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ABSTRACT 

 Advancements in the field of biomaterials are soon to make the production of a 

recombinant silk fiber a reality.  A gene was constructed which utilized components from 

both the dragline silk of Nephila clavipes and nematode collagen.  For this engineered protein, 

the yeast strain Pichia pastoris was chosen to be the host organism due to its ease of genetic 

manipulation and its ability to secrete proteins in soluble forms.   Previous research has 

shown P. pastoris to have comparatively low amounts of specific protein productivity.  

Therefore, in order to produce adequate amounts of recombinant protein, this problem 

must be compensated for by obtaining extremely high cell densities (Charoenrat, 2005).  The 

main focus of this study is to optimize the fermentation parameters of transgenic yeast 

cultures within a bioreactor in order to increase the yield of the recombinant protein.  

Through media improvement and feed pump control, cell densities of 350 optical density 

(OD) were obtained.  In conjunction with optimization experiments, concentration and 

purification methods revealed insight into this material’s potential for future processing.  

Additionally, comparative studies with natural spider silk revealed temperature fluctuations 

within the spinneret region that may be an integral component in learning how to assemble 

our recombinant proteins. 
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INTRODUCTION 
 

Through cloning technology, the Biologically-inspired Advanced Materials (BAM) 

Research Group is synthetically creating silk proteins in order to manufacture biologically-

inspired fibers with unmatched performance capabilities.  Scientists from Clemson 

University’s School of Materials Science and Engineering, Departments of Genetics and 

Biochemistry, Bioengineering, and Physics have been collaborating and utilizing their 

specific areas of expertise on this project for more than ten years.  It is the hope and ultimate 

goal of this project to develop fibers that benefit from both nature’s desirable physical 

properties and its ability to produce biodegradable, sustainable materials.   

Biomimetics (also known as bionics or biomimicry), first termed at a cybernetics 

conference in 1960, is the science that investigates methods and systems found in nature to 

design engineered systems and technology to mimic these natural systems (Bar-Cohen, May 

13, 2003).  The benefits of modeling technology after nature are immense because 

evolutionary pressure has forced biological systems to become highly optimized and efficient 

(Passino, 2005).  The field itself has a long history, even though the exact origins can not be 

traced.  For example, its practice can be seen as far back as Leonardo de Vinci’s sketches of 

flying machines and boats (Azuma, 2006).  Until recently, Swiss engineer George de Mestral 

was the only pioneer in the field to experience great commercial success. Mestral developed 

Velcro by imitating the ‘hook and latch’ method he observed when burrs attached to his 

dog’s fur (Forbes, 2005).  Today, the advent of new technologies has been a gateway towards 

allowing humanity’s natural inspirations to become realities.   
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The influence of biomimetics can be seen in virtually all disciplines such as biology, 

computer engineering, and even politics.  When discussing biology, there are typically three 

areas that serve as models for developing technologies.  Biological mechanisms such as the 

‘hook and latch’ model can be imitated.  Also, organizational principles can be developed 

from studying the social patterns of animal groups, such as migratory birds.  The third area, 

with which this project is concerned, deals with mimicking modes of producing chemical 

compounds in order to develop novel ones (Benyus, 1998).  The manufacturing of artificial 

polymers using this method is greatly desired today because of the growing concerns for 

energy needs and reusable materials.   

In general, polymers are long chain molecules consisting of repeating structural units 

joined by covalent bonds.  The use of polymers is wide-spread and can be found in 

applications ranging from engineering plastics to synthetic fibers.  Unfortunately, 

conventional production of polymers has been plagued with obstacles such as high energy 

costs, non-biodegradable materials, and harmful waste products.  For example, Kevlar fibers 

are produced under elevated temperatures and pressures and are spun from highly 

concentrated sulfuric acid solutions (Viney, 1992).  Advances in genetics and molecular 

engineering have allowed scientists to look at overcoming these problems by modeling 

nature’s method for polymer synthesis. 

 Polypeptides, or proteins, are polymeric macromolecules synthesized by biological 

organisms.  They are essential components for life that participate in every process in a cell.  

Proteins are composed of amino acids, which are encoded by the organism’s genome.  These 

amino acids are joined together by peptide linkages, and depending upon their order, self-

assemble into biologically-active conformations.  Just as polymers are composed of 

monomeric units, proteins benefit from the combination of different amino acids whose 
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chemical constituents and specific placement determine unique physical properties such as 

strength, flexibility, and solubility.  Cloning technologies have enabled scientists to tailor 

these properties by constructing the protein on the molecular level and then introducing the 

genetic sequence into other biological systems that can read and express these codes into 

proteins.           

 These genetically engineered proteins, more commonly known as either recombinant 

or heterologous proteins, were first described by Stanley N. Cohen in 1973 in a paper that 

outlined a method for isolating and inserting genes into other biological systems (Cohen, 

1973).  In 1977, Escherichia coli became the first bacterium host to produce a commercially 

biologically active protein, human somatostatin, from a eukaryotic source (Itakura et al., 

1977).  Since that time, the area of recombinant DNA has seen enormous growth, resulting 

in the production of many recombinant proteins of industrial and medical significance.  The 

emergence of bioreactors that are able to yield high cell densities has also served as a major 

breakthrough, enabling the ease of production.  Examples of some of the well-known 

proteins synthesized through recombinant technology include insulin, erythropoietin, tissue 

plasminogen activator, factor VII for treatment of hemophilia, human α-interferon, hepatitis 

B surface antigens,  and enzymes such as calf prochymosin and Aspergillus glucoamylase 

(Gellissen et al., 1992). 

 Two of the most prevalent expression systems available for recombinant protein 

production are E. coli and P. pastoris. Since its introduction as a marketable vector in 1977, E. 

coli has become the benchmark for molecular cloning for a number of well-documented 

reasons.  Probably the most important advantage for using E. coli  is its ease of genetic 

manipulation (Lee and Lee, 2003).  It is fairly easy to manipulate due in part to its relatively 

small genome and long history of study in laboratories (Blattner et al., 1997).  Furthermore, 
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its prevalence in laboratories has facilitated the development of commercially available 

genome-wide microarrays containing all of the open reading frames and intergenic regions 

(Selinger et al., 2000). 

 The major drawback in using E. coli as a recombinant protein expression system is its 

inconsistent behavior with respect to soluble expression of eukaryotic proteins (Daly and 

Hearn, 2005).  Eukaryotic proteins expressed in E. coli often aggregate and form insoluble 

material, termed inclusion bodies.  Inclusion bodies require additional purification steps in 

order to yield a biologically-active product (Marston, 1986).  Additionally, proteins which 

need post-translational modifications such as glycosylation, proline isomerization, lipidation, 

sulphation, disulfide isomerization, and phosphorylation can not be completely produced in 

E. coli, as it lacks the machinery to perform these chemical modifications (Lueking et al., 

2000).  Another problem for recombinant proteins expressed in E. coli is the non-cleaved 

amino-terminal methionine.  This methionine can change the stability of the protein in a 

patient receiving the recombinant protein as a drug; however, this residue can be removed 

chemically (Chaudhuri, 1999). 

 Proteins that have been difficult to express in E. coli because of post-translational 

modification issues have subsequently been introduced into the methylotrophic yeast strain 

P. pastoris for production (Monsalve et al., 1999).  The products from this system tend to be 

both soluble and appropriately folded, although some post-translational modifications are 

not identical to the original species.  Results from a comparative study preformed by 

Lueking et al. highlight P. pastoris’s ability to out-perform E. coli when expressing eukaryotic 

proteins.  Out of the 29 proteins that were cloned into each of the two hosts, all were found 

to be soluble in P. pastoris, compared to the nine soluble proteins in E. coli (Lueking et al., 

2000).  P. pastoris is also easy to genetically manipulate (Cregg et al., 1993); however, it has 
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fewer cloning vectors and selection methods.  Also, P. pastoris’s aerobic growth allows for 

high cell yields, which in turn allows for high intracellular and extracellular recombinant 

protein production with limited byproduct formation, such as ethanol and acetic acid (Daly 

and Hearn, 2005).  In comparison to the yeast Saccharomyces cerevisia, P. pastoris has been 

shown to produce ten times the biomass in fermentations.   

 P. pastoris is one of the few species of yeast that is able to metabolize methanol as its 

sole carbon source.  Other strains able to utilize this form of carbon and energy are Candida,

Torulopsis, and Hansenula (Lee, 1980).  Along with H. polymorpha, P. pastoris has been 

thoroughly studied and documented as a model organism for recombinant protein 

production (Gleeson, 1988).  Both of these systems employ a fusion between the foreign 

gene sequences and a strong methanol promoter which allows for the metabolism of 

methanol (Gellissen et al., 1992).  Because of this coupling, the presence of methanol will 

cause transcription and translation of not only the gene encoding for the enzyme, but also 

for the recombinant protein (Tschopp et al., 1987).  This promoter, known as the alcohol 

oxidase 1 gene (AOX1), is known to be a tightly regulated promoter for recombinant protein 

expression (Cregg et al., 1993).  Normally, the yeast cells are initially grown on either glycerol 

or glucose, causing repression of the AOX1 promoter, in order to reach high cell densities.  

Once the desired cell density is reached, methanol is supplied as the sole carbon source, 

which also induces expression of the desired protein.  Yeast cells grow slowly on methanol, 

thus alternate carbon sources such as glycerol are typically used to obtain cell densities large 

enough to justify induction (Inan and Meagher, 2001).  Glucose is not commonly used 

because studies have shown it is more difficult to reverse repression of the promoter by 

methanol, and less biomass is obtained (Faber, 1995) (Sola et al., 2004). 
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P. pastoris contains two copies of the AOX gene (AOX1 and AOX2); however, the 

AOX1 gene is responsible for 85% of the alcohol oxidase regulation within the cell and is 

therefore the promoter used in recombinant protein expression (Inan and Meagher, 2001).  

The AOX1 promoter expression cassette is inserted into the P. pastoris genome, and 

depending upon its placement, yields various phenotypes of the strain (Breirley, 1990).  P. 

pastoris has three different phenotypes which are able to utilize methanol, Mut+, MutS, and 

Mut-. Mut+ strains contain a functional copy of the AOX1 gene, resulting in a phenotype 

indistinguishable from the wild-type methanol utilizing strain (Inan and Meagher, 2001).  

Placing the recombinant protein expression cassette within the AOX1 gene causes a MutS

phenotype, which has slow growth on methanol (Romanos et al., 1992).  A Mut- strain 

results when the expression cassette disrupts both the AOX1 and AOX2 genes, giving a 

strain which is unable to metabolize methanol as its sole carbon source (Chiruvolu, 1997). 

The GS115 P. pastoris yeast strain is an example of one that has the Mut+ strain, which is the 

strain exclusively used in the studies relative to this research project.  The GS115 strain also 

includes a mutation in the histidine dehydrogenase gene (HIS4), which is used to identify 

successful transformants (Inan and Meagher, 2001). 

Table A  Examples of Recombinant Proteins Expressed in P. pastoris 
Under the Control of the AOX1 Promoter 

Protein Reference 
HBsAg (S) Cregg et al. 1987 
Human EGF Siegel et al. 1989 
Bovine Lysozyme Digan et al. 1989 
Streptokinase Hagenson et al. 1989 
Human TNF Sreekrishna et al. 1989 
Aprotinin Vedvick et al. 1991 
Tetanus C Clare et al. 1991 
HAS Provow cited in Buckholz & Gleeson 1991 
Human IGF1 Breierley cited in Buckholz & Gleeson 1991 
Il-2 Velicelebi cited in Buckholz & Gleeson 1991
HIV gp120 Romanos cited in Buckholz & Gleeson 1991

adopted from (Charoenrat, 2005) 
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The availability of methylotrophic yeast strains that are able to produce the 

recombinant proteins described above has enabled researchers in many fields to explore the 

use of recombinant technology.  One such area which has benefited from cloning techniques 

is textiles.  Even though recombinant silk production is a recent endeavor, the properties of 

spider silk have been known and exploited for centuries.   Various cultures have been 

reaping the benefits from this remarkable fiber in various ways.  Tribes in New Guinea have 

used spider webs for hats designed as raingear.  Multiple fishing societies incorporate spider 

silk into nets.  Even Americans in World War I used spider silk strands as the cross bars for 

targets in telescopic gun-sites.  Research into spider silk’s desirable properties have prompted 

numerous articles over the past 150 years (Lewis et al., 1996).  However, significant progress 

into the understanding of silk’s unique material properties only started to become known 

about 30 years ago, with the research of Work, Gosline, and Tillinghast.  Since then, the 

emergence of biomaterials has brought about a revival in silk studies, leading the way to the 

next generation of spider researchers exemplified by Kaplan, Vollrath, and Hayashi.    

 Silk is not unique to spiders, even though they are the most widely known producers 

(Viney, 1992).  Silk worms such as B. mori have a 4,000 year old history in garment making.  

