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ABSTRACT 
 
 

 Almost all regions in the United States must accurately estimate evaporation to 

have effective water management programs.  The purpose of this study is to develop a 

better method for measuring evaporation.  Lake evaporation along with meteorological 

data are measured directly from a floating pan.  The floating pan is specifically designed 

to account for one of the most sensitive parameters of evaporation, the water surface 

temperature.  However, other factors such as air movement, solar radiation, stability, heat 

transfer, wave action, water level range, and site location were also taken into 

consideration while designing the floating pan system.  The evaporation measured from 

the floating pan is compared to the two aerodynamic methods.  Overall, the evaporation 

estimate using the Sill (1983) method is in close agreement to the evaporation data from 

the floating pan.  The evaporation estimate for the months of September and October, 

2006 from the two aerodynamic methods are compared to the data obtained from a land 

based pan.  Both methods provide a lower estimate of evaporation compared to the 

SCDNR land based pan data.  It is recommended that a water level sensor that is not 

influenced by temperature changes be used.  The design of the floating pan allowed for 

the lake’s water surface temperature to be similar to that of the floating pan’s water 

surface temperature, which is one of the major components in evaporation prediction.  
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CHAPTER I 
INTRODUCTION 

 
 

 The time period from June 1998 to August 2002 marked the worst multiyear 

drought in South Carolina history (Badr et al., 2004).  Many lakes were being drained to 

hazardously low levels due to downstream demands.  It made the state realize that the 

water in South Carolina can run out and should not be taken for granted.  Therefore, the 

South Carolina Department of Natural Resources has established a South Carolina Water 

Plan, which sets guidelines for the state to follow for effective water management.   

 Understanding the water budget is essential for a successful water management 

plan.  The water budget can be represented by the following equation, which accounts for 

the total amount of water in the watershed: 

Inflow – Outflow = Change in Storage 

According to the South Carolina Department of Natural Resources (Badr et al., 2004) an 

estimated average of 56 inches of water enters South Carolina annually from all sources.  

The largest of these sources is precipitation.  It makes up 48 inches of the 56 inches of 

water entering the state of South Carolina, 85 percent of the total amount.  The other 8 

inches is streamflow from North Carolina.  Loss of water results mainly from 

evapotranspiration and streams discharging into the ocean (Badr et al., 2004).  

Evapotranspiration is the loss of water to the atmosphere from water bodies or soil by 

evaporation and transpiration from plants.  Out of the 48 inches of precipitation, an 

estimated 34 inches is lost to evaporation, which is 71 percent of the annual precipitation 

(Badr et al., 2004).  Even in other humid regions in the United States, there have been 



    2

predictions that up to 60 percent of the annual precipitation is lost to evaporation 

(Zurawski, 1978).  Thus evaporation from lakes and reservoirs has a major impact on 

water management and environmental studies, since it accounts for such a large portion 

of the water balance.   

 Low water levels due to evaporation can have a considerable effect on instream 

and offstream uses.  Instream uses, which do not withdraw water from a water body, 

include maintenance of fish and wildlife habitats, recreation, navigation, wastewater 

assimilation, and hydroelectric power generation.  Offstream uses, which divert water 

from a lake or reservoir, include power generating facilities, industrial discharges, public 

supply, golf course irrigation, and crop irrigation (Badr, et al., 2004).  Therefore, accurate 

measurement of evaporation is of critical importance to the state and its occupants. 

Problem Statement 

Lake evaporation is estimated from land based pans, floating pans, or by applying 

the water budget method with empirical equations. The most common method used to 

measure evaporation is the land based pan method.  It consists of measuring evaporation 

from a pan that is either in or above the ground by a water depth sensor.  However, due to 

differences between the pan and the lake’s water temperature, wind speed, and other 

parameters, a pan coefficient is required to correct for a higher evaporation rate from the 

land based pan.  In general, the pan coefficient is a function of pan design and location 

and is determined by using the energy budget or aerodynamic method.  Water surface 

temperature is one of the most important parameters in evaporation estimates.  Reducing 

the difference in temperature between the water in the pan and in the lake will bring the 

pan coefficient closer to one, increasing the accuracy of evaporation measurements.  
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Considering that evaporation has such a significant role in the water balance, it is 

necessary to have a more accurate estimation of evaporation to allow government 

agencies to improve their assessment of regional water resources. 

Objective 

 The primary objective is to develop a more accurate estimation of lake 

evaporation in the southeast region of the United States.  The lake evaporation will be 

measured directly by suspending a pan in Lake Hartwell located in South Carolina.  

Analysis of the data obtained from the submerged pan will allow for a comparison of 

other evaporation methods.  More specifically, the research will entail: 

1. Designing a floatation device that will allow a pan to be submerged in a lake 

that can handle the lake’s environmental challenges and having the device 

mimic the lake’s water surface characteristics. 

2. Compare and analyze the measured evaporation rate from the submerged pan 

to the aerodynamic methods that use meteorological data. 

3. Compare and analyze the measured evaporation rate from the submerged pan 

to the Standard NWS Class-A Pan located near Lake Hartwell. 

4. Improve empirical equations and pan coefficients for the southeast region of 

the United States. 

Water is a limited natural resource that is an essential part of human life and economic 

development.  A better assessment of water management can be obtained by an accurate 

estimation of evaporation from lakes and reservoirs, which will in turn benefit all 

residents in the state.  Due to the water level sensor’s data being faulty, only objectives 

one and two were accomplished in this study. 
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CHAPTER II 
LITERATURE REVIEW 

 
 

General 
 

 Evaporation plays a major role in the hydrological cycle.  Water evaporates from 

a body of water such as the ocean or land surface or from vegetation through the process 

of transpiration.  Water vapors are transported into the atmosphere until conditions are 

appropriate for it to precipitate back in the form of rain or snow, which provides moisture 

for the growth of vegetation, runoff to streams and reservoirs, and groundwater 

replenishment as a result of infiltration.  Water from the precipitation eventually makes 

its way back into water bodies and reservoirs and the hydrological cycle continues 

(Maidment, 1993).   

 The hydrological cycle requires an energy source to initiate evaporation.  The 

intermolecular attractive forces of liquid water and water vapor are different.  Molecules 

in the liquid phase are ten times closer than those in water vapor.  Since water vapor 

molecules are farther apart, the intermolecular forces are not quite as strong.  When 

evaporation begins to take place, work is done against the intermolecular forces and 

energy is absorbed.  The energy required to move a water molecule from the liquid to the 

gas phase is called latent heat of vaporization, λ.  The latent heat required for evaporation 

to occur will slightly decrease when there is an increase in water temperature due to the 

increase in separation of molecules.  The primary source of energy needed for 

evaporation comes from the radiation of the sun.  It takes about 2.5 million joules to 
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evaporate one kilogram of water, which can be calculated from the following latent heat 

of vaporization equation (Maidment, 1993): 

sΤ−= 002361.0501.2λ        (2.1) 
 
where  
 
 Ts = water surface temperature, °C.  
 
