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ABSTRACT 
 

 
A hyperthermal and low energy ion beamline to measure electron-hole pair production 

due to ion bombardment of Schottky diodes has been modified and assembled.  

A brief overview of the instrument is given and the reason for operating the ion 

beamline in the hyperthermal and low energy regime is discussed.  The capabilities of the ion 

beamline are unique and provide the means to measure quantities that offer insight into 

various energy exchange mechanisms that occur at surfaces.  Combined with the ability to 

accept Schottky diode samples, the beamline is capable of measuring both charge transfer 

and electron-hole pair production caused by ion bombardment of the sample.   

Details of assembly and modification of the ion beamline as well as theory of operation 

are discussed.  Data verifying the precision of the beamline mass and charge selection 

processes is provided along with a profile of the ion beam.  The beamline has been upgraded 

to enhance reliability by replacing diffusion pumps with turbomolecular vacuum pumps.  

Also, the scattering chamber has been outfitted with a load lock system to drastically reduce 

sample turnaround time, an important feature for the Schottky diode experiments. 

The theory of Schottky barriers and Schottky diodes is also discussed.  Current and 

voltage measurements were taken on the Schottky diode device and were used to calculate 

the Schottky barrier height.  Using an Ar + high flux ion beam and Na +  low flux ion beam, 

preliminary electron hole pair measurements on a Schottky diode are presented.  A possible 

explanation of results is provided by considering an analogue to Schottky diodes, metal-

insulator-metal tunnel junctions [1].   
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CHAPTER ONE 
INTRODUCTION 

 
 

The ion beamline at Clemson University is a tool for studying energy exchange 

mechanisms at surfaces.  The ion beamline operates at low and hyperthermal energies where 

the scattering of ions off the sample is most probable.  The beamline is held under ultra high 

vacuum (UHV) and is separated into three sections: the ion source section, the 

monochromator section and the scattering chamber.  A beam of ions is formed in the ion 

source section, the beam is mass and charge selected in the monochromator section and 

finally, the beam is then passed into the scattering chamber where the beam scatters off of a 

sample. After scattering from the sample, the beam is collected by an electrostatic analyzer 

(ESA).   

The surface is probed indirectly by scattering the ion beam off the sample surface into 

the ESA detector where variations in the scattered ion energy are measured.  The energy 

measured by the ESA gives the total loss of ion energy to the surface.  Direct measurement 

of the different components that make up the total energy loss at the surface cannot be 

measured by the ESA.  However, recent studies use Schottky diodes to show that electron-

hole pairs can be measured as a “chemicurrent” [2,3].  Electron-hole pair production is one 

of many energy exchange mechanisms that surfaces use to absorb energy.  That is to say, 

Schottky diodes offer a way to directly probe the energy associated with e-h pair production 

which is a component of the total energy imparted to the surface measured by the ESA. 

Previous studies measuring e-h pair production using Schottky diodes have been limited 

to neutral, thermal energy beams[2,3].  The ion beamline at Clemson University offers a way 
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to extend previous measurements to the hyperthermal and low energy regime and uses a 

wide range of source species.  Experiments varying the beam energy and source species have 

not been conducted to date.  The unique capabilities of the ion beamline at Clemson 

University make it the ideal instrument for carrying out these experiments.         

The ion beamline was assembled and existing components of the beamline apparatus 

were modified to accept the Schottky diode samples.  The details of assembly, modification, 

as well as, preliminary data on a Cr Schottky diode are presented in this thesis.   

 

Figure 1.1 Plan view of the ion beamline.  The magnetically coupled linear-rotary 
(MCLR) translator and load lock were two additions to the beamline.   The load lock and 
MCLR translator facilitate Schottky diode sample exchange without breaking vacuum and 
drastically reduce sample turnaround time.
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CHAPTER TWO 
ASSEMBLY AND MODIFICATION OF THE LOW AND HYPERTHERMAL 

ENERGY BEAMLINE 
 

Introduction 
 

The low and hyperthermal energy beamline is a tool for measuring surface scattering 

spectroscopies.  The beamline is made of three main sections: the source, monochromator 

and scattering chamber.  The source section is made up of a G-2 Ion Gun manufactured by 

Colutron Research Corporation[4].  The monochromator section was built using readily 

available vacuum hardware.  The scattering chamber was designed by students and 

manufactured by Perkin-Elmer Vacuum Products.  All three sections are under Ultra High 

Vacuum (UHV).  Originally constructed at Cornell University [5] in 1987, the ion beamline 

was moved to Clemson University in the spring of 2004.  At Cornell University, the 

instrument was used to study the kinematics of ion-surface collisions.  Various 

specifications, which I will discuss at length later in this chapter, were required for the 

instrument to collect data accurately and reliably for these experiments.  While the operating 

characteristics have not been changed, the beamline has been updated to allow the system to 

be more user-friendly, efficient and more reliable.   