(Hyde, 1984).  Additionally, various insects produce silk protein to aid in locomotion, egg sac 

and habitat construction, and prey capture (Lucas, 1964).  However, spiders have been the 

main focus of silk study in the very recent past.  They are unique from insects in that they 

depend on silk throughout their life cycle (Vollrath, 1992).  N. clavipes and Araneus diadematus 

are two of the most highly studied and highly evolved producers of silk.  These orb-weaving 

spiders have been desired for different reasons.  A. Diadematus is a very small and common 

garden spider.  N. clavipes is large in size, easy to dissect, and produces large quantities of silk 

(Viney, 1992).  In terms of material properties, N. clavipes’ silk is preferable.   In general, silk 
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has a unique combination between strength (stress applied at break), stiffness (modulus at 

yield point), toughness (energy required to break), and elasticity (ability to return to original 

conformation after an applied strain is removed).  The material properties of silk produced 

by N. clavipes makes it preferred over other types of silk: it is nearly as strong and has a much 

greater toughness than high-performance polyamide fibers such as Kevlar (Gosline et al. 

1986, Kaplan et al. 1991).  Figure A shows a stress/strain curve in which common material 

science terminology is defined to understand the tensile properties of spider silk.     

Figure A   Schematic of the Definitions: Strength, Stiffness, Toughness, Elasticity, 
Stress, and Strain (Vollrath and Knight, 2001) 
 

The first fibrous protein comprising N. clavipes dragline silk from the major ampullate 

gland, known as spidroin 1 or MaSp1, was isolated from cDNA clones and published in 

1990 (Xu, 1990).  The amino acid structure predicted from that research, however, did not 

account for the complete amino acid sequence of dragline silk.  Thus, more research was 

conducted and the second protein, spidroin 2 or MaSp2,  was sequenced and published in 

1992 (Hinman, 1992 ).  The cloning of spidroin-like proteins into P. pastoris is the basis for 
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this thesis, and therefore previous work done by the BAM group at Clemson University will 

be summarized to serve as background information for the subsequent chapters.         

The dissertation work of Florence Teulé in 2003 outlines the methods for 

engineering spidroin-like proteins in P. pastoris for the production of intracellular and 

secretory recombinant proteins.  In her research, she explored the effects that the basic 

structural components (amino acids) had on the resulting stability and solubility of the 

protein.  Natural spider dragline silk is composed of two hydrophobic amino acid repeat 

sequences consisting of alanine and alanine-glycine regions.  Both of these sequences have 

been predicted to assume conformations resulting in the crystalline portion of the silk.  In 

theory, each chain can interlock with an adjacent chain via hydrophobic interactions.  The 

glycine side of the polypeptide chain would have less hydrophobic interactions than the 

alanine portion.  With more interactions, alanine sequences as apposed to alanine-glycine 

sequences would have a greater binding energy.  Therefore, more alanine regions would 

theoretically create β-sheet structures with a higher degree of orientation (Hayashi, 1999).  

Further evidence supporting this theory can be seen in minor ampullate silk, which has a 

lower tensile strength corresponding to a lower proportion of alanine repeat sequences.  

Hayashi also mentions that anti-parallel β-sheet structures have been observed to be poorly 

hydrated.  Thus, the hypothesis becomes that crystals aligned parallel to the fiber axis 

contain higher amounts of alanine repeats, thereby leading to a greater tensile strength for 

the resulting fiber (Teulé, 2003). 

 Testing the importance of these alanine-rich motifs, Teulé genetically engineered 

three spidrion-1 like proteins containing varying amounts of alanine (normal alanine content, 

low alanine content, and no alanine).  In addition, she also engineered three copolymers of 

these sequences combined with collagen, mimicking the silk-collagen structures found in the 
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byssus thread of marine mussels.  Each of the six engineered plasmids containing both the 

gene constructs and the expression vector pPICZαA (Figure B) from Invitrogen were 

transformed into the P. pastoris host strain GS115 from Invitrogen’s EasySelect™ Pichia 

Expression Kit (version C).  The three spidroin-1-like constructs with normal, low, and no 

alanine were given the respective names pαASpi 1-ALA, pαASpi 1-LA, and pαASpi 1-NA 

(abbreviated ALA, LA, and NA).  Copolymers of the collagen and silk constructs were 

named pαACoSpi 1-ALA, pαACoSpi 1-LA, and pαACoSpi 1-NA (abbreviated COALA, 

COLA, and CONA).               

Figure B  Schematic of pPICZαA Vector Depicting AOX1 Promoter Necessary for 
Expression:  the zeocin marker is used for selection for antibody-resistant strains, 
the c-myc epitope is used for detection of protein with anti-myc antibody (Evans et al 
1985), and the 6X histidine repeat sequence is used for detection of protein with 
anti-his antibody (Lindner et al 1997) (Invitrogen’s Pichia Expression Vectors for 
selection on Zeocin and Purification of Recombinant Proteins product manual; 
catalogue number V190-20, 2001). 

Results from both protein staining and Western Blotting techniques concluded 

successful expression of both spidroin and collagen-spidroin from yeast (Teulè, 2003).  

Overall, the copolymer constructs had higher expression of soluble recombinant protein 

over the homopolymer constructs.  Even though collagen is known to be insoluble, it was 



11 

hypothesized by Teulé that the juxtaposition of the spidroin and collagen sequences allowed 

for easier dissociation in solvent.  Out of the three copolymer constructs, CONA (as well as 

NA) produced significantly less recombinant protein than the constructs containing normal 

and low alanine amounts.  Since these strains lacked the characteristic polyalanine motifs, it 

was conjectured that the alanine content encouraged the intracellular stability of the protein.  

Both COALA and COLA strains consistently secreted the collagen-spidroin proteins in 

stable dimers, both being at molecular weights of around 63 kDa.  Also, the majority of the 

protein in both strains was expressed intracellularly as opposed to being secreted outside of 

the cell. 

 This thesis explores three main areas related to the recombinant silk protein 

production.  The first chapter deals with optimizing the bioreactor conditions for producing 

this protein.  The second chapter investigates purification methods for the protein being 

produced by fermentation.  Finally, the third chapter describes comparative studies 

conducted on natural spider silk, which were undertaken to help develop processes for 

recombinant protein spinning in the future. 
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CHAPTER ONE 
Fermentation of the Yeast Strain Pichia pastoris for the Production of Recombinant 

Silk/Collagen Protein 

BACKGROUND 
 

Yeast live and propagate in various natural habitats, often in cohabitation with other 

microorganisms including fungi, bacteria, and protozoa as well as more advanced forms of 

life, such as plants, insects, and warm-blooded animals.  The majority of yeast have a 

saprophytic life, meaning they grow on inert, organic substrates. However, parasitic forms 

that rely on a host to provide the necessary nutrients are also known.  Yeast sometimes 

compete for nutrients with other microorganisms that are cohabitating on a substrate.  Also, 

some natural substrates produce antibiotics that inhibit the growth of yeast, affecting their 

populations.  As a result, some strains of yeast have a remarkable variation in sensitivity to 

various antibiotics that can be utilized in controlled laboratory settings.  In addition, yeast 

can also be sensitive to some of the metabolic products from bacteria that can inhibit 

growth, such as acetic acid.  Another common occurrence is the consumption of yeast by 

protozoa, insects, and other animals.  Even though these organisms are consuming yeast as a 

food source, they facilitate the distribution of yeast by incasing the yeast within body cavities 

or allowing them to adhere exteriorly (Phaff, 1978). 

Yeast, like other unicellular organisms, are able to withstand environmental 

fluctuations through internal adaptations.  This collection of complex cellular responses has 

stemmed from millions of years of selective evolution, which has exposed this organism to 

extreme atmospheric conditions.  These external challenges can disturb the homeostatic 
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conditions of the cell, thereby interrupting metabolic processes necessary for propagation.  

To counteract this issue and reduce stress, yeast can re-program genomic expression 

according to the cell’s requirements for adequate growth.  This response enables yeast to 

respond to environmental stimuli at essentially every level of cellular organization (Gasch, 

2002). 

Yeast, probably the oldest known domesticated organism, was first used in Sumeria 

and Babylonia in 6000 B.C. for the purpose of brewing beer (Feldman, 2005).  Various 

strains of this species also date back to Egypt where they were used in grape cultivation and 

dough leavening.  The English word yeast, the German word hefe, and the Dutch word guist 

are derived from the west-germanic phrase haf-jon meaning ‘the potential to leaven,’ referring 

to the yeast’s ability to anaerobically release carbon dioxide.  Even the word enzyme, meaning 

‘in yeast’ has been termed as a means to describe the organic compounds yeast use to 

ferment sugar.  These desired properties of yeast have carried them through thousands of 

years of research, uncovering their great potential in the food and medical industries of 

today.  Table 1.1 below highlights the momentous events associated with yeast through 

history.   
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Table 1.1  History of Yeast as a Domesticated Organism 
Approximate Date
 

Event 

6000 B.C.  Beer brewing 
1680   First microscopic image (van Leeuwenhoek) 
1835   Alcohol fermentation  
1839   Sugar used as yeast food source 
1857 Correlation between fermentation and metabolism (Pasteur) 
1876   ‘Etudes sur la levure de bière’ (Pasteur) 
1877   Term enzyme first used (Kŭhne) 
1880   Single cells and strains used in brewing (Hansen) 
1883   Alcohol and CO2 from cell-free extracts (Buchner) 
1915   Production of glycerol 
1920   Yeast physiology 
1949   First genetic map (Lindegren); mating type system 
1930   Taxonomy (Kluyver) 
1966   First tRNA structures 
1978   First transformation (Hinnen, Hicks, and Fink) 
1990                                    First commercial pharmaceutical product from recombinant 

yeast (Hepatitis B vaccine) 
1996 Completion of yeast genome project 

adopted from (Feldman, 2005) 
 

Yeast comprising approximately 700 different species were introduced as an 

experimental organism in the mid 1930’s.  Since that time, yeast biotechnology has expanded 

into various fields such as fermentation, food, chemical, and health-care industries, biological 

and biomedical research, and environmental technologies (Feldman, 2005).  These fields 

have further expanded with the introductionn of bioreactors, which have transformed yeast 

culturing into a highly-controlled operation. As opposed to shake flasks, bioreactors regulate 

the environment such that cells can grow under optimal conditions for a longer period of 

time.  Conditions such as temperature, pH, and nutrient and oxygen requirements can be 

monitored and controlled.   In fact, protein production in P. pastoris has been shown to 

increase 140% when scaled-up from a shaker to a bioreactor (Cino, 1999).   

 Bioreactors can be operated in fed-batch mode, where fresh media is added to the 

culture, preventing nutrient limitations.  In some instances, the nutrients are gradually fed 
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into the bioreactor in order to avoid both substrate limitation and inhibition (Charoenrat, 

2005).  Shake flasks are only easily operated in batch mode because of size limitations, thus 

cells are cultured only in the nutrients present at the time of inoculation.  Both shake flasks 

and bioreactors can be mixed to increase oxygen transport; however, in shake flasks oxygen 

becomes limited as the cell density increases, which can result in anaerobic metabolism with 

associated ethanol and acetate secretion.  The oxygen transfer rate in shake flasks is 

proportional to the agitation rate, but as cell densities increase, the cells consume oxygen 

faster than it can be supplied.  In bioreactors, oxygen levels can be monitored and 

controlled.  Specifically, dissolved oxygen levels can be controlled with the use of aeration, 

agitation, and external oxygen (Ohashi, 1999).  Bioreactors can also control the pH levels 

though the addition of acid and base solutions.  Shake flasks are not equipped with pH 

meters; therefore the acid production from growing cells can cause pH levels to reach lethal 

limits.  Furthermore, the tightly-regulated bioreactor allows for better control necessary 

when using a methanol feed for induction phases in P. pastoris. Methanol utilization as the 

carbon source has higher than normal oxygen requirements compared to glucose and 

glycerol.  In order to achieve high levels of recombinant protein productivity, the methanol 

levels must be balanced to provide enough carbon to maintain cell viability and recombinant 

protein expression and to prevent methanol cytotoxic levels (Mayson, 2003).  Bioreactors 

can often be equipped with software that monitors and stores culture conditions, which 

allows for graphical representation of the environment within the fermentation vessel.  

Additionally, the system’s records can be used for troubleshooting. 

 This chapter investigates the growth of yeast cells on various media and feed 

protocols.  Also, the production of the recombinant silk protein was examined.   
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MATERIALS AND METHODS 

Product Description 

The bioreactor used in this study was Sartorius BBI Systems GmbH’s bench-top 

scale fermenter type BIOSTAT®B.  This model is designed for the cultivation of either 

microorganisms or tissue cell cultures in either continuous, batch, or fed-batch modes.  For 

the purpose of this thesis, the fed-batch mode fermentations of the P. pastoris yeast strain 

GS115 containing the recombinant spider silk/collagen copolymer were conducted.   

The glass culture vessel has a working volume of 5 liters.  In association with this 

vessel, a control unit monitored and controlled the various environmental conditions within 

the vessel.  A thermometer inserted into the culture vessel was attached to the control unit 

containing an internal thermostat.  This thermostat controlled both the heating and cooling 

functions in conjunction with a glass water jacket surrounding the vessel.  An external water 

cooling unit was kept at a constant 15°C.  An oxygen-sensing electrode inserted into the 

vessel monitored the amount of dissolved oxygen within the culture.  The oxygen transfer 

rate was controlled by both agitation and oxygen supplementation to maintain a dissolved 

oxygen setpoint.  Three, six-bladed metal disc impellers were used in the vessel to stir the 

liquid.  Once the maximum agitation speed was reached (1200 rpm), oxygen from a tank was 

mixed with air to sparge the vessel.  The pH was monitored using a pH electrode inserted 

into the vessel.  Depending upon whether the pH needed to be raised or lowered, the 

readings from the pH probe signaled either an influx of acid (HCl, 2N solution) or base 

(NH4OH, 25% volume/volume).  Acid and base solutions were fed from glass bottles 

through 14 gauge tubing, using pump rates managed by the control unit. 

