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ABSTRACT 

 
 

The recent advent of synchronized phasor measurements has allowed a power 

system to be more readily observable.  In fact, when multiple buses are observed, 

applications that were never before possible become a reality.  One such application is 

the detection of line outages in remote or unobserved parts of the system.  Two such 

methods of line outage detection are examined.  First, principal component analysis is 

used to show that highly accurate line outage detection is possible.  Using concepts 

similar to principal component analysis, a novel line outage detection algorithm is 

developed.  Lastly, the efficacy of the novel line outage detection algorithm is examined 

using both steady-state and dynamic simulations. 
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CHAPTER ONE  

INTRODUCTION AND LITERATURE REVIEW 

1.1 Introduction 

The modern power system is one of the largest, most complex systems in 

existence.  As such, it requires complex algorithms to both operate and control.  

Therefore, it is difficult to discern the exact state of a power system at a given moment in 

time.  Many quantities of interest are not directly measured and those that are may not be 

time correlated [1].  Phasor measurement units (PMUs) were designed to alleviate this 

problem.  PMUs measure phasor quantities like bus voltage magnitudes and angles 

tagged with their time of measurement.  Each PMU utilizes a common time source so that 

many PMUs may be synchronized together.  For this reason, the phasor measured by a 

PMU is also known as a synchrophasor or synchronized phasor. 

Phasor measurement technology has its origins in the 1970’s with the 

development of the Symmetrical Component Distance Relay (SCDR) [2].  Research on 

the SCDR subsequently led to the Symmetrical Component Discrete Fourier Transform 

or (SCDFT).  The advent of the SCDFT allowed the calculation of positive sequence 

voltages and currents to be performed more quickly and more accurately than ever 

before.  Many researchers realized that such precise measurements could be used in 

applications other than protective relaying.  The possibility of using multiple PMUs at 

multiple different locations was promising.  However, since no common time source was 

available, the measurements could never be directly compared.  Even very small time 

differences meant that each measurement might be taken during entirely different 
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operating conditions.  Synchronization of phasor measurements became possible when 

the Global Positioning System (GPS) came online in 1978  [2].  GPS enabled phasor 

measurements to be related to a common and highly accurate time reference.  Thus, 

measurements taken relative to the GPS clock could be aggregated at a common location 

called a phasor data concentrator and aligned so that the absolute time reference was 

coincident between all measurements.  Figure 1.1 shows how a GPS time source can be 

used to provide an absolute time reference. 

 
Figure 1.1 – Time referenced phasor measurement. 

 
The current standard phase reference is a cosine function operating at nominal 

system frequency whose peak occurs on the second rollover [3].  Researchers at Virginia 
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Tech utilized the GPS time source to create the first PMU [4].  Many new applications 

were then developed to take advantage of the time aligned phasor data. 

One of the most natural applications of synchrophasors was in the area of state 

estimation (SE).  In the 1960’s, as power systems grew, it became increasingly important 

to estimate the state of a power system for economic and security reasons [4].  Bus 

voltage magnitudes and angles were estimated at first using active and reactive line flows 

and subsequently using bus voltage and injection measurements.  One disadvantage of 

these original systems was their possible slow time to convergence.  Depending on the 

application and the size of the system in question, the results of the state estimator could 

be obsolete by the time the estimate converged.  Phadke [4] was able to show a marked 

increase in SE performance if the algorithm utilized accurate bus voltage magnitude and 

angle measurements.  The addition of these measurements eliminated the need to 

measure many of the line flows as required by traditional state estimation.  With fewer 

measurements, the estimate converged faster.  In fact, given a magnitude and angle 

measurement at every bus, the algorithm would converge in a single iteration.  The 

inclusion of synchronized phasors into state estimation spurred many others to investigate 

the usefulness of this new tool. 

Current synchrophasor technology has advanced far beyond state estimation and 

the system first developed at Virginia Tech.  While the original PMUs were stand-alone 

devices, current synchrophasor technology exists mainly as an added feature in 

microprocessor based relays.  Schweitzer et. al. [1] discuss some current applications of 

synchrophasors using their synchrophasor enabled microprocessor relays.  Verifying that 
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a substation relay is correctly wired is easier using synchrophasors since the angle of 

voltage in each phase is measured relative to GPS time as opposed to a reference phase.  

Synchrophasors can also help to verify Supervisory Control and Data Acquisition 

(SCADA) systems.  Since PMUs are able to measure phasors up to 30 times per second, 

synchrophasor measurements can measure waveforms with a greater resolution than a 

traditional SCADA system.  Additionally, synchronized phasor measurements are useful 

for monitoring and control of large, geographically dispersed areas.  These measurements 

allow engineers to capture voltage and current waveforms during wide area disturbances 

and can be used to perform corrective action such as tripping distributed generation.  

Monitoring of wide area disturbances is fundamental to an increased awareness of critical 

situations in large power systems. 

A lack of knowledge about a system event, dubbed “situational awareness” has 

been identified as a cause of four of the six major North American blackouts [5].  While 

protective relays can protect against local faults and disturbances, little focus has 

historically been given to protection and monitoring of the wider area of a power system.  

Traditionally, monitoring the power system as a whole has been difficult due to the lack 

of accurate, up to date measurements.  Synchronized phasor measurements increase 

situational awareness through systems designed to monitor wide areas of a power system.  

1.2 Wide Area Monitoring Systems 

The overall objective of the Wide Area Monitoring or Wide Area Measurement 

System (WAMS) is to provide a more complete knowledge of the power system at large.  

Hadley et. al. [6] describe a WAMS as a system which complements the existing 
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Supervisory Control and Data Acquisition System (SCADA) to help manage and 

understand large, complex power systems.  Wide Area Measurement Systems serve to 

complement SCADA systems by providing real time data for increased situational 

awareness and event analysis [6].  The first wide area monitoring systems were designed 

for state estimation and only utilized line flow measurements [1], [2].  However, once 

synchrophasors were introduced into state estimation, other applications and 

implementations like the WECC WAMS were created. 

As a result of an increased want for dynamic power system information, the 

Department of Energy (DOE) helped to create the first synchrophasor based WAMS 

project in conjunction with the Western Electricity Coordination Council (WECC) [7].  

Since its inception the (WECC) has gained much experience from DOE’s project.  One 

benefit of this project has been increased development of EPRI’s FACTS system which 

pairs with WAMS measurements to provide wide area control.  As of 2004, the WECC 

WAMS contained 60 PMUs and 11 phasor data concentrators (PDCs).  The WECC 

system has led to many other WAMS and led to two IEEE standards.  Initially, standard 

1344-1995 developed basic measurement ideas and data formatting.  The new standard 

C37.118 was created to address issues like the definition of an “Absolute Phasor,” TVE, 

and PMU compliance tests. 

One use of WAMS which was not initially intended, but has grown out of years of 

experience is dynamic modeling of the power system and its validation.  Thus, when a 

dynamic event occurs, actual measurements can be compared with simulated ones to 

determine the validity of a model.  Assuming accurate system models, WAMS could 
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ultimately be used for very tight closed loop system control.  Control applications with 

delays on the order of 100s of milliseconds are possible with synchrophasors. 

Initial research in WAMS, however, has been mostly concerned with monitoring 

to provide better situational awareness.  In particular, the area of event detection has 

received much interest.  However, some issues arise which do not allow efficient 

detection of such disturbances.  For instance, the reaction time necessary for an operator 

to see changes in phasor measurements and take action may be too long.  Additionally, 

the change may be so slight as to be unnoticeable to the naked eye.  For these reasons, it 

is more efficient to detect system events and disturbances using synchronized phasor 

measurements. 

Event detection can be broken down into three separate stages [8].  Detecting the 

event, extracting event information, and classifying the event are essential to the event 

detection process.  Detection of an event is quite similar to detection of edges in the field 

of image processing.  While various methods have been proposed, most are quite similar 

to one another.  Extracting relevant event information, however, will depend on the 

specific application.  For instance, bus voltage angles are dependent upon many aspects 

of the power system, so the non-relevant information must be identified and discarded.  

Once the relevant information is obtained, event classification is performed using the 

many solutions devised in the area of pattern recognition. 

For instance, using simple calculations, the authors of [9] designed a logic based 

algorithm to detect voltage instability.  Information required of the algorithm included 

phasor measurements, real and reactive power flows, and frequency information.  The 
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logic based approach was divided into two steps.  The first step was labeled as filtering 

and the second step was labeled as ranking and analysis.  Filtering of system disturbances 

was based on voltage deviation, but subsequent ranking was based on voltage, frequency, 

and voltage angle deviation. 

Another approach to detection of voltage instability was investigated in a paper by 

Khatib et. al. [10].  The authors of this paper utilized decision trees (DT) due to their 

inherently quick computation time and success in previous research.  In order to build the 

decision tree (DT), training data was used for a number of prototypical sample cases.  

Throughout the design of the DT, choices were made as to which cases were secure and 

which were insecure.  These choices then dictated where the tree’s nodes branched off.  