 Natural evaporation results in the exchange of water molecules between the air 

and the water surface.  Vapor molecules are constantly moving freely and colliding with 

the water surface, which either bounce back to the atmosphere or attach to the water 

surface.  A molecule requires a certain amount of energy to leave the water surface, 

determined by the water surface temperature.  Evaporation occurs when there is a 

positive difference between the vaporization rate (dependent on temperature) and the 

condensation rate (dependent on vapor pressure).  When the vapor pressure increases to 

the point where the vaporization and condensation rates become equal, the water 

molecules can no longer diffuse from the water surface and the air is said to be saturated. 

When no evaporation occurs, this is called saturated vapor pressure (Maidment, 1993).  

Therefore when the actual vapor pressure is lower then the saturated vapor pressure the 

result is evaporation.  If the actual vapor pressure is equal to the saturated vapor pressure 

then no evaporation occurs.    

 As stated above, evaporation depends on the difference in saturated vapor 

pressure and actual vapor pressure.  Evaporation can continue only if the water vapor is 

removed from the air close to the water surface at a rate at least equal to the rate at which 

it enters.  Usually the air close to the water surface will become saturated before the 

atmosphere above it, which will cause molecular or turbulent diffusion of the vapor to the 
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atmosphere above.  Further aid in the process of evaporation comes from air that is 

overland with lower moisture content and is blown across a water body to replace the 

existing air near the water surface (Pailey, 1974).  Hence, evaporation occurs when the 

air is calm or when the wind is blowing, which is known as free convection or forced 

convection, respectively. 

 Robinson (1992) presented the development of the bulk aerodynamic method.  In 

1802, Dalton was the first to propose the evaporation theory for a free water surface.  

Dalton wrote an essay summarizing the consensus among scientists at the end of the 

eighteenth century as follows (Brutsaert, 1982): 

 “The following positions have been established by others, and need therefore only 
to be mentioned here. 
 
1.) Some fluids evaporate much more quickly than others. 
 
2.) The quantity evaporated is in direct proportion to the surface exposed, all 

other circumstances alike. 
 

3.) An increase of temperature in the liquid is attended with an increase of 
evaporation, not directly proportionable. 
 

4.) Evaporation is greater where there is a stream of air than where the air is 
stagnant. 
 

5.) Evaporation from water is greater the less the humidity previously existing in 
the atmosphere, all other circumstances the same.” 

 
The quantifications of positions 3 and 5 were Dalton’s contribution.  Dalton’s findings 

allow the present day notation of the bulk aerodynamic equation to be written in the 

following form: 

))(( as eeufE −=         (2.2) 
 
E = evaporation rate in length unit per unit time 

f(ū) = wind speed function 
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es = saturation vapor pressure at the water surface temperature 

ea = vapor pressure of the air  

 It is common to use an equation based on the bulk aerodynamic equation (2.2) to 

calculate evaporation.  Due to uncertainty in other factors and difficulty in measuring 

evaporation accurately, close to a hundred different modifications of the original equation 

have been proposed (Pailey, 1974).  In this study two different types of the bulk 

aerodynamic equation will be examined; the Sill (1983) method and the bulk 

aerodynamic transfer method. 

The Sill (1983) Method 
 

A respected British modeler, Henderson-Sellers (1986), conducted an extensive 

study of the surface energy balance for lakes and reservoirs by modeling eight different 

equations, six empirical and two theoretical.  The study used two climatologically 

different regions, the United Kingdom and the Republic of South Africa.  After 

evaluation of all the formulas he concluded that the equation with the most consistent 

predictions for both areas was the Sill (1983) theoretical method, Henderson-Sellers 

states (1986): 

“…the two mechanical-convective formulae are in relatively good 
agreement throughout the year and exceed the USGS formula, as might be 
anticipated, emphasizing the need to include convective removal of water vapor in 
the evaporation calculation.  By use of the peak observed values quoted above, it 
is possible to conclude that the USGS formula, and by inference the other 
empirical forms in Table 5, are inadequate.  Although objective differentiation 
between the mechanical-convective formulae is more difficult, the quoted 
observed values are best represented by the Sill (1983) formula.” 

 
 The Sill (1983) method incorporates the correlation between heat, momentum, 

and mass transfer from a flat plate to develop an expression for forced and free 
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convection of mass transport.  The following expression used existing data from seven 

different water bodies to develop an equation for estimating evaporation (Sill, 1983): 

 
))(73.01( 2

asRD CCCuCE −+=  valid for CR ≤ 1.37   (2.3a) 
 

))(1( asRD CCCuCE −+=   valid for CR ≥ 1.37   (2.3b) 
 

uC
TTC

D

as
R

31)(0017.0 −
=       

    
E = evaporation rate, g/m2/s 

CD = drag coefficient of the surface, dimensionless (typically 0.0015) 

u = wind speed, m/s (measured at a height of 2 m) 

CR = convection ratio, dimensionless  

Cs = water vapor density of the air adjacent to the water surface, g/m3 

Ca = water vapor density of the air, g/m3

Ts = temperature at the water surface, °C 

Ta = temperature of the air, °C 

The present study measures the wind velocity at a height of about 1.23 m above the water 

surface of the lake.  However, the Sill (1983) expression has the wind speed measured at 

a height of 2 m from the water surface of the lake.  Therefore, it is necessary to adjust the 

wind velocity of the current study using Gupta’s (2001) equation: 

 
2.0

1

2
12 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

Z
Zuu         (2.4) 

where 

 u1 = wind velocity at height 1 

 u2 = wind velocity at height 2 



    9

 Z1 = measurement height for u1

 Z2 = measurement height for u2

Equation (2.3) is similar to other forms of Dalton’s formula; however, it does 

reveal the importance of including a surface roughness factor and air temperature within 

the wind speed function, which had not been included previously in evaporation analyses 

using the aerodynamic method.  The Sill (1983) method uses the variables of relative 

humidity, air temperature, water surface temperature, and wind speed, which can all be 

accurately measured with little difficulty.  The (Cs-Ca) term in equation (2.3) is the 

difference between the water vapor density of the air adjacent to the water surface and the 

water vapor density of the air.  These two parameters are empirically calculated as 

follows (Ryan and Harleman, 1973): 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−=
273

527862.17exp4.25
S

s T
C       (2.5) 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−⎟
⎠
⎞

⎜
⎝
⎛=

273
527862.17exp4.25

100 a
a T

RHC      (2.6) 