Sartorius BBI’s MFCS/win 2.1 was the software used to record the data from the 

fermentations.  This program is a batch oriented Supervisory Control and Data Acquisition 
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(SCADA) System used specifically for fermentation processes.  The software was not only 

able to record the data but it also displayed the information in a graphical representation for 

easy monitoring of the environmental conditions within the vessel.  Also, it featured an 

extensive reporting system with export filters for alternate software programs that enabled 

efficient monitoring of the growth rates in Microsoft Excel.   

Figure 1.1  Picture of BIOSTAT® BPlus from Sartorius AG, Similar to the Bioreactor 
Used for this Study.  
 

Log Phase Experiment 
 

Prior to the bioreactor studies, the growth characteristics of the yeast were 

determined in order to identify the exponential growth phase.  Yeast cells were obtained 

from a stock culture stored at -80°C.  Once thawed, a sterile loop was inserted into the 

cryovial tube and the cells were streaked for isolation onto a culture plate containing sterile 

YPDS media (Appendix 1.A) + 1X 100 µg/ml Zeocin (cells containing the recombinant 

protein were Zeocin resistant).  The plates were then incubated at 36°C for 2 days.  For the 

exponential phase identification, a single colony was selected from the plate and used to 

inoculate a 250 ml sterile shake flask containing 50 ml of sterile buffered minimal glycerol 

histidine (BMGH) media (Invitrogen) (Appendix 1.B).  The cells were cultured at 30°C and 

agitated at 300 rpm using a bench-top incubator shaker for a period of 30 hours.  Cell 
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densities were determined by optical density (OD) measurements of the culture, obtained 

periodically by measuring a 1 ml sample in a Spectronic® 20 Genesys™ spectrometer at 

wavelength 600 nm.  This instrument measured the amount of light absorbed by a solution, 

where the OD of a culture was proportional to the cell density or biomass.  Samples were 

diluted with water, if necessary, such that the absorbance reading was below 0.5 units.  

Frozen stock colonies were made from the plates by isolating the remaining cells and storing 

them in a sterile 15% glycerol solution in cryovial tubes at -80°C.   

Preparation of Bioreactor 

Batch media components (Appendix 1.C) were added to the fermentation vessel 

first.  The batch media totaled 1 liter at the start of fermentation.  The calcium, magnesium, 

and trace metal components (Appendix 1.D) were added after the vessel was autoclaved 

because of their tendency to precipitate at high temperatures.  The biotin and histidine 

components were added later as well because these components degrade at high 

temperatures.  The magnesium and calcium solutions were autoclaved separately, while the 

trace metal, biotin, and histidine solutions were filter sterilized to remove impurities.  Table 

1.2 shows the components for two types of batch media investigated denoted as media A 

and B. 
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Table 1.2  Batch Media Recipes (1 liter) 
Component Media A Media B
Glycerol 20g 30g 
Phosphoric Acid, 85% 26.7 ml - 
Calcium Sulfate 0.93 g - 
Potassium Sulfate 18.2 g - 
Magnesium Sulfate-7H20 14.9 g 1.0 g 
Potassium Hydroxide 4.13 g - 
Ammonium Sulfate - 9.9 g 
Potassium Phosphate, pH 6.0 - 50 mM 
Potassium Phosphate, 
monobasic 

- 1.9 g 

Calcium Chloride - 0.2 g 
Sodium Chloride - 0.2 g 
Biotin 0.8 mg 0.8 mg 
Histidine 0.1 g 0.1 g 
Trace Metals 6 ml 6 ml 

Both medias adjusted to 1 liter volume using deionized water 

After adding the batch components, the bioreactor was closed and checked for leaks.  

The dissolved oxygen (DO) probe, pH probe, and thermometer were all inserted (the pH 

probe was calibrated using standard 4.0 and 7.0 pH buffers according to bioreactor 

operating instructions before insertion).  The tops of these probes, along with the agitator 

shaft, were covered with aluminum foil for protection in the autoclave.  All ports on the 

bioreactor were covered with their appropriate cap, clamped shut, and covered with cheese 

cloth and foil (the exhaust port and one of the media ports were left uncapped and 

unclamped to allow pressure release during autoclaving).  The water jacket was filled with 

water and then the entire vessel was put into the autoclave for 45 minutes at 121°C 

(necessary feed bottles and 14 gauge tubing with connectors were also autoclaved).   

Following completion of the sterilization procedure in the autoclave, the exhaust 

port was immediately clamped to maintain the sterile condition and the vessel was connected 

to the control unit.  The thermometer, pH and DO probes were connected to the control 

unit.  An air filter was connected to the sparger port and corresponding air port on the 

control unit.  The external water cooler was connected to the exhaust condenser.  At this 
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point the motor was placed on the agitator shaft and started at 200 rpm, and the control unit 

air was turned on at 1 volume of air/minute.  Once the air was turned on, the exhaust port 

was unclamped and placed into a graduated cylinder containing water, giving a visual 

indication of air flow through the bioreactor.  Once the temperature of the fermenter cooled 

to 60°C or below, the water jacket was connected (connecting the water jacket at a higher 

temperature could result in shattering of the glass vessel) and the temperature was set to 

30°C.  Also, the remaining media components were added.  Prior to inoculation, if the 

bioreactor was not to be used immediately, the temperature was lowered to 20°C, the 

condenser port was clamped, and the air source and air sparger were simultaneously turned 

off. 

Prior to inoculation the DO probe was calibrated after a 6 hour polarization period, 

and the pH probe was re-calibrated after autoclaving.  Also, the various set-points for the 

controls were entered and the data-recording software was started.  Table 1.3 summarizes 

the controls, set-points, and importance of these values for the fermentation.   

Table 1.3 Bioreactor Control Set-points for Fermentation of P. pastoris 
Control Set-Point Value Importance 
Temperature 30°C Higher temperatures result in lower protein 

expression, while lower temperatures lead to slow 
growth 

pH 5.0< pH <6.0 Necessary for growth optimization and secreted 
protein integrity 

Dissolved 
Oxygen 

40% Maintenance of  oxygen levels for metabolic 
purposes 

Agitation Low = 200 rpm, 
High = 1200 rpm 

Oxygen transfer rate increases with agitation rate; 
Agitation control is cascaded to DO so that external 
oxygen can be supplied after agitation has reach 
maximum 

Aeration > 1 volume/min. Oxygen transfer rate increases with air flow rate  
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Preparation of Inoculum 
 

For preparation of fermentation inoculum, a 1 ml frozen stock colony was added to 

a sterile 500 ml shake flask containing 100 ml of sterile BMGH media.  The shake flask was 

then incubated at 30°C and agitated at 300 rpm for about 14 hours, or until the OD 

measured between 2 and 3 at wavelength 600 nm (inoculation OD measurements were 

obtained from log phase experiment).  The total volume from the shake flask was then 

added to the vessel containing 1 liter of media via the inoculation port to yield a starting OD 

between 0.1 and 0.2.  The software was synchronized to the time of inoculation.  

Batch Phase 

The batch phase of the fermentation procedure began with the initial inoculation and 

was continued until the carbon source, glycerol, was consumed by the growing cells.  

Because a glycerol probe was not available for this study, glycerol depletion was determined 

by monitoring the presence of a ‘blip’ in the DO profile.  The initial DO value of nearly 

100% decreased to 40% (the set-point), where it was then maintained by the controller by 

increasing the agitation rate to account for the increased oxygen demand as cell density 

increased.  As glycerol levels were depleted, a quick increase, or ‘blip,’ in the DO profile 

indicated that oxygen consumption decreased due to the low glycerol concentration.   

Fed Batch Phase 

Upon depletion of the glycerol content in the initial batch media, the fed batch phase 

was initiated by adding fed batch media to the fermentation vessel.  The components of this 

media are listed in Appendix 1.E. 

The fed batch media was pumped into the fermentation vessel through a 14 gauge 

tube connected to a pump located on the control unit.  The feed rate was controlled by a 

profile based on the predicted growth rate of the cells.  Fed batch media was continuously 
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pumped into the vessel according to the profile until the OD leveled off, indicating that cells 

were no longer growing.  Table 1.4 shows the feed rates and corresponding time points for 

the profile system utilized.   

Table 1.4  Profile for Fed Batch Phase 
Time (hour of fed batch phase) Feed Rate (%)
0 6
3 10
6 16
8.5 23 
10.5 31 
13 45 
14.5 56 
16.5 76 
18 95 
19 and up 100 

Feed rates based on 14 gauge tubing and flow rate of 6.1 ml/minute 

Induction Phase 

Upon reaching the maximum cell density, the fed batch media pump was turned off 

and the cells were ‘starved’ until the culture was again depleted of glycerol.  Once this event 

occurred, the induction media was pumped into the fermentation vessel.  Components of 

this media are listed in Appendix 1.F. 

Two different feeding modes were studied for the induction phase.  In Method A, 

the feed rate was manually controlled by either increasing or decreasing pump speed in order 

to maintain a constant DO at 40%.  In Method B, the feed rate was entered into the control 

unit under a profile system in the same manner as the fed batch profile.  The feed rate 

percentages for the induction profile of this second method are listed in Table 1.5.  

Induction feed was allowed to continue depending upon the ability to maintain both DO 

levels and OD measurements.   
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Table 1.5  Profile for Induction Phase 

Time (hr of induction phase) Feed Rate (%) 
0-2 1 
2-4 2 
5 and up 3 

Feed rates based on 14 gauge tubing and flow rate of 6.1 ml/minute 

 Samples were taken during the induction phase at 12 hour intervals for a duration of 

60 hours to examine recombinant protein expression.  The OD was measured approximately 

every 2 to 5 hours.  A 1 ml sample was taken for further recombinant protein analysis using 

staining and blotting techniques.  The 1 ml samples were centrifuged at 4500 rpm for 5 

minutes using a Lanet Hermel benchtop centrifuge (model Z 233 M-2) in order to separate 

the pellet from the supernatant.  A 10 ml sample was taken for purification purposes.  The 

10 ml samples were centrifuged at 4500 rpm using a different model of the same centrifuge 

instrument (Z 383 K), however, the larger volume required 10 minutes of centrifugation.  

Both the pellets and supernatants were stored separately at -80°C for further analysis.   

Harvesting 

 At the end of the fermentation, the vessel was cooled to 20°C.  The cell broth was 

then manually pumped out using 16 gauge tubing into Nalgene® 500 ml centrifuge bottles 

with sealing caps.  The bottles were centrifuged to separate the cells and broth at 4500 rpm 

for 25 minutes at 4°C using a Beckman J2-HS centrifuge.  Pellets and supernatants were 

stored separately at -80°C.   

Total Protein Concentration 

 The total protein concentrations from both the supernatant and pellet fractions were 

determined using Pierce’s BCA™ Protein Assay Kit.  This method required that the samples 

be mixed with a specific amount of BCA (bicinchoninic acid) for the colorimetric detection 

and quantification of total protein.  The protein in the samples reduce Cu2+ to Cu1+ (Biuret 
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reaction) using a reagent to detect the reduced cuprous cation.  The protein concentrations 

were determined by comparing them with a standard curve that was generated according to 

protocol from known protein concentrations of bovine serum albumin (BSA).   

Intracellular Protein Extraction 

 After being thawed the pellets were resuspended in binding buffer (Appendix 1.G).  

This buffer was used for cell extraction because of its high pH, which would allow the 

elimination of the pH equilibration step in the purification method to be discussed in 

Chapter 2.  A French press was used at 20,000 psi to break open the cells.  The broken cell 

solution was then centrifuged at 4500 rpm for 5 minutes to remove the insoluble cell debris.  

The supernatant fraction was then heated for 20 minutes at 80°C to precipitate native yeast 

proteins, which were then removed by centrifugation.   

SDS-PAGE 

 After being thawed, 20 µl of each supernatant and cell debris sample were mixed 

with an equal volume of sample buffer (Appendix 1.H).  These samples were then heated at 

95°C for 5 minutes in order to denature the protein (disrupt secondary and tertiary 

structures). Each sample (20 µl) was loaded onto “4-20%” Precise ™ protein gels from 

Pierce Biotechnology, Inc.  In addition to the samples, 10 µl of the molecular weight marker 

Kaleidoscope from Bio-Rad Laboratories was loaded onto each gel.  Positope™ from 

Invitrogen was used as the positive control and was loaded in 10 µl (25 ng) sample sizes for 

each gel.  The  Positope™ recombinant protein was engineered with the c-myc epitope, so its 

presence could be detected in Western Blot analysis (Evan, 1985).  An external DC voltage 

power supply was used to send a current through the gels.  The running conditions were 120 

V for 45 minutes in the presence of running buffer (Appendix 1.I).   
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Protein Stain 

 Gels containing supernatant and cell debris samples were analyzed using the protein 

stain Coomassie® Brilliant Blue R-250 from Bio-Rad Laboratories.  The gel was submerged 

in a generous portion of the stain (~50 ml) and incubated overnight at room temperature 

while being shaken at 60 rpm.  The gel was de-stained using a 4:2:5 ratio of acetic acid, 

methanol, and distilled water, respectively. 