 

Beamline Characteristics 

As mentioned previously, the ion beamline operates in the hyperthermal and low energy 

regimes.  The hyperthemal energy regime is defined roughly as energies above thermal (<1 

eV) but less than 1 keV.  The low energy regime is defined as energies between 1 keV and 
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10 keV.  The ion beam is operated in the hyperthermal and low energy regimes because the 

scattering probability is maximized.  As Figure 2.1 shows, ions with energy below the 

hyperthermal regime are typically adsorbed on the surface.  Ions with energy higher than the 

low energy regime are implanted into the sample.  This is important because if the ion is not 

scattered off the sample, any interaction information is lost because the ion is not detected 

after the interaction. 

 

Figure 2.1 Graph of the kinetic energy regimes for single-particle scattering event.  Note 
that the scattering probability is peaked in the hyperthermal energy regime. 
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Figure 2.2 Schematic view of the beamline.  This shows the three sections that comprise 
the ion beamline. 

 

The Source Section 

The entire beamline operates at UHV and uses either gas or alkali sources.  The source 

section is made up primarily of the G-2 ion gun.  The G-2 ion gun contains the gas or alkali 

source and the Wein filter [4].  Floating the sources at voltage relative to the target provides 

the beam energy.  The gas sources use a hot filament to thermally ionize the incoming gas.  

The alkali sources rely on heating an aluminosilicate compound that contains the alkali atom.  

The aluminosilcate compound is melted into a porous tungsten plug.  The porous tungsten 
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contains the alumiosilicate but also allows emission to occur.  Heating the alumiosilicate 

imparts enough energy to free the alkali atom. Properties of the aluiminosilicate lattice cause 

the ionization the alkali atom.  Once free from the aluminosilicate lattice, the alkali ions are 

accelerated away from the source by a applying a small bias voltage between the source 

filament and source body.  The alkali sources are purchased from Heatwaves Labs 

Incorporated[6]. 

After the atoms are ionized, they pass into a Wein filter where the ions are selected by 

their charge to mass ratio.  A Wein filter consists of orthogonal electric and magnetic fields.  

To create the magnetic field for the Wein filter, the G-2 ion gun uses an electromagnet.  

Passing a current through the electromagnet produces a magnetic field.  Using a LabView 

program, the magnet current is varied and a relative mass spectrum is produced by plotting 

the current provided to the electromagnet versus the electrometer reading off the source 

section Faraday cup.  The magnet current is capable of being swept as high as 20 A.  

According to Colutron Research Corporation, the manufacturer of the G-2 ion gun [4], the 

magnetic field produced and the current provided to the electromagnet are linearly 

proportional.  In order to calculate the relative masses, the Lorentz force law applies:  

F= q(E + v ×B)      (1) 

Because the force on a mass passing through the Wein filter is zero and the velocity and 

magnetic field are orthogonal, the following equation is true: 

  
B
E− = v        (2)  

Also, the kinetic energy is defined as:  

2
1 mv 2  = K.E.          (3) 
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Using the equations (2) and (3), the following equation can be obtained: 

2

⎥⎦
⎤

⎢⎣
⎡−

B
E = 2 

m
EK ..      (4) 

Throughout an experiment the energy of the ions is fixed by the voltage V specified by the 

user.  The kinetic energy of a charged particle is: 

                   K.E. = qV                                                         (5) 

The ions are assumed to be singly charged hence the energy of a single ion is: 

K.E. = e + V               (6) 

Also, the electric field remains fixed during a sweep of the magnetic field.  Dividing equation 

(4) by itself for differing magnetic fields corresponding to different masses, one obtains the 

following:  

2

1

2
⎥
⎦

⎤
⎢
⎣

⎡
B
B

= 
1

2

m
m

      (7) 

 This equation allows the B-field to be rescaled for mass.  If the largest peak in the spectrum 

is assumed to be the mass of the source species, then one can create a relative mass 

spectrum by knowing the mass of the source species.  Figure 2.3 shows a graph of intensity 

versus mass.  The intensity is beam current measured in the source section Faraday cup as 

the magnet current is varied divided by the maximum beam current measured by the source 

section Faraday cup.  The maximum beam current measured by the source section Faraday 

cup is assumed to be associated with the source species. 
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Figure 2.3 Sample Li7 mass spectrum.  There are many peaks in this spectrum because 
the source was new.  Impurities associated with the manufacture of the alkali sources cause 
several peaks in the spectrum.  As the alkali source runs for several hours, the impurity peaks 
disappear leaving a dominant peak associated with the source specie.  
 

