
		UPDATE ROADSEG_SA INNER JOIN AADT ON		
		(Clnt(ROADSEG_SA.END_MLPOST)<=AADT.ADT_EN		
		D_MILELOG) AND		
		(Chnt(ROADSEG_SA.BEG_MLPOST)>=AADT.ADT_BE		
		G_MILELOG) AND		
122	Update AADT_2001	(ROADSEG_SA.CNTY_NUM=AADT.ADT_COUNTY_I		
		DENTIFIER) AND		
		(ROADSEG_SA.RTE_NAME=AADT.ADT_ROUTE_IDE	Update AADT_2001 to	
		NTIFIER) SET ROADSEG_SA.AADT_2001 =	ADT_ADT_COUNT based	
		AADT.ADT_ADT_COUNT	on matches with AADT	
		WHERE AADT.ADT_YEAR='2001';	table	

#	Name	TQ2	Description	Note
123	Update AADT_2000	UPDATE ROADSEG_SA INNER JOIN AADT ON (Chnt(ROADSEG_SA.END_MLPOST)<=AADT.ADT_EN D_MILELOG) AND (Chnt(ROADSEG_SA.BEG_MLPOST)>=AADT.ADT_BE G_MILELOG) AND (ROADSEG_SA.CNTY_NUM=AADT.ADT_COUNTY_I (ROADSEG_SA.CNTY_NUM=AADT.ADT_COUNTY_I DENTIFIER) AND (ROADSEG_SA.RTE_NAME=AADT.ADT_ROUTE_IDE NTIFIER) SET ROADSEG_SA.AADT_2000 = AADT.ADT_ADT_COUNT WHERE AADT.ADT_YEAR='2000';	Update AADT_2000 to ADT_ADT_COUNT based on matches with AADT table	
124	Update SEG_LEN	UPDATE ROADSEG_SA SET ROADSEG_SA.SEG_LEN = CStr(Round(CDbl(ROADSEG_SA.END_MLPOST)- CDbl(ROADSEG_SA.BEG_MLPOST),4));	Update SEG_LEN	

		SafetyAnalyst		GDOT			
S No.	SA field name	SA Code	Existing/ To be created	GDOT field Name	Data from table	Criteria for selection	GDOT Code
-	agencyID	unique number for each segment (18 digits)	Existing/To be created	RCLINK, BEG_MEASURE, END_MEASURE	RC Cobb	I	
	7	A - Route/Milenoet	Ď	1	1		
		B - Route/County/Milepost					
		C - Route/Section/Distance					
2	locSystem	D - Section Distance	To be created	ı	ı	I	I
		I - Interstate					
		US - US route					
		SR - State route					
		BR - Business route					0-Accident Not
		BL - Business loop					Located
		SP - Spur route					1-State Route
		CR - County road					2-County Road
		TR - Township road					3-City Street
		L - Local road					8-Public Road
		O - Other					9-Collector-
3	routeType	X – Unknown	Existing and to be changed	LOC_ROUTE_TYPE	LOCATION	1	Distributor
4	routeName	# or name of the route	To be created	LOC_ROUTE_IDENTIFIER + LOC_ROUTE_SUFFIX	LOCATION	1	1
5	county	county number	Existing	Accident County	ACCIDENT		I
9	startOffset	Start Measure of the segment	Existing	BEG_MEASURE	RC_Cobb	-	-
7	endOffset	End Measure of the segment	Existing	END_MEASURE	RC_Cobb	I	I
8	segmentLength	Length of the segment	Existing	SECTION_LENGTH	RC_Cobb	-	-
6	district	District in which the segment is located	Existing	DISTRICT	RC_Cobb	I	
10	city	City in which the segment is located	Existing	CITY_CODE	RC_Cobb	I	I
							1 State Route
							2 County Road
		1 - Federal maintained					3 City Street
		2 - State maintained					4 Col Road
		3 - County maintained				JURISDICTIO	5 Unofficial Road
		6 - Township maintained				N = "F", if	6 Ramp
		4 - Local maintained				DESIGNATE	7 Private Road
		5 - Other maintained		ROUTE_TYPE or		$D_WAY = 3 \text{ or}$	8 Public Road
11	jurisdiction	99 – Unknown	To be created	DESIGNATED_WAY	RC_Cobb	4 or 5 or 6 or 7	9 Collector