Western Blot 

 Unstained SDS-PAGE gels were used to analyze the specific proteins by Western 

Blots.  First, the SDS-PAGE gels, along with a Ready Gel™ Blotting Sandwich (0.45 µm 

nitrocellulose with filter papers) from Bio-Rad Laboratories, and transfer pads were 

equilibrated in transfer buffer (Appendix 1.J) for 20 minutes.  The transfer was conducted 

using protocols and apparatus from the manufacture (Bio-Rad).   The proteins were 

transferred onto the nitrocellulose membrane for 1.5 hours at 80 volts and 4°C.  The 

membrane was then air-dried and stored at room temperature overnight. 

Immunodetection 

 Each transfer membrane was washed twice using 15 ml of phosphate buffered 

saline/1% Tween-20 (1X PBST) (Appendix 1.K) at 60 rpm for 5 minutes.  Next, the 

membrane was carefully placed at a 40° angle into a container with 15 ml of blocking buffer 

(Appendix 1.L).  The membrane was incubated in this solution for 1 hour at room 

temperature at 60 rpm. Following this incubation, the membrane was again washed twice in 

1X PBST for 5 minutes.  Next, the membrane was incubated with 6 ml of Anti-myc antibody, 

Version D from Invitrogen, which was diluted in blocking buffer to a 1:5,000 concentration.  

This antibody was specific to the myc-epitope engineered at the carboxyl terminus of the 

recombinant protein.  The agitation rate was increased to 150 rpm to assure full dispersion 
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of the antibody over the membrane, and the incubation period was also increased to two 

hours.  The membrane was again washed twice in 1X PBST for five minutes.  Next, the 

membrane was incubated for one hour in 15 ml of the secondary antibody solution, which 

was diluted to 1:1,000 in blocking buffer.  The secondary antibody was ECL™ anti-mouse 

IgG horseradish peroxidase linked whole antibody (from sheep) from Amersham 

Biosciences.  The membrane was washed twice in 1X PBST for five minutes before 

chemiluminescent detection.    

Chemiluminescent Detection 

 Each membrane was placed protein-side up onto a piece of household plastic wrap.  

ELC™ Western Blotting Detection Reagents from Amersham Biosciences were mixed in 

equal ratios (1ml: 1ml) and then pipetted onto the membrane and incubated for 1 minute.  

The membrane was then blotted dry using paper towels before being wrapped in a dry piece 

of plastic wrap.  The membrane was then immediately placed into a light-proof, metal 

cassette.  Three pieces of Hyperfilm ECL™ high-performance chemiluminescent film were 

placed on top of the membrane.  The top two films were developed after 1 hour and 1.5 

hour exposure times using GBX developer and fixer from Kodak.  The film was developed 

for two minutes, fixed for five minutes, and then rinsed for one minute in water.   

RESULTS AND DISCUSSION 

Log Phase Experiment 

 In the initial stages of growth (lag phase), yeast cells were adjusting the media 

composition by synthesizing enzymes necessary to grow.  Following this period, cells entered 

into the log, or exponential, growth phase during which the cells divided by binary fission 

replication.  This exponential phase was characterized by a constant rate of cell division.  

Exponentially growing cells are robust and well characterized, thus inoculation of a 
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fermenter with these cells results in reproducible growth characteristics in the bioreactor.  

The results from a representative growth experiment are summarized in Figure 1.2. 

Growth Curve
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Figure 1.2  Cell Density versus Time for P. pastoris GS115 COALA Strain Cultured 
in a Shake Flask (BMGH Media) 

 
Exponential, or log phase growth occurred between OD measurements of 1 and 4 

(Figure 1.2). The average of these two readings, 2.5, was selected as the target OD for cells 

to be inoculated into the bioreactor. 

Batch Media 

Two different types of batch media were examined in this study for the COALA 

yeast strain.  Batch media A was based on Invitrogen’s basal salts media recipe for P. pastoris 

fermentations.  The only altered component of Invitrogen’s media was the glycerol 

concentration, which was lowered from 40 grams to 20 grams in order to decrease the batch 

time and reduce byproduct accumulation.   The yeast cells failed to grow exponentially 

twelve-hours post-inoculation in this media (+ 0.028 OD) (Figure 1.3).  At twelve hours, a 

second shake flask containing another starter culture in the exponential phase was added to 

the bioreactor.  The cells density immediately increased due to the addition of these cells (+ 
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0.692 OD) (Figure 1.3).  The cells were then allowed to continue in the batch phase for 

another 23.5 hours; however, no significant increase in OD was observed.  The culture 

history data for the fermentation confirmed that the culture was not growing.  The DO 

remained high which indicated that the cells did not need oxygen (Figure 1.3).  The DO 

value within the bioreactor never reached the set-point value of 40% (Appendix 2.A).  These 

cells were viable, however, since cells from the fermenter grew on plates.  Thus, the media 

composition was examined.   

Upon further analysis of the media and comparison with the BMGH culture media, 

nitrogen was found to be the limiting component.  Along with carbon and oxygen, nitrogen 

is a vital nutrient for biological organisms.  Nitrogen is necessary for the formation of 

proteins and nucleic acids.  As indicated in Table 1.2, nitrogen was not included in any of the 

components for Media A.  Invitrogen’s protocol assumes that sufficient ammonium 

hydroxide is added to the media at the start of fermentation to raise the pH to the set-point 

of 5; however, only a small amount of ammonium hydroxide was added to the media to 

adjust the starting pH from 4.5 to 5.0.  Since the initial pH was so close to the set-point 5.0, 

the cells were only supplied with a small amount of nitrogen which limited cell growth.  

Figure 1.3 highlights this lack of growth seen in COALA cells under the influence of batch 

Media A.   

In contrast to Media A, Media B contains almost 10 grams per liter of ammonium 

sulfate as the nitrogen source.  In Media B the cell culture grew exponentially for forty hours 

(Figure 1.3).  Additionally, nitrogen was supplied to Media B due to pH control with 

ammonium hydroxide (Appendix 2.B).   
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COALA Growth Curves with Batch Media A and B
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Figure 1.3  Cell Density versus Time for P. pastoris GS115 COALA Strains Cultured 
in a Bioreactor (Batch Media A and B) 

Batch Phase 
 

The batch phase growth for the two different clones using Media B, COALA and 

COLA, showed similar trends.  For COALA, the increase in the DO curve occurred at 

around 25 hours (Appendix 2.C).  The increase in the dissolved oxygen levels within the 

vessel indicated that the cells no longer had a carbon source.  The COLA fermentation 

reached the end of the batch phase at about 20 hours, slightly earlier than COALA 

(Appendix 2.D).  It might appear that the COLA fermentation consumed the same amount 

of glycerol media in a shorter amount of time due to a higher growth rate, since the starting 

cell densities were not significantly different (1.35 OD for COLA and 1.63 OD for 

COALA).  The measured growth rate for COLA was about 0.13 h-1 during the batch phase 

and 0.19 h-1 for COALA.  However, the final cell densities were 5 OD for COLA and 15 



30 

OD for COALA.  Thus, the COLA strain had a low cell yield on glycerol compared to the 

COALA strain.   

Fed-Batch Phase 

The fed-batch phase began after the initial batch glycerol was consumed.  A high 

concentration glycerol fed media was then added to the vessel to increase the biomass.  The 

fed-batch phase continued until the cell density leveled off.  At this time, the feed was 

stopped until the glycerol remaining in the fermentation vessel was depleted, which signaled 

the start of the induction phase.   

 For the COALA fermentation, the fed-batch phase began at 25 hours and continued 

for 17 hours.  During this time, 1.9 liters of fed batch media were pumped into the vessel.  

The feed rate had an exponential trend to promote exponential growth of the cells.  The 

history plot in Appendix 2.G shows that the stir rate was directly proportional to the feed 

rate which indicates good cell growth.  The fed batch growth phase was stopped when the 

cell density no longer increased as predicted, which was likely due to waste product 

accumulation. The cells were cultured for an additional 13 hours with no nutrient addition to 

allow for consumption of any excess glycerol or byproducts.  During this “starvation” phase, 

the cells continued to grow where they reached a cell density of 346 OD.  This continued 

growth in the starvation phase indicated that the cells were overfed during the fed-batch 

phase and that lower feed rates could be better for these cells.  The end of this starvation 

phase was determined by a decrease in stir rate and increase in the DO (Appendix 2.H), 

signifying no carbon sources were readily available to the cells.   

 The fed-batch phase for the COLA fermentation was longer than that of COALA.  

The fed-batch phase began around 20 hours, when cell density was 5 OD.  This fed-batch 

phase was 44 hours long, ending at 64 hours of fermentation time.  Like COALA, the 
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COLA culture was fed about 2 liters of fed-batch media.  The feed profile for COLA was 

not exponential.  The feed profile was manually controlled based on the stir rate (Appendix 

2.I).  Again, the cells continued to grow in the starvation phase, metabolizing glycerol and 

waste byproducts for another 26 hours (90 hours fermentation time).  Similarly to COALA, 

the cells density increased in the starvation phase to 280 OD. 

Induction Phase 

The induction phase began at the end of the starvation phase.  For COALA, the 

induction media feed rate was manually controlled (method A) by turning the methanol 

pump on and off, at varying rates, depending upon the ability to maintain 40% DO 

(Appendix 2.J)   During this phase, the cell density decreased to 250 OD initially and was 

maintained at this level until the end of the fermentation.  The induction phase lasted for 60 

hours and was terminated when the cells were no longer consuming oxygen as indicated by 

increasing DO levels.  

 For the COLA induction phase, method B was employed which used a set feed 

profile (Table 1.5).  The induction feed rate increased linearly from 1% to 3% over 4 hours 

and then remained at 3% for the duration of the induction phase (Appendix 2.K). During 

this phase the cell density reached a maximum of 350 OD.  The stir rate reached its 

maximum limit of 1200 rpm and supplemental oxygen was used.  At the end of the 

induction phase, the cell density had decreased to about 250 OD.  The entire induction 

phase for COLA was 53 hours.  The culture was terminated when the DO started to 

increase above the set point  which demonstrated that the carbon source utilization 

efficiency was decreasing.  
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Total Protein Concentration 

 Using a BCA™ assay, total protein levels from post-induction were determined for 

both fermentations from culture broths (Table 1.6).  The broth total protein levels were the 

result of protein secretion, cell lysis, and dilution by the feed medias.  The COLA samples 

had higher extracellular total protein concentrations throughout the induction phase.  The 

high initial protein levels gave an indication of the background levels of yeast proteins in the 

cell broth.  For both COLA and COALA, the recombinant proteins were not secreted in 

significant quantities into the broth because the total protein levels did not significantly 

increase, as reported secreted protein levels for P. pastoris can approach and exceed 100 

mg/ml (Cregg, 1993). Thus, we also harvested the pellets to see if the silk copolymers not 

being secreted were being made.  The total soluble protein concentrations obtained from the 

pellets were dependent on many factors, such as breakage efficiency and buffer volumes, 

thus these values can only be used as a means to normalize target protein levels to total 

protein obtained.   

Table 1.6  Total Protein Levels Obtained Post-Induction 
Supernatant Pellet Supernatant Pellet COLA 

Time Post-
Induction 
(hr) mg/ml 

COALA 
Time Post-
Induction 
(hr) mg/ml 

0 13 - 0 10 - 
12 8.9 18 12 8.7 14 
24 14 16 24 8.2 17 
36 18 25 36 8.4 8.4 
48 17 16 48 9.6 17 
60 19 13 60 9.6 17 

Protein Stain 
 

The stained SDS-PAGE gels of the supernatant and pellet samples confirmed the 

total protein values obtained by the BCA™ total protein assay, as the band intensities 

correlated with the total protein concentration (Figure 1.4, 1.5)  In all of the COLA 
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supernatant samples, two bands similar in size to the target proteins (30 and 60 kDa) were 

visible.  For COALA, two bands of 60 and 100 kDa were most prominent.  The COLA 

pellet samples also showed more visible bands at the 30 and 60 kD markers. In the COALA 

pellet samples, the 60 kD bands were only barely visible, while the 30 kD band was not seen 

at all.  

Figure 1.4  SDS-PAGE Gel of COLA and COALA Supernatants: Lane 1 contains the 
molecular weight marker.  Lane 2 contains 25 ng of the positive control protein, 
Positope™.  Lanes 3, 4, 5, 6, and 7 are COLA samples 12, 24, 36, 48, and 60 hrs post-
induction, respectively.  Lanes 8, 9, 10, 11, and 12 are COALA samples 12, 24, 36, 48, 
and 60 hrs post-induction, respectively.  Equal volumes were (20 µl) loaded in all 
sample lanes.   
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Figure 1.5  SDS-PAGE Gel of COLA and COALA Pellets: Lane 1 contains the 
molecular weight marker.  Lane 2 contains 25 ng of the positive control protein, 
Positope™.  Lanes 3, 4, 5, 6, and 7 are COLA samples 12, 24, 36, 48, and 60 hrs post-
induction, respectively.  Lanes 8, 9, 10, 11, and 12 are COALA samples 12, 24, 36, 48, 
and 60 hrs post-induction, respectively.  Equal volumes were (20 µl) loaded in all 
sample lanes.   
 