Therefore, in order for the decision tree to be most useful, its set of training cases had to 

encompass all cases for which a test was desired.  Herein is the downfall of the decision 

tree approach.  In order to train the decision tree, five loading conditions were used with 

various simulated contingencies and the subsequent margin to voltage collapse was then 

calculated.  In total, 166 different scenarios under five loading conditions were simulated 

for a total of 830 sets of data points.  The authors point out that the placement of PMUs 

and the types of phasors (i.e. voltage magnitude and angles, current magnitude and 

angles) utilized in computation were critical to the algorithm’s success.  Although no 

quantitative results were mentioned, the accuracy was said to be comparable to the 

previous decision tree algorithm whose misclassification rate was cited as 18% [11]. 

The decision tree type algorithms above attempt to provide not only a means of 

classifying voltage instability, but also the basis for such classification.  In other words, 
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the decision can be traced from the root of the tree to show the foundation of the solution.  

Other authors have devised event detection algorithms whose solution is not so easily 

traced to its roots.  Artificial Neural Networks (ANNs) were used in [12] to detect fault 

locations in double circuit transmission lines.  Faults in parallel lines create a non-linear 

impact on mutual coupling in unfaulted phases which prompted the authors to forgo an 

attempt at a deterministic model.  Rather, a two pronged approach was utilized.  First, 

prototypical features were extracted using unsupervised learning.  Next, supervised, on-

line classification was performed on those features.  The authors cited a misclassification 

rate of 1% out of 100 test cases.  In the same article, an ANN approach to voltage 

instability detection was also mentioned.  In both cases, a large number of operating 

conditions had to be simulated to train the systems. 

Smith and Wedeward [13] utilized a constrained optimization approach for both 

detection and localization of power system events.  The authors simulated the dynamic 

nature of line outages in MATLAB then used the results to perform online constrained 

optimization resulting in time-series data for bus voltage magnitudes and angles.  The 

difference in bus voltage magnitudes and bus voltage angles were then used to determine 

and locate line outages.  Performance of the algorithm was measured based on the 

proximity in number of buses to the actual buses involved in the outage.  On average, the 

optimization algorithm was 5 to 6 buses away from the true outage buses.  Here again, 

the authors created an algorithm whose results were not directly traceable to the source 

and whose computation time was debilitating. 
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Tate and Overbye described how synchrophasor measurements can be used for 

detecting single and double line outages [14], [15].  Using the DC approximations of a 

power flow, the authors were able to detect line outages with varying degrees of 

accuracy.  Distribution factors based on the DC power flow assumptions were pivotal in 

creating the line outage detection algorithm and well known in the area of contingency 

analysis [16].  Since synchrophasors can measure voltage angles in near real-time, 

Overbye and Tate showed that the same DC distribution factors can be used in on-line 

analysis. One potential downfall of this algorithm was that it requires a line flow 

measurement on every line in addition to phasor angle measurements.  Once detected, a 

line outage was classified using an exhaustive nearest neighbor search based on the 

Euclidean distance measure.  PMU placement is also mentioned as being critical to this 

algorithm’s success since it is assumed that only a few key buses will be measured. 

While many of the aforementioned papers utilize bus voltage magnitudes and 

angles as indication of power system events, the authors in [17] use frequency deviations 

at wall outlets as indication of power system events.  A study was performed with 10 

frequency monitoring devices geographically dispersed across the United States.  Both 

location and magnitude of generator tripping were studied.  Utilizing the relative time of 

frequency deviation between the different monitoring locations, the events were localized 

on Cartesian coordinates.  By first assuming the rate at which the electromechanical wave 

propagates, the authors are then able to solve a least squares problem to find the probable 

hypocenter of the event.  Solutions based on Newton’s method and gradient descent were 

also examined.  In all three cases, the power system event was first localized in Cartesian 
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coordinates then possible events were derived based on knowledge of actual system 

topology and measurement location.  A common thread here and with many other event 

detection algorithms is the sensitivity to PMU placement. 

1.3 PMU Placement 

With critical applications such as power system control and wide area protection, 

the location of a phasor measurement becomes increasingly important.  Due to high cost, 

it is unrealistic to place stand-alone phasor measurement units at every bus in a power 

system.  To help mitigate this cost, phasor measurement units are being integrated into 

microprocessor based protective relays.  Still, not every bus in a power system will 

require even a microprocessor based relay. 

 Many methods for PMU placement and optimizing such placement have been 

proposed.  Baldwin et. al. and Clements [18], [19] described power system observability 

and its use in PMU placement.  Locating a power system’s PMUs based on bus 

connectivity alone, however, does not take into full consideration the effect of the 

sensitivity of certain buses to changes in the power system.  Zhao [20] compared multiple 

methods of PMU placement constrained by sensitivity indices.  While sensitivity 

constraint did improve each method, the quickest and most simple solution was via linear 

programming [21].  In most cases, it has been shown that complete power system 

observability can be achieved with PMU installations on one third of the total number of 

buses. 
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1.4 Thesis Overview 

The main focus of this thesis is to examine a technique for detecting line outages 

using bus voltage angle measurements on some or all of the buses in a power system.  

Design goals for the proposed algorithm include minimizing the time of computation as 

well minimizing the number of required system measurements.  For this reason, bus 

voltage angles via synchrophasors were used as the primary measurement type.  Vutsinas 

[22] provides proof that bus voltage angles, in addition to current magnitudes, are the 

major polarizing quantities between differing system contingencies.  Therefore, a 

technique known as Principal Component Analysis (PCA) is performed on the difference 

in pre and post contingency voltage angles and is examined in Chapter 2.  These results 

not only show the usefulness of such a technique, but they also led to the development of 

a novel algorithm based on the DC power flow assumptions.  A derivation of the 

proposed algorithm is presented along with a detailed numerical example in Chapter 3.  

Throughout Chapter 4, the new algorithm is compared to the algorithm devised by 

Overbye and Tate in [14] and [15] using steady state MATLAB simulations on a reduced 

47 bus test system.  Finally, the dynamic efficacy of the proposed algorithm is examined 

in 0 using actual PMU data and a PSS/E simulation. 
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CHAPTER TWO  

PRINCIPAL COMPONENT ANALYSIS 

2.1 PCA Principles 

The technique known as Principal Component Analysis (PCA) is primarily used 

as a tool for reducing the dimensionality of large data sets [23].  In a power system with 

many PMUs and large numbers of measurements, data reduction techniques like PCA 

will prove invaluable.  PCA reduces the dimensionality of a data set by transforming the 

data to a new set of (possibly fewer) variables which both remove correlation and retain 

as much of the original variation as possible [24].  Many variations and techniques 

similar to PCA exist which utilize these same basic ideas.  In an effort to encourage 

further research into PCA in power systems, some basic principles of PCA will be 

described.  Next, the use of PCA in detecting human faces in images known as eigenfaces 

will be presented.  The eigenfaces techniques will be adapted to power systems in section 

2.3.  Finally example of this adaptation will be presented.  The following is a derivation 

of PCA adapted from [24] to be used as a basis for later discussion. 

Suppose the following Figure 2.1 shows a two dimensional dataset consisting of 

students’ class attendance in relation to their overall grade.  Clearly, the students with the 

highest overall average attend class the most.  Visually, the trend appears like a line with 

positive slope toward the right of the figure.  In fact line could be drawn on the figure to 

approximate the relationship between the two variables. The trend is easy to see from the 

figure, but if more factors are also considered (i.e. time spent studying, extracurricular 

activities, additional tutoring) the relation between these factors is less obvious and 
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cannot be represented by a line in two dimensions.  PCA can help elucidate these more 

complicated trends.  Note that in a power system, the data will almost never be as simple 

as shown below. 

 

Figure 2.1 – Two-dimensional class attendance plot. 
 

Each of the data points above contains some common attribute which determines 

the largest extent to which it varies and some secondary attribute which determines the 

remaining degree of variation.  It should be noted that, in general, PCA is used on data 

sets whose dimensionality is much larger than two.  Two dimensional data is used to 

allow the dataset to be plotted.  Using principal component analysis, either of these two 

common attributes can be removed so that only one remains.  For notational purposes, 

Table 1 below shows a sample of the data above.  Student attendance will be labeled x1 

and the overall score will be labeled x2.  
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Table 2.1 – Sample classroom attendance values. 
 

Attendance
(x1) 

Overall Score (%)
(x2) 

69 71.17 
71 68.69 
76 71.94 
77 74.73 
74 88.83 
80 74.61 
79 88.11 

 
Consider the components x1 and x2 to be part of the two dimensional data set x.  

The first goal of PCA is to find a number of linear functions having maximum variance 

which describe the data.  In this way, a linear function will describe the attribute which 

makes the data vary the most and another linear function will describe the remaining 

variation.  To begin assume a linear function 1
Tv x  exists describing the greatest variation 

written such that: 

 
2

1 11 1 12 2 1
1

i i
i

v x v x v x


  Tv x (2.1.1)

Another similar linear function 2
Tv x  which is totally uncorrelated with 1

Tv x can be 

written as: 

 
2

2 21 1 22 2 2
1

i i
i

v x v x v x


  Tv x (2.1.2)

In order for both functions to be uncorrelated, any variation described by one 

function cannot also be described by the other.  The two functions can then be thought of 

as separate components which when summed, described the entire dataset.  For our 

example, only two such linear functions can be created in this way.  However, as many 
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linear functions can be written as the dimension of the data set with the requirement that 

each is mutually uncorrelated with the others.  From linear algebra, we know that two 

uncorrelated vectors are orthogonal to one another if the projection of one onto the other 

has zero length.  Before describing the process for calculating these linear functions of x, 

first examine the result plotted against the original data.  Clearly, the lines are orthogonal 

to one another and the trend described earlier is blatantly clear. 