The Monochromator Section 

After the ions have been mass selected by the Wein filter, the ions are energy selected by 

the monochromator.  When the beam energy is set by floating the source to voltage, the 

beam energy may be offset due to thermal variations and biasing within the source.  The 

monochromator is in essence a spherical electrostatic analyzer designed to energy resolve the 

beam with a precision of ≈
∆
E
E  1% [7].  Unfortunately, the monochromator was damaged 

in shipment to Clemson.  The insulator isolating the outer sphere of the monochromator 
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from the vacuum housing had broken.  This problem was resolved by removing the 

insulator and bolt which held the monochromator to the vacuum housing.  Removing the 

bolt had no operational effect on the monochomator.  However, it should be noted that the 

monochromator is simply resting on sapphire insulators and is not rigidly attached to the 

vacuum housing.  In order to remove the broken insulator, the entire monochromator was 

disassembled.  While disassembled, the internal wiring and pinouts were carefully 

documented. (see Appendix A)   

 

The Chamber Section  

After the ion beam has been mass selected by the Wein filter and energy resolved by the 

monochromator, the beam is passed into the scattering chamber.  Once scattered off of the 

sample, the ions are detected by an electrostatic analyzer (ESA).  The ESA rests on a 

rotatable table.  Depending on the scattering angle of the ions, the ESA can be rotated to a 

scattering angle up to 130˚.  Rotating the table under UHV is made possible by attaching the 

table driveshaft to a differentially pumped rotating seal.  Using a Vernier type scale on the 

rotating flange, the angles are reproducibly accurate to within ±0.2˚[8].  However, because 

the sample does not rotate about the center of the scattering chamber, the Y-axis 

micrometer on the manipulator must be adjusted to compensate for the off-center rotation 

[9].   

The ESA is an 180˚ spherical electrostatic analyzer with a Channeltron electron 

multiplier (Galileo Electron-Optics Model 4816) at the output [10].  The spheres of the 

analyzer have a mean radius of 50 mm.  The ESA measures scattered ion energy by only 

allowing ions of a particular energy to pass to the detector.  Once through the analyzer, the 
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ions are accelerated into the multiplier by biasing the multiplier at high voltage.  This voltage 

can be tuned to provide peak efficiency.  A bias of 2400 V seems to be most efficient for the 

current setup. The multiplier is connected to preamp discriminator (MIT F100-T).  The 

preamp provides TTL pulses which are fed to a Hewlett-Packard 5335A counter [11].  The 

counter is connected to a computer with a GPIB card and a LabView® program automates 

scanning the ESA and also produces the energy spectrum.  The ESA is scanned through a 

range of energies by changing the hemisphere voltages to produce an energy spectrum.  The 

precision of the ESA is approximately 1%.  Figure 2.4 shows a sample energy spectrum of 

the incident beam.   

 

Figure 2.4 ESA spectrum.  This is an ESA energy spectrum of a 1205 eV Na +  beam.  
Note that this spectrum is not a scattered spectrum, but a spectrum verifying the precision 
of the monochromator.  
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Once in the scattering chamber, the ion beam is measured using a Keithley 617 electrometer 

[12].  The current on the sample is maximized by varying parameters mentioned previously.  

In order to measure the beam profile, a specialized Faraday cup has been placed on the end 

of the manipulator.  The cup consists of a faceplate with a 1 mm aperture, an oxygen-free, 

high-conductivity (OFHC) copper current trap and a shield.  There is also a 1 mm aperture 

between the faceplate and the current trap.  The aperture is electrically isolated from the 

faceplate and the current trap.  The aperture can be negatively biased to prevent secondary 

electrons at the faceplate from reaching the trap.  Also, the trap itself can be biased slightly 

positively in order to keep secondary electrons created from escaping.  These secondary 

electrons are created from the ion impact events.  The shield protects the backside of the 

Faraday cup from stray ions and electrons inside the chamber [13].  

 

Figure 2.5 Cross sectional view of chamber Faraday cup [14].   
 

In order to create a profile of the ion beam, the chamber Faraday cup was translated in the 

plane perpendicular to the ion beam and current measurements were taken.  Figure 2.6 

shows a typical beam profile. 
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Figure 2.6 Beam profile of 1200 eV Rb +  ion beam.  The intensity is measured in pA. 
 

 Built buy Perkin-Elmer Vacuum Products, the scattering chamber possesses 

capabilities to fully characterize and prepare the sample.  Instruments attached to the 

scattering chamber for sample characterization include: a sputter gun, LEED optics, Kelvin 

probe for work function measurements, Perkin-Elmer Auger spectrometer and a residual gas 

analyzer.   

Also, the sample carrier has two modes for sample heating.  The sample can be heated 

via radiation or electron beam heating.  The heater is made of 0.004” W wire that is wrapped 

around a 0.030” drill bit [15].  Wrapping the wire around the drill bit produces a coiled 

heater filament.  This coiled heater is mounted behind the sample and is also electrically 

isolated from the sample with Alumina washers.  The radiation mode of heating is activated 

by passing a current through the heater filament, heating the filament.  The hot filament 
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heats the sample by radiation.  In the electron beam heating mode, a current is passed 

through the heater filament and the filament is biased at a voltage relative to the sample.  

The hot filament emits electrons which are accelerated by the voltage striking the backside of 

the sample.  This electron bombardment causes the sample temperature to increase.  The 

heater is mounted inside a tantalum shield that prevents evaporated tungsten from the hot 

heater filament from depositing onto the Alumina washers.  This is an important detail 

because if the evaporated tungsten were to deposit on the insulating washers, a short would 

form between the sample and the heater filament.  Should the filament break or a short 

develop, the heater is contained within the sample carrier which allows repair of the filament 

by transferring the sample carrier out of the chamber instead of venting the chamber. 