		SafetyAnalyst		GDOT			
					Data from	Criteria for	
S No.	SA field name	SA Code	Existing/ To be created	GDOT field Name	table	selection	GDOT Code
		U - Urban					
		R - Rural					7 – Rural
12	areaType	X – Unknown	Existing and to be changed	RURAL_URAN	RC_Cobb	ı	8 – Urban
		1 - Principal arterial-interstate					11-Urban-Interstate
		2 - Principal arterial-other freeway or expressway					Principal Arterial
		3 - Principal arterial-other					14-Urban Principal
		4 - Minor arterial					Arterial
		5 - Major Collector					16-Urban-Minor
		6 - Minor Collector					Arterial Street
		7 - Local					17-Urban-Collector
		0 - Other					Street
13	roadwayClass1	99 - Unknown	Existing and to be changed	FUNC_CLASS	RC_Cobb	ı	19-Urban-Local
14	d1numThruLane	Total number of thru lanes in direction 1	Existing	T_LANES_LEFT	RC_Cobb	ı	ı
15	d2numThruLane	Total number of thru lanes in direction 1	Existing	T_LANES_RIGHT	RC_Cobb	I	ı
		1 - Rigid barrier system (i.e., concrete)					
		2 - Semi - rigid barrier system (i.e., box beam, W - beam					
		strong post, etc.)					
		3 - Flexible barrier system (i.e., cable, W - beam weak					
		post, etc.)					0-Undivided Road
		4 - Raised median with curb					1-Grass
		5 - Depressed median					2-Soil, Stone
		6 - Flush paved median [at least 4 ft in width]					3-Park, Business
		7 - HOV lane(s)					4-Couplet
		8 - Railroad or rapid transit					5-Concrete
		9 - Other divided					6-Other
		0 - Undivided					7-Roadway
		98 - Not applicable					Separated by Barrier
16	medianType1	99 – Unknown	Existing and to be changed	MEDIAN_TYPE	RC_Cobb	I	Only
17	medianWidth		Existing	DIV_HWY_MEDIAN_WIDTH	RC_Cobb	I	1

	SafetyAnalyst			GDO	Т	
				Data from	Criteria for	
Code		Existing/ To be created	GDOT field Name	table	selection	GDOT Code
						G- Grass or Sod
						S- Gravel or Stone
		Existing and to be changed	DIV HWY SHLDR TYPE RT	RC Cobb	I	F- Bit. Surf. Treatment (Low)
						I- Bit. Conc. (High)
						J- Portland Cement (High)
						K- Curb and Gutter (Width of
						the gutter is not coded.
		Existing and to be changed	DIV_HWY_SHLDR_TYPE_RT	RC_Cobb	ı	Always code 00C.)
						N- No Identifiable Shoulder or
						Curb. All of roadbed used as
						Roadway (Soil or Gravel
Paved						Road). Also if less than 1 foot
Composi	te	Existing and to be changed	DIV HWY SHLDR TYPE LT	RC Cobb	ı	paved road.
Gravel		D				D- Gutter (only)
Turf						O- Bit. Conc. (High) with curb
Curb						and gutter
No shou	lder					P- Bit. Surface treatment (Low)
Not ap	plicable					with curb and gutter
- Unkno	UM	Existing and to be changed	DIV_HWY_SHLDR_TYPE_LT	RC_Cobb	ı	C- Curb only

		Mapping	GDOT Code SA
Sno	Field Name	required??	Code
1	agencyID	No	
2	locSystem	No	
			1 SR
			2 CR
			3 L
			7 O
			8 O
2		N	9 ()
3	routeType	Yes	Inter SK
4	routeName	No	
5	county	No	
6	startOffset	No	
7	endOffset	No	
8	segmentLength	No	
9	district	No	
10	city	No	
			1 2
			2 3
			3 4
			4 4
			5 98
			7 5
			8 1
11	iurisdiction	Voc	9 1 E 1
11	julisaletion	105	T T
10	ана а Т ана а	Vee	7 K
12	area i ype	res	8 U
			11 1
			16 4
			17 5
13	roadwayClass1	Yes	19 7
14	d1numThruLane	No	
15	d2numThruLane	No	
16	medianType1		
17	medianWidth	No	