 

Figure 2.2 – Classroom attendance showing optimal linear functions. 
 
 Figure 2.2 above shows the directions of maximum variance, not the degree to 

which they vary.  The lengths of the lines above differ merely to emphasize the fact that 
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the direction vectors to length one, so that ||v1
Tv1|| = 1 and ||v2

Tv2|| = 1.  Therefore, it is 

possible to form a constrained optimization problem using LaGrange multipliers [25].  

Since the goal is to find vectors which optimize the variance, the objective function can 

be written as var[v1
Tx] = v1

T v1
 where  is the covariance matrix of x.  Thus, the goal of 

the optimization is to maximize the following function: 

  1 T T
1 1 1 1v Σv v v  (2.1.3)

In order to maximize this function, the first derivative is taken with respect to v1, and the 

point where the result equals zero is determined as follows: 

 0 1 1Σv - v  (2.1.4)

Equivalently: 

   0 1Σ I v  (2.1.5)

This form indicates that  is an eigenvalue of  with corresponding eigenvector 

v1.  However, both andv1 are still unknown, so the question is which of the eigenvalue, 

eigenvector pairs to choose.  Since the dimensionality of the problem is two, there will be 

two such eigenvalue, eigenvector pairs.  From above, 1 1Σv λv , and recall that the 

objective is to maximize v1
T v1

T.  Thus, the objective function can be rewritten as 

follows: 

   T T T
1 1 1 1 1 1v Σv v v v v (2.1.6)

and since ||v1
Tv1|| = 1

 

  1   T
1 1v v  (2.1.7)
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In other words, the objective function is a scalar, so the maximum value of  is 

simply the largest eigenvalue.  This relationship indicates that v1 is the eigenvector of  

which corresponds to the largest eigenvalue which will be called .  The vector v1, when 

multiplied by x, is called the first principal component (PC) of x.  Using the technique 

mentioned above will elicit the first PC, but in order to find the remaining principal 

components, a slightly modified technique is used. 

 In order to find the second principal component from the second line function or 

v2
Tx, the objective is still to maximize v2

T v2
T, such that ||v2

Tv2|| = 1, but an additional 

constraint must also be met.  The new constraint assures that the second principal 

component is completely uncorrelated with the first.  Essentially, the constraint causes 

the covariance between the first and second principal components to be zero: 

 cov( , ) 0T T
1 2v x v x  (2.1.8)

by definition: 

 1 2 1 2 2 1 2 1 1 1 2 1 1 1 2cov( , ) 0T T T T T T T       v x v x v Σv v Σv v v v v v v  (2.1.9)

Or 

 1 1 2 0 v v  (2.1.10)

Since is a positive semi-definite matrix,is necessarily non-zero, so the constraint 

becomes v1
T v2 = 0.  Now, the optimization problem can be formulated as follows: 

  2 2 2 2 2 11T T T   v Σv v v v v (2.1.11)
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Differentiation with respect to v2 yields: 

 2 2 1 0   Σv v v  (2.1.12)

If the equation above is pre-multiplied by v1, the result is: 

 1 2 1 2 1 1 0T T T   v Σv v v v v (2.1.13)

From the equation above, the first two terms are zero, so only v1
Tv1=0 is left.  Therefore 

 must be zero since v1
Tv1=1.  When  =0, however, the optimization problem becomes: 

  2 2 2 2 1T T v Σv v v  (2.1.14)

This is the same as before, so v2 is the eigenvector corresponding to eigenvalue where 

 =v2
T v2

T is to be maximized.  The vector v2 is distinct from v1, so is distinct from 

which means that , the second largest eigenvalue of and v2
Txis the second 

principal componentThus, it is possible to reason inductively, that the remaining 

principal components can be found in a similar fashion, removing all previous PCs’ 

correlation from the new PC.  Without delving further into the subject, it is sufficient to 

state that many variations exist on the derivation and practical calculation of principal 

components.  Many applications of PCA also exist.  

2.2 PCA in Face Recognition 

 One of the primary uses of PCs, dimension reduction, is possible by selecting 

fewer principal components than the total dimensionality of a data set, but which still 

capture the largest amount of variance in the data set.  Using similar techniques, 

applications other than dimension reduction are possible.  Turk and Pentland [26] used a 

technique they called “eigenfaces” to both detect and classify human faces.  The process 
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was two-fold.  First a set of prototype or training faces was used to create a face space.  

Next, when an unknown image was to be classified, the new image was projected onto 

each of the training faces to produce a set of weights.  To determine if the new image was 

a face, the distance between the face space and the new image was found.  Finally, if the 

new image was identified as a face, it was classified by comparing its weights to known 

weights. 

Since images are two-dimensional, the pixels of each of the training and any new 

image were stacked column by column to form one long column vector.  For the set of 

training faces, an average face was determined by finding the row average of all training 

faces.  Next, the difference between the training faces and the average face was found.  

This resultant matrix of mean-centered faces was subjected to a principal component 

analysis to find a set of eigenvalues and eigenvectors which optimally described the 

variance of the matrix.  The eigenvectors are dubbed eigenfaces.  Only a small number of 

eigenfaces which describe most of the variation must were retained.  When a new image 

was encountered, it was first mean-centered, and subsequently projected onto each of the 

retained eigenfaces.  This projection resulted in a number of weights equal to the number 

of retained eigenfaces.  The weights were stacked vertically in a vector then compared to 

known weight vectors.  Identification was based on which weight vector was the closest 

in terms of Euclidean distance from the calculated weight vector of the unknown face. 

 

 

 



20 
 

2.3 PCA Adapted to Line Outage Detection 

Using ideas similar to Turk and Pentland [26], line outages can be detected in a 

power system.  Rather than columns of pixels, however, the bus voltage angular 

differences can be used.  Assume an m-bus power system has the following steady-state 

angles before and after a line outage: 

1,

2,

,

pre

pre

m pre







 
 
 
 
 
  


    

1,

2,

,

post

post

m post







 
 
 
 
 
  


 

The difference in these two vectors can be formed as follows: 

 post preθ θ Δθ   (2.3.1)

Of course, this analysis assumes that measurements of the bus voltage angles are 

available at every bus.  While this assumption is not realistic it can be relaxed later. 

Given a set of possible or typical operating conditions before an outage, many of 

these Δθvectors can be formed.  For n simulated conditions, a matrix can be formed as 

shown below. 

 

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

T

n

n

m m m n

  
  

  

   
    
 
     




   


(2.3.2)

Each of the columns is an angular difference for a specific line outage at a given loading \ 

generation condition.  Using the principal component techniques on the covariance 

Line Outage 
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matrix of T described above, the set of optimal eigenvectors vm and eigenvalues m can 

then be found as follows: 

   1

1
T

m
   

 T TT μ T μ and m m mv v  (2.3.3)

In the equation above T is the row mean or a column vector of averages taken across all 

the columns (operating conditions) of T.  Similar to the eigenfaces technique, a small 

number of vectors called “principal outage vectors” can be retained which describe the 

maximum amount of variation in the matrix T.  From here, the process follows along 

exactly with the eigenfaces technique.  A numerical example of the application of this 

technique is shown below.  

2.4 Principal Outage Vectors Example 

The following is a brief example of the principal outage vector technique using a 6-

bus test system from Wood & Wollengberg [16].  The system data can be found in 

Appendix A.  Simulations were performed using MATPOWER in MATLAB [27].  All 

power flow results were calculated using the full Newton-Raphson power flow solution.  

Using the data provided in Appendix A as a base case, 100 separate operating conditions 

were simulated.  In each case, a random set of load values was created using a Gaussian 

normal distribution with a standard deviation of 30MW and a mean centered at the base 

case value for each bus.  The power flow solution was then calculated for each of the 

operating conditions.  Next, each line was removed individually from the system at each 

operating condition and the power flow solution was again calculated.  From the pre-

outage and post-outage bus voltage angles, a vector of angular differences Δθ
 
was 
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formed yielding 1100 such vectors (100 loading conditions, 11 lines outaged). The matrix 

T was then formed where each column was an angular difference as shown below.  Note 

that bus 1 is the reference bus, so its angle and angular difference will always be zero.

 

 

1,1,1 1,2,1 1,11,1 1,1,2 1,11,100

2,1,1 2,2,1 2,11,1 2,1,2 2,11,100

6,1,1 6,2,1 6,11,1 6,1,2 6,11,100

T

    
    

    

     
      
 

  
 
 
 
      

 

    

 

 (2.4.1)

The subscript format for each element can be written as , ,bus line condition  where each 

column represents the change in angles at all buses due to a specific loading / generation 

condition, 100 in total.  Next, PCA was performed on the T matrix to yield six 

eigenvalue, eigenvector pairs as shown below.  During the principal component analysis 

the row mean was determined to be: 

 

0.00

0.70

0.67

1.00

0.98

1.22

 
 
 
 

  
 
 
 
 

Tμ  (2.4.2)

The matrix V below contains the eigenvectors and the column vector  contains the 

eigenvalues.  Column i in V corresponds to the eigenvalue in row i of . 
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1.00 0.00 0.00 0.00 0.00 0.00

0.00 0.90 1.00 0.23 0.37 0.04

0.00 1.00 0.18 0.44 1.00 0.35

0.00 0.79 0.30 0.02 0.06 1.00

0.00 0.85 0.03 1.00 0.16 0.20

0.00 0.88 0.58 0.21 0.96 0.35

 
  
  

     
  
 

 

E (2.4.3)

 

0.00

17.35

0.47

0.37

1.25

1.58

 
 
 
 

  
 
 
 
 

λ  (2.4.4)

Note that the first column of V provides no useful information since its eigenvalue is 

zero.  This should be clear because column one corresponds to the system reference 

whose angular difference is necessarily zero.  Also, note the locations of the largest 

eigenvalues.  Bus 2 and Bus 6 have the two highest values.  Next, each mean-centered 

column of T was projected, individually onto each column of V (the principal outage 

vectors) to produce column vectors of weights. 