The sample can be cooled to approximately 100K and heated to above 1073 K.  Three 

flat copper braids connect the liquid nitrogen reservoir to the main body of the sample dock 

for cooling.  A copper cooling head is attached to the main body, to provide efficient 

cooling of the sample.  The cooling head is machined to accept the heat sink on the sample 

carrier.  The temperature of the sample is monitored with an alumel-chromel thermocouple.  

The thermocouple is placed inside a 0.026” diameter hole drilled in the sample.   

 

Ion Beam Transport Optics 

The ion beam is transported at a minimum of 400eV in order to reduce space charge 

spreading of the beam [15].  Einzel lenses have been placed throughout the beamline as 

another measure taken to offset Coulombic repulsion of the ion beam.  The first four lenses 

have an I.D. of 2.54cm.  However, the fifth lens has an I.D. of 1.27cm.  The focal properties 

scale with the lens diameter which allows the fifth lens to be placed closer to the sample.  
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The close proximity of the fifth lens to the sample reduces space charge spreading at the 

sample even further[16].  For experiments that require beam energy less than 400 eV, the 

fourth lens can decelerate the beam.  However, for large deceleration ratios the fourth and 

fifth lenses are not well behaved.  The fourth lens has a maximum deceleration ratio of 

approximately 40 [17].  For example, if the beam energy is 400 eV, then the fourth and fifth 

lenses can be used to decelerate the beam down to 10 eV.   

At the end of each lens, there is an X-Y deflector.  The deflector on each lens allows the 

beam to be steered.  The deflector is important because between each section of the 

beamline there are pumping impedances.  The pumping impedances have a 1mm aperture 

which the beam must pass through.  The deflectors are used to steer the beam through these 

impedances.  Figure 2.7 is a schematic view of the beamline.  This figure shows the 

placement of the Einzel lenses, Wein filter, monochromator and ESA. 
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Figure 2.7 Schematic view of the ion beamline showing placement of Einzel lenses and 
deflectors. 
 
 

Modifications to the Beamline 

Several modifications were made to the beamline after being shipped to Clemson.  A 

brief summary of modifications are: 

• Shortened stands that support the beamline 

• Replaced support stands on source and monochromator sections 

• Replaced ion gauge controllers 

• Incorporated interlock system into the source section of the beamline 

• Replaced diffusion pumps with turbomolecular pumps 

• Built pump coffins for mechanical backing pumps 

• Installed sample transfer system on scattering chamber  
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The most noticeable change was shortening the stands that supported the beamline.  The 

chamber support stand had to be shortened because the ceiling at Clemson was lower than 

at Cornell.  Without shortening the legs of the support stand, the manipulator could not be 

removed from the chamber.  The support stands for the source and monochromator 

sections of the beamline were replaced with a frame manufactured by 80-20 

Corporation[18].   

Two Varian multi-gauge controllers replaced the Granville-Phillips ion gauge 

controllers[19].  The Varian multi-gauge controlling the source section interfaces with an 

interlock system designed and built by the author.  This interlock system is designed to 

controllably shut down the source section of the beamline in the event of power loss.  The 

interlock uses a 24 VDC power supply and two 24 VDC relays to provide logic control of 

the system.  If the building loses power, the interlock system will shut the gate valve between 

the vacuum pump and the source chamber, shut off the turbomolecular pump, close the 

foreline valve and the ion gauge will shut off.  Once the interlock system has tripped, power 

will not come back to the turbomolecular pump, gate valve or foreline valve until the user 

resets the interlock.  The interlock system prevents the vacuum components from cycling on 

and off should the building power cycle.  Such a system will extend the life of the vacuum 

system components.     

The Varian diffusion pumps originally on the source and chamber sections were replaced 

by Varian turbomolecular pumps.  The pump on the source section is a Varian TV 301 that 

has a pumping speed of 280 l/s, while the chamber section has a Varian TV 551 with a 

pumping speed of 550 l/s.  Replacing the diffusion pumps makes the beamline more reliable 

because the diffusion pumps required persistent maintenance in order to function properly.  
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Also, the liquid nitrogen needed for the cold caps on the diffusion pumps is no longer 

needed, thus reducing the lab’s operating expenses.  Both the Varian 500 l/s diode ion pump 

and the titanium sublimation pump from the old system maintain vacuum on the scattering 

chamber.  Also, the cryopump originally on the monochromator section of the beamline has 

been omitted.  The only pump on the monochromator section of the beamline is a Varian 

Model No. 911-5032 30 l/s ion pump.   

Pump coffins were built for the mechanical backing pumps required for both the source 

and chamber turbomolecular pumps.  The pump coffins were built out of plywood and lined 

with foam to reduce noise in the lab.  The pump coffins were wired with fans and vented to 

provide cooling.   

