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ABSTRACT 
 
The use of body-fixed inertial sensors to analyze human movement may prove 

useful in the medical field.  Improving orthopaedic device design, diagnosing 

musculoskeletal disorders, and rehabilitation assessment could all benefit from a mobile 

gait analysis system based on inertial sensors.  More specifically, patients recovering 

from lower limb corrective surgeries tend to adjust gait patterns to accommodate pain, a 

condition referred to as antalgic gait.  Currently there is no quantitative method available 

to assess recovery for this patient population during post-operative management. A 

comparison of the inertial sensor system with the camera-based industry standard has 

confirmed it as a viable method for lower limb motion analysis during normal gait.  

The inertial sensors consist of multiple accelerometers, gyroscopes and 

magnetometers used to obtain raw data, which is manipulated to calculate dynamic 

parameters.  By comparing kinematic parameters between affected and unaffected limbs, 

it is possible to deduce a set of unique knee functionality ratios for recovering fracture 

patients.   A control population was used to verify no significant difference (p  0.05) of 

seven kinematic parameters between limbs during normal gait.  Parameters included peak 

knee flexion-extension angles at 15 5% and 75 5% gait cycle.  These parameters were 

then analyzed in a group of patients recovering from lower limb fractures, using the 

unaffected limb as a control/reference.  The goal of this project is to use inertial sensor 

technology to pinpoint specific kinematic parameters of the lower limb that are clinically 

appropriate in assessing knee function of lower limb fracture patients during the post-

operative time span critical in normal gait recovery. 
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CHAPTER ONE 

INTRODUCTION 

Background 

Minimally invasive surgeries have become increasingly popular in the 

orthopaedic field.  The desire to reduce surgical trauma, infection, and hospitalization 

length, yet still maintain a respectable post-operative aesthetic is conducted by 

minimizing the size and number of incisions during an operation.  Arthroplasty is a 

common minimally invasive surgical procedure for orthopaedic surgeons to relieve pain 

and restore range of motion by realigning or reconstructing a defective joint.  Joint 

replacement via arthroplasty has become the standard for most chronic knee problems, 

which can be attributed to the numerous advancements in artificial joint quality and type.  

Continuous developments of minimally invasive techniques and physical therapy 

regimens have significantly increased the quality of life in most patients.  However, many 

individuals still experience an antalgic gait pattern, or adapted walking pattern to avoid 

pain, during the post-operative recovery period.  This particular gait pattern is often non-

ideal for fracture devices and can greatly reduce device lifespan and patient quality of 

life.   

Post-operative evaluations of arthroplasty and other minimally invasive lower 

limb surgeries are recognized as an important means for judging patient recovery.  

Numerous scores and evaluations exist to assess the outcome of lower limb 

arthroplasties; however, due to clinician subjectivity and the lack of a universal standard, 

quantifying surgical results and subsequent recovery progress can be difficult.  The most 



common human physical activity is walking, which can be easily analyzed in a clinical 

setting.  Quantitative gait analysis is generally accepted as an objective measurement of 

surgical success.  The clinical use of gait analysis systems is effective in determining 

functional outcomes of lower limb corrective surgeries by their abilities to quantify the 

spatio-temporal parameters of walking and provide an overall assessment of physical 

capability in recovering patients [1-7].  However, typical clinical gait analysis systems 

are often expensive and require a dedicated staff and specialized facility to operate 

effectively.  A solution should be capable of correlating objective gait data to the 

functional outcome of the patient, yet still operate conveniently and simply.   A reliable 

post-surgical outcome assessment of patient activity and quality of life would be ideal.   

 

Literature Review 

The Gait Cycle – Normal vs. Abnormal 

Normal gait is defined as an involuntarily coordinated musculoskeletal activity 

regulated by the nervous system that facilitates movement.  Human ambulation is highly 

dependant on supraspinal systems.  Biological areas responsible for proper gait have been 

identified in the brain stem, the basal ganglia, and thalamus.  The cerebral cortex has also 

shown an important role in the initiation and correction of gait.  Following initiation of 

motor activity, the central nervous system is responsible for the maintenance of balance 

and control via feedback through the cerebellum.  Finally, vestibular and proprioceptive 

systems relay information for muscular adjustments of the lower limbs to occur [8, 9].  
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This complex reflexive system helps to maintain a dynamic equilibrium during normal 

gait.   

A full gait cycle (Figure 1.1) describes the motions that occur between two heel 

strikes of the same limb.   Once heel strike occurs, weight is gradually transferred across 

the sole from heel to toes.  The contralateral foot is then simultaneously raised and 

accelerated.   The upper body passes over the supporting leg causing the center of gravity 

to sway with each step.  During ambulation, the upper body is held erect with the pelvis 

and shoulders at a level posture.  Stance and swing phases divide the gait cycle and 

describe the basic actions of the involved limb.  The stance phase begins with initial heel 

strike and ends with toe release (60% of cycle).  The swing phase immediately follows 

stance and ends with next heel strike (40% of cycle) [10].   

 

 

Figure 1.1:  Illustration of a normal gait cycle.  HS indicates heel strike and TO indicates 
toe-off events.  Adapted from Herr and Wilkenfeld [11]. 

 

A variety of gait pathologies exist, all of which result from a multitude of 

conditions.  Abnormal gaits are classified by their pathologic source.  Neurologic gait 

pathologies include frontal gait, spastic hemiparetic gait, parkinsonian gait, cerebellar 

ataxic gait, and sensory ataxic gait.  Abnormal gait patterns with combined neurologic 
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and musculoskeletal dysfunction include myelopathic gait, stooped gait of lumbar spinal 

stenosis, and steppage gait.  Finally, gait patterns that result from only musculoskeletal 

abnormalities include coxalgic gait, Trendelenburg gait, knee hyperextension gait, and 

antalgic gait.  Coxalgic and antalgic gait patterns typically result from osteoarthritis of the 

hip or knee respectively.  However, antalgic gait can be seen in any individual with lower 

limb pain, including long-term degenerative joint diseases, ankle injuries, stress fractures, 

residual post-operative impairments, etc. [10].   

Antalgic gait is defined as any gait pattern acquired as to reduce lower limb pain, 

typically the knee joint.  This acquired gait pattern is characterized by a shortened time 

spent during the stance phase of the affected limb.  During this reduced stance phase, the 

affected limb contacts the ground just long enough for the contralateral limb to initiate 

heel strike.  This characteristic motion, or limp, minimizes the time of applied weight to 

the affected limb, thus reducing pain and discomfort [12].  Despite visual confirmation of 

a reduced stance phase on the affected limb, no quantitative data exists to define how the 

knee joint operates during antalgic gait.  Moreover, antalgic gait can be further divided 

into chronic and acute gait patterns.  Chronic antalgic gait is an adapted form that 

typically results from long-term degenerative joint diseases, such as knee osteoarthritis.  

Acute antalgic gait pertains to gait patterns acquired during the short post-operative time 

span of lower limb corrective surgeries critical for normal gait restoration.  By evaluating 

knee function during this post-operative period, conclusions can be made about how to 

better manufacture fixation devices, or adjust physical therapy regimens, to stimulate a 

more effective gait recovery. 
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Knee Function Evaluations Following Arthroplasty and Other Lower Limb 
Reconstructive Surgeries 

 
Various scoring systems and questionnaires have been used to evaluate lower 

limb functionality, specifically the knee joint, following surgery.  The Hospital for 

Special Surgery Knee Score (HSS) is a knee functionality scoring system developed by 

Insall et al. [13].  This score incorporates several surgical procedural outcomes such as 

range of motion and alignment with subjective pain levels from the patient.  A second 

score known as the Knee Society’s Clinical and Functional Scoring System (KSS) was 

developed in 1989 [14].  This scoring system was similar to the HSS using many of the 

same surgical and subjective patient parameters.  Both the HSS and KSS have been the 

basis for many studies involving the functional recovery of knee surgeries [15].  

However, literature has indicated that these scores result in significant variability and 

present unreliable data for recovery assessment [16]. 

Despite the development of these scoring systems by surgeons and their extensive 

use in research, several disadvantages are present.  Such disadvantages include patient 

subjectivity and low sensitivity to slight changes in functionality [16]. 