Western Blot  

 The results from the Western Blots showed no silk copolymer protein in the 

supernatant fractions for both strains.  Figure 1.6 shows the film after 1 hour exposure time, 

where only the positive control was seen. The detection limit for the chemiluminescent 

Western Blot was 2.5 ng/lane which was significantly more sensitive than the Coomassie 

stain which detected anywhere from 50-100 ng/lane.  This difference in detection indicated 

why the positive control was not be seen in the SDS-PAGE gels.  The results from the pellet 

fractions showed more positive results; however, they still indicated that the expression level 

of the silk copolymer protein was significantly less than expected.  For COALA, the highest 

amount of the target protein was found in the 12 hour post-induction sample.  Therefore, 

the protein was expressed in the cells soon after induction, but prolonged induction resulted 
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in protein degradation and no secretion.  Further work is necessary to improve the clones 

prior to additional fermenter optimization studies. 

~53 kDa
2 3 4 5 6 7 8 9 10 11 12

~53 kDa
2 3 4 5 6 7 8 9 10 11 122 3 4 5 6 7 8 9 10 11 12

 
Figure 1.6  Western Blot of COLA and COALA Supernatants: Lane 2 contains 25 ng 
of the positive control protein, Positope™.  Lanes 3, 4, 5, 6, and 7 are COLA samples 
12, 24, 36, 48, and 60 hrs post-induction, respectively.  Lanes 8, 9, 10, 11, and 12 are 
COALA samples 12, 24, 36, 48, and 60 hrs post-induction, respectively.  Equal 
volumes were (20 µl) loaded in all sample lanes.   
 

2 3 4 5 6 7 8 9 10 11 12

~53 kDa 60 kDa

2 3 4 5 6 7 8 9 10 11 122 3 4 5 6 7 8 9 10 11 12

~53 kDa 60 kDa

Figure 1.7  Western Blot of COLA and COALA Pellets: Lane 2 contains 25 ng of the 
positive control protein, Positope™.  Lanes 3, 4, 5, 6, and 7 are COLA samples 12, 24, 
36, 48, and 60 hrs post-induction, respectively.  Lanes 8, 9, 10, 11, and 12 are COALA 
samples 12, 24, 36, 48, and 60 hrs post-induction, respectively.  Equal volumes were 
(20 µl) loaded in all sample lanes.   

 

CONCLUSIONS 

 Fermentation optimization of the genetically engineered yeast strains COALA and 

COLA demonstrated that the cells could be cultured to high cell densities on minimal 

glycerol media.  Without a strong base media, the cells would be unable to proliferate, 

thereby rendering them incapable of advancing to the final induction phase necessary for 

protein production.  Media A (Table 1.2) was the same as the fermentation basal salts 
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medium, except for the glycerol concentration, set forth in Invitrogen’s fermentation process 

guidelines for P. pastoris. According to their protocol, an undiluted 28% ammonium 

hydroxide solution should be used to raise the pH to 5.0 before starting the fermentation.  

This study found several points that contradicted this protocol.  First, a large amount of 

ammonium hydroxide would have to be added in order to supply the cells with enough 

nitrogen source to obtain the high biomass necessary for the desired level of protein 

production.  Second, the starting pH within the vessel prior to the fermentation was so close 

to 5.0 that a very small volume of ammonium hydroxide was needed to adjust to the set 

point.  Third, and most notable, high levels of ammonium hydroxide have been shown to 

have a negative effect on yeast fermentation (Drabble and Scott, 1907).  In a study showing 

the effects various acids, alkalis, and salts had on the fermentation activity of yeast, it was 

shown that hydroxides not only inhibit fermentation, but small concentrations can have 

lethal effects by inhibiting reproduction.  A study conducted in 2006 also found a problem 

with Invitrogen’s basal salts medium, which has been the most common medium for high 

cell density fermentations with P. pastoris. However, it only alluded to possible problems 

such as unbalanced composition, ionic strength, and precipitates and was not able to link any 

results to media insufficiencies (Cos et al., 2006). 

 The shortcomings exhibited by Media A were overcome by using the benefits of 

Media B (Table 1.2).  This media included an ammonium sulfate component, adding not 

only a sufficient nitrogen source, but also including a salt ion important for biological 

functions.  Furthermore, the components of this media were responsible for giving a pre-

fermentation pH of almost 6.0 (Appendix 2.L).  Since a pH value between 5.0-6.0 has shown 

to be optimum for both growth and recombinant protein secretion (Cregg et al., 1993; 

Sreekrishna et al., 1997), starting at the maximum limit for pH can be advantageous.  This 
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higher value allows time for the cells to grow and acclimate within the fermentation vessel 

before reaching a pH of 5.0, a value that initiates the necessary addition of ammonium 

hydroxide to counteract the increasing amount of acid secreted by the growing cells. 

 In order to predict the growth rate for a optimal fermentation, the Monod growth 

model was used.   The Monod model is a mathematical representation used to predict the 

growth rate based on the substrate concentration.  It is useful when discussing microbial 

organism reproduction under cases of slow growth and low population density, all relevant 

in P. pastoris fermentations.  Under these conditions for nutrient-limited growth, the 

following equation is applied: 

µ = (µm S)/(Ks + S) 
 where µ = specific growth rate; S = nutrient concentration; µm = maximum specific growth 
rate; Ks = Monod constant, or the concentration of the growth-limiting nutrient at which the 

specific growth rate is half the maximum value. 
 

Two useful assumptions from this equation can be made.  When nutrient 

concentrations[S] become low, the equation reduces to µ = (µm S)/ Ks, resulting in a linear 

growth curve.  At higher concentrations, the resulting equation becomes µ = µm, giving a

horizontal, or stationary, growth curve.  Therefore, a lower nutrient concentration results in 

a higher nutrient affinity.  In other words, to obtain an exponential growth for the yeast cells, 

the feed rate needs to supply only the bare minimum amount of glycerol needed at any given 

time.  Using this information, a common growth curve for yeast growth can be formulated 

that is used to predict optimum growth (Figure 1.9).  With the feed profile listed in Table 

1.4, this characteristic growth pattern was obtained in the COALA fermentation (Appendix 

2.G). 
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Figure 1.8 Characteristic Growth Curve for Nutrient-Limited Bacterial Growth 
 

In addition to the batch media and feed profiles, strides in optimization were also 

made during the induction phase.  Many published protocols for P. pastoris fermentations 

that call for a 50% glycerol feed solution suggest a 30 minutes to 1 hour period of starvation 

before inducing the cells with methanol feed ((Cino, 1999), (Cos et al., 2006), ).  These short 

periods of starvation are thought to allow time for the cells to consume the remaining 

glycerol concentration, preventing negative inhibition on the AOX1 promoter (Invitrogen).  

However, this study showed that in fermentations of both COALA and COLA, the cells 

continued consuming glycerol and growing in numbers for 13 and 26 hours, respectively, 

after turning off the feed pump.  In fact, it was this long period of supposed ‘starvation’ that 

allowed the cells to reach such high cell densities (>200 OD).  It is hypothesized that the 

feed profile may have overfed the cells, but not excessively, such that the cells were able to 

grow efficiently in a nutrient-limited environment, where they used the remaining glycerol 

stock to continue this growth pattern once the feed pump was stopped.      

 The most favorable method of supplying methanol during the induction phase was 

not determined during this optimization study, because insufficient silk copolymer was 

made.  However, based on cell health, the methanol feed profile (Table 1.5) used in the 

Natural log 
of biomass 

Time
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COLA fermentation yielded two positive results not obseved in the manual method used in 

the COALA fermentation.  In comparing the history plots in Appendix 1 (J, K), the pump 

method created a more controllable DO level throughout the induction phase.  More 

notable, however, is the fact that this methanol feed profile also enabled the cells to continue 

growing during the induction phase.  The manual method for COALA simply allowed the 

cells to maintain their OD around a value of 250.  Once the COLA cells adjusted to the 

presence of methanol, they were able to increase from an OD of 280 to an OD of almost 

330 under these stable conditions.  This result was important considering a fluctuation in 

DO anywhere between 2% and 3% can be detrimental to the fermentation process and 

prevent high cell densities (Cohen, 2006). 

 In terms of protein production, the majority of the recombinant protein was kept 

intracellularly instead of being secreted into the supernatant.  Also, the Western Blots 

revealed that the COALA fermentation produced the majority of the protein.  However, 

these results do not imply that COALA had the ability to produce more protein than COLA 

did.  Even though both of these fermentations yielded a cell density of around 350, they 

achieved these densities at different points during the induction phase.  Also, each strain was 

subjected to different feed rates which influenced the production of recombinant protein.  

In order to conclude that one strain produces more target protein over the other, each must 

be subjected to similar fermentation conditions where the optimization parameters from this 

study are combined.   
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CHAPTER TWO 
Small-Scale Concentration and Purification of Silk/Collagen Recombinant Protein 

from P. pastoris

BACKGROUND 
 

Cloning techniques have made synthetic protein production a reality; however, the 

advancement of biotechnology in this field has been dependent upon the successful 

completion of subsequent purification and concentration methods (Amersham, 2001).  

Fortunately, with the completion of the human genome project and the developing science 

of proteomics, researchers are focusing on the area of protein purification now more than 

ever.  This demand is only further increased with the pressures placed by cancer, diabetes, 

and Alzheimer’s research which requires pure protein for drug development.  Therefore, 

progress is being made to meet the needs that a rapidly-growing recombinant industry 

requires (Ghosh, 2003; Smith, 2005). 

 Protein purification is a necessary component in industries such as biotechnology 

and the food industry for a number of different reasons, such as removal of impurities, 

prevention of catalysis poisoning, recommended product specifications, enhancement of 

protein stability, and reduction of protein degradation.  Unfortunately, the isolation and 

purification of protein from biological sources is widely known to be an extremely 

challenging process, both technically and economically (Ghosh, 2003).  Proteins produced in 

bioreactors must be separated from the host associated proteins, nucleic acids, and cell 

debris using removal, isolation, purification, and polishing steps.  RIPP is a common 

acronym which stands for these four basic steps.  A confounding factor regarding the 
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purification of recombinant proteins is that the product is often produced in extremely dilute 

solutions (Belter, 1988).    

 Chromatography is a common purification method used to separate proteins (Smith, 

2005).   Chromatography separates the target proteins from other components using a 

stationary phase intended to adsorb the desired protein.  A commonly used technique is 

column chromatography where the stationary phase is packed into a column.  The solution 

containing the desired product is then passed over the column and the target protein 

interacts with the stationary phase such that many of the impurities exit the column.  Many 

chromatography stationary phases exist that allow selection of characteristics unique to a 

specific protein to be leveraged.  Common chromatography methods are ion exchange, 

reverse phase HPLC, size-exclusion, and affinity chromatography which includes metal and 

immuno-affinity (Ghosh, 2003).  

 Incorporation of peptide tags into a recombinant protein have enabled 

chromatography purification of various target proteins based on the peptide tag (or affinity 

tag) (Hengen, 1995).  One example is the his-tag, a 6-mer of histidine residues.  The his-tag 

has an affinity for ions such as Cu2+, Ni2+, Co2+, and Zn2+ that allow it to be purified from 

other proteins using metal affinity chromatography, which has been shown to have up to 

95% yields (Hochuli, 1988).   

 Ultrafiltration is a technique that uses membranes and high-pressures to separate 

molecules based on size or molecular weight (Lo, 1996).  Furthermore, its ability to separate 

impurities and bacteria in addition to being able to isolate proteins has made it applicable to 

the chemical, biotechnology, pharmaceutical, and food industries (Cheryan, 1998).  

Ultrafiltration of recombinant proteins allows for the removal of water and some removal of 

host proteins.  For yeast fermentations, ultrafiltration can be a purification tool to remove 
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water because of the tendency of yeast to secrete the recombinant proteins and not native 

proteins (Sun et al., 2006). 

 The step-wise purification process outlined above involving preliminary cell 

extraction and centrifugation, chromatography, and ultrafiltration steps is currently the most 

popular method of isolating and purifying proteins (Chang, 1996).  However, this system is 

plagued with several problems that can be detrimental to the protein and costly to the 

producer.  Each of these steps is necessary in order to safely remove contaminants and 

impurities; unfortunately, the use of multiple steps leads to protein loss, greater operational 

costs, and longer processing times (Charoenrat, 2005).  It is possible to reduce the number 

of purification steps if measures are taken beforehand to carefully combine operations and 

select the ones that are absolutely necessary (Roy, 1999).  Not only do cell extraction and 

centrifugation methods increase the processing time, but they also expose the recombinant 

protein to many soluble byproducts which have the potential to degrade the desired product 

(Anspach et al., 1999).  In addition, these byproducts may hinder purification methods such 

as chromatography which require particle-free solutions.  Ultrafiltration removes water well, 

but can be expensive to operate and may cause precipitation problems for certain proteins 

(Bailey, 2000).  Solutions to these obstacles, such as expanded bed adsorption process 

(EBA), have shown potential for recovering recombinant protein from crude feedstock 

materials (Hyjorth, 1997).  This system reduces cost, time, and product loss by combining 

the purification and concentration steps into one operation utilizing an absorbent column 

with crude-cellular material being pumped in (Curbelo, 2003).  In fact, recent studies have 

shown it to be an effective and even more efficient system for the initial isolation of target 

proteins (Charoenrat, 2005). 
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 This chapter investigates the use of ultrafiltration and chromatography as means to 

purify the silk copolymer.  The silk copolymer samples were obtained from small-scale 

expression experiments of the COLA strain.  The silk copolymer protein levels at various 

purification steps were qualitatively determined by Western Blots. 

