Clemson University TigerPrints

All Theses

Theses

12-2014

Corruption and Productivity

Chris Kelly Clemson University, christophermoorkelly@gmail.com

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses Part of the <u>Economics Commons</u>

Recommended Citation

Kelly, Chris, "Corruption and Productivity" (2014). *All Theses*. 2025. https://tigerprints.clemson.edu/all_theses/2025

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

CORRUPTION AND PRODUCTIVITY

A Thesis Presented to the Graduate School of Clemson University

In Partial Fulfillment of the Requirements for the Degree Master of Arts Economics

> by Christopher Moor Kelly December 2014

Accepted by: Dr. Scott Baier, Committee Chair Dr. Scott Templeton Dr. Robert Tamura

ABSTRACT

Corruption is suggested to have a negative impact on productivity and thus growth. Several studies have studied the relationship closely, including Hall and Jones (1999) and Lambsdorff (2003). This paper seeks to build on their foundation and specify a new and robust model by looking at the effect of corruption controls on total factor productivity through a two-stage least squares regression. Since it is through public institutions that corruption manifests, also examined are differences between 'inclusive' and 'extractive' institutions. Also important is the degree to which a state is centralized. Extraction by way of corrupt institutions differs in highly centralized states and highly disordered states. It is through this framework that the relationship between productivity and corruption is analyzed.

DEDICATION

This paper is dedicated to my four loving grandparents, to whom I owe everything. Thank you for your unconditional love and support. I would not be here without it.

ACKNOWLEDGEMENTS

A special thank you to my family for all their support, understanding, and patience. I would also like to personally thank my committee members, Drs. Scott Baier, Robert Tamura, and Scott Templeton for their time and instruction. Drs. Thomas Mroz, Jacqueline Oliveira, and Michal Jerzmanowski have also been invaluable advisors. I owe much to their council.

TABLE OF CONTENTS

Page	;
TITLE PAGEi	
ABSTRACTii	
DEDICATIONiii	
ACKNOWLEDGEMENTSiv	
I. INTRODUCTION	
II. PRODUCTIVITY	
• TECHNOLOGY	
• GEOGRAPHY HYPOTHESIS	
INSTITUTIONS HYPOTHESIS	
III. INSTITUTIONAL EVOLUTION	
• INSTITUTIONAL DRIFT	
IV. NATURAL EXPERIMENTS AND CASE STUDIES	
V. OTHER MODELS	
VI. NEW MODEL	
VII. REGRESSION ANALYSIS	
VIII. CONCLUSIONS	
IX. APPENDIX	
• REGRESSIONS	
X. REFERENCES	

GRAPHS, CHARTS, AND REGRESSIONS

	Page
GRAPH 1: The Great Divergence	2
GRAPH 2: Economies by productivity and corruption controls	3
GRAPH 3: Solow model	7
GRAPH 4: Bribe price-permit quantity tradeoff	13
GRAPH 5: Institutional Possibility Frontier	15
GRAPH 6: Solow with economies of different corruption levels	17
GRAPH 7: Institutional drift in the IPF framework	24
GRAPH 8: Fixed lines and tfp	38
GRAPH 9: Cell subscriptions and tfp	38
CHART 1: Regression Results	41
GRAPH 10: Population and tfp	43
CHART 2: Variable summary	49
CHART 3: Correlation matrix	50
CHART 4: Countries in the sample	51
REGRESSIONS I-VI	52

"I do not pretend to understand the moral universe; the arc is a long one, my eye reaches but little ways; I cannot calculate the curve and complete the figure by the experience of sight; I can divine it by conscience. And from what I see I am sure it bends towards justice."

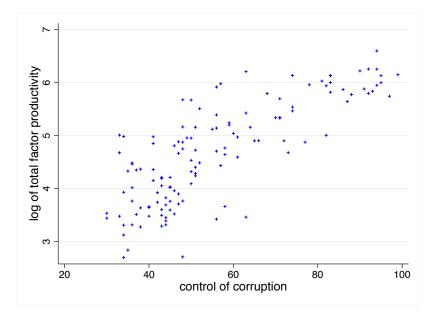
- Theodore Parker

I. INTRODUCTION

The objective of this paper is to describe the significance, strength, and direction of the relationship between effective corruption controls and aggregate productivity. Previous research has found evidence that economies able to effectively control corruption are more productive (Lambsdorff 2003, Hall and Jones 1999). This paper seeks to build on their foundation and introduce a new model to examine current data over a longer period with a considerably larger sample in the hopes of establishing a more robust relationship.

Productivity is the measure of how much output an economy can produce with a given set of labor and capital inputs. It is a measure of efficiency. Levels of productivity and wealth vary greatly between nations and have been on divergent paths since the late 18th century, as in Graph 1. This paper looks at how the *control* of corruption might play a significant role in such divergence. If corruption is controlled, market access is unrestricted, property rights are secure, and transaction costs are predictable. Workers and firms in nations with weak corruption controls are less willing to take risks, as corruption limits market access, weakens property rights, and increases uncertainty, thus eroding work incentives. It follows that workers produce less with the inputs at their disposal if working harder has no rewards. Weak property rights, a telltale sign of

corrupt governments, discourage investment in new ideas. Firms face higher business costs. Bribes increase the cost of new projects. If permits can only be purchased with an expensive bribe, it's difficult for firms to enter new markets. Poor or low-quality infrastructure raises transportation costs. The idea that corruption levels affect productivity and output is called the institutions hypothesis.



Graph 1: The Great Divergence¹

The institutions hypothesis is the focus of the research presented. It states that governing institutions, and any endemic corruption, are significant determinants of aggregate productivity and output. It is these institutions, themselves agents of the government, that have the authority to decide terms of trade, pass laws, issue permits, extract tax revenue, and provide a means of legal recourse. They siphon resources from

¹ Courtesy of The Atlantic

the market and enact entry barriers, increasing the cost of doing business and reducing competition. Corrupt officials in institutions like the judiciary, constabulary, or regulatory agencies use their position to extract bribe money, enforce monopolies, expropriate land, or otherwise divert the flow of resources once destined for the marketplace. They ration permits and market access, increasing costs for firms. Supply falls and prices rise (see Graph 4). There is little motivation to produce, create, or pursue education if there are no rewards for doing so. Institutions in less productive nations are more corrupt, as visible in Graph 2.

Graph 2: National economies by productivity and corruption controls, 2011.

Conversely, institutions in highly productive nations are more inclusive and assure a level playing field for economic actors. Inclusive institutions act as facilitators by establishing a competitive marketplace through the enforcement of property rights. People and firms are incentivized to take risks and explore new markets. Strong public services, like comprehensive education and an unbiased legal system, empower would-be entrepreneurs, inventors, and academics.

There is another hypothesis that offers additional insight on the productivity gap between nations. The geography hypothesis predicts that productivity and growth are largely determined by geographic variables like rainfall, latitude, and temperature. Nations that are 'lucky' enough to have good natural resource endowments, enough water and land to grow crops, seasonal weather patterns, and access to coastal waters are expected to be wealthier and more productive. The geographic hypothesis has been advocated by Diamond (1997); Gallup, Sachs, and Mellinger (1999); and Sachs (2001, 2003). The model proposed in this paper uses a multiple regression analysis to parse out the effect different variables have on productivity, so it is an easy matter to control for geographic variables.

The following sections provide the framework for the new model presented in this paper. Section II defines productivity in the context of the new model and elaborates on the theoretical determinants. Section III is a detailed look at how institutions evolved, so to more fully understand their impact on aggregate wealth differences and thus inform the new model. Section IV looks at natural experiments and case studies. Sections V and VI describe the models of previous papers and the one presented here, respectively. The paper ends with an analysis of the regression results. Regression tables, variable summaries, and other additional data are included in the Appendix.

II. PRODUCTIVITY

Productivity is a measure of how efficient an economy is with its current capital stock and labor force. This includes, but is not limited to, technology levels, governance, and weather (Syverson 2011). Productive economies can produce more output without necessarily increasing the number of inputs. Workers are more efficient with the resources they already possess. The measure of productivity used in the new model captures aggregate productivity, allowing for comparison between national economies. This is accomplished with a simple Cobb-Douglas production function that interacts productivity (A) with capital (K), labor (L), and human capital (H) to produce output (Y) in the following form²:

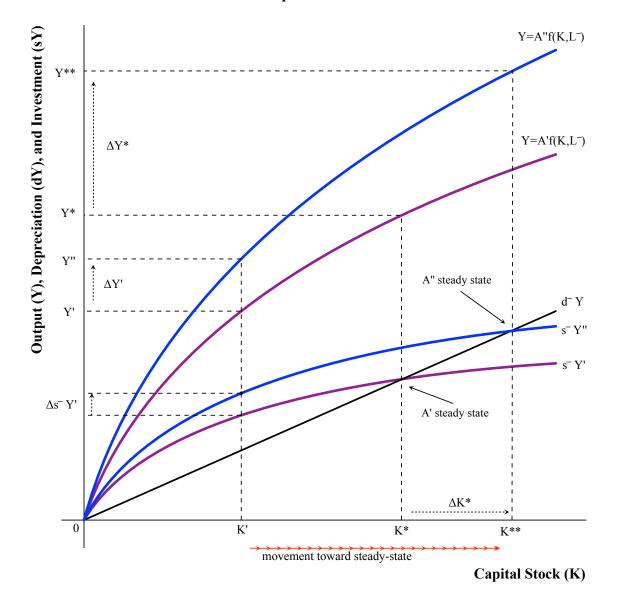
$$Y = A(K^{\alpha}HL^{(1-\alpha)})$$

All variables can be sampled, except for the unobservable measure of aggregate productivity, or total factor productivity (tfp).

$$GDP_i = (tfp)[(Capital Stock_i)^{\alpha}(Human Capital_i)(Labor Force_i)^{(1-\alpha)}]$$

Now it is possible back out a measure of productivity consistent across all observations.

$$tfp_{i} = \frac{GDP_{i}}{(Capital Stock_{i})^{\alpha}(Labor Force_{i})(Human Capital_{i})^{(1-\alpha)}}$$


² Measures of GDP and labor come from the World Bank, capital stock and human capital come from the Penn World Table.

The function says that no matter how much capital and labor an economy can deploy, it is still dependent on other factors that influence the effectiveness of either input. This paper operates under the assumption that $\alpha = .35$. An alternative calculation of tfp (*tfpalt*) where $\alpha = .3$, is also suggested to accurately capture capital share of output, and will be analyzed in Section VII.

Graph 3 establishes a baseline for looking at how changes in productivity affect economic potential through the Solow model. Output is given by the aforementioned production function, where human capital is included as part of labor (L). An increase in productivity from A' to A'' shifts the output curve upward from the purple to the blue line. In an economy with a set capital stock K' and a fixed labor supply, the productivity boost increases aggregate output by $\Delta Y'$. The economic potential (Y*) at the steady-state increases proportionally more, by ΔY^* , since the increased investment ($\Delta \bar{s} Y'$) allows for more accumulation of capital, given the constant rate of depreciation ($\bar{d}Y$). At any level of capital stock, labor, depreciation, and savings, any increase in productivity will increase output. The less productive economy (purple function) will reach a steady state (K*) at a lower level of output. Increases in productivity change the maximum amount of deployable capital, indefinitely postponing a steady-state equilibrium.

So what caused productivity to increase so rapidly in those specific 18th century economies? Many variables that are theorized to affect productivity like natural resource endowment and climate are exogenous, given, and cannot be changed by policy or

government intervention. To account for changes in productivity, it is necessary to identify other components that are more flexible.³

Graph 3: Solow model

³ Please note that in the model presented in this paper human capital is used in the productivity (tfp) calculation as a weighting for the labor force. Changes in human capital do affect productivity, but only in calculating the tfp value. For this paper productivity is a measurement of how effectively the available labor force, as weighted by their human capital, utilizes the capital stock.

TECHNOLOGY

First let us discuss technology as one of these determinants. Technology certainly increases productivity, but a nation is not endowed with a specific number of technologies. Technology disseminates. Humans are industrious creatures and if provided with technology that begets additional utility or profit, like a new innovation, adoption soon follows.

Technology flows downhill between countries. Given the right incentives any technology widely utilized in one country will have little difficulty hopping borders. This diffusion has certainly accelerated because of the Internet. The delay in technology diffusion has certainly diminished. Just Google it! But while access to advanced technology can certainly increase efficiency, there is no guarantee of widespread adoption in countries where private property rights are weak. If corrupt authorities appropriate much profit and income, returns on investments are uncertain and work is de-incentivized. New technology becomes less appealing. Why buy expensive new machines when the risk of appropriation is high? Concurrently, the ruling elites have strong incentives to make procurement of new technologies difficult where it could threaten their political or business interests. The printing press, for example, was outlawed in the Ottoman Empire for its first 250 years because literacy was seen as a potential threat to the sultan.

GEOGRAPHY HYPOTHESIS

An alternative, or perhaps additional, explanation for the productivity disparity is that geographic variables have had a profound effect on productivity and output. Diamond (1997) traces the effect of resource endowment through early human development in the hope of explaining the great disparity between wealthy and poor states. His thesis begins deep in prehistory, around the Neolithic Revolution circa 10,000 BCE. Hunters and gatherers in certain parts of the world were better able to make the transition to sedentary life due to abundance of domesticable flora and fauna. This led to some regions like Europe, China, and the Middle East to begin accumulating capital at an earlier moment while populations in other regions like the Americas and Polynesia were still itinerant. Denizens of early settlements could now collect and store things that previously would have been impossible. With stores and surpluses came trade.

Diamond suggests that another key ingredient of the geographic hypothesis is continental alignment. Continents with a latitudinal axis (Eurasia) had broad climate zones that encouraged dissemination of agriculture, writing, and other technologies. Continents along a longitudinal axis (Africa, the Americas) had many more geographic and climate hurdles. Gallup et al. (1999) find that economic growth is likely related to location and climate through disease burdens, agricultural productivity, and transportation costs. Tropical climates are full of disease and difficult soil. Bloom and Sachs (1998) suggest that landlocked countries are also at a disadvantage. Populations isolated from water trade are handicapped, as they must pay higher transportation costs in getting goods from or to international markets.

Natural resource endowments factor into this conversation, as they too are completely exogenous. Resource abundance, in theory, should increase the wealth of any nation. But other studies have found that is not necessarily the case (Sachs and Warner 2001). Both Sala-i-Martin and Subramanian (2013) and Leite and Weidmann (1999) found that natural resources are eminently exploitable by rent-seeking officials, especially in highly centralized bureaucracies. Corrupt officials gobble up the wealth otherwise destined for the greater market. Both studies found that open governance and strong, inclusive, and adaptable institutions are key to reaping the full economic benefits of resource exploitation.

INSTITUTIONS

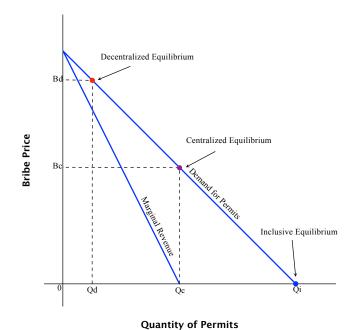
Institutions are a different beast altogether. Effective, inclusive institutions offer secure property rights that protect against predation by public or private agents. They provide the underlying framework upon which people base their decisions. The body of literature uses a number of different terms to identify the channel through which corruption manifests itself in real terms. North (1991) identifies corruption as manifesting through institutions, which are defined as "...the humanly devised constraints that structure political, economic, and social interaction. They consist of both informal constraints (sanctions, taboos, customs, traditions, and codes of conduct), and formal rules (constitutions, laws, and property rights). Throughout history, institutions have been devised by human beings to create order and reduce uncertainty in exchange." Acemoglu et al. (2001, 2002, 2012) distinguish between inclusive institutions, where

property rights are secure, and extractive institutions, where investment and development is obstructed by the threat of expropriation at the hands of a small ruling elite. Hall and Jones (1999) identify corruption as a diversion of resources through social infrastructure. In their words,

"A social infrastructure favorable to high levels of output per worker provides an environment that supports productive activities and encourages capital accumulation, skill acquisition, invention and technology transfer. Such a social infrastructure gets the prices right so that, in the language of North and Thomas (1973), individuals capture the social returns to their actions as private returns. Social institutions to protect the output of individual productive units from diversion are an essential component of a social infrastructure favorable to high levels of output per worker."

Corruption doesn't, however, manifest uniformly. Populations under weak central governments suffer extraction independent of any central authority. Local authorities are unconstrained in corrupt practices. At the other extreme, highly centralized autocracies closely manage institutions so to extract the maximum total wealth (Shleifer and Vishny 1993). Cheung (1998) identified the same pattern of centralized and decentralized corruption as 'top-down' and 'bottom-up,' respectively.

The ruling elite, strongmen, or dons, who use the bureaucracy to extract rents in a controlled way, as in an autocracy or in organized crime, mandate top-down corruption. Here, public servants often act as middle men with bribe money going directly to the central authority. In return they receive kickbacks. Extraction that is constrained this way does not inhibit the economy as strongly, since it is much more predictable (Bardhan 1997). When workers and firms know with certainty what bribes need to be paid, how much, and to whom, they face less risk and are better able to plan ahead. The extra risk and high permit prices faced by new firms still leads to fewer in the marketplace, but

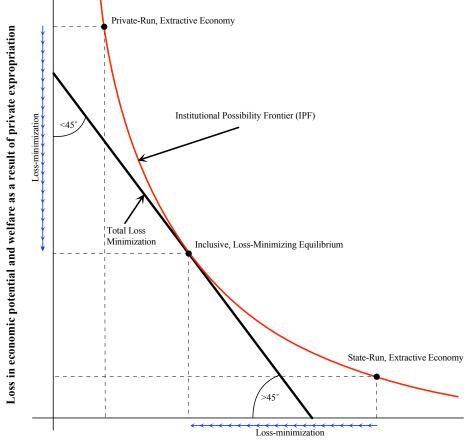

there is also the (relative) certainty that unexpected bribes will not be 'levied,' threatening the supply of future income. In this way an economy can still grow and maintain a level of productivity relatively higher than could otherwise be reached in a disordered state.

Where top-down corruption ensures a steady flow of income to the rulers, bottomup corruption is a free-for-all with each agent extracting as much as possible. When there is an absence of centralized government, officials are free to demand bribes as often as they like. Bottom-up corruption begins with low level bribes, portions of which are used to pay off higher-level officials, all acting in their own self-interests. Bribes must now be paid to most officials. The amount is inconstant without a central authority able to control extraction. Workers and firms face massive uncertainty when regional administrators are independent.

Disordered corruption has a much stronger effect on growth and productivity, as property rights are unenforceable and the risk of unexpected extraction skyrockets. With so many potential bribes to pay and without secure property rights to offer legal recompense, transaction costs skyrocket and output plummets. If the payoff is more uncertain, people are less likely to risk what they have on the hope of higher future returns. A corruption burden de-incentivizes the labor force from engaging in risky behavior. In such a hostile business environment there is little room for growth and expansion. Wei (1997) found that an increase in corruption-induced uncertainty from the level of Singapore to that of Mexico is the equivalent of a 32% tax hike on multinational

firms. Other forms of corruption manifest in government contracts, such as overcharging for inferior products.

In both forms of extraction the economic effects are similar: every time an official must be paid to continue business operations, the marginal cost of doing business increases. There is less revenue, and thus less profit. In some ways corruption resembles a tax. Unlike a tax, however, the bribe revenue is not put towards the purchase of infrastructure, capital, welfare programs, or defense (Wei 1997) and is instead spent by elites on private goods.


Graph 4: bribe price-permit quantity tradeoff

Waller et al. (2002) document the trade off between the level of bribes and the quantity of permits available, as shown in Graph 4. As bribe prices increase, the quantity of permits falls. Under coordinated extraction, as with an authoritarian regime, the autocrat sets bribe levels (B_c) to maximize revenues. In a decentralized economy, bribes

are set very high (B_d) so to maximize revenue for each corrupt official. Because these officials are not acting in unison, bribe demand jumps and the number of permits demanded plummets (Q_d) . The most permits are available at the inclusive equilibrium (Q_i) where no bribes are necessary to access markets. Movement away from disorder and towards inclusion increases the number of permits available in the economy, spurring innovation and entrepreneurship.

