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ABSTRACT 
 
 

       The presence of thermo-resistant bacteria in products from the rendering industry is a 

concern problem in the United States because only about 80% of the rendering industries 

use thermal processing to eliminate bacteria.  The objective of this study was to 

determine the thermal inactivation characteristics of thermo-resistant bacteria from raw 

rendering materials.  Ground beef with 21% protein, 19% fat, and 60% moisture was 

used as a model media to simulate raw rendering material. Raw animal co-products were 

heated at 91, 95, 96°C for 90 min, then surviving bacteria were recovered.  These heat 

resistant isolates were inoculated into meat samples then thermally treated using a dry 

bath incubator.  Calculations for D and Z values were determined for thermo-resistant 

bacteria  subjected to thermal treatment at 91°C, 94°C, and 96°C. 

   This study demonstrated that thermally resistant bacteria isolated from raw rendering 

materials exhibit high heat resistance for a wide range of temperature, suggesting that use 

of thermal processing at an optimized temperate (> 96°C) is required for an efficient 

removal of microbes.   
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CHAPTER I  

INTRODUCTION 

    Thermal processing is one of the most extensively used methods to eliminate or reduce 

bacteria in food.  It has been applied in many forms such as cooking, baking, roasting, 

extrusion cooking, pasteurization, and sterilization.  The main objective of pasteurization 

and sterilizations is to eliminate microorganisms and prevent enzymatic reactions that can 

spoil food.  Thermal processing involves the controlled use of heat and can be applied in 

food process to increase or reduce bacterial populations depending on what is desired.  

Many authors, dictionaries, books, articles, etc. have defined thermal processing.  In 

general, thermal processing is the application of heat to food in order to destroy any 

harmful bacteria or microorganisms (Richardson, 2002) allowing foods to be preserved 

and available out of season.  Destruction of microorganisms is important for food 

preservation since microorganisms can be pathogenic or cause rapid spoilage.  Thermal 

processing can also inactivate natural heat-labile toxins and enzyme systems that cause 

degradation in food, preserving desirable texture, flavor, and odor.   

     The study of thermal processing for microbial safety is required to determine under 

what conditions harmful microorganisms will be destroyed (Hawley, 1971).  Again, this 

study can (and should) also be extended to the conditions at which natural spoilage 

reactions caused by enzymes are inactivated.  A major benefit of thermal processing is 

the overall improvement of product quality and safety.  However, thermal processing can 

also give rise to negative consequences.  Examples of this is include the formation of 



brown pigments on food products, loss of food texture, and the degradation of vitamins, 

and other nutritional components.  So, thermal processing should always be evaluated in 

terms of the overall quality of the final product as well as the improvement in microbial 

safety (Arnoldi, 2001). 

    Thermal resistance by microorganisms is variable and reduction of microbial loads is 

proportional to the amount of temperature and time applied (Sale, 1970).  The high 

temperatures used in thermal processing destroys microbial cells by destabilizing the 

structural and functional integrity of the cytoplasmic membrane (Hoover, 1993).  The 

ability of microorganisms to survive high temperatures can be greatly increased by the 

nutritional composition of the media, which may contain substances that can provide 

protection against damage, or nutrients essential for repair (Hoover, 1989).  In practice, 

several factors can affect the accuracy of the data obtained from bacterial thermal 

inactivation studies for food preservation and care must be taken in interpreting results 

from different research groups (Mazas, 1997).   

    Microbial spores are often the most heat resistant form of bacteria in food products.  A 

spore is a structure that contains the absolute minimum of genetic material and associated 

components required to allow sporulation into a vegetative cell under the proper 

conditions (Piggot, 1976).  Spores are highly refractile bodies, consisting of a central core 

surrounded by five layers, plasma membrane, germ cell wall, cortex, coats, and 

exosporium.  The genetic material (DNA) and other indispensable substances are 

packaged into a dry, heavily shielded coat that is able to resist high temperature, drying, 

UV light, deleterious chemicals, heat, poor nutrient supply and other harmful conditions.  

In their dormant state, all metabolic activity ceases and spores appear "dead" or in deep 
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hibernation (stasis) (Piggot, 1976).  However, when activated, spores give rise to 

vegetative cells and microorganism growth (Levinson, 1970).   

    After thermal treatment, spores can produce new vegetative cells that in turn generate 

new colonies of microbes.  The only way to estimate if spores present after thermal 

processing are viable or dead is to force those surviving spores to form vegetative cells 

that can produce colonies when plated onto a nutrient agar medium (colony count).  The 

colony count methodology is effective provided that all the viable spores germinate and 

grow simultaneously to form colonies.  A delay in germination of even a few hours will 

result in delayed formation of the microorganism colony with the subsequent associate 

error in colony counting. 

    Spore characteristics, such as wet heat resistance and germination properties, are 

determined by the conditions under which spore formation or sporulation takes place 

(Melly, 2002).  Once formed, spores can give rise to vegetative cell growth by a 

reversible process.  To form a vegetative cell, a spore has to undergo three distinct and 

successive stages: activation, germination, and outgrowth (Keynan & Evenchick, 1969).  

Inactivated spores will not germinate spontaneously until activation occurs.   

    Spore activation signals the initial stage of spore germination.  It is usually a 

reversible process and the activated spore retains nearly all its spore properties 

(refractility, nonstability, heat resistant etc.).  Activation can take place in different ways:  

thermal stimulation, sublethal injury, or cell death, although the latter may or may not be 

accompanied by cell lysis (Desrosier, 1956).   
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    Germination is the period where spores sprout and begin to grow.  Germination is 

irreversible and involves loss of all spore properties, especially heat resistance (Foerster,  

1983).   

    Outgrowth is the period where the embryotic vegetative cell emerges from the spore 

coat and forms the vegetative organism by macro molecular synthesis ( Levinson, 1970; 

(Leuschner, 1999).  Outgrowth occurs during post-germinative development (Keynan, 

1965).   

    These processes occur over temperature ranges that include most temperatures at 

which thermal discontinuities occur in water structure (Fitz-James, 1960).  Spores are 

formed by bacteria to survive during periods of deprivation or environmental stress, such 

as the loss of nutrient or water supply.   

 

Thermal Inactivation  

There are two main thermal processing methods to treat inoculated meat: Dry heat, 

which involves incubation in an oven-like environment, and moist heat, which utilizes 

steam under pressure.  The former was used in this study since it better resembles 

conditions used in rendering thermal processing.  Heat resistance of bacteria is normally 

superior in dry-heat than in moist or wet heat conditions (Larson, 1918).  The application 

of moist heat is more effective in thermal processing of foods because it more effectively 

denatures proteins, which results in microbial cell death (Hoover, 1993).  In addition, the 

application of dry heat requires higher temperatures and longer contact times than the 

application of moist heat process, making dry heat more expensive and affording a lower 

quality product (Hoover, 1993).  The heat resistance of bacteria is described by two 
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parameters, the D and z values.  The D value is defined as the heating time required at a 

specific temperature to kill 90% of the viable cells or spores of a specific organism.  The 

z value is defined as the change in heating temperature needed to change the D value by 

90% (1 log cycle).  The z value provides information on the relative resistance of an 

organism to different destructive temperatures in a given substrate.  D and z values are 

invaluable tools in developing heat-processing requirements for destruction of 

microorganisms in a specific target food product. 

    The goal of food safety processes is the destruction of pathogenic microorganisms 

below the concentration of their ability to produce disease (Richardson, 2002).  Heat 

treatments designed to achieve a specific lethality of microorganisms is influenced by 

many factors, some of which are due to inherent resistance of microorganisms, while 

others are due to environmental influences (Brown, 1994).  Examples of the inherent 

resistance include differences among species and strains of bacteria, as well as the 

differences between spores and vegetative cells (Tomlins, 1976).  Environmental factors 

include those affecting the microorganisms during growth and formation of cells or 

spores (e.g., stage of growth, growth temperature, growth medium, previous exposure to 

stress, etc.) and those affecting during exposure to heat , such as the composition of the 

heating menstruum (amount of carbohydrates, proteins, lipids, solutes, etc.), water 

activity, pH, added preservatives, method of heating, recovery procedures etc.(Smelt, 

1994). 

    Rendering is a classical example of effective heat treatment to destroy microorganisms 

under controlled and specific processes.  Rendering is an industrial process that converts 

inedible animal tissue into stable, value added materials.  The majority of tissue 

 5



processed comes from slaughterhouses but may also include restaurant grease and 

butcher shop trimmings (Clemen, 1978).  This material can include the fatty tissue, bones 

and offal, as well as whole animal carcasses disposed at slaughterhouses, and those that 

have died on farms (dead stock).  The most common animal species are bovine, porcine, 

ovine, and poultry.  Rendering processes correlate quite closely to those used by the food 

industries (Prokop, 1992). Rendering involves crushing animal by products (e.g, internal 

organs), heating them to drive off the water (which can be as high as 65 per cent by 

weight) and then separating the residue into fat (generally called tallow) and solids (know 

as greaves).  During the rendering process at atmospheric pressure, the temperature 

remains at 100°C for the majority of the cycle, gradually rising to approximately 120°C 

once the bulk of the water has evaporated.  European regulations require a period of 

heating under pressure, where the objective is to ensure that the products are sterilized.  

However, it is well established that dry lipid environments will protect bacterial spores 

against thermal inactivation (Senhaji, 1977).  As water is driven off the rendering 

material during the process, conditions become more favorable for spore survival.  The 

rendering process simultaneously dries the material and separates the fat from the bone 

and protein.  A rendering process yields a fat commodity (yellow grease, white grease, 

bleachable tallow, etc.) and a protein meal (meat & bone meal, poultry by product meal 

etc).  Rendering plants often also handle other materials, such as slaughterhouse blood, 

feathers, and hair; but do so using processes otherwise distinct from the main rendering 

stream. 
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The Rendering process

    In most systems, raw materials are ground to a uniform size and placed in continuous 

cookers or batch cookers, which evaporate moisture and free fat from protein and bone.  

A series of conveyers, presses, and a centrifuge continue the process of separating fat 

from solids.  The finished fat (e.g, tallow, lard, yellow grease) goes into separate tanks, 

and the solid protein (e.g, MBM (meat and bone meal), poultry meal) is pressed into cake 

for processing into feed.  Other rendering systems include those that recover protein 

solids from slaughterhouse blood or that process used restaurant grease. 

 

 

 

Figure 1.  What happens in a rendering plant. 

 

 7



    The principal raw material in rendering is low-grade (green) offal and condemned 

material obtained from slaughterhouses, and other low grade material which may contain 

fallen stock (or parts thereof) from knackers and hunt kennels (Clemen, 1978).   

 

Raw Materials 

    Incorporated rendering plants normally process only one type of raw material, whereas 

independent rendering plants often handle several materials that require either multiple 

rendering systems or significant modifications in the operating conditions for a single 

system (Taylor, 1997). 

 

Edible Rendering 

    Fat trimmings, usually consisting of 14 to 16 percent fat, 60 to 64 percent moisture, 

and 22 to 24 percent protein, are ground and then belt transmitted to a melt tank.  The 

meal tank heats the materials to about 43°C (110°F), and the melted fatty tissue is 

pumped to a disintegrator, which ruptures the fat cells.  The proteinaceous solids are 

separated from the melted fat and water by a centrifuge (Schreuder, 1998).  The melted 

fat and water are then heated with steam to about 93°C (200°F) by a shell and tube heat 

exchanger.  A second stage centrifuge then separates the edible fat from the water, which 

also contains any remaining protein fines (Companies, 2001).  The water is discarded as 

sludge, and the polished fat is pumped to storage.  Throughout the process, direct heat 

contact with the edible fat is minimal and no cooking vapors are emitted.   
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Inedible Rendering 

    There are two processes for inedible rendering:  the wet process and the dry process.  

Wet rendering is a process that separates fat from raw material by boiling in water.  This 

involves addition of water to the raw material and the use of live steam to cook the raw 

material and achieve separation of fat.  Dry rendering is a batch or continuous process 

that dehydrates raw material in order to release fat (Taylor, 1995).  Following 

dehydration in batch or continuous cookers, the melted fat and protein solids are 

separated.  At the present, only dry rendering is used in the United States (Taylor, 1997).  

The wet rendering process is no longer widely used because of the high cost of energy 

and of an adverse effect on the fat quality. 

 

Batch Rendering Process 

    The raw material from the receiving bin is conveyed to a crusher where it is reduced to 

2.5 to 5 centimeters (1 to 2 inches) in diameter to improve cooking efficiency.  Cooking 

normally requires 1.5 to 2.5 hours, but adjustments in the cooking time and temperature 

may be required to process the various materials (Companies, 2001).  A typical batch 

cooker is a horizontal, cylindrical vessel equipped with a steam jacket and an agitator.  

To begin the cooking process the cooker is charged with raw material, and the material is 

heated to a final temperature ranging from 121° to 135°C (250° to 275°F).  Following the 

cooking cycle, the contents are recovered in a percolator drain pan.  The percolator drain 

pan contains a screen that separates the liquid fat from the protein solids.  From the 

percolator drain pan, the protein solids, which still contain about 25 percent fat, are 

conveyed to the screw press.  The screw press completes the separation of fat from solids, 
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and yields protein solids that have a residual fat content of about 10 percent.  These 

solids, called cracklings, are the ground, and screened to produce protein meal (Clemen, 

1978).   