 
RH = relative humidity, in percent 

The CR in equation (2.3) is the dimensionless convection ratio, which combines the 

effects of free and forced convection on evaporation.  The convection ratio is represented 

by the ratio of the Dalton numbers for free and forced convection.  This is written as:  

)()( hshfreeforced CCuDaDaE −+=       (2.7) 

)(1 hshforced
forced

free CCuDa
Da
Da

E −⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=      (2.8) 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

forced

free
R Da

Da
C         (2.9) 
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u
TDa free

31)(0017.0 ∆
=        (2.10) 

  

)(Re)()( Sc
Sh

CCu
EDa

as
forced =

−
=       (2.11)  

Sh = Sherwood number 

Sc = Schmidt number 

Re = Reynolds number  

∆T = virtual temperature difference, °C 

Substituting Dafree and Daforced into equation (2.9) results in the convection ratio of: 

uC
TTC

D

as
R

31)(0017.0 −
=  

which is from equation (2.3).  Substituting the convection ratio, CR, into equation (2.8) 

and simplifying the expression yields equation (2.3) (Sill, 1983). 

 Evaporation increases as the wind speed increases.  The lake’s shape, area, and 

surrounding terrain affect the fetch, which is the unaffected horizontal distance along 

which wind is blowing over water (Robinson, 1992).  According to Robinson (1992), the 

expressions of Harbeck (1962) and Goodling et al. (1976) which the Sill (1983) method 

is based on, suggest the need for an area correction factor.  Therefore Robinson (1992) 

and Reck (1992) modified equation (2.3) by multiplying a lake area correction factor and 

also a terrain correction factor.   

))()()(73.01( 2
areatasRD CCCCCuCE −+=  valid for CR ≤ 1.37  (2.12a) 

 
))()()(1( areatasRD CCCCCuCE −+=  valid for CR ≥ 1.37  (2.12b) 

 
The terrain correction factor (Ct) for the floating pan study is assumed to be one since its 

typical value is extremely close to one thus, the terrain coefficient has a negligible effect 
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on the estimated evaporation.  However, the area correction factor (Carea) does have an 

impact on the evaporation and is given by (Harbeck, 1962 & Goodling, 1976)  

n

lake

ref
area A

A
C ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=         (2.13) 

where Aref  is the area of the reference lake in acres, Alake is the area of the lake being 

studied, and n is a numerical exponent.  In this study, Aref and n are assumed to be 

constants and the values presented by Harbeck (1962) are used with Aref  equaling 2000 

acres and n equaling 0.05.  However, this correction factor is only valid for areas between 

300 and 15,000 acres (Harbeck, 1962).  The area correction factor increases linearly from 

1.1 to 1.43 as the area of a lake reduces from 300 acres to 0.  However, the linear increase 

to 1.43 is based on the assumption that the pan evaporation uses a 70 percent correction 

factor where 1.43 is the inverse of 0.70.  Above 15,000 acres, like Lake Hartwell in South 

Carolina, the correction factor is constant at 0.91 (Reck, 1993).  The lake area correction 

factor decreases as the area of the water body increases due to longer period of air contact 

with water body resulting in higher relative humidity.  Figure 2.1 represents the lake area 

correction factor versus the lake area in acres. 
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Lake Area Correction Factor vs. Lake Area
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Figure 2.1: Lake Area Correction Factor vs. Lake Area 
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Bulk Aerodynamic Transfer Method 
  

Another method that uses meteorological data to calculate evaporation is the bulk 

aerodynamic transfer model.  Ham (1999), Lakshman (1972), Quinn (1979), Bill et al. 

(1980), and White and Denmead (1989) all found that the following two equivalent 

equations (2.14) and (2.15) have been extensively used to estimate evaporation.  

)( *
asre qqUCE −= ρ         (2.14) 

 
E = rate of evaporation, kg/(m2s) 

ρ = air density, kg/m3

qs* = saturated specific humidity at the water surface temperature, kg/kg 

qa = specific humidity of the air, kg/kg 

Ur = average wind, m/s 

Ce = bulk aerodynamic transfer coefficient for vapor transport, dimensionless 

An approximation of equation (2.14) in vapor pressure is represented by (Ham, 1999): 
 

eras
sd

CUee
TR

E )(622.0 * −=        (2.15) 

 
Rd = gas constant, 287.04 J/(kgK) 

Ts = temperature of the surface, K 

es* = saturation vapor pressure at the temperature of the water surface, Pa 

ea = vapor pressure of the air, Pa 

Ur = average wind speed, m/s (measured typically at a height of 2 to 3m) 

Ce = bulk aerodynamic transfer coefficient for vapor transport, dimensionless 

 The above equation represents only the forced convection part of the evaporation 

as evaporation is zero when wind velocity is zero.  The bulk aerodynamic transfer 

coefficient for vapor transport, Ce, is determined empirically by field studies and is 
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dependent on the two variables, wind speed (Ur) and vapor pressure (ea).  Knowing the 

evaporation value and solving for Ce from equation (2.15) will result in a bulk 

aerodynamic transfer coefficient for a particular study.  Typical values of the coefficient 

range from 1.0 x 10-3 to 2.0 x 10-3 for instruments measuring wind speed and vapor 

pressure at 2 to 3 m above the water surface (Ham, 1999).  In 1999, Ham calculated a 

bulk aerodynamic transfer coefficient of 2.81 x 10-3 for a lagoon situated at 40 km from 

Ulysses, Kansas which is higher than normal values.  However, the Ur and ea were 

measured at 1 m above the water surface which will result in a higher Ce (Ham, 1999).  

The bulk aerodynamic transfer coefficient for the floating pan study is expected to have a 

similar Ce value as Ham (1999), due to the instruments’ height. 

There are several parameters that affect the rate of evaporation.  Factors such as 

air temperature, water surface temperature, relative humidity, wind speed and empirical 

dimensionless coefficients are all a significant part of computing evaporation.  The 

common goal of all of the different forms of Dalton’s equation is to incorporate these 

variables to best calculate evaporation.     

Evaporation is a very slow process.  Because of this, the measurement errors 

increase and the accuracy of the estimated evaporation reduces.  That is why it is 

important to find a particular empirical equation that will best fit the specific area of 

interest, which analyzing the two aerodynamic equations will accomplish for the 

southeast region of the United States. 
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Evaporation Pans 
 

 The evaporation pan is the most commonly used instrument to measure 

evaporation.  However, there are over twenty-five different designs and the list will 

continue to increase (Maidment, 1993).  Some of the more familiar evaporation pans are 

the Sunken Pan of Bureau of Plant Industry, the GGI-3000 Pan, the 20m2 Basin, the 

Colorado Sunken Pan, the Class-A Pan of the U.S. Weather Bureau, and the floating pan. 