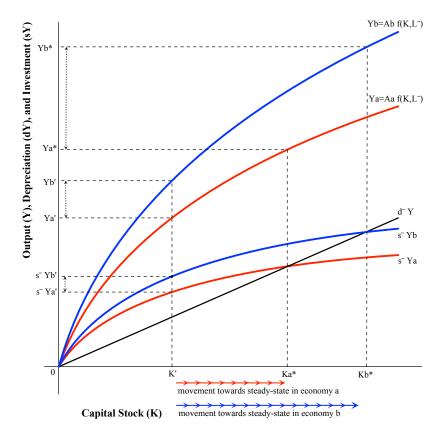
Djankov el al (2003) created a theoretical framework that establishes the relationship between institutions of different quality and social welfare loss. The model identifies a trade-off between disorder and dictatorship. As a government decentralizes, disorder must increase. Weak states need stronger central governments to control corrupt agents. Djankov defines disorder as "the risk to individuals and their property of private expropriation in such forms as banditry, murder, theft, violation of agreements, torts, or monopoly pricing...[Disorder] is also reflected in the private subversion of public institutions, such as courts, through bribes and threats, which allows private violators to escape penalties." Alternatively, dictatorship is the use of the central state to restrict entry into industries, extract resources, and otherwise violate property rights. Corruption, then, is highest in regimes where there is no central government or where the central government is all-powerful.

Graph 5 is based on the one published by Djankov et al. (2003). It has been modified to allow for the important distinction that social loss under a dictatorship are less than in a disordered state. The authors used these two extremes and their associated

Graph 5: Institutional Possibility Frontier

Loss in economic potential and welfare as a result of state appropriation

social losses to define the tradeoff between disorder (a privately-run nation) and dictatorship (a state-run nation), with an equilibrium where loss, the appropriation of resources by authorities, is minimized. Since a government must levy taxes to fund the institutions that ensure honest exchange, there is no way to reach any equilibrium without social losses.


The institutional possibility frontier (IPF) represents all possible institutional outcomes of any given economy. As disorder increases, so does extraction from officials no longer constrained by central authorities. This situation is endemic in many subSaharan African nations. Conversely, states that are highly centralized also experience loss as authoritative governments tightly control economic activity. Communist nations, present and past, are associated with of this type of extraction. The point of tangency, where social losses are minimized, falls somewhere in between.

It is important to note that the point of tangency, while the optimal lossminimizing equilibrium, is not the only equilibrium available to institutions since the countervailing forces of corruption can drive institutions toward the extremes of dictatorship or disorder. Corrupt officials lose income when corruption is controlled. It is in their best interests to maintain the status quo. Equilibrium under extractive regimes is reached when powerful elites resist institutional change that might undermine their influence or income (North 1990, Acemoglu and Robinson 2000, Acemoglu et al. 2001).

What mechanism, then, allows economies to reach an inclusive equilibrium? In a democracy citizens have the ability to remove officials acting in their self-interests. Institutions move away from extremes. The democratic process distributes power away from a central authority, checking the personal ambitions of elites, politicians, strongmen, and corrupt bureaucrats. Inclusive economies are by and large more productive, as observable in Graph 6. But in countries where this mechanism is absent, ruling elites have no checks on their power and will structure institutions to serve their political and economic self-interests. Movement along the IPF, and from one equilibrium to another, is highly dependent on the control of corruption, itself a result of the democratic process.

It is then expected that economies suffering from high levels of corruption are less productive. Also important is that the corruption control indexes used in this paper's

model do not distinguish between top-down and bottom-up extraction. To fit the IPF model to the data, corruption must be thought of as levels of social loss. The greater the corruption, the greater the amount of social loss. Thus movement along the IPF represents changes in institutions. To examine how the economic potential of countries with extractive regimes differs from those with inclusive institutions, let us return to the Solow model presented earlier.

Graph 6: Solow with economies of different corruption levels

Graph 6 juxtaposes economic potential (both current, Y', and future, Y*) in extractive nations (red, economy a) and inclusive institutions (blue, economy b). If both nations are otherwise identical in capital stock, labor, depreciation, and savings rate, the inclusive economy will always be wealthier. Greater levels of investment in the blue economy permit a greater accumulation of capital (Kb*-Ka*), and therefore a greater steady-state output. Ya* is the maximum future output in economy a, whereas Yb* represents the economic potential in economy b. The blue steady-state economy will produce Yb*-Ya* more than the red steady-state economy.

There is a great variety of institutional quality in juxtaposition to earlier eras where inclusive institutions were rare or non-existent. Institutions can change and evolve. Such movement, toward or away from the optimal institution set, is known as institutional drift. So where many economies are rife with corrupt institutions, a large number have shown an ability and willingness control corruption. Early attempts at inclusion, however, weren't always successful. Movement away from extraction didn't begin in earnest until the Late Middle Ages and Early Renaissance. It is of interest to point out the mechanisms that cause this shift as it can help shed light on the determinants of corruption and productivity. To explore how this might happen, we examine how institutions first developed in the Natufian and Neolithic cultures. The next section documents the events leading to the eventual control of corruption in many states.

III. INSTITUTIONAL EVOLUTION

In his seminal paper on how institutions affect economic stability and change, North (1991) points out that the fundamental purpose of institutions is to create order and reduce uncertainty, as they "define the set choice, determine transaction and production cost, and the profitability and feasibility of engaging in economic activity." They establish the rules of the game. Constraints (rules) on economic activity depend not only the laws passed by governments, but on customs, traditions, and moral imperatives.

In early human prehistory, it was solely these customs, traditions, and moral imperatives that governed economic interaction. When humans still hunted and foraged in wandering bands, economic interaction was constrained to a tight social circle. Everyone knew everyone else. The consequences of harming another member of your group (economically or physically) were severe. Interactions were policed by social considerations (Sahlins 1965), the de facto institutions.

Over several thousand years these groups eventually became sedentary, first forming permanent and complex settlements in the Fertile Crescent region of the Middle East. The climate and abundance of domesticable plant and animal species in the region drove the transition to agrarian life. The earliest groups that left the nomadic lifestyle were of the Natufian culture, spanned the Levant in the 3,000 years leading up to the Neolithic Revolution in 10,000 BCE. The Natufians were the forbearers of agrarian civilization; they were the first hunters-gatherers become sedentary. Another defining feature of the Natufian period was the variety of stone tools. Among the microliths, or chipped-stone tools and weapons, are agricultural tools like sickle blades and grinding stones. This is the first evidence anywhere that cereals were gathered in quantities large enough to offset the need to follow migrating herds (Simmons 2007). But farming was not yet a way of life. It wasn't until the following epoch, the Neolithic Revolution, that the transition to agrarian life truly began.

The primary differences between wanderers and settlers are less in how they acquired food and more in how each subsequent generation was able to build on the labor and innovations of previous generations. A growing capital stock increased potential output. There was no accumulation of goods in wandering bands; a person needed to carry all belongings. Hunters and gatherers may have eaten better diets and had more leisure time, but they were unable to create an economy of any real scale (Sahlins 1972). In settlements each generation was able to build on what previous generations left behind, giving them momentum. Nascent economies were encouraged by the simple drive to improve life, as is evident from improving dental health and cultivation techniques.

Technology advancement in early settlements allowed for more efficient use of available resources. Early inhabitants heated clay balls upon which food could be cooked (Hodder 2006). As pottery became available, cooking techniques evolve. A clay pot was a much more practical way of preparing food. Sickles appear in the archeological record, improving the efficiency with which food can be harvested. With this investment came constant production to reap the financial rewards of the initial investment. Labor markets began to specialize. Increased output permitted population growth.

Turning to agriculture as a food base radically altered the economic condition of early peoples. Settlements increased the size of social groups. The larger the settlement, the less intertwined were its inhabitants. As regional density grew so did interaction between settlements. This expanded the trade possibilities horizon and decreasing the personal nature of economic interactions (Sabloff and Lamberg-Karlovsky 1975).

As the Neolithic Revolution gained momentum, trade between disparate groups becomes apparent. A clear example of this is the early obsidian trade. Obsidian, a strong volcanic glass with diverse uses, has a site-specific geological marker. Each piece can be traced to its origin. Through examining archeological data it was found that obsidian mined in the early settlement of Çatalhöyük in southeast Turkey, circa 7,400 BCE, made its way throughout Anatolia, the Levant, and even Cyprus. At least fifty distinct types of obsidian tools were identified at Çatalhöyük, signifying the importance and value to early laborers. In exchange, residents received shells from the Mediterranean and flint from the Levant (Lamberg-Karlovsky and Sabloff 1979). A regional trade network was apparent early in prehistory.

As trade expanded, so did the risk of conflict. The social networks that enforced codes of conduct were no longer sufficient. A different means of regulating exchange was needed. Shipments had to be protected. Standardized weights were needed, as were legal systems to enforce trade law (North 1991). Institutions stepped in to fill the gap.

Institutions also make construction of public works possible. They are able to divert resources to large-scale infrastructure projects. The earliest known example of a public works comes from Jericho, today considered the oldest inhabited city in the world. Jericho began as a collection of mud-brick structures. By 7,350 BCE an estimated 2,000 people inhabited the village. One of Jericho's most fascinating features is a wall enclosing the community and a tower. The tower appears to have been a ceremonial structure, while the walls were more likely used for flood control than defense (Kenyon

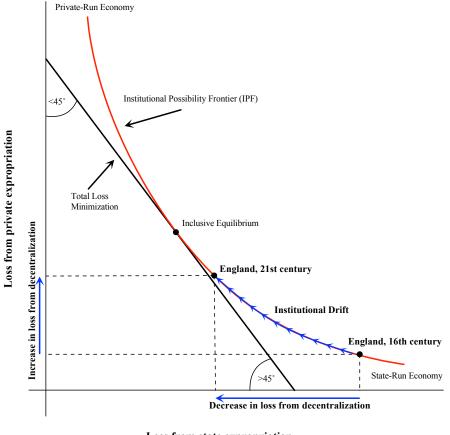
and Holland 1981). This provides evidence of an organized, hierarchical society capable of devoting time to public works instead of food production.

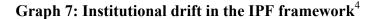
The evolution of trade from early Natufian villages to the modern integrated economy was facilitated by the simultaneous evolution of institutions. With the growth of population density and trade came the rise of the first city-states and early civilizations, eventually developing into economies capable of supporting massive works like the Hanging Gardens, extensive irrigation systems, the Pyramids, and countless religious edifices.

As markets grew more complex and diverse, so too did institutions. Early institutions all share one trait: they served the elite ruling class through resource appropriation. Remarkable is that GDP per capita would, for thousands of years, remained at or near a subsistence level largely because extractive institutions remained the norm until political and social movements in Europe began to undermine the absolute authority of monarchal and dictatorial regimes.

INSTITUTIONAL DRIFT

Eventually a few states began to curtail the power of monarchical regimes. Acemoglu and Robinson (2012) found that small changes to existing governance structures can completely alter the economic and political landscape, for better or worse. One such 'critical juncture' was the signing of the Magna Carta in England 1215 CE. This was an eminently important moment when a monarch's power was peacefully


curtailed. Over the ensuing centuries, English parliament, nobility, and gentry slowly pried more and more power away from the monarchy.


Another event that drastically altered the political and economic landscape during the late Middle Ages was the Black Death that swept Europe in the 14th century, wiping out a massive fraction of the population. With half of the labor supply gone, demand for workers skyrocketed. This economic imperative put much unanticipated power in the hands of a broader section of the population. Political entities scrambled to enforce pre-1347 C.E. labor policies that kept peasantry bound to the land. The effects of such reactionary policies differed significantly between Eastern and Western Europe. Eastern Europe was sufficiently decentralized that rulers were able to *strengthen* their control over the population, known as the Second Serfdom.

In Western Europe it was different. Workers were more urban and organized thanks to the more centralized political nature of Western states. Amidst protestations and revolts they won concessions from rulers and found freedom from feudal ties. The Black Death altered the economic landscape of Europe, providing the foundations for later political and economic reforms. This critical juncture provided the economic shock necessary to shift the institutional trajectory of many economies.

These changes led to the sort of institutions that provide incentives for growth. As the merchant class expanded, their power grew, as did their distrust of the crown. Political and economic concessions were won. One example comes from 1588 CE, when Queen Elizabeth I requested additional tax revenue from Parliament (Parliament controlled taxes, a result of earlier concessions) to fund the effort against the Spanish

Armada. In response they demanded further powers be devolved from the monarchy. Parliament won and funded the English Navy that subsequently served as a guard for the merchant fleet. This happened at a time when other European powers monopolized overseas trade by channeling all merchant activity through their navies. English institutions had begun a march toward inclusiveness. Economic and political freedoms put more and more pressure on rulers to open markets further, thus moving institutions along the IPF toward the loss-minimizing equilibrium, as shown in Graph 7.

Loss from state expropriation

⁴ Please note that losses from England's institutions bundle in the 21st century are not necessarily accurately represented. The graph is merely intended to highlight how institutional drift decreases loss. England's drift toward inclusive institutions minimizes losses until the decrease in loss from decentralization roughly equaled the increase in loss from private expropriation.

The idea of institutional drift, that small changes and events leading different nations to form different institutions (Redmond 2005), is highlighted by the juxtaposition between England's path from serfdom to freedom, and that of other European contemporaries. England's market openness led to one of the most significant events in human history: the Industrial Revolution. People with talent were educated, incentivized, protected, and connected to diverse markets. Innovation flourished. As per capita GDP rose, so did the power of less noble citizens. The more power divested away from the monarchy, the greater the economic options available to all citizens. Created is a positive feedback loop where greater freedoms lead to demands for a more inclusive economy. In some states this 'virtuous circle' perpetuated economic and political change. Countries where this divestment of power doesn't happen incur the opposite effect, where greater controls by central governments beget weaker individual rights. In states with a very weak government, enforcing the rule of law becomes nearly impossible, creating a vast gap between ruling elites and the rest of the population.

While the Industrial Revolution was sweeping the Western world, Eastern Europe was deeply resistant to change. Sedentary laborers toiling quietly in small towns, villages, or on farms were of little threat to power. Elites feared high concentrations of poor workers in cities, the result of labor demand in new factories. Workers, if left unemployed by the creative destruction and labor churn that comes with economic growth, could become restless and violent. Keeping workers in the countryside limited their interaction with new ideas. Railways, too, were slow to wend their way across Eastern Europe, a result of the fear of a mobile population. Eastern European states like

Russia, Belarus, and Ukraine still suffer from high levels of extraction. Western Europe, however, grew relatively more productive as a result of economic openness.

The legacy of those critical junctures is apparent today. Variation in GDP per capita across economies today is vast. The wealth gap between nations has grown rapidly in recent centuries. The differences in income between states and regions in antiquity were tiny when compared to the drastic disparities of today. This is known as the Great Divergence, as seen in Graph 1. Output exploded and economies began to accumulate vast amounts of capital and wealth. This had a profound effect on the average person. They could plan for their futures, purchase healthcare, go to school, and procure goods otherwise available only to wealthy elites. But in the centuries since other parts of the world have continued to languish in poverty. Though Western powers were at the vanguard of an institutional shift toward inclusiveness, they did not always spread inclusivity to the native populations they encountered or the colonies they established.

IV. NATURAL EXPERIMENTS AND CASE STUDIES

To better understand how corruption and productivity interact, we first juxtapose inclusive and extractive institutions through available natural experiments and then further discuss how it is that some nations maintain inclusive institutions and why some seem to perpetuate corrupt ones.

The roots of the modern wealth and productivity inequality between North and South America, for example, extend back to colonization (Acemoglu and Robinson 2005). As European powers began to accumulate more capital and wealth, they began to

exert control on overseas territories, usually in the hope of extracting wealth, as in South America. Other regions, like North America⁵, became genetic offshoots. The disparate experiences of the many European colonies are informed by how the New World was partitioned and exploited by colonial powers.

In Central and South America, Europeans enslaved native populations, extracted vast amounts of wealth, and maintained order through political dominion. Where power is constrained to a small rich minority and political institutions are organized to prohibit any competition, lasting and effective change is difficult to come by. With power transitions only between elites (or those that subsequently became elite), formed were institutions that concentrated all surplus resources in the hands of the wealthy. The legacy endures. Monopolies and extractive policies are still common in the region.

Native economies that were most developed like those of the Andes region and Meso-America had extensive agricultural land capable of supporting their large urban centers. Social hierarchy was well established and institutions already existed by the time contact was made. Europeans were able to simply remove the native leaders thanks to their superior technology, diseases, and long history of warfare. They usurped the extractive institutions already in place, as well as introducing their own, and pressed the population into slavery. The legacy of expropriation continues today.

With the work of subverting native populations in the more densely populated areas complete, the only regions left were those with low population density like the North American seaboard. It was into these areas that large numbers of colonists settled,

⁵ North America refers to the territory of modern Canada and the United States. The Caribbean and Central America are considered part of South America in this paper, as they share similar colonial pasts.

often fleeing poverty or persecution. They established more inclusive institutions in contrast to the monarchical systems they had fled. The legacy of the different colonial governing strategies is apparent. Regional economies that were relatively wealthy, as with the Aztecs and Incas, became impoverished while other regions populated by hunter-gatherers (as in most of North America) became much more wealthy. Acemoglu et al. (2002) document how European colonial policies caused an "institutional reversal" in these regions.

Where Central and South America were stripped of mineral wealth, North America had no gold and silver to expropriate. Early settlers were unable to repeat the policies used in other parts of the New World, where colonial powers used the large native populations to strip the land of value. Enslaving the local natives in North America was impractical, given their low population density. Settlers found themselves unexpectedly working for a living. Attempts by colonial authorities to extract wealth from colonists were mostly in vain as it was very easy to disappear into the vast frontier wilderness. Eventually the companies and governments that sponsored settlement came to the conclusion that it would be more profitable to offer production incentives. Since the colonists couldn't be forced into servitude, authorities began to acquiesce to colonists' demands for political rights. Assemblies of landowners were created, giving political influence to a broader section of the early American colonist population.

In some ways this mirrors the machinations of those early English nobles who wrested power away from the Monarchy. In North America newfound work incentives were a productivity boon. Patents were issued and enforced. Anyone could own and

seek profit from an idea. The incentivized population drove the economy forward. The representative nature of the political systems that developed in continental North America functioned as a check on corruption. Politicians who sought to consolidate power and enrich themselves unilaterally can be, and often were, voted out of office. Their incentive is to maintain popular support so to stay in power. The rule of law became supreme. But if there is no mechanism to remove leaders from office, there is little consequence for rulers structuring institutions to support their own power and wealth.

A much more recent natural experiment that cleanly supports the institutions hypothesis is the Korean peninsula post 1953. Since the end of the Korean War the North and South have taken divergent paths. The totalitarian North saw a collapse in agriculture and regularly faces food crises and malnourishment. There is little industry. Electricity is a luxury. The government doesn't acknowledge private property or enforce contracts. There is no institutional evolution. The government firmly controls the few markets that do exist. In familiar terms, the political and economic institutions are completely controlled by a very small group of elites who extract every possible resource to enrich themselves and their supporters at the expense of the general population.

Just a few miles across the border, the South Korean economy flourishes. In the years after the war the military elite dominated the political arena. The economy, however, was not constrained and institutions were free to evolve. Rule of law, private property, and a relative absence of monopoly encouraged innovation, investment, and trade. There was a strong push to educate the populace, which provided a superior and more creative workforce.

The Korean case study provides excellent insight into what encourages prosperity and what hinders it. Inclusive institutions allow individuals to make the best use of their talent by choosing occupations where they can excel. Strong public services, like an education and unbiased legal systems, level the playing field and empower would-be entrepreneurs, inventors, and academicians. Conversely, extractive institutions funnel all surpluses away from the public and into the coffers of the ruling class. There is no motivation for workers and entrepreneurs to produce, create, or learn if there are no rewards for doing so. A strong central government, answerable to citizens, capable of providing a well-functioning system of public works, enforcing an unbiased legal system, and incentivizing innovation is key to a high standard of living.

Another experiment is that of Botswana and its impoverished African neighbors. The Sub-Saharan average per capita GDP is around \$1,400⁶, while Botswana's is almost \$5,000 higher. The regional average for control of corruption (on a scale of 0-100, where a score of 100 implies a complete lack of corruption⁷) is 45 with a standard deviation of 11. Botswana's corruption controls score 73, more than two standard deviations higher than the regional average, putting it on par with Portugal, Spain, Estonia, and Taiwan. Zimbabwe, Botswana's next-door neighbor with its infamous runaway inflation and ineffective government, has a GDP per capita of less than \$500 and scores 30 out of 100 for corruption control.