MATERIALS AND METHODS 
 

Small-Scale Expression 
 

The yeast cells were cultured according to Invitrogen’s Pichia Manual.  COALA and 

COLA yeast cultures were first colonized onto YPDS (Appendix 1.A) plates using the same 

procedure discussed in the Materials and Methods section from Chapter 1.  From these 

cultures, 250 ml baffled shake flasks containing 25 ml of BMGH (Appendix 1.B) were 

inoculated with a single colony.  The flasks were incubated at 30°C and at 300 rpm until the 

cell culture reached an OD value ranging between 2 and 6.  After 17 hours of growth, the 

COALA and COLA strains were in exponential growth at around 4 OD.  These cultures 

were then centrifuged at 3000 rpm for 3 minutes using a Lanet Hermel benchtop centrifuge 

(model Z 383 K).  Cell pellets were resuspended in 89 ml of BMMH media (Appendix 1.M) 

to achieve a final OD of 1.  Methanol (100%) was added to the shake flasks every 24 hours 

to maintain a 0.5% concentration.   After 70 hours of induction at 30°C and 300 rpm, the 

cultures had reached cell densities of around 10 OD. Supernatants and pellets were separated 

at 4500 rpm for 5 minutes and stored at -80°C. 

Concentration 

 The supernatant was thawed and processed using an Amicon 400 ml stirred cell from 

Millipore (model #8400) with 100 kDa and 10 kDa regenerated cellulose ultrafiltration discs 

(catalogue No. PLHK07610, catalogue No. PLGCO7610) (Figure 2.1). The first filtration 

used the 100 kDa membrane, which should allow the silk copolymer solution to pass 
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through.  The filtrate from the first step was then added to the Amicon stirred cell with the 

10 kDa membrane.  For this membrane the silk copolymer protein should be retained in the 

stirred cell (retentate) while smaller proteins (< 10 kDa) and water are removed.  

Instructions from Millipore were followed to operate this device. 

 

Figure 2.1  Flow Diagram for Ultrafiltration Process of Cell Extracts from P. pastoris 
GS115 COLA and COALA Strains.  The pore sizes of the membranes used in the 
steps were 100 kDa and 10 kDa, respectively.  Samples were alalyzed by SDS-PAGE 
and Western Blots shown in Figures 2.2 and 2.3 and correspond to the lane numbers 
given for each step. 
 

Purification 
 

The COLA pellets were thawed and then vortexted to resuspend the cells in 

breaking buffer (Appendix 1.N).  This total volume was then passed through a French press 

at 20,000 psi for two cycles.  The disrupted pellets were then centrifuged at 4500 rpm for 5 
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minutes to remove insoluble cell debris.  The crude cell extract was then heated for 20 

minutes at 80°C to precipitate native yeast proteins and then re-centrifuged to obtain the 

soluble cell extract.   

 In order to purify the silk copolymer protein, the cell extract was first brought to pH 

8.0.  The sample was loaded into a dialysis bag and then submerged in binding buffer 

solution (Appendix 1.G) until the pH reached 8.0, which was determined using pH paper. 

 Affinity chromatography was used to purify the silk copolymer protein.  First, glass 

fiber was placed into the bottom of a 50 ml syringe and then the Nickel-NTA HisBind resin 

(the affinity resin) from Novagen (catalogue # 70666) was packed into the syringe to give a 

bed volume of 25 ml.  Binding buffer (125 ml) (Appendix 1.G) was loaded onto the column 

and allowed to flow by gravity.  This step equilibrated the resin.  

 The pH-adjusted cell extract was loaded onto the equilibrated resin column and 

again allowed to flow through by gravity.  Next, 125 ml of Wash 1 buffer (Appendix 1.O) 

was loaded on the column, followed by 125 ml of Wash 2 buffer (Appendix 1.P).  The silk 

copolymer was eluded using 75 ml of Elution 1 and Elution 2 buffers (Appendix 1.Q, 1.R).  

Each wash and elution from the column was saved and stored at 4°C for later analysis. 

SDS-PAGE 

 Samples from the ultrafiltration and chromatography column were examined using 

SDS-PAGE and Western Blots.  After thawing, each sample (20 µl) to be tested was mixed 

with an equal volume of sample buffer (Appendix 1.H).  The samples were then heated at 

95°C for 5 minutes.  Samples were loaded onto “4-20%” Precise ™ protein gels from Pierce 

Biotechnology, Inc.  In addition to the samples, 10 µl of the molecular weight marker 

Kaleidoscope from Bio-Rad Laboratories and 10 µl (25 ng) of the positive control 
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Positope™ from Invitrogen were loaded onto the gels.  SDS-PAGE and Western Blot 

procedures are described in the Materials and Methods section of Chapter 1.  

RESULTS AND DISCUSSION 

Ultrafiltration Concentration 

 The results from the SDS-PAGE gel of the concentrated supernatant solutions 

showed two samples with protein, lanes 8 and 11 (Figure 2.2).  These lanes represented the 

10 kDa retentate from each strain, where the protein appeared to be around 60 kDa.  The 

Western Blot detected silk copolymer in all six samples, lanes 6-11 (Figure 2.3).  For each 

strain, the highest amount of protein was observed in the final retentate; however, the cell 

extract contained an equal concentration of the target protein.  The 100 kDa filtrate samples 

had the lowest concentrations of target protein.  Also, both the COLA and COALA strains 

showed bands in the final retentate that appeared around 50 kDa. 

Chromatography Purification 

 The SDS-PAGE gel from the purification procedure showed only one sample, lane 

7, with any significant amount of protein (Figure 2.2).  This sample corresponded to the 

solution remaining in the column after purification and, although it showed a large amount 

of protein, no distinct bands were apparent.  Also, the Western Blot in Figure 2.3 revealed 

that none of the target protein was in this lane.  The only other lane that detected any 

protein in Western Blot was the Elution 1 lane; however, it appeared to be an artifact and 

not an actual band.   

 An unexpected result was observed during the chromatography experiment.  After 

the sample was loaded onto the column and allowed to flow for a short time, a fiber-like 

structure formed in the solution on top of the column.  The material formed was a very fine, 

fiber-like strand and is shown in Figure 2.4.  The “fiber” ran from the top of the resin bed to 
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one side of the column wall and immediately disappeared into solution when the column 

was disturbed.  When the solution was further concentrated, another fiber briefly appeared. 
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18.9 kDa
7.5 kDa

204 kDa
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84 kDa
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204 kDa

136 kDa
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Figure 2.2  SDS PAGE Gel of COLA Column Purified Samples (lanes 3-7) and COLA 
and COALA Ultrafiltration Concentration Samples (lanes 8-13):  Lane 1 contains the 
molecular weight marker.  Lane 2 contains 25 ng of the positive control protein, 
Positope™.  Lanes 3, 4, 5, and 6 are wash 1, wash 2, elution 1, and elution 2, 
respectively.  Lane 7 is a sample retained in the column where fiber formation 
occurred.  Lanes 8, 9, and 10 are COLA cell extract, 100 kDa filtrate, and 10 kDa 
retentate, respectively.  Lanes 11, 12, and 13 are COALA cell extract, 100 kDa filtrate, 
and 10 kDa retentate, respectively. 
 

2 3 4 5 6 7 8 910 11 12 13

~53 kDa ~60 kDa

< 60 kDa

2 3 4 5 6 7 8 910 11 12 132 3 4 5 6 7 8 910 11 12 13
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Figure 2.3  Western Blot of COLA Column Purified Samples (lanes 3-7) and COLA 
and COALA Ultrafiltration Concentration Samples (lanes 8-13):  Lane 2 contains 25 
ng of the positive control protein, Positope™.  Lanes 3, 4, 5, and 6 are wash 1, wash 
2, elution 1, and elution 2, respectively.  Lane 7 is a sample retained in the column 
where fiber formation occurred.  Lanes 8, 9, and 10 are COLA cell extract, 100 kDa 
filtrate, and 10 kDa retentate, respectively.  Lanes 11, 12, and 13 are COALA cell 
extract, 100 kDa filtrate, and 10 kDa retentate, respectively. 
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Figure 2.4  Picture of Fiber-like Structure Formed during Column Chromatography 
Purification 
 

CONCLUSIONS 
 

The SDS-PAGE gel and Western Blot showed that the ultrafiltration method was 

successful in concentrating silk copolymer protein, however, the level of protein 

concentrated was small.  The Coomassie stain detected 50-100 ng of protein per lane, while 

the chemiluminscent Western Blot method detected 2.5 ng/lane.   Thus, the positive control 

sample (25 ng) did not show up on the SDS-PAGE gel because it was below the detection 

limit, but it was seen on the Western Blot.  The, silk copolymer protein was detected by 

Western Blots for both strains in the 10 kDa retentate samples, indicating that the 

ultrafiltration concentration method was successful in yielding a higher amount of protein by 

eliminating water and other solvent.  However, the Western Blot revealed that the cell 

extracts had almost the same amount of target protein as the 10 kDa rententate samples, 

indicating a loss of protein to the 100 kDa filtrate.  Furthermore, the filtrate samples 

contained the least amount of target protein, also suggesting that loss occurred during this 

step.    

Fibrous Structure
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 The column purification of COLA yielded unexpected results.  When the cell extract 

was loaded onto the column, a fiber formed in the fluid above the column stationary phase.  

If the fiber was the silk copolymer protein, it appeared that the presence of the resin, Nickel, 

or both can cause the silk copolymer to self-assemble.  The assembly process may also be 

concentration dependent. Additionally, the high pH of the loading buffer may induce the 

fiber-formation.  Further studies are needed to determine if the observed fibers are the silk 

copolymer protein.  If so, additional studies are needed to determine what specific 

conditions are necessary for fiber self-assembly.  These results would allow for control of the 

fiber self-assembly process.  
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CHAPTER THREE 
COMPARATIVE STUDIES WITH NATURAL SPIDER SILK 

 

BACKGROUND 
 

Orb-weaving spiders are excellent models for creating novel fibers.  Their silk not 

only mechanically out-performs any natural fiber in terms of  tensile strength and toughness, 

but it is also comparable to many of the synthetically produced fibers in use today (Gosline 

et al., 1999).  Therefore, much work has been conducted to gain a better understanding of 

the design of these materials.  However, according to well-known silk researchers, such as 

Gosline and Wainwright, these efforts will be futile unless measures are taken to identify the 

relationships between structure and function of silk (1999, 1988).  Gosline points out that 

much of the research into silk structure has used Araneus diadematus silk, while more of the 

functional-type studies have used N. clavipes silk, a discrepancy that has the potential for 

future problems if research into both these species is inadequate or misrepresented (1999).   

Until mechanical properties can be directly correlated with function, the design of the 

already known sequences and protein structure will continue to be a major obstacle for the 

genetic engineering of spider silk.   

 One way to understand these structure-function relationships is to first look at 

spiders and the ways in which different processing conditions influence the nature of their 

silk.  The conformation of silk does not solely rely on the initial molecular structure, but is 

also influenced by the spinning conditions and other processes affecting the deformation 

history.  Work completed by Pan et al in 2004 has shown conclusive evidence that the 

molecular make-up of spider silk is not solely responsible for the mechanical properties 
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exhibited by natural silk fibers.  The spiders themselves are able to control the properties 

depending upon various environmental conditions and impart different molecular 

orientations depending on habitat and intended use.  Looking at how the spiders alter the 

mechanical and molecular properties of their silk in response to various environmental 

fluctuations will provide much-needed insight into designing silk’s genetically-engineered 

counterpart (Pan, 2004).  

Pan et al. was able to correlate spinning conditions of the spider with mechanical 

properties of the silk.  The spiders used in the study were A. ventricosus, orb-weavers native to 

Korea.  Raman Spectroscopy and electronic tensile testing measurements revealed varying 

amounts of β-sheet and α- helical formation depending upon the manner in which the 

samples were collected. The first two of these samples were obtained from a spider that 

rappelled from a 100-cm high platform and then from one that was artificially silked at a 

constant speed.  The latter two samples were collected directly from the spiders’ living 

chambers, one being a 5-cm high carton and the other a 35-cm high glass box (Pan, 2004).    

The Raman spectra of samples were measured using laser beams polarized both 

parallel and perpendicular to the fiber axis.  The conformations of the polypeptides observed 

from the four samples consisted of a majority of β-sheet and α-helix structures in 

conjunction with random coil and β-turn structures.  However, the distribution of these 

molecular structures varied among the samples.  The peak at 1667 cm-¹ represented the 

C=O stretching of the amide I and was indicative of β –sheet formation.  This peak varied 

among the different spinning conditions and was most intense in the silk of the spider which 

rappelled, where there was the highest degree of orientation acting in proportion to the 

spider’s weight and dropping velocity.  The silk that was reeled showed the second highest 

amount of β-sheet orientation.  Most surprisingly was that there was a notable difference 
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between β-sheet orientation among the two spiders in a 5-cm carton and a 35-cm glass 

container.  The 35-cm glass container sample showed the higher amount, which according to 

the researchers, implied that the molecular structure was influenced by the security of the 

spider’s environment.  It was therefore inferred by these researchers that when a spider is 

confronted with danger, spinning mechanisms adjust (i.e. tensing of muscles) in order to 

create a more oriented fiber.  Therefore, in order to reproduce a fiber that mimics the 

properties of silk, it will be necessary to thoroughly study and understand the spider’s 

spinning apparatus (Pan, 2004).   