 The Sunken Pan of Bureau of Plant Industry (Brutsaert, 1982) was developed and 

used at dry locations in the western part of the U.S. for the U.S. Department of 

Agriculture.  The Sunken Pan is made out of galvanized iron or some other non-rusting 

metal with a 6 foot (182.9 cm) diameter and a depth of 2 feet (61 cm).  The evaporation 

pan is buried 20 inches (51cm) in the ground with 4 inches (10 cm) exposed above land.  

The pan is filled with water equal to that of the ground level.  This pan was used more 

often before the acceptance of the Class A Pan of the U.S. Weather Bureau.  

 The GGI-3000 Pan (Brutsaert, 1982) is an evaporation pan that was developed in 

the U.S.S.R., and is used most extensively in Eastern Europe.  The pan consists of a 

cylindrical shape with a conical base.  The pan is made out of galvanized sheet iron with 

a surface area of 3000 cm2, hence the name, with a diameter of 61.8 cm.  Since the pan is 

cone like in shape the wall depth is 60 cm and the center depth is 68.5 cm in length.  The 

GGI-3000 Pan is buried in the ground with 7.5 cm of the pan above the ground.  

 The 20 m2 Basin (Brutsaert, 1982) also originated in the U.S.S.R.  The 

evaporation basin is cylindrical in shape with a flat base made of 4-5 mm boiler plate 

sheets or concrete.  The basin has a diameter of 5 m, which is a surface area of 20 m2, and 

its depth is 2 m.  Similar to the GGI-3000 Pan the 20 m2 Basin is buried in the ground 
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with a 7.5 cm rim above the terrain and the water in the basin is approximately level with 

the ground. 

 The Colorado Sunken Pan (Brutsaert, 1982) is one of the oldest standardized 

evaporation pans, dating back to the late 1800’s.  The pan is square in shape with 3-foot 

(91.5 cm) sides and a depth of 1.5 feet (45.7 cm).  This pan is also buried in the ground 

with 4 inches of the sides out of the soil and the water surface is approximately equal to 

that of the ground. 

 The Class-A Pan of the U.S. Weather Bureau (Gupta, 2001) is the most 

commonly used pan in the United States.  The pan is made of unpainted galvanized iron 

with a diameter of 4 feet (121.9 cm) and a depth of 10 inches (25.4 cm).  The Class-A 

Pan is mounted 12 inches (30.5 cm) above the ground on a wooden frame to allow air 

underneath the pan for heat transfer.  The pan is filled and kept at a depth of 8 inches 

(20.3 cm).  A hook gauge is installed in the pan to measure the water level.  In addition, 

an anemometer is installed about 6 inches (15 cm) above the pan to measure the wind 

speed.  A temperature sensor is used to measure the water temperature.  The evaporation 

is measured by the change in water level, with an adjustment for precipitation.   

According to pan evaporation research it has been observed that the pan’s 

measurement of evaporation is greater than that of larger water bodies.  The variance of 

the evaporation is due to the difference in water surface temperature of the pan, wind 

velocity and its relative humidity, and obstruction of the wind by the pan walls.  Thus, it 

is necessary to apply a coefficient to provide a better estimate of lake or reservoir 

evaporation.  This can be represented by (Gupta, 2001)   
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P

L
P E

EK =          (2.16) 

where 
 

KP = pan coefficient 

EL = evaporation of a water body 

EP = evaporation from the pan 

Annual pan coefficients typically range between 0.60 and 0.80, with a mean value 

of 0.70 (Maidment, 1982).  However, the pan coefficient is less reliable for smaller time 

periods.  The studies done in Lake Hefner, Oklahoma had a monthly coefficient variance 

from 0.13 to 1.31 (Water-Loss Investigations: Lake Hefner Studies, Technical Report, 

1954).  The Class-A Pan studied by Doorenbos and Pruitt (1977) yielded the pan 

coefficients as shown in Table 2.1.  This wide range of values shows the large range of 

error that can occur due to the pan location, relative humidity, surrounding terrain, and 

wind condition.  Other minute types of error that can result in pan evaporation is the layer 

of dust on the water surface of the pans, oily secretions of insects landing on the pans, 

birds bathing in the pans, animals drinking form the pans, and protective screens over the 

pans (Meyer, 1942).  Despite these drawbacks, evaporation pans are convenient and 

economical.  Thus, pans are still widely used to estimate evaporation. 
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Table 2.1: Suggested Values for the Class-A Pan of the U.S. Weather Bureau Pan  
   Coefficient (KP) (Doorenbos and Pruitt, 1977)      
 

 

Case A: Pan surrounded 
by short green crop Mean 

relative humidity, %  

Case B: Pan surrounded 
by dry, bare area Mean 

relative humidity, % 

Wind 

Upwind 
fetch of 
green    

crop, m 
Low     
< 40 

Med     
40 - 70 

High   
> 70 

Upwind 
fetch of  

dry    
fallow, m 

Low     
< 40 

Med     
40 - 70 

High   
> 70 

         
 0 0.55 0.65 0.75 0 0.70 0.80 0.85 

Light  10 0.65 0.75 0.85 10 0.60 0.70 0.80 
( < 1 m/s ) 100 0.70 0.80 0.85 100 0.55 0.65 0.75 

 1000 0.75 0.85 0.85 1000 0.50 0.60 0.70 
         
 0 0.50 0.60 0.65 0 0.65 0.75 0.80 

Moderate 10 0.60 0.70 0.75 10 0.55 0.65 0.70 
( 2-5 m/s ) 100 0.65 0.75 0.80 100 0.50 0.60 0.65 

 1000 0.70 0.80 0.80 1000 0.45 0.55 0.60 
         
 0 0.45 0.50 0.60 0 0.60 0.65 0.70 

Strong 10 0.55 0.60 0.65 10 0.50 0.55 0.65 
( 5-8 m/s ) 100 0.60 0.65 0.70 100 0.45 0.50 0.60 

 1000 0.65 0.70 0.75 1000 0.40 0.45 0.55 
         

Very  0 0.40 0.45 0.50 0 0.50 0.60 0.65 
Strong 10 0.45 0.55 0.60 10 0.45 0.50 0.55 

( >8 m/s ) 100 0.50 0.60 0.65 100 0.40 0.45 0.50 
 1000 0.55 0.60 0.65 1000 0.35 0.40 0.45 

                  
Note:  Mean relative humidity is the average maximum and minimum daily relative 

humidity. 
 