 

Blood Processing and Drying

    Whole blood from animal slaughterhouses, containing 16 to 18 percent total protein 

solids, is processed and dried to recover proteins as blood meal.  At the present time, less 

than 10 percent of the independent rendering plants in the U.S. process whole animal 

blood (Companies, 2001).  The blood meal is a valuable ingredient in animal feed 

because it has high lysine content.  Continuous cookers have replaced batch cookers that 

were initially used in the industry because of the improved energy efficiency and product 

quality provided by continuous cookers.  In the continuous process, whole blood is 

introduced into a steam injected, inclined tubular vessel in which the blood solids 

coagulate (Companies, 2001).  The coagulated blood solids and liquid (serum water) are 

then separated in a centrifuge, and the blood solids dried in either a continuous gas-fired, 

direct contact ring dryer or a steam tube, rotary drier (Trout, 2001). 

    Due to the high number of and mixture of bacteria associated with raw rendering 

material, reduction of bacterial loads is important.  The mixture is likely to contain both 

spore and non-spore forming bacteria, the research objective was to determine the 

thermal inactivation characteristics of thermo-resistant bacteria from rendering materials 

(poultry offal). 
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CHAPTER II 

LITERATURE REVIEW 

PART 1:  MICROBIOLOGY OF THERMOPHILIC BACTERIA 

    “Thermophilic bacteria” have been studied for many years and have special 

importance to food preservation processes.  Their high heat resistance has been studied to 

determine the probable mechanisms of survival under conditions which most bacteria are 

killed.  Some investigators have designated thermophilic bacteria as those capable of 

growth at 50°C (122°F) while others have designated bacteria with a minimum and 

maximum temperature over 50°C (122°F) as “thermo tolerant” (Morrison, 1921; 

Williams, 1954).  According to Peleg (2006), thermophilic bacteria are those that grow at 

temperatures above the maximum for most bacteria, especially the pathogenic forms.  

The maximum growth temperature for most pathogenic bacteria is about 45°C (113°F) 

and their optimum growth temperature is about 37.5°C (99.5°F) (Bergey, 1919).  Most 

thermophiles belong to the Archaea and are able to grow at temperatures around the 

boiling point of water; with the upper temperature limit for survival between 110 (230°F) 

and 130°C (266°F) (Brock, 1986).  

    Bacterial species vary widely as to what conditions are conducive for growth.  

Conditions that are optimum for one organism may be lethal for another.  Nutrient 

availability, moisture, pH, the presence, or absence of oxygen, the presence of inhibitors 

and temperature can all influence the growth of bacteria. In most cases, these are not 

independent variables but are interactive. 



Classification of bacteria based on temperature growth

    Bacteria have been classified based on temperature growth and they have been divided 

into categories based on their optimal growth temperature ranges.  The optimum 

temperature for growth for a bacterium is the temperature where the generation time is 

shortest or the bacterium grows the fastest.  Each bacterium has a minimum and a 

maximum temperature for growth, which will vary between species and strains and with 

other environmental conditions.  Microorganisms in nature have been divided into several 

temperature growth classes.  Temperature affects the growth and activity of all living 

cells.  Microorganisms have been classified into three distinct categories according to 

their temperature preference.  These are not rigid ranges as some bacterial species may 

overlap into adjacent groups.  General groupings of bacteria are as follows:   

    Psychrophiles are microorganisms that live and grow best between -10 to 20°C (14 to 

68°F).  Psychrophilic bacteria are found in the Arctic and Antarctic Oceans, which 

remains frozen most of the year.  Nutrients needed by psychrophiles reside inside frozen 

glaciers and seawater, but flows in tiny streams in between cracks and layers of ice.  

    Psychrotrophs are cold tolerant organisms capable of growth at temperatures at or 

below 7°C (44.6°F), regardless of their optimum temperature.  Psychrotrophs are of 

primary concern to the refrigerates food industry since they can grow and cause spoilage 

in raw or processed products commonly held under refrigeration. 

    Mesophiles thrive at mid-range temperatures, 20-45°C (68-113°F), and include in any 

human pathogens.  They are found in soil and water environments.  Most human diseases 
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caused by bacteria and viruses come from the mesophile group.  Some of the most 

dangerous mesophiles are Staphylococcus aureus, Salmonella sp., Proteus vulgaris, and 

Yersinia enterocolitica. 

    Thermophiles thrive above 45°C (113°F), and some survive exposure to the 

temperatures at or even above the boiling point of water.  Thermophiles live in either 

natural geothermal habitats, or can be found in environments that artificially create heat.  

(See table 1). 

Temperature required for growth 0C  

 
Type of bacteria  Minimum  Optimum  Maximum  General sources of bacteria  
Psychrophiles 0 15 25 Water and frozen foods 
Psychrotrophs 0 25 40 Dairy foods 
Mesophilic 10 35 45 Pathogenic and non-

pathogenic bacteria 
Thermophilic 45 55 70 Spore forming bacteria from 

soil and water 

Table 1.  Classification of bacteria accord to temperature required for growth 

Sources of thermophilic bacteria

    Even though thermophilic aerobic sporeforming bacteria are widely distributed in 

nature, it is evident that they are capable of surviving under and extreme conditions.  

These bacteria survive in thermal springs, in the sands of the Sahara desert; in the surface 

layers of the soil in the temperate and torrid zones even frequency at elevated 

temperatures (Bergey, 1919).  Thermophilic bacteria are naturally distributed in hot 

springs, tropical soils, compost heaps, excrement, hot water heaters (both domestic and 

industrial), and garbage (Brock and Thomas, 1986).  Composted or manured garden soils 

may contain 1-10 percent thermophilic types of bacteria, while field soils may have only 
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0.25% or less.  Under simple conditions, the colonies of this group of bacteria develop 

the capacity to create heat resistant spores which can be recovered in pure culture by 

transplanting on to tubes of slanted agar.  They have been isolated from air (Sames, 

1900), freshly fallen snow (Golikowa, 1926), seawater (MacFadyen and Blaxall, 1894), 

sewage, feces of humans, and various animals (Black and Tanner 1928).  The 

temperature conditions are of course favorable in hot springs, but the contribution of 

organic matter in most thermal water is low and autotrophic thermophilic sporeformers 

are rare.  Milk is other source of thermophilic bacteria.  Thermophilic bacteria 

development during the heating process; some spores are activated when the milk is 

cooled (Eckford 1927, Robertson 1927).  In the fermentation of feed, temperatures have 

been found as high as 55°C (131°F), but more commonly the temperature ranges between 

35 (95°F) and 45°C (113°F).  A common characteristic of thermophilic microorganisms 

is the capacity to form spores at high temperatures.  These spores can vary in size of rods, 

location, and to a less degree in their biological characteristics depending of the species 

(Bergey, 1919).  As a prerequisite for their survival, thermophiles contain enzymes that 

can function at high temperature.  Some of these enzymes are used in molecular biology 

(for example heat-stable DNA polymerases for polymerase chain reaction), and in 

washing agents (Morrison, 1921).     

Resistance of spores to the environment

    Bacterial spores are extremely resistant to heat, cold and chemical agents.  Some 

bacterial spores can survive in boiling water (100°C, 212°F) for more than 16 hours.  The 
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same organisms in the vegetative state and the non-sporeforming bacteria will not survive 

heating in boiling water. 

    Spores that successfully resist heat are also highly resistant to destruction by 

chemicals.  Bacterial spores have been found survive more than three hours in sanitizing 

solutions normally used in food processing plant (Larson, 1918).  On the other hand, 

these sanitizing agents readily destroy vegetative cells.  The purpose of sanitizing is not 

to sterilize surfaces, so the survival of spores under appropriate sanitation practices is not 

a concern if they are present in low numbers and can be inactivated or controlled in the 

final product.  Smelt (1994) reported that bacteria with a relatively high content of 

diphosphatidylglycerol are more susceptible to inactivation.  Some studies have indicated 

that denaturation of enzymes, such as membrane-bound ATPases, plays an important role 

in the pressure induced injury and inactivation of microorganisms (Mackey, 1995).  For 

spores, a combination of high pressure and high temperature is necessary for inactivation.  

Under high pressure, bacterial spores germinate to vegetative cells and are then 

inactivated due to effect of temperature (Collier, 1956). High pressure weakens or 

denatures protein molecules in the food components because the hydrophobic and ion-

pair bonds are disrupted (Juneja, 1996), while covalent bonds are not affected.  However, 

changes in the tertiary structure from the breaking and reformation of chemical bonds can 

alter the coagulation or gelation characteristics of some foods, giving them a unique and 

novel texture.  The flavor or nutrient content of a food is generally not altered.       
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Classification of thermophilic bacteria based on the temperature at which the spores 

germinate and grow

    Bacterial spores have been divided into groups based on the temperature at which 

spores germinate and grow.  Investigators have studied different strains of thermophilic 

bacteria, trying to classify them into categories to better understand the heat resistance 

properties of these microorganisms.  The thermophilic bacteria have been classified into 

obligate and, facultative organisms: obligate thermophiles (also called extreme 

thermophiles) require high temperatures for growth, while facultative thermophiles (also 

called moderate thermophiles) can thrive at high temperatures but also at lower 

temperatures (below 50°C, 122°F).  Hyperthermophiles are particular extreme 

thermophiles of which optimal temperatures are above 80 °C (176°F).  The strains of 

thermophilic bacteria have been identified with optimum temperatures ranging from 55°C 

(131°F) to an unbelievable 105°C (221°F) (above the boiling point of water), and many 

temperatures in between (Bergey, 1919). 

Enumeration of Spores 

    There are several methods used for counting bacterial spores. 

   These include two methods, depending on whether spore density is low or high. 

I. Direct count (low density) Spore density can be determined by counting their 

number in a unit volume.  The simplest technique is to use a special counting 

chamber similar to a haemocytometer, which is used for counting blood cells 

(Hamdy, Harper and Weiser 1955).  The counting chamber is simply a ruled slide 
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with a supported glass tube that holds a definite volume of fluid.  When there are 

more than 3-4 in spores some fields of view and no spores in others (25-50% of 

fields examined), then the method above cannot be used because it will 

overestimate total number of spores in the sample.  In this case, spores often are 

few enough to be counted directly.  This method involves the follow steps. 

a) Transfer spore suspension to a test tube, vortex, and transfer 1 ml to a 

watch glass.  Perform this step three more times to count spores in four 

replicates. 

b) Swirl water in watchglass (clockwise or counterclockwise) to concentrate 

spores in the center.  Expand field of view to see all spores and make a 

direct count.  Average the counts from four watchglasses and multiply 

result by dilution factor (1 / x total mls in test tube). 

c) If number of spores in watchglass is too many to count comfortably, then 

increase the dilution and recount. 

II. Ocular field (high density) this method should not be used for extracted spores 

that have been stores more than 24 hr because aggregates will form.  If there are 

less than 30-40 spores per field, the spores are counted in 40 fields randomly 

chosen over the area of the dish.  The following steps are involved in this method. 

a) Using a fine ruler, determine the diameter of the ocular field of the 

stereomicroscope at a magnification where spores can be easily 

distinguished from mineral particles and organic debris (some of which 

can be easily mistaken for spores by the inexperienced person).  Then 

calculate the area of the spherical field (circle) at that magnification. 
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b)  Plastic petri dishes are preferred to count spores because the base of the 

plate is flat.  Because the dish also is hydrophobic, enough water must be 

added to have complete coverage of the base.  Dishes vary in diameter. 

c) Spore extraction.  Add the spore suspension to a petri dish and then 

randomly rotate the dish to spread out spores evenly as possible.  

Calculate average number of spores per field and multiply this number by 

289 (# fields/ dish).  If there are more than 30-40 spores per field, then 

place spore extract in a test tube, dilute 1:1 with water.  While vortexing, 

remove a specific volume (10ml is the recommended amount), transfer to 

petri dish, and recount.  Make sure to keep track of each dilution to 

calculate spores in total sample. 

Possible mechanisms of survival

    There are several mechanisms proposed to explain the survival of thermophilic 

bacteria at high temperatures.  All of these proposed mechanisms have been developed 

around the following three concepts: (i) stabilization may be completed through lipid 

interaction; (ii) heat denaturized cellular compounds may be rapidly resynthesized and 

(iii) thermophilic organisms may possess macromolecules complexes with inherent heat 

stability.  All these factors are explained as follows. 

Lipids

    Heilbrunn and Belehradek studied thermal stable organisms and noted that they had 

lipids with higher melting points than did thermally labile organisms.  They noted that the 
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temperature at which cell lipids melted might place an upper limit for cellular growth 

(Heilbrunn, 1924; Belehradek, 1931).  Other studies have noted that as the growth 

temperature increased, the percentage of saturated and branched- chain fatty acid 

increased (Daron, 1970; Ray, 1971).  All these changes could cause a higher melting 

point and greater flexibility in the lipid membrane.  In 1967 Brock suggested, that these 

changes might provide the organism with a more stable membrane.  This hypothesis was 

supported with a study of differences in the membranes and cell walls of thermophiles 

and mesophiles using electron microscopy technique (Novistsky, 1972).  Wisdom and 

Welker (1973) reported that the alkaline phosphatase of Bacillus sterothermophilus was 

more thermostable inside the cell membrane than in lysed cells.   