		Mapping	GDOT Code SA
	Field Name	required??	Code
			F 1
			I 1
18	d1shoulderTypeOut	Yes	J 1
			D 1
			S 3
19	d1shoulderTypeIn	Yes	G 4
			C 5
20	d2shoulderTypeOut	Yes	O 5
20		105	Р 5
			К 5
21	d2shoulderTypeIn	Yes	N 6
22	d1avgShoulderWidthOut	No	
23	d1avgShoulderWidthIn	No	
24	d2avgShoulderWidthOut	No	
25	d2avgShoulderWidthIn	No	
			F 1
			P 2
26	accessControl	Yes	U 3
27	growthFactor	No	
28	postedSpeed	No	
			1 1
			2 2
29	operationWay	Yes	0 99
30	interchangeInfluence	No	

APPENDIX C: ALTSEGMNTTRAFFIC FILE

DATA MAPPING AND DATA RECODING

	Sa	ıfetyAnalyst			GDOT		
S No.	SA field name	SA Code	Existing/ To be created	GDOT field Name	Data from table	Criteria for selection	GDOT Code
	agencyID	unique number for each segment	To be created	RCLINK, Beg Milepost, End Milepost	RC_Cobb		
						County = "067" RC_Cobb.BegMlpost>=AADT .BegMlpost AND RC_Cobb.EndMlpost>=AADT	
2	calendarYear	Year for which traffic data is collected	Existing	ADT_YEAR	AADT	.EndMlpost	-
3	aadtVPD	AADT for the year mentioned	Existing	ADT_ADT_COUNT	AADT	I	I
4	percentHeavyVehicles			Not required for initial ana	lysis		
5	peakHourlyVolume			Not required for initial ana	ılysis		
9	Comment			Not required for initial ana	lysis		

		AltSegmentTraffic	
			GDOT Code SA
Sno	Field Name	Mapping required??	Code
1	agencyID	No	
2	calendarYear	No	
3	aadtVPD	No	
4	percentHeavyVehicles	No	
5	peakHourlyVolume	No	
6	comment	No	
APPENDIX D: SafetyAnalyst ANALYTICAL TOOL: SCREENSHOT OF THE STEPS

Select Network screening method

nter Basic/Peak screening parameters					
This panel contains the first level of inputs for executing the basic network screening methodology using the peak searching approach for roadway segments.	Accident Severity Levels Total accidents Fatal and severe injury accidents Fatal and all injury accidents Property damage only accidents Equivalent property-damage-only accidents Potential for Safety Improvement Type Excess accident frequency Excess accident frequency Analysis Period All available years				
	From:	2004			
	To	2008			
	Area Weights				
	Rural :	1.00			
	Urban :	1.00			

Select Accident Severity Level, PSI type, Analysis period and Area weights

	Assident Executional insiting Values	
This panel contains the second level of inputs for executing the basic network screening methodology using the peak searching approach for roadway	Roadway segments (acc/mi/yr):	5.000
segments.	Intersections (acc/yr):	
	Ramps.(aco/yr):	
	EPDO Weights by Severity	
	Fatal	
	Incapacitating Inury :	
	Serious Intury .	
	Minor Injury :	
	Property damage only :	
	Coefficient of Variation	
	Roadway segments :	0.
	Ramps :	

Select limiting value for accident frequency and the coefficient of variation

This panel contains the deployment-specific choices for the accident attributes that can be used for the	cident Tymes
screening.	Accident Month Accident Type and Manner of Collision Day of Week Driveway Indicator Accounting Circumstances, Environment Accounting Circumstances, Rovironment Light Contributing Circumstances, Road Contributing Circumstances, Roa

Select the accident type to be analyzed

Select attributes for Accident type and manner of collision

This is the final panel for this analysis, it provides on this panel includes specific details associated	a summary of the user with the respective ana	inputs to run the analysis a lysis and general informatio	nd the Run button to start the ar n. Press the Back button to cha	alysis. The information presented nge parameters.
ummary of screening parameters	.	1977 - C		
Screening Type: Basic Network Screening (w	ith Peak Searching (on roadway segments ar	nd CV test)	-
Accident Severity Level: Total accidents				
Potential for Safety Improvement (PSI) Type: Exp	ected accident frequ	ency		
Area Weight - Rural: 1.0				100
Area Weight - Urban: 1.0				
Accident Frequency Limit - Roadway segments (a	acc/mi/yr): 5.0			-
lun Status				1.00
Export Results to Spreadsheet File				

Final step in the "Network Screening" module

APPENDIX E: SafetyAnalyst NETWORK SCREENING SAMPLE REPORT

SafetyAnalyst

Network Screening Report

Jun 11, 2008

Disclaimer

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its content or use thereof. This document does not constitute a standard, specification, or regulation.