Floating pans provide the possibility of eliminating the broad range of pan 

coefficients as it is submerged in the lake.  Floating pans are not as common as the above 

mentioned pans and much research is yet to be conducted.  The floating pan is basically 

trying to mimic its surrounding environment, including the evaporation.  Although the 

water surface temperatures of the lake and the floating pan are extremely close, there will 

be some difference and some type of correction factor is still necessary but a more 

consistent value can be obtained.  Floating pans suffer from problems such as wave 
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action, stability, and water level measurements.  Chapter III provides details of the pan 

design and Chapter IV will discuss alteration needed to the original design. 
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CHAPTER III 
EXPERIMENTAL SETUP 

 
 

 The experimental setup of the floating pan was the most challenging part of this 

study.  There were six issues that were looked at carefully to ensure that the floating 

evaporation pan would be successful.  

 The first concern was to make sure that the lake temperature and the pan 

temperature were equal or extremely close.  Robinson (1992) performed a sensitivity 

analysis of the different parameters of evaporation and the error in the evaporation rate.  

The parameters investigated were water surface temperature, air temperature, wind speed, 

and relative humidity.  Of the four parameters, water surface temperature had the largest 

effect on evaporation estimation.  When a 3-degree Celsius error was introduced in the 

water surface temperature, an error of 40% to 90% was found in evaporation rate 

(Robinson, 1992).  This analysis showed how important it was for the water temperature 

in the lake and pan to be as close as possible, if not equal.  Therefore, the pan was 

submerged low enough in Lake Hartwell to allow the pan’s water surface level to be 

equal to or lower than the lake’s water surface, which would ensure heat transfer from the 

lake only.  A 4-foot diameter stainless steel pan was used.  It was 18 inches deep and 

1/16th of an inch thick, see Figures 3.1, 3.2, and 3.3.  The thin metal walls allowed for an 

easy exchange of heat between the ambient water and the water in the pan through 

conduction. 
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Figure 3.1: Stainless Steel Pan (4-ft diameter and 18-inch depth) 

 
 

 

Figure 3.2: Stainless Steel Pan (top view) 



    22

 

Figure 3.3: Stainless Steel Pan Thickness 

The second issue was the buoyancy of the floatation device.  The pan itself was 

buoyant up to a depth of 16.2 inches of water.  However, there was additional equipment 

that had to be supported and kept out of the water.  The pan was also unstable in a wave 

environment.  Therefore, a treated wood frame was constructed with wood strips that 

were 1.5-inch wide and 0.75-inch thick.  The wooden frame was 8 feet by 8 feet with a 

clear spacing of 1.5 inches between wood strips.  The wooden frame had 50% of open 

area, which allowed the radiation from the sun to hit the water surface of the lake around 

the pan.  The pan was placed in the center of the wooden frame.  Since wind speed affects 

convection and surface mixing, which is a significant part of the evaporation process, the 

open space of the wooden frame allowed more air movement, similar to the water surface 

of the lake (Ham, 1999).  Figures 3.4, 3.5, and 3.6 shows the wooden frame, the pan 

opening of the frame, and wood strip spacing.   
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Figure 3.4: 8-ft x 8-ft Wooden Frame 

 

 

Figure 3.5: 8-ft x 8-ft Wooden Frame (pan opening) 
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Figure 3.6: 8-ft x 8-ft Wooden Frame (spacing of wooden boards) 

The wooden frame also provided protection against waves and made the pan 

stable. The buoyancy had to be calculated in order to have the pan water level equal or 

less then the lake water surface level.  The weights considered in the calculation were that 

of the pan, water in the pan, the meteorological equipment, the wooden frame itself, and 

the ability for a 200-pound man to walk safely on the wooden frame.  Taking into 

account the buoyancy of the floatation device, it was necessary to attach three metal rods 

through which the pan could be lowered to a desired level at maximum water level in the 

pan (see Figures 3.7 and 3.8). 
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Figure 3.7: Metal Rod Connection to Pan 

 

 

Figure 3.8: Metal Rods Connected to Pan and Wooden Frame 
 

 



    26

Considering that the pan will be submerged in a wave environment, a technique 

had to be developed to measure the average water depth in the pan.  Wave action around 

the pressure transducer could alter the actual depth readings.  Therefore, the probe was 

installed in a circular cylinder (2 inches in diameter and 14 inches in height) at the center 

of the pan.  The cylinder was mounted on a Plexiglas plate and attached to the bottom of 

the pan.  At about an inch from the bottom of the cylinder six equally spaced holes were 

drilled around the cylinder, as shown in Figures 3.9 and 3.10.  These holes allowed the 

water to enter and fill the cylinder up to the same level as the pan depth; however, the 

water in the cylinder stayed level and was not affected by the wave action within the pan.  

At the top of the Plexiglas cylinder was a cap with four 1/16th-inch holes to limit water 

from splashing into the cylinder and filling with water and affect the depth reading.  The 

pressure transducer was placed at the top of the cylinder and provided accurate changes 

in water depth in the pan. 

 

Figure 3.9: Plexiglas Cylindrical Measuring Tube 
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Figure 3.10: Plexiglas Cylindrical Measuring Tube (6 holes at cylinder’s bottom) 
 
 
 

 

Figure 3.11: Plexiglas Cylinder Four 1/16th-inch Holes (top view) 
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 For the lake temperature to have a direct effect on the pan’s water temperature, a 

heat conductive material was needed for the pan.  Thus, the pan was built using stainless 

steel.  However the portion of the pan above the water level would be exposed to direct 

radiation from the sun and would heat the water in the pan.  Ham (1999) found that the 

difference in water temperature between the pan and the water body was due to the 

extended sidewall of the pan not in contact with the water.  Therefore, the fourth issue 

was related to controlling the heat transfer between the wall of the pan exposed to the air 

and the portion of the pan in the lake.  To solve this problem, a light grey linex water 

proof insulation was used on the upper 4 inches of the pan.  The linex coating used would 

not be in contact with the lake water but only the atmosphere, see Figure 3.11.  Also, the 

maximum water level in the pan was lower than the linex insulation.  

 

Figure 3.12: Light Grey Linex Water Proof Insulation 
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 A device that could be left in the environment without constant monitoring would 

be the ideal measuring apparatus.  Therefore, a system had to be designed to add or 

remove water automatically from the floating pan in order to control the minimum and 

maximum depth of water.  A two-pump system was devised to overcome the problem.  

One pump automatically took water out of the pan when the water in the pan became 

higher than the maximum allowable depth of 12.75 inches.  The water was pumped down 

to 11 inches.  The second pump added water to the pan when the depth fell to a level less 

than the minimum allowable depth of 9.25 inches.  Water was pumped into the pan until 

the depth became 11 inches.  The designed depth is at a 1.75 inch range from 11 inches 

(12.75 inches to 11 inches or a depth of 9.25 inches to 11 inches) to eliminate the 

possibility of the two pumps running concurrently.  The pumps were operated by 

programming the data logger in conjunction with the water level recorder reading.  The 

pressure transducer was located at the top of the plexiglass cylinder and had a 

measurement range from 0.75 inches to 4.25 inches, see Figure 3.12, 3.13, and Table 3.1.  