How do we account for this remarkable disparity? In 1966 Botswana, with a population of 600,000, gained independence from Great Britain. At the time there were

⁶ All data in this section is for 2011, in 2005 USD, courtesy of the World Bank.

⁷ Data is from the World Governance Index's Control of Corruption index.

22 college graduates, 100 secondary school graduates, and 12 kilometers of paved road (Acemoglu et al. 2001) all in a nation with territory comparable to Texas. The country is also landlocked, arid, and geographically isolated, which, according to the geography hypothesis, should be inimical to prosperity. Botswana was a colonial backwater, but it did have rudimentary institutions based on the British common-law model. When the Batswana peacefully gained their independence, they built upon these basic institutions, transforming them into a meritocracy. That they eschewed extractive policies is likely a result of strong private property rights courtesy of the common law system, pre-colonial tribal affiliations that encouraged consensus rather than elite rule, and a diamond endowment that covers a portion of government revenue. Rather than extracting wealth and enforcing monopolies, they invested aggressively in infrastructure, opened markets to foreign interests and prospectors, and subsidized industrial ventures. In the ensuing years, Botswana has outpaced its continental counterparts in most measures of growth, as is certainly consistent with the idea of institutional drift.

The final case study presented comes from *Why Nations Fail* (2012), which describes education in poor African countries to illustrate how the loss of economic incentives causes growth to stagnate. Without any chance of making profit and improving one's living conditions there is no incentive for parents to send their children to school. This is especially true if the government doesn't provide an education infrastructure. The authors use the Congo region to showcase their thesis. Soon after contact with European powers, Congolese rulers devised institutions that took extraction to an extreme: selling slaves on the international market. This was so profitable that there

was no incentive to encourage any sort of political or economic reform. There would be no benefit to them. The country was kept very decentralized as a deterrent to organized opposition. Aside from the slavery markets, little changed for the Congolese in the ensuing centuries. The Congo region currently scores a 30 out of 100 in the control of corruption index.

V. OTHER MODELS

Let us now look at empirical evidence that corruption dampens output by limiting the usefulness of other inputs. Hall and Jones (1999) examined the differences in productivity between nations and why some invest in more inputs than others. They identify "social infrastructure" as motivating the differences in output per worker. In their paper social infrastructure is defined as "the institutions and government policies that determine the economic environment within which individuals accumulate skills, and firms accumulate capital and produce output." This is the same underlying relationship studied in this paper. Their definition firmly places social infrastructure as a determinant of the production function's productivity multiplier, A, commensurate with corruption. The only difference is that they are studying corruption as it relates to output through its effect on inputs and productivity, as suggested by their infographic:

Hall and Jones (1999):

Institutions → (Inputs, Productivity) → Output per worker

This paper, where italics are excluded from analysis:

Institutions → Productivity → Inputs → Output per worker

The model presented in this paper seeks to specify only the institutionsproductivity relationship. Hall's dependent variable is output while mine is productivity. The basic difference is that Hall identifies corruption (social infrastructure) separately from productivity so to study its effects on output *through* its effects on productivity and inputs. This is important as it means that their study still specifies the relationship between productivity and corruption, which informs the new model proposed in the next section. The sample size for their analysis is 127 observations (countries) over one year, with a measure of corruption coming from a combination of two sources. The new model proposed in this paper greatly expands the sample size to 1,691, covers 16 years, and uses measures of institutional inclusiveness compiled from at least four different sources for each year.

They encountered potential endogeneity when controlling for corruption. High output might lead to corruption controls or low output might encourage extractive policies. To remove any feedback, Hall instruments for corruption through trade and linguistic variables on the premise that the Western world first adopted inclusive institutions and subsequently spread them to colonies. My approach will use very different instruments. Their regression, however, provides some likely determinants that will be included in the new model, including a measure of ethnolinguistic fractionalization as a reflection of national heterogeneity, distance from equator as a geographic indicator, and population as a "simple" way of scaling the economies.

Lambsdorff (2003) performs a similar study: the effect of corruption as measured by the Corruption Perceptions Index, on productivity. For a measure of productivity they use the ratio of GDP to capital stock. The results are crossed checked with a number of alternative corruption variables, where the effect is robust. The paper also notes that there is a tradeoff between government power and disorder, where extremes discourage productivity. He finds that a decrease in corruption by one unit on a scale of 10 increases productivity by 2%.

VI. NEW MODEL

We already have a measure of productivity, as calculated from a basic production function. A corruption variable, however, cannot be so neatly calculated. Since observable data for corruption is so characteristically rare, it is difficult to accurately account for corruption's economic effects. Since we are looking only for a general, aggregate connection between corruption and productivity, we can use several corruption indexes as data substitutes. Compiled from both hard data and expert surveys, these indexes provide insight into the *perceived* level of corruption in an economy. That they are not strictly based on hard data is not an obstacle. First, we have a large observation size that should mitigate irregularities in the data. Second, perception or expectation of corruption informs the decisions of economically active people. Firms are less likely to invest in a country where corruption is perceived to be high (Wei 2000, Jensen 2003, 2008). Perceptions matter in determining the risks of investing. Third, included are four different indexes to crosscheck the regression results.

The first index, control of corruption, is published as part of the World Governance Index⁸. The WGI is an aggregate measure of governance taken from existing data sources and surveys. According to the creators, Kaufmann, Kraay, and Mastruzzi (2010), the index reflects "the views on governance of survey respondents and public, private, and NGO sector experts worldwide." The control of corruption index captures the "perceptions of the extent to which public power is exercised for private gain, including both petty and grand forms of corruption, as well as "capture" of the state by elites and private interests." The data comes from 31 different sources. An alternative index is the Corruption Perception Index⁹, published by Transparency International.

As noted earlier, the relationship between corruption controls and productivity might be endogenous: it is possible that productivity levels have an effect on institutional quality. Productivity increases and the resulting surge of wealth may encourage a move toward the more inclusive, loss-minimizing equilibrium. Additionally, poor nations may not have the necessary resources to build effective institutions (Hall and Jones 1999). We will account for the potential feedback by instrumenting for corruption in the regression. A measure of press freedom will be used, as it has been shown to be a powerful control on corruption by Brunetti and Weder (2003):

"An independent press is probably one of the most effective institutions to uncover trespassing by government officials. The reason is that any independent journalist has a strong incentive to investigate and uncover stories on wrongdoing.

⁸ From the World Bank: "Governance consists of the traditions and institutions by which authority in a country is exercised. This includes the process by which governments are selected, monitored and replaced; the capacity of the government to effectively formulate and implement sound policies; and the respect of citizens and the state for the institutions that govern economic and social interactions among them."

⁹ From Transparency International: "The Corruption Perceptions Index (CPI) ranks countries and territories based on how corrupt their public sector is perceived to be. It is a composite index – a combination of polls – drawing on corruption-related data collected by a variety of reputable institutions. The CPI reflects the views of observers from around the world, including experts living and working in the countries and territories evaluated."

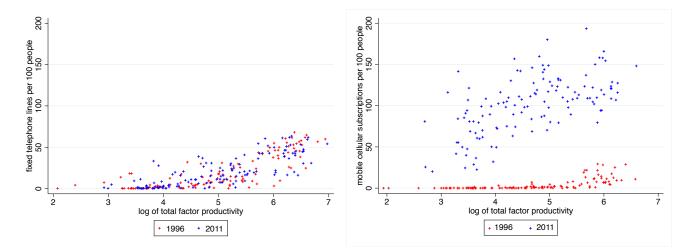
Countries with a free press should, therefore, ceteris paribus, have less corruption than countries where the press is controlled and censored."

For the press instrument, two different indexes will be used to corroborate the results. The first is compiled by Reports Without Borders, the second by Freedom House. As the press freedom instruments are surveys and not hard data, also included will be a measure of luxury resource endowments. Luxury resources are unlikely to have much of an effect on productivity. They are not used as production inputs. Any expropriation that occurs in these mining industries will not affect productivity, except through the predicted welfare loss. Thus, rent-seeking in mining industries like gold and diamonds is not expected to affect productivity, except through corruption. Luxury resources will also be effective instruments for corruption.

To parse out the effect of corruption controls on productivity we need to identify the other determinants of productivity. First we control for macro shocks by adding dummy variables for each year of data. We also control for the scale of the economy by including a population variable. Many studies have specified the natural resource relationship with productivity (Jorgenson 1984, 1984) and corruption (Leite and Weidmann 1999). As such we need to include appropriate variables to account for any effect. Since there is a notable difference between energy resources and luxury resources, we can separately explore resources' effect on corruption and productivity. Ayres et al. (2013) and Murillo-Zamorano (2005) documents the positive relationship between energy and economic and productivity growth, respectively. We specify an energy variable that controls for production of all energy, including oil, coal, natural gas, and alternative sources.

In Section III, we noted that secure property rights incentivized English inventors and entrepreneurs. Early advancements in industrial machinery, especially textiles, created demand for factory labor in cities. New markets grew to support the burgeoning populations. The growing population densities increased the frequency of money exchange, the dissemination of ideas and technologies, and the concentration of human capital (Rauch 1993). Most economic activity happens in cities (about 90% in the US), and there is a strong relationship between productivity and city size (Abel et al. 2011, Ciccone and Hall 1996). The new model captures this effect through a measure of the proportion of the population living in urban environments. We can expect nations with low levels of urban population to be less productive than more urban economies.

Given the large body of literature documenting the geographic hypothesis, and that geography was a likely determinant of early human development, we include variables that control for average temperature, precipitation, and a dummy variable indicating whether or not a country has a coast. Additionally, regional dummies are included to control for regional culture, weather patterns, economic shocks, stability, shared history, and internal trade patterns.


Another necessary specification is the level of technology available to firms and consumers. The proportion of the population with a phone line (landline or cellular) is a good indicator. Phones require infrastructure, be it cell towers or hard lines. Infrastructure needs to be secured, so we can expect few lines in disordered states. Should the ruling regime instead have authoritarian tendencies, monopolies can be enforced in the telecom industry, causing prices to rise, and thus limiting access.

Additionally, phones are the oldest widely adopted long-distance communications technology. Invented in 1876, phones have had a long time to be put into use. Any population able to acquire phones does. Since technology tends to flow downhill between countries and, for the most part, ignore national boundaries, the only impediment to adoption is the institutional framework that either makes infrastructure investment too risky or telephone access too expensive. While autocrats can outlaw technologies, they also have corrupt tendencies, so the effect is still the same. In advanced economies telephones are ubiquitous and inextricably linked to many aspects of life: talking to clients, friends, family, and emergency services.

Cell phones are a newer technology, being adopted over the course of the sample, 1996-2011 (Graph 8 and 9). There are six times as many subscriptions in the United States in the last year of the sample, 2011, as there were in the first year, 1996. Controlling separately for cell phones captures how readily a new technology is adopted into an economy where as fixed lines are more a measure of technology level.

Graph 8 shows a strong positive correlation with comparatively little dispersion. Cell adoption happened very quickly in highly productive nations. Fixed lines have had more than a 130 years to find their way into homes and offices. That they haven't been widely adopted in all nations strongly suggests that, as technology itself is spreads easily, other factors must be discouraging investment in the requisite infrastructure. Cell phones are quickly adopted in the same productive nations that had already made extensive use of communication networks.

VII. REGRESSION ANALYSIS

The primary regression will use the control of corruption (*ctrlcorr*) variable from the World Governance Index and the freedom of the press (*fppress*), as published by Freedom House, as the instrumental variable. Both variables will be crosschecked with Transparency International's corruption perception's index (*cpi*) and Reporters Without Borders' press freedom index (*rsfpress*). They are not combined, as some of their components overlap, potentially giving undue weight to some sources. The first regression, and the one referenced throughout this paper, uses the control of corruption and freedom of the press as they give the largest sample size, 1,691, across the most years, 1996-2011. Chart 1 gives the results of this primary regression. Year and regional dummies are included, though not reported in the chart. The full regression results can be found under Regression I in the Appendix.

In the first iteration, where the control of corruption is the sole independent variable (still instrumented), we see that a unit increase in the control of corruption (on a

scale of 100, where 100 is an economy with no corruption) increases expected total factor productivity by 4.43%. The second iteration includes year and region dummies. The additional variables decrease the control of corruption effect to 3.64%. The third regression adds the three geography variables, but *no explanatory power is removed from corruption*. Technology variables are added in the fourth, where they capture a healthy portion of the variation in productivity and lower the corruption control effect to 1.33%.

The 5th iteration gives the final effect of corruption control. A country that increases its perceived control of corruption enough to move up by one, on a scale of 100, also increases aggregate productivity in the economy by 1.96%, all other factors constant. This represents the lower bound of the effect. The other limit comes from Regression II, using the press freedom index to instrument for control of corruption, where the effect is a 2.61% increase in productivity. This is remarkably higher than was found by Lambsdorff (2003), where a unit increase in the control of corruption, on the same scale of 100, increased productivity by .2%. Where the models differ is in the way productivity is measured. Whereas this paper uses total factor productivity as the dependent, Lambsdorff uses the ratio of GDP to capital as the measure of productivity. The sample size in Lamsdorff's regressions is also less than 100.

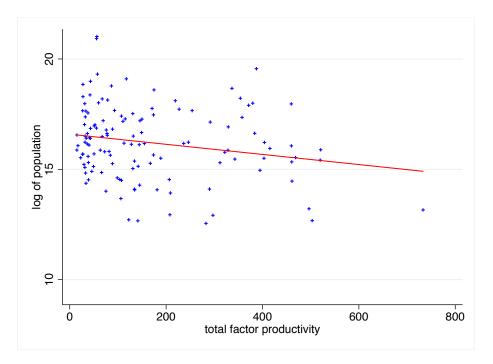
In the 5th iteration all geographic variables are significant once corruption, technology, energy, population, and urbanization have been controlled. This suggests that geographic variables are still strong determinants of productivity, all else constant. Nations with access to coastal waters are expected to be 9.54% more productive than landlocked countries. An additional centimeter of annual rainfall is expected to increase

(1)	D '	14
(hart I.	Regression	reculte
Unart 1.	Itegi coston	ICSUICS

log(tfp)			Itera	tions			Variable
a=0.35	1st	⊧2nd	3rd	4th	5th	<i>α</i> =0.3	name
control of corruption	0.0443 (0.001)	0.036 (0.0014)	0.0364 (0.0014)	0.0133 (0.0024)	0.0196 (0.0022)	0.0208 (0.0022)	ctrlcorr
mean temperature			0.0115 (0.0024)	0.0115 (0.002)	0.0136 (0.002)	0.0143 (0.002)	tmean
precipitation			0.0059 (0.0022)	**0.0033 (0.0019)	0.0082 (0.002)	0.0071 (0.002)	precip
coastal border			0.2657 (0.0299)	0.1811 (0.0264)	0.0954 (0.0289)	0.1005 (0.0297)	coast
telephone landlines				0.0162 (0.0021)	0.015 (0.0017)	0.0151 (0.0017)	phone
cell subscriptions				0.0063 (0.0005)	0.0047 (0.005)	0.005 (0.0005)	cell
log(energy)					0.0944 (0.0057)	0.0983 (0.0059)	lnenergy
log(population)					-0.1095 (0.0094)	-0.1156 (0.0096)	lnpop
urbanization					0.0045 (0.0007)	0.0054 (0.0007)	urban
linguistic diversity					***0009 (0.0006)	** - .0011 (0.0006)	lfrac
ethnic diversity					***.0007 (0.0007)	***.0009 (0.0007)	efrac
constant	2.1639 (0.0569)	2.8258 (0.1199)	2.4294 (0.1258)	2.7114 (0.1245)	3.6096 (0.1931)	3.3909 (0.1982)	_cons
observations	2031	2031	2025	2012	1691	1691	
R-squared	0.6235	0.7541	0.773	0.8281	0.8661	0.8726	

2SLS regressions, where freedom of the press (*fppress*) instruments control of corruption

* insignificant at the 1% level
** insignificant at the 5% level
*** insignificant at the 10% level
adds year and region dummies


tfp by .82%. Where mean temperature increases by one degree Celsius, productivity also increases by 1.36%. Warmer and wetter climates tend to be more productive once the other variables have been controlled. While disease burdens and other problems suggested to plague tropical areas may have some negative effect on productivity, the effects are not strong enough to upset a biological imperative. Life seems to flourish where the water is plentiful and the weather is warm. Cross-checking these variables with the other measures of corruption control and press freedom, coastal access is insignificant at the 5% level in Regression III, precipitation is insignificant at the 1% level in Regression IV. Temperature is significant across all regressions.

The technology variables are both significant and positive. There is a potential endogeneity issue where high productivity levels might encourage the adoption of new technologies. But if technology is synonymous with tools, then any decrease in the number or quality of tools available would cause productivity would plummet. A ready example is that of the transition to sedentary life in early prehistory. It wasn't until human populations settled that they were able to accumulate the tools that allowed, for example, more efficient harvesting, cooking, and transporting. The archeological evidence documents all of these innovations: the development of the sickle, the transition from cooking stones to clay pots, and the construction of baskets to transport goods.

Technology drives productivity. Institutions influence how readily new technologies are adopted. It is important to note that cell and phone are proxy variables for different aspects of technology. Cell phones are included as a proxy for how quickly a highly useful technology can be adopted. Hard line phones are a proxy for the overall

technology level achievable by a country. These variables are significant in all regressions examined in this paper.

Energy production, as expected, has a positive relationship with productivity: a 1% increase in energy production increases productivity by .094%. Conversely, larger populations have a negative relationship with productivity, where a percentage increase leads to a .11% decrease in tfp. This finding reflects that of Pritchett (1996), who identifies a weak negative correlation between tfp and population growth. The slightly negative relationship can be observed even before controlling for the other variables, as below in Graph 10. The relationship suggests decreasing returns to productivity as economies grow in scale.

The level of urbanization is a significant and positive determinant of productivity, where an additional percentage point of citizens living in urban environs increases productivity by .45%. Ethnic and linguistic fractionalization, however, are not significant determinants of productivity in any of the regressions. Hall and Jones (1999) included a similar variable, ethnolinguistic fractionalization, as a determinant of output. Thought they find it does have an effect on output, any affect it has on tfp is captured by the other variables in the model.

An alternative calculation of productivity is used as the response in the last column. Changing the exponent on the capital share of production from .35 to .3 (and thus labor share from .65 to .7) has minimal effect on the outcomes. The regression is also run with per capita measures of tfp and energy, as in Regression VI, but no significant differences are found.

VIII. CONCLUSIONS

This paper affirms that aggregate productivity is strongly affected by the perceived level of corruption. The model presented here has isolated a direct and significant relationship between the control of corruption and aggregate productivity. Any national economy willing to tackle corruption can expect productivity to rise rapidly, between 2% and 2.6% for every 'unit' increase in the control of corruption, all other variables constant.

There is an important difference in how corruption manifests. Centralized, topdown patterns of extraction still experience some growth. Successful civilizations throughout history have operated under such extractive institutions. Corruption is coordinated by the central authorities, who set extraction to levels that maximize their

wealth. Growth can still happen under extractive regimes. In a country without a strong government able to control its agents, however, lawlessness and disorder abound.

Disordered states require stronger central governments to root out corruption, and can improve their productivity either weakly through a shift toward a dictatorial regime or strongly through the adoption of more powerful and inclusive institutions. For the economies constrained by top-down corruption, productivity can only increase with drift away from monarchical and autocratic governance. This is highlighted by the significant events like the signing of the Magna Carta, the French Revolution, and the end of Apartheid. These events all devolved power away from systems that worked against the best interests of the majority of the population.

The productivity boost from healthy, inclusive institutions provides additional flexibility in how an economy chooses its inputs, as there is an increase in overall economic potential. An example of this flexibility can be seen in how a country deals with negative public externalities like the pollution from energy use and population growth. A country that is more efficient (or more productive with current inputs) has more flexibility in dealing with pollution pressure. Though controlling pollution is, of course, a matter of public will and preference (at least in a full democracy), belief that the economy will grow as a result of increased productivity alters the tradeoff between growth and pollution. Is sacrificing a bit of this newfound economic potential worth the future rewards of staving off pollution? Such a decision is most equitably made in a democracy, where decisions about overall welfare aren't subject to an autocrat's whim.

There are other benefits to good institutions. The increase in productivity can counteract other inherent disadvantages like geographic variables. This is clearly exemplified in the Botswana case study, where a geographically disadvantaged but institutionally strong economy has grown far faster than its neighbors.