Rapid Resynthesis

    Smaller cells should have a higher metabolic rate due to a greater surface to volume 

ratio, which facilitates the rapid transport of substrates and dissipate products into and out 

of the cell (Allen, 1953).  Based on these and other observations (Allen, 1953) postulated 

that the growth at elevated temperatures is simply the result of a rapid resynthesis of heat 

denatured cellular compounds.  Allen (1953) has revised evidence supporting this 

hypothesis.  Nevertheless, Koffler (1957) suggested that if thermophily is simply a 

kinetic function of rapid resynthesis, the mesophiles organisms should be able to grow at 

elevated temperatures (and equally, the thermophiles should be able to grow at low 

temperatures).  He postulated that an organism should be any where from 16 to 81 times 

as active at 70°C (157.999°F) as it is at 30°C (85.99°F).  It should be noted that the 
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number of data points for this determination were few, and the relationships noted may 

not be statistically valid (Koffler, 1957). 

Thermally Stable Macromolecules

    Numerous mechanisms have been proposed to explain the survival of thermophilic 

organisms on the molecular level.  These have been summarized into three general 

mechanisms: a) thermophiles may contain factors, which increase the stability of their 

cell components with respect to heat; b) mesophiles may contain factors, which increase 

the lability of their components with respect to heat; c) cellular compounds of 

thermophiles may have inherent heat stability, independent of exogenous factors (Koffler, 

1957).  Hypotheses like these were tested (Koffler, 1957; Amelunxen, 1968) by 

incorporating cell free extracts from thermophilic microorganisms with extracts prepared 

from mesophiles and by testing for protein denaturation after heating.  This experiment 

concluded that the thermophilic extracts were found to possess a degree of heat stability, 

which was not transportable to the mesophilic extract.  In addition, in other experiments 

Amelunxen and Lins (1968) analyzed numerous enzymes from B. stearothermophilus 

and Bacillus cereus in crude lysates.  From these experiments, they concluded that 

thermophilic enzymes were considerably more thermo stable than mesophilic enzymes 

(Amelunxen and Lins, 1968).  Howell found similar results with several glycolytic 

enzymes from thermophilic and mesophilic Clostridia spp. (Howell, Akagi and Himes, 

1969).   

    After finding a number of similarities with respect to thermophilic enzymes, 

investigators located an example of a thermophilic enzyme (catalase) being associated 
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with a stabilizing factor (other than a substrate) (Nakamura, 1960).  The crude enzyme 

was observed to possess a high degree of heat stability that decreased upon purification.  

Another term used in the concept of thermal stable macromolecules is S factor(s).  

Primary S factors are essential proteins required for vegetative growth, whereas 

alternative S factors mediate transcription in response to various stimuli.  In the 

experiment described before, the S factor was removed from the crude enzyme by 

charcoal treatment and could be isolated by boiling the crude enzyme.  The optimum 

temperature for the isolated enzyme was 60°C (139.99°F), while the optimum 

temperature in the presence of S factor was 65°C (148.99°F).  Consequently, still in the 

absence of the factor, the enzyme was heat stable.  The isolated enzyme was found to 

have kinetic behavior similar to other catalases.  The physical properties of the enzyme 

and the nature of S factor have not been reported.    

Cellular proteins associated with heat resistance  

    The capacity of thermophilic aerobic sporeformers to survive when exposed to 

elevated temperatures is associated with the nature of their proteins.  Microbial life has 

been found at temperatures approaching or slightly exceeding the boiling point of water 

(Brock, 1970).  The proteins are localized in the cell of thermophilic bacteria.  Without 

the presence of thermally stable biosynthetic systems, the organisms could not survive.  

At this time, approximately 20 proteins have differentiated from many thermophilic 

microorganisms (Ayde, 1957).  These proteins often show high stability at normal 

temperatures, a feature that has attracted commercial interest (e.g., the proteins have a 

long shelf life) and have been carefully purified and analyzed biologically, physically and 

 21



chemically.  Farrell and Campbell (1961) proposed an enzyme classification from 

thermophilic bacteria as: 

Class I Enzymes that are stable at the temperature of synthesis (generally 55 to 65°C 

(131°F to 149°F), but are inactivated at higher temperatures. 

Class II Enzymes that are inactivated at the temperature of synthesis, except when in the 

presence of substrate. 

Class III  Enzymes that are highly heat resistant and are heat stable at temperatures above 

the temperature of synthesis.   

    The Farrell and Campbell (1961) hypothesis was rejected for several reasons.  One 

reason was an elevated temperature optimum is directly related to thermo stability.  

However, the proposed system proposed relates the stability of the enzyme to the growth 

temperature of organisms; this did not relate the necessity of the enzyme for the survival 

of the organism.  Finally, this scheme of classification avoids a significant class of 

proteins for thermophilic microorganisms; it makes no provision for those proteins, 

which are not stable under any conditions at the optimal temperature of growth.  The 

disagreement for the presence or absence of stabilizing factors was not seriously 

challenged until Campbell and his co-workers isolated and studied a crystalline, heat 

stable α-amylase from Bacillus stearothermophilus (Campbell, 1969).  The conclusion of 

this work was that the amino acid composition data of thermophilic bacteria had an 

abnormally high proline content (Campbell, 1969).  The conclusion has been made that 

the thermo stability of the protein molecule may be a consequence of the fact that the 
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enzyme exists in an open configuration in the initial or native state, and therefore heat has 

relatively little further effect upon denaturation (Manning, 1970).  Although, this 

conclusion could not serve as a universal mechanism, there are studies that heat stable 

highly purified flagellar proteins obtained from thermophiles did not contain large 

amounts of proline (D.  Abram and H. Koffler, Abstr.  Proc. Intern.  Congr.  Microbiol.  

8th, Montreal, 1962, p21).  Amelunxen and Lins (1968) noted that pyruvate kinase and 

glutamic transaminase in crude lysates of B. stearothermophilus were inactivated by 

temperature near the maximum growth temperature for the organism (Amelunxen and 

Lins, 1968).   

Thermophilic Spoilage 

    The distribution of thermophilic aerobic sporeforming bacteria in food  is of interest to  

food microbiologists because of their potential importance as spoilage organisms in 

retort-processed foods (Cameron, 1926).  Generally, the higher the temperature at which 

a sporeforming organism can grow, the greater the heat resistance of its spore.  Thus, the 

spores of thermophilic bacteria usually have a greater heat resistance than the spores of 

mesophilic bacteria.  The spores of thermophilic bacteria are so resistant to heat that heat 

processes designed to kill the mesophilic bacteria may not be adequate to destroy 

thermophilic bacteria.  In order to prevent thermophilic spoilage, the product must be 

properly cooled, preferably below 41°C (105°F), after thermal processing and held below 

35°C (95°F).  Thermophiles can grow on food processing equipment if the temperature is 

within their growth range.  As a result, product should always be held at 77°C (170°F) or 

above and below of room temperature to prevent the growth of thermophiles.  For meat 

 23



and poultry products containing ingredients known to be a source of thermophiles (sugar, 

starch, and spices) and where thermophilic spoilage may be a problem, prudent 

processors will use ingredients that are guaranteed to be free of thermophilic bacteria or 

that meet specifications for thermophiles for canning processes.  

Sporeformers causing food poisoning 

    Bacterial spores are much more resistant to heat, chemicals, irradiation and desiccation 

than their vegetative cell counterparts.  The major food poisoning sporeformers are 

Clostridium botulinum, Clostridium perfringens, Bacillus cereus, Bacillus subtilis, and 

Bacillus licheniformis (ICMSF, 1996).  Food contamination with thermophilic bacteria 

has come from a variety of natural sources including water, soil and gastro-intestines 

tracks of chicken.  Hence, preventive measures should be taken the control these bacteria 

in food.   

    There are several nonpathogenic sporeformers including butyric and thermophilic 

anaerobes that cause considerable economic losses to food producers.  These 

microorganisms are not pathogenic but can spoil food.  Spoilage is an indication that has 

been a mistake in the process or a lack of maintenance of hygiene. 

Bacillus spp. 

    Bacillus represents a genus of Gram-positive bacteria which are ubiquitous in nature 

(soil, water, and airborne dust), while other species are natural flora in the human 

intestine.  However, it is generally accepted that the primary habitat of aerobic 

endospore-forming bacilli is soil.  Russian microbiologist Winogradsky considered them 
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"normal flora" of soil.  When grown on blood agar, Bacillus produce large, spreading, 

gray-white colonies with irregular margins.  A unique characteristic of this bacterium is 

its ability to produce endospores when environmental conditions are stressful.  Although 

most species of Bacillus are harmless saprophytes, two species are considered medically 

significant: B.anthracis and B. cereus.  Early attempts at classification of Bacillus species 

were based on two characteristics: aerobic growth and endospore formation.  This 

resulted in tethering together many bacteria possessing different kinds of physiology and 

occupying a variety of habitats.  Hence, the heterogeneity in physiology, ecology, and 

genetics, made it difficult to categorize the genus Bacillus or to make general assumption 

about it.  Most Bacillus species are versatile chemoheterotrophs capable of respiration 

using a variety of simple organic compounds (sugars, amino acids, organic acids).  In 

some cases, they also ferment carbohydrates in a mixed reaction that typically produces 

glycerol and butanediol.  A few species, such as Bacillus megaterium may require amino 

acids, B-vitamins, or both.  The majority are mesophiles, with optimum growth 

temperature between 30 (85.99°F) and 45 degrees (112.99°), but the genus also contains 

a number of thermophilic species with optimum growth as high as 65 degrees (149°F).  

In the laboratory, under optimal conditions of growth, Bacillus species exhibit generation 

times of about 25 minutes.  

1. Bacillus cereus    

       Bacillus cereus is a Gram positive, facultative aerobic sporeformer, with morphology 

of large rods and spores do not enlarge the sporangium.  This organism is a common 

cause of food poisoning (Erlendur, 2000).  Bacillus cereus is found in the soil, on grains 
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and vegetables, in flour, and in many raw and processed foods.  The organism grows 

rapidly in moist, cooked protein or inadequately refrigerated starch foods.  When present 

in relatively high numbers (106 or greater per gram), Bacillus cereus may cause several 

types of food poisoning.  Two recognized types of illness are caused by two separate 

metabolites (Mazas, 1997).  The first type is characterized by nausea, vomiting and 

abdominal cramps and has an incubation period of 1 to 6 hours.  The second type is 

manifested primarily by abdominal cramps and diarrhea with an incubation period of 8 to 

16 hours (Todar, 2006).  Bacillus cereus food poisoning usually occurs because heat-

resistant endospores survive cooking or pasteurization and then germinate and multiply 

when the food is inadequately refrigerated.  Toxins produced in the food during bacterial 

growth, principally a necrotizing enterotoxin and potent haemolysins (especially 

cereolysin); cause the symptoms of B. cereus food poisoning.  The conditions that favors 

the growth of B. cereus include cooking procedures that activate the spores followed by 

slow cooling and storage of food at 10-50°C (50°F -122°F) (ICMSF, 1996).  The spores 

of B. cereus appear to vary widely in heat resistance.  Nevertheless, when the available 

data are plotted as log decimal reduction or D value against temperature, most spores 

group as a particular heat resistant strain (Brown, 1992).  A D value of 2.35 min at 

121.1°C (249.98°F) was reported for this strain (Bradshaw, Peeler and Tweet, 1975).  

Under dry heat conditions, spores of B. subtilis can be extremely resistant with D values 

at 160°C (320°F) of 0.1-3.5 min being reported by various researchers (Brown 1994; 

(Kramer, 1989; Brown, 1992; Moir, 1994). 
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2. Bacillus Subtilis 

    Bacillus subtilis is a gram positive, non-pathogenic bacterium found in soil and rotting 

plant material and is non-pathogenic (Holdsworth, 1997).  This organism was one of the 

first bacteria studied, and was named Vibrio subtilis in 1835 and renamed Bacillus 

subtilis in 1872 (ICMSF, 1996).  It is one of the most well characterized bacterial, and is 

a model system for cell differentiation and development (Brown, 1992).  One feature that 

has attracted a lot of interest in B. subtilis is its ability to differentiate and form 

endospores.  This bacterium can divide asymmetrically, producing an endospore that is 

resistant to environmental factors such as heat, acid, and salt, and which can persist in the 

environment for long periods (Brown, 1992).  The endospore is formed at times of 

nutritional stress, allowing the organism to persist in the environment until conditions 

become favorable (Stringer, 1985).  Prior to endospore formation, the bacterium might 

become motile through the production of flagella, and take up DNA from the 

environment through the competence system (Kramer, 1989).  The sporulation process is 

complex and involves the coordinated regulation of hundreds of genes in the genome.  

This initial step results in coordinated asymmetric cellular division and endospore 

formation through multiple stages that produces a single spore from the mother cell.  This 

cascade of gene regulation has been intensively studied.  B. subtilis forms colonies that 

are dull in appearance, may be wrinkled, are cream to brown in color and when grown in 

broth have a coherent pellicle; usually with a single arrangement (Stumbo, 1973).   
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3.  Bacillus licheniformis 

    Bacillus licheniformis is a Gram-positive, motile, spore-forming, facultative anaerobic 

rod belonging to the B. subtilis group of Bacilli.  This apathogenic soil organism is 

mainly associated with plant and plant materials in nature but can be isolated from nearly 

everywhere due to its highly resistant endospores that are disseminated with the dust 

(ICMSF, 1996).  B. licheniformis spores are similar in resistance to typical B. cereus 

spores with D values at 100°C (212°F) around 4-8 min (ICMSF, 1996).   