The initial design had to be changed as discussed in Chapter IV due to error in water 

level readings. 
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Figure 3.13: Pump System (top view) 

 

 
  

Figure 3.14:  Diagram Schematic of Pump in/out Heights of Cylinder 
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Table 3.1:  Pump in/out Heights 

Datum Pump Starts (inches) Pump Stops (inches) 
Bottom of Pan* > 12.75  < 11  
Top of Cylinder** > 4.25  < 2.5  
Bottom of Pan* < 9.25  > 11 
Top of Cylinder** < 0.75  > 2.5  

 
*Actual height from the bottom of the pan to the top of the pan  
**Actual readings and data collected from the pressure transducer 
 
 The last problem was the selection of location at which the evaporation station 

could be installed.  The selected site had to be away from the shore in relatively deeper 

water, away from the trees, and out of the way of boat traffic on the lake.  In addition, the 

accessibility of the site by a boat was also a major concern.  After scouting several sites 

on Lake Hartwell, a site at Clemson University was selected (see Figure 3.14). 

 

Figure 3.15: Floating Pan Location on Lake Hartwell (©2006 Google- Map data) 

 As stated earlier the pan was made of stainless steel and was 4 feet in diameter 

and 18 inches deep.  The pan used was deeper than the typical Standard NWS Class-A 

pans used for overland installation.  The increase in the depth of the pan allowed for an 

increase in the water level range for the two-pump system. 
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 Also mentioned earlier was the 8 feet by 8 feet wooden frame floatation device.  

This frame has several purposes.  The wooden frame allowed for stability of the pan and 

the entire setup including the electronic equipment.  The design of the frame (1.5 inches 

wide and 0.75 of an inch thick wood strips with the inch and a half spacing between the 

boards) helped dissipate waves.  In addition, it allowed the sunlight hit the lake water 

surface surrounding the floating pan to accurately mimic the environment around the 

floating pan.   The wood spacing also has the advantage of allowing a similar air 

movement to that of the lake’s water surface.  The wooden frame floatation device 

(including the four black floats, see Figure 3.15) serves as a floating dock for mounting 

and maintenance of the meteorological and data logging equipment. 

 

Figure 3.16: Black Floating Device 

 The following meteorological equipment are used are: one pressure transducer to 

measure the depth of the water in the pan, one anemometer to measure the wind speed at 
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a height of 1 m, one humidity sensor and air temperature sensor also measured at a height 

of 1 m, and four water temperature sensors.  The reason for four water temperature 

sensors is to find the water temperature gradient of the lake and pan.  Two water 

temperature sensors are for the water surface of the pan and the lake.  The other two 

water temperature sensors are placed about 14-inches from the lake’s water surface, one 

in the pan and one in the lake.  The meteorological data will be used in empirical 

equations to predict evaporation and compare it to the measurements from the pan. 

 All the meteorological instruments are connected to the data logger.  The data 

logger supplies power to the instruments to take data and records the measurements.  The 

storage space in the data logger allows for continuous operation for several weeks before 

downloading is necessary.  A 12-volt battery is connected to the data logger to supply 

power to the meteorological equipment.  It is recharged by a solar panel.  The data logger 

also controls the two-pump system that maintains a desired water level range in the pan.  

All of this equipment is above the water surface on the wooden frame, see Figure 3.16. 

 The final product can be seen in Figure 3.17.  The floating pan method will 

provide a better estimate of lake evaporation than a land based pan as it closely mimics 

the lake environment.  The meteorological equipment attached to the wooden frame 

allows for comparison between the actual evaporation and those estimated using 

aerodynamic methods. 
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Figure 3.17: Data Logger and Electronic Setup 

  

 
 

Figure 3.18: Floating Evaporation Pan Complete Setup on Lake Hartwell 
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CHAPTER IV 
DISCUSION OF RESULTS 

 
 
 The purpose of the present study was to develop a more accurate method for 

measuring evaporation.  The main focus of the study was to develop a viable and more 

accurate alternative to the land based evaporation pan.  The ultimate goal is to develop a 

device that would be able to mimic its surrounding environment and collect accurate data 

in order to estimate and calculate evaporation. 

 The first week, middle of August, of data received from the floating evaporation 

pan agreed with expectations.  The time variation of depth in Figure 4.1 illustrates several 

events occurring in the environment,  

1.) Evaporation, with a decrease in water depth  

2.) Rain event, with increase in water depth  

3.) Pump event, with a sharp increase or decrease of water depth 

Figure 4.1 Notes: 

1.)  The measured depth is relative to the bottom of the pressure transducer, it is 

not the actual depth in the floating pan. 

2.)  The abscissa is in military time. 

3.)  The data towards the end of the graph shows oscillation due to a test done on 

the two-way pump system, in order to make sure the programming worked 

correctly. 
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After the first week, the water depth data unknowingly became oscillatory.  The 

following improvements were made to rectify the problem. 

1.) Cables were attached to the black floats and tightened to counteract the buoyant 

force of the floats, which was causing the wooden frame to bow.  A leveled 

floatation device allowed the pan and the depth sensor to be in parallel horizontal 

planes, see Figure 4.2. 

 
Figure 4.2: Cables to Counteract the Buoyant Force (side view) 

 
2.) A piece of rubber was placed on the pressure transducer and attached to the 

Plexiglas cylinder to stop the possible threat of the probe moving up and down 

relative to the Plexiglas cylinder under wave action, thus creating oscillations in 

data points.  This was not found to be the problem and was removed. 

3.) The depth sensor has a tube that must be open to the atmosphere to take into 

account the barometric pressure changes.  The barometric tube on the pressure 

transducer was mounted completely open to the atmosphere and not covered by 

any material. 

4.) The four holes on the top of the Plexiglas were increased from 1/16th of an inch to 

1/4th of an inch.  The enlargement of the smaller holes was to eliminate surface 

tension effects within the Plexiglas holes.  It was thought that the surface tension 
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was not allowing the water surface in the cylinder to be open to the atmosphere 

which was creating higher pressure and the possibility of condensation within the 

Plexiglas cylinder after a rain event or splash from a large wave. 

5.) Several elements of the programming of the data logger were changed.  The warm 

up time of the pressure transducer was increased.  The instruments were read at 

different starting times.  Unused programs were deleted and over all clean up was 

conducted to remove any possible errors.  Lastly, the pressure transducer was 

recalibrated. 