While the conclusion of this paper is simple enough—increase productivity by controlling corruption—in practice there are many obstacles to practical implementation. The problem is that good economic policies are often bad politics. An authoritarian ruler requires a base of support to maintain power. The easiest way to maintaining power is to offer monopolies, kickbacks, or other considerations to allies that ultimately undermine the economic potential on the nation. There is a strong incentive for corrupt officials and rulers to maintain that corruption. Though the effects of damaging for the economy as a whole, bureaucrats and the ruling classes have more power and higher income than they would in an inclusive economy. If, however, the rulers and public officials are held accountable and incentivized to not take bribes, social loss is minimized. A highly effective way of rooting out corruption is an unrestricted press, who are strongly incentivized to uncover corrupt practices.

This paper concludes that economies willing to control corruption are much more productive than economies constrained by the high levels of corruption associated with the exclusive institutions of both highly centralized and decentralized states. Institutional change comes in three forms. First, for states that are able to implement effective corruption controls there is a feedback effect that seems to encourage movement toward a loss-minimizing equilibrium. Secondly, rulers that eschew good economics for good

politics drive institutions away from the inclusive equilibrium. Finally, states that fall into disorder, as is currently the case in Somalia, Libya, and Syria, can expect lower levels of productivity than either of the other equilibriums. In short, economies that are willing to install even moderate corruption controls are expected to be significantly more productive.

IX. APPENDIX

Variable Explanations:

Total factor productivity (*lntfp*): Logarithmic transformation of the productivity multiplier from a production function where $\alpha = .35$, constructed from other production function variables. Measures of output and labor come from the World Bank. Measures of capital stock and human capital come from Penn World Tables.

Alternative measure of total factor productivity (*lntfpalt*): Logarithmic transformation of the productivity multiplier from a production function where $\alpha = .30$, constructed from other production function variables. Measures of output and labor come from the World Bank. Measures of capital stock and human capital come from Penn World Tables.

Control of corruption (*ctrlcorr*): From the World Governance Index, a measure of how well a country controls corruption. Data in each year is combined from a number of different surveys and studies.

Corruption Perception Index (*cpi*): From Transparency International, a measure of how corrupt a nation is perceived to be. Data in each year is combined from a number of different surveys and studies.

Freedom of the Press (*fppress*): From Freedom House, an index compiled from surveys by more than 60 analysts that describes the level of press freedom in a country.

Freedom Press Index (*rsfpress*): From Reports Without Borders, an index compiled from questionnaires given to journalists and NGO that describes the level of press freedom in a country.

Mean Temperature (*tmean*): From the World Bank, the average annual temperature in degrees Celsius for a country.

Precipitation (precip): From the World Bank, the annual rainfall in centimeters

Coast (coast): A dummy variable indicating whether a country has a coastal border.

Telephone Landlines (*phone*): From the World Bank, fixed telephone lines per hundred people, where a fixed line connects the user to a switchboard network.

Cellular Subscriptions (*cell*): From the World Bank, subscriptions per hundred people to public mobile telephone networks as accessed from cellular technology.

Energy production (*lnenergy*): From the International Energy Agency, energy and electricity produced from petroleum, natural gas, coal, lignite, combustible renewals, waste- converted into oil equivalents.

Population (*lnpop*): From the World Bank, log transformation for national populations.

Urbanization (*urban*): From the World Bank, proportion of national population living in urban environments calculated from World Bank population estimates and urban ratios from the United Nations World Urbanization Prospects.

Linguistic Fractionalization (*lfrac*): From Alesina et al. (2003), the probability that two randomly selected persons will not be from the same linguistic group.

Ethnic Fractionalization (*efrac*): From Alesina et al. (2003), the probability that two randomly selected persons will not be from the same ethnic group.

Regional Dummies: Dummy variables indicating whether a country is part of the Western world (*west*, the excluded control variable), Eastern Europe and Central Asia (*eeca*), Asia (*asia*), Middle East and North Africa (*mena*), Sub-Saharan Africa (*ssa*), or Central and South America and the Caribbean (*csac*).

Variable	Obs	Mean	Std. Dev.	Min	Max
tfp	1691	187.9323	169.7379	7.6337	877.982
lntfp	1691	4.7951	0.9924	2.0326	6.7776
tfpalt	1691	169.1556	159.3975	6.2744	841.8193
lntfpalt	1691	4.6464	1.0443	1.8365	6.7356
ctrlcorr	1691	58.4994	19.6559	18	100
cpi	1338	46.9133	23.611	4	100
fppress	1691	56.8351	23.176	0.1	95
rsfpress	1027	75.5076	22.8986	-36.6	110
tmean	1691	16.4763	8.6962	-5.4	27.9
precip	1691	10.5459	7.2444	0.51	29.26
phone	1691	23.615	20.1361	0.0061	74.7625
cell	1691	49.9861	45.1561	0	215.5038
lnenergy	1691	9.4306	2.3547	-0.5997	14.7044
lnpop	1691	16.3745	1.6109	12.5022	21.019
urban	1691	61.9298	21.5483	9.8642	100
lfrac	1691	36.4956	28.0293	0.21	89.83
efrac	1691	41.1954	25.0175	0.2	87.47

Chart 2: Variable summary

Chart 3: Correlation matrix

efrac	lfrac	urban	pop	energy	cell	phone	precip	tmean	gold	diamond	rsfpress	fppress	cpi	ctrlcorr	tfpalt	tfp	Variables
-0.3922	-0.3349	0.6017	-0.1355	0.0425	0.5135	0.7911	-0.1173	-0.3957	-0.0118	-0.0796	0.4567	0.6045	0.8351	0.8329	0.9994	1	ťſp
-0.3938	-0.3323	0.606	-0.1335	0.0456	0.5191	0.792	-0.1213	-0.3987	-0.0115	-0.078	0.4548	0.6015	0.837	0.8347	1		tfpalt
-0.4577 -0.4552	-0.3376	0.6207	-0.1176	0.0046	0.5114	0.8143	-0.0826	-0.4494	0.0429	-0.0746	0.5583	0.7494	0.9816	-			tfpalt ctrlcorr
-0.4552	-0.3224 -0.2738	0.6238	-0.1071	0.0207	0.5178	0.8095	-0.0866	-0.46	0.0534	-0.0517	0.5259	0.7084	1				cpi
-0.373	-0.2738	0.3793	-0.1317	-0.1229	0.3777	0.6545	-0.0082	-0.4378	0.0237	-0.1282	0.8076	1					fppress
-0.1983	-0.1548	0.2741	-0.3068	-0.2724	0.2224	0.4603	-0.0038	-0.3481	0.0409	-0.0301	1						rsfpress
0.0019	0.0965	0.0134	0.0045	0.2434	-0.0422	-0.0163	-0.088	-0.0961	0.3483	<u> </u>							cpi fppress rsfpress diamond
-0.0077	0.0353	0.0537	-0.001	0.0613	-0.0218	0.0129	-0.0661	0.0707	—								gold
0.4101	0.3029	-0.2995	-0.0149	-0.2136	-0.3245	-0.5968	0.4138	1									tmean
0.0689	-0.019	-0.109	-0.0028	-0.1283	-0.0599	-0.1133	1										tmean precip
-0.5484	-0.459	0.6076	-0.0669	0.1324	0.5482	1											phone
-0.3806	-0.3379	0.5153	-0.1573	-0.0051	1												cell
-0.0646	-0.0818	0.0744	0.6713	1													energy
-0.0626	0.0407	-0.1763	1														pop
-0.3806 -0.0646 -0.0626 -0.3125 0.7207	-0.4115	<u> </u>															urban
0.7207	1																lfrac

Chart 4: Countries in sample

The 108 economies used in Regression I, by region.

Western Europe and Offshoots (west) Albania Australia Austria Belgium Bulgaria Canada Croatia Cyprus Czech Republic Denmark Estonia Finland	Sub-Sahara Africa (ssa) Benin Botswana Cameroon Congo, Republic Congo, Democratic Republic Côte d'Ivoire Gabon Ghana Kenya Mozambique Namibia Senegal South Africa	Middle East and North Africa (mena) Bahrain Egypt Iran Iraq Jordan Kuwait Morocco Qatar Saudi Arabia Sudan Syria Tunisia
France Germany Greece Hungary Iceland Ireland Israel Italy Latvia Luxembourg Malta Netherlands New Zealand Norway Poland	Tanzania Togo Zambia Zimbabwe Central, South America, and Caribbean (csac) Argentina Bolivia Brazil Chile Colombia Costa Rica	Turkey Eastern Europe and Central Asia (<i>eeca</i>) Armenia Kazakhstan Kyrgyzstan Moldova Russia Tajikistan Ukraine
Portugal Romania Slovakia Slovenia Spain Sweden Switzerland United Kingdom United States	Dominican Republic Ecuador Guatemala Honduras Jamaica Mexico Panama Paraguay Peru Trinidad and Tobago Uruguay Venezuela	Asia(asia)BangladeshMongoliaBruneiPakistanCambodiaPhilippinesChinaSingaporeHong KongSouth KoreaIndiaSri LankaIndonesiaThailandJapanVietnamMalaysia

Regression I First Stage

A two-stage least squares regression, with the World Governance Index's control of corruption variable (*ctrlcorr*) and the Freedom House's Freedom of the Press (*fppress*) as the instrument.

				Numbe	er of obs =	1691
				F(3	33, 1657) =	230.86
				Prob	> F =	0.0000
				R-squ	uared =	0.8214
				Adj F	R-squared =	0.8178
				Root	MSE =	8.3901
ctrlcorr	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
tmean	1293056	.0453632	-2.85	0.004	2182808	0403305
precip	.1457077	.0455052	3.16	0.004	.0553695	.2360458
coast	5147894	.6693546	-0.77	0.442	-1.827659	.7980805
phone	.5031079	.0236314	21.29	0.000	.4567575	.5494584
cell	.051966	.0230314	4.94	0.000	.0313159	.0726161
lnenergy	.2972991	.1341697	2.22	0.027	.0341391	.560459
lnpop	-1.343867	.2113022	-6.36	0.000	-1.758315	9294198
urban	.1096815	.0152906	7.17	0.000	.0796906	.1396723
lfrac	.0406084	.0138578	2.93	0.003	.0134277	.067789
efrac	0526751	.0150537	-3.50	0.000	0822013	0231489
asia	7.303675	.9963307	7.33	0.000	5.349475	9.257875
csac	121174	1.065347	-0.11	0.909	-2.210743	1.968395
eeca	-5.105467	1.236508	-4.13	0.000	-7.53075	-2.680183
mena	10.70632	1.227848	8.72	0.000	8.298022	13.11462
ssa	7.361554	1.188712	6.19	0.000	5.030017	9.69309
550	7.301334	1.100/12	0.19	0.000	5.050017	9.09309
year						
1997	2696248	1.163965	-0.23	0.817	-2.552621	2.013372
1998	5307221	1.162352	-0.46	0.648	-2.810556	1.749111
1999	-1.248123	1.166598	-1.07	0.285	-3.536284	1.040038
2000	-2.36897	1.170082	-2.02	0.043	-4.663965	073975
2001	-3.211582	1.18192	-2.72	0.007	-5.529796	8933687
2002	-3.239593	1.193804	-2.71	0.007	-5.581117	8980696
2003	-3.070542	1.207047	-2.54	0.011	-5.43804	7030443
2004	-3.976292	1.227856	-3.24	0.001	-6.384605	-1.567978
2005	-4.848387	1.262851	-3.84	0.000	-7.32534	-2.371435
2006	-5.043238	1.315106	-3.83	0.000	-7.622683	-2.463793
2007	-5.256962	1.372963	-3.83	0.000	-7.949887	-2.564038
2008	-5.580282	1.43129	-3.90	0.000	-8.38761	-2.772954
2009	-6.293341	1.479864	-4.25	0.000	-9.195941	-3.390741
2010	-6.519798	1.531085	-4.26	0.000	-9.522863	-3.516733
2010	-6.764964	1.581344	-4.28	0.000	-9.866608	-3.663321
2011	01,04004	1.001044	4120	0.000	5.00000	5.005521
fppress	.3067728	.0161763	18.96	0.000	.2750446	.338501
lndiamond	.2479455	.0492414	5.04	0.000	.1513635	.3445275
lngold	1821853	.0523052	-3.48	0.001	2847765	0795941
_cons	41.49687	3.432169	12.09	0.000	34.76503	48.22872

Regression I Second Stage

Instrumental variables (2SLS) regression Nur Wa

Number of obs	= 1691
Wald chi2(31)	=10926.37
Prob > chi2	= 0.0000
R-squared	= 0.8661
Root MSE	= .36305

lntfp	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
ctrlcorr	.0196031	.0021738	9.02	0.000	.0153425	.0238637
tmean	.013647	.001993	6.85	0.000	.0097408	.0175531
precip	.0081592	.0019722	4.14	0.000	.0042937	.0120246
coast	.0954132	.0289396	3.30	0.001	.0386927	.1521337
phone	.0149557	.0016909	8.84	0.000	.0116415	.0182698
cell	.0047144	.000472	9.99	0.000	.0037893	.0056395
lnenergy	.0944116	.0057066	16.54	0.000	.0832268	.1055964
lnpop	109515	.009395	-11.66	0.000	127929	0911011
urban	.0044942	.0007025	6.40	0.000	.0031172	.0058711
lfrac	0008552	.0006147	-1.39	0.164	0020601	.0003496
efrac	.0007223	.0006699	1.08	0.281	0005907	.0020353
asia	367182	.042947	-8.55	0.000	4513566	2830074
csac	043934	.0460783	-0.95	0.340	1342459	.0463778
eeca	6461308	.0573543	-11.27	0.000	7585431	5337184
mena	.4163284	.0478052	8.71	0.000	.3226319	.510025
ssa	1105426	.050748	-2.18	0.029	210007	0110783
year						
1997	0229611	.0503677	-0.46	0.648	1216801	.0757578
1998	0522296	.0503264	-1.04	0.299	1508676	.0464084
1999	0902313	.0506084	-1.78	0.075	189422	.0089594
2000	1167798	.0509927	-2.29	0.022	2167237	0168359
2001	1508126	.0516905	-2.92	0.004	2521242	049501
2002	1695333	.052324	-3.24	0.001	2720865	0669802
2003	2017424	.0528319	-3.82	0.000	3052909	0981938
2004	2204959	.0541172	-4.07	0.000	3265636	1144282
2005	2520123	.0560004	-4.50	0.000	3617711	1422534
2006	3082083	.058417	-5.28	0.000	4227035	193713
2007	3547301	.0610149	-5.81	0.000	4743172	235143
2008	4084815	.0637066	-6.41	0.000	5333441	283619
2009	4773705	.0662408	-7.21	0.000	6072	3475409
2010	489353	.0685375	-7.14	0.000	623684	3550219
2011	5049438	.0707971	-7.13	0.000	6437035	366184
_cons	3.609641	.1931256	18.69	0.000	3.231121	3.98816

Regression I-A First Stage

A two-stage least squares regression, with the World Governance Index's control of corruption variable (*ctrlcorr*) and the Freedom House's Freedom of the Press (*fppress*) as the instrument, where insignificant fractionalization measures are excluded.

				F(3 Prob R-squ		1723 251.06 0.0000 0.8215 0.8182
				Root	MSE =	8.3546
ctrlcorr	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
tmean	1186302	.0444769	-2.67	0.008	2058658	0313946
precip	.1250969	.0454462	2.75	0.006	.0359602	.2142336
coast	7393816	.6623108	-1.12	0.264	-2.038417	.5596535
phone	.5076366	.0233451	21.74	0.000	.4618482	.553425
cell	.0537466	.0103197	5.21	0.000	.0335059	.0739873
lnenergy	.2185311	.1301376	1.68	0.093	0367167	.4737788
lnpop	-1.211339	.2062358	-5.87	0.000	-1.615843	8068345
urban	.1073184	.0149837	7.16	0.000	.0779299	.136707
asia	7.698915	.984402	7.82	0.000	5.76814	9.629689
csac	-1.326583	.9997348	-1.33	0.185	-3.28743	.6342648
eeca	-5.15121	1.210204	-4.26	0.000	-7.524865	-2.777554
mena	10.2772	1.20102	8.56	0.000	7.921554	12.63284
ssa	7.122071	1.119053	6.36	0.000	4.927197	9.316945
year						
1997	3159031	1.148021	-0.28	0.783	-2.567595	1.935788
1998	6324707	1.146407	-0.55	0.581	-2.880996	1.616055
1999	-1.371921	1.150382	-1.19	0.233	-3.628243	.8844014
2000	-2.482303	1.153479	-2.15	0.032	-4.7447	2199065
2001	-3.376351	1.164577	-2.90	0.004	-5.660515	-1.092188
2002	-3.417735	1.175837	-2.91	0.004	-5.723984	-1.111485
2003	-3.184572	1.188346	-2.68	0.007	-5.515355	8537895
2004	-4.103713	1.20844	-3.40	0.001	-6.473908	-1.733518
2005	-4.938742	1.242017	-3.98	0.000	-7.374794	-2.50269
2006	-5.104253	1.292901	-3.95	0.000	-7.640107	-2.5684
2007	-5.381341	1.349995	-3.99	0.000	-8.029177	-2.733505
2008	-5.707884	1.406943	-4.06	0.000	-8.467417	-2.948351
2009	-6.469272	1.454417	-4.45	0.000	-9.321918	-3.616626
2010	-6.719314	1.504398	-4.47	0.000	-9.669993	-3.768636
2011	-6.979854	1.553318	-4.49	0.000	-10.02648	-3.933226
fppress	.3116604	.015988	19.49	0.000	.280302	.3430189
lndiamond	.2568348	.0488479	5.26	0.000	.1610261	.3526435
lngold	1896668	.0514198	-3.69	0.000	29052	0888137
_cons	39.63647	3.344721	-3.09	0.000	33.07624	46.19669
_0013	55.05047	5.544/21	11.05	5.000	55.07024	40.13003

Regression I-A Second Stage

Instrumental variables (2SLS) regression

Number of obs	= 1723
Wald chi2(29)	=10324.80
Prob > chi2	= 0.0000
R-squared	= 0.8569
Root MSE	= .37282

lntfp	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
ctrlcorr	.0200316	.0021758	9.21	0.000	.015767	.0242961
tmean	.0138319	.0020084	6.89	0.000	.0098954	.0177684
precip	.0079289	.0020028	3.96	0.000	.0040035	.0118544
coast	.1141472	.0295639	3.86	0.000	.056203	.1720914
phone	.0146962	.001717	8.56	0.000	.0113309	.0180616
cell	.0048445	.000479	10.11	0.000	.0039057	.0057832
lnenergy	.0941652	.0056989	16.52	0.000	.0829956	.1053347
lnpop	1130261	.0093333	-12.11	0.000	131319	0947332
urban	.003752	.0007039	5.33	0.000	.0023725	.0051315
asia	3802135	.0440329	-8.63	0.000	4665164	2939106
csac	.0222611	.0446475	0.50	0.618	0652464	.1097687
eeca	6421904	.0580413	-11.06	0.000	7559493	5284316
mena	.4503752	.0476883	9.44	0.000	.3569079	.5438426
ssa	1353835	.0494055	-2.74	0.006	2322165	0385505
year						
1997	0226512	.0512345	-0.44	0.658	123069	.0777666
1998	0515135	.051199	-1.01	0.314	1518618	.0488347
1999	0910897	.0514827	-1.77	0.077	1919939	.0098144
2000	1201364	.0518612	-2.32	0.021	2217826	0184903
2001	1547851	.0525616	-2.94	0.003	2578039	0517663
2002	1742929	.0532006	-3.28	0.001	2785641	0700218
2003	2103287	.0536764	-3.92	0.000	3155325	1051248
2004	2313593	.0549853	-4.21	0.000	3391285	1235901
2005	2681592	.0568562	-4.72	0.000	3795952	1567231
2006	327201	.0592749	-5.52	0.000	4433776	2110244
2007	3761033	.0619586	-6.07	0.000	49754	2546666
2008	4311946	.0646788	-6.67	0.000	5579627	3044265
2009	4998703	.0672734	-7.43	0.000	6317238	3680168
2010	5128507	.0696055	-7.37	0.000	6492749	3764265
2011	5311851	.0718832	-7.39	0.000	6720735	3902967
_cons	3.684499	.1903666	19.35	0.000	3.311388	4.057611

Regression II First Stage

A two-stage least squares regression, using the World Governance Index's control of corruption variable (*ctrlcorr*) and the Freedom Press Index published by Reporters Without Borders (*rsfpress*) as the instrument.