 

Instrumented Analyses of Knee Function – Gait Analysis 

Gait analysis provides a non-invasive and convenient means for studying full 

body kinematics and kinetics over large data collection periods.  Gait analysis has been 

used in several studies to assess functional outcome following surgical lower limb 

reconstruction [1-7].  It is also typical for gait analyses to be coupled with questionnaires 

when analyzing arthroplasty outcome [17, 18].  Three branches are associated in studying 
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gait: electromyography, kinetics, and kinematics.  Revising conventional methods of 

measuring kinematics will be the focus of this study.   

 

Gait Kinetics 

Measurement of variant applied forces and moments during a gait cycle defines 

gait kinetics.  These measurements are captured by a force plate embedded within a 

walkway.  Past studies have shown that significant, negative changes occur to gait 

kinetics during the period immediately following knee arthroplasty [19].  Typically, 

kinetic gait parameters gradually improve; however, a greater rate of reduced walking 

pain is experienced prior to kinetic improvement.  This may cause treatment regimens to 

become prolonged with undesirable outcomes due to subjectivity of patient pain tolerance 

with respect to proper kinetic gait recovery. 

 

Gait Kinematics 

Quantitative analysis of an ambulating body in space, without regard for the 

applied forces that produce motion, is referred to as gait kinematics.  The most common 

form of kinematic gait data acquisition is by optical motion capture.  Optical motion 

capture operates by using a set of infrared cameras that analyze the position of reflective 

markers attached to the study subject.  This system has become a standard in human 

motion science and further providing beneficial assessment in orthopaedic-related 

disorders.  Full systems are typically manufactured for medical specific applications that 

target areas of athletic performance, biomechanics, and gait analysis [20].  Such systems 
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include the VICON™ system, Elite™ system, Ariel™ system, and CODA™ system [21, 

22].  All of these systems allow the collection and visualization of dynamic gait 

parameters during a variety of activities, including walking, running, and stair climbing.   

Optical motion capture systems have limitations due to reflective marker 

attachment (i.e. markers are attached to skin surface rather than on physical bone).  As a 

result, direct bone and joint kinematic parameters cannot be precisely measured.  

Therefore, accrued systemic errors can occur resulting in a significant lack in 

measurement confidence for knee orientation and rotations outside of sagittal 

measurements [23-26].  Moreover, optical motion capture systems are expensive and 

require committed laboratory space and staff.  A stationary laboratory also results in non-

ideal data capture scenarios.  The subject must move in a restricted space, which limits 

motion capture to short distances and is furthermore assumed to be conducive to 

everyday patient activity.   

Recent advances in micro-machined devices and sensor sensitivity have furthered 

the development of camera-free kinematic sensors and data capture methods [27-33].  

Such kinematic sensors feed raw data into integrated algorithms and filters.  These 

signals are then captured and delivered to an acquisition unit for processing.  These 

sensors also have the advantage of being highly portable.  They operate on battery power, 

measure parameters as body-fixed devices, and can transmit these parameters wirelessly 

to a host computer for analysis.  These unique system characteristics allow for kinematic 

sensors to be a reliable substitute for optical motion capture.  Body-fixed kinematic 
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sensors are less expensive, easier to use, and do not require committed laboratory space 

or trained staff. 

Body-fixed sensors do, however, need to optimize the accuracy of three-

dimensional kinematic readings by requiring an increased number of sensors.  Increased 

sensor numbers hinders performance and creates an overall cumbersome system.  An 

optimum number of kinematic sensors with reduced attachment sites, while maintaining 

the ability to sufficiently reproduce kinematic data representative of an ambulating body, 

would be ideal in gait analysis.   

Inertial sensing is arguably the most extensive area of body-fixed kinematic 

sensing as it pertains to gait analysis.  Inertial sensors are typically comprised of 

accelerometers and gyroscopes.  These sensors can be designed to be sensitive up to all 

three axes of a Cartesian coordinate system that describes spatial movement.  Recent 

developments in inertial sensor design have incorporated magnetometers to provide 

three-dimensional readings that indicate a magnetic north heading [31].  Using 

magnetometers in conjunction with accelerometers and gyroscopes, a local coordinate 

system can be effectively described within a global reference coordinate frame.   

 

Conclusion 

Many clinical scoring systems and questionnaires have been used to evaluate knee 

function following lower limb surgery.  However, evaluation questionnaires present 

many limiting factors in their effectiveness.  Main limitations include subjectivity, which 

is centered on the administrator’s own bias and experience, and low sensitivity to minor 
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changes in pathological improvement.  It is apparent that an objective instrument that 

utilizes keen detection devices to raise system sensitivity is a desirable tool for evaluation 

of lower limb function, specifically the knee joint, following surgery.  Currently, optical 

motion capture is the most widely used and consistent technique in the quantization of 

surgical success of the knee.  However, optical motion capture systems are complex and 

only accessible in select laboratories with expensive fixed cameras that require highly 

trained personnel.  Furthermore, all of these drawbacks make recovery assessment very 

time-consuming and inconvenient for the patient.   

This thesis proposes a novel method of ambulatory analysis to overcome these 

system limitations.  The proposed system collects lower limb kinematic data from the 

patient by means of body-fixed inertial sensors.  Specific system characteristics were 

repeatability, unobtrusiveness, portability, simplicity, and accuracy.  All of these design 

features were modeled after the system’s ability to continuously collect data during a full 

gait cycle.  The end product is a sophisticated lower limb gait analysis system that 

produces individual spatio-temporal parameters, accelerations, angular velocities, and 

angles at the knee that define function.  A hypothesis was developed that utilizes the 

previously described system and it states:  kinematic similarities exist between normal 

left and right limb function, which would validate the use of the contralateral limb, within 

an acute antalgic gait population, as a reference to the affected limb.  Furthermore, 

confirmed kinematic similarities can be used to develop functionality ratios that are 

clinically appropriate in assessing lower limb function during the post-operative time 

span critical in proper gait recovery.  
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CHAPTER TWO 

INERTIAL SENSORS 

Sensor Development and Refinement 

Inertial sensor technology has undergone several advancements over the past 

decade [28, 34].  Sensors consisting of accelerometers and gyroscopes allow kinematic 

values such as thigh and shank orientations, and knee angles to be easily calculated [32, 

33].  Angles and orientations are derived from the integration of translational 

accelerations, from accelerometers, and rotational velocities, from rate gyroscopes.  

However, many drawbacks have been associated with these calculations of kinematics.  

Integrated sensor signals are immediately distorted by drifts and offsets (attributed to soft 

tissue interference) and eventually become poor representations of true kinematic values 

[35].  Both electronic bias error and the deviation of sensor signals from their main 

sensing axis are main sources in drift associated with signal integration [36, 37].  Many 

attempts at correcting these errors have been made over the years.  Initial efforts to 

capture gait kinematics made assumptions in ambulation, which resulted in equating 

sensor signals at the beginning and the end of a gait cycle [38].  More recent studies have 

applied heavy filtering techniques to the sensor signals at the expense of clipping 

kinematic data at lower frequencies [36]. 

Unique techniques have been developed to measure joint angles without the need 

to integrate sensor signals.  However, these studies required multiple accelerometers and 

rate gyroscopes attached to external metal frames [39].  Using these devices was also 

found to be cumbersome for subjects. 
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State of the art advancements in inertial sensing have been accomplished by 

combining traditional accelerometer and gyroscope devices with a magnetic detection 

mechanism.  Xsens Technologies B.V. (Enschede, The Netherlands) has developed a 

successful, drift free inertial sensor system by fusing triaxial accelerometers, gyroscopes, 

and magnetometers into a complex algorithm that calculates sensor position within a 

global reference frame [40].  The MTx™ inertial sensor (Xsens Technologies B.V., 

Enschede, The Netherlands) was selected to study the kinematics of the knee joint during 

normal and pathological gait.  A brief overview of sensor mechanisms and design is 

described below. 

 

Inertial Sensor Design 

The MTx™ inertial sensor from Xsens Technologies B.V. is composed of three 

sensor modules that contribute to unrestrained orientation detection in a global coordinate 

system.  The basic principle of how the MTx™ inertial sensor operates is as follows:  A 

local vertical axis is determined by the accelerometer due to gravitational sensitivity.  

Vertical coordination is then horizontally stabilized by the detection of the global 

magnetic north via magnetometer.  By continuous stabilization of the local coordinate 

frame, the gyroscopes are capable of obtaining drift-free orientation through a 

complimentary Kalman filter. 