  
1

2

6

 where T
i

w

w
w

w

 
 
   
 
 
 

i i Tw v Δθ μ
 (2.4.5)

This produced a set of 1100 weight vectors w corresponding to the weights of known line 

outages under varying conditions.  These are the prototypes which can be used for line 

outage identification. 
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 A series of new, random loading conditions was then generated which utilized the 

same normal distribution centered at the base case with 30MW standard deviation.  These 

new loading conditions represent test data used to test the efficacy of the principal outage 

vector technique.  As before, a power flow solution was calculated both before and after 

each line in the system was removed for each of a set of 100 loading conditions and the 

angular difference was subsequently found.  For each test case, the row mean of the 

prototype set T was subtracted from the angular difference.  Then, the test vectors were 

projected onto the six dimensional principal outage vector space to produce weight 

vectors, w by applying Equation (2.4.5).  In order to determine which line outage the 

weights correspond to, a nearest neighbor search was performed.  Nearest neighbor 

search was utilized since the underlying statistical nature of the problem was unknown.  

Using Euclidean distance, the weight vector from the prototype set which was closest to 

each weight vector of the test set was flagged as the line outage class for the 

corresponding test vector.  As a measure of accuracy, the success rate for this test was 

calculated as:
 

 
 

% 100
 #  

Correct Identifications
Success

Total of Tests
  (2.4.6)

where the Total # of Tests was 1100 (100 test conditions and 11 simulated line outages).  

Shown below are the results for 5 separate iterations of this test; each iteration containing 

randomly generated loading, different from the last. 
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Table 2.2 – Success of principal outage vectors, full coverage. 
 

Iteration % Success
1 99% 
2 99% 
3 98% 
4 99% 
5 96% 

 
Although the results of the tests above are promising, they rely on the assumption 

that a voltage angle measurement is available at every bus in the power system.  

Realistically, this is never the case.  Rather than assuming angle measurements at every 

bus, a new simulation was created where only the angles at buses 2 and 6 were used for 

both the prototype and test sets.  The success rate is shown below. 

Table 2.3 – Success of principal outage vectors, two PMUs. 
 

Iteration % Success
1 98% 
2 89% 
3 90% 
4 88% 
5 90% 

 
The result of the analysis above shows that, given a large number of simulations 

under typical operating conditions, it is entirely possible to identify line outage with a 

high degree of accuracy.  New angular difference vectors can be mapped on to the 

principal outage vector space to determine their similarity to known line outage classes.  

The mathematical reasoning for this type of analysis is well known and its efficacy has 

been proven in the area of image processing with the technique known as “eigenfaces.”  

Therefore, it is entirely possible to create a line outage detection system using these 

techniques.   
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For very large systems, the required simulations may consume more time, but 

since they can be performed off-line, the greatest bottleneck is in searching the weight 

vectors for closest matches.  In this way, a greater number of off-line simulations results 

in a longer on-line search time.  The analysis above utilized nearest neighbor search, but 

other more efficient search methods could also be investigated.  For a given system, the 

number of simulations required can be quite small.  In fact, despite using hundreds of 

simulations for the system given in Appendix A, further analysis showed that only about 

ten total simulations were required. 

One potential caveat with this system and many others like it is that mathematical 

reasoning does not directly apply to the problem at hand.  To recapitulate, a principal 

outage vector system may be constructed and function properly, but from a power 

systems point of view, it is difficult to explain “why” the system works.  Therefore, the 

focus of Chapter 3 is to show an analytical basis for a similar technique which does not 

require such a large number of off-line simulations.  In fact, the only off-line data which 

is calculated comes from the system impedance matrix. 
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CHAPTER THREE  

LINE OUTAGE DETECTION 
 

3.1 From PCA to LOD 

As was shown in Chapter 2, principal component analysis can be used to reduce 

the dimensionality of a dataset.  Reduced dimensionality allows for a data set to be more 

easily visualized.  PCA can be also be used for other applications like detecting faces in 

images.  Most of these techniques utilize very little information about the underlying 

structure of the data.  The eigenfaces technique simply requires that it be trained on 

images which must differ enough to be salient, but must be centered in a common 

location.  No knowledge is required of the actual physical structure of the human faces 

being examined.  Although, as was shown in Chapter 2, the eigenfaces technique can 

easily be adapted to power systems, it is not specifically tailored to such an application.  

Many areas of power systems research rely heavily on the electrical model of the power 

system.  With such a model available, it is possible that techniques like principal 

component analysis may be used to gain even further insight into power system 

operation. 

In this chapter PCA is utilized to arrive at a new algorithm for detecting line 

outages in power systems.  Although PCA is not directly applied in the algorithm, its 

utility as an exploratory analysis tool is exemplified.  This novel line outage detection 

algorithm is based on the DC power flow assumptions which are briefly described in 

section 3.3.  A line outage detection algorithm created by authors Overbye and Tate is 

then described.  Overbye and Tate’s algorithm also makes use of the DC power flow 
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assumptions presented to be presented in section 3.3.  Next, the theory behind a new, 

proposed line outage detection algorithm is presented followed by an example of the 

novel LOD method.  

3.2 PCA of Line Outages 

In section 2.3, principal component analysis was used to help identify line outages 

in a fashion similar to eigenfaces.  PCA was performed on a set of data which included 

every line outage, but under various loading conditions.  In essence, this created 

groupings where each group consisted of a certain line outage under various conditions.  

In order to identify a line outage correctly, a similar loading / generation condition must 

have already been simulated.  Clearly, it is impossible to simulate the gamut of feasible 

conditions.  One particularly glaring shortfall of this method is its lack of generality.  In 

this case, more simulations allow the algorithm to be more general.  Therefore, in an 

effort to find a more extensible method, an attempt was made at using principal 

component analysis in a different fashion as described below. 

Rather than combining all line outages into a single dataset, each line outage was 

considered as its own dataset.  As before, line outages were simulated under various 

conditions and a set of data whose columns corresponded to randomized loading 

conditions was subjected to PCA.  In this case, however, the eigenvector corresponding 

to the largest eigenvalue was the only piece of information used to identify a line outage.  

The reasoning behind this is that the removal of a line is inherently due to a removal of 

impedance which will change the direction of the corresponding bus voltage angles.  

PCA can be used to characterize the directions of variability in the bus voltage angles.  A 
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difference in the angles before and after the outage is utilized so that the greatest 

direction of variability will be due to the outage.  Some of this variability will also be 

caused by noise and the inherently non-linear nature of bus voltage angles.  To 

complicate matters, the impedances are all scaled by injections into the system.  The 

resulting angle changes consist of both a direction and a magnitude where the magnitude 

is directly proportional to the bus injections.  Since the injections will not necessarily be 

known, the most telling piece of information is the direction of change of bus voltage 

angles.  Quantitatively, this direction is the eigenvector in question.  It can be postulated 

then that each line outage will have a relatively distinct direction of change. 

After examining the eigenvectors for line outages under various conditions, it was 

discovered, as postulated, that the eigenvectors for a given line outage were relatively the 

same.  Regardless of the loading imposed, in general, line outages produced unique 

eigenvectors.  It is important to note that these simulations were performed using full the 

AC Newton-Raphson power flow method of solution.  As will be described in the 

following section, AC power flow is a non-linear process, so the result is found through 

iteration.  The non-lineararity is required for accuracy, but identifying the analytical 

reasoning for line outages is much more difficult.  As a result, the same PCA method was 

attempted using the DC power flow assumptions (to be reviewed in the following 

section).  Here, it was discovered that the eigenvector corresponding to the largest 

eigenvalue was not only similar between outages, but was exactly the same.  In other 

words, regardless of what loading / generation conditions were imposed on the system, 

the eigenvector corresponding to the largest eigenvalue was the same for a certain line 
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outage.  In fact, it was found, this eigenvector was the only eigenvector whose 

corresponding eigenvalue was significant.  This was important since it indicated that the 

rank of the underlying matrix was unity.  To investigate the basis for why this occurred, 

the process of determining the power flow in a system will be described in the next 

section.  