The United States Government does not endorse products or manufacturers. Trade and manufacturers' names may appear in this document only because they are considered essential to the objective of the document.

Limited Warranty and Limitations of Remedies

This software product is provided "as-is," without warranty of any kind-either expressed or implied (but not limited to the implied warranties of merchantability and fitness for a particular purpose). The FHWA and distributor do not warrant that the functions contained in the software will meet the end-user's requirements or that the operation of the software will be uninterrupted and error-free.

Under no circumstances will the FHWA or the distributor be liable to the end-user for any damages or claimed lost profits, lost savings, or other incidental or consequential damages rising out of the use or inability to use the software (even if these organizations have been advised of the possibility of such damages), or for any claim by any other party.

Notice

The use and testing of the SafetyAnalyst software is being done strictly on a voluntary basis. In exchange for provision of SafetyAnalyst, the user agrees that the Federal Highway Administration (FHWA), U.S. Department of Transportation and any other agency of the Federal Government shall not be responsible for any errors, damage or other liability that may result from any and all use of the software, including installation and testing of the software. The user further agrees to hold the FHWA and the Federal Government harmless from any resulting liability. The user agrees that this hold harmless provision shall flow to any person to whom or any entity to which the user provides the SafetyAnalyst software. It is the user's full responsibility to inform any person to whom or any entity to which it provides the SafetyAnalyst software of this hold harmless provision.

Caution

The Analytical Tool processing modules in this version of SafetyAnalyst have not been fully conformance tested. Results from these modules, although representative for the types of analysis performed, should not be considered usable for decision making.

1. Network Screening Report **Basic Network Screening** packaged: Apr 18, 2008 3:25 PMSafetyAnalyst: v1.4.11, on sa_dev.systems.de.ittind.com Data set title: 0601GDOT Data set comment: own SPFs Data set created: Jun 1, 2008 1:29 PM Roadway Segments: Peak Searching Accident Severity Level: Fatal and all injury accidents Site Types: Segments Accident Types: Accident Type and Manner of Collision; Rear-end Potential for Safety Improvement Using: Expected accident frequency Analysis Period: From 2004 To 2006 CV limit (roadway segments): 0.5 Area Weights (Rural): 1.0 Area Weights (Urban): 1.0 Limiting Value (Roadway Segments): 5.0 acc/mi/yr

Ad	dtl. Wn do	W Of	Intr	st																		2.74	ı	2.84
		a N	L L	k					1					2					З					4
ent		# of	Exp	Inj					0					0					0					0
rovem		#. Of	Exp	Fat					0					0					0					0
fety Imp			End	Loc					15.67					5.49					2.57					2.74
al for Sat			Start	Loc					15.66					5.48					2.56					2.64
Potentia				Var					5,236					7,015					4,091					253
Highest	ISd	Exp Acc	Freq						229.3					187.6					143.7					76.50
on with		Pred	Acc	Freq					3.668					16.66					10.98					4.159
Locatic		Ave	Obs	Acc					333.33					166.66					166.66					76.66
	Avg Obs	Acc for	Entire	Site					333.33					166.66					166.66					22.76
		Site	End	Loc					15.67					5.49					2.57					2.95
		Site	Start	Loc					15.66					5.48					2.56					2.54
				Rte				SR104	0100				SR104	0100				SR104	0100				SR100	0300
				Cnty					1067					1067					1067					1067
			Site	Subtype	Seg/Rur;	Fwy in	intchng	area (6+	ln)	Seg/Urb	; Fwy in	intchng	area (8+	ln)	Seg/Rur;	Fwy in	intchng	area (6+	ln)	Seg/Urb	 Multila	ne	undivid	ed
				Site Type					Segment					Segment					Segment					Segment
				IJ				10401001	5661567				10401000	5480549				10401000	2560257		10003000	2540256	10003000	2890295