The scattering chamber has been outfitted with a sample transfer system.  The sample 

transfer system allows a sample turnaround time on the order of days instead of weeks as 

previously required.  The sample transfer system consists of two main components, the 

magnetically coupled linear-rotary translator (MCLRT) and the sample transfer head.  The 

load lock has a hinged 6” viewport for sample loading.  The MCLRT and load lock were 

manufactured by Thermionics Corporation[20].  The stainless steel sample transfer head is 

attached to the MCLRT shaft using a set screw and was machined by the Physics and 

Astronomy Machine Shop.     
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Figure 2.8 Sample transfer system.  The MCLRT is attached to a 6” load lock chamber 
with a hinged viewport for sample loading.  A 6” to 4.5” reducer is attached to the load lock 
chamber to allow the system to be mounted on an existing chamber viewport.    
 

Not only was the load lock system added to the scattering chamber, the manipulator was 

retrofitted with a sample dock to accept the new sample carrier.  The sample dock was 

designed by Stephen Moody and machined by the Clemson Physics and Astronomy Machine 

Shop.  The sample carrier uses six transfer rings that provide both electrical and mechanical 

contacts to the sample dock.   



19 

 

Figure 2.9 Sample dock.  The sample dock has three degrees of freedom, X, Z and 
Tilt.  The sample dock is mounted on the end of the manipulator.  The cooling head and 
main body are made of OFHC copper. 
 

The sample carrier provides 3 more electrical contacts than the previous design.  The added 

electrical contacts are important to the Schottky diode experiment because they provide 

contacts for current measurement on the sample/metal layer, thermocouple leads, two leads 

for measuring current due to e-h pair creation, a lead to possibly bias the metal layer. 
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Figure 2.10 Sample Carrier showing sample, contact rings, faceplate and face contacts.  
 
     
The faceplate of the sample carrier cam locks into the sample transfer head hooks.  Once 

locked in position by the hooks, the sample carrier can be retracted or extended to or 

from the sample dock.  Finally, the sample carrier is rotated clockwise or 

counterclockwise to either insert or remove the sample carrier from the sample dock.    
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Figure 2.11 The sample transfer head.  Mounted on the end of the MCLR, the sample 
transfer head holds the sample carrier while the MCLR transports the sample carrier 
between the load lock and sample dock. 
 

 

Figure 2.12 Sample carrier mounted in sample dock. 
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The load lock is vital to the Schottky diode experiments because the samples must be 

exchanged regularly to study how the metal layer thickness affects the chemicurrent. 

LabView® code written by Stephen Moody interfaces with the Wein filter and Keithley 

electrometer to produce automated mass spectra.  LabView® code was also written to 

control the Electrostatic Analyzer (ESA)[21].  The ESA code automatically produces energy 

spectra from scattering events.  These LabView® programs make the beamline more user- 

friendly and allow efficient data acquisition. 
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CHAPTER THREE 
SCHOTTKY DIODES 

 

The ion beamline can accurately measure the total energy imparted to the surface using 

the ESA.  However, measuring the energy exchange mechanisms within the surface is 

impossible using the setup mentioned previously.  However, replacing the usual crystalline 

sample with a Schottky diode may offer insight into the electron-hole pair creation exchange 

mechanism caused by ion impact events.  Experimentally, electron-hole pairs are difficult to 

detect.  The recombination time of the electron-hole pair is small enough that detection is 

not possible.  Only recent experiments using Schottky diodes by Neinhaus, et al. have 

electron-hole pairs been directly measured [2,3].  These experiments were carried out using 

thermal energy molecules.  Having only thermal energy, the molecules are chemisorbed on 

the surface which imparts enough energy to the surface to create e-h pairs.  However, there 

has not been any literature published to date that uses Schottky diodes to study electron-hole 

pair creation caused by ion impact events of hyperthermal and low energy.  Since the ion 

beamline at Clemson operates most effectively in the hyperthermal and low energy regimes, 

it is the ideal instrument to take these measurements.
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Figure 3.1 Depiction of different avenues of energy transfer [22]. 

 

The Schottky Barrier 

The mechanism that makes a Schottky diode work is the Schottky barrier.  The Schottky 

barrier is a rectifying barrier formed at the interface of a metal and a semiconductor.  When a 

metal is brought into contact with a semiconductor, the Fermi levels of the metal and 

semiconductor do not match.  The Fermi level in an n-type semiconductor is at a greater 

energy than the Fermi level of the metal.  The difference in energy causes the electrons from 

the n-type semiconductor to traverse the metal-semiconductor interface and deposit into the 

more energetically favorable metal.  However, the electrons leave positive ions in the 

semiconductor creating an excess of positive charge in the semiconductor, while creating an 

excess of negative charge in the metal.  This separation of charges creates an electric field 

within the metal-semiconductor interface.  The electrons that are depleted in the 

semiconductor are assumed to come from a finite layer within the semiconductor known as 

the depletion layer.  This assumption is not exact but makes for a good approximation.  
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The total charge within the depletion layer is:  

Q = N d e x d      (1) 

where N d  is the donor concentration density, e is the charge of the electron and x d  is the 

depletion layer thickness.  Applying Gauss’s Law: 

 
e Nd

εε
ρ
==E

dx
d      (2)  

Integrating for the electric field: 

)()( d
d xx
eN

xE −=
ε

               for 0< x < x d   (3) 