3.3 Review of Power Flow 

In general, the power flow in a power system is governed by basic electric circuit 

theory.  A power flow study is performed in order to determine where and to what degree 

the active and reactive powers flow [28].  Beginning from Ohm’s law and the definition 

of complex electric power, the following power flow equations are derived: 

 
1

cos( )
N

i in i n in n i
n

P Y V V   


   (3.3.1)

 
1

sin( )
N

i in i n in n i
n

Q Y V V   


    (3.3.2)

Where N is the number of buses, and i is the bus at which the real power Pi and the 

reactive power Qi are injected, the admittance of a branch element in the power system is 

defined as: 

 in inY   (3.3.3)

and the bus voltage magnitude and angle at bus i is 

 i iV   (3.3.4)

The power flow solution, then, is a process of solving the power flow equations above 

such that the active power generated equals the active power loss plus the real powers of 
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the loads.  Similarly, the reactive power generated must equal the reactive powers of the 

connected loads. 

 Since the power flow problem is non-linear in nature, most solution methods use 

an iterative approach to arrive at a solution.  As with other similar problems, the power 

flow equations can be linearized about a stable operating point using the Newton-

Raphson method.  In an attempt provide a faster, though less accurate solution, the DC 

power-flow was created.  A DC power flow represents an entirely linear set of equations 

which do not require iteration.  Some assumptions are made to arrive at the DC power 

flow solution.  First, many large systems have branch impedances whose real part is 

insignificant compared to the imaginary part: 

  where   z r jx r x z jx    (3.3.5)

It is important to note that since the impedance is approximately equal to the reactance, 

the j can be dropped as long as it is known that all calculations are performed on the 

imaginary components only.  Also, in general, if an angle is represented in radians, the 

sine of that angle is approximately equal to the angle itself: 

  sin    (3.3.6)

Lastly, when expressed using the per-unit system, the voltages at every bus are 

approximately equal to 1.  With only the real part of the impedance remaining and since 

the angle ij of each impedance is 90⁰.  Thus, the power flow equations become: 

 
1

( )
N

i in n i
n

P Y  


   (3.3.7)
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 0iQ   (3.3.8)

Additionally, the power flowing through a single branch from bus i to bus j can then be 

approximated as: 

 
 sin

i j
ij ij

i j

ij

V V
P

X



 






 (3.3.9)

The real power injected at any bus can then be expressed as a sum of the incident branch 

flows which consist of admittances and bus voltage angles.  Therefore, a relation between 

bus power injections and bus voltage angles can be written in matrix form: 

 P Yθ (3.3.10)

More often, the quantity of interest is the bus voltage angle, since it can be used to 

determine the line flows as in Equation (3.3.9).  For this reason, the DC power flow 

equations can be expressed in terms of an admittance matrix, Y, or an impedance matrix 

X: 

 -1  or θ Y P θ XP   (3.3.11)

 Due to their linear nature, the DC power flow equations are useful in many 

applications.  One particularly important application is in the area of contingency 

analysis.  During normal operation, it is often unrealistic to solve a full power flow in the 

case of some system contingency.  Instead, a set of so-called linear distribution factors is 

used to quickly calculate the change in line flows or bus voltage angles when system 

contingencies occur.  Overbye and Tate have also shown that such distribution factors 
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can be used in conjunction with line flow measurements to detect line outages [14] and 

[15].  

3.4 Review of Line Outage Detection 

 Given line flow measurements and a small number of synchrophasor bus angle 

measurements, Overbye and Tate (O&T) [14] and [15] have shown that it is possible to 

detect line outages in a power system.  The general process of detecting line outages 

using their algorithm consists of two steps.  First, a model of the power system is 

analyzed off-line to determine the effect of line outages on bus voltage angles.  The 

change in bus voltage angles is calculated using distribution factors.  Step two consists of 

monitoring synchrophasor measurements on-line for abrupt changes.  After an abrupt 

change occurs, the resulting steady state measurements are compared to the simulations 

from step one.  One or more lines in the system are then identified as being removed. 

 The off-line analysis utilizes quantities known as power transfer distribution 

factors or PTDFs which are derived from the DC power flow assumptions.  Using the 

PTDF relating a power transfer between bus i and bus j from the removal of line l, the 

power injected into the system can be expressed as: 

 
,1

ij
l

l ij

P
P

PTDF





  (3.4.1)

With this change in power injected to the system, each of the bus voltage angles will 

change.  However, only a subset of these buses will be observed using PMUs, so the 

buses to be examined are selected as follows: 
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  0K K K K N KI   
   

 (3.4.2)

Where IKxK is the size K identity matrix and the remaining part of the matrix is filled with 

zeros.  Then, angle changes at the observable buses can be written as a function of the 

bus selection matrix K and the DC impedance matrix X as:
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(3.4.3)

Thus, a vector of calculated angle changes due to any line outage in the system can be 

formed. 

 The on-line analysis relies on the ability to accurately detect system events.  By 

continuously monitoring all bus voltage angles for changes greater than some threshold, 

it is possible to discriminate system events from normal operating conditions.  This 

threshold  is dependent upon system parameters, but O&T recommend 0.57 degrees as a 

starting point based on the IEEE standard for synchrophasor total vector error (TVE) [3].  

PMUs are required to maintain noise below this level for normal operation.  Once a 

system event is detected, the difference between the resulting steady state angles after the 

outage and the steady state angles before the outage is calculated.  These angles are 

stored in a vector called observered . 
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 With a set of calculated, prototypical vectors ,
lP

calc l


 for each line l and an 

observed vector observered  it is then possible to find the closest match out of the 

calculated vectors with the single observed vector.  However, one potential caveat exists.  

Since the length of the observered vector will depend greatly on the loading in the 

system, the vector must be normalized to a length of one.  The same normalization must 

also be done with each ,
lP

calc l


 vector.  Once each vector is normalized, the closest 

match is determined as follows:
 

 ,min lP
observered calc l  


 (3.4.4)

 Performing the minimization above requires one practical modification.  The 

minimization essentially attempts to find the shortest distance between the observed 

angle changes and all possible angle changes.  Distance between any two points is a 

function of both the direction and magnitude of a straight line between them (assuming 

Euclidean distance).  This distance is more highly dependent upon the scaling of each 

vector.  Scaling comes as a result of the injected powers in the DC power flow.  Thus, it 

becomes necessary to remove the scaling from all of the vectors, so that their lengths are 

normalized.  Overbye and Tate use a value dubbed the NAD or normalized angle distance 

metric.  Figure 3.1 below shows the utility of the NAD. 



 

F
 

norm

scalin

possi

accur

be sh

synch

neces

a line

error

synch

Figure 3.1 –

The dista

malized to 1. 

ng of the ve

ible calculat

rately pick th

While the

hown later, 

hrophasor an

ssarily in the

e flow meas

.  However,

hrophasor an

– Visual repre

ance between

 Plus, the di

ctor.  With 

ted angle ch

he shortest d

3.5 Prop

e method pro

highly accu

ngle measur

e same locati

surement at 

, using know

ngle measur

esentation o

n the two v

istance betw

a list of NA

hanges, it i

distance.  

posed Line O

oposed by O

urate, it stil

rements.  Li

ion as synch

a given loc

wledge of t

rements, it i

36 

f the normal

vectors abov

ween each ve

ADs between

is then poss

Outage Dete

Overbye and 

l requires li

ine flow inf

hrophasor m

cation causes

the system i

is possible t

lized angle d

ve is shorter

ector is no lo

n the measur

sible to com

ection Metho

Tate is extr

ine flow in

formation is

easurements

s the algorit

impedance a

to create a 

 

distance (NA

r when thei

onger depend

red angle ch

mpare the d

od 

remely usefu

formation in

s often avail

s.  In additio

thm to be m

and topolog

similar algo

AD) [14]. 

ir lengths ar

dent upon th

hanges and a

distances an

ul and, as wi

n addition t

lable, but no

on, the lack o

more prone t

gy along wit

orithm whic

re 

he 

all 

nd 

ill 

to 

ot 

of 

to 

th 

ch 



37 
 

does not require line flow measurements.  The derivation of a new method for line outage 

detection is presented below. 

Using the DC power flow assumptions, it is possible to view the system 

impedance matrix X as a linear transformation.  Since X is a mapping from vectors in the 

space of injected powers to the space of bus voltage angles, it can be viewed as the matrix 

representation of a linear transformation between two finite dimensional vector spaces.  

Thus, in order to detect line outages, there must be some way to characterize the vectors 

in the range of X as belonging to a specific subset.  Each subset represents the possible 

bus voltage angles which may occur due to an individual line outage.  If only two PMU 

measurements are available the angles lie in an ellipse in two dimensions, but would lie 

in an ellipsoid if more PMU measurements are available.  Figure 3.2 shows this concept 

diagrammatically for two PMU measurements. 
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Seemingly, if the region where each line outage may occur is known through 

simulation or past experience, then detecting a line outage only requires plotting the 

angles and determining the region in which they lie.  However, this approach would 

require simulation or historical data for every line outage and every possible generation / 

loading condition.  Realistically, this is impossible.  Plus, it is feasible that the bus 

voltage angles may fall into one of these line outage regions during normal operation 

regardless of whether an outage has occurred.  To combat this problem, the bus voltage 

angles are continuously examined until one of them changes abruptly, then the difference 

between the steady state angles before and after the change are examined. 

Before a line outage occurs, it is assumed that the linear transformation matrix X 

has been calculated.  During and after the outage itself, it is also assumed that a certain 

number of bus voltage angles are measurable via PMUs.  The only unknown quantities 

then are the injected real powers at each bus. 