Table 1 Site Data Summary

- * Units for Observed, Predicted and Expected Accident Frequency
 - Roadway Segments (acc/mi/yr)
 - Intersections (acc/yr)
 - Ramps (acc/yr)
- ** Units for Variance
 - Roadway Segments (acc/mi**2/yr)
 - Intersections (acc/yr)
 - Ramps (acc/yr)

APPENDIX F: SAS CODE

DM 'LOG;CLEAR;OUT;CLEAR;'; **OPTIONS** NODATE NONUMBER LS=90 PS=80; DATA alluri; INFILE 'U:\profile.cu\My Documents\My SAS Files\0514_103_152_SAS.csv' delimiter= ',' firstobs=2; INPUT ID SiteSubtype \$ SiteStLoc SiteEndLoc length logADT logLengthYrs TotAcc ; Proc print; PROC GENMOD; BY SiteSubtype; MODEL TotAcc=logADT / LINK = Log DIST = NEGBIN OFFSET = logLengthYrs; run;quit;

APPENDIX G: SAS OUTPUT

The SAS System (years 2004-2006)

------ SiteSubtype=103 ------

The GENMOD Procedure

Model Information

Data Set	WORK.ALLURI
Distribution	Negative Binomial
Link Function	Log
Dependent Variable	TotAcc
Offset Variable	logLengthYrs
Number of Observations	Read 200

Number of Observations Used 200

Criteria For Assessing Goodness Of Fit

Criterion	DF	Value	Value/DF
Deviance	198	206.5289	1.0431
Scaled Deviance	198	206.5289	1.0431
Pearson Chi-Square	198	391.7024	1.9783
Scaled Pearson X2	198	391.7024	1.9783
Log Likelihood	13462.7995		
Algorithm converged.			

Analysis Of Parameter Estimates

		Standard	Wald	95%	Confidence		Pr>
Parameter	DF	Estimate	Error	Limits		Chi-Sqr	Chi Sq
Intercept	1	-7.0809	1.2059	-9.4445	-4.7173	34.48	<.0001
logADT	1	1.0023	0.1225	0.7621	1.2425	66.90	<.0001
Dispersion	1	3.6284	0.4048	2.8349	4.4218		

The SAS System (years 2004-1006)

----- SiteSubtype=152 -----

The GENMOD Procedure

Model Information

Data Set	WORK.ALLURI
Distribution	Negative Binomial
Link Function	Log
Dependent Variable	TotAcc
Offset Variable	logLengthYrs

Number of Observations Read136Number of Observations Used136Criteria For Assessing Goodness Of Fit

Criterion	DF	Value	Value/DF
Deviance	134	158.8497	1.1854
Scaled Deviance	134	158.8497	1.1854
Pearson Chi-Square	134	196.1335	1.4637
Scaled Pearson X2	134	196.1335	1.4637
Log Likelihood	19802.4904		
Algorithm converged.			

Analysis Of Parameter Estimates

							Pr>
			Wald	95%	Confidence		Chi
Parameter	DF	Standard Estimate	Error	Limits		Chi-Sqr	Sq 0.000
Intercept	1	-3.9323	1.0906	-6.0698	-0.2194	13.00	3 <.000
logADT Dispersio	1	0.7409	0.1089	0.5275	0.9544	46.29	1
n	1	1.8119	0.2194	1.3819	2.2420		

The SAS System (Year 2004)

----- SiteSubtype=103 -----

The GENMOD Procedure

Model Information

Data Set	WORK.ALLURI
Distribution	Negative Binomial
Link Function	Log
Dependent Variable	TotAcc
Offset Variable	logLengthYrs
Number of Observations R	ead 200

Number of Observations Used 200

Criteria For Assessing Goodness Of Fit

Criterion	DF	Value	Value/DF
Deviance	198	198.3593	1.0018
Scaled Deviance	198	198.3593	1.0018
Pearson Chi-Square	198	386.6234	1.9526
Scaled Pearson X2	198	386.6234	1.9526
Log Likelihood	3991.8579		
Algorithm converged.			