Accelerometers consist of a single mass suspended by a spring.  These sensors 

operate on two physical principles: Hooke’s law, F kx= , and Newton’s second law of 

motion, F ma= .  Equating these forces yields F kx ma= = , resulting in an acceleration 
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calculation of kxa
m

= .  A three-dimensional model can be developed by applying this 

system along three sensitive axes.  Vibrating mass gyroscopes are used to measure 

angular motion within inertial sensor systems.  When rotated, these continuously 

vibrating masses can detect a secondary vibration orthogonal to the sensitive direction.  

This phenomenon is known as the Coriolis Effect and allows for highly accurate rate of 

turn measurements [31].   

 

Sensor Validation for Gait Analysis Applications 

A previous study was conducted to confirm the kinematic comparability of 

inertial sensors to the gold standard, a camera-based motion analysis system.  The inertial 

sensor system consisted of three uniaxial gyroscopes and a single, triaxial accelerometer.  

The entire inertial sensor system and the camera-based reflective markers were 

instrumented to right leg of seven subjects.  Kinematic parameters of the lower limb were 

simultaneously collected for both systems.  Parameters included knee flexion angle, 

angular velocities, and linear accelerations.   Similarities were identified and found not 

statistically different, including an average maximum knee flexion angle difference of      

-2.5±7.7° during normal walking.  The inertial sensor system was thus validated as a 

comparable alternative [41]. 
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CHAPTER THREE 

QUANTITATIVE LOWER LIMB KINEMATICS DURING ANTALGIC GAIT 

Introduction 

Gait Abnormalities – Antalgic Gait 

Gait disorders typically stem from alterations of the nervous and musculoskeletal 

systems, and are primarily classified in three categories: neurologic, combined 

neurologic/musculoskeletal, and musculoskeletal.  The majority of gait abnormalities 

exist in the elderly population with at least 20% of noninstitutionalized elderly 

individuals admitting to limited walking capabilities.  One study indicates the prevalence 

of gait abnormalities in adults 85 and older to be over 54% [42].  

A common musculoskeletal gait abnormality known as antalgic gait describes 

walking patterns that are acquired as to avoid or lessen pain [12]. Antalgic gait is defined 

by a characteristic shortened time span during stance phase of a single affected limb.  

This is due to the patient’s attempt at quickly transferring body weight from the affected 

to the contralateral limb where a more bearable stance phase can be endured.  Any 

condition that causes ambulatory pain of the lower limb, including degenerative joint 

diseases, stress fractures, ankle injuries, and post-operative lower limb trauma, may 

contribute to antalgic gait [43].  

Antalgic gait patterns can be further divided into chronic and acute forms.  

Chronic antalgic gait patterns refer to those acquired as a result of a chronic condition, 

such as knee osteoarthritis.  These adapted gait patterns tend to be more permanent and 

are difficult to fully restore.  Acute antalgic gait describe gait patterns that are developed 
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following arthroscopy and many other lower limb corrective surgeries.  In contrast to the 

chronic form, acute antalgic gait is typically short-lived and only exhibited during the 

post-operative time span critical for normal gait recovery.  

 

Clinical Application 

Physical therapy and surgical intervention are common treatments in reducing the 

severity of the antalgic gait disorder; however, residual impairment may remain long 

after fractures have healed.  Nevertheless, determining treatments for antalgic gait is 

often a difficult task as there is currently no basis to quantify this particular pattern. 

Further complications arise in the ability to objectively distinguish between acute and 

chronic antalgic gait patterns.  Despite visual confirmation of a reduced stance phase on 

the affected limb, no quantitative data exists to define how the knee joint operates during 

this acute form of antalgic gait.  By evaluating knee function during this post-operative 

recovery period, conclusions can be made about how to better design fixation devices, or 

adjust physical therapy regimens, that would stimulate a more effective gait restoration.  

It is possible to study the kinematics of the knee joint, more specifically how the tibia 

rotates with respect to the femur, and develop functionality ratios using the contralateral 

limb as a control/reference.  Previous studies have drawn comparisons between affected 

and unaffected limbs; however, ratios based on antalgic gait have not been developed [7].  

Kinematic similarities exist between normal left and right limb function, which would 

validate the use of the contralateral limb, assuming it is unaffected functionally, as a 

reference to the affected limb within an acute antalgic gait population.  Furthermore, 
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confirmed kinematic similarities can be used to develop functionality ratios that are 

clinically appropriate in assessing lower limb function during the post-operative time 

span critical in proper gait recovery.   

This chapter describes the use of inertial sensor technology (MTx™ inertial 

sensors, Xsens Technologies B.V., Enschede, The Netherlands) to validate kinematic 

similarities between left and right limbs during normal gait.  These similarities were then 

analyzed between affected and unaffected limbs of an acute antalgic gait population.  

Functional assessments and conclusions were developed based on the statistical findings. 

 

Kinematic Data Collection 

Figure 3.1 illustrates the MTx™ sensor coordinate system S within the global 

coordinate frame G.  Rotations about x , y , and axes are respectively defined as roll 

(angleφ), pitch (angleθ), and yaw (angleψ) 

z

.   

 
 

Figure 3.1:  General representation of the MTx™ sensor coordinate system S with respect 
to a global coordinate system G. 
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The MTx™ inertial sensor uses rotation matrices to define orientation.  Rotation 

matrices are commonly used to provide a complete representation of orientation within a 

global coordinate system.  The rotation matrices are simply a collection of unit vector 

components from the sensor coordinate system S that are expressed in the global 

coordinate system G.  When expressed in terms of Euler angles (φ,θ and ψ angles), the 

rotation matrix is thus: 

 

 

cos cos sin sin cos cos sin cos sin cos sin sin
cos sin sin sin sin cos cos cos sin sin sin cos

sin sin cos cos cos

S

G R
θ ψ φ θ ψ φ ψ φ θ ψ φ ψ
θ ψ φ θ ψ φ ψ φ θ ψ φ ψ

θ φ θ φ θ
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−   (1) 

 

 

11 12 13

21 22 23

31 32 33

S

G

R R R
R R R R

R R R

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

  (2) 

 

Euler angles can then be calculated from the rotation matrices by the following 

calculations: 
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In order to obtain kinematic data that is representative of knee joint motion, a 

rotational relationship between the tibia and femur must be developed.  Assuming that the 

thigh and shank operate as rigid bodies, the MTx™ inertial sensor can be securely 

attached and calculate real-time orientation of each segment.  In order to determine 

relative rotation between the shank and thigh, the sensor coordinate frame of one segment 

must become the reference for the other segment coordinate frame.  This is accomplished 

by developing an inverse rotation matrix.  The inverse rotation matrix describes the 

rotations of the global coordinate frame within the sensor coordinate frame. 

 

  [ ]
11 21 31

1
12 22 32

13 23 33

S G

G S

R R R
R R R R R

R R R

−
⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥⎣ ⎦

  (4) 

 

Rotation matrices of each segment are defined as thus: 

 

 
shank

G

thigh

G

shank

thigh

R R
R R

=
=

  (5) 

 

Relative rotation between the shank and thigh is calculated by developing a 

rotation matrix of how the shank rotates within the thigh coordinate frame.  A unique 

rotation matrix describing this motion is calculated as follows: 

 

  [ ] 1shank G thigh shank thigh

thigh shank G G GR R R R R−= =   (6) 
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However, measuring rotation from the skin surface is not representative of how 

the femur and tibia rotate relative to each other at the knee joint.  This limitation can be 

adjusted by translating the respective thigh/shank rotation coordinate frames to the center 

of knee rotation.  Using anatomical references, a translational 4x1 matrix consisting of 

Cartesian displacements , , and  is incorporated into each thigh/shank 3x3 

rotation matrix.  The result is a 4x4 transformation matrix that describes segment rotation 

at the knee joint center.   

dx dy dz

 

 
[ ]

0 0 0 1

S

GS

G

dx
R dy

T
dz

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

  (7) 

 

Tibia and femur rotation matrices are now defined as: 

 

 
tibia

G

femur

G

tibia

femur

T T
T T

=
=

  (8) 

 

Relative rotation between the tibia and femur is developed as previously 

described by calculating the rotation of the tibia within the femur coordinate frame. 
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By extracting Euler angles from the resulting  transformation matrix, three-

dimensional knee function can be described (Figure 3.2).  All calculations were adapted 

from previous studies using rotation matrices to estimate orientation [44, 45].   

kneeT

 

 
 

Figure 3.2:  Basic principle of minimizing rotational error by translating coordinate 
systems to center of knee joint.  TX  indicates x -axis of thigh and 'TX  denotes x -axis of 
transformed coordinate frame. 
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In order to validate the capabilities of the MTx™ inertial sensor attachment 

scheme, a test rig was built to simulate the basic rotations of the knee joint (Figure 3.3).  