Since bus voltage magnitudes have been shown to provide the most telling 

information about power system events, it can be reasoned that their difference before an 

event and after an event describes the true character of said event.  The model of a power 

system before an outage: 

 θ XPpre   (3.5.1)

and the same system after a line outage is as follows: 

  θ X X Ppost     (3.5.2)

Due to the line outage, the impedance matrix is modified.  The character of this 

modification is well known, but may be easier to visualize in terms of admittance: 
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     11Y X X X Y +ΔY
    (3.5.3)

The line between bus i and bus j whose admittance is yij can be removed from the original 

admittance matrix Y to yield the new admittance matrix Ŷ as follows: 

 

   

 

 

                        

Ŷ Y

ij ij

ij ij

i j

y yi

y yj

 
  
  
 

 
 
 



  


 (3.5.4)

 
Typically, this same operation can be modeled with impedances by adding another 

artificial line of negative impedance equal to the original in parallel with the original line.  

To remove the effect of the artificial line Kron Reduction is then performed [28]. 

In the equation above, the negative of the admittance is on the main diagonal, but 

the actual admittances are in row i, column j and row j, column i.  For a 3x3 admittance 

matrix, when removing a line between bus 1 and bus 3, the above equation could be 

written as: 

 
11 12 13 13 13

21 22 23

31 32 33 13 13

0

0 0 0

0

Y

Y Y Y y y

Y Y Y

Y Y Y y y

   
       
      

(3.5.5)

Using the Sherman-Morrison-Woodbury (SMW) matrix identity, it is possible to 

determine the impedance matrix form of this equivalent admittance matrix form.  The 

SMW matrix identity is simply a method for finding the inverse of a matrix when the 

matrix is updated with a rank k update: 



41 
 

     11 1 1 1 1 1        A UCV A A U C VA U VA  (3.5.6)

Rewriting the above equation, it is possible to arrive at a form similar to the Woodbury 

identity.  Again, assuming a three bus system: 

 

 

  

  

11 12 13 13 13

21 22 23

31 32 33 13 13

13 13

13

13

0

0 0 0

0

1

0 0

1

1

0 1 0 1

1

1

0 1 0 1

1

Y

Y

Y

Y

Y Y Y y y

Y Y Y

Y Y Y y y

y y

y

y

   
       
      
 
    
  
 
    
  
 
    
  



 (3.5.7)

Now, we can invert the result obtained above using the SMW identity.   
 

 



   13

1

0 1 0 1

1aa T
bb

ab

ab

Y Y Y

Y

Y y

 
   
  

 (3.5.8)

The expression above is made up of four separate pieces which can be rewritten as 

follows: 

    1
-

                              




-1T -1 -1 -1 T -1 T -1
aa ab bb ab aa aa ab bb ab aa ab ab aaY Y Y Y Y - Y Y Y + Y Y Y Y Y  (3.5.9)

Equivalently, the original admittance matrix is simply the inverse of the original 

impedance matrix: 
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1

1
13

1 1
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1 1

T
aa ab bb abY - Y Y Y

X - X X Xy






    
            
         

 (3.5.10)

 
The second term which is subtracted from the original impedance matrix is made up of 

three separate pieces.  The first piece on the left can be rewritten as follows: 

 
11 13

21 23

31 33

1

0 .    .  

1

X

X X

X X col i col j

X X

    
           
         

(3.5.11)

The rightmost piece is simply the transpose of the leftmost piece and can be rewritten 
similarly: 
 

 
     11 31 12 32 13 331 0 1     X X X X X X X row i row j      

 
(3.5.12)

and 

 

   

   

   
 

1
13

1
13 11 31 12 32 13 33

1
13 11 31 13 33 13 31

13 11 33 13

1

1 0 1 0

1

1

0

1

2

Xy

y X X X X X X

y X X X X X X

x X X X







 
     
  

 
        
  

         
   

 (3.5.13)

Taking the inverse of the result above simply yields a scalar in the case of a single line 

removal: 
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1

13 11 33 13
13 11 33 13

1
2

2
x X X X

x X X X


   

  
 (3.5.14)

With each of the three rewritten pieces, it is easy to see how a line impedance is removed 

from a system impedance matrix: 

 

 

     

13

1

1
13

1
.    .  j  i   

2

1 1

0 1 0 1 0 1 0 1

1 1

X X X

ii jj ij

col i col row row j
Z Z Z z

y





               

    
            
         

 (3.5.15)

Thus, the Kron Reduction which is typically used to add a new loop element to an 

impedance matrix is nothing more than an application of the SMW matrix identity.  The 

typical form of a Kron Reduction is:
 

 1K LM LT  (3.5.16)

Or
 

 X ΔX  (3.5.17)

Now, with the ability to model the change in the power system due to a line removal, it is 

possible to determine analytically the effect of a line outage on bus voltage angles.  In the 

equation above, the term ΔX is the representation of the line removal.  The question 

however, is how to isolate this portion so that, when PMU measurements are used, only 

the change in the impedance matrix is characterized.  To accomplish this, the difference 

in pre and post outage angles must be used. 
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 In order to examine the difference in pre and post outage angles, the power 

system can be modeled using the DC power flow assumptions.  As shown above, the 

models before and after an outage are: 

 
θ XPpre   

 θ X X Ppost   
 
 

(3.5.18)

However, as was shown above, the model after the outage can also be written as: 

   1θ X X P X LM L PT
post

        (3.5.19)

To characterize their difference (the impedance change), the post outage angles are 

subtracted from the pre outage angles: 

 

 

1

1

θ θ XP X LM L P

LM L P

Δθ ΔX P

T
pre post

T





     





 (3.5.20)

The vector Δθ  is the image of the line outage in terms of bus voltage angles.  Here, as 

before, the assumption is that an angle measurement is available at every bus.  Also, as 

before, this assumption can be relaxed without loss of generality.  The vector Δθcan be 

found off-line, for every line outage since the matrix ΔX can be calculated from the 

topology and the list of branch impedances.  The impedance change can be shown to be a 

rank one matrix as illustrated by the admittance change matrix below: 
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(3.5.21)

By definition, the vector multiplication uuT results in a rank one matrix whose rank does 

not change by the pre-multiplication by any scalar 13y [29].  In general, though, the 

inverse of a matrix does not necessarily have the same rank of the original matrix.  In this 

case though, the rank of the impedance change matrix can be shown to be of rank one as 

well.  For the removal of a single impedance, the matrix M in the Kron Reduction 

expression is simply a scalar.  Therefore: 

 1 1L L LLT Tm m   (3.5.22)

Once again, the vector multiplication, by definition results in a rank one matrix and the 

pre-multiplication by a scalar does not change the rank of a matrix.  To address the issue 

of incomplete observability of a power system, simply examine what happens when one 

or more rows of the impedance change matrix is removed.  This action is equivalent to 

having a reduced number of PMU measurements, but stacking them in a vector as usual.  

The result is still a multiplication of two vectors which are pre-multiplied by a scalar 

 As a linear operator, since the impedance change matrix is of rank one, the 

number of linearly independent columns is one.  Restated, the impedance change matrix 
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has a range space made up of vectors which are scaled versions of one vector, the linearly 

independent column of the impedance change matrix.  This means that if the scaling is 

removed from the vectorΔθ then, simply, every line outage can be represented by one 

single vector.  Mathematically speaking, the range of the impedance change matrix has 

one linearly independent basis vector.  It is always possible to find this linearly 

independent vector and simply force the length of the vector to one, thereby removing 

scaling from the vector.  The denominator in the equation below is the 2-norm of the 

angle change vector. 

 

 
2

norm
Δθ

Δθ
Δθ

  (3.5.23)

If the measuredΔθvector is also normalized to rank one, the vectors will be identical, 

assuming the DC power flow assumptions.  Thus, this technique should produce identical 

results to the OT method, but without the requirement that every line in the power system 

have a line flow measurement available.  The problem then, is how to deal with the 

inaccuracies involved with the DC power flow assumptions. 

 The figures below show the complete line outage detection algorithm including 

both off-line and on-line analyses.  
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Figure 3.3 – Program flow for off-line part of line outage detection. 
 

 

Figure 3.4 – Program flow for on-line part of line outage detection. 
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3.6 Novel Method Example 

To show the utility of the novel method of line outage detection, the method will 

be used for a small test system.  The six bus system from [16] will again be used.  This 

system was chosen since it contains only six buses making it feasible to show all matrix 

calculations.  Plus, the system contains lines which can easily be detected as being 

outaged as well as lines which are not so easily detected under certain conditions.  Below 

are the Y matrix and its inverse, the X matrix as used in DC power flow. 

 

13.33 5.00 0.00 5.00 3.33 0.00

5.00 27.33 4.00 10.00 3.33 5.00

0.00 4.00 17.85 0.00 3.85 10.00

5.00 10.00 0.00 17.50 2.50 0.00

3.33 3.33 3.85 2.50 16.35 3.33

0.00 5.00 10.00 0.00 3.33 18.33

Y

   
      
   
    
     
 

   

  (3.6.1)

Note, that for the X matrix, only 5 buses are shown with nonzero elements since bus 1 is 

used as a reference and always assumed to have an angle of zero.  Therefore, it will 

suffice to show only the 5 nonzero buses. 