6.) To eliminate the possibility that the closed portion at the top of the cylinder was 

causing oscillation, it was removed.  The reason for opening the Plexiglas 

cylinder to the atmosphere is to eliminate the possibility of pressure increase and 

condensation. 

7.) In addition, the pressure transducer was being exposed to two different 

temperatures, the water and the part of the probe that is exposed to the air.  To get 

a more constant temperature across the probe and to lessen the direct heat of the 

sun, the pressure transducer was completely submerged.  The instrument was 

recalibrated for the increase in depth and the pumps were reprogrammed to 

handle the new depth range. 

The location of the floating pan was in a higher traffic area of Lake Hartwell than 

expected which could have resulted in water depth oscillations.  It was discovered that 

when large waves came by the device for a long period of time, it rocked the wooden 

platform back and forth and caused oscillation with a long wavelength within the 

cylinder.  However, after analyzing the data with respect to temperature it was observed 
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that the pressure transducer was highly sensitive to the temperature change more than the 

technical manual stated.  The water level follows the trends of the daytime and nighttime 

water temperature, increasing during the day and decreasing through the night.  Figure 

4.3 represents the first week in September, Figure 4.4 is the data measured in the middle 

of September, and Figure 4.5 shows data from the beginning of October after all the 

above changes were completed.  Each graph is later in the year than the previous one 

with a greater water temperature change from the daytime to nighttime hours.   

 After making the changes discussed above, the final product of the floating pan 

has been improved.  In conclusion, a pressure transducer that corrects for temperature 

change is needed to accurately measure minute changes in depth.  Therefore, the depth 

data for this study are not available considering the error due to the water level 

instrument used. 
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Another way of assessing the effectiveness of the design of the floating 

evaporation pan is to look at the temperature of the lake versus the pan.  It was stated by 

Robinson (1992) that the most sensitive parameter of evaporation was the water surface 

temperature.  Therefore, if the water surface temperature of the pan is the same or 

extremely close to that of the lake’s water surface temperature then one of the design 

objectives will be achieved.  Also, since the water in the pan is drawn directly from the 

lake, the chemical composition of water is same (apart from the times when there is 

rainfall) and hence the evaporation characteristics of the two water bodies will be similar. 

The first set of data, observing Figure 4.6, shows the water surface temperature of 

the pan and the lake following each other within one or two degrees, except for two 

locations where the water surface temperature of the pan is closer to the air temperature.  

Looking at Figure 4.1 and 4.6 it can be noticed that at these two locations the depth was 

at its lowest point, and the probe measuring the water surface temperature in the pan was 

outside of the water.  To eliminate the problem, the temperature probe was put 0.75 

inches below the lowest possible water level of the pan taking into account the water 

level fluctuation due to wave action.   
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Figure 4.7 and Figure 4.8 are plots of the water surface temperature difference 

between the lake and the pan for the months of September and October, which can be 

represented by the expression: 

∆Twater surface = Tlake – Tpan       (4.1) 

Ham (1999) measured a water surface temperature difference as high as 7.2 °F (4 °C) for 

his floating evaporation pan.  For the present floating evaporation pan study, the highest 

temperature difference for the month of September is 2.75 °F (1.53 °C), which is 62% 

less than the observation made by Ham (1999).  In addition, the largest temperature 

difference for the month of October is 2.46 °F (1.37 °C), which is 66% less than 

measured by Ham (1999).  The temperature difference of the lake and pan varies 

depending on the time of the day.  Figure 4.9 shows temperature difference variation over 

a 24 hour period.  Ham (1999) calculated an average KP value of 0.81 for his floating 

pan.  Due to the decrease in temperature difference between the lake and pan water for 

the present study, there should be an increase in the KP value. 
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In addition, the daily average temperature differences between Lake Harwell and 

the floating pan are even closer, with the largest temperature difference in two months 

equaling only 1.50 °F (0.83 °C) (see Figure 4.10).  Also observed is the fact that the daily 

average temperature of Lake Hartwell is slightly higher than that of the floating pan, 

which is the opposite of a land based pan.  To assess the effect of temperature difference 

observed in the lake and the floating pan on the evaporation rate, the aerodynamic 

methods calculations based on the pan and the lake temperatures are carried out with all 

other factors being the same and are shown in Figure 4.11 and Figure 4.12 (for 

calculations see Tables A.1 to D.2 in the appendix).   The two figures show that Sill 

(1983) method of estimating evaporation rate is slightly more sensitive to temperature 

difference than the bulk aerodynamic transfer method. 
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Purvis (1992) stated in a report prepared for the South Carolina Department of 

Natural Resources (SCDNR) that the National Climatic Data Center (NCDC) had been 

measuring evaporation with the National Weather Service’s Class-A evaporation pan 

since 1950.  Evaporation data for the Clemson, SC area is available and has been 

analyzed for a 42-year period from 1950 to 1992.  The present study had several missing 

days in the months of September and October due to modifications of the floating pan 

design.  Therefore, the SCDNR mean daily evaporation values for the month of 

September and October averaged over the period of 42 years are compared with the mean 

daily evaporation values estimated by the two aerodynamic methods.  From Table 4.1, it 

is clear that Sill (1983) method compares well with 42-year average pan data.  The 

averaged daily evaporation data for the months of September and October for the year 

2006, as reported by Linville (2006), was also compared with the two aerodynamic 

methods.  As shown in Table 4.1, Sill (1983) method performs better in this case also. 
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Table 4.1: Daily Lake Evaporation Calculation Summary 
 

  (in/day) 

Month Sill (1983) Method 

Clemson SCDNR  
Class-A Pan            

(42 year average) Difference  
September 0.164 0.156 0.008 
October 0.147 0.121 0.026 
        

Month 
Bulk Aerodynamic Transfer 

Method 

Clemson SCDNR  
Class-A Pan               

(42 year average) Difference  
September 0.103 0.156 -0.053 
October 0.119 0.121 -0.002 
        

Month Sill (1983) Method 
Clemson Class-A Pan 

(2006) Difference  
September 0.164 0.146 0.018 
October 0.147 0.117 0.03 
Total  0.311 0.263 0.048 
        