Sensors were attached to the rig and data was collected in a variety of positions.  A 

goniometer fastened to the test rig was used to judge the accuracy of the sensor readings 

and software calculation adjustments were made accordingly. 

 
 
Figure 3.3:  Simulated knee joint apparatus used in initial testing of sensor outputs and 
configuration. 
 

Methods 

Subject Selection 

Control subjects (n=5) with no history of walking difficulty or impairment were 

selected to study the relationship between left and right unaffected limbs.  Antalgic 

subjects (n=5) were selected based on the following criteria: recovering from an acute 

injury to the lower limb, visual confirmation of abnormal gait and reduced stance time on 
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the affected limb, and partial to full weight bearing during ambulation.  The study 

protocol and subsequent amendments were all approved through Clemson University and 

the institutional review committee (IRC-A, Greenville Hospital System, Greenville, SC).  

All participants were asked to sign an approved informed consent form which outlined 

the purpose and methods of the study. 

 

Instrumentation 

Subjects were instrumented with two MTx™ inertial sensors.  One was placed on 

the shank and the other on the thigh, both of which are fastened with Velcro® straps on 

the anterior aspect of the same limb.  Sagittal and frontal plane pictures of the 

instrumented leg were taken (Figure 3.4).   

 

  
 

Figure 3.4:  Sagittal and frontal views of instrumented control subject with length 
reference.  Sensitive axes are indicated.  x -axis, y -axis, and -axis correspond to 
transverse, sagittal, and frontal plane rotations, respectively. 

z
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These were used to determine anthropometric distances between the sensors and 

the knee joint center of rotation, and were further implemented into transformation matrix 

calculations.  Each sensor was then serially connected to the Xbus Master (Xsens 

Technologies B.V., Enschede, The Netherlands) wireless data acquisition unit, which was 

worn around the waist of the subject.  The Xbus Master was then connected through a 

wireless Bluetooth™ network on a previously designated laptop COM port.   

 

Data Collection 

A laptop operated as the host system, which executed a master program 

developed using LabVIEW (National Instruments®, Austin, TX).  The program collected 

live kinematic data from the attached inertial sensor devices.  Once the master program 

was initiated the subject was asked to stand comfortably in front of an outlined walkway, 

ready to ambulate at a self-selected pace.  A system wide calibration of the inertial sensor 

devices was performed while the subject retained a static, but comfortable stance.  The 

subject was then asked to ambulate in a straight line while keeping a steady cadence.  

Data was collected at 120 Hz during the entire span of system calibration to the 

termination of the third gait cycle.  This process was repeated to obtain a total of three 

trials on the affected limb.  The sensors were then removed and placed in the same 

manner on the contralateral limb, and the same process was repeated as described 

previously.  This includes shank and thigh sensor instrumentation and three trials of three 

gait cycles along a straight path. 
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 Data Manipulation and Calculations 

Photographs of both instrumented legs were analyzed in ImageJ, a publicly 

available image-processing program.  Distances between sensor and knee joint center 

were estimated using an in-frame reference.  These Cartesian-based distances were then 

applied to the 3x3 rotation matrices of each inertial sensor to form a 4x4 transformation 

matrix.  The 4x4 transformation matrices indicate how each segment rotates in three-

dimensional space at a new, translated origin.  By translating the 3x3 rotation matrix of 

both the shank and thigh segments to the center of knee rotation, then relative rotation of 

the knee joint can be estimated.  Equation 9 was used to develop a unique rotation matrix 

at the center of the knee joint that described relative rotation of the tibia within the 

femoral coordinate frame.  Euler angles were calculated from this rotation matrix using 

the formulas from equation 3.   

Internal-external rotation (φ  rotation about the x -axis, transverse plane), flexion-

extension (θ  rotation about the y -axis, sagittal plane), and varus-valgus (ψ  rotation 

about the -axis, frontal plane) angles of the knee represented rotation about each axis.  

Angular velocities and linear accelerations of the thigh and shank were collected in 

triplicate for three gait cycles per limb as well.  A full gait cycle was determined by 

observing a spike in acceleration along the vertical axis, which indicated a heel contact 

event.  The second gait cycle for each trial was extracted by identifying these 

characteristic acceleration spikes and was further saved as a text file.  Initiation and 

termination of gait were not considered due to inherent variability of gait balance and 

stability during these events [46].  Data sets (knee angles, angular velocities, and linear 

z
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accelerations) from each trial underwent spline interpolation in order to define values 

within a normalized percentage gait cycle parameter.  Overall, twenty points were used, 

one reading per 5% gait cycle (GC).  Figure 3.5 is a schematic that outlines each step of 

data manipulation clarifying how raw sensor data is interpreted as knee joint angles. 

 

 

Figure 3.5:  Work flow of data manipulation from 3x3 rotation matrices to percent gait 
cycle normalized kinematic parameters. 
 

Comparing Data between Limbs 

Each parameter was compared between left and right limbs on a comparison plot.  

Within the control population, comparable bilateral parameters were confirmed by 

plotting trendlines and identifying slopes near 1.  Of these parameters, three were chosen 

based on more precise mean slope values between controls (knee flexion-extension angle, 

thigh sagittal rotation, and shank sagittal rotation).  Next, kinematic points of interest 

were identified within chosen parameters by visual correlation at specific gait cycle 

percentages.  A total of seven kinematic points of interest were chosen.  Average 

maximum and minimum values for each kinematic point of interest were selected and 
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underwent a Student’s t-test to validate no significant difference between parameters of 

both legs (p  0.05).  The seven validated control parameters were then applied to the 

acute antalgic gait population.  A Student’s t-test on average maximum and minimum 

peaks was used to compare parameters between affected and unaffected limbs.  The 

parameters that indicated a significant difference were further used to develop 

functionality ratios (affected limb data divided by unaffected limb data) of the knee. 

 

Results 

Validating Method in a Control Population 

Five control subjects completed three walking trials that consisted of three gait 

cycles on each limb.  Knee angles and angular velocities of the left and right limbs were 

compared to each other (Figures 3.6 and 3.7).  Slopes of each parameter for all control 

subjects are indicated in Table 3.1 with confirmed comparable parameters shaded yellow. 

 

  
 
Figures 3.6 and 3.7:  Comparison plots of knee joint angles and thigh/shank angular 
rotations for control subjects.  Left ( x -axis) and right ( -axis) kinematic parameters are 
plotted against each other.  IE (internal-external rotation), FE (flexion-extension angle), 

y
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VV (varus-valgus angle), T (thigh), S (shank), Gx (transverse rotation), Gy (sagittal 
rotation), Gz (frontal rotation). 
 

Table 3.1:  Slopes from control subject comparison plots for each kinematic parameter.  
IE (internal-external rotation), FE (flexion-extension angle), VV (varus-valgus angle), T 
(thigh), S (shank), Gx (transverse rotation), Gy (sagittal rotation), Gz (frontal rotation).  
Comparable parameters are shaded yellow. 
 

Subject 
Knee Angles Thigh Shank 

IE  FE  VV TGx TGy TGz SGx SGy  SGz 
Control 1  0.527  1.001 0.547 0.805 0.950 0.475 0.943 0.977  0.517 
Control 2  0.456  1.008 1.058 0.688 0.876 0.868 0.167 1.083  0.535 
Control 3  0.365  0.961 0.628 0.990 0.946 0.729 0.472 0.952  0.973 
Control 4  0.854  0.977 0.534 0.887 0.823 0.685 0.540 0.889  0.903 
Control 5  0.004  0.945 1.141 0.729 1.029 0.772 0.009 1.005  0.471 

Mean  0.441  0.978 0.782 0.820 0.925 0.706 0.426 0.981  0.680 
SD  0.306  0.026 0.294 0.122 0.079 0.146 0.362 0.071  0.238 

 

Knee joint angles and thigh/shank angular velocities trials were graphed on a 

100% gait cycle scale with data points per 5% gait cycle (Figures 3.8-3.10).  Each plot 

contained three trials per sensitive axis (designated as IE, FE, VV or Gx, Gy, Gz).  
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Figures 3.8-3.10:  Left limb kinematic curves of a control subject for three trials.  The 
data is normalized to 100% gait cycle.  IE (internal-external rotation), FE (flexion-
extension angle), VV (varus-valgus angle), Gx (transverse rotation), Gy (sagittal 
rotation), Gz (frontal rotation). 
 