0)( =xE                              for x ≥  x d         (4) 

The electric field for x > x d  is assumed to be zero because the mobility of the charge 

carriers is such that the charge carriers can cancel any internal electric field. The electric field 

is the negative gradient of the potential.  So, integrating the electric field and multiplying by  

-1 gives the potential: 

[ ]22 )(
2

)( dd
d xxx
eN

x −−=Φ
ε

  for 0< x < x d   (6) 

2)( d
d x
eN

x
ε

=Φ   for x ≥  x d    (7) 

The energy shift due to the depletion layer is: 

)(xeEshift Φ⋅=      (8) 
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Applying equations (6), (7) and (8) [23] the energy bands within the semiconductor are 

shifted as: 

 )(xeEE FB Φ⋅−=      (9) 

where FBE  represents the energy from the flat band structures just after the metal and 

semiconductor make contact. 

 

Figure 3.2 Energy Band Diagram for Schottky Diode.  It is instructional, but not 
necessarily physically accurate, to consider the Schottky barrier in the following ways (a) 
before contact (b) just after contact but before any charges traverse the metal-semiconductor 
boundary (c) in thermal equilibrium after charges have traversed the boundary and bands of 
the semiconductor are bent [24].  This figure depicts band bending for an n-type 
semiconductor. 
 

The Schottky diode 

A Schottky diode consists of a thin metal layer deposited on a doped semiconductor. 

When an incident particle strikes the metal layer, energy is imparted to the surface which 

causes the production of electron-hole pairs.  The electron from the metal lattice is excited 

above the Fermi level and leaves behind a hole in the conduction band of the metal.  The 

excited electron, or “hot” electron, is ballistically transported across the barrier created by 

the metal-semiconductor interface.  When the excited electron overcomes the Schottky 
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barrier, the electron-hole pair separate. The electron scatters, loses enough energy that it 

can’t go back across the barrier to recombine with the hole.   
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Figure 3.3 Depiction of e-h pair production in Schottky diode.  After incident particle 
strikes the metal layer surface, electron hole pairs are created.  The electron has enough 
energy to be ballisitically transported into the conduction band of the semiconductor [25]. 
 

Continually bombarding the metal layer with particles creates a bulk charge between the 

metal layer and the semiconductor.  If an ammeter is placed across the barrier, the bulk 

charge flows through the circuit and is detected as a current.   

 



28 

 

Figure 3.4 Wiring schematic for measuring current on a Schottky diode. 
 

As one would expect, the current is strongly dependent on the thickness of the metal 

layer.  When the metal layer thickness becomes greater than the mean free path of the 

electron, the current drops off rapidly [26]. 

Collaborating with Dr. Rod Harrell’s group of the Clemson University Electrical 

Engineering Department, the Schottky diodes were manufactured in a clean room on 

campus.  The Clemson University Engineering Department’s clean room has all the 

equipment necessary to cut the substrate, anneal the backside contact, and evaporate the 

metal layer for the Schottky diodes.  The first diode had a Cr metal layer that was 200Å thick 

and 1.25 cm in diameter.  The metal layer and Al backside contact are all on a one inch 

diameter circular Si substrate.  The backside contact was annealed to melt it into the Si 

substrate.  Annealing makes the backside contact Ohmic.  After the diode was made, the 

substrate was cut into the shape of a ¾” equilateral triangle to fit the physical constraints of 

the sample carrier. 
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Figure 3.5 Mounted Schottky diode.  This picture shows the triangular shape of the 
sample.  The sample carrier constrains the shape of the diode.  The metal shim acts to shield 
the bare wire connecting the metal layer from the ion beam.  Note that the shield is not in 
place and has been moved such that the entire diode is viewable.  

 

The electrical contacts to the sample dock were established through the sample carrier 

contact rings.  However, because the physical dimensions of the Schottky diode were 

unknown at the time of sample carrier construction, the details of electrical connection to 

the diode itself were not determined.  Knowing that some experiments would involve using 

metal crystal samples, the sample carrier faceplate was designed to hold these samples.  

While the faceplate worked well with the metal crystal samples, it put constraints on the 

physical dimensions of the Schottky diodes. 

To mount the Schottky diode on the sample carrier, OFHC copper stock was machined 

to the dimensions of the metal crystal samples that are used for scattering experiments.  The 

machined copper stock was used to adapt the Schottky diode to the sample carrier faceplate.  

The OFHC copper adaptor was installed just as a typical metal crystal sample.  The OFHC 
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copper was chosen for its excellent electrical conductivity and was inexpensive compared to 

the metal crystal samples.  This OFHC copper adaptor would provide the electrical contact 

to the backside contact of the Schottky diode.  The diode was mechanically attached to the 

OFHC adaptor using product code H2OE silver epoxy manufactured by Epoxy 

Techonolgy[27].  The epoxy is applied to the backside contact of the Schottky diode and to 

the OFHC copper sample.  Then the Schottky diode and OFHC copper sample are put 

together.  The silver epoxy hardens over time forming a strong mechanical bond and is 

electrically conductive.  The silver epoxy is also used to attach a wire to the metal layer of the 

diode forming the electrical contact to the metal layer.  Thus, the backside contact and metal 

layer are connected to the sample carrier contact rings providing electrical contacts outside 

the vacuum chamber.  A piece of 0.005” Ta shim was mounted on a faceplate contact to 

shield the wire contacting the metal layer to the sample carrier contact ring.  If the shield 

were not in place, the ion beam could strike the wire creating a current that could be 

misconstrued as an energy exchange event.  