Analysis Of Parameter Estimates

Parameter	DF	Standard Estimato	Wald Error	95% Limite	Confidence	Chi- Sar	Pr> Chi Sa
1 arameter	DI	Standard Estimate	LIIOI	Lillins		Sqi	Ciii 5q
Intercept	1	-8.2320	1.3948	-10.9657	-5.4983	34.83	<.0001
logADT	1	1.1288	0.1398	0.8547	1.4029	65.15	<.0001
Dispersion	1	2.4831	0.3104	1.8747	3.0914		

The SAS System (Year 2004)

----- SiteSubtype=152 -----

The GENMOD Procedure

Model Information

Data Set	WORK.ALLURI
Distribution	Negative Binomial
Link Function	Log
Dependent Variable	TotAcc
Offset Variable	logLengthYrs

Number of Observations Read	136
Number of Observations Used	136

Criteria For Assessing Goodness Of Fit

Criterion	DF	Value	Value/DF
Deviance	134	149.2595	1.1139
Scaled Deviance	134	149.2595	1.1139
Pearson Chi-Square	134	162.4551	1.2124
Scaled Pearson X2	134	162.4551	1.2124
Log Likelihood	4664.2976		
Algorithm converged.			

Analysis Of Parameter Estimates

Parameter	DF	Standard Estimate	Wald Error	95% Limits	Confidence	Chi- Sqr	Pr> Chi Sq
Intercept	1	-3.4535	1.2027	-5.8107	-1.0963	8.25	0.0041
logADT	1	0.7047	0.1205	0.4685	0.9408	34.21	<.0001
Dispersion	1	2.0431	0.2767	1.5008	2.5855		

The SAS System (Year 2005)

------ SiteSubtype=103 ------

The GENMOD Procedure

Model Information

Data Set	WORK.ALLURI
Distribution	Negative Binomial
Link Function	Log
Dependent Variable	TotAcc
Offset Variable	logLengthYrs

Number of Observations Read	200
Number of Observations Used	200

Criteria For Assessing Goodness Of Fit

Criterion	DF	Value	Value/DF
Deviance	198	197.1298	0.9956
Scaled Deviance	198	197.1298	0.9956
Pearson Chi-Square	198	527.4591	2.6639
Scaled Pearson X2	198	527.4591	2.6639
Log Likelihood	3272.5412		
Algorithm converged.			

Analysis Of Parameter Estimates

Parameter	DF	Standard Estimate	Wald Error	95% Limits	Confidence	Chi- Sqr	Pr> Chi Sq
Intercept	1	-8.6193	1.3415	-11.2486	-5.9899	41.28	<.0001
logADT	1	1.1541	0.1340	0.8915	1.4168	74.17	<.0001
Dispersion	1	2.2198	0.2705	1.6897	2.7499		

The SAS System (Year 2005)

------ SiteSubtype=152 ------

The GENMOD Procedure

Model Information

Data Set	WORK.ALLURI
Distribution	Negative Binomial
Link Function	Log
Dependent Variable	TotAcc
Offset Variable	logLengthYrs

Number of Observations Read	136
Number of Observations Used	136

Criteria For Assessing Goodness Of Fit

Criterion	DF	Value	Value/DF
Deviance	134	149.0491	1.1123
Scaled Deviance	134	149.0491	1.1123
Pearson Chi-Square	134	194.5024	1.4515
Scaled Pearson X2	134	194.5024	1.4515
Log Likelihood	4574.5887		
Algorithm converged.			

Analysis Of Parameter Estimates

Parameter	DF	Standard Estimate	Wald Error	95% Limits	Confidence	Chi- Sqr	Pr> Chi Sq
Intercept	1	-3.4164	1.1696	-5.7087	-1.1241	8.53	0.0035
logADT	1	0.6862	0.1163	0.4582	0.9142	34.80	<.0001
Dispersion	1	1.8224	0.2524	1.3277	2.3172		

The SAS System (Year 2006)

------ SiteSubtype=103 -----

The GENMOD Procedure

Model Information

Data Set	WORK.ALLURI
Distribution	Negative Binomial
Link Function	Log
Dependent Variable	TotAcc
Offset Variable	logLengthYrs

Number of Observations Read	200
Number of Observations Used	200

Criteria For Assessing Goodness Of Fit

Criterion	DF	Value	Value/DF
Deviance	198	202.0204	1.0203
Scaled Deviance	198	202.0204	1.0203
Pearson Chi-Square	198	506.9512	2.5604
Scaled Pearson X2	198	506.9512	2.5604
Log Likelihood	3267.6993		
Algorithm converged.			