 

0.0941 0.0805 0.0630 0.0643 0.0813

0.0805 0.1659 0.0590 0

                          

.0

   

0 0 0 0 0 0

908 0.1290

0.0630 0.0590 0.1009 0.0542 0.0592

0.0643 0.0908 0.0542 0.1222 0.0893

0

0

0

0

0

0

X 

① ② ③         ④        ⑤        ⑥

①

②

③

④

⑤

⑥ .0813 0.1290 0.0592 0.0893 0.1633

 
 
 
 
 
 
 
 
 

 (3.6.2)

Therefore, in steady state, before an outage occurs the bus voltage angles are found to be: 
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2.9024

3.1679

4.7632

5.6902

5.7418

preθ

 
  
  
  
  

 (3.6.3)

Where the injected powers, P are initially: 

 

0.5

0.6

0.7

0.7

0.7

P

 
 
 
  
  
  

 (3.6.4)

Now, each line removal in the system can be modeled as follows.  For line 1, from bus 1 

to bus 2, with a series reactance of 0.2 p.u., the ∆X matrix can be formed: 

 

 

11 22 12 12

1
.  1 .  2  1  2

2

0.0941

0.0805
1

 1  20.06

0.0837 0.0716 0.0560 0.0572 0.0723

0.0716 0.

30
0 0.0941 0 0.2

0.06

0612

43

0.0

0.0

813

ΔX col col row row
X X X z

row row

 
            

 
            

    

 
 

 




 479 0.0489 0.0618

0.0560 0.0479 0.0375 0.0383 0.0484

0.0572 0.0489 0.0383 0.0391 0.0494

0.0723 0.0618 0.0484 0.0494 0.0624

 
   
     
      
        

(3.6.5)

The new system impedance matrix after line removal is   X X , so it is equivalent to 

negate each element and take the sum instead.  As a linear transformation, ∆X has a rank 
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of unity as previously shown, so we must find a single vector to serve as a basis for the 

range space.  Using elementary row operations, the transpose of the matrix can be 

rewritten in reduced row echelon form.  The single non-zero row indicates that the matrix 

has a rank of unity. 

 

1.0000 0.8554 0.6691 0.6836 0.8636

0.0000 0.0000 0.0000 0.0000 0.0000

( ) 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000

ΔXTrref

 
 
 
 
 
 
  

 (3.6.6)

The single basis vector el for the range of ∆X is then simply the first row of the reduced 

row echelon form. 

 

1

0.8554

0.6691

0.6836

0.8636

le

 
 
 
 
 
 
  

 (3.6.7)

However, in order to remove any effect of scaling, the vector must be normalized to 

length one where the Euclidean norm is: 

        2 2 2 22
2

1 0.8554 0.6691 0.6836 0.8636

1.8419

le     


 (3.6.8)

 ,

1 0.5429

0.8554 0.4644
1

0.6691 0.3633
1.8419

0.6836 0.3712

0.8636 0.4689

l norme

   
   
           

     
   
      

(3.6.9)
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Note that the formation of this vector assumes that PMU angle measurements will be 

available at every bus in the system.  Continuing with this assumption, the basis vector 

for every line outage in the system can be found. 

Table 3.1 – Basis vectors, el for line outages 1 through 6. 
 

     Line 
Bus 

1 2 3 4 5 6 

2   0.5429 0.4060 0.3292 -0.1331 0.5295 -0.4452 
3 0.4644 0.3802 0.4644 0.8348 0.3661 0.1533 
4 0.3633 0.6503 0.2774 -0.0391 -0.6442 -0.1309 
5 0.3712 0.3495 0.6249 0.2583 0.1721 0.8642 
6 0.4689 0.3816 0.4567 0.4660 0.3754 0.1194 

 
Table 3.2 – Basis vectors, el for line outages 7 through 11. 

 
      Line 
Bus 

7 8 9 10 11 

2 -0.1292 0.1755 0.0153 0.0147 0.1856 
3 0.4876 0.8155 -0.7322 0.3407 0.4184 
4 -0.0380 0.0516 0.0045 -0.5000 0.0546 
5 0.2509 -0.3406 -0.0297 0.7280 -0.3603 
6 0.8253 0.4307 0.6803 0.3222 0.8110 

 
Continuing with the example for line 1 outaged, the angles in degrees after the outage can 

be calculated as follows: 

 

5.4827

5.3751

6.4897

7.4542

7.9701

postθ

 
  
  
  
  

 (3.6.10)

Assuming that the angles before the outage and the angles after the outage were measured 

without error and the DC power flow assumptions are used, the angular difference can be 

found. 
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2.9024 5.4827 2.5803

3.1679 5.3751 2.2071

4.7632 6.4897 1.7264

5.6902 7.4542 1.7640

5.7418 7.9701 2.2283

pre postΔθ θ θ

      
           
          
           
           

 (3.6.11)

Now, the scaling must be removed by normalizing this angular difference to a length of 

one. 

 2 2 2 2 2

2
2.5803 2.2071 1.7264 1.7640 2.2283 4.7526Δθ        (3.6.12)

 

2.5803 0.5429

2.2071 0.4644
1

1.7264 0.3633
4.7526

1.7640 0.3712

2.2283 0.4689

Δθnorm

   
   
           

     
   
      

 (3.6.13)

Clearly, this vector is what would be expected since it represents a vector in the range 

space of ∆X and by definition any vector in the range of a linear transformation is a linear 

combination of the basis vectors.  Removal of scaling essentially recovers the basis 

vector.  Additionally, due to the formation of the ∆X matrix, the assumption that a PMU 

measurement is available at every bus can be relaxed. 

 Now examine what happens when fewer buses are monitored.  The optimal PMU 

locations for the 6-bus system under question are at buses 3 and 6.  These were found 

using integer linear programming in MATLAB with the bintprog command.  The 

angles before and after an outage will be identical in this case, but only 2 of the 6 

measurements will be available.  However, the calculation of ∆X and the basis vector of 

the linear transformation will be slightly different.  Instead of the transformation being a 
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6x6 matrix, it becomes a 2x6 matrix where the row numbers correspond to the buses 

being measured.  For line 1, the transformation is: 

 
0.0716 0.0612 0.0479 0.0489 0.0618

0.0723 0.0618 0.0484 0.0494 0.0624
ΔX

 
   

 
 (3.6.14)

Again, we find the reduced row echelon form of ∆XT 

 

1 1.0096

0 0

( ) 0 0

0 0

0 0

ΔXTrref

 
 
 
 
 
 
  

 (3.6.15)

And normalize the basis vector 

 2 2

2
1 1.0096 1.4210le     (3.6.16)

 ,

1 0.70401

1.0096 0.71051.4210l norme
                

(3.6.17)

Once again, these basis vectors can be formed for all such line outages in the system: 
 

Table 3.3 – el for line outages 1 through 6 with PMUs at bus 3, bus 6. 
 
  Lines 
  1 2 3 4 5 6 7 8 9 10 11 

Buses 3 0.704 0.706 -0.713 -0.873 0.698 -0.789 0.509 -0.884 -0.733 -0.727 0.458 

6 0.710 0.708 -0.701 -0.487 0.716 -0.614 0.861 -0.467 0.681 -0.687 0.889 

 
Using the same angles, the pre and post outage difference can be found: 

 

2.9024 5.4827 2.5803

2.2071
4.7632 6.4897 1.7264

2.2283
5.6902 7.4542 1.7640

pre post

3.1679 5.3751 2.2071

Δθ θ θ

5.7418 7.9701 2.2283

      
             
             
             
           

 (3.6.18)
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And once again, the vector is normalized: 

 2 2

2
2.2071 2.2283 3.1363  Δθ  (3.6.19)

 
2.2071 0.7041

2.2283 0.7103.1363

                
normΔθ (3.6.20)

Similar to the case when a measurement is available at every bus, the vector obtained 

from angle measurements matches exactly with the vector obtained through calculation.  

It is important to note that these results rely on a few assumptions.  The main 

assumptions are the DC power flow assumptions.  These assumptions only hold true 

when the resistance in the lines is much smaller than the impedance which is not the case 

in distribution systems.  Plus, it is assumed that a PMU can measure with perfect 

accuracy.  As will be shown in Chapter 4, these assumptions can be relaxed without a 

significant increase in the detection error.  



55 
 

CHAPTER FOUR  

LINE OUTAGE METHOD COMPARISON 

4.1 System and Simulation Description 

Throughout this chapter, the line outage detection method presented by Overbye 

and Tate (OT) [14] and [15] will be compared to the new method described in 0.  In order 

to compare the two methods, MATLAB simulations were performed for each method 

using a test system.  All of the MATLAB code can be found in Appendix B and 

Appendix C.  The test system is a reduced equivalent of a portion of the Tennessee 

Valley Authority (TVA) 500kV transmission system.  A one-line diagram of the test 

system is shown below in Figure 4.1.  PMUs are installed at buses 3, 5, 6, 16, 26, 45 

shown on Figure 4.1 using arrows.  First, the OT method will be used to detect all line 

outages under a specific loading condition.  Next, the proposed method will be used to 

detect all line outages under the same loading conditions. 