Month 
Bulk Aerodynamic Transfer 

Method 
Clemson Class-A Pan 

(2006) Difference  
September 0.103 0.146 -0.043 
October 0.119 0.117 0.002 
        

Month 

Clemson SCDNR  
Class-A Pan              

(42 year average) 
Clemson Class-A Pan 

(2006) Difference  
September 0.156 0.146 0.01 
October 0.121 0.117 0.004 
        

Month Sill (1983) Method 
Bulk Aerodynamic Transfer 

Method Difference  
September 0.164 0.103 0.061 
October 0.147 0.119 0.028 
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Figure 4.13 shows the water level measurements in the floating pan from 8/18/06 

to 8/26/06, where the recorded data was reliable.  This set of water level data was 

compared to the two aerodynamic methods.  The data were categorized into six different 

time periods, see Figure 4.13.  For each time period the difference in water level was 

calculated to find the evaporation, see Table 4.2.  In addition, average meteorological 

data was computed for each period and the evaporation from the two aerodynamic 

methods was calculated (Table E.1 and F.1 in the appendix).  The results of the 

evaporation calculations show that the Sill (1983) method provides a better estimate.  The 

average ratio of the estimated evaporation of the Sill (1983) method to the floating pan 

evaporation is close to one (see Table 4.3).  Although the evaporation estimates concur 

fairly well with the floating pan evaporation, there needs to be more data recorded over a 

longer time frame.  Due to problems with the water level recorder, a sufficient amount of 

data was not available for a concrete analysis.  However, in summary the Sill (1983) 

method seems to estimate evaporation relatively close to the SCDNR Class-A Pan and 

the evaporation recorded from the floating evaporation pan.  
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Table 4.2: Calculated Evaporation from Floating Pan (8/18/06 – 8/26/06) 
 
  Point 1 Point 2     

Evap. 
Interval 

Starting 
Time Depth (in) 

Ending
Time Depth (in) E actual (in) Total hrs 

1 11:45 2.41 18:30 2.26 0.15 6.75 
2 20:15 2.43 13:30 2.08 0.35 17.25 
3 17:30 3.09 13:45 2.87 0.22 20.25 
4 17:45 3.97 11:45 3.57 0.4 32 
5 13:15 3.05 14:15 2.88 0.17 25 
6 16:00 3.01 12:00 2.67 0.34 44 

Note: Refer to Graph 4.13 to find the total time period of each section. 
 
 
Table 4.3: Calculated Aerodynamic Method vs. Floating Pan Evaporation (8/18/06 –  
    8/26/06) 
 

    (in/section time)   
Evap. 

Interval 
Time Interval 

(hrs) Sill (1983) Method E flaoting pan E Sill/ Efloating pan

1 6.75 0.127 0.15 1.18 
2 17.25 0.111 0.35 3.16 
3 20.25 0.157 0.22 1.40 
4 32 0.283 0.4 1.41 
5 25 0.201 0.17 0.85 
6 44 0.397 0.34 0.86 

Average =  1.48 
  

    (in/section time)   
Evap. 

Interval 
Time Interval 

(hrs) 
Bulk Aerodynamic 
Transfer Method E flaoting pan E B.A.T./ Efloating pan

1 6.75 0.079 0.15 1.89 
2 17.25 0.041 0.35 8.48 
3 20.25 0.063 0.22 3.50 
4 32 0.116 0.4 3.46 
5 25 0.076 0.17 2.22 
6 44 0.148 0.34 2.29 

Average =  3.64 
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CHAPTER V 
CONCLUSION 

 
 
 The floating evaporation pan design for the present study captures several features 

of Lake Hartwell’s environment.  The water surface temperature is one of the major 

parameters of evaporation that affects the amount of error in estimating evaporation. 

The water surface temperature difference between the lake and the pan in the 

present study is reduced over 60% compared to Ham’s (1999) study. Considering that the 

floating pan and Lake Hartwell’s water surface temperatures are similar allows the 

assumption that the design is successful in obtaining one of the major objectives of the 

study.  In addition, the chemical composition of the water in the pan and the lake is the 

same because the pan water is drawn from the lake. 

Although the pressure transducer eventually failed in measuring the depth because 

of temperature sensitivity, the first week of data shows a good representation of the 

device working as expected.  Overall the design of the device was successful in 

mimicking the characteristics of the lake, mainly the water surface temperature.  

 Of the two methods studied the evaporation measured by Sill (1983) method 

correlates better with the data obtained from the SCDNR Class-A evaporation pan and 

the floating pan.  However, until the evaporation has been measured accurately with the 

floating pan for an extended period of time, the best method for measuring evaporation 

cannot be determined from this study. 
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Suggestions for Future Study 
  
 The floating evaporation pan was able to reproduce water surface temperature 

similar to that of Lake Hartwell.  The following recommendations are provided for future 

modifications of the floating evaporation pan. 

 The floating pan was able to obtain one of the major parameters of evaporation, 

the water surface temperature of the lake.  However, it is suggested to investigate the 

impact of wind speed modifications due to the floating pan and the wooden platform.  

The wooden platform is approximately eight inches above the water surface in the lake 

and the water surface in the pan is 4 to 6 inches lower than the top of the pan.  Therefore, 

the wind speed over the water surface in the pan is different than that over a lake surface 

and a correction factor for the wind speed relative to the water surface of the lake should 

be determined. 

To eliminate large wave action within the floating evaporation pan it is suggested 

that the floating device be put at a low traffic site.  There will always be a possibility of 

waves disrupting the data; however, limiting that issue from the beginning can help 

reduce other problems from occurring.   

 The wooden frame did start to warp.  Since this study is conducted in a harsh 

environment, a frame consisting of more metal may hold the original shape of the 

floating device better.  Ham (1999) used an entire metal frame for his floating 

evaporation pan and the water surface temperature of the floating pan was higher than the 

water surface temperature of the water body.  A mixture of wood and metal would be 

recommended to allow normal heat transfer and a solid frame. 
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 In addition to the frame, it may be useful to create some type of apparatus that 

may aid in the dissipation of waves outside of the floating pan.  Lessening the wave 

action will lower the chance of water splashing into the floating pan and altering the 

depth measurement.  

 Evaporation relies on accurate measurements of water level.  The current 

instrument is sensitive to the temperature and the water level measurements cannot be 

relied upon.  Other types of instruments with lower temperature sensitivity should be 

considered for water level measurements.  For example, another option for measuring 

depth is by a floating device in a stilling well outside the pan.   

Evaporation is an important process in the hydrological cycle and is an integral 

part of the water budget calculations.  Accurate estimates of evaporation will help 

develop an effective water management plan.  
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of September and October 
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Appendix B 
 

Bulk Aerodynamic Method Calculations for the Floating Pan in the Month  
of September and October 
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Sill (1983) Method Calculations for Lake Hartwell in the Month            
      of September and October 
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Appendix D 
 

Sill (1983) Method Calculations for the Floating Pan in the Month            
      of September and October 
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Appendix E 
 

Calculated Bulk Aerodynamic Transfer Method vs. the Floating Pan                  
Evaporation (8/18/06 – 8/26/06) 
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Appendix F 
 

Calculated Sill (1983) Method vs. the Floating Pan                  
   Evaporation (8/18/06 – 8/26/06) 
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