Mean curves of three trials per limb were developed for each kinematic 

parameter.  Left and right mean curves were superimposed and similarities were observed 

in chosen parameters (Figures 3.11-3.13).  Based on visual correlation, certain kinematic 

points were isolated from each curve.  These kinematic points of interest were extracted 

at specific gait cycle percentages (±5%) and compared using an unpaired, 2-tailed 

Student’s t-test to determine significant difference between limbs.  A sample data 

analysis table for minimum knee flexion-extension angle is given below (Table 3.3). 
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Figures 3.11-3.13:  Superimposed left and right kinematic averages on a 100% gait cycle 
scale.  Solid lines represent left limb data and dashed lines represent right limb data.  IE 
(internal-external rotation), FE (flexion-extension angle), VV (varus-valgus angle), Gx 
(transverse rotation), Gy (sagittal rotation), Gz (frontal rotation).  Shaded regions indicate 
the seven kinematic points of interest (Table 3.2).   
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Table 3.2:  List of seven kinematic points of interest with numbered references to Figures 
3.11-3.13 and Figures 3.21-3.23. 
 

Kinematic Point of Interest Figure Reference
TGy Max (20±5% GC) 1
TGy Min (70±5% GC) 2
SGy Max (60±5% GC) 3
SGy Min (90±5% GC) 4
FE Max (75±5% GC) 5
FE Min (40±5% GC) 6
FE Peak (15±5% GC) 7

 

Table 3.3:  Student’s t-test of minimum knee flexion-extension at 40 5% GC (gait cycle) 
for control 1.  No significant difference (p  0.05) was observed between parameter 
values of left and right limbs. 

Control 1
FE Min (40 5% GC)

Left Right
Trial 1 3.824 1.416
Trial 2 2.14 1.169
Trial 3 ‐3.409 1.742
Mean 0.852 1.442

SD 3.785 0.287
P Value 0.801

 

 

A total of seven parameters were chosen at specific gait cycle (GC) percentages 

based on their statistical similarities between limbs (Table 3.2).  Parameters included:  

Thigh Gy maximum at 20 5% GC, thigh Gy minimum at 70 5% GC, shank Gy 

maximum at 60 5% GC, shank Gy minimum at 90 5% GC, maximum knee flexion-

extension angle at 75 5% GC, minimum knee flexion-extension angle at 40 5% GC, 

and peak knee flexion-extension angle at 15 5% GC.  Table 3.4 outlines each parameter 

for all control subjects, including mean values for three trials of each limb, standard 

deviations, and p-values between averages. 
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Table 3.4:  Seven kinematic points of interest used to confirm no significant difference 
between left and right limb motion in a control population.   
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Subject  Left  Right  Left Right Left Right Left Right  
TGy M x (20±5% GC  a ) TGy Min (70±5% GC) SGy Max (60±5% GC) SGy Min (90±5% GC  ) 

Control 1  Mean  1.995  2.218  ‐3.504 ‐3.487 3.613 3.574 ‐6.225 ‐6.248  
SD  0.111  0.   257 0.056 0.221 0.205 0.144 0.092 0. 27  1

P Value  0.239  0.904 0.804 0.810  
Control 2  Mean  1.590  1.592  ‐2.912 ‐2.642 2.508 2.511 ‐5.100 ‐5.411  

SD  0.042  0.   081 0.072 0.164 0.236 0.084 0.253 0. 06  1

P Value  0.962  0.059 0.988 0.121  
Control 3  Mean  1.577  1.63  ‐2.862 ‐2.972 2.801 2.889 ‐6.241 ‐6.256  

SD  0.0924  0.   173 0.127 0.205 0.058 0.060 0.367 0. 80  2

P Value  0.662  0.474 0.143 0.957  
Control 4  Mean  1.629  1.630  ‐3.035 ‐2.972 3.234 3.289 ‐6.707 ‐6.256  

SD  0.136  0.   173 0.204 0.205 0.382 0.171 0.098 0. 80  2

P Value  0.996  0.727 0.831 0.058  
Control 5  Mean  2.198  1.867  ‐3.337 ‐3.718 3.215 3.069 ‐6.811 ‐6.711  

SD  0.071  0.   257 0.392 0.096 0.062 0.112 0.284 0. 89  1

P Value  0.098  0.177 0.119 0.637  

Subject  Left  Right  Left Right Left Right 
FE M  (75±5% GC)ax   FE Min (40±5% GC) FE Peak (15±5% GC) 

Control 1  Mean  69.973  68.921  0.852 1.442 11.256 14.252 
SD  3.065  0. 56  8 3.785 0.287 0.676 2.038 

P Value  0.598  0.801 0.073 

Control 2  Mean  51.837  52.737  3.668 4.305 17.937 20.221 
SD  0.884  1. 67  9 0.398 0.740 2.090 1.063 

P Value  0.510  0.259 0.167 

Control 3  Mean  68.557  66.086  1.514 2.622 15.662 13.095 
SD  0.865  1. 83  9 1.030 0.472 0.550 4.035 

P Value  0.119  0.166 0.336 

Control 4  Mean  67.204  66.086  2.574 2.622 16.211 13.095 
SD  0.669  1. 83  9 0.350 0.472 2.349 4.035 

P Value  0.407  0.894 0.312 

Control 5  Mean  61.410  61.261  3.851 6.755 18.177 18.895 
SD  1.559  1. 74  6 1.361 5.094 1.439 4.481 

P Value  0.916  0.394 0.805 

 

Bar graphs were developed for both knee joint angle parameters and thigh/shank 

angular rotation parameters which serve as another visual representation of parameter 

correlation (Figure 3.14 and 3.15).   
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Figures 3.14 and 3.15:  Bar graphs of knee joint angle and angular rotation parameters 
between left and right limbs in a control subject.  Error bars indicate standard deviations. 
 

Applying Method in an Acute Antalgic Gait Population 

Five patients were selected based on acute antalgic gait criteria.  Every patient had 

experienced a fracture below the knee on a single limb.   All acute antalgic gait patients 

were in the full-weight bearing stage of gait recovery.  Table 3.5 provides diagnostics for 

each acute antalgic gait patient including fracture site and type, fixative devices installed, 

post-operative time point, and symptoms during data collection. 

 
 
Table 3.5:  Patient descriptions in an acute antalgic gait population. 
 

Subject  Affected Limb  Fracture Hardware Post‐op Time Symptoms

Patient 1  Right  Distal tibia  IM nail  2.5 months 
Affected limb  
knee pain 

Patient 2  Right  Crushed ankle 
Plates and 
screws 

2 months 
Severe abnormal 

gait 

Patient 3  Left 
Midshaft 
tibia/fibula 

IM nail  6 months  None 

Patient 4  Right  Distal fibula 
Plates and 
screws 

6 months  None 

Patient 5  Left 
Midshaft 
tibia/fibula  

IM nail  6 months 
Contralateral  
knee pain 
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Acute antalgic gait subjects completed three walking trials that consisted of three 

gait cycles on each limb.  Similarly to the control population, mean curves of three trials 

per limb were developed for each kinematic parameter: knee joint angles and segmental 

angular velocities (Figures 3.16-3.18).   

 

 

 

 
 

Figures 3.16-3.18:  Affected limb kinematic curves of an acute antalgic patient for three 
trials.  The data is normalized to 100% gait cycle.  IE (internal-external rotation), FE 
(flexion-extension angle), VV (varus-valgus angle), Gx (transverse rotation), Gy (sagittal 
rotation), Gz (frontal rotation). 
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The seven previously validated kinematic points of interest, determined by the 

control population, were then extracted at the same percent gait cycle regions.  Affected 

and unaffected limb parameters were then compared using an unpaired, 2-tailed Student’s 

t-test.  A sample parameter analysis is given in Table 3.6.   

 

Table 3.6:  Student’s t-test of minimum knee flexion-extension at 40 5% GC (gait cycle) 
for patient 1.  Significant difference (p  0.05) was observed between parameter values 
of affected and unaffected limbs. 