 Clostridium spp.   

    The bacterial cells of Clostridium spp are large, Gram-positive, rod-shaped bacteria.  

All Clostridia form endospores and have a strictly fermentative mode of metabolism.  

Most Clostridia will not grow under aerobic conditions and vegetative cells are killed by 

exposure to Oxygen, but their spores are able to survive long periods of exposure to O2 

(Hatheway, 1990).  These organisms are found in soil as well as in normal intestinal flora 

of man and animals and uncooked meat.  There are both gram-positive and gram-negative 

species, although the majority of isolates are gram-positive.  Exotoxin(s) play an 

important role in disease pathogenesis.                                                                                                         

1.  Clostridium botulinum 

    Clostridium botulinum is a Gram-positive, endosporeforming, anaerobic, rod, that 

produces neurotoxins.  This organism is found in soil and aquatic and marine muds.  

Most foods originating from the soil or aquatic environments contain some cells or 
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spores.  Neither the spore nor the vegetative cell itself is toxic, only the toxin, which is 

formed by the vegetative cell after sporulation during growth (Doyle, 1989). 

    Seven types of C. botulinum are recognized, based on the antigenic nature of the toxin 

produced.  These are types A, B, C, D, E, F, and G; a number of subtypes exist.  All type 

A and some B and F strains are proteolytic with growth and toxin production optimal at 

35°C (95°F).  All type E, the remaining B and F strains, C and D strains are non-

proteolytic, with optimal growth a toxin production at 26°C (78.8°F) (Odlaug 1978).  

Foodborne disease caused by C. botulinum is referred to as botulism.  It is caused by the 

ingestion of a neurotoxin produced by the microorganism in food (Segner, 1971).    Infant 

botulism can also occur which is thought to occur from the ingestion of C. botulinum 

spores with honey being the major food implicated (Arnon, 1990).  In Infant botulism, 

spores in the gastrointestinal tract will germinate and multiply, producing the toxin.  C. 

botulinum can grow and produce toxin with ease in many foods.  It is important to ensure 

that no only are the correct thermal processes and representative regimens followed, but 

also that all parts of the food are under control (ICMSF, 1996).    Generally, is thought 

that any low acid foods (pH above 4.6) can support the growth of C. botulinum and its 

subsequent production of toxin (Segner, 1971).  Despite this, an outbreak of botulism 

occurred in canned tomatoes, which had a low pH.  It was thought that the production of 

toxin occurred due to the growth of mold increasing the pH of the product.  There is now 

an antidote to the toxin, which has reduced the mortality rate somewhat (Segner, 1971).  

Cultural methods can be used to detect the presence of the microorganism in foods, 

which can take up to 10 days.  Mouse bioassay can then be used to test for the presence 

of the toxin (Hocking, 1997).   
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2.  Clostridium perfringens 

    Clostridium perfringens are Gram-positive, anaerobic sporeforming rods.  They are 

widely distributed in the environment and frequently occur in the intestines of humans 

and many domestic and feral animals (Stringer, 1985).  The spores are capable of 

surviving in soil, sediments, and areas subject to fecal contamination.  The spores are also 

extremely heat resistant and have been reported to survive boiling for several hours 

(Brown, 1992).  C. perfringens can grow at temperatures ranging from 15 to 50°C (59 to 

122°F), and pH values of between 5.0 and 8.0 (Stringer, 1985).  The illness caused by C. 

perfringens is referred to as perfringens food poisoning.  The illness is caused by toxin 

being produced in the stomach by large numbers of the microorganisms (107 cells per 

gram).  A more serious but rare illness is also caused by a certain strains of C. 

perfringens, Type C strain.  This is known as enteritis necroticans.  The most common 

cause of C. perfringens food poisoning is temperature abuse of prepared foods.  Small 

numbers of organisms or spores are often present after cooking.  After cooking, spores 

germinate and cells multiply to levels capable of causing food poisoning during cooling 

foods and warm storage.  Meats, meat products, casseroles, and gravy are foods most 

frequently implicated, but any food cooled to slowly could pose a hazard (Doyle, 1989).  

Spores of C. perfringens Type A are widespread in the environment and are present in a 

wide variety of foods including meat, fish, poultry, vegetables, dairy products and dried 

foods (ICMSF, 1996).  Cooking and cooling meat in smaller portions, which heats and 

cools food more rapidly, would significantly reduce the risk of C. perfringens food 

poisoning (Brown, 1992).  A temperature above 70°C (158°F) is necessary to destroy 

vegetative cell before consumption (Labbe, 1989).  
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Sporolactobacillus spp. 

    The genus Sporolactobacillus (Kitahara and Suzuki, 1963) is comprised of five species 

of catalase-negative, Gram positive, facultative anaerobic or microaerophilic 

endosporeformers.  Originally proposed as a component of the genus Lactobacillus, 

Sporolactobacillus was subsequently elevated to genus status in the family Bacillaceae 

(Kitahara and Toyota, 1972).  DNA-to-DNA hybridization studies by Dellaglio and 

others (1975) showed its distinction from the genus Lactobacillus.  The type species for 

Sporolactobacillus is Sporolactobacillus inulinus (Kitahara and Suzuki, 1963; Kitahara 

and Lai, 1967).  It produces a negative result for lactic acid, but is unable to ferment 

lactose.  Optimal growth temperature is 35 °C (95°F).  Fatty acid configuration and 

isoprenoid quinone cell components are consistent with the Bacillus group and differ 

from those of Lactobacillus (Uchida and Mogi, 1973).  The habitats of the members of 

the genus Sporolactobacillus, apart from the original isolation from chicken feed, are 

believed to be the soil, milk products, and pickle (as contaminants).       

    The incidence of these sporeformers in the environment is low.  Doores and Westhoff 

in 1983 used a selective method specific for Sporolactobacillus, examined samples of 

food, beverages, plant, and animal material.  Only 2 out of 699 samples examined were 

positive for Sporolactobacillus, documenting the rarity of this species in these 

environments.  Strains of Sporolactobacillus have been found to survive exposure to low 

pH (Hyronimus and others, 2000), although the procedure used to assay this resistance 

did not allow discrimination between spores and vegetative cells. 
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Sporeformers causing spoilage 

    These groups of microorganism have not been associated with food poisoning but 

which can produce considerable food spoilage of groceries (Rusell, 1982). 

 

Clostridium butyricum, C. beijerinckii and C. pasteurianum  

    Clostridium butyricum, C. beijerinckii, and C. pasteurianum gram positive, produce 

gas and butyric odors in canned foods, predominantly those with pH values between 3.9 

and 4.5 (e.g tomatoes and pears) (Hersom, 1980).  During the storage and ripening of 

hard cheeses such as Gouda, Edam and Emmentaler, Clostridium butyricum and 

Clostridium tyrobutyricum can cause spoilage and gas production, the spores often 

occurring in milk from cows fed silage during winter months (Rusell, 1982).  Spores of 

C. butyricum have been reported to have D values as high as 23 min at 85°C (185°F) and 

pH 7 (Rusell, 1982).  At pH 4.4, the thermal death time may be 10-15 min at 100°C 

(212°F) (Hersom, 1980).  For destruction of spores of C. pasteurianum, it has been 

suggested that a core temperature of 95°C (203°F) should be reached for products with a 

pH between 4.2, 4.5, and a core temperature of 84°C (183.2°F) for products with a pH 

below 4.2 (Hersom, 1980). 

     C. beijerinckii is a close relative of C. butyricum with D values of 2-4 min at 85°C 

(185°F) and pH 7 (Brown, 1990). Control of butyric anaerobes requires thorough 

washing of the raw material together with pH and process temperature control.  Failure to 

control sporeformers in products with pH values 3.9-4.5 may result not only in spoilage 

but also a rise in pH which could allow spores of C. botulinum, which had survived 

pasteurization, to germinate and produce toxin. 
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Clostridium sporogenes 

    C. sporogenes is gram positive, closely related to proteolytic strains of C. botulinum 

but produces spores which are approximately 5 times as meat resistant with D values up 

to 1.5 min at 121°C (249.8°F) (Van Rijssel, 1992).  Spoilage from this organism 

produces typically blown or burst packs with a strong putrefactive odor.  If spoilage from 

C. sporogenes is experienced, all suspect packs should be recalled and investigations into 

the cause of spoilage undertaken.  A process fault that allows C. sporogenes to survive 

and proliferate may also have been serious enough to allow spores of C. botulinum to 

survive germinate and produce toxin. 

Clostridium thermosaccharolyticum 

    This organism is gram positive, has the most of Clostridia heat resistant spores of any 

bacterium, and is a common food spoiler.  D values as high as 195 min at 121°C 

(249.8°F) have been recorded (Xezones, 1965).  The author investigated a spoilage 

outbreak in canned mushrooms caused by heat resistant spores of C. 

thermosaccharolyticum that had grown in the composted forest bark used on the 

mushroom beds (Brown, 1983).  D values of these spores were 68 min at 121°C 

(249.8°F).  Spoilage from this organism manifests itself by blown or burst packs with a 

strong butyric or cheesy odor.  The spores survive thermal processing to germinate and 

grow when the product is stored at elevated temperatures around 30-60°C (86°F-140°F). 
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Clostridium putrefaciens 

    Studies by Roberts and Derrick demonstrated that this organism was able to grow in 

4% NaCl +100p0m of NaNO2 at pH 7.0 even at 5°C (41°F).  The spores were not 

particularly heat resistant, with D values of 8-14 min at 80°C (176°F).  Modern 

processing trends for cured meat are to use lower levels of salt and nitrite, increased pH 

levels of 6.8-7.0 and chill storage, which would tend to favor the growth of Clostridium 

putrefaciens (Roberts, 1975). 

Bacillus sporothermodurans 

    This is a mesophilic sporeformer, which produces highly heat resistant spores.  

Peterson (1996) reported spores surviving the heat process and multiplied to a maximum 

of about 105/ml in milk during incubation at 30°C (86°F) for 5 days, but caused no 

noticeable spoilage and were none pathogen.  Raw milk must be autoclaved to enrich the 

spores and eliminate competitive microflora.  According to Meier (1995), the spores of 

this species are more resistant than the spores of many thermophiles. 

Bacillus stearothermophilus and B. coagulans 

    Bacillus stearothermophilus is gram-positive organism.  This is a common 

thermophilic spoilage organism that normally produces no gas in spoiled packs that have 

been held at elevated temperatures around 50-55°C (122-131°F).  If readily, fermentable 

sugars are in limited supply and this has been found that can elevate pH (Kramer, 1989).  

The minimum pH for growth is around 5.3.  The D values at 120°C (248°F) can be as 

high as 16.7 min (Davies, 1977).  Prevention of spoilage is achieved by holding product 
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below 30-60°C (86-140°F) because it is often impracticable to try to process product for 

long enough to destroy spores.  Under dry heat conditions at 121°C (249.8°F), the D 

value of spores of B. stearothermophilus can be as high as 936 min(Collier 1956).  B. 

coagulans is also gram positive thermophile but differs from B. stearothermophilus in 

being able to grow at pH values down to 4.0 (Hersom, 1980).  It is less resistant having a 

D value at 98.9°C (210.02°F) of 3.1 min (Hersom, 1980).  It produces off flavors and 

souring of product during spoilage. 

Desulfotomaculum nigrificans 

    Gram-positive organism.  This organism causes sulphur stinker spoilage often resulting 

in blackened product when the steel in cans reacts with the H2S produced.  D values as 

high as 55 min at 121°C (249.8°F) have been recorded (Donnelly, 1980).  An unusual 

outbreak of spoilage caused by this organism in Japan was reported (Matsuda, 1982).  