After the silver epoxy is applied, the sample carrier was placed under a halogen lamp 

where the sample carrier is heated to 95 o C for approximately three hours to fully cure the 

epoxy.  The epoxy is vacuum compatible down to approximately 10 8−  Torr according to the 

manufacturer. 

Schottky Diode Characteristics 

Schottky diodes are characterized by an ability to pass large amounts of current with a 

small voltage drop across the device.  This characteristic makes the Schottky diode ideal for 

power supplies.  A low voltage drop across the device means that only a minimal amount of 

power is lost through the diode, equating to more efficient power delivery.   
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The data presented henceforth was taken on the same Schottky diode mentioned 

previously with a 200Å thick Cr metal layer and n-type Si substrate.  As one would 

anticipate, a measurement of current versus voltage is the most effective means of 

characterizing a Schottky diode.  To take the current and voltage measurements, two leads of 

a Hewlett Packard model no. 4156B semiconductor parameter analyzer were connected to 

the diode.  The HP-4156B semiconductor parameter analyzer belongs to Dr. Rod Harrell’s 

research group in the Department of Electrical and Computer Engineering.  The data 

presented in figures 3.6, 3.7 and 3.8 was taken by Michael Rodin of Dr. Rod Harrell’s 

research group.  

 In order to take the I-V measurements, one lead is attached to the metal layer and the 

other connected to the backside contact.  Varying the voltage between the metal layer and 

the backside contact, a current is sensed by the probes.   
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Figure 3.6 Data taken from Cr diode I-V measurements.  The diode is forward biased 
meaning that the metal layer is taken to be the positive lead and the backside contact is the 
negative lead.   
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Figure 3.7 A graph of current versus voltage where the current is on a base ten 
logarithm scale.  The data is the same as figure 3.6 and is also forward biased. 
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By applying a voltage across the diode, the height of the Schottky barrier is varied allowing 

more or less current to flow depending on the voltage bias.  Current saturation occurs when 

all the charge carriers in the semiconductor are used to carry current to the metal layer.  

When the current and voltage become proportional on the graph of log current versus 

voltage the current is saturated.  The saturation current density equation is shown below: 

Tk
ss

B

b

eTAj
φ

−

= 2*      (10) 

Where ssj  is the saturation current density, A* is the Richardson constant, T is the 

temperature in Kelvin, bφ  is the Schottky barrier height, and Bk  is Boltzmann’s constant 

[22].   
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Figure 3.8 A graph showing the linear portion of figure 3.7.  The constant first term in 
the best fit line equation represents the saturation current.  Using equation (10) and the 
saturation current, the Schottky barrier height can be found. 
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The saturation current density is calculated by dividing the saturation current found in figure 

3.8 by the area of the diode metal layer.  After calculating the current density, equation (10) 

can be used to calculate the Schottky barrier height.  Using a standard value of 120 22 Kcm
A  

for the Richardson constant of Si and the saturation current density, the calculated value of 

the Schotkky barrier was 0.629 eV for the Cr metal layer Schottky diode.  

The I-V measurements of the Cr metal layer diode show that it would not be a very 

effective diode for applications.  The voltage required for the diode to pass current is quite 

high.  This is probably due to a low concentration of charge carriers within the silicon 

substrate.  However, the subject of interest is electron-hole pairs creating diode current, so 

the only parameter that is important to the experiment is the Schottky barrier height.  In 

other words, the efficiency of the diode itself is inconsequential.    

 

Diode Current due to Ion Bombardment 

 “Chemicurrent” is defined as the diode current caused by the chemisorption of particles 

onto the metal layer of the diode.  The diode current due to e-h pair formation of this thesis 

is the equivalent to the “chemicurrent” measured in the thermal energy experiments 

performed by Nienhaus.  However, the diode current shown in this thesis is most likely not 

due to chemisorption. 

Schottky diode current measurements were made on the Cr metal layer diode.  The 

measurements were taken with a Keithley 617 Electrometer.  The diode was wired for 

current measurement just as in figure 3.4.  The Cr metal layer of the diode was exposed to a 

beam of 1200 eV Na +  ions and current was measured.  The sudden current increase in 
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figure 3.9 could be due to surface contamination of the metal layer.  The diode is prepared 

ex situ thus the diode is exposed to air after preparation.  Exposure to air contaminates the 

surface of the Cr metal layer.  This surface contamination would act to lower the work 

function of the metal layer.  When the contaminated metal layer of the diode is exposed to 

the ion beam, electrons are excited out of the metal layer.  These electrons can be excited 

over the Schottky barrier and measured as diode current.  However, this current would die 

off as the surface contamination is sputtered away by the ion beam.  This is a possible 

explanation for the intensity of figure 3.9. 