Analysis Of Parameter Estimates

Parameter	DF	Standard Estimate	Wald Error	95% Limits	Confidence	Chi- Sqr	Pr> Chi Sq
Intercept	1	-7.3085	1.2840	-9.8250	-4.7919	32.40	<.0001
logADT	1	1.0237	0.1280	0.7729	1.2745	63.98	<.0001
Dispersion	1	2.2358	0.2687	1.7091	2.7626		

The SAS System (Year 2006)

----- SiteSubtype=152 -----

The GENMOD Procedure

Model Information

Data Set	WORK.ALLURI
Distribution	Negative Binomial
Link Function	Log
Dependent Variable	TotAcc
Offset Variable	logLengthYrs
Number of Observations	Read 136

Number of Observations Used 136

Criteria For Assessing Goodness Of Fit

Criterion	DF	Value	Value/DF
Deviance	134	148.1276	1.1054
Scaled Deviance	134	148.1276	1.1054
Pearson Chi-Square	134	221.8631	1.6557
Scaled Pearson X2	134	221.8631	1.6557
Log Likelihood	4482.5550		
Algorithm converged.			

Analysis Of Parameter Estimates

Parameter	DF	Standard Estimate	Wald Error	95% Limits	Confidence	Chi- Sqr	Pr> Chi Sq
Intercept	1	-4.1450	1.2452	-6.5855	-1.7046	11.08	0.0009
logADT	1	0.7573	0.1230	0.5162	0.9984	37.91	<.0001
Dispersion	1	2.0512	0.2805	1.5014	2.6009		

REFERENCES

- Al-Ghamdi, A.S. (2000). Probability approach for ranking high accident locations. *Urban Transport IV; urban transport and the environment for the 21st century, 6,* 523-531.
- Bureau of Transportation Statistics. (2008, May 21). *Transportation fatalities by mode*. Retrieved May 25, 2008 from US Department of Transportation, Research and Innovative Technology Administration Web site:
- Cafiso, S., Cava, G.L., & Montella, A. (2007). Safety index for evaluation of two-lane rural highways . *Transportation Research Record: Journal of the Transportation Research Board*, 2019,136-145.
- Czerniak, R.J. (2002). NCHRP synthesis of highway practice 310: collecting processing and integrating GPS data into GIS. *Transportation Research Record: Journal of the Transportation Research Board*, 301, 1-39.
- Ei-Basyouny, K., & Sayed, T. (2006). Comparison of two negative binomial regression techniques in developing accident prediction models. *Transportation Research Record: Journal of the Transportation Research Board,* 1950, 9-16.
- Epstein, K., Corino, G., & Neumann, D. (2002). National review of the Highway Safety Improvement Program . *Public Roads*, 65(5), .
- Federal Highway Administration (June 6, 2008). *SAFETEA-LU*. Retrieved July 11, 2008 from , Web site: http://safety.fhwa.dot.gov/safetealu/
- Fox news. (2008, March 5). *Study: Traffic crashes cost Americans* \$164 *billion a year*. Retrieved May 25, 2008 from Fox News.com, Web site: http://www.foxnews.com/story/0,2933,335150,00.html

- Fridstrom, L., Ifver, J., Ingerbrigtsen, S., Kulmala, R., & Thomson, L.K. (1995). Measuring the contribution of randomness, exposure, weather, and daylight to the variation in road accident counts. *Accident Analysis and Prevention*, 27(1), 1-20.
- Georgia Department of Transportation. (2006). *Georgia Strategic Highway Safety Plan.* Atlanta, GA.
- Hauer, E. (1996). Identification of sites with promise. *Transportation Research Record: Journal of the Transportation Research Board*, 1542, 54-60.
- Hauer, E., & Persaud, B.N. (1984). Problem of identifying hazardous locations using accident data. *Transportation Research Record: Journal of the Transportation Research Board*, 975, 36-43.
- Hauer, E., Allery, B.K., Kononov, J., & Griffith, M.S. (2004). How best to rank sites with promise. *Transportation Research Record: Journal of the Transportation Research Board*, 1897, 48-54.
- Hauer, E., Harwood, D.W., Council, F.M., & Griffith, M.S. (2002). Estimating safety by the empirical bayes method. *Transportation Research Record: Journal of the Transportation Research Board*, 1784, 126-131.
- Hauer, E., Kononov, J., Allery, B.K., & Griffith, M.S. (2002). Screeningthe road network for sites with promise. *Transportation ResearchRecord: Journal of the Transportation Research Board*, 1784, 27-32.
- Hermans, E., Bossche, F.V., & Wets, G. (2007, January). *Impact of methodological choices on road safety ranking*. Paper presented at the Transportation Research Board Annual Meeting 2007, Washington, DC.