				Numbe	r of obs =	1029
				F(2	27, 1001) =	152.56
				Prob	> F =	0.0000
				R-squ	ared =	0.8045
				Adj R	-squared =	0.7992
				Root	MSE =	8.8021
ctrlcorr	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
tmean	2285397	.0604635	-3.78	0.000	3471895	1098899
precip	.0392393	.0613895	0.64	0.523	0812277	.1597062
coast	.6871982	.9134658	0.75	0.452	-1.105329	2.479726
phone	.5206648	.0307979	16.91	0.000	.460229	.5811007
cell	.0284166	.0131138	2.17	0.030	.0026829	.0541503
lnenergy	.1322645	.1943622	0.68	0.496	2491395	.5136685
lnpop	-1.320102	.297876	-4.43	0.000	-1.904635	7355692
urban	.1872803	.0206491	9.07	0.000	.1467598	.2278008
lfrac	.0635042	.0185765	3.42	0.001	.0270508	.0999576
efrac	0649188	.0200586	-3.24	0.001	1042805	025557
asia	5.455754	1.371547	3.98	0.000	2.764317	8.147191
csac	-2.424823	1.432408	-1.69	0.091	-5.235689	.3860438
eeca	-15.09271	1.520736	-9.92	0.000	-18.07691	-12.10851
mena	3.377544	1.62332	2.08	0.038	.1920441	6.563044
ssa	3.064629	1.605915	1.91	0.057	0867175	6.215976
year						
1996	0	(empty)				
1997	0	(empty)				
1998	0	(empty)				
1999	0	(empty)				
2000	0	(empty)				
2001	0	(empty)				
2002	.4242271	1.612864	0.26	0.793	-2.740756	3.58921
2003	.6575075	1.540944	0.43	0.670	-2.366344	3.681359
2004	.1746038	1.481308	0.12	0.906	-2.732221	3.081429
2005	7406935	1.426408	-0.52	0.604	-3.539786	2.058399
2006	9000276	1.365474	-0.66	0.510	-3.579547	1.779491
2007	3354203	1.296141	-0.26	0.796	-2.878885	2.208044
2008	-1.380016	1.27363	-1.08	0.279	-3.879307	1.119276
2009	-1.527149	1.242413	-1.23	0.219	-3.965181	.9108839
2010	-1.317704	1.221154	-1.08	0.281	-3.71402	1.078611
2011	0	(omitted)				
rsfpress	.1809921	.0187179	9.67	0.000	.1442611	.217723
Indiamond	.1831368	.0654285	2.80	0.005	.0547441	.3115296
lngold	2773598	.0654285	-4.20	0.005	.0547441	1476926
•	42.96004	5.117286	-4.20 8.40	0.000	407027 32.91821	14/0920
_cons	42.90004	5.11/200	0.40	0.000	32.91021	22.00100

Regression II Second Stage

Instrumental variables (2SLS) reg	gression Number of obs = Wald chi2(25) = 6	
	Prob > chi2 =	0.0000
	R-squared =	0.8633
	Root MSE =	.35647

lntfp	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
ctrlcorr	.0261157	.0036548	7.15	0.000	.0189525	.033279
tmean	.0107338	.0026166	4.10	0.000	.0056054	.0158622
precip	.0092544	.0024868	3.72	0.000	.0043803	.0141285
coast	.12653	.0370131	3.42	0.001	.0539857	.1990743
phone	.0095339	.0024521	3.89	0.000	.004728	.0143399
cell	.0050883	.0005394	9.43	0.000	.004031	.0061456
lnenergy	.0913925	.0077106	11.85	0.000	.07628	.106505
lnpop	072939	.0133812	-5.45	0.000	0991658	0467123
urban	.0018728	.0010856	1.73	0.084	0002549	.0040006
lfrac	0010358	.0007994	-1.30	0.195	0026026	.000531
efrac	.0005142	.000857	0.60	0.548	0011655	.002194
asia	4391132	.0533283	-8.23	0.000	5436348	3345916
csac	0585568	.0586824	-1.00	0.318	1735721	.0564585
eeca	4435279	.0899087	-4.93	0.000	6197457	26731
mena	.4114864	.0605251	6.80	0.000	.2928593	.5301135
ssa	1040587	.0636701	-1.63	0.102	2288498	.0207324
year						
1996	0	(empty)				
1997	0	(empty)				
1998	0	(empty)				
1999	0	(empty)				
2000	0	(empty)				
2001	0	(empty)				
2002	.3146858	.0650829	4.84	0.000	.1871256	.442246
2003	.3018671	.0624549	4.83	0.000	.1794578	.4242764
2004	.2882356	.0598303	4.82	0.000	.1709704	.4055009
2005	.2549822	.0570614	4.47	0.000	.1431438	.366820
2006	. 1984112	.0545711	3.64	0.000	.0914538	.3053687
2007	.1444008	.0522061	2.77	0.006	.0420789	.2467228
2008	.0964636	.0507028	1.90	0.057	002912	.1958393
2009	.0365289	.0497574	0.73	0.463	0609938	.1340515
2010	.0193993	.0491161	0.39	0.693	0768664	.115665
2011	0	(omitted)				
2011						

Regression III First Stage

A two-stage least squares regression, with Transparency International's Corruption Perceptions Index (*cpi*) and the Freedom House press index (*fppress*) as the instrument.

					er of obs = 31, 1306) = >F =	1338 166.22 0.0000
				R-squ	uared =	0.7978
				Adj H	R-squared =	0.7930
				Root	MSE =	10.7424
cpi	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
tmean	2945064	.0658159	-4.47	0.000	4236229	16539
precip	.2212108	.06584	3.36	0.001	.092047	.3503745
coast	.7248071	.9410556	0.77	0.441	-1.121339	2.570953
phone	. 5755788	.0335829	17.14	0.000	.5096965	.6414612
cell	.0454374	.0147239	3.09	0.002	.0165524	.0743225
lnenergy	. 407447	.2078321	1.96	0.050	0002743	.8151684
lnpop	-2.171958	.330365	-6.57	0.000	-2.820062	-1.523854
urban	.2097648	.0225743	9.29	0.000	.165479	.2540506
lfrac	.0790646	.0199985	3.95	0.000	.0398319	.1182973
efrac	0884154	.0214993	-4.11	0.000	1305924	0462385
asia	8.271328	1.462256	5.66	0.000	5.4027	11.13996
csac	5551192	1.523163	-0.36	0.716	-3.543233	2.432995
eeca	-8.442224	1.809717	-4.66	0.000	-11.99249	-4.891955
mena	11.98056	1.778742	6.74	0.000	8.491055	15.47006
ssa	10.56967	1.707008	6.19	0.000	7.220894	13.91845
year						
1996	0	(empty)				
1997	0	(empty)				
1998	5.209994	2.1757	2.39	0.017	.9417456	9.478243
1999	4.114206	2.083125	1.98	0.048	.0275682	8.200844
2000	3.144777	2.042355	1.54	0.124	8618783	7.151433
2001	2.408915	1.963432	1.23	0.220	-1.442912	6.260741
2002	2.553645	1.900458	1.34	0.179	-1.174639	6.281928
2003	2.010873	1.816956	1.11	0.269	-1.553598	5.575344
2004	1.432406	1.744046	0.82	0.412	-1.989032	4.853844
2005	1.679284	1.676266	1.00	0.317	-1.609185	4.967752
2006	1.297413	1.609093	0.81	0.420	-1.859278	4.454103
2007	1.017493	1.548176	0.66	0.511	-2.019691	4.054676
2008	. 8235426	1.515609	0.54	0.587	-2.149752	3.796837
2009	.1185052	1.49198	0.08	0.937	-2.808435	3.045445
2010	.2001182	1.479459	0.14	0.892	-2.702258	3.102494
2011	0	(omitted)				
fppress	.2797067	.0239117	11.70	0.000	.2327972	.3266162
lndiamond	.3460823	.0696725	4.97	0.000	.2094	.4827646
lngold	3015742	.0735887	-4.10	0.000	4459392	1572092
_cons	30.14883	5.489352	5.49	0.000	19.37992	40.91774

Regression III Second Stage

Instrumental variables (2SLS) regression

Number of obs	=	1338
Wald chi2(29)	=	7981.93
Prob > chi2	=	0.0000
R-squared	=	0.8549
Root MSE	=	.36869

lntfp	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
cpi	.0224906	.0025612	8.78	0.000	.0174708	.0275105
tmean	.0127452	.0024351	5.23	0.000	.0079725	.0175178
precip	.0060005	.0022783	2.63	0.008	.0015351	.010466
coast	.0617195	.0323149	1.91	0.056	0016165	.1250554
phone	.0103887	.0020917	4.97	0.000	.0062891	.0144884
cell	.0057645	.0005178	11.13	0.000	.0047496	.0067795
lnenergy	.0729815	.0070429	10.36	0.000	.0591778	.0867853
lnpop	0507773	.0127814	-3.97	0.000	0758283	0257263
urban	.0010348	.0009506	1.09	0.276	0008282	.0028979
lfrac	0013237	.000739	-1.79	0.073	0027721	.0001246
efrac	.0014501	.0007979	1.82	0.069	0001138	.0030139
asia	4348351	.0502017	-8.66	0.000	5332287	3364415
csac	0073485	.0522285	-0.14	0.888	1097144	.0950174
eeca	5387845	.0696197	-7.74	0.000	6752366	4023323
mena	.3418085	.0551634	6.20	0.000	.2336903	.4499267
ssa	1703447	.0608546	-2.80	0.005	2896175	0510719
year						
1996	0	(empty)				
1997	0	(empty)				
1998	.5440474	.0763096	7.13	0.000	.3944833	.6936115
1999	.4893016	.0725371	6.75	0.000	.3471316	.6314717
2000	.4317845	.0708086	6.10	0.000	.2930022	.5705668
2001	.4184052	.0679312	6.16	0.000	.2852626	.5515479
2002	.3986028	.0657725	6.06	0.000	.269691	.5275146
2003	.4009283	.0627353	6.39	0.000	.2779694	.5238872
2004	.3677052	.0600622	6.12	0.000	.2499854	.4854249
2005	.3043765	.0578131	5.26	0.000	.1910649	.4176881
2006	.2399651	.0553845	4.33	0.000	.1314135	.3485167
2007	.1827581	.053246	3.43	0.001	.0783978	.2871184
2008	.1169997	.0520906	2.25	0.025	.014904	.2190954
2009	.0485874	.0512069	0.95	0.343	0517762	.148951
	.0226344	.0507787	0.45	0.656	07689	.1221588
2010	1	(omitted)				
2010 2011	0	(omitted)				

Regression IV First Stage

A two-stage least squares regression, using Transparency International's Corruption Perceptions Index (*cpi*) and the Freedom Press Index published by Reporters Without Borders (*rsfpress*) as the instrument.

cpi Coef. Std. Err. t P> t [95% Conf. Interv tmean 394314 .0747411 -5.28 0.000 5409858 2476 precip .1521769 .0753198 2.02 0.044 .0043695 .2999	6421 9844 986 524 598
precip .1521769 .0753198 2.02 0.044 .0043695 .2999	844 986 524 598
	986 524 598
	524 598
coast 1.537147 1.117364 1.38 0.1696555661 3.72	598
phone .6073076 .0377318 16.10 0.000 .5332628 .6813	
cell .0261949 .0160339 1.63 0.1030052699 .0576	575
lnenergy .3007058 .2388668 1.26 0.2081680458 .7694	
lnpop -1.842335 .3680043 -5.01 0.000 -2.564506 -1.120	164
urban .2436204 .0254239 9.58 0.000 .1937286 .2935	121
lfrac .0994881 .0227996 4.36 0.000 .0547463 .14	423
efrac1024122 .0245755 -4.17 0.0001506390541	.853
asia 6.645018 1.699307 3.91 0.000 3.310301 9.979	735
csac -3.181438 1.753434 -1.81 0.070 -6.622372 .2594	958
eeca -17.11743 1.870203 -9.15 0.000 -20.78751 -13.44	735
mena 5.258136 1.991302 2.64 0.008 1.350409 9.165	862
ssa 5.627823 1.973048 2.85 0.004 1.755917 9.49 9	728
year	
1996 Ø (empty)	
1997 Ø (empty)	
1998 Ø (empty)	
1999 Ø (empty)	
2000 0 (empty)	
2001 0 (empty)	
20028717288 2.029899 -0.43 0.668 -4.855198 3.111	741
20038958837 1.894141 -0.47 0.636 -4.612942 2.821	174
20049483171 1.809642 -0.52 0.600 -4.499553 2.602	919
20057993046 1.740837 -0.46 0.646 -4.215519 2.61	691
2006 -1.167399 1.663961 -0.70 0.483 -4.432752 2.097	954
20076400641 1.578998 -0.41 0.685 -3.738686 2.458	558
2008 -1.484854 1.551533 -0.96 0.339 -4.529578 1.55	987
2009 -1.772595 1.513246 -1.17 0.242 -4.742186 1.196	995
2010 -1.291365 1.487188 -0.87 0.385 -4.20982 1.62	709
2011 0 (omitted)	
rsfpress .1743916 .0229896 7.59 0.000 .129277 .2195	063
Indiamond .2577327 .0809254 3.18 0.001 .0989249 .4165	406
lngold391844 .0815082 -4.81 0.00055179542318	
_cons 33.83975 6.310085 5.36 0.000 21.45686 46.22	264

Regression IV Second Stage

Instrumental variables (2SLS) regression

Number of obs	=	1004
Wald chi2(25)	=	5837.66
Prob > chi2	=	0.0000
R-squared	=	0.8518
Root MSE	=	.36786

lntfp	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
cpi	.0244519	.0035475	6.89	0.000	.0174989	.0314049
tmean	.0134944	.002961	4.56	0.000	.0076911	.0192978
precip	.0062791	.0026433	2.38	0.018	.0010983	.01146
coast	.1112707	.0385693	2.88	0.004	.0356763	.186865
phone	.0083301	.0027132	3.07	0.002	.0030124	.0136478
cell	.0052746	.0005547	9.51	0.000	.0041874	.0063619
lnenergy	.0844275	.0080226	10.52	0.000	.0687035	.1001515
lnpop	0610657	.0148025	-4.13	0.000	0900781	0320533
urban	.0005478	.0012362	0.44	0.658	0018751	.0029707
lfrac	0016535	.0008766	-1.89	0.059	0033716	.0000647
efrac	.001382	.0009409	1.47	0.142	0004621	.0032262
asia	4612487	.0567198	-8.13	0.000	5724174	3500799
csac	0347397	.0610852	-0.57	0.570	1544646	.0849851
eeca	4422784	.0939647	-4.71	0.000	6264458	2581109
mena	.3505263	.0626428	5.60	0.000	.2277486	.473304
ssa	1587823	.0691141	-2.30	0.022	2942435	0233211
year						
1996	0	(empty)				
1997	0	(empty)				
1998	0	(empty)				
1999	0	(empty)				
2000	0	(empty)				
2001	0	(empty)				
2002	.3611739	.0686934	5.26	0.000	.2265373	.4958105
2003	.3629041	.0641345	5.66	0.000	.2372028	.4886055
2004	.3308214	.0614367	5.38	0.000	.2104077	.4512352
2005	.2698115	.0588896	4.58	0.000	.1543899	.385233
2006	.2118796	.0561986	3.77	0.000	.1017324	.3220267
2007	.1569853	.0537495	2.92	0.003	.0516383	.2623323
2008	.103173	.0522654	1.97	0.048	.0007346	.2056114
2009	.0448461	.0513421	0.87	0.382	0557827	.1454748
2010	.0199441	.0506862	0.39	0.694	0793991	.1192873
2011	0	(omitted)				
	2.790529		10.27	0.000	2.257928	3.323129