The spoilage occurred in canned coffee and “Shiruko” (a soft drink made from red beans 

and cane sugar) produced for retail in hot vending machines at temperatures above 50°C 

(122°F). 
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PART 2:  THERMAL DESTRUCTION OF THERMOPHILIC BACTERIA 

    Thermophilic bacteria growth can be controlled by keeping food at temperatures below 

the minimum or above the maximum for the organism to grow.  Bacterial spores are 

resistant to extremes of temperatures and pH, to desiccation, UV irradiation, enzyme 

action organic chemicals and may remain dormant for long periods (Moir, 1994).  As was 

mentioned before, heat resistant spores are found among several species, mainly those 

belonging to the genera Bacillus and Clostridium (Hyung, 1983; Fernandez, 2001).  Most 

of the research into heat resistance of spores has been done using mesophilic species in 

food industrial processes.  Spores from thermophilic bacteria are more heat resistant than 

spores from mesophilic species (Warth, 1978).  Heat resistant spores from thermophilic 

bacteria can be troublesome in research laboratories and routine autoclaving protocols of 

culture media and materials might be insufficient to inactivate bacterial spores.  On the 

contrary, normal autoclaving procedures (20 min., 121 ºC) may even activate and 

increase the apparent heat resistance of spores (Hyung, 1983; Byrer, 2000).  Germination 

can be induced by nutrient germinant (Johnstone, 1994).  Germination involves 

sequences of events, which result in a breakdown of the spore structure.  Consequently, 

spores lose their resistant properties and become hydrated, which can be observed as a 

phase change from bright to dark to phase contrast microscopy (Moir, 1994).  The first 

high decimal reduction value DT (the incubation time at temperature T necessary for a 

90% decrease in the viability of the spores.  For thermophilic species was reported in 

1965 for Clostridium thermoaceticum with a D124 of more than 72 minutes (Xezones, 

1965).  More recently, extremely heat resistant spores have been detected in other 

thermophilic Clostridium and Moorella species, i.e. Cl. thermohydrosulfuricum (D120 = 
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11 min.)  (Hyung, 1983), Cl. thermoautotrophicum (D120 = 70 min.)  (Van Rijssel, 1992), 

and Moorella thermoacetica JW/DB2 and JW/DB4 (D120 = 84 min., 111 min.)  (Byrer, 

2000), respectively.  What determines the spore heat resistance is not known with 

certainly and multiple factors are involved, such as the composition of the proteinaceous 

spore-coat (Henriques and Moran, 2000), the dipicolinic acid concentration, thickness, 

and Ca++ content of the spore-cortex (Beaman and Gerhardt, 1986), the dehydration and 

mineralization state of the spore (Popham, 1999), and specialized DNA-binding proteins 

termed α/β type small acid soluble spore proteins (SASP) (Setlow and Setlow,  1998). 

Steam sterilization 

       Steam sterilization has long been used in hospitals as well as in the pharmaceutical, 

aseptic processing, and food industries.  In many ways, it has been a product of its own 

successes.  For example, steam is most often characterized by its overkill.  It uses 

extremely high temperatures to inactivate highly resistant nonpathogenic thermophile 

spores and, more recently, extremely resistant prions that other sterilization methods 

cannot destroy (Pflug., 2001).  Steam sterilization is generally carried out at 121°C 

(250°F) for 15 minutes or at 134°C for 3 to 4 minutes.  Temperatures can be reduced to 

115°C, and even as low as 105°C, depending upon the integrity, heat resistance, and 

characteristics of the material being sterilized (Perkins, 1970).  Steam is readily available, 

delivers high heat condensation, and it is an activating agent.  Before a dormant spore can 

begin germinate and grow, it must be activated (Pflug, 2001).  However, at higher 

temperatures, steam becomes sporicidal.  Sterilization, by definition, destroys or 

eliminates resistant microbes, including bacterial spores.  More resistant virulent agents 
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(e.g., prions) cannot be eliminated using most standard methods.  Extended and high 

steam sterilization, however, can at least reduce the resistance of these organisms.  Using 

the classical definition of sterilization, it is an absolute principle (Pflug, 2001), a method 

of destroying or eliminating all forms of life.  In practice, however, sterilization is best 

defined as a process that is capable of delivering a certain probability that a treated 

product or material is free from viable microorganisms, including resistant agents, such 

as Bacillus anthracis and smallpox, and prions. 

Dry and Moist heat treatment 

    Heat can result in death or injury.  In addition, many food conditions can alter the heat 

resistant of microorganism  There are several heat treatments used to kill microorganisms 

in food.  Including, incineration, boiling, and autoclaving.  Dry and moist heat have been 

applied to destroy microorganisms.  Dry heat is rarely used and may be different 

physiologically from moist heat destruction (Pflug, 1960).  Moist heat is defined as 

heating in a medium where the relative humidity is 100%.  Dry heat has been less 

defined, but refers to an environment where the relative humidity is less than 100%.  Heat 

resistance of bacteria is normally higher in dry heat conditions as contrasted to moist heat 

conditions (Holdsworth, 1997).  Moist heat has shown to act on the denaturation of 

different proteins causing the bacterial death of the cell (Farkas, 1997).  Nevertheless, 

foods that are higher in fat and oil (beef) require enhanced thermal processing due to the 

increased thermal resistance of microorganisms found in these foods (Farkas, 1997).  The 

diverging heat resistance of similar microorganisms is directly related to the varying 

foods in which they are found.   
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Thermal destruction, Z and D value definitions 

    Numerous methods are offered to calculate thermal processes for the inactivation of 

bacterial spores in foods.  The kinetics calculated from the reaction rate is proportional to 

the concentration of the number of microorganisms (Holdsworth, 1997).  

      The thermal death time (TDT) (time necessary to kill a given number of organisms at 

a specific temperature) is based on an empirical approach to the temperature dependence 

of the first order destruction of microorganism.  Ramaswamy (1989) stated that the 

Arrhenius theory contradicts the TDT technique.  The TDT method affirms that kinetic 

parameters are reciprocal to temperature (Ramaswamy, 1989).  Pflug (1982) analyzed the 

effectiveness of each method and concluded that the TDT method could be used in the 

laboratory and manufacturing plants to validate and monitor sterilization processes 

(Ramaswamy, 1989).  The TDT is used to define the temperature sensitivity of the kinetic 

parameters involved in thermal inactivation (Ramaswamy, 1989).  The thermal resistance 

of bacterial cells has shown that exponentially growing cells are more sensitive to heat 

than stationary growing phase cells.  The death of bacterial cells exposed to thermal 

treatments at a specific temperature is believed to occur at a constant rate (Farkas, 1997) 

and the recovery of cells after thermal processing allows the construction of survivor 

curves.  The curve is a scheme of log N (axis X), which is the number of colony forming 

units (cfu), in opposition to time at a specific temperature (Holdsworth, 1997).  Figure 2. 
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    Figure 2.  Typical the thermal death time curve. 

    This is based over the assumption that the logarithm of the first order rate constant (D-

value) is directly proportional to temperature (Ramaswamy, 1989).  Decimal reduction 

time (D-value) is the time required to destroy 90% of the organisms at a specific 

temperature.  Thus after an organism is reduced by 1 D, only 10% of the original 

organisms remain.  In addition, this has been defined as the time in minutes required to 

reduce a bacterial population by one log10 (Holdsworth, 1997).  D value is a measure of 

the heat sensitivity of an organism.  D value can be calculated for a particular 

microorganism at a specific temperature.   

 

Figure 3.  Decimal reduction curve.       
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    The D-values of microbial spores are greater in dry heat than in moist heat (Collier, 

1956).  D value is determined by inoculating the target bacteria in food substrate then 

heating to a specific temperature and taking samples for enumeration timed intervals.  

Survivors are measured by counting cells capable of growing after recovery.  The log10 of 

survivors are plotted against time in minutes.  The inverse of the slope of the semi 

logarithmic curve (-1/D) is the D value, and it is important to remember that most D 

values are calculated using this method (Peleg, 1999).  The Z value refers change in 

temperature (°C or Fahrenheit) required for the thermal destruction curve to transverse 

one log cycle.  It is determinated from a plot of the logarithm of D values against their 

particular temperature (Holdsworth, 1997).  Z values can be calculated for any two values 

of D and the corresponding temperatures (Holdsworth, 1997).  Nevertheless, the 

suspending medium plays an important role in this aspect when these studies are made. 

 

 

  Figure 4.  Standard curve for the change in temperature required for the thermal 

destruction curve to transverse one log cycle. 
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    While the D value gives the time needed at a certain temperature to kill a certain 

percentage of a population, the Z value relates the resistance of an organism to different 

temperatures.  Therefore, the Z value allows calculating a thermal process of 

equivalency, if there are one D value and the Z value (Holdsworth, 1997).  Thus, if it 

takes an increase of -12.22 °C (10°F) to change the log of D value 1 unit, then Z value is 

10.  Therefore, if the D value at 65.55°C (150°F) is 4.5 min, we can calculate D values 

for 71.1°C (160°F) by reducing the time by one log.  Therefore, the D value for 71.1°C 

(160°F) is 0.45 minutes.  This means that each 10°F (-12.22°C) increase in temperature 

will reduce the D value by one log.  Conversely, a 10°F (-12.22°C) decrease in 

temperature will increase the D value by one log.  Consequently, the D value for a 

temperature of 60°C (140°F) would be 45 minutes.  Reactions that have small Z values 

are highly temperature dependent, whereas those with large Z values require larger 

changes in temperature to reduce the time.  A Z value of 10°C (49.99°F) is typical for a 

spore forming bacterium. 
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CHAPTER III  

MATERIALS AND METHODS 

Sampling

    The organism used in this study was isolated from raw poultry offal obtained from a 

poultry processing plant, which is normally destined for rendering.  The bacterial isolates 

were obtained from Dr. Annel Greene’s Lab at Clemson University, SC. who subjected 

raw ground offal to two treatments: 1) Autoclaved cycle for 30 minutes 121°C (250°F) 

under pressure 15 psi and 2) Heated at 127°C (260°F) for 15 minutes.  

    Bacteria surviving each treatment  were isolated on Brain Heart Infusion + 1% yeast, 

then two separate colonies from each treatment were isolated on Tryptic Soy Broth (TSB) 

tube, and marked as A1 and A2 (for autoclave treated) and H1 and H2 (for heat treated).  

Tubes were incubated at 37°C overnight with vigorous shaking.  A sample of both 

treatments (heat and autoclave) were isolated separately in Tryptic Soy Agar and 

Trypticase Soy Agar w/5% sheep blood at the same time to determine the best growth 

medium.  To simulate conditions prior to receiving and hold offal by rendering facilities, 

samples from both mediums (TSA and TSA w/5% sheep blood) were held at 37°C 

(98.59°F) from 2-4 days for spore formation.  The A1 treatment was selected for this 

study because of its clearer appearance on the plate after streaking compared to isolates 

from other treatments.  The colony population in both agars differed in appearance.  



Spore stain (Schaeffer  and MacDonald 1933) 

    Spore preparation was performed according to the work of Laurent (1999).  In brief, 

vegetative cells and spores were prepared by platting 0.5 ml of a 48 h TSB (Difco 

Laboratories, Detroit, Mich.) vegetative culture onto BBL Trypticase Soy Agar (TSA) w/ 

5 % Sheep Blood plates.  After 2 days at 37°C, spores and vegetative cells were 

harvested by depositing 3 ml of peptone solution on the surface of each plate and rubbing 

gently with a sterile plastic spreader.  The suspension of spores and vegetative cells was 

collected in a sterile tube.  Pooled suspensions were centrifuged at 3000 x g for 20 min 

(IEC HN-SII Centrifuge, International Equipment Company, Inc.  Needham Heights, 

MA), and the supernatant liquid was discarded.  The resulting pellet was suspended in 4 

ml of peptone solution (0.1%) to obtain a concentration of 107-109 suspension/ml and the 

solution was vortexed (Fisher Brand® Vortex Genie 2). 

    The suspension was smeared on a glass slide and fixed with a Bunsen flame.  Slides 

were flooded with 5% aqueous malachite green (Fischer Scientific Co.  Fair Lawn, NJ, 

USA).  Slides were intermittently heated with a Bunsen flame for approximately five 

min, to ensure that the dye remained hot but not boiling.  Slides were rinsed with tap 

water, and then counterstained with 0.5% Safranin-O (Sigma Chemical Co., St. Louis.  

MO, USA) for 1 min.  After drying, the slides were examined using the oil immersion 

power of a light microscope (Olympus BH-2, Tokyo, Japan) and found to contain few 

vegetative cells.  This statement was based on the color difference after spore stain.  See 

Figure 5. 
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    Tentative identification of isolates were made by the Microbiology Department at 

Clemson University.  Plates of TSA w/5 % Sheep blood were prepared using the streak 

method.  A loopful of a 48h culture in TSB (Difco Laboratories, Detroit, Mich) was 

transferred onto the surface of TSA w/5 % Sheep blood agar which were incubated at 

37°C (98.59°F) for 48 h.  Spore formation occurred after two days.  The staining method 

was used to verify the presence of spores using a microscope.  The process was repeated 

twice.  

The isolate was grown on PEMBA (polymyxin pyruvate egg yolk mannitol bromothymol 

blue agar) which is selective for Bacillus cereus. 

Preparation of Inoculum

    To prepare inoculums, 0.1 ml of isolated bacteria from 10 ml of BHI broth + 1% yeast 

was pippeted into 10mL of TSB (Difco Laboratories, Detroit, Mich.) under a Germfree® 

Bioflow Chamber.  The TSB tube was placed in water bath (Bellco, Sciera, Vineland, 

New Jersey, USA) and aerobically incubated at 37°C for 16-18 hours with continuous 

shaking.   

Model Media

    Ground beef with 21% protein, 19% fat, and 60% moisture was used as a model media 

to simulate raw rendering material.  Typically the proximate composition of raw poultry 

offal is about 10% fat, 25% protein, and 65% moisture (Prokop 1992), depending upon 

the raw mixture of co-products.  The meat/fat mixture was irradiated with γ 60Co rays to 

ensure sterility prior to incubation (Physics Department, Auburn University, AL).  A 

bacterial suspension containing approximately 109 CFU/ml was poured evenly inside 50 

grams of the sterile ground beef /fat contained in a sterilized bag and distributed 
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throughout by kneading for 5 min.  After mixing, 1.5 g with approximately 3X108 CFU/ 

ml of the inoculated ground beef /fat mixture was weighed and added to a Pyrex tube 

(test tube).   