Patient 1 
FE Min (40 5% GC)

Unaffected Affected
Trial 1 4.884 1.089
Trial 2 8.665 ‐1.105
Trial 3 7.450 ‐2.212
Mean 6.999 ‐0.743

SD 1.930 1.680
P Value 0.006

 

 
 

Table 3.7 outlines the seven validated kinematic points of interest for each acute 

antalgic gait patient, including mean values for three trials of each limb, standard 

deviations, and p-values between averages. 
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Table 3.7:  Seven validated kinematic points of interest observed in an acute antalgic gait 
population.  Red shading indicates a significant difference (p  0.05) between parameter 
mean values of affected and unaffected limbs. 
 

Subject  Affected Unaffected Affected Unaffected Affected Unaffected Affected Unaffected 
TGy Max (20±5% GC)  TGy Min (70±5% GC) SGy Max (60±5% GC) SGy Min (90±5% GC)  

Patient 1  Mean  2.081  1.163  ‐2.980  ‐2.565  3.565  2.791  ‐5.777  ‐5.236 

SD  1.128  0.248  0.266  0.249  0.420  0.221  0.605  0.507 

P Value  0.240  0.120  0.048  0.301 

Patient 2  Mean  0.575  0.122  ‐1.814  0.607  1.960  0.069  ‐2.945  0.205 

SD  0.079  0.427  0.081  0.115  0.194  0.221  0.099  0.114 

P Value  0.145  7.581E‐06  3.681E‐04  3.490E‐06 

Patient 3  Mean  2.600  2.188  ‐3.327  ‐3.540  2.824  3.267  ‐5.024  ‐6.153 

SD  0.266  0.376  0.173  0.666  0.202  0.608  0.556  1.579 

P Value  0.196  0.619  0.298  0.308 

Patient 4  Mean  1.714  1.831  ‐2.987  ‐3.030  2.759  2.393  ‐4.520  ‐5.201 

SD  0.097  0.227  0.047  0.164  0.142  0.283  0.348  0.740 

P Value  0.459  0.682  0.116  0.223 

Patient 5  Mean  1.422  1.404  ‐2.515  ‐2.986  2.540  0.758  ‐4.627  ‐1.529 

SD  0.393  0.382  0.128  0.203  0.296  0.097  0.452  0.149 

P Value  0.957  0.027  0.001  3.531E‐04 

 
Subject  

Affected Unaffected Affected Unaffected Affected Unaffected 
FE Max (75±5% GC)  FE Min (40±5% GC)  FE Peak (15±5% GC)  

Patient 1  
Mean  61.919  59.866  7.000  ‐0.743  14.706  6.337 

SD  4.597  5.418  1.930  1.680  3.199  2.090 

P Value  0.643  0.006  0.019 

Patient 2  
Mean  11.215  35.262  14.043  4.466  25.528  10.285 

SD  2.292  2.627  1.32  2.756  3.22  2.134 

P Value  2.813E‐04  0.006  0.002 

Patient 3  
Mean  50.909  67.105  ‐5.824  2.504  14.526  15.635 

SD  3.257  12.419  0.835  2.097  1.857  3.082 

P Value  0.094  0.003  0.622 

Patient 4  
Mean  50.452  51.219  1.698  ‐8.277  20.94  9.453 

SD  4.694  2.275  2.138  1.489  1.09  2.123 

P Value  0.811  0.003  0.001 

Patient 5  
Mean  49.356  34.230  0.342  5.517  9.118  20.168 

SD  1.664  3.440  0.729  1.445  3.871  2.923 

P Value  0.002  0.005  0.017 

 

Finally, mean values from all seven kinematic points of interest were used to 

develop functionality ratios in a control population.  Table 3.8 lists all seven functionality 

ratios for each control subject.  Ratios were calculated by dividing left mean values by 

right mean values. 
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Table 3.8: Functionality ratios (left divided by right mean values) for all seven kinematic 
points of interest in a control population. 
 

Subject  Left  Right  Left Right Left Right Left Right 
TGy Max (20±5% G   C) TGy Min (70±5% GC) SGy Max (60±5% GC) SGy Min (90±5% GC  ) 

Control 1  Mean  1.995  2 18  .2 ‐3.504 ‐3.487 3.613 3.574 ‐6.225 ‐6.248  
Ratio  0.899  1.005 1.011 0.996 

Control 2  Mean  1.590  1 92  .5 ‐2.912 ‐2.642 2.508 2.511 ‐5.100 ‐5.411  
Ratio  0.998  1.102 0.999 0.942 

Control 3  Mean  1.577  1 30  .6 ‐2.862 ‐2.972 2.801 2.889 ‐6.241 ‐6.256  
Ratio  0.967  0.963 0.970 0.998 

Control 4  Mean  1.629  1 30  .6 ‐3.035 ‐2.972 3.234 3.289 ‐6.707 ‐6.256  
Ratio  1.000  1.021 0.983 1.072 

Control 5  Mean  2.198  1 67  .8 ‐3.337 ‐3.718 3.215 3.069 ‐6.811 ‐6.711  
Ratio  1.177  0.897 1.048 1.015 

 
Subject  Left  Right  Left Right Left Right 

FE Max 5±5% GC)  (7  FE Min (40±5% GC) FE Peak (15±5% GC) 

Control 1  Mean  69.973  68.921  0.852 1.442 11.256 14.252 
Ratio  1.015  0.590 0.790 

Control 2  Mean  51.837  52.737  3.668 4.305 17.937 20.221 
Ratio  0.983  0.852 0.887 

Control 3  Mean  68.557  66.086  1.514 2.622 15.662 13.095 
Ratio  1.037  0.577 1.196 

Control 4  Mean  67.204  66.086  2.574 2.622 16.211 13.095 
Ratio  1.017  0.982 1.238 

Control 5  Mean  61.410  61.261  3.851 6.755 18.177 18.895 
Ratio  1.002  0.570 0.962 

 

Bar graphs were developed for both knee joint angle parameters and thigh/shank 

angular rotation parameters which serve as a visual indication of significant difference 

between unaffected and affected limb parameters (Figure 3.19 and 3.20).   
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Figures 3.19 and 3.20:  Bar graphs of knee joint angle and angular rotation parameters 
between unaffected and affected limbs in an acute antalgic gait patient.  Error bars 
indicate standard deviations and * indicate a significant difference (p  0.05). 
 

Discussion 

Control Population 

Comparison plots are used to both validate correlation of data between limbs and 

identify potential functionality parameters for assessing kinematic knee function (Figures 

3.6 and 3.7).  Knee joint angles, shank/thigh angular rotations, and shank/thigh linear 

accelerations were compared between left and right limbs in subjects exhibiting normal 

gait.  Comparing shank/thigh linear accelerations only confirms a steady-state 

progression through the gait cycle, and does not provide any information about how 

individual segments rotate.  It should be noted that accelerations along the x -axis are 

strongly influenced by gravitational acceleration and are only used to identify a global 

coordinate system.  For this reason, all linear accelerations were disregarded and only 

angular motions (shank/thigh angular rotations and knee joint angles) were considered in 

the study.  A trendline was plotted across each data set and those with slopes close to 1 
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(FE, TGy, SGy) were considered when identifying candidate kinematic comparison 

parameters (Table 3.1). 

 In order to validate the use of the contralateral limb as a control/reference within 

an acute antalgic gait population, a statistical comparison needs to indicate no significant 

difference between left and right limb kinematic data of a normal, unaffected gait 

population.  Superimposed left and right mean curves were used to visually extract seven 

‘kinematic points of interest’ at specific gait cycle percentages ( 5% GC) within 

comparable parameters that were previously confirmed with comparison plots.  The 

shaded regions in Figures 3.11-3.13 indicate these seven kinematic points of interest.  

Each kinematic point of interest was compared between limbs using an unpaired, 2-tailed 

Student’s t-test.  All seven kinematic parameters were found to have no significant 

different (p  0.05) between limbs.  This comparison validated using a normal or 

unaffected limb as a control when studying gait patterns of unilaterally affected lower 

limb cases.  Functionality ratios were then developed by divided left limb kinematic 

parameters with those of the right limb (Table 3.8).  These functionality ratios ranged 

from 0.570 (control 5, FE Min (40±5% GC)) to 1.238 (control 4, FE Peak (15±5% GC)).  