Regression V First Stage

A two-stage least squares regression, where an alternative measure of productivity (*tfpalt*) is used as the dependent variable. The corruption variable is the World Governance Index's control of corruption (*ctrlcorr*) and the Freedom House press index (*fppress*) instruments.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $					Numbe	er of obs =	1691
R-squared = 0.8214 Adj R-squared = 0.8278 Root MSE = 0.8178 Root MSE = 8.3901 tmean 1293056 .0453632 -2.85 0.004 2182008 0403305 precip .1457077 .0460581 3.16 0.002 .0553695 .2360458 coast 5147894 .6693546 -0.77 0.442 -1.827659 .7980805 phone .5031079 .0236314 21.29 0.000 .4567575 .5494584 cell .651966 .0105283 4.94 0.000 .0313159 .0726161 lnenergy .2727291 .1341697 .222 .027 .0341391 .560459 urban .1096815 .0152906 7.17 0.000 .0822013 021149 asia 7.303675 .9963307 7.33 0.000 .0822013 .021489 asia 7.301554 1.123525 -0.46 0.648 -2.800556 </th <th></th> <th></th> <th></th> <th></th> <th>F(3</th> <th>3, 1657) =</th> <th>230.86</th>					F(3	3, 1657) =	230.86
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					Prob	> F =	0.0000
Rott MSE = 8.3901 ctrlcorr Coef. Std. Err. t P> t [95% Conf. Interval] tmean 1293056 .0453632 -2.85 0.004 2182808 0403305 precip .1457077 .0460581 3.16 0.002 .0553695 .2360458 coast 5147894 .6693546 -0.77 0.442 -1.827659 .7980805 phone .5031079 .0236314 21.29 0.000 .4567575 .5494584 ctl .051966 .0105283 4.94 .0000 .0313159 .0726161 lnenergy .2972991 .1341697 2.22 0.027 .0341391 .560459 lnpop -1.343867 .2113022 -6.36 0.000 0822013 023149 asia 7.303675 .9963307 7.33 0.000 .5.349475 9.257875 csac 5105467 1.236508 -4.13 0.000 -7.53075 -2.680183 mena 10.706					R-squ	ared =	0.8214
ctrlcorr Coef. Std. Err. t P> t [95% Conf. Interval] tmean 1293056 .0453632 -2.85 0.004 2182808 0403305 precip .1457077 .0460581 3.16 0.002 .0553695 .2306458 coast 5147894 .6693546 -0.77 0.442 -1.827659 .7908085 phone .5031079 .0236314 21.29 0.000 .4567575 .5494584 cell .051666 .0105283 4.94 0.000 .0313159 .0726161 lnenergy .2972991 .1341697 2.22 0.027 .0341391 .560459 urban .1096815 .0152906 7.17 0.000 .0796906 .1396723 lfrac .0460644 .0138578 2.93 0.000 .032177 .667789 asia 7.303675 .966307 7.33 0.000 210743 1.968395 eca 121174 .065547 -0.11 0.999 -2.210					Adj R	-squared =	0.8178
tmean 1293056 .0453632 -2.85 0.004 2182808 0403305 precip .1457077 .0460581 3.16 0.002 .0553695 .2360458 coast 5147894 .6693546 -0.77 0.442 -1.827659 .7980805 phone .5031079 .0236314 21.29 0.000 .4567575 .5494584 cell .051966 .0105283 4.94 0.000 .0313159 .0726161 lnenergy .2972991 .1341697 2.22 0.027 .0343151 .560459 lnpop -1.343867 .213322 -6.36 0.000 -1.758315 9294198 urban .1096815 .0152906 7.17 0.000 .076906 .1396723 lfrac .046084 .0138578 2.93 0.003 .0134277 .067789 efrac .0526751 .0150537 -3.50 0.000 .5.349475 9.258755 csac 121174 1.065347 -0.11 0.999					Root	MSE =	8.3901
tmean 1293056 .0453632 -2.85 0.004 2182808 0403305 precip .1457077 .0460581 3.16 0.002 .0553695 .2360458 coast 5147894 .6693546 -0.77 0.442 -1.827659 .7980805 phone .5031079 .0236314 21.29 0.000 .4567575 .5494584 cell .051966 .0105283 4.94 0.000 .0313159 .0726161 lnenergy .2972991 .1341697 2.22 0.027 .0343151 .560459 lnpop -1.343867 .213322 -6.36 0.000 -1.758315 9294198 urban .1096815 .0152906 7.17 0.000 .076906 .1396723 lfrac .046084 .0138578 2.93 0.003 .0134277 .067789 efrac .0526751 .0150537 -3.50 0.000 .5.349475 9.258755 csac 121174 1.065347 -0.11 0.999							
precip .1457077 .0460581 3.16 0.002 .0553695 .2360458 coast 5147894 .6693546 -0.77 0.442 -1.827659 .7980805 phone .5031079 .0236314 21.29 0.000 .4567575 .5494584 cell .651966 .015283 4.94 0.000 .0313159 .0726161 lnenergy .2972991 .1341697 2.22 0.027 .0341391 .560459 urban .1096815 .0152906 7.17 0.000 .0796906 .1336723 lfrac .0460684 .0138578 2.93 0.003 .0134277 .067789 efrac 0526751 .0150537 -3.50 0.000 0822013 0231489 asia 7.303675 .996307 7.33 0.000 5.349475 9.257875 csac 121174 1.065347 -0.11 0.909 -2.210743 1.968395 eeca -5.105467 1.236508 -4.13 0.000 <th>ctrlcorr</th> <th>Coef.</th> <th>Std. Err.</th> <th>t</th> <th>P> t </th> <th>[95% Conf.</th> <th>Interval]</th>	ctrlcorr	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
coast 5147894 .6693546 -0.77 0.442 -1.827659 .7980805 phone .5031079 .0236314 21.29 0.000 .4567575 .5494584 cell .051966 .0105283 4.94 0.000 .0313159 .0726161 lnenergy .2972991 .1341697 2.22 0.027 .0341391 .560459 urban .1096815 .0152906 7.17 0.000 .0796906 .1396723 Ufrac .0406084 .0138578 2.93 0.003 .0134277 .067789 efrac 0526751 .0150537 7.33 0.000 0822013 0231489 asia 7.303675 .9963307 7.33 0.000 08249175 .22680183 mena 10.70632 1.227848 8.72 0.000 8.298022 13.11462 ssa 7.361554 1.183912 -2.62 0.044 -4.63365 073975 year 1997 2696248 1.163965 -0.23	tmean	1293056	.0453632	-2.85	0.004	2182808	0403305
phone .5031079 .0236314 21.29 0.000 .4567575 .5494584 cell .051966 .0105283 4.94 0.000 .0313159 .0726161 lnenergy .2972991 .1341697 2.22 0.027 .0343131 .560459 lnpop -1.343867 .2113022 -6.36 0.000 .0796906 .1396723 lfrac .0406084 .0138578 2.93 0.003 .0134277 .067789 efrac 0526751 .015906 7.17 0.000 0822013 0231489 asia 7.30675 .9963307 7.35 0.000 0824013 067789 ecca 5105467 1.236508 -4.13 0.000 753075 -2.680183 mena 10.7632 1.227848 8.72 0.000 8.298022 13.11462 ssa 7.361554 1.183712 6.19 0.000 5.030017 9.69309 year - -2.696248 1.163965 -0.23	precip	.1457077	.0460581	3.16	0.002	.0553695	.2360458
cell .051966 .0105283 4.94 0.000 .0313159 .0726161 lnenergy .2972991 .1341697 2.22 0.027 .0341391 .560459 lnpop -1.343867 .2113022 -6.36 0.000 -1.758315 9294198 urban .1096815 .0152906 7.17 0.000 .0134277 .067789 efrac 0526751 .0150537 -3.50 0.000 0822013 0231489 asia 7.303675 .9963307 7.33 0.000 5.349475 9.257875 csac 121174 1.065347 -0.11 0.909 -2.210743 1.968395 ecca -5.105467 1.226508 -4.13 0.000 7.53075 -2.680183 mena 10.76632 1.227848 8.72 0.000 8.298022 13.11462 ssa 7.361554 1.188712 6.19 0.000 5.030017 9.693367 1997 2696248 1.162352 -0.46 0.648	coast	5147894	.6693546	-0.77	0.442	-1.827659	.7980805
lnenergy .2972991 .1341697 2.22 0.027 .0341391 .560459 lnpop -1.343867 .2113022 -6.36 0.000 -1.758315 9294198 urban .1096815 .0152966 7.17 0.000 .0796906 .1396723 lfrac .0406084 .0138578 2.93 0.003 .0134277 .067789 efrac 0526751 .0150537 -3.50 0.000 0822013 0231489 asia 7.303675 .9963307 7.33 0.000 5.349475 9.257875 csac 121174 1.065347 -0.11 0.909 -2.210743 1.968395 ecca -5.105467 1.236508 -4.13 0.000 5.030017 9.69309 year - .7.361554 1.188712 6.19 0.000 5.030017 9.69309 year - .2696248 1.163965 -0.23 0.817 -2.552621 2.013372 1997 2696248 1.163965	phone	.5031079	.0236314	21.29	0.000	.4567575	.5494584
Lnpop urban -1.343867 .2113022 -6.36 0.000 -1.758315 9294198 urban .1096815 .0152906 7.17 0.000 .0796906 .1396723 lfrac .0466084 .0138578 2.93 0.003 .0134277 .067789 efrac 0526751 .0150537 -3.50 0.000 0822013 0231489 asia 7.303675 .9963307 7.33 0.000 5.349475 9.257875 csac .121174 1.065347 -0.11 0.909 -2.210743 1.968395 eeca -5.105467 1.236508 -4.13 0.000 7.53075 -2.680183 mena 10.70632 1.227848 8.72 0.000 8.298022 13.11462 ssa 7.361554 1.18712 6.19 0.000 5.030017 9.69309 year - -2696248 1.163965 -0.23 0.817 -2.552621 2.013372 1997 2696248 1.163965 -0.23 0.817 -2.552621 2.013372 1998 3307221	cell	.051966	.0105283	4.94	0.000	.0313159	.0726161
urban .1096815 .0152906 7.17 0.000 .0796906 .1396723 lfrac .0406084 .0138578 2.93 0.003 .0134277 .067789 efrac 0526751 .0150537 -3.50 0.000 0822013 0231489 asia 7.383675 .9963307 7.33 0.000 5.349475 9.257875 csac 121174 1.065347 -0.11 0.909 -2.210743 1.968395 ecca -5.105467 1.236508 -4.13 0.000 753075 -2.680183 mena 10.70632 1.227848 8.72 0.000 8.298022 13.11462 ssa 7.361554 1.188712 6.19 0.000 5.030017 9.69309 year - -2696248 1.163965 -0.23 0.817 -2.552621 2.013372 1998 248123 1.162352 -0.46 0.648 -2.810556 1.749111 1999 -1.248123 1.162352 -0.46	lnenergy	.2972991	.1341697	2.22	0.027	.0341391	.560459
lfrac .0406084 .0138578 2.93 0.003 .0134277 .067789 efrac 0526751 .0150537 -3.50 0.000 0822013 0231489 asia 7.303675 .9963307 7.33 0.000 5.349475 9.257875 csac 121174 1.065347 -0.11 0.909 -2.210743 1.968395 eeca -5.105467 1.236508 -4.13 0.000 -7.53075 -2.680183 mena 10.70632 1.227848 8.72 0.000 8.298022 13.11462 ssa 7.361554 1.188712 6.19 0.000 5.030017 9.69309 year 2696248 1.163965 -0.23 0.817 -2.552621 2.013372 1998 5307221 1.162352 -0.46 0.648 -2.810556 1.749111 1999 -1.248123 1.166598 -1.07 0.285 -3.536284 1.040038 2000 -2.36997 1.170822 -2.02 0.043 -4.663965 073975 2001 -3.21582 1.18192	lnpop	-1.343867	.2113022			-1.758315	9294198
efrac asia0526751.0150537-3.500.00008220130231489asia asia7.303675.99633077.330.0005.3494759.257875csac eeca1211741.065347-0.110.909-2.2107431.968395eeca 	urban	.1096815	.0152906	7.17	0.000	.0796906	.1396723
asia 7.303675 .9963307 7.33 0.000 5.349475 9.257875 csac 121174 1.065347 -0.11 0.909 -2.210743 1.968395 eeca -5.105467 1.236508 -4.13 0.000 -7.53075 -2.680183 mena 10.76632 1.227848 8.72 0.000 8.298022 13.11462 ssa 7.361554 1.188712 6.19 0.000 5.030017 9.69309 year - - -2.552621 2.013372 1.997 2696248 1.163965 -0.23 0.817 -2.552621 2.013372 1997 2696248 1.162352 -0.46 0.648 -2.810556 1.749111 1999 -1.248123 1.166598 -1.07 0.285 -3.536284 1.040038 2000 -2.36897 1.170082 -2.02 0.043 -4.663965 073975 2001 -3.211582 1.18192 -2.71 0.007 -5.581117 8980696							
csac eeca mena maa1211741.065347 1.236508-0.110.909 9.000-2.2107431.968395 1.968395mena ssa10.706321.2278488.720.0008.29802213.11462ssa7.3615541.1887126.190.0005.0300179.69309year 199726962481.163965-0.230.817-2.5526212.013372199853072211.162352-0.460.648-2.8105561.7491111999-1.2481231.166598-1.070.285-3.5362841.0400382000-2.368971.170082-2.720.007-5.52979689336872001-3.2115821.18192-2.720.007-5.58111789806962003-3.0705421.207047-2.540.011-5.4380470304432004-3.9762921.227856-3.240.001-6.384605-1.5679782005-4.8483871.262851-3.830.000-7.32534-2.3714352006-5.0432381.315106-3.830.000-7.949887-2.5640382009-6.2933411.479864-4.250.000-9.195941-3.3907412010-6.5197981.531085-4.260.000-9.866068-3.663321fppress.3067728.016176318.960.000.2750446.3385011ndiamond.2479455.04924145.040.000.1513635.344527510gold1821853.							
eeca mena mena-5.1054671.236508 1.227848-4.13 8.720.000 0.000-7.53075 8.298022-2.680183 13.11462year 199726962481.1887126.190.0005.0300179.69309year 199853072211.162352 1.162352-0.460.648 0.648-2.8105561.7491111999-1.2481231.166598 1.166598-1.070.285 0.285-3.5362841.0400382000-2.368971.170082 1.170082-2.020.043 0.007-4.663965 0739750739752001-3.2115821.18192 1.19304-2.710.007 -5.52179689336872002-3.2395931.193804 1.207047-2.540.011 -5.581117 -5.581117 -5.89806962003-3.0705421.227856 -3.24-3.240.001 -6.384605-1.567978 -2.3714352006-5.0432381.315106 -3.83-3.83 0.000 -7.32534-2.371435 -2.364332007-5.2569621.372963 -3.83-3.83 0.000-7.04987 -2.564038 -2.7729542009-6.2933411.479864 -4.25-4.25 0.000-9.195941 -3.390741 2.390741 2.010 2.010-6.519798 -3.51085-4.26 -0.000 -9.522863-3.516733 -3.5167332011-6.7649641.581344 -4.28-4.28 0.000-9.866608 -3.663321-3.663321fppress.3067728.0161763 -082924145.04 -0.000.2750446 -3.83501 -3.445275.3445275 -0795941lngold<	asia						
mena ssa10.706321.2278488.720.0008.29802213.11462year 199726962481.1837126.190.0005.0300179.69309year 199853072211.162352-0.460.648-2.8105561.7491111999-1.2481231.166598-1.070.285-3.5362841.0400382000-2.368971.170082-2.020.043-4.6639650739752001-3.2115821.18192-2.720.007-5.52979689336872002-3.2395931.193804-2.710.007-5.58111789806962003-3.0705421.207047-2.540.011-5.4380470304432004-3.9762921.227856-3.240.001-6.384605-1.5679782005-4.8483871.262851-3.840.000-7.32534-2.3714352006-5.60432381.315106-3.830.000-7.622683-2.4637932007-5.2569621.372963-3.830.000-7.94987-2.5640382008-5.5802821.43129-3.900.000-8.38761-2.772542009-6.2933411.479864-4.250.000-9.522863-3.5167332011-6.7649641.581344-4.280.000-9.866608-3.663321fppress.3067728.016176318.960.000.2750446.338501ludiamond.2479455.04924145.040.000.1513635	csac						
ssa 7.361554 1.188712 6.19 0.000 5.030017 9.69309 year 2696248 1.163965 -0.23 0.817 -2.552621 2.013372 1997 2696248 1.163965 -0.23 0.817 -2.552621 2.013372 1998 5307221 1.162352 -0.46 0.648 -2.810556 1.749111 1999 -1.248123 1.166598 -1.07 0.285 -3.536284 1.040038 2000 -2.36897 1.170082 -2.02 0.043 -4.663965 -0.73975 2001 -3.211582 1.18192 -2.72 0.007 -5.529796 8933687 2002 -3.239593 1.193804 -2.71 0.007 -5.581117 8980696 2003 -3.070542 1.207047 -2.54 0.011 -5.43804 7030443 2004 -3.976292 1.227856 -3.24 0.001 -6.384605 -1.567978 2005 -4.848387 1.262851 -3.83 <td< td=""><td>eeca</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	eeca						
year 19972696248 1.163965 -0.23 0.817 -2.552621 2.013372 19985307221 1.162352 -0.46 0.648 -2.810556 1.749111 1999 -1.248123 1.166598 -1.07 0.285 -3.536284 1.040038 2000 -2.36897 1.170082 -2.02 0.043 -4.663965073975 2001 -3.211582 1.18192 -2.72 0.007 -5.5297968933687 2002 -3.239593 1.193804 -2.71 0.007 -5.5811178980696 2003 -3.070542 1.207047 -2.54 0.011 -5.438047030443 2004 -3.976292 1.227856 -3.24 0.001 -6.384605 -1.567978 2005 -4.848387 1.262851 -3.84 0.000 -7.32534 -2.371435 2006 -5.043238 1.315106 -3.83 0.000 -7.622683 -2.463793 2007 -5.256962 1.372963 -3.83 0.000 -7.622683 -2.463793 2008 -5.580282 1.43129 -3.90 0.000 -8.38761 -2.772954 2009 -6.293341 1.479864 -4.25 0.000 -9.195941 -3.390741 2010 -6.519798 1.531085 -4.26 0.000 -9.522863 -3.516733 2011 -6.764964 1.581344 -4.28 0.000 -9.866608 -3.663321 fppress .3067728 .0161763 18.96 0.000 .2750446 .338501 .10diamond .2479455 .0492414 5.04 0.000 .1513635 .3445275 lngold1821853 .0523052 -3.48 0.00128477650795941							
199726962481.163965-0.230.817-2.5526212.013372199853072211.162352-0.460.648-2.8105561.7491111999-1.2481231.166598-1.070.285-3.5362841.0400382000-2.368971.170082-2.020.043-4.6639650739752001-3.2115821.18192-2.720.007-5.52979689336872002-3.2395931.193804-2.710.007-5.58111789806962003-3.0705421.207047-2.540.011-5.4380470304432004-3.9762921.227856-3.240.001-6.384605-1.5679782005-4.8483871.262851-3.840.000-7.32534-2.3714352006-5.0432381.315106-3.830.000-7.622683-2.4637932007-5.2569621.372963-3.830.000-7.949887-2.5640382008-5.5802821.43129-3.900.000-8.38761-2.7729542009-6.2933411.479864-4.250.000-9.195941-3.3907412010-6.5197981.531085-4.260.000-9.866608-3.663321fppress.3067728.016176318.960.000.2750446.338501Indiamond.2479455.04924145.040.000.1513635.3445275Ingold1821853.0523052-3.480.0012847765079594	ssa	7.361554	1.188712	6.19	0.000	5.030017	9.69309
199853072211.162352-0.460.648-2.8105561.7491111999-1.2481231.166598-1.070.285-3.5362841.0400382000-2.368971.170082-2.020.043-4.6639650739752001-3.2115821.18192-2.720.007-5.52979689336872002-3.2395931.193804-2.710.007-5.58111789806962003-3.0705421.207047-2.540.011-5.4380470304432004-3.9762921.227856-3.240.001-6.384605-1.5679782005-4.8483871.262851-3.840.000-7.32534-2.3714352006-5.0432381.315106-3.830.000-7.622683-2.4637932007-5.2569621.372963-3.830.000-7.949887-2.5640382008-5.5802821.43129-3.900.000-8.38761-2.7729542009-6.2933411.479864-4.250.000-9.195941-3.3907412010-6.5197981.531085-4.260.000-9.866608-3.663321fppress.3067728.016176318.960.000.2750446.338501Indiamond.2479455.04924145.040.000.1513635.3445275Ingold1821853.0523052-3.480.00128477650795941							
1999 -1.248123 1.166598 -1.07 0.285 -3.536284 1.040038 2000 -2.36897 1.170082 -2.02 0.043 -4.663965 073975 2001 -3.211582 1.18192 -2.72 0.007 -5.529796 8933687 2002 -3.239593 1.193804 -2.71 0.007 -5.581117 8980696 2003 -3.070542 1.207047 -2.54 0.011 -5.43804 7030443 2004 -3.976292 1.227856 -3.24 0.001 -6.384605 -1.567978 2005 -4.848387 1.262851 -3.83 0.000 -7.32534 -2.371435 2006 -5.043238 1.315106 -3.83 0.000 -7.622683 -2.463793 2007 -5.256962 1.372963 -3.83 0.000 -8.38761 -2.772954 2008 -5.580282 1.43129 -3.90 0.000 -8.38761 -2.772954 2009 -6.293341 1.479864 -4.25 0.000 -9.195941 -3.390741 2010 -6.519798 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
2000-2.368971.170082-2.020.043-4.6639650739752001-3.2115821.18192-2.720.007-5.52979689336872002-3.2395931.193804-2.710.007-5.58111789806962003-3.0705421.207047-2.540.011-5.4380470304432004-3.9762921.227856-3.240.001-6.384605-1.5679782005-4.8483871.262851-3.840.000-7.32534-2.3714352006-5.0432381.315106-3.830.000-7.622683-2.4637932007-5.2569621.372963-3.830.000-7.949887-2.5640382008-5.5802821.43129-3.900.000-8.38761-2.7729542009-6.2933411.479864-4.250.000-9.195941-3.3907412010-6.5197981.531085-4.260.000-9.866608-3.663321fppress.3067728.016176318.960.000.2750446.338501Indiamond.2479455.04924145.040.000.1513635.3445275Ingold1821853.0523052-3.480.00128477650795941							
2001 -3.211582 1.18192 -2.72 0.007 -5.529796 8933687 2002 -3.239593 1.193804 -2.71 0.007 -5.581117 8980696 2003 -3.070542 1.207047 -2.54 0.011 -5.43804 7030443 2004 -3.976292 1.227856 -3.24 0.001 -6.384605 -1.567978 2005 -4.848387 1.262851 -3.84 0.000 -7.32534 -2.371435 2006 -5.043238 1.315106 -3.83 0.000 -7.622683 -2.463793 2007 -5.256962 1.372963 -3.83 0.000 -7.949887 -2.564038 2008 -5.580282 1.43129 -3.90 0.000 -8.38761 -2.772954 2009 -6.293341 1.479864 -4.25 0.000 -9.195941 -3.390741 2010 -6.519798 1.531085 -4.26 0.000 -9.866608 -3.663321 fppress .3067728 .0161763 18.96 0.000 .2750446 .338501 Indiamond .2479455							
2002 -3.239593 1.193804 -2.71 0.007 -5.581117 8980696 2003 -3.070542 1.207047 -2.54 0.011 -5.43804 7030443 2004 -3.976292 1.227856 -3.24 0.001 -6.384605 -1.567978 2005 -4.848387 1.262851 -3.84 0.000 -7.32534 -2.371435 2006 -5.043238 1.315106 -3.83 0.000 -7.622683 -2.463793 2007 -5.256962 1.372963 -3.83 0.000 -7.949887 -2.564038 2008 -5.580282 1.43129 -3.90 0.000 -8.38761 -2.772954 2009 -6.293341 1.479864 -4.25 0.000 -9.195941 -3.390741 2010 -6.519798 1.531085 -4.26 0.000 -9.522863 -3.516733 2011 -6.764964 1.581344 -4.28 0.000 -9.866608 -3.663321 fppress .3067728 .0161763 18.96 0.000 .2750446 .338501 Indiamond .2479455							
2003 -3.070542 1.207047 -2.54 0.011 -5.43804 7030443 2004 -3.976292 1.227856 -3.24 0.001 -6.384605 -1.567978 2005 -4.848387 1.262851 -3.84 0.000 -7.32534 -2.371435 2006 -5.043238 1.315106 -3.83 0.000 -7.622683 -2.463793 2007 -5.256962 1.372963 -3.83 0.000 -7.949887 -2.564038 2008 -5.580282 1.43129 -3.90 0.000 -8.38761 -2.772954 2009 -6.293341 1.479864 -4.25 0.000 -9.195941 -3.390741 2010 -6.519798 1.531085 -4.26 0.000 -9.866608 -3.663321 fppress .3067728 .0161763 18.96 0.000 .2750446 .338501 Indiamond .2479455 .0492414 5.04 0.000 .1513635 .3445275 lngold 1821853 .0523052 -3.48 0.001 2847765 0795941							
2004 -3.976292 1.227856 -3.24 0.001 -6.384605 -1.567978 2005 -4.848387 1.262851 -3.84 0.000 -7.32534 -2.371435 2006 -5.043238 1.315106 -3.83 0.000 -7.622683 -2.463793 2007 -5.256962 1.372963 -3.83 0.000 -7.949887 -2.564038 2008 -5.580282 1.43129 -3.90 0.000 -8.38761 -2.772954 2009 -6.293341 1.479864 -4.25 0.000 -9.195941 -3.390741 2010 -6.519798 1.531085 -4.26 0.000 -9.522863 -3.516733 2011 -6.764964 1.581344 -4.28 0.000 -9.866608 -3.663321 fppress .3067728 .0161763 18.96 0.000 .2750446 .338501 Indiamond .2479455 .0492414 5.04 0.000 .1513635 .3445275 lngold 1821853 .0523052 -3.48 0.001 2847765 0795941							
2005 -4.848387 1.262851 -3.84 0.000 -7.32534 -2.371435 2006 -5.043238 1.315106 -3.83 0.000 -7.622683 -2.463793 2007 -5.256962 1.372963 -3.83 0.000 -7.949887 -2.564038 2008 -5.580282 1.43129 -3.90 0.000 -8.38761 -2.772954 2009 -6.293341 1.479864 -4.25 0.000 -9.195941 -3.390741 2010 -6.519798 1.531085 -4.26 0.000 -9.522863 -3.516733 2011 -6.764964 1.581344 -4.28 0.000 -9.866608 -3.663321 fppress .3067728 .0161763 18.96 0.000 .2750446 .338501 Indiamond .2479455 .0492414 5.04 0.000 .1513635 .3445275 Ingold 1821853 .0523052 -3.48 0.001 2847765 0795941							
2006 -5.043238 1.315106 -3.83 0.000 -7.622683 -2.463793 2007 -5.256962 1.372963 -3.83 0.000 -7.949887 -2.564038 2008 -5.580282 1.43129 -3.90 0.000 -8.38761 -2.772954 2009 -6.293341 1.479864 -4.25 0.000 -9.195941 -3.390741 2010 -6.519798 1.531085 -4.26 0.000 -9.522863 -3.516733 2011 -6.764964 1.581344 -4.28 0.000 -9.866608 -3.663321 fppress .3067728 .0161763 18.96 0.000 .2750446 .338501 Indiamond .2479455 .0492414 5.04 0.000 .1513635 .3445275 lngold 1821853 .0523052 -3.48 0.001 2847765 0795941							
2007 -5.256962 1.372963 -3.83 0.000 -7.949887 -2.564038 2008 -5.580282 1.43129 -3.90 0.000 -8.38761 -2.772954 2009 -6.293341 1.479864 -4.25 0.000 -9.195941 -3.390741 2010 -6.519798 1.531085 -4.26 0.000 -9.522863 -3.516733 2011 -6.764964 1.581344 -4.28 0.000 -9.866608 -3.663321 fppress .3067728 .0161763 18.96 0.000 .2750446 .338501 Indiamond .2479455 .0492414 5.04 0.000 .1513635 .3445275 Ingold 1821853 .0523052 -3.48 0.001 2847765 0795941							
2008 -5.580282 1.43129 -3.90 0.000 -8.38761 -2.772954 2009 -6.293341 1.479864 -4.25 0.000 -9.195941 -3.390741 2010 -6.519798 1.531085 -4.26 0.000 -9.522863 -3.516733 2011 -6.764964 1.581344 -4.28 0.000 -9.866608 -3.663321 fppress .3067728 .0161763 18.96 0.000 .2750446 .338501 Indiamond .2479455 .0492414 5.04 0.000 .1513635 .3445275 Ingold 1821853 .0523052 -3.48 0.001 2847765 0795941							
2009 -6.293341 1.479864 -4.25 0.000 -9.195941 -3.390741 2010 -6.519798 1.531085 -4.26 0.000 -9.522863 -3.516733 2011 -6.764964 1.581344 -4.28 0.000 -9.866608 -3.663321 fppress .3067728 .0161763 18.96 0.000 .2750446 .338501 Indiamond .2479455 .0492414 5.04 0.000 .1513635 .3445275 Ingold 1821853 .0523052 -3.48 0.001 2847765 0795941							
2010 -6.519798 1.531085 -4.26 0.000 -9.522863 -3.516733 2011 -6.764964 1.581344 -4.28 0.000 -9.866608 -3.663321 fppress .3067728 .0161763 18.96 0.000 .2750446 .338501 lndiamond .2479455 .0492414 5.04 0.000 .1513635 .3445275 lngold 1821853 .0523052 -3.48 0.001 2847765 0795941							
2011 -6.764964 1.581344 -4.28 0.000 -9.866608 -3.663321 fppress .3067728 .0161763 18.96 0.000 .2750446 .338501 Indiamond .2479455 .0492414 5.04 0.000 .1513635 .3445275 Ingold 1821853 .0523052 -3.48 0.001 2847765 0795941							
fppress .3067728 .0161763 18.96 0.000 .2750446 .338501 Indiamond .2479455 .0492414 5.04 0.000 .1513635 .3445275 Ingold1821853 .0523052 -3.48 0.00128477650795941							
Indiamond .2479455 .0492414 5.04 0.000 .1513635 .3445275 Ingold 1821853 .0523052 -3.48 0.001 2847765 0795941	2011	-0./64964	1.581344	-4.28	0.000	-9.866608	-3.003321
lngold1821853 .0523052 -3.48 0.00128477650795941	fppress	.3067728	.0161763	18.96	0.000	.2750446	.338501
	lndiamond	.2479455	.0492414	5.04	0.000	.1513635	.3445275
_cons 41.49687 3.432169 12.09 0.000 34.76503 48.22872	lngold	1821853	.0523052	-3.48	0.001	2847765	0795941
	_cons	41.49687	3.432169	12.09	0.000	34.76503	48.22872