 Pan et al. also showed that correlation exists between α-helical structures and 

spinning conditions.  The characteristic Raman peak was 1650 cm-¹ for the spider reared in 

the 5-cm carton and was not observed clearly in the dragline of the dropping spider.  There 

was also an increase in strength and initial modulus with reel velocity, indicating that speed 

was necessary for the stretching and subsequent orienting of the molecules.  An increase in 

amount of random coil structures was observed proportional to an increase in 

environmental security.  To summarize, both the spinning conditions and environment had 

notable effects on the conformation of the dragline silk.  Molecular orientation increased in 

the silk under more dangerous environments.  The mechanical properties tested also 

correlated with their results.  Additionally, the highest strength and toughness were observed 

for the dropping spider.  The breaking stress and toughness were lower when environmental 

safety increased.  The results provided by this study demonstrated that an understanding of 

the spinning conditions and environments under which silk is produced could lead to an 

improvement in the technology for mimicking the properties of dragline spider silk (Pan, 

2004).     
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 Another recent study, by Y. Yang in 2005, highlighted the inter-relations between 

structure and function in regards to temperature dependence.  Climate and temperature have 

been shown to strongly affect silk and web-building behavior (Foelix, 1996).  Because 

spiders are ectotherms, they rely on external heat to raise their body temperature and seek 

out cooler environments if their temperature becomes too high.  Therefore, spider silk must 

be able to function under a wide variety of temperatures.  Using this information, Yang et al. 

concluded that spider silk has evolved to remain intact and useful under the temperature 

rang 0°C to 60°C.  This conclusion brought about further investigations into what happens 

to silk when exposed to temperatures outside of this range (Yang, 2005). 

 Yang et al. used dragline silk from N. edulis and examined its performance from  

-60°C to 150°C.  Data revealed that at high temperatures, the silk behaved like most other 

polymeric materials, in that its tensile strength decreased.  The elongation at the break point 

for silk however, decreased with increasing temperature, a property that is highly unusual for 

high-performance fibers.  A decrease of temperature surprisingly showed an increase in both 

strength and the elongation at the break point.  In addition, when the silk was broken in 

liquid nitrogen (-196°C), the silk showed evidence of stretching at the fracture.  Unlike other 

polymeric materials, spider silk fracture is ductile and tough at extremely low temperatures 

(Yang, 2005). 

 These temperature study results led Yang et al. to hypothesize a new molecular 

model for spider silk to explain the functions observed.  They first revised a previously 

proposed model in which silk was a matrix comprising unordered amorphous, rubbery 

chains reinforced by crystal structures (Termonia, 1994).  The new model incorporated two 

relaxation peaks which were observed at 198°C and 290°C using a dynamic mechanical 

thermal analyzer (DMTA).  Below 198°C, their model showed that non-crystalline parts of 
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the silk aligned with the fiber axis and were held together through hydrogen bonding.  

Above 198°C, the hydrogen bonds were broken which resulted in a more rubbery 

configuration with a crystalline portion.  This model helped explain the high storage 

modulus seen in DMTA studies when temperatures increased from 198°C to 290°C.  The 

temperature dependence behavior of spider silk has the potential to introduce new 

properties into high-performing fibers of the future, in particular superior performance 

under harsh environmental conditions (Yang, 2005). 

 A similar study into temperature-property relationships was conducted by a group 

led by Manual Elices (2005).  Their work on Arigiope trifasciata found similar behavior with 

regards to temperatures, and also examined a new parameter, humidity, to better understand 

silk properties.  They observed that both an increase in temperature and humidity caused a 

decrease in the initial elastic modulus, yield stress, and overall slope of the stress-strain curve.  

Like Yang et al., they concluded that this behavior was the result of disruption of the 

hydrogen bonds, which produced fibers with more elastomeric behavior. More interestingly, 

their work went on to observe this hydrogen bond phenomenon in regards to the natural 

spinning process of the spider (Elices, 2005). 

 Elices et al. began correlating temperature and humidity with silk properties by 

examining silk formation from aqueous, concentrated protein solutions.  In the spider, there 

are several structures along the duct and the spigot of the spinning apparatus that appear to 

be responsible for eliminating water from the aqueous solution.  Basing their hypothesis on 

the assumption that the water concentration is a vital component in spinning, they exposed 

the silk fibers to water baths and observed the reactions.  The major ampullate silk fibers 

underwent a reaction known as supercontraction, where the fibers shrank more than 50% of 

its original length and underwent drastic mechanical changes.  These supercontracted fibers 
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showed a low elastic modulus but high strain at break, accompanied by a higher modulus 

once dried (Elices 2005).   

 Next, Elices et al. went on to compare the contraction of the fiber with stretching in 

order to find a potential biological explanation.  They subjected silk fibers to a process 

known as wet stretching in which silk was allowed to supercontract in a water bath, 

stretched, and allowed to dry.  This process in theory forced the disruption of hydrogen 

bonds by the presence of water molecules and then stretched the material more, creating 

new hydrogen bonds which were locked into place after the drying step.  This study showed 

that this process, known as wet stretching, could account for the whole range of tensile 

properties exhibited by spider silk. Thus, a similar sequence of events within the silk gland 

would account for the spider’s ability to modify mechanical properties according to the 

intended use.  The fact that these stretching and contracting practices expend only a minimal 

amount of energy further supports their conclusion.  These studies have provided useful 

information from which to build upon, and also given hope in one day designing an 

engineering-grade fiber that can convert into a reusable material just by subjecting it to a 

wet-stretching process (Elices, 2005). 

 Studying the ways in which spiders modify the properties of silk has begun and will 

hopefully continue to increase our understanding of this process such that improved 

synthetic silks can be economically developed.  A 2005 study by Liu et al. has already built 

upon one of the principles discussed.  Their research using N. clavipes showed that dragline 

silk spun into a water batch extended the wet-spinning phase, imparting more molecular 

orientation and increasing the stiffness and resilience of the fiber.  Thus, their experiments 

demonstrated that it may be possible to vary the mechanical properties of the silk by either 

increasing or decreasing the length of the wet-spinning batch, much like the previous 
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authors believed the spiders change the supercontraction and stretching conditions within 

their spinnerets.  The results obtained from this study provide a useful link between 

structure and function which may enable new spinning processes to be developed for 

synthetic silks (Liu, 2005).   

 Chapter 3 describes comparative studies that focus on the temperature fluctuations 

observed in the spinneret region of N. clavipes during silk collection.  Images were captured 

by silking spiders under a thermal imager. Thermal pictures were also obtained from non-

silked spiders for comparison.  

 
MATERIALS AND METHODS 

 
Maintenance of N. clavipes Spider Farm 

 
Spiders of the species N. clavipes were collected for the purpose of comparative 

studies.  Spiders were obtained from two separate locations.  Some of the spiders were raised 

in a green house by biologist Jackie Palmer in North Carolina.  Once the spiders reached 

maturity, they were sent to Clemson University in Clemson, SC to be raised in captivity.  

Mature spiders were also collected was from Charleston, SC.     

 At Clemson, spiders were housed in a mesh tent measuring 9 feet in width, 7 feet in 

length, and 6 feet in height, totaling 378 ft³ (Appendix 3.A).  Each spider required at least 25 

ft3 for peaceful cohabitation, as less space resulted in carnivorous behavior.  N. clavipes, as 

well as all spider species, are extremely territorial in nature and will tend to provoke a fatal 

dispute if their web is intruded (Riechert, 1978).   

 The tent was housed in a multi-purpose room on the campus of Clemson University.  

The temperature in the tent was approximately room temperature (~25°C).  Humidity was 

controlled using a standard, household electric humidifier which was operated with 

deionized water.   
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 Strings were hung inside of the tent in a grid-like fashion (Figure 3.1).  This pattern 

enabled easy release of the spiders once they were either brought in from the field or 

finished silking.  The glass jar containing the spider would simply be placed at the bottom of 

a string, and the spider would be left to climb to the top of the tent to build a web its own.  

(Appendix 3.B).  The strings also proved to be a useful tool in isolating the spiders from one 

another, since they usually incorporated at least one of the strings into the construction of 

their web.   

 

= String= String

Figure 3.1  Schematic of Spider Tent Containing a Grid-Like Pattern of String 
 

Spiders were misted with deoinzed water from a spray bottle at least once a day.  

Also, spiders were fed a regular diet of crickets obtained from a local pet supply shop.  The 

crickets’ hind legs were removed before placing them in the web to prevent them from 

kicking their way out of the web or from harming the spider.  Spiders were fed anywhere 

from one to three crickets a day, but on average each spider received one cricket per day.  

Feeding was usually done in the late evenings because the spiders’ nocturnal behavior 

resulted in quicker response times, allowing the cricket to be captured before falling out of 

the web (Appendix 3.C).  Also, spiders were misted before feeding in order to condition 
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their behavior.  When this technique was done consistently, spiders seemed to expect the 

cricket which yielded a quicker response time.          

 Lights remained on inside of the multi-purpose room from approximately 8:00 am-

5:00 pm Monday-Friday.  Lights were not on during Saturday and Sunday.  However, the 

tent was positioned by two large windows, allowing natural sunlight to penetrate the tent 

during daylight hours.   

Silk Collection  

 In order to silk the spiders, they were first confined in glass jars and then placed into 

a 4°C refrigerator until they were in a fully sedated state (~1 hour) (Appendix 3.D).  Once 

they became unresponsive, the spiders were restrained onto their backs (ventral side up) 

using a piece of Styrofoam and metal staples (Appendix 3.E).  The staples were then quickly 

placed over as many segments of their legs as possible and always over the abdomen, as 

depicted in figure 3.2. 

 

Figure 3.2  Schematic of Spider Restrained on Styrofoam in Preparation for Silking 

The spiders were marked for identification once immobilized.  A brightly colored, 

pink nail polish was used to provide a system for recording the spiders as a way of tracking 

their silkings.  Special precaution was taken not to silk the same spider too often or on 

Styrofoam

Staples

Styrofoam

StaplesStaplesStaplesStaplesStaples
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consecutive days.  This technique helped to reduce the stress placed on the spiders, thus 

helping to increase their lifespan.  The spiders would periodically molt their exoskeleton, 

eliminating the marking left by the polish.  If molting occurred, the spider was either re-

marked with the same identification if known, or if not known, the spider would be given a 

new marking.  A drop of the nail polish was placed on one of 12 places: one of the three 

segments on either the front or back pair of legs.  The diagram in Figure 3.3 shows this 

system for labeling the legs.  In addition to being labeled, the spiders were also measured 

before each silking.  The length of the body was recorded along with the total length from 

front leg to back leg (Appendix 3.F).  Other observations such as whether the spiders were 

eating regularly and whether they were constructing a normal web were also recorded.  

These various notes were made and documented in case future studies correlating these 

parameters and silk properties are to be conducted.        

 

Left Front Leg (LF) Left Back Leg (LB)

Right Front Leg (RF) Right Back Leg (RB)

1

1

2

2
3

3

1

1

2

2
3

3

Ventral

Left Front Leg (LF) Left Back Leg (LB)

Right Front Leg (RF) Right Back Leg (RB)

1

1

2

2
3

3

1

1

2

2
3

3

Ventral

 

Figure 3.3  System for Labeling Spiders: nail polish was placed on either of the three 
segments on either the front or back pair of legs. 
 

The silk was collected on a spool constructed of washers and nails.  Eight thin nails 

were evenly spaced along a rubber washer.  The rubber washer was then super-glued to a 

metal washer in order to provide more stability.  The winder was constructed by The School 
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of Materials Science and Engineering’s computer technician David White.  The electronic 

device is extremely light weight and small in scale (measuring about 1 foot in length) so it is 

convenient for table-top use.  There are four different speeds on the winder: 0.72 mm/sec, 

0.96 mm/sec, 1.57 mm/sec, and 2.16 mm/sec. 

The spiders were silked by taking their dragline silk with a pair of tweezers and 

extending it over the spool until it attached to one of the nails.  The spiders were silked at 

various speeds, again being documented for future studies.  It was discovered that an excess 

of silk on one spool made it difficult to separate strands for Raman spectroscopy and tensile 

testing.  Therefore, spools were changed out during silking too allow for easy sampling.  

Once collected, the silk was placed into a large pill bottle obtained from a local pharmacy.  A 

bolt was inserted through the lid which allowed the spool to be tightly secured.   

 While collecting silk, thermal images were obtained using a TH5104 Iroman Thermal 

Imager from Mikron Instrument Company.  The camera was placed above the spider and 

focused over the spinneret region.  Figure 3.4-3.6 shows drawings of the winder, spool, and 

storage container.  Figure 3.7 shows the entire process of taking thermal images while the 

spider is being silked. 