Thermal inactivation studies 

    Sterile model media samples were aseptically removed from the freezer and thawed in 

the refrigerator one day before use.  Preliminary testing was performed at 87°C, 95°C, 

96°C, 98°C, and 115°C to determine the best temperatures for determining the thermal 

inactivation parameters (including D and z values).  D values (in min) were determined 

from survivor curves plotted using linear regression analysis.   

    Model media samples were thermally treated using dry bath incubator (Fischer 

Scientific 711, Pittsburgh, P.A).  Pyrex tubes with the model medium were placed in the 

heating block (Fischer Scientific, Pittsburgh, Pa.) simultaneously.  Each tube was covered 

with heavy duty aluminum foil to prevent moisture loss.  This procedure was developed 

to simulate heating during rendering.  Model media temperature was measured using 

thermocouples (6 inches, Omega, Engineering, Inc.)  oriented at the center of each 

sample.  Time and temperature heating data were recorded using a channel dataloger and 

thermal processing software (CALPlex 32, TechniCal, New Orleans, LA).  Once the 

treatment temperature was reached, samples were removed at intervals of 5 or 10 min.  

After removal from heat, samples were placed into an ice bath for 15 s to minimize any 

further thermal effects.  Each sample was homogenized with 20 ml of sterile 0.1% 

peptone solution and the big meat particles inside the test tubes were broken up.  

Homogenates were then serially diluted and surface plated on TSA w/ 5% Sheep Blood.  

Plates were incubated at 37°C for 48 h before enumerating colonies.   
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Statistical Analysis 

    Three separate replications were conducted to ilustrate the variation between 

replications, using bacteria at each temperature 91, 95, and 96°C, resulting in nine 

different examples.  The total bacterial counts (TBCs) were expressed as CFU/ gram of 

model media.  The TBCs were then transformed into log10 cfu/g values because 

logarithms convert a multiplicative relation to additive one. 

    The data were fitted to three models.  The first model was a linear model to relate TBC 

to time in each of the nine experiments.  The form of this model was:  

Y= a0 + a1X + E 

Where, 

 Y is LCFU (log of colony forming per unit). 

a0 is the intercept of the model for log cfu/g vs. time 

a1 represents the slope of the model for log cfu/ g vs. time. 

X represents time in minutes 

E represents error. 

Estimates of a1 could be used to then estimate D and z values. 

 

    The second model involved fitting a step function with different segments to further 

understand the relationship of TBC and time in each of the nine experiments.  The form 

of this model was: 

Y= (a0 + a1X )Z1 + (b0 + b1X)Z2 + (c0 + c1X)Z3 + ... + (g0 + g1X)Z8 + E. 

Where, 

Y is LCFU. 
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a0, b0, c0, d0,e0, f0, and  g0 are the intercepts for the different segments of the model 

for log cfu/g vs. time 

a1, b1, c1, d1,e1, f1, and  g1  are the slopes for the different segments of the model for log 

cfu/g vs. time 

Z1, Z2, Z3, Z4, Z5, Z6, Z7, and Z8 are the dummy variables indicating which segment of 

the model for log cfu/g vs. time is being considered.  For example Z1 = 1 for the segment 

of the model with parameters a0 and a1, and Z1=0 for all other segments of the model.    

    Not all of the nine temperature and replication combinations required all of the eight 

segments.  The find an appropriate number of segments to use in modeling log cfu/g vs. 

time, we used a hypothesis test and an F-statistic.  For example, to determine a model 

with two segments was better than a model with only one segment (the linear model), the 

hypotheses were  

Ho:  b0 =b1= 0 

Ha:  b0≠0 and/or b1≠0 

and the F-statistic was 

F = [SSE(a0, a1) – SSE (a0,a1,b0,b1)]/2  /    SSE(a0,a1,b0,b1)]/ n-4 

If we failed to reject Ho, we concluded that the one segment (the linear model) was 

appropriate.  If we rejected Ho, we concluded that at least two segments were appropriate 

and tested to determine if a model with three segments was better than a model with only 

one segment (the linear model).      

 

    The third model involved fitting a three-segment function to all nine experiments.  

Comparing the model parameter estimates among the nine experiments allowed us a 
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quantitative method to contrast the relationship of log cfu/g vs. time among the 

experiments.  The form of this model was: 

Y= (a0 + a1X )Z1 + (b0 + b1X)Z2 + (c0 + c1X)Z3 +  E. 

Where, 

Y is LCFU. 

a0, b0, and c0 are the intercepts for the three different segments of the model for log 

cfu/g vs. time 

a1, b1, and c1 are the slopes for the thee different segments of the model for log cfu/g vs. 

time 

Z1, Z2, and Z3 are the dummy variables indicating which segment of the model for log 

cfu/g vs. time is being considered.  For example Z1 = 1 for the segment of the model with 

parameters a0 and a1, and Z1=0 for all other segments of the model.    

 

All calculations were performed using procedure NLIN of SAS.      
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CHAPTER IV 
 

RESULTS AND DISCUSSION 
 

 

Microbiological analyses 

Strain characteristics:  cell morphology 

    The isolate was Gram-positive, motile, usually catalase positive, 1.2 µm wide, and 5.3 

µm long.  It occurred singly or in chains and in monomorphic forms.  Spores were 

subterminal to terminal, and ellipsoidal in shape.  Predominantly unswollen spore cases 

were also seen.  The isolate grew well aerobically on TSA w/5 % sheep blood at 37°C for 

48 h, but it did not grow anaerobically under the same conditions.  On nutrient agar, the 

colonies usually were circular with smooth edges, bright, and convex.  Their size varied 

from 1mm to 4 mm in diameter.  There was not more than one spore per cell, and 

sporulation is not repressed by exposure to air.   

Characteristics A1                                                                                         Reaction 
Rod-shaped in young cultures                                                                           + 
Aerobic                                                                                                              + 
Diameter over 2.5 µm                                                                                        - 
Filaments                                                                                                            - 
Rods or filaments curved                                                                                    - 
Endospores produced                                                                                         + 
Motile                                                                                                                 + 
Stain Gram positive at least in young culture                                                    + 
Catalase test                                                                                                        + 

 

Table 2.  Some characteristics about of Bacteria studied 



Genus Bacillus 
     
    A unique characteristic of this genus is its ability to produce endospores when 

environmental conditions were stressful, as shown in Figure 5.  (Picture taken during 

study under microscopy in the Microbiology department at Clemson University). 

 

 

 

Figure 5.  Spore and vegetative cell preparation 

 

    There was a strong similarity in appearance between the two replications for samples 

from each isolation medium (TSA and TSA w/5% Sheep blood).  In addition, the 

following characteristics were found for each sample based on visual observations under 

magnification. 

Conditions: 

Temperature: 37°C 

Duration:  4 days 
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Agar: Tryptic Soy Agar w/ 5% Sheep Blood 

Thermo-spore observations  

 

• A1: thermo-spores.  (A lot spores) There was not more than one spore per cell. 

 

• A2: Has a few spores.  “It was not the same bacteria than A1” 

 

• H1:  Many spores.  “Possibly different culture”. 

 

• H2:  Had a fewer spores than A1 but more than A2. 

 

    The results after growth on the PEMBA found not positives colonies for Bacillus 

cereus bacteria.  

    The bacterial strain and growth phase also determines a microorganism thermal 

resistance.  Cells in stationary phase growth are generally more resistant than cells in log 

phase growth (Doyle, 2001).  The culture used in this research were grown under aerobic 

conditions for 16-18 hours prior to use in an attempt to achieve stationary phase growth 

(Table 2).  The duration of incubation was chosen for visual observations after 

preliminary studies, and these observations were used by other researchers on 

sporeformer microorganisms (Iciek, 2005).    D- values can also vary between different 

strains of microorganisms, and different growth conditions under which the bacteria are 

cultured (Doyle, 1989).  Based on the assumption of an exponential rate of death, higher 

initial thermal death rates have been attributed to the presence of endospores of different 
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innate resistances in a given population (Ball and Frank, 1957).  When a population is 

heated, in the first seconds or minutes of exposure to high temperatures, the process of 

the spore activation and vegetative cell destruction begins.  (Figures 6, 7, 8, 9,10, 11,12, 

13, and 14).  Under certain thermal processing conditions, bacterial spore destruction 

slows with a “tail” in the last stage of the thermal death curve resulting from the presence 

of extremely heat resistant spores that are in a state of deep dormancy.  To be inactivated 

they must be exposed to elevated temperatures.  Temperatures above 60°C will generally 

inactivate vegetative cells, although the presence of salts or fat in the surrounding 

medium can increase resistant of cells to heat (Doyle, 1989).  Previous research has 

shown conditions with growth at a higher temperature and a heat shock of 55°C for 30 

minutes increase heat resistance (Fernandez, 2001).  Spores are also more heat resistance 

when tested in water compared to phosphate buffer and are even more resistant in meat 

(Doyle, 1989). 

    The experiment utilized bacterial cells from raw animal co-products that survived heat 

treatments approaching those used in the commercial rendering process.  Aerobic plate 

counts of heat resistant poultry offal isolate after come up time were reduced from 6.21 to 

4.93 logs cfu/g at 91°C for 90 minutes, at 95°C were from 6.62 to 4.76 logs cfu/g for 165 

minutes and at 96°C from 6.23 to 2.7 logs cfu/g for 90 minutes.  The ranges of log 

reduction were 1.28, 1.86, and 3.53 respectively.  Counts of colonies were highest at 

91°C (1.05X105cfu/g) and lowest at 96°C (1.40X101).  Based on these results the log 

reduction was faster at higher temperature than the lower temperatures as would be 

expected. 
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Heating profile of model media 

    Come up times (the time for the thermocouple temperature in the model medium to 

equal the heating block temperature setting) of bacteria for the three replications at each 

temperature were 3, 4:30 and 8:40 minutes at 96°C, at 94°C the come up times were 

10:20, 9:30, and 7:20 minutes.  For 91°C the come up times for replications were 4, 4:50, 

and 6:20 minutes, respectively.  The come up time can affect the overall killing effect of 

the thermal treatment.  The rate of the temperature increase was slower at 95°C compared 

to the other temperatures.  The heating times (averaged for the 14 test tubes at 91°C and 

96°C, and 17 test tubes for 95°C) are shown in the Table 3.     

a Time required for the temperature at the center of the meat medium. 

Experiment no. Replication No Target 
Temperature 

Actual Temp.  
(°C) 

Come-up time 
(min)a

1 1 91 90.76 4:00 

 2 91 91.02 6:20 

 3 91 90.88 4:50 

2 1 94 94.77 10:20 

 2 94 94.55 9:30 

 3 94 94.94 7:20 

3 1 96 95.80 3:00 

 2 96 95.98 4:30 

 3 96 95.89 8:40 

Table 3.  Summary of heat treatments applied to spores and vegetative cells of heat 

resistant bacteria in a meat medium. 
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Thermal Inactivation Models 

    Temperatures used in this study were 91°C, 95°C, and 96°C.  The temperatures were 

chosen in this range because preliminary studies shown a lot population at 87°C and 

preliminary studies show that at 98°C the bacteria population did not survive.  Linear 

regression were established for each temperature and replicate combination, and the D- 

values for the individual experiments were obtained as the inverse negative of the slope 

(a0) of the linear regression line.  The line was used for the first 65 minutes of the curve 

(Figures 6, 7, and 8) because until this time all replications shown a linear behavior.  D- 

values are reported in minutes, and are defined as the time required to achieve a 1-log 

reduction in the bacterial population a set temperature.  The z-value was determined by 

plotting the logarithmic of the D- values versus temperature at 91°C, 95°C, and 96°C 

(Holdsworth, 1997).  
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Figure 6.  Surviving heat resistant bacteria at 90.88°C.  First replication. 
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Settemp= 91.02C

R2 = 0.8419

0

1

2

3

4

5

6

7

0 10 20 30 40 50 60

Time

Lc
fu

Settemp=91.02C
Linear (Settemp=91.02C)

D 91.02°C = 52.24 min

Figure 7.  Surviving heat resistant bacteria at 91.02°C.  Second replication. 
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Figure 8.  Surviving heat resistant bacteria at 90.88°C.  Third replication.   
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Figure 9.  Surviving heat resistant bacteria at 94.77°C.  First replication. 
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Figure 10.  Surviving heat resistant bacteria at 94.54°C.  Second replication. 
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Figure 11.  Surviving heat resistant bacteria at 94.94°C.  Third replication. 

   

Settemp= 95.80C

R2 = 0.8593

0

1

2

3

4

5

6

7

0 10 20 30 40 50 60

Time

Lc
fu Settemp=95.80C

Linear (Settemp=95.80C)

D 95.80°C = 24.14 min

Figure 12.  Surviving heat resistant bacteria at 95.89°C.  First replication. 
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Figure 13.  Surviving heat resistant bacteria at 95.98°C.  Second replication. 
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Figure 14.  Surviving heat bacteria at 95.89°C.  Third replication. 

 59



z Value

y = -0.0566x + 6.9397
R2 = 0.4824

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

90 91 92 93 94 95 96

Temperature (C)

Lo
g 

D
 v

al
ue

Z value
Linear (Z value)

z- value= 17.68°C

Figure 15.  Plot of Log10 of D-values of heat resistant bacteria at 90.76°C, 91.02°C,                

90.88°C, 94.77°C, 94.54°C, 94.94°C, 95.80°C, 95.98°C, and 95.89°C. 