Cr Diode Current Measurements
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Figure 3.9 Plot of diode current intensity.  The diode current is normalized to the beam 
current measured off of the chamber Faraday cup faceplate to form an intensity.  The ion 
beam was Na +  with energy 1200 eV.  The Schottky diode is the same Cr metal layer diode 
which data was reported for in figures 3.6, 3.7 and 3.8.  The diode was exposed at 30 s.      
 

The beamline ion bombardment per second, or flux, is quite low making measurements that 

involve sputtering away the metal layer long measurements.  Theoretically, the length of an 

experiment that would sputter away a 200 Å thick metal layer would last on the order of 
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days.  This is not very practical as the beam current varies over such long periods of time.  In 

order to take high flux measurements, the sputter gun on the scattering chamber was used.   

The sputter beam current was approximately 3 orders of magnitude larger than for the 

Na +  beam resulting in a higher flux of ions striking the diode surface.  The sputter gun used 

an Ar +  beam at 546 eV.   

 

Figure 3.10 Graph of data taken using the sputter gun instead of the ion beamline.  The 
sputter ion beam was 546 eV in energy and the source species was Ar + .  The diode was 
exposed at 60 s.  
 

As in figure 3.9, figure 3.10 shows a strong peak when exposed to the ion beam.  Again, 

this peak could be due to surface contamination.  However, the second peak in figure 3.10 

could be due to the sputtering away of the metal layer down to a thickness equal to the mean 

free path of the excited electron.  This would allow the excited electrons to overcome the 

Schottky barrier and be measured as current.  The noisy data shown in figure 3.10 after 

exposure times greater than 160 s may indicate destruction of the metal layer.  A similar 
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trend to figure 3.10 is depicted by S. Meyer et. al. using metal-insulator-metal junctions 

instead of Schottky diodes[1].        

 

Conclusion 

In the future, more data should be taken to confirm the results of figure 3.10.  Another 

issue to address is being able to produce a high flux of ions using the beamline in order to 

make more precise measurements.  Although the sputter gun produces a high flux of ions, 

the sputter ion beam’s energy and spatial extent is not as resolved as the beamline.  Also, the 

beamline in not limited to gas sources like the sputter gun. 

Also, measurements should be taken to find out how many electrons are leaving the 

metal layer of the Schottky diode due to ion impact.  Electrons could leave the metal layer in 

two possible ways: electrons could leave by neutralization of the incoming ions and electrons 

could be expelled into the vacuum due to ion impact.  A possible method for measuring the 

electrons leaving the metal layer would include shorting the metal layer to ground through an 

ammeter.  Shorting the metal layer of the Schottky diode would provide the metal layer with 

a replenishment of electrons and prevent charge build up on the metal layer. 

The low and hyperthermal energy ion beamline at Clemson University has been 

assembled, modified and is prepared for taking data on Schottky diodes.   
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APPENDIX 
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Appendix A 
 

Monochromator Internal Wiring  
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Table A.1. Internal wiring table for the monochromator.  There are two connectors that 
connect the internal wiring of the monochromator to outside of vacuum.  The internal pins 
reflect values of the pins on the wiring breakout bar.  The wires have metal tags that are 
attached to them.  These metal tags have stamped numbers that associate them to various 
destinations.  This table was formulated in June 2005. 
 

 
Connector 

Connector
Pin 

Internal
Pin 

Internal
Tag Destination 

1 C 1 1 
L1 Front Aperture, 

XY Rear Ring 
1 D 2 2 XY1 Top 
1 N 3 3 XY1 Left 
1 P 4 4 XY1 Bottom 
1 U 5 5 XY1 Right 
1 E 6 6 L1 Element I 

1 Q - - Shield for Faraday 
Cup (Aluminum Can) 

1 F 8 
L1 

Shield L1 Element IV 
2 2 9 9 L1 Element II 

1 G 10 10 Screen Shield 

2 1 11 11 L1 Element III 
- - 12 -  

2 4 13 12 
MONO INNER 

SPHERE 

1 R 7 faceplate 
MONO 

FACEPLATES 

2 5 15 15 
MONO OUTER 

SPHERE 
- - 16 -  
2 3 17 17 L2 Element II 
- - 18 -  
2 6 19 19 L2 Element III 
- - 20 -  
- - 21 -  

1 M 22 lens to 
shield 

L2 Element I, 
Aperture, Shield 

1 B 23 23 L2 Element IV 
1 L 24 24 XY2 Right 
1 A 25 25 XY2 Left 
1 T 26 26 XY2 Bottom 

1 K 27 27 L2 Exit and Entrance 
Rings 

1 J 28 28 XY2 Top 
1 H NC   
1 S NC   
1 V NC   
2 7 NC   
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Figure A.1 Figure of connectors 1 and 2 as well as a schematic depicting the destination 
of the wiring.  Numbers and letters in parentheses correspond to the pins of connectors 1 
and 2.    
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