 

Nail

Hole
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Figure 3.4  Overhead View of Spool 
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Figure 3.5  Electronic Silk Winder 
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Figure 3.6  Silk Storage Container 
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Figure 3.7  Experimental Setup for Thermal Imaging During Silking Process 
 

RESULTS AND DISCUSSION 
 

In order to better understand the spinning process of the spider, a thermal camera 

was used to detect any possible temperature fluctuations within the spinneret region.  The 

results obtained, although rudimentary, showed an increased temperature in that region 

when being silked as opposed to pictures taken while the spider was not being silk.  The 

unsilked spider showed the highest temperature region in the upper abdomen, where the 

cardiac region is located.  The thermal images of silked spiders showed two areas of 

increased temperature (the cardiac region and the spinneret region).  The temperatures 
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observed were between 25°C and 27°C.  The thermal images seen in Figures 3.8 to 3.13 were 

taken using different color scales in order to maximize color contrast.  In Figures 3.8, 3.9, 

3.11, and 3.12, the color blue corresponded to the highest temperature.  In Figures 3.10 and 

3.13, the color yellow corresponded to the highest temperature.    

Figure 3.8: Non-Silked Spider: shows increased temperature in cardiac region only  
 

Figure 3.9 Silked Spider 1.a: shows increased temperature in cardiac, spinneret, and 
mandible regions. 
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Figure 3.10: Silked Spider 1.b: same image from Figure 3.9 but with inverted color 
scale 
 

Figure 3.11: Silked Spider 2: shows an oblong, extended increased temperature region 
in lower abdomen  
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Figure 3.12: Silked Spider 3.a: shows increased temperatures in both spinneret and 
cardiac regions.  (The legs were extended upwards towards the lens, giving them an 
out-of-scale temperature range)  

 

Figure 3.13: Silked Spider 3.b: same image from Figure 3.12 but with inverted color 
scale 
 

CONCLUSIONS 

 The images from the thermal camera indicated that an increase in temperature 

occurred during silking at the spinneret that was of the same order of magnitude as the 

temperatures observed in the cardiac region.  At this level of resolution, it appeared that the 

temperature increased within the spinneret due to silk production.  The cause of the 

temperature increase is not known nor have the silk been correlated with different 
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temperature increases.  Further work is needed to examine the tensile properties of the silk 

with the temperature increases to draw any additional conclusions.  Also, it needs to be 

determined if the temperature increase is due to the chemical reactions occurring during 

silking (an exothermic reaction) or due to the spider redistributing heat to aid the silk 

production process.  
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FUTURE WORK 
 

This work examined three main areas of spider silk research necessary for the 

development of a naturally-based high-performance fiber.  First, optimization parameters 

were explored in order to obtain high cell densities through fermentation.  Essential batch 

media components were outlined that allowed efficient growth of the yeast cultures.  Pump 

profiles were used to maintain exponential growth, enabling high cell densities to be 

obtained.  Further work is needed to optimize the silk production phase which includes: 

glycerol feeding strategies, methanol feed rates, and pH.  

 The ultrafiltration concentration method proved useful in concentrating the silk 

copolymer protein secreted from the cells.  However, the high loses in this study need to be 

quantified and characterized to improve this ultrafiltration step.  The column purification of 

the cell extract resulted in possible formation of silk copolymer protein fibers.  The exact 

cause of the self-assembly conditions are still unknown, and thus work in this area should 

explore the effects that concentration, pH, temperature, and other parameters have on this 

protein. 

 In addition to recombinant silk protein research, continued work with natural spider 

silk is a key component for understanding the mechanisms for protein self-assembly.  The 

unique spinning method evolved by spiders is a model system for efficiently converting 

organic substances into highly specialized materials.  This thesis established the presence of 

temperature increases within the spider during the silking process; however, the cause of the 

temperature increases and the effects the temperature increases have on the silk properties 

need to be addressed.   
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APPENDIX 1 
RECIPES 

A. YPDS + Zeocin 

a. 1% Yeast extract (ACROS) 

b. 2% Peptone, from meat (Sigma Cell Culture™) 

c. 2% Dextrose, anhydrous (Fisher Scientific) 

d. 2% Agar (Sigma Cell Culture™) 

e. 1 M D-Sorbitol, 98% (Sigma®) 

f. 100 ug/ml Zeocin 

B. BMGH  

a. 100mM Potassium Phosphate, pH 6.0 [made from Potassium Phosphate, 

monobasic, HPLC grade (Fisher Scientific) and Potassium Phosphate, 

dibasic, anhydrous, p.a. (ACROS Organics)} 

b. 1.34% Yeast Nitrogen Base without Amino Acids (Difco™) 

c. 4 x 10-5 % D-Biotin (Fisher Scientific) 

d. 1% Glycerol, 99+% (ACROS) 

e. 4 x 10-3% L-Histidine, monohydro-chloride monohydrate (ICN Biomedicals, 

Inc.) 

f. Deionized water to 1 L 
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C. Batch Media A (I L) 

a. 26.7 ml Phosphoric acid, reagent, ACS, 85+% (ACROS) 

b. 0.93 g Calcium Sulfate, anhydrous, 99% (ACROS Organics) 

c. 18.2 g Potassium Sulfate, reagent, ACS (ACROS Organics) 

d. 14.9 g Magnesium Sulfate, anhydrous (Sigma Cell Culture™) 

e. 4.13 g Potassium Hydroxide, reagent, ACS, pellets, 85% (ACROS) 

f. 20 g Glycerol, 99+% (ACROS) 

g. 0.8 mg D-Biotin (Fisher Scientific) 

h. 0.1 g L-Histidine, monohydro-chloride monohydrate (ICN Biomedicals, Inc.) 

i. 6 ml Trace metal solution (See Media E) 

j. Deionized water to 1 L 

D. Batch Media B (1L) 

a. 50 mM Potassium phosphate, pH 6.0 [made from Potassium Phosphate, 

monobasic, HPLC grade (Fisher Scientific) and Potassium Phosphate, 

dibasic, anhydrous, p.a. (ACROS Organics)} 

b. 30 g Glycerol, 99+% (ACROS) 

c. 9.9 g Ammonium Sulfate, laboratory grade (Fisher Scientific) 

d. 1.9 g Potassium phosphate, monobasic HPLC grade (Fisher Scientific) 

e. 1.0 g Magnesium sulfate, anhydrous (Sigma Cell Culture™) 

f. 0.2 g Calcium chloride (ICN Biomedicals, Inc.) 

g. 0.2 g Sodium chloride, USP/FCC, (Fisher Scientific) 

h. 0.1 g L-Histidine, monohydro-chloride monohydrate (ICN Biomedicals, Inc.) 

i. 0.8 mg D-Biotin (Fisher Scientific) 

j. Deionized water to 1 L 



71 

E. Trace Metal Solution (1L) 

a. 6.0 g Copper (II) Sulfate, pentahydrate, reagent, ACS, fine crystals (ACROS 

Organics) 

b. 0.08 g Sodium iodide, 99+%, reagent, ACS (Aldrich Chemical Company) 

c. 3.0 g Manganese sulfate, anhydrous (Sigma Cell Culture™) 

d. 0.2 g Sodium molybdate (VI) dehydrate, 99+% (ACROS Organics) 

e. 0.02 g Boric acid, 99+%, powder (ACROS) 

f. 0.5 g Cobalt chloride, hexahydrate, minimum 99% (Sigma®) 

g. 20.0 g Zinc chloride, reagent, ACS, 97+% (ACROS Organics) 

h. 65.0 g Iron (II) sulfate, heptahydrate, p.a. (ACROS Organics) 

i. 0.2 g D-Biotin (ACROS) 

j. 5.0 ml Sulfuric acid, reagent, ACS (ACROS) 

k. Deionized water to 1 L 

F. Fed Batch Media (1L) 

a. 540 g Glycerol, 99+ (ACROS) 

b. 28 g Ammonium sulfate, laboratory grade (Fisher Scientific) 

c. 5.4 g Potassium phosphate, monobasic HPLC grade (Fisher Scientific) 

d. 2.8 g Magnesium sulfate, anhydrous (Sigma Cell Culture™) 

e. 0.6 g Calcium chloride (ICN Biomedicals, Inc.) 

f. 0.6 g Sodium chloride, USP/FCC, (Fisher Scientific) 

g. 1.8 g L-Histidine, monohydro-chloride monohydrate (ICN Biomedicals, Inc.) 

h. 2.0 mg D-Biotin (Fisher Scientific) 

i. 12 ml Trace metal solution (See Media E) 

j. Deionized water to I L 
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G. Induction Media (1L) 

a. 740 ml 100% Methanol, optima (Fisher Scientific) 

b. 12 ml Trace metal solution (See Media E) 

c. 1.85 ml L-Histidine, monohydro-chloride monohydrate (ICN Biomedicals, 

Inc.) 

H. 1X Binding Buffer 

a. 5 mM Imidazole, 99+% (ACROS Organics) 

b. 0.5 M Sodium chloride, USP/FCC, (Fisher Scientific) 

c. 20 mM Tris-HCl pH 8.0, ultrapure (Invitrogen) 

I. Sample Buffer (2X) 

a. 4.0 ml 10% (w/v) Sodium dodecyl sulfate (SDS), electrophoresis grade 

(BioRad) 

b. 2.0 ml Glycerol, 99+ (ACROS) 

c. 1.0 ml 0.1% (w/v) Bromophenol blue, sodium salt (J.T. Baker, Inc.) 

d. 2.5 ml 0.5 M Tris-HCl, pH 6.8 (MBL International) 

e. 2% (v/v) 2-βMercaptoethanol (J.T. Baker, Inc.) 

f. Deionized water to 10 ml 

J. Running Buffer (10X) 

a. 121 g Tris base, molecular biology grade (Promega) 

b. 238 g Hepes (Fisher Scientific) 

c. 10 g Sodium dodecyl sulfate (SDS), electrophoresis grade (BioRad) 

d. Deionized water to 1 L 
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K. Transfer Buffer  

a. 25 mM Tris base, molecular biology grade (Promega) 

b. 192 mM Glycine (BioRad) 

c. 20% (v/v) Methanol, optima (Fisher Scientific) 

d. Deionized water to 1 L 

e. Adjust to pH 8.3 [using Sodium hydroxide (Mallinckrodt Standard®) and 

Hydrochloric acid, 2N solution (Fisher Scientific)] 

L. PBST (1L) 

a. 8 g Sodium chloride, USP/FCC, (Fisher Scientific) 

b. 0.2 g Potassium chloride (ICN Biomedicals, Inc.) 

c. 1.44 g Sodium phosphate, monobasic, USP/FCC (Fisher Scientific) 

d. 0.24 g Potassium phosphate, monobasic HPLC grade (Fisher Scientific) 

e. 2 ml Tween® 20 (polyoxyethylene sorbitan monolaurate) (Fisher Scientific)  

f. Deionized water to 1 L 

g. Adjust pH to 7.2 [using Sodium hydroxide (Mallinckrodt Standard®) and 

Hydrochloric acid, 2N solution (Fisher Scientific)] 

M. 5% Blocking Buffer 

a. 33.25 g Powdered Blocker (Nestle® Carnation Instant Nonfat Dry Milk) 

b. 665 ml PBST (See Media L) 
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N. BMMH 

a. 100mM Potassium Phosphate, pH 6.0 [made from Potassium Phosphate, 

monobasic, HPLC grade (Fisher Scientific) and Potassium Phosphate, 

dibasic, anhydrous, p.a. (Acros Organics)} 

b. 1.34% Yeast Nitrogen Base without Amino Acids (Difco™) 

c. 4 x 10-5 % D-Biotin (Fisher Scientific) 

d. 1% Methanol, optima (Fisher Scientific) 

e. 4 x 10-3% L-Histidine, monohydro-chloride monohydrate (ICN Biomedicals, 

Inc.) 

f. Deionized water to 1 L 

O. Breaking Buffer 

a. 50 mM Sodium phosphate, pH 7.4, monobasic, USP/FCC (Fisher Scientific) 

b. 1 mM PMSF(phenylmethylsulfonyl fluoride) (Research Organics Inc.) 

c. 1 mM EDTA (ethylediaminetetraacetic acid), reagent, ACS (ACROS) 

d. 5% Glycerol, 99+% (ACROS) 

P. Wash I 

a. 10 mM Imidazole, 99+% (ACROS Organics) 

b. 0.5 M Sodium chloride, USP/FCC (Fisher Scientific) 

c. 20 mM Tris HCl pH 8.0, ultrapure (Invitrogen) 

Q. Wash II 

a. 20 mM Imidazole, 99+% (ACROS Organics) 

b. 0.5 M Sodium chloride, USP/FCC (Fisher Scientific) 

c. 20 mM Tris HCl pH 8.0, ultrapure (Invitrogen) 
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R. Elution I 

a. 80 mM Imidazole, 99+% (ACROS Organics) 

b. 0.5 M Sodium chloride, USP/FCC (Fisher Scientific) 

c. 20 mM Tris HCl pH 8.0, ultrapure (Invitrogen) 

S. Elution II 

a. 150 mM Imidazole, 99+% (ACROS Organics) 

b. 0.5 M Sodium chloride, USP/FCC (Fisher Scientific) 

c. 20 mM Tris HCl pH 8.0, ultrapure (Invitrogen) 
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APPENDIX 2 
FERMENTATION HISTORY PLOTS 
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APPENDIX 3 
SPIDER PICTURES 

 

A Spider Tent 
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B. Spider Climbing Out of Jar onto String 
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C. Spider Capturing Cricket 
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D. Spider Captured in Jar Before Being Placed in Refrigerator 
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E. Spider Pinned onto Styrofoam for Silking 
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F. Measurements Taken Prior to Silking 
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