Table 3.9 lists the range of appropriate functionality based on the findings in Table 3.8 

and will be the basis of comparison in the acute antalgic gait population.   
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Table 3.9:  Ranges for all seven functionality ratios developed from a control population. 
 

Kinematic point of interest Functionality ratio range
TGy Max (20±5% GC) (0.899 – 1.177)
TGy Min (70±5% GC) (0.897 – 1.102)
SGy Max (60±5% GC) (0.970 – 1.048)
SGy Min (90±5% GC) (0.942 – 1.072)
FE Max (75±5% GC) (0.983 – 1.037)
FE Min (40±5% GC) (0.570 – 0.982)
FE Peak (15±5% GC) (0.790 – 1.238)

 

Acute Antalgic Gait Population 

 Superimposed graphs of kinematic data from unaffected and affected limbs 

indicate a great amount of variability between patients.  However, all cases had at least 

one of the seven previously validated kinematic points of interest as significantly 

different (p  0.05) between limbs (Table 3.7).  Figures 3.21-3.23 are superimposed 

graphs of affected and unaffected kinematic data from patient 1 with kinematic points of 

interest indicated by shaded regions (references in Table 3.2).  Visual differences in 

affected and unaffected kinematic parameters occur along the flexion-extension curve 

and at maximum and minimum values of angular shank rotation.  In order to confirm 

reduced knee function, functionality ratios are developed.  Table 3.10 is a functionality 

score card for patient 1 that compares individual functionality ratios (affected mean 

values divided by unaffected mean values) with those developed from the control 

population (Tables 3.8 and 3.9).   
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Figures 3.21-3.23:  Superimposed unaffected and affected limb kinematic averages from 
patient 1.  Solid lines represent unaffected limb data and dashed lines represent affected 
limb data.  Shaded regions indicate kinematic points of interest (Table 3.2). 
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Table 3.10:  Functionality ratio score card for patient 1.  Red shading indicates 
parameters previously calculated as significantly different between limbs. 
 

Patient 1  Unaffected Limb (L) Affected Limb (R) Normal functional range 

TGy Max (20±5% GC) 
Mean  1.163 2.081  
Ratio  1.790 (0.899 – 1.177) 

TGy Min (70±5% GC) 
Mean  ‐2.565 ‐2.980  
Ratio  1.162 (0.897 – 1.102) 

SGy Max (60±5% GC) 
Mean  2.791 3.565  
Ratio  1.277 (0.970 – 1.048) 

SGy Min (90±5% GC) 
Mean  ‐5.236 ‐5.777  
Ratio  1.103 (0.942 – 1.072) 

FE Max (75±5% GC) 
Mean  61.919 59.866  
Ratio  0.967 (0.983 – 1.037) 

FE Min (40±5% GC) 
Mean  7.000 ‐0.743  
Ratio  ‐0.106 (0.570 – 0.982) 

FE Peak (15±5% GC) 
Mean  14.706 6.337  
Ratio  0.431 (0.790 – 1.238) 

 

Patient 1 is an ideal case when trying to study knee function kinematics using the 

proposed contralateral limb comparison method.  By sustaining an acute distal tibial shaft 

fracture, patient 1 demonstrated an antalgic gait pattern that inhibited knee motion 

without the influence of any other injured joint (i.e. ankle complex, hip).  Theoretically, 

with no history of injury or pathology, the ability of patient 1’s contralateral knee to 

function properly should be unaffected.  A relatively short post-operative time span, 2.5 

months, also indicates a critical point in normal gait recovery where adapted antalgic gait 

patterns may be permanent.  It is during the 2-6 month post-operative range that affected 

knee function is the most prone to change.  By relating mean values of the affected limb 

to the contralateral limb, functionality ratios of all previously validated kinematic points 

of interest are developed (Table 3.10).   This functionality score card confirmed that all 

previously found, significantly different kinematic points of interest (red shading) were 

outside the normal range of proper knee function.   
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Regarding the entire acute antalgic gait study population, two parameters were of 

particular interest with at least four of the five patients exhibiting a significant difference 

between limbs.  These included minimum flexion-extension angle at 40 5% GC and 

maximum flexion-extension angle at 15 5% GC.  Minimum flexion-extension angle at 

40% GC describes the highest angle of extension experienced between initial heel strike 

and toe-off events.  Maximum flexion-extension angle at 15% GC represents the peak 

flexion angle immediately following initial heel strike.  Table 3.11 lists functionality 

ratios for these selected kinematic points of interest. 

 

Table 3.11:  Knee functionality ratios calculated as affected mean value divided by 
contralateral mean value of kinematic points of interest. 
 

Subject  FE Min (40±5% GC) FE Peak (15±5% GC) 
Patient 1  ‐0.106 0.431
Patient 2  0.318 0.403
Patient 3  ‐2.326 ‐
Patient 4  ‐4.875 0.451
Patient 5  0.062 0.452

 

The flexion-extension peak at 15% GC exhibited a high degree of repeatability, 

approximately 0.4 for four out of five patients.  All four of these patients demonstrated a 

more conservative flexion-extension angle during stance phase when compared to that of 

the contralateral limb. 

Another interesting finding is the consistent non-significant difference (p  0.05) 

of maximum thigh angular velocity, about the y -axis, between the unaffected and 

affected thigh at 20% GC (Table 3.12).   
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Table 3.12:  Comparison of maximum thigh angular rotation ( y -axis) at 20% GC in an 
acute antalgic gait population. 

 

Subject 
TGy Max (20±5% GC)

P value Functionality ratio
Patient 1 0.240 1.790
Patient 2 0.145 4.723
Patient 3 0.196 1.188
Patient 4 0.459 0.936
Patient 5 0.957 1.013

 

When considering a normal gait cycle, this particular parameter describes the rate 

at which the thigh rotates during stance phase.  By not exhibiting a significant difference, 

it may be reasonable to disregard how the thigh independently rotates when analyzing 

lower limb kinematics of an acute antalgic gait population.  However, non-significance 

may be attributed to the wide range of standard deviation and should be closely examined 

in future studies with larger populations. 

Due to the high variability in knee functionality ratios it is obvious that studying 

knee kinematics with our methods of using the contralateral limb as a control is complex, 

and allows consideration of gait recovery on a case-by-case basis.  For example, both 

patient 3 and patient 5 had sustained a midshaft tibia/fibula fracture and were 6 months 

post-operative.  However, according to their score cards (Appendix B) patient 5 had 

considerably less knee functionality than patient 3.  Despite both having the same fracture 

and post-operative recovery period, patient 5 had six significantly different kinematic 

parameters compared to the one exhibited by patient 3.  This demonstrates the potential 

ability of this unique methodology to discriminate functionality between two seemingly 

identical acute antalgic gait cases. 
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CHAPTER FOUR 

CONCLUSIONS AND FUTURE CONSIDERATIONS 

 The goal of this study was to examine the use of an inertial sensor system for 

assessing gait recovery in an acute antalgic gait population, and to identify specific 

kinematic parameters that can be used for this purpose.  Also, the use of the contralateral 

limb as a control was studied, by comparing mean values between affected and 

unaffected limbs.  Furthermore, in an attempt to quantify antalgic knee functionality, 

normal knee functionality ratios were developed from kinematic gait data observed in a 

control population.   

Within an acute antalgic gait population, using the contralateral limb as a 

reference to the affected limb proved to be a beneficial method in studying the kinematic 

recovery of normal gait and knee function.  This was validated by observing strong 

correlations between left and right kinematic parameters at certain points during a normal 

gait cycle, as well as identifying significant differences of these parameters in an acute 

antalgic gait population.  It should be noted that all study methods and techniques were 

based on the assumption that the contralateral limb remains unaffected in functionality 

within an acute antalgic gait population. 

 Two kinematic parameters were of particular interest: maximum knee flexion at 

15% GC and maximum thigh angular rotation about the sagittal plane ( -axis) at 20% 

GC.  Maximum knee flexion at 15% GC of the affected limb was uniformly reduced 

when compared to contralateral knee flexion.  Also, maximum thigh angular rotation in 

the sagittal plane was comparable between affected and unaffected limbs.  Both findings 

y
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indicate an underlying kinematic knee function model that goes beyond the characteristic 

reduced stance phase of typical antalgic gait patterns.   