Regression V Second Stage

Instrumental variables (2SLS) regression

Number of obs	= 1691
Wald chi2(31)	=11575.07
Prob > chi2	= 0.0000
R-squared	= 0.8726
Root MSE	= .3726

lntfpalt	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
ctrlcorr	.0207678	.002231	9.31	0.000	.016395	.0251405
tmean	.0143379	.0020454	7.01	0.000	.0103289	.0183469
precip	.0071413	.0020241	3.53	0.000	.0031741	.0111085
coast	.1004856	.0297015	3.38	0.001	.0422718	.1586994
phone	.0150972	.0017354	8.70	0.000	.0116958	.0184986
cell	.005025	.0004844	10.37	0.000	.0040755	.0059745
lnenergy	.0983195	.0058569	16.79	0.000	.0868402	.1097988
lnpop	1155911	.0096424	-11.99	0.000	1344898	0966924
urban	.0054428	.000721	7.55	0.000	.0040296	.006856
lfrac	0011105	.0006309	-1.76	0.078	0023471	.000126
efrac	.0009316	.0006875	1.35	0.175	0004159	.0022792
asia	3634368	.0440777	-8.25	0.000	4498276	2770461
csac	0644188	.0472915	-1.36	0.173	1571084	.0282708
eeca	6328035	.0588643	-10.75	0.000	7481755	5174316
mena	.3971272	.0490638	8.09	0.000	.3009638	. 4932905
ssa	1544307	.0520841	-2.97	0.003	2565138	0523477
year						
1997	0240506	.0516938	-0.47	0.642	1253686	.0772674
1998	0544747	.0516514	-1.05	0.292	1557096	.0467602
1999	0941188	.0519409	-1.81	0.070	195921	.0076834
2000	1223998	.0523353	-2.34	0.019	224975	0198246
2001	1577612	.0530515	-2.97	0.003	2617401	0537822
2002	1775381	.0537016	-3.31	0.001	2827913	0722849
2003	210211	.0542228	-3.88	0.000	3164857	1039362
2004	2273986	.055542	-4.09	0.000	3362588	1185384
2005	2573818	.0574748	-4.48	0.000	3700303	1447332
2006	3132911	.059955	-5.23	0.000	4308008	1957815
2007	3610241	.0626213	-5.77	0.000	4837597	2382885
2008	4156214	.0653838	-6.36	0.000	5437714	2874715
2009	4867773	.0679848	-7.16	0.000	620025	3535296
2010	5004691	.070342	-7.11	0.000	6383368	3626014
2011	5166118	.072661	-7.11	0.000	6590248	3741988
_cons	3.390893	.1982102	17.11	0.000	3.002408	3.779378

Regression VI First Stage

A two-stage least squares regression, with the World Governance Index's control of corruption variable (*ctrlcorr*) and the Freedom House's Freedom of the Press (*fppress*) as the instrument. Measures of *tfp* and *energy* are replaced with per capita measures.

				F(3 Prob R-squ	ared = -squared =	1691 230.86 0.0000 0.8214 0.8178 8.3901
ctrlcorr	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
tmean	1293056	.0453632	-2.85	0.004	2182808	0403305
precip	.1457077	.0460581	3.16	0.002	.0553695	.2360458
coast	5147894	.6693546	-0.77	0.442	-1.827659	.7980805
phone	.5031079	.0236314	21.29	0.000	.4567575	.5494584
cell	.051966	.0105283	4.94	0.000	.0313159	.0726161
lnenergypc	.297299	.1341697	2.22	0.027	.0341391	.560459
lnpop urban	-1.046568	.1638053 .0152906	-6.39 7.17 2.93	0.000 0.000 0.003	-1.367855 .0796906	7252811 .1396723
lfrac efrac asia	.0406084 0526751 7.303675	.0138578 .0150537 .9963307	-3.50 7.33	0.000 0.000	.0134277 0822013 5.349475	.067789 0231489 9.257875
csac	1211741	1.065347	-0.11	0.909	-2.210743	1.968395
eeca	-5.105467	1.236508	-4.13	0.000	-7.53075	-2.680183
mena	10.70632	1.227848	8.72	0.000	8.298022	13.11462
ssa year	7.361554	1.188712	6.19	0.000	5.030017	9.69309
1997	2696248	1.163965	-0.23	0.817	-2.552621	2.013372
1998	5307221	1.162352	-0.46	0.648	-2.810556	1.749111
1999	-1.248123	1.166598	-1.07	0.285	-3.536284	1.040038
2000	-2.36897	1.170082	-2.02	0.043	-4.663965	073975
2001	-3.211582	1.18192	-2.72	0.007	-5.529796	8933687
2002	-3.239593	1.193804	-2.71	0.007	-5.581117	8980696
2003	-3.070542	1.207047	-2.54	0.011	-5.43804	7030442
2004	-3.976292	1.227856	-3.24	0.001	-6.384605	-1.567978
2005	-4.848387	1.262851	-3.84	0.000	-7.32534	-2.371435
2006	-5.043238	1.315106	-3.83	0.000	-7.622683	-2.463793
2007	-5.256962	1.372963	-3.83	0.000	-7.949887	-2.564038
2008	-5.580282	1.43129	-3.90	0.000	-8.38761	-2.772954
2009	-6.293341	1.479864	-4.25	0.000	-9.195941	-3.390741
2010	-6.519798	1.531085	-4.26	0.000	-9.522863	-3.516733
2011	-6.764964	1.581344	-4.28	0.000	-9.866608	-3.663321
fppress	.3067728	.0161763	18.96	0.000	.2750446	.338501
lndiamond	.2479455	.0492414	5.04	0.000	.1513635	.3445275
lngold	1821853	.0523052	-3.48	0.001	2847765	- 079594
_cons	41.49687	3.432169	-3.48 12.09	0.001	2847765 34.76503	079594 48.22872

Regression VI Second Stage

Instrumental variables (2SLS) regression

Number of obs	= 1691
Wald chi2(31)	=54459.36
Prob > chi2	= 0.0000
R-squared	= 0.9699
Root MSE	= .36305