    Heat treatment of the model medium containing both spores and vegetative cells of the 

poultry offal isolate at 90.88°C for 90 minutes resulted in a reduction in viable spore and 

cells by a factor of 103.6.  A reduction by a factor 104.0 cells in viable spores and 

vegetative cells occurred at 94.98°C for 148 minutes.  At 95.91°C for 90 minutes, the 

reduction in the number of viable spores and vegetative cells was by a factor 104 

    The D- value for the offal isolate at 90.88°C was 57.55 minutes, at 94.98°C the D- 

value decreased to 56.4887 minutes, while at 95.91°C the D- value decreased to 25.1284 

minutes (Table 4).  The z- value was calculated using the logarithm of D- value versus 

the temperature at 90.88°C, 94.84°C, and 96°C.  The z- value was 5.55°C (Figure 9).   
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Replication Temperature °C D- value (minutes) 

1 90.76 54.88 ± 5.8038 

2 91.02 52.24 ± 6.8266 

3 90.88 67.75 ± 8.5236 

1 94.77 65.15 ± 23.8798 

2 94.54 43.81 ± 13.0668 

3 94.94 53.91 ± 17.8324 

1 95.80 24.14 ± 3.0251 

2 95.98 22.89 ± 2.4498 

3 95.89 27.51 ± 3.9546 

z °C  17.68 ± 0.5429 

Table 4.  D- and z values of heat resistant bacteria studied in model media (ground beef). 

 

    The D- values and z- value (Table 4) can be affected by a wide array of variables, 

which should be considered when discussing D values.  Fat content can impact thermal 

resistance of spore-former bacteria, as D value in foods high fat (Figure 6) content have 

been reported to be four to eight times higher than in a low fat medium (Doyle, 2001). At 

94.84°C, D value was higher compared to the other temperatures.  An explanation for 

that could be that the come up time at 94.84°C was slower than at the other temperatures.  

The longer come up time may have resulted in greater destruction of cells and spores of 

lower heat resistance leaving more heat resistant cells in the medium.  There is also some 

evidence that spores or vegetative cells suspended in lipid medium (ground beef) might 

survive exposure to temperatures used in the conventional heat sterilization of foods 
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(Jensen, 1954; Ingram, 1955; Hersom, 1980). If heat penetration is assumed to take place 

at about the same rate, and the composition of the meat medium is accurate then there are 

two possible alternative explanations.  1. Meat medium used in this study contained 19% 

of fat and the faster death rate phases observed in sections of the survival curves could be 

due to microorganisms passing from the aqueous to oil phase.  If the number of spores 

transferred to the aqueous phase is accepted to be a function of time, then this explains 

the observed results, at higher temperatures, the inactivation approaches that in oil (water 

evaporation), while at low temperatures it approaches that in water.  2. A second 

explanation to the broken on death curve could be a direct phasic effect of free water 

present in the system.  Solubility of water in oil increases with increasing temperature 

(Parsons, 1937; Mills, 1949), thus at higher temperatures, there would be a more 

homogeneous mixture than at lower temperatures resulting in a concurrent none 

homogenous or even heating of the medium.  Based on analyses performed, it was 

confirmed that the resistance of the spores and vegetative cells were inactivated at three 

or more stages depending of temperature.  Figure 16 shows the typical shape of the 

survivor curves obtained in this study.  
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Figure 16.  Sample of survivor curve for heat resistant bacteria in meat medium at 96°C. 
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Shape of the survival curve

    Thermal death of microorganism is often considered to be a first order reaction, but 

many authors have observed deviations in practice (Roberts, 1969; Rusell, 1971).  

Survival curves of sporeformer bacteria in meat medium showed deviations on the initial 

parts of the curves.  These deviations could have resulted from activation of the spores 

(increased germination rate) (Shull & Ernest, 1962), a transition period from a heat 

resistant to a heat sensitive spore form (Levinson, 1971) or attributed to the presence of 

spores of differing heat resistance within population (Stumbo, 1965).  The survival curves 

shown triphasic and quatraphasic results.  The discrepancy between theoretical and 

experimental results seems at first surprising, but can be explained by the fact that a 

transfer of spores and vegetative cells occur from the aqueous to the oily phase which 

was proposed by Daron (Daron, 1970).  Study of this transfer proved difficult, but it 

appeared to depend on the temperature of the system, the type of bacteria, the transfer 

surface and the contact time of the two phases, i.e. it was more important for treatment at 

94.84°C when heating times were long.  Most spores are destroyed in the aqueous phase 

and not in the oil, which may explain the variation in experimental results for some 

replications at 94.84°C and 95.89°C (Figures from 9 to 14).  The activation of a bacterial 

spore is generally considered to be the first in a series of events involved in the 

transformation of a dormant spore into a vegetative cell (Murrell, 1961). The optimal 

temperature for germination appears to be 30°C, although germination has been reported 

to occur at a wide the range of temperatures (Doyle, 1989).  The bacterial cells exposed 

to temperatures greater than their optimum temperatures can lead to formation of heat 

shock proteins that increase thermal tolerance.  Times of 165 and 90 minutes (Figure 16) 
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were used in thermal treatments, which could induce the production of heat shock 

proteins.  Furthermore, variable heating times between temperature treatments indicate 

that holding cells at higher that optimum temperatures for extended times can lead to the 

development of increased heat resistance (Mackey, 1990). Bacteria naturally present in 

raw animal co-products survived heat treatments similar to those used commercially 

(130° C [260° F] for 15 minutes).  The objective in fitting to create models 2 and 3 was 

developed in an attempt to predict the behavior of thermo-resistant bacteria in meat 

medium which appeared to a stepwise ratter than a linear relationship between time and 

temperature.  The second statistical was a “best-fit” for each replication.  The best-fit 

model had the following results for replications at different temperatures (Tables 5, 6, 

and 7; Figures 11, 12, and 13).  The form model is:  Y= (a0 + a1X )Z1 + (b0 + b1X)Z2 + 

(c0 + c1X)Z3 + ... + (g0 + g1X)Z8 + E.  The figure 17 shows the significance of each 

parameter from SAS program.  a0 represents the intercept of the model for log cfu/g vs. 

time.  The other parameters (b1, c1, d1, e1, f1 and  g1) represent the partial slope of each 

portion of the curve.  SE is the standard error estimated for each slope.  
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Replication Parameter Estimate ±  SE 

1 a0 6.1432 ± 0.1286 

 a 1 -0.0136 ± 0.0382 

 b1 -0.00639 ± 0.0361 

 c1 -0.1950 ± 0.0883 

   

c1 

d1 

a0 

 a 1 -0.0652 ± 0.0135 

c1 

Table 5.  Results of second model applied to 90.88°C. 

 

    The death rate of the log concentration of the spores, vegetative cell mixture, and time 

do not have a linear relationship.  Three replications at 91°C of survivors versus time 

curves of heat resistance bacteria at 91°C are shown in the Figure 18. 

    

Figure 18.  Survivor versus time curve fo

             d1 -0.0138 ± 0.00199 

2 a0 6.1802 ± 0.1053 

 a 1 -0.0119 ± 0.00999 

 b1 -0.00381 ± 0.0192 

 -0.0319  ± 0.00752 

 -0.0104  ± 0.00459 

3 6.2068 ± 0.0599 

 b1 -0.00580 ± 0.00908 

 -0.0254 ± 0.00242 

 d1 -0.00338 ± 0.00421 

 e1 -0.0196 ± 0.00868 
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F test was calculated for each replication and the results were compared to the linear 

regression model.  A null hypothesis for this situation is as follow: 

F test for 90.76°C 

Ho: b1=c1=d1=e1=0 

Ha: Ho is not true 

F value= 0.925. 

The tabled value F0.05 for 4 and 8 degrees of freedom is 3.84.  The value of the test 

statistic is much smaller than the tabled value, so there is conclusive evidence to accept 

Ho. 

 

F test calculated for second replication at 91.02°C. 

Ho: b1=c1=d1=e1=0 

Ha: Ho is not true 

F value= 0.009. 

The tabled value F0.05 for 4 and 8 degrees of freedom is 3.84.  The value of the test 

statistic is much smaller than the tabled value, so there is conclusive evidence to accept 

Ho. 

 

F test calculated for a third replication at 90.88°C 

Ho: b1=c1=d1=e1=0 

Ha: Ho is not true 

F value= 0.003. 
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The tabled value F0.05 for 4 and 8 degrees of freedom is 3.84.  The value of the test 

statistic is much smaller than the tabled value, so there is conclusive evidence to accept 

Ho. 

Results of second model applied at 94.84°C are shown in the Table 6. 

Replication Parameter Estimate ± SE 

1 a0 6.5246 ± 0.1082 

 a 1 -0.2650 ± 0.0247 

 b1 -0.00671 ± 0.0181 

 c1      -0.00861 ± 0.00215 

2 a0 6.3138 ± 0.0825 

 a 1 -0.1504 ± 0.0332 

 b1 -0.00381± 0.0192  

 c1 -0.0449  ± 0.00410 

 d1 -0.00244  ± 0.00146 

 e1 -0.01451 ± 0.00281 

3 a0 6.4660 ± 0.1018 

 a 1 -0.0790 ± 0.0148 

 b1 -0.00580 ± 0.00908 

 c1 -0.0235 ± 0.00613 

 d1 -0.00230 ± 0.00316 

 e1 -0.00919 ± 0.00648 

Table 6.  Results of second model applied to 94.84°C. 
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Figure 19.  Survivors versus time curve for heat resistance bacteria at 94.84°C. 
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F test at 94.77°C 

Ho: b1=c1=d1=e1=0 

Ha: Ho is not true 

F value=1.86. 

The tabled value F0.05 for 3 and 11 degrees of freedom is 3.59.  The value of the test 

statistic is much smaller than the tabled value, so there is conclusive evidence to accept 

Ho. 

F test at 94.54°C 

Ho: b1=c1=d1=e1=0 

Ha: Ho is not true 

F value=1.23 

The tabled value F0.05 for 5 and 10 degrees of freedom is 3.33.  The value of the test 

statistic is much smaller than the tabled value, so there is conclusive evidence to accept 

Ho. 

 

F test for 94.94°C 

Ho: b1=c1=d1=e1=0 

Ha: Ho is not true 

F value= 0.044. 

The tabled value F0.05 for 3 and 8 degrees of freedom is 4.07.  The value of the test 

statistic is much smaller than the tabled value, so there is conclusive evidence to accept 

Ho. 

Results of second model applied at 96°C are shown in the table 7. 
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      Replication 

 
 
        Parameter 

 
 
          Estimate  SE 

1 a0 6.3532  ±  0.1892 
 a 1 -0.2642 ±  0.0429 
 b1 -0.0477 ±  0.0224 
 c1 -0.0860 ±  0.0129 
 d1 -0.0131 ±  0.00881 
 e1 -0.0582   ±  0.0132 

2 a0 6.4603 ± 0.1399 
 
 

a 1 
b1 

-0.1512 ± 0.0167 
-0.00947 ± 0.0397 

 c1 -0.1376  ± 0.0197 
 d1 -0.0125  ± 0.0259 
 e1 -0.1092 ± 0.0259 
 f1 0.00609 ± 0.0303 
 g

a

Table 7.  Results of sec odel applied to 96°C. 

 

Figure 20.  Survivors versus time curve for heat resistant bacteria at 96°C. 
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Ha: Ho is not true 

F value= 0.290. 

The tabled value F0.05 for 3 and 8 degrees of freedom is 4.07.  The value of the test 

statistic is much smaller than the tabled value, so there is conclusive evidence to accept 

Ho. 

 

F test for 95.98°C 

Ho: b1=c1=d1=e1=0 

Ha: Ho is not true 

F value= 3.34. 

The tabled value F0.05 for 5 and 6 degrees of freedom is 4.39.  The value of the test 

statistic is much smaller than the tabled value, so there is conclusive evidence to accept 

Ho. 

 

F test for 95.89°C 

Ho: b1=c1=d1=e1=0 

Ha: Ho is not true 

F value= 2.81. 

The tabled value F0.05 for 3 and 7 degrees of freedom is 4.35.  The value of the test 

statistic is much smaller than the tabled value, so there is conclusive evidence to accept 

Ho. 

    A third and final model was applied to predict the behavior most appropriate for all 

temperatures used in this study.  This model was chosen since there appeared to be a 
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trend for all temperatures and replications for a “standard” pattern of cell death.  This 

model was the follow form Y= (a0 + a1X )Z1 + (b0 + b1X)Z2 + (c0 + c1X)Z3 +  E. 

    F-tests were calculated for the first model (Linear), second model (involved fitting a 

step function with different segments), third model (involved fitting a three-segment), 

and these were compared among them.   

The follow are the results obtained after the comparison at 90.76°C. 

F value calculated for first model and second model was 1.5.   

The tabled value F0.05 for 3 and 8 degrees of freedom is 4.07.  The value of the test 

statistic is much smaller than the tabled value, so there is conclusive evidence to accept 

Ho. 

F value calculated for the first model and the third model was 1.64. 

The tabled value F0.05 for 3 and 8 degrees of freedom is 4.07.  The value of the test 

statistic is much smaller than the tabled value, so there is conclusive evidence to accept 

Ho. 