 Even though maximum knee flexion observed at 15% GC was consistently 

reduced in a general acute antalgic gait population, the majority of the seven kinematic 

points of interest were not reliable when developing knee functionality ratios.  This is 

more than likely due to the many unique variables that characterize an individual gait 

cycle.  After examining the results, some recommendations were developed to help refine 

this functionality ratio method and reduce variability.  By increasing the number of 

attached sensors so that both legs were instrumented, an instantaneous relationship 

between affected and unaffected limbs of the same gait cycle can be developed rather 

than relating two separate cycles. A larger, more focused acute antalgic gait population 

may eliminate undesirable data readings when trying to develop a standard set of 

functionality ratios.  For example, patient exclusion criteria may state that only 2-3 month 

post-operative proximal tibial fractures, that do not involve the tibial plateau, can 

participate in the study.  Also, collecting data at a steady-state gait cycle, rather than the 

second gait cycle, may prove beneficial when determining key kinematic points of 

interest and refining normal functionality ratio ranges.  Another study recommendation is 

to consider limb dominance when developing the normal functionality ratios (Table 3.8).  

Instead of arbitrarily dividing left and right mean values, determine limb dominance of 

the control subject and use mean values from the dominant leg as the normalizing factor.  

Regarding statistical analysis, a more rigorous comparison needs to be conducted 

between unaffected and affected limbs.  Rather than comparing mean values at specific 
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gait cycle percentages, statistical analysis should consider the entire 100% gait cycle 

range between unaffected and affected kinematic parameters.  Such analyses include the 

bootstrap method and the Gaussian point-by-point method [47].  Finally, future studies 

should incorporate kinetic measurements (forces and moments) of the knee into the 

overall kinematic assessment of normal gait recovery.  Observing simultaneous kinematic 

and kinetic parameters at the knee allows for a complete lower limb profile to be 

developed and analyzed.  
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Appendix A 

Control Data 
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Figures A1-A10:  Comparison plots of knee joint angles and thigh/shank angular 
motions.  IE (internal-external rotation), FE (flexion-extension angle), VV (varus-valgus 
angle), T (thigh), S (shank), Gx (transverse rotation), Gy (sagittal rotation), Gz (frontal 
rotation). 
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Figures A11-A41:  Knee joint angles and thigh/shank angular motions normalized to 
100% gait cycle.  IE (internal-external rotation), FE (flexion-extension angle), VV 
(varus-valgus angle), Gx (transverse rotation), Gy (sagittal rotation), Gz (frontal rotation). 
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Knee Joint Angle Parameters (control 4)
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Figures A42-A52:  Bar graphs of knee joint angle and angular rotation parameters in a 
control population.  * indicates a significant difference between left and right parameters. 
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Appendix B 

Patient data 
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Figures B1-B30:  Knee joint angles and thigh/shank angular motions normalized to 100% 
gait cycle.  IE (internal-external rotation), FE (flexion-extension angle), VV (varus-
valgus angle), Gx (transverse rotation), Gy (sagittal rotation), Gz (frontal rotation). 
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Figures B31-B45:  Superimposed unaffected and affected limb kinematic averages.  Solid 
lines represent unaffected limb data and dashed lines represent affected limb data. 
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Knee Joint Angle Parameters (patient 2)
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Knee Joint Angle Parameters (patient 4)
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Knee Joint Angle Parameters (patient 5)
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Figures B46-B56:  Bar graphs of knee joint angle and angular rotation parameters in an 
acute antalgic gait population.  * indicates a significant difference between affected and 
unaffected limb parameters. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 60



Tables B1-B5:  Functionality ratio score card for all patients.  Red shading indicates 
parameters previously calculated as significantly different between limbs. 
 

Patient 1  Unaffected Limb (L) Affected Limb (R) Normal functional range

TGy Max (20±5% GC) 
Mean  1.163 2.081  
Ratio  1.790 (0.899 – 1.177) 

TGy Min (70±5% GC) 
Mean  ‐2.565 ‐2.980  
Ratio  1.162 (0.897 – 1.102) 

SGy Max (60±5% GC) 
Mean  2.791 3.565  
Ratio  1.277 (0.970 – 1.048) 

SGy Min (90±5% GC) 
Mean  ‐5.236 ‐5.777  
Ratio  1.103 (0.942 – 1.072) 

FE Max (75±5% GC) 
Mean  61.919 59.866  
Ratio  0.967 (0.983 – 1.037) 

FE Min (40±5% GC) 
Mean  7.000 ‐0.743  
Ratio  ‐0.106 (0.570 – 0.982) 

FE Peak (15±5% GC) 
Mean  14.706 6.337  
Ratio  0.431 (0.790 – 1.238) 

 
Patient 2  Unaffected Limb (L) Affected Limb (R) Normal functional range

TGy Max (20±5% GC) 
Mean  0.122 0.575  
Ratio  4.723 (0.899 – 1.177) 

TGy Min (70±5% GC) 
Mean  0.607 ‐1.814  
Ratio  ‐2.986 (0.897 – 1.102) 

SGy Max (60±5% GC) 
Mean  0.069 1.960  
Ratio  28.411 (0.970 – 1.048) 

SGy Min (90±5% GC) 
Mean  0.205 ‐2.945  
Ratio  ‐14.343 (0.942 – 1.072) 

FE Max (75±5% GC) 
Mean  11.215 35.262  
Ratio  3.144 (0.983 – 1.037) 

FE Min (40±5% GC) 
Mean  14.043 4.466  
Ratio  0.318 (0.570 – 0.982) 

FE Peak (15±5% GC) 
Mean  25.528 10.285  
Ratio  0.403 (0.790 – 1.238) 

 
Patient 3  Affected Limb (L) Unaffected Limb (R) Normal functional range

TGy Max (20±5% GC) 
Mean  2.600 2.188  
Ratio  1.188 (0.899 – 1.177) 

TGy Min (70±5% GC) 
Mean  ‐3.327 ‐3.540  
Ratio  0.940 (0.897 – 1.102) 

SGy Max (60±5% GC) 
Mean  2.824 3.267  
Ratio  0.864 (0.970 – 1.048) 

SGy Min (90±5% GC) 
Mean  ‐5.024 ‐6.153  
Ratio  0.996 (0.942 – 1.072) 

FE Max (75±5% GC) 
Mean  50.909 67.105  
Ratio  0.759 (0.983 – 1.037) 

FE Min (40±5% GC) 
Mean  ‐5.824 2.504  
Ratio  ‐2.326 (0.570 – 0.982) 

FE Peak (15±5% GC) 
Mean  14.526 15.635  
Ratio  0.929 (0.790 – 1.238) 
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Patient 4  Unaffected Limb (L) Affected Limb (R) Normal functional range

TGy Max (20±5% GC) 
Mean  1.831 1.714  
Ratio  0.936 (0.899 – 1.177) 

TGy Min (70±5% GC) 
Mean  ‐3.030 ‐2.987  
Ratio  0.986 (0.897 – 1.102) 

SGy Max (60±5% GC) 
Mean  2.393 2.759  
Ratio  1.153 (0.970 – 1.048) 

SGy Min (90±5% GC) 
Mean  ‐5.201 ‐4.520  
Ratio  0.869 (0.942 – 1.072) 

FE Max (75±5% GC) 
Mean  50.452 51.219  
Ratio  1.015 (0.983 – 1.037) 

FE Min (40±5% GC) 
Mean  1.698 ‐8.277  
Ratio  ‐4.875 (0.570 – 0.982) 

FE Peak (15±5% GC) 
Mean  20.940 9.453  
Ratio  0.451 (0.790 – 1.238) 

 
Patient 5  Affected Limb (L) Unaffected Limb (R) Normal functional range

TGy Max (20±5% GC) 
Mean  1.422 1.404  
Ratio  1.013 (0.899 – 1.177) 

TGy Min (70±5% GC) 
Mean  ‐2.515 ‐2.986  
Ratio  0.842 (0.897 – 1.102) 

SGy Max (60±5% GC) 
Mean  2.540 0.758  
Ratio  3.350 (0.970 – 1.048) 

SGy Min (90±5% GC) 
Mean  ‐4.627 ‐1.529  
Ratio  3.026 (0.942 – 1.072) 

FE Max (75±5% GC) 
Mean  49.356 34.230  
Ratio  1.442 (0.983 – 1.037) 

FE Min (40±5% GC) 
Mean  0.342 5.517  
Ratio  0.062 (0.570 – 0.982) 

FE Peak (15±5% GC) 
Mean  9.118 20.168  
Ratio  0.452 (0.790 – 1.238) 
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