Intfppc Coef. Std. Err. z P> z [95% Conf. Interval] ctrlcorr .0196031 .0021738 9.02 0.000 .0153425 .0238637 tmean .0136469 .001993 6.85 0.000 .0097408 .0175531 precip .0081592 .0019722 4.14 0.000 .0042937 .0120246 coast .0954132 .0289396 3.30 0.001 .0386927 .1521337 phone .0149557 .0016998 8.44 0.000 .0017233 .0182268 cell .0047144 .0007025 6.40 0.000 .0037893 .0056395 lnnengypc .0944116 .007025 6.40 0.000 .003172 .0083211 lfrac .0006592 .006613 -129 .164 .0029651 .008326 csac .040723 .0056783 -0.95 .340 .132458 .0463779 ecac .6461380 .0573543 -1.95 .0340 .1324258 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>							
tmean .0136469 .001993 6.85 0.000 .0097408 .0175531 precip .0081592 .0019722 4.14 0.000 .0042937 .0120246 coast .0954132 .0289366 3.30 0.001 .038027 .152137 phone .0149557 .0016909 8.84 0.000 .0037893 .0056395 lnenergypc .0944116 .0057066 16.54 0.000 .00337893 .0056395 lnenergypc .0944116 .0057066 16.54 0.000 .0120266 -1.001181 urban .0044942 .0007025 6.40 0.000 .003172 .0005349 efrac .0007223 .0006699 1.08 0.281 0005907 .0020353 asia 3671821 .042947 -8.55 0.000 .3142458 .0463779 ecca 6461308 .0573543 -11.27 0.000 .3226319 .510025 ssa 1105427 .050748 -2.18 0.02	lntfppc	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
precip .0081592 .0019722 4.14 0.000 .0042937 .0120246 coast .0954132 .0289396 3.30 0.001 .0386927 .1521337 phone .0149557 .0016909 8.84 0.000 .00116415 .0182698 cell .0047144 .000472 9.99 0.000 .0037893 .0056395 lnenergypc .0944116 .0057666 16.54 0.000 .0832268 .1055964 lnpop -1.015103 .0071034 -142.90 0.000 .0031172 .0058711 lfrac .0004922 .0006147 -1.39 0.164 0029061 .0003496 efrac .000723 .0006699 1.08 0.281 000597 .0020353 asia 3671821 .042947 -8.55 0.000 4513567 .280075 csac .0439339 .0460783 -0.95 0.340 1342458 .0463779 eeca .6641308 .0573543 -11.27 .00	ctrlcorr	.0196031	.0021738	9.02	0.000	.0153425	.0238637
coast .0954132 .0289396 3.30 0.001 .0386927 .1521337 phone .0149557 .0016909 8.84 0.000 .0037893 .0056395 lnenergypc .0944116 .0057066 16.54 0.000 .0032268 .1055964 lnpop -1.015103 .0071034 -142.90 0.000 .0032268 .1055964 urban .0044942 .0007025 6.40 0.000 .003172 .0058711 lfrac 0008552 .0006147 -1.39 0.164 0020601 .0003496 efrac .0007223 .0006699 1.08 0.281 0005907 .0020353 asia 3671821 .042947 -8.55 0.000 4513567 .2830075 csac 0439339 .0460783 -0.95 0.340 1342458 .0463779 eeca 6461308 .0573543 -11.27 0.000 .3226319 .510025 ssa 1105427 .050748 -2.18	tmean	.0136469	.001993	6.85	0.000	.0097408	.0175531
phone .0149557 .0016909 8.84 0.000 .0116415 .0182698 cell .0047144 .00072 9.99 0.000 .0037893 .0056395 lnenergypc .0944116 .0057066 16.54 0.000 .0232268 .1055964 lnpop -1.015103 .0071034 -142.90 0.000 .0020657 -1.001181 urban .0044942 .0007025 6.40 0.000 .0031172 .0058711 lfrac 0008552 .0006147 -1.39 0.164 002507 .002353 asia 3671821 .042947 -8.55 0.000 4513567 2830075 csac 0439339 .0460783 -0.95 0.340 1342458 .0463779 eeca 6461308 .0573543 -1.127 0.000 .3226319 .510025 ssa 1105427 .050748 -2.18 0.029 120007 0110783 year 0229613 .05036677 -0.46	precip	.0081592	.0019722	4.14	0.000	.0042937	.0120246
cell .0047144 .000472 9.99 0.000 .0037893 .0056395 lnpop -1.015103 .0071034 -142.90 0.000 -1.029026 -1.001181 urban .0044942 .0007025 6.40 0.000 029026 -1.001181 urban .0048552 .0006147 -1.39 0.164 0020601 .0003496 efrac .000723 .0006699 1.08 0.281 0005907 .020351 asia 3671821 .042947 -8.55 0.000 4513567 2830075 csac 0439339 .0460783 -0.95 0.340 1342458 .0463779 eeca 6461308 .0573543 -11.27 0.000 .3226319 .510025 ssa 1105427 .050748 -2.18 0.029 210007 0110783 year - .052298 .0503264 -1.04 0.299 1508678 .0464082 1999 0922315 .0506084 -1.78 0.075 1894222 .0089592 2000 1167801	coast	.0954132	.0289396	3.30	0.001	.0386927	.1521337
lnenergypc .0944116 .0057066 16.54 0.000 .0832268 .1055964 lnpop -1.015103 .0071034 -142.90 0.000 -1.029026 -1.001181 urban .0044942 .0007025 6.40 0.000 .0031172 .0058711 lfrac 0008552 .0006147 -1.39 0.164 0020601 .0003496 efrac .000723 .0006699 1.08 0.281 0005907 .0020353 asia 3671821 .042947 -8.55 0.000 4513567 2330075 csac 0439339 .0460783 -0.95 0.340 1342458 .0463779 ecca 6461308 .0573543 -11.27 0.000 .3226319 .510025 ssa 1105427 .050748 -2.18 0.029 210007 0110783 year .0902315 .0506084 -1.78 0.075 1894222 .0089592 2000 1167801 .0509927 -2.29	phone	.0149557	.0016909	8.84	0.000	.0116415	.0182698
lnpop -1.015103 .0071034 -142.90 0.000 -1.029026 -1.001181 urban .0044942 .0007025 6.40 0.000 .0031172 .0058711 lfrac 0008552 .0006147 -1.39 0.164 0020601 .0003496 efrac .0007223 .0006699 1.08 0.281 0005907 .0020353 asia 3671821 .042947 -8.55 0.000 4513567 -2830075 csac 0439339 .0460783 -0.95 0.340 1342458 .0463779 eeca 6461308 .0573543 -11.27 0.000 .3226319 .510025 ssa 1105427 .050748 -2.18 0.029 210007 0110783 year .0992315 .0506084 -1.78 0.075 1894222 .0089592 2000 1167801 .050927 -2.29 0.022 216724 0168361 2001 158128 .0516905 -2.92 0.004 2521244 0495012 2002 1695335 .0523	cell	.0047144	.000472	9.99	0.000	.0037893	.0056395
urban .0044942 .0007025 6.40 0.000 .0031172 .0058711 lfrac 0008552 .0006147 -1.39 0.164 0020601 .0003496 efrac .0007223 .0006699 1.08 0.281 0005907 .0020353 asia 3671821 .042947 -8.55 0.000 4513567 2830075 csac 0439339 .0460783 -0.95 0.340 1342458 .0463779 eeca 6461308 .0573543 -11.27 0.000 .7585431 5337184 mena .4163285 .0478052 8.71 0.000 .3226319 .510025 ssa 1105427 .050748 -2.18 0.029 210007 0110783 year - .0522298 .0503677 -0.46 0.648 1216803 .0757577 1998 0229613 .0503677 -0.46 0.648 1216803 .0757577 1998 0522298 .0503664 -1.78 0.075 1894222 .0089592 2000 1167801	lnenergypc	.0944116	.0057066	16.54	0.000	.0832268	.1055964
lfrac 0008552 .0006147 -1.39 0.164 0020601 .0003496 efrac .0007223 .0006699 1.08 0.281 0005907 .0020353 asia 3671821 .042947 -8.55 0.000 4513567 2830075 csac 0439339 .0460783 -0.95 0.340 1342458 .0463779 eeca 6461308 .0573543 -11.27 0.000 7585431 5337184 mena .4163285 .0478052 8.71 0.000 .3226319 .510025 ssa 1105427 .050748 -2.18 0.029 210007 0110783 year - - .052298 .0503264 -1.04 0.299 1508678 .0464082 1999 0902315 .0506084 -1.78 0.075 1894222 .0089592 2000 1167801 .0509927 -2.29 0.004 2521244 0495012 2002 .1695335 .052324 -3.24 0.001 2720866 0669803 2003 <t< td=""><td>lnpop</td><td>-1.015103</td><td>.0071034</td><td>-142.90</td><td>0.000</td><td>-1.029026</td><td>-1.001181</td></t<>	lnpop	-1.015103	.0071034	-142.90	0.000	-1.029026	-1.001181
efrac .0007223 .0006699 1.08 0.281 0005907 .0020353 asia 3671821 .042947 -8.55 0.000 4513567 2830075 csac 0439339 .0460783 -0.95 0.340 1342458 .0463779 eeca 6461308 .0573543 -11.27 0.000 7585431 5337184 mena .4163285 .0478052 8.71 0.000 .3226319 .510025 ssa 1105427 .050748 -2.18 0.029 210007 0110783 year - .0502298 .0503264 -1.04 0.299 1508678 .0464082 1999 0902315 .0506084 -1.78 0.075 1894222 .0089592 2000 1167801 .0509927 -2.29 0.022 216724 0168361 2001 1508128 .0516905 -2.92 0.004 2521244 0495012 2002 1695335 .052324 -3.24 0.001 3265638 1144284 2004 2204961	urban	.0044942	.0007025	6.40	0.000	.0031172	.0058711
asia 3671821 .042947 -8.55 0.000 4513567 2830075 csac 0439339 .0460783 -0.95 0.340 1342458 .0463779 eeca 6461308 .0573543 -11.27 0.000 7585431 5337184 mena .4163285 .0478052 8.71 0.000 .3226319 .510025 ssa 1105427 .050748 -2.18 0.029 210007 0110783 year - - .0503264 -1.04 0.299 1508678 .0464082 1999 0902315 .0506084 -1.78 0.075 1894222 .0089592 2000 1167801 .0509927 -2.29 0.002 216724 0168361 2001 1508128 .0516905 -2.92 0.004 2521244 0495012 2002 1695335 .052324 -3.24 0.001 365638 1142284 2004 2204961 .0541172 -4.07 0.000 365638 1142284 2005 2520124	lfrac	0008552	.0006147	-1.39	0.164	0020601	.0003496
csac 0439339 .0460783 -0.95 0.340 1342458 .0463779 eeca 6461308 .0573543 -11.27 0.000 7585431 5337184 mena .4163285 .0478052 8.71 0.000 .3226319 .510025 ssa 1105427 .050748 -2.18 0.029 210007 0110783 year - 05229613 .0503677 -0.46 0.648 1216803 .0757577 1997 0229613 .0503264 -1.04 0.299 1508678 .0464082 1999 0902315 .0506084 -1.78 0.075 1894222 .0089592 2000 1167801 .0509927 -2.29 0.004 2521244 0495012 2002 1695335 .052324 -3.24 0.001 2720866 0669803 2003 2017425 .0528319 -3.82 0.000 3617713 1422536 2004 2204961 .0541172 -4.07 0.000 3617713 1422536 2005 2520124	efrac	.0007223	.0006699	1.08	0.281	0005907	.0020353
eeca 6461308 .0573543 -11.27 0.000 7585431 5337184 mena .4163285 .0478052 8.71 0.000 .3226319 .510025 ssa 1105427 .050748 -2.18 0.029 210007 0110783 year - 0229613 .0503677 -0.46 0.648 1216803 .0757577 1998 0522298 .0503264 -1.04 0.299 1508678 .0464082 1999 0902315 .0506084 -1.78 0.075 1894222 .0089592 2000 1167801 .0509927 -2.29 0.004 2521244 0495012 2002 1695335 .052324 -3.24 0.001 2720866 0669803 2003 2017425 .0528319 -3.82 0.000 3652911 098194 2004 2204961 .0541172 -4.07 0.000 3657713 1422536 2005 2520124 .0560004 -4.50 0.000 3617713 1422536 2006 3082084<	asia	3671821	.042947	-8.55	0.000	4513567	2830075
mena .4163285 .0478052 8.71 0.000 .3226319 .510025 ssa 1105427 .050748 -2.18 0.029 210007 0110783 year 1997 0229613 .0503677 -0.46 0.648 1216803 .0757577 1998 0522298 .0503264 -1.04 0.299 1508678 .0464082 1999 0902315 .0506084 -1.78 0.075 1894222 .0089592 2000 1167801 .0509927 -2.29 0.022 216724 0168361 2001 1508128 .0516905 -2.92 0.004 2521244 0495012 2002 1695335 .052324 -3.24 0.001 2720866 0669803 2003 2017425 .0528319 -3.82 0.000 3617713 1422536 2004 2204961 .0541172 -4.07 0.000 3617713 1422536 2006 3082084 .058417 -5.28 0.000 3617713 1422536 2006 3082084	csac	0439339	.0460783	-0.95	0.340	1342458	.0463779
ssa 1105427 .050748 -2.18 0.029 210007 0110783 year 1997 0229613 .0503677 -0.46 0.648 1216803 .0757577 1998 0522298 .0503264 -1.04 0.299 1508678 .0464082 1999 0902315 .0506084 -1.78 0.075 1894222 .0089592 2000 1167801 .0509927 -2.29 0.022 216724 0168361 2001 1508128 .0516905 -2.92 0.004 2521244 0495012 2002 1695335 .052324 -3.24 0.001 2720866 0669803 2003 2017425 .0528319 -3.82 0.000 3052911 098194 2004 2204961 .0541172 -4.07 0.000 3617713 1422536 2006 3082084 .058417 -5.28 0.000 4227037 1937132 2006 3082084 .0537066 -6.41 0.000 5333442 2351431 2008 </td <td>eeca</td> <td>6461308</td> <td>.0573543</td> <td>-11.27</td> <td>0.000</td> <td>7585431</td> <td>5337184</td>	eeca	6461308	.0573543	-11.27	0.000	7585431	5337184
year 19970229613 .0503677 -0.46 0.6481216803 .0757577 19980522298 .0503264 -1.04 0.2991508678 .0464082 19990902315 .0506084 -1.78 0.0751894222 .0089592 20001167801 .0509927 -2.29 0.0222167240168361 20011508128 .0516905 -2.92 0.00425212440495012 20021695335 .052324 -3.24 0.00127208660669803 20032017425 .0528319 -3.82 0.0003052911098194 20042204961 .0541172 -4.07 0.00032656381144284 20052520124 .0560004 -4.50 0.00036177131422536 20063082084 .058417 -5.28 0.00042270371937132 20073547302 .0610149 -5.81 0.00047431732351431 20084084816 .0637066 -6.41 0.00053334422836191 20094773707 .0662408 -7.21 0.00060720033475412 20104893532 .0685375 -7.14 0.00062368433550222 2011504944 .0707971 -7.13 0.00064370383661842	mena	.4163285	.0478052	8.71	0.000	.3226319	.510025
19970229613.0503677-0.460.6481216803.075757719980522298.0503264-1.040.2991508678.046408219990902315.0506084-1.780.0751894222.008959220001167801.0509927-2.290.022216724016836120011508128.0516905-2.920.0042521244049501220021695335.052324-3.240.0012720866066980320032017425.0528319-3.820.000305291109819420042204961.0541172-4.070.0003617713142253620063082084.058417-5.280.0004227037193713220073547302.0610149-5.810.0005333442283619120094773707.0662408-7.210.0006072003347541220104893532.0685375-7.140.00064370383661842	ssa	1105427	.050748	-2.18	0.029	210007	0110783
19980522298.0503264-1.040.2991508678.046408219990902315.0506084-1.780.0751894222.008959220001167801.0509927-2.290.022216724016836120011508128.0516905-2.920.0042521244049501220021695335.052324-3.240.0012720866066980320032017425.0528319-3.820.000305291109819420042204961.0541172-4.070.0003617713142253620052520124.0560004-4.500.0003617713142253620063082084.058417-5.280.0004743173235143120073547302.0610149-5.810.0005333442283619120094773707.0662408-7.210.0006072003347541220104893532.0685375-7.140.000623684335502222011504944.0707971-7.130.00064370383661842	year						
19990902315.0506084-1.780.0751894222.008959220001167801.0509927-2.290.022216724016836120011508128.0516905-2.920.0042521244049501220021695335.052324-3.240.0012720866066980320032017425.0528319-3.820.000305291109819420042204961.0541172-4.070.0003265638114428420052520124.0560004-4.500.0003617713142253620063082084.058417-5.280.0004743173235143120073547302.0610149-5.810.0005333442283619120094773707.0662408-7.210.0006072003347541220104893532.0685375-7.140.000623684335502222011504944.0707971-7.130.00064370383661842	1997	0229613	.0503677	-0.46	0.648	1216803	.0757577
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1998	0522298	.0503264	-1.04	0.299	1508678	.0464082
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1999	0902315	.0506084	-1.78	0.075	1894222	.0089592
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2000	1167801	.0509927	-2.29	0.022	216724	0168361
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2001	1508128	.0516905	-2.92	0.004	2521244	0495012
2004 2204961 .0541172 -4.07 0.000 3265638 1144284 2005 2520124 .0560004 -4.50 0.000 3617713 1422536 2006 3082084 .058417 -5.28 0.000 4227037 1937132 2007 3547302 .0610149 -5.81 0.000 4743173 2351431 2008 4084816 .0637066 -6.41 0.000 5333442 2836191 2009 4773707 .0662408 -7.21 0.000 6072003 3475412 2010 4893532 .0685375 -7.14 0.000 6236843 3550222 2011 504944 .0707971 -7.13 0.000 6437038 3661842	2002	1695335	.052324	-3.24	0.001	2720866	0669803
2005 2520124 .0560004 -4.50 0.000 3617713 1422536 2006 3082084 .058417 -5.28 0.000 4227037 1937132 2007 3547302 .0610149 -5.81 0.000 4743173 2351431 2008 4084816 .0637066 -6.41 0.000 5333442 2836191 2009 4773707 .0662408 -7.21 0.000 6072003 3475412 2010 4893532 .0685375 -7.14 0.000 6236843 3550222 2011 504944 .0707971 -7.13 0.000 6437038 3661842	2003	2017425	.0528319	-3.82	0.000	3052911	098194
2006 3082084 .058417 -5.28 0.000 4227037 1937132 2007 3547302 .0610149 -5.81 0.000 4743173 2351431 2008 4084816 .0637066 -6.41 0.000 5333442 2836191 2009 4773707 .0662408 -7.21 0.000 6072003 3475412 2010 4893532 .0685375 -7.14 0.000 6236843 3550222 2011 504944 .0707971 -7.13 0.000 6437038 3661842	2004	2204961	.0541172	-4.07	0.000	3265638	1144284
2007 3547302 .0610149 -5.81 0.000 4743173 2351431 2008 4084816 .0637066 -6.41 0.000 5333442 2836191 2009 4773707 .0662408 -7.21 0.000 6072003 3475412 2010 4893532 .0685375 -7.14 0.000 6236843 3550222 2011 504944 .0707971 -7.13 0.000 6437038 3661842	2005	2520124	.0560004	-4.50	0.000	3617713	1422536
2008 4084816 .0637066 -6.41 0.000 5333442 2836191 2009 4773707 .0662408 -7.21 0.000 6072003 3475412 2010 4893532 .0685375 -7.14 0.000 6236843 3550222 2011 504944 .0707971 -7.13 0.000 6437038 3661842	2006	3082084	.058417	-5.28	0.000	4227037	1937132
2009 4773707 .0662408 -7.21 0.000 6072003 3475412 2010 4893532 .0685375 -7.14 0.000 6236843 3550222 2011 504944 .0707971 -7.13 0.000 6437038 3661842	2007	3547302	.0610149	-5.81	0.000	4743173	2351431
2010 4893532 .0685375 -7.14 0.000 6236843 3550222 2011 504944 .0707971 -7.13 0.000 6437038 3661842	2008	4084816	.0637066	-6.41	0.000	5333442	2836191
2011504944 .0707971 -7.13 0.00064370383661842	2009	4773707	.0662408	-7.21	0.000	6072003	3475412
	2010	4893532	.0685375	-7.14		6236843	3550222
_cons 3.609641 .1931256 18.69 0.000 3.231121 3.98816	2011	504944	.0707971	-7.13	0.000	6437038	3661842
	_cons	3.609641	.1931256	18.69	0.000	3.231121	3.98816

X. REFERENCES

Abel, Jaison R., Ishita Dey, and Todd M. Gabe. "Productivity And The Density Of Human Capital." *Journal of Regional Science* 52, no. 4 (2012): 562–586.

Acemoglu, Daron, and James A. Robinson. *Why Nations Fail: The Origins of Power, Prosperity, and Poverty*. New York: Crown Publishers, 2012.

Acemoglu, Daron, Simon Johnson, and James A. Robinson. "Reversal Of Fortune: Geography And Institutions In The Making Of The Modern World Income Distribution*." *Quarterly Journal of Economics* 117, no. 4 (2002): 1231-294.

Acemoglu, Daron, Simon Johnson, and James A. Robinson. *An African Success Story: Botswana*. Cambridge, MA: Massachusetts Institute of Technology, Dept. of Economics, 2002.

Acemoglu, Daron, Simon Johnson, and James A Robinson. "The Colonial Origins of Comparative Development: An Empirical Investigation." *American Economic Review* 1, no. 5 (2001): 1369-401.

Acemoglu, Daron, and James A Robinson. "Political Losers as a Barrier to Economic Development." *American Economic Review* 90, no. 2 (2000): 126-30.

Alesina, Alberto, Arnaud Devleeschauwer, William Easterly, Sergio Kurlat, and Romain Wacziarg. "Fractionalization." *Journal of Economic Growth* 8, no. 2 (2003): 155-94.

Ayres, Robert U., Jeroen CJM Van den Bergh, Dietmar Lindenberger, and Benjamin Warr. "The Underestimated Contribution of Energy to Economic Growth." *Structural Change and Economic Dynamics* 27 (2013): 79-88.

Bardhan, Pranab. "Corruption and Development: A Review of Issues." *Journal of Economic Literature* 35, no. 3 (1997): 1320-346.

Bloom, David E., Jeffrey D. Sachs, Paul Collier, and Christopher Udry. "Geography, Demography, and Economic Growth in Africa." *Brookings papers on economic activity* (1998): 207-295.

Brunetti, Aymo, and Beatrice Weder. "A Free Press Is Bad News For Corruption." *Journal of Public Economics* 87 (2003): 1801-824.

Cheung, Steven. "The curse of democracy as an instrument of reform in collapsed communist economies." *Contemporary Economic Policy* 16, no. 2 (1998): 247-249.

Ciccone, Antonio, and Robert E. Hall. *Productivity and the Density of Economic Activity*. No. w4313. National Bureau of Economic Research, 1996.

Damania, Richard, and Erwin Bulte. *Resources for sale: Corruption, Democracy and the Natural Resource Curse*. Centre for International Economic Studies, 2003.

Diamond, Jared M. *Guns, Germs, and Steel: The Fates of Human Societies*. New York: W.W. Norton & Company, 1997.

Fisman, Raymond, and Edward Miguel. "Corruption, norms, and legal enforcement: Evidence from diplomatic parking tickets." *Journal of Political Economy* 115, no. 6 (2007): 1020-1048.

Gallup, John Luke, Jeffrey D. Sachs, and Andrew D. Mellinger. "Geography and economic development." *International Regional Science Review* 22, no. 2 (1999): 179-232.

Hall, Robert E., and Charles I. Jones. *Why do some countries produce so much more output per worker than others?* No. w6564. National Bureau of Economic Research, 1999.

Hodder, Ian. *The Leopard's Tale: Revealing the Mysteries of Çatalhöyük*. New York, N.Y.: Thames & Hudson, 2006.

Jensen, Nathan. "Political risk, democratic institutions, and foreign direct investment." *The Journal of Politics* 70, no. 04 (2008): 1040-1052.

Jensen, Nathan M. "Democratic governance and multinational corporations: Political regimes and inflows of foreign direct investment." *International organization* 57, no. 03 (2003): 587-616.

Jorgenson, Dale W. "The role of energy in productivity growth." *The Energy Journal* (1984): 11-26.

Kaufmann, Daniel, Aart Kraay, and Massimo Mastruzzi. "The worldwide governance indicators: methodology and analytical issues." *Hague Journal on the Rule of Law* 3, no. 02 (2011): 220-246.

Kenyon, Kathleen M., and Thomas A. Holland. *The Architecture and Stratigraphy of the Tell*. London: British School of Archaeology in Jerusalem, 1981.

Lamberg-Karlovsky, Clifford Charles, and Jeremy A. Sabloff. *Ancient Civilizations: The Near East and Mesoamerica*. Menlo Park, CA: Benjamin/Cummings Publishers, 1979.

Lamberg-Karlovsky, Clifford Charles, Jeremy A. Sabloff. *Ancient Civilization and Trade*. Albuquerque: University of New Mexico Press, 1975.

Lambsdorff, Johann Graf. "How Corruption Affects Productivity." *Kyklos* 56, no. 4 (2003): 457-474.

Lambsdorff, Johann Graf. "Corruption in Empirical Research: A Review." *Transparency International*, 1999.

Leite, Carlos A., and Jens Weidmann. "Does mother nature corrupt? Natural resources, corruption, and economic growth." *Natural Resources, Corruption, and Economic Growth (June 1999). IMF Working Paper* 99/85 (1999).

Murillo-Zamorano, Luis R. "The role of energy in productivity growth: A controversial issue?." *The Energy Journal* (2005): 69-88.

North, Douglass C. "Institutions." *Journal of Economic Perspectives* 5, no. 1 (1991): 97-112.

North, Douglass C. *Institutions, institutional change and economic performance*. Cambridge university press, 1990.

North, Douglass C, and Robert Paul Thomas. *The Rise of the Western World: A New Economic History*. London: Cambridge University Press, 1973.

Olken, Benjamin A, and Rohini Pande. "Corruption in Developing Countries." *Annual Review of Economics* 4 (2012): 479-509.

Pritchett, Lant. *Population Growth, Factor Accumulation, and Productivity*. Washington, DC: World Bank, Policy Research Dept., Poverty and Human Resources Division, 1996.

Rauch, James E. "Productivity Gains from Geographic Concentration of Human Capital: Evidence from the Cities." *Journal of Urban Economics, Elsevier* 34, no. 3 (1993): 380-400.

Redmond, William. "Process of Gradual Institutional Drift." *Journal of Economic Issues* 39, no. 2 (2005): 501-09.

Rodrik, Dani. *In Search of Prosperity: Analytic Narratives on Economic Growth.* Princeton: Princeton University Press, 2003.

Sachs, Jeffrey D. Institutions Don't Rule: Direct Effects of Geography on Per Capita Income. No. w9490. National Bureau of Economic Research, 2003.

Sachs, Jeffrey D. *Tropical Underdevelopment*. No. w8119. National Bureau of Economic Research, 2001.

Sachs, Jeffrey D., and Andrew M. Warner. "The Curse of Natural Resources." *European economic review* 45, no. 4 (2001): 827-838.

Sahlins, Marshall. *Stone Age Economics*. Hawthorn, NY: Aldine Publishing Company, 1972.

Sahlins, Marshall. "On the Sociology of Primitive Exchange." *The Relevance of Models for Social Anthropology: Conference on 'New Approaches in Social Anthropology'*, 1965, 139-236.

Sala-i-Martin, Xavier, and Arvind Subramanian. *Addressing the Natural Resource Curse: An Illustration from Nigeria*. No. w9804. National Bureau of Economic Research, 2003.

Shleifer, A., and R. W. Vishny. "Corruption." *The Quarterly Journal of Economics* 108, no. 3 (1993): 599-617.

Simmons, Alan H. *The Neolithic Revolution in the Near East: Transforming the Human Landscape*. Tucson: University of Arizona Press, 2007.

Syverson, Chad. "What Determines Productivity?" *Journal of Economic Literature* 49, no. 2 (2011): 326–365.

Tanzi, Vito, and Hamid Davoodi. *Corruption, Public Investment, and Growth*. Tokyo: Springer, 1998.

Treisman, Daniel. "The Causes of Corruption: A Cross-national Study." *Journal of Public Economics* 76, no. 3 (2000): 399-457.

Waller, Christopher J., Thierry Verdier, and Roy Gardner. "Corruption: Top Down Or Bottom Up?" *Economic Inquiry* 40, no. 4 (2002): 688-703.

Wei, Shang-Jin. "Why Is Corruption So Much More Taxing than Taxes? Arbitrariness Kills." No. w6255. National Bureau of Economic Research, 1997.

Wei, Shang-Jin. "How Taxing Is Corruption On International Investors?" *Review of Economics and Statistics* 82, no. 1 (2000): 1-11.