F value calculated for the second model and the third model was 0.84. 

The tabled value F0.05 for 1 and 8 degrees of freedom is 5.32.  The value of the test 

statistic is much smaller than the tabled value, so there is conclusive evidence to accept 

Ho. 

 

    The follow are the results obtained after the comparison at 91.02°C. 

F value calculated for the first model and the second model was 1.76.   
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The tabled value F0.05 for 3 and 8 degrees of freedom is 4.07.  The value of the test 

statistic is much smaller than the tabled value, so there is conclusive evidence to accept 

Ho. 

F value calculated for the first model and the second model was 3.22. 

The tabled value F0.05 for 3 and 8 degrees of freedom is 4.07.  The value of the test 

statistic is much smaller than the tabled value, so there is conclusive evidence to accept 

Ho. 

F value calculated for the second model and the third model was 4.35. 

The tabled value F0.05 for 1 and 8 degrees of freedom is 5.32.  The value of the test 

statistic is much smaller than the tabled value, so there is conclusive evidence to accept 

Ho. 

 

The follow are the results obtained after the comparison at 90.88°C. 

F value calculated for the first model and the second model was 1.5.   

The tabled value F0.05 for 3 and 8 degrees of freedom is 4.07.  The value of the test 

statistic is much smaller than the tabled value, so there is conclusive evidence to accept 

Ho. 

F value calculated for model I and model III was 1.64. 

The tabled value F0.05 for 3 and 8 degrees of freedom is 4.07.  The value of the test 

statistic is much smaller than the tabled value, so there is conclusive evidence to accept 

Ho. 

F value calculated for the second model and the third model was 0.84. 
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The tabled value F0.05 for 1 and 8 degrees of freedom is 5.32.  The value of the test 

statistic is much smaller than the tabled value, so there is conclusive evidence to accept 

Ho. 

The follow are the results obtained after the comparison at 90.88°C. 

F value calculated for the first model and the second model was 4.03.   

The tabled value F0.05 for 4 and 7 degrees of freedom is 4.12.  The value of the test 

statistic is much smaller than the tabled value, so there is conclusive evidence to accept 

Ho. 

F value calculated for the first model and the third model was 0.44. 

The tabled value F0.05 for 3 and 8 degrees of freedom is 4.07.  The value of the test 

statistic is much smaller than the tabled value, so there is conclusive evidence to accept 

Ho. 

F value calculated for the second model and the third model  was 0.010. 

The tabled value F0.05 for 1 and 7 degrees of freedom is 5.59.  The value of the test 

statistic is much smaller than the tabled value, so there is conclusive evidence to accept 

Ho. 
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Figure 21.  Prediction model at 90.88°C. 
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The follow are the results obtained after the comparison at 94.77°C. 

F value calculated for the first model and the second model was 3.04.   

The tabled value F0.05 for 2 and 11 degrees of freedom is 3.98.  The value of the test 

statistic is much smaller than the tabled value, so there is conclusive evidence to accept 

Ho. 

F value calculated for the first model and the third model was 3.04. 

The tabled value F0.05 for 2 and 11 degrees of freedom is 3.98.  The value of the test 

statistic is much smaller than the tabled value, so there is conclusive evidence to accept 

Ho. 

F value calculated for the second model and the third model was 0.0009. 

The tabled value F0.05 for 1 and 11 degrees of freedom is 4.84.  The value of the test 

statistic is much smaller than the tabled value, so there is conclusive evidence to accept 

Ho. 

The follow are the results obtained after the comparison at 94.54°C. 

F value calculated for the first model and the second model was 1.26.   

The tabled value F0.05 for 3 and 10 degrees of freedom is 3.71.  The value of the test 

statistic is much smaller than the tabled value, so there is conclusive evidence to accept 

Ho. 

The follow are the results obtained after the comparison at 94.94°C. 

F value calculated for the first model and the second model was 1.62.   

The tabled value F0.05 for 3 and 7 degrees of freedom is 4.35.  The value of the test 

statistic is much smaller than the tabled value, so there is conclusive evidence to accept 

Ho. 
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F value calculated for the first model and the third model was 1.00. 

The tabled value F0.05 for 3 and 7 degrees of freedom is 4.35.  The value of the test 

statistic is much smaller than the tabled value, so there is conclusive evidence to accept 

Ho. 

F value calculated for the second model and the third model was 3.43. 

The tabled value F0.05 for 1 and 7 degrees of freedom is 5.59.  The value of the test 

statistic is much smaller than the tabled value, so there is conclusive evidence to accept 

Ho. 
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Figure 22.  Prediction Model at 94.84°C. 
 
 

The follow are the results obtained after the comparison at 95.80°C. 

F value calculated for the first model and the second model was 0.35.   

The tabled value F0.05 for 4 and 7 degrees of freedom is 4.12.  The value of the test 

statistic is much smaller than the tabled value, so there is conclusive evidence to accept 

Ho. 

F value calculated for the first model and the third model was 0.29. 
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The tabled value F0.05 for 3 and 8 degrees of freedom is 4.07.  The value of the test 

statistic is much smaller than the tabled value, so there is conclusive evidence to accept 

Ho. 

F value calculated for the second model and the third model was 0.6. 

The tabled value F0.05 for 1 and 7 degrees of freedom is 5.59.  The value of the test 

statistic is much smaller than the tabled value, so there is conclusive evidence to accept 

Ho. 

The follow are the results obtained after the comparison at 95.98°C. 

F value calculated for the first model I and the second model was 1.6.   

The tabled value F0.05 for 5 and 6 degrees of freedom is 4.39.  The value of the test 

statistic is much smaller than the tabled value, so there is conclusive evidence to accept 

Ho. 

F value calculated for the first model and the second model was 2.64. 

The tabled value F0.05 for 3 and 8 degrees of freedom is 4.07.  The value of the test 

statistic is much smaller than the tabled value, so there is conclusive evidence to accept 

Ho. 

F value calculated for the second model and the third model was 1.87. 

The tabled value F0.05 for 2 and 6 degrees of freedom is 5.14.  The value of the test 

statistic is much smaller than the tabled value, so there is conclusive evidence to accept 

Ho. 

The follow are the results obtained after the comparison at 95.89°C. 

F value calculated for the first model and the second model was 4.20 
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The tabled value F0.05 for 3 and 7 degrees of freedom is 4.35.  The value of the test 

statistic is much smaller than the tabled value, so there is conclusive evidence to accept 

Ho. 

F value calculated for the first model and the third model was 2.8. 

The tabled value F0.05 for 3 and 7 degrees of freedom is 4.35.  The value of the test 

statistic is much smaller than the tabled value, so there is conclusive evidence to accept 

Ho. 

F value calculated for the second model and the third model was 2.02. 

The tabled value F0.05 for 1 and 7 degrees of freedom is 5.59.  The value of the test 

statistic is much smaller than the tabled value, so there is conclusive evidence to accept 

Ho. 

 
 
 

Figure 23.  Prediction model at 96°C. 
 

    The process of spore activation that can begin during pasteurization facilitates their 

inactivation during sterilization.  However, at pasteurization temperatures, the spores in 

deep dormancy can be activated.  This can occur only at temperatures above to 110°C 
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(Iciek, 2005).  In the experiments reported here, the time and temperature combinations 

used reduced the presence of spores and vegetative cells of heat resistant bacteria by a 

factor of approximately 106 .  Surviving spores and vegetative cells after heat treatment 

were observed in all temperatures tested (91°C, 95°C, and 96°C).  An initial lag or lower 

initial rates of thermal destruction can most often be explained by experimental error, for 

example, lags in heat penetration, clumping of cells, protection of spores by vegetative 

cells, and contamination by spores of a different bacterial type.  Several explanations 

have been proposed for initially slower rates when observed experimental errors have 

been eliminated.  Initial lag times in thermal death have been attributed to such causes as 

the activation of germination of endospores by heat (Morrison, 1930; Curran, 1945; 

Finley, 1962).  Thermal destruction of heat resistant bacterial spores and vegetative cells 

used in this study did not follow first-order kinetics, indicating that some spores were 

ore heat resistant than others are (Murrell, 1966).   m

    Significant variation in heat resistance has been observed for sporeforming bacteria at 

different temperatures.  Spores and vegetative cells of some strains of Bacillus are 

completely destroyed after exposure to 90°C for several minutes, while other isolates 

associated with foodborne outbreaks survived boiling for six hours (Walker, 1975).  

Experiments with B. cereus have demonstrated that inactivation of spores was less and 

germination of spores was greater when media were heated non-isothermally as would 

occur during cooking or processing (Fernandez, 2001).  The effects of heat on spores and 

vegetative cells in laboratory media have been studied for many years.  Bacterial spores 

are very resistant to heat and survive many thermal processes.  Transformation of these 

spores to actively growing and potential toxin-producing vegetative cells is a three stage 
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process: activation, germination, and outgrowth.  Heat often serves to activate spores, and 

they will subsequently germinate and grow if the conditions are favorable (Gaillard S., 

1998).  High temperatures can also injure spores, and depending on available nutrients, 

pH, temperature, and inhibitory substances, injured spores may or may not be able to 

recover and grow (Johnson, 1984).  A review of spore injury cites numerous research 

papers with data on recovery of injured spores (Foegeding, 1981).  The heat resistance of 

 

the bacteria surviving the thermal process that approached commercial conditions was 

relatively high.  While the high heat resistance and non-linear behavior of the bacteria 

inactivation cannot be explained because the added organisms in the vegetative state were 

killed during heating but is more likely due to several factors, including water-oil phase 

interactions, and variation in heat resistance within of the environmental isolate 

population. 
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CHAPTER V 

CONCLUSIONS 

 
    Growth conditions of cells prior to sporulation affect the thermal resistance of spores 

of heat resistant sporeforming bacteria grown at a higher temperature.  Exposure to heat 

during thermal processing may activate spores but can also injure them however 

germination will occur if the damage is repaired.  A nutrient rich medium such as the 

meat used in this study, is helpful to spore recovery and vegetative cell repair.  As with 

growth, germination depends upon the presence or absence of a variety of chemicals and 

environmental conditions.  Unlike the Clostridia, B. cereus requires aerobic conditions 

for sporulation and not all strains require heat activation for spores to germinate.   

    Bacterial spores are not only very heat resistant but heat actually stimulates spores to 

initiate growth.  Generation times as short as 7 minutes have recorded; therefore, it is 

important to cool meat quickly to temperatures below the minimum that allows 

germination and growth of sporeformers.  The critical temperature range for growth of B. 

cereus, C. perfringes, and some C. botulinum, strains is approximately 10-50°C although 

some psychrotrophic C. botulinum strains can grow at refrigeration temperatures.  The 

heat resistance of bacterial cells is related to the maximum temperature of growth.  In the 

case of bacterial spores a similar relationship exists.  The inexact relationship of 

maximum growth temperature to thermal resistance of spores is interpreted to mean that 

factors in addition to those which determine maximum



temperature of growth are involved in thermal resistance.  The fat protection effect would 

not occur in most food emulsions because of the small size of the droplets in suspensions.  

However, attention should be paid to their stability before sterilization. 

    The determination of the most heat resistant bacteria and their heat inactivation 

characteristics will allow the rendering industry to establish and document process 

controls to ensure the final rendered product is free from bacteria that can reduce the 

quality of the product.   

    In summary, results from laboratory experiments and pathogen growth models can 

provide estimates of the times and temperatures required to inactivate vegetative cells and 

spores.  Since, there are many other factors that affect heat resistance of bacteria, 

validation of a processing method should be undertaken under realistic conditions using 

the meat or meat product as the growth medium.  The variation in animal type, body 

component composition, and physical size and shape of the raw materials, which occurs 

in commercial operations, would result in non-uniform heat transfer, so in practice the 

process vary more than the experimental rendering in eliminating spores.  It is clear that 

spores that survive the initial drying phase of rendering may be protected against thermal 

deactivation, thus temperatures employed for  rendering may be ineffective.  It is unlikely 

that such rendered products have ever been completely free of viable spores, so the 

necessity for routine sterilization of these products is open to question.  Nevertheless, if 

sterilization is deemed to be necessary, the raw material must be heated under pressure 

while the moisture content is still high enough to ensure that the spores are not protected 

against thermal inactivation. 



Future Research 

    As an agenda for future work on the heat inactivation of the heat-resistant bacteria 

isolated from poultry offal, we now summarize the issues we left open in this study. 

Two parameters need to be specified for detection and control: bacteria identification and 

change the medium of bacterial growth. 

We have argued that heat resistant bacteria used in this study could be affected by the 

percentage in fat used in the medium, germination or activation of spores and vegetative 

cells due to temperature. 

However, it has been shown that temperature versus time affects the spore former 

bacteria growth.  It would be interesting to develop an inexpensive and easy method to 

obtain the bacteria identification and the behavior under these parameters.  In addition, 

other parameters should, in the future, be selected in this study such as amount of water 

activity on the medium, pH, sodium, etc. 

 

Finally, a complete investigation of the detection of thermo-resistant bacteria and heat 

inactivation methods presented in this study requires a more thorough performance 

evaluation.  First, the methods should be compared experimentally with those previously 

proposed in the literature.  Second, the method should be tested for a large number and 

more diverse rendering conditions. 
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