Higle, J.L., & Witkowski, J.M. (1988). Bayesian identification of hazardous locations. *Transportation Research Record: Journal of the Transportation Research Board*, *1185*, 24-36.
http://209.85.215.104/search?q=cache:oazHdoruMxYJ:www.bts.gov/public ations/national_transportation_statistics/html/table_02_01.html+Annual+T raffic+Fatality+Totals+Nationally+52,627+42,642&hl=en&ct=clnk&cd=1&gl =us http://www.who.int/violence_injury_prevention/publications/road_traffic/world_report/chapter1.pdf

- iTRANS Consulting Ltd., & Human Factors North INC (2003). *New approaches to highway safety analysis*. : US Department of Transportation Federal Highway Administration.
- Kononov, J. (2002). Identifying locations with potential for accident reductions: Use of direct diagnostics and pattern recognition methodologies. *Transportation Research Record: Journal of the Transportation Research Board*, 1784, 153-158.
- Kononov, J., & Allery, B. (2003). Level of service of safety: A conceptual blueprint and the analytical framework. *Transportation Research Record: Journal of the Transportation Research Board*, 1840, 57-66.
- Kononov, J., & Janson, B.N. (2002). Diagnostic Methodology for the detection of safety problems at intersections. *Transportation Research Record: Journal of the Transportation Research Board*, 1784, 51-56.
- Krull, K. A., Hummer, J.E., Crouch, J.A., & Chatterjee, A. (2000, July). *A realistic test of Hauer's promising site identification method*. Accidents on secondary highways and countermeasures, Knoxville.
- Lei, Y., Fengxiang, Q., & Linhua, L. (2007). Bayesian-based approach for updating characteristics of crash data: Frequency, duration, and lanes blocked. *Transportation Research Record: Journal of the Transportation Research Board*, , .

- Mandloi, D., & Gupta, R. (2003, January). *Evaluation of accident black spots on roads using geographical information systems*. Paper presented at the Map India 2003 conference, New Delhi, India.
- Persaud, B., Cook, W., & Kazakov, A. (1997, September). Demonstration of new approaches for identifying hazardous locations and prioritizing safety improvement. Paper presented at the Traffic Safety on Two Continents, Lisbon, Portugal.
- Qin, X., Ivan, J.N., Ravishanker, N., & Liu, J. (2005). Hierarchical Bayesian Estimation of safety performance functions for two-lane highways using markov chain monte carlo modeling. *Journal of Transportation Engineering*, *131*(5), 345-351.
- Sando, T., Mussa, R., Wu, H., Sobanjo, J., & Spainhour, L. (2004). *A cost effective GIS safety analysis tool for improving highway safety*. Paper presented at the Twenty-Fourth Annual ESRI User Conference, San Diego, CA.
- Tamburri, T.N., & Smith, R.N. (1970). The safety index: A method of evaluating and rating safety benefits. *Highway Research Record*, 332, 28-43.
- Turner Fairbank Highway Research Center (n.d.). Highway Safety Information System: GIS safety tools. Retrieved April 12, 2008from Federal Highway Administration, Web site: http://www.hsisinfo.org/hsis.cfm?num=8&page=1
- Turner Fairbank Highway Research Center (n.d.). *SafetyAnalyst*. Retrieved June 20, 2008 from Federal Highway Administration, Web site: http://www.safetyanalyst.org/mri_brochure.pdf
- US Department of Transportation Federal Highway Administration. (n.d.). *Motor vehicle crashes are a leading cause of death in the United States*. Retrieved April 11, 2008 from The Transportation Safety Planning, Web site: ftp://ftp.camsys.com/temp/outgoing/Safety_Fact_Sheets/Georgia.pdf

- World Health Organization. (2004). *World report on road traffic injury prevention*. Retrieved April 12, 2008 from World Health Organization, Violence and Injury Prevention and Disability Website: http://www.who.int/violence_injury_prevention/publications/road_traffic/ world_report/summary_en_rev.pdf
- (2008). *Highway safety manual data needs guide* (1st edition). : National Cooperative Highway Research Program.