Before moving to the results, it is important to note the physical location of the 

PMUs in the figure below.  Buses 3, 5, and 6 are adjacent, so it seems unnecessary to 

place a PMU at each of these buses.  The reason three PMUs are installed instead of one 

is that this is a reduced system.  Thus, the representation in the figure below shows the 

buses being adjacent, but in truth many more buses and lines separate these adjacent 

buses.  The equivalent lines between buses 3,5, and 6 merely represent the complex 

structure between the buses in a more simple fashion. 
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For each case, three sets of simulations were performed.  The first simulation uses 

the actual PMU locations.  The second simulation uses the integer programming 

approach to determine the optimal number and location of PMUs.  Finally, the last 

simulation assumes that a PMU measurement is available at every bus.  In each case, the 

system will be simulated in MATLAB.  The angles before and after each line outage will 

be simulated as ideally measured but with a Gaussian noise signal added after the power 

flow solution.  In general, each of the three simulations consists of a simulated off-line 

portion and a simulated on-line portion.  During the off-line portions, prototypical values 

are found for the line outages.  During the on-line portions, measured values are 

simulated for line outages.  A simulated measurement is created by scaling all the loads 

in the system using a Gaussian random number generator with a mean of 1 and standard 

deviation of 0.2.  The randomly scaled loads can then be anywhere from 80% to %120 of 

their original base value.  This original value was used to create the prototypical values. 

4.2 OT Method 

As described in section 3.4, the first step in the Overbye and Tate method of line 

outage detection is the calculation of ,
lP

calc l


.  This step requires calculation of the 

PTDFs for every line or every desired line regardless of the number of available PMU 

measurements.  The PTDFs were calculated using MATPOWER.  A sample of the full 

PTDF matrix is shown below showing the buses were PMUs are currently installed.  For 

readability, only the lines with the ten highest MW flows in the base case were examined.  

It is entirely feasible to examine every line in the system, but the most highly loaded lines 

are the most important when outaged.  
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Table 4.1 – PTDF at ‘from’ bus for ten highest loaded lines. 
 

Line
PTDF at 

From Bus
1 0.6926 
2 0.6330 
3 0.4127 
4 0.7937 
5 0.1602 
6 0.0693 
7 0.8510 
8 0.8157 
9 0.1220 
10 0.0587 

 
Once the desired PTDFs are found, the relevant impedance information is taken from the 
DC power flow X matrix via the PMU selection matrix K.  In this case, K has four rows 

and the number of columns is equal to the number of buses.  The K matrix is post 
multiplied by the X matrix then scaled by lP  to form the calculated vector of angle 

changes, ,
lP

calc l


.   

 

Table 4.2 shows the angle change at the buses where PMUs are installed for the 

top ten line outages.  Using only the top ten lines, however is realistic in that their outage 

will create the most drastic change in power flow.  Tate [8] describes which lines in a 

system can and cannot be detected using line outage detection.  For instance, double 

circuit lines, or radial lines connected to boundary buses are either indistinguishable or 

entirely undetectable.  Further analysis is given in [8].  Note that the first row in the table 

below is zero since the PMU is installed at the reference bus and all other angle changes 

are recorded in reference to this bus angle. 

 
 

Table 4.2 – Calculated angle change at PMU buses due to top ten line outages 
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PMU 
Line 1 
Outage 

Line 2 
Outage 

Line 3 
Outage 

Line 4 
Outage

Line 5 
Outage

Line 6 
Outage

Line 7 
Outage 

Line 8 
Outage 

Line 9 
Outage 

Line 10
Outage

1 21.059 0.5244 3.3956 15.342 -0.097 -1.0061 9.8338 14.8375 0.7705 0.3933 
2 21.059 0.5244 3.3956 15.342 -0.097 -1.0061 9.8338 14.8375 0.7705 0.3933 
3 21.059 0.5244 3.3956 15.342 -0.097 -1.0061 11.5628 12.9534 0.7705 0.3933 
4 21.059 0.5244 2.8471 15.342 0.097 -1.0061 0.0000 0.0000 0.7705 0.3933 
5 0.000 0.0000 0.0000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 
6 14.387 -0.6368 0.0000 4.843 2.313 -1.6149 0.0000 0.0000 1.1544 1.7043 

 
 With the data in the table above, the top ten line outages can be identified, once 

they are detected.  Chapter 5 will describe how the detection process is carried out.  For 

this example however, it is assumed that a line outage can be accurately detected.  In 

order to illustrate the O&T algorithm, each of the top ten loaded lines was removed and 

the resulting bus voltage angles were found.  The angular differences are shown below in 

Table 4.3. 

Table 4.3 – Simulations of angle changes due to outages. 
 
PMU Line 1 Line 2 Line 3 Line 4 Line 5 Line 6 Line 7 Line 8 Line 9 Line 10 

1 11.581 0.3942 4.7696 18.9610 -0.2319 -2.9945 5.5689 8.2073 0.8041 0.3336 

2 11.581 0.3941 4.7676 18.9605 -0.2319 -2.9945 5.5672 8.1988 0.8041 0.3336 

3 11.582 0.3943 4.7729 18.9617 -0.2319 -2.9944 6.5286 7.1703 0.8041 0.3336 

4 11.562 0.3889 -3.6033 18.9321 -0.2318 -2.9958 0.0684 0.0861 0.8035 0.3334 

5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

6 7.7303 -0.4066 0.0438 5.8523 6.6119 -4.8646 0.0298 0.0410 1.2132 1.3956 

 
 Next, for each column in Table 4.3, the normalized angle distance (NAD) was 

found between the angles in all columns of  
 

Table 4.2.  Each column in the table below represents the ten line outages from simulated 

measurements and each row represents the ten line outages from calculation using the 

O&T method.  The smallest NAD in each column is bordered in bold. 

Table 4.4 – NAD between measurements (columns) and calculations (rows). 
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 Line 1 Line 2 Line 3 Line 4 Line 5 Line 6 Line 7 Line 8 Line 9 Line 10
Line 1 0.0070 0.7850 0.9342 0.1758 1.2196 0.3511 0.5980 0.5968 0.3159 0.7749 
Line 2 0.8409 0.0683 0.9948 0.6847 0.9192 1.1521 0.7219 0.7212 1.1227 1.3419 
Line 3 0.9661 0.9969 0.0399 0.9428 1.3861 1.0622 0.4594 0.4570 1.0502 1.2310 
Line 4 0.1655 0.6235 0.9084 0.0034 1.3517 0.5196 0.5354 0.5341 0.4850 0.9310 
Line 5 1.2356 0.9676 1.3823 1.3640 0.0133 0.9342 1.3644 1.3644 0.9656 0.5231 
Line 6 0.3522 1.0909 1.0332 0.5172 0.9276 0.0058 0.8027 0.8020 0.0299 0.4448 
Line 7 0.6012 0.6792 0.4151 0.5411 1.3708 0.8123 0.0074 0.1401 0.7882 1.1203 
Line 8 0.5997 0.6779 0.4128 0.5394 1.3708 0.8113 0.1393 0.0070 0.7873 1.1200 
Line 9 0.3193 1.0628 1.0215 0.4849 0.9570 0.0392 0.7804 0.7796 0.0035 0.4773 

Line 10 0.7937 1.3819 1.2220 0.9458 0.4972 0.4523 1.1262 1.1258 0.4871 0.0135 

 
 From the results above, each of the ten line outages was correctly identified when 

taken out of service.  It is important to note that all of the smallest NADs are less than 

0.1.  If a system contains many lines which are unable to be correctly identified this NAD 

level can be used as a threshold.  

4.3 Proposed Method 

As with the OT method, the proposed method begins with off-line calculation of 

angle changes.  Once again, the top ten line outages were examined assuming the actual 

PMU locations.  Calculation of the angle changes can be accomplished in many ways.  In 

this case, however, the singular value decomposition of the impedance change matrix Δθ  

was found.  The SVD attempts to find optimal orthonormal bases for both the null space 

and range space.  Therefore, the orthonormal bases for the range space for each line 

outage are simply the corresponding vector el. 

 

 

 

Table 4.5 – Calculated angle changes using the proposed method. 
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PMU 
Line 1 
Outage 

Line 2 
Outage 

Line 3 
Outage 

Line 4 
Outage

Line 5 
Outage

Line 6 
Outage

Line 7 
Outage

Line 8 
Outage

Line 9 
Outage 

Line 10
Outage

1 0.4732 0.4274 0.5197 0.4939 -0.0416 -0.3899 0.5437 0.6017 0.4002 0.2095
2 0.4732 0.4274 0.5197 0.4939 -0.0416 -0.3899 0.5437 0.6017 0.4002 0.2095
3 0.4732 0.4274 0.5197 0.4939 -0.0416 -0.3899 0.6393 0.5253 0.4002 0.2095
4 0.4732 0.4274 -0.4357 0.4939 -0.0416 -0.3899 0.0000 0.0000 0.4002 0.2095
5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
6 0.3233 -0.5190 0.0000 0.1559 0.9965 -0.6259 0.0000 0.0000 0.5996 0.9080

 
To test the efficacy of the proposed algorithm and compare it with the OT 

method, the ten lines above were removed and measurements were simulated.  Table 4.6 

shows the actual values from the simulated line angle change measurements.  Table 4.7 

below shows the same information as Table 4.6, but the columns have been normalized to 

a length of one. 

Table 4.6 – Simulated measurements of angle changes. 
 
PMU Line 1 Line 2 Line 3 Line 4 Line 5 Line 6 Line 7 Line 8 Line 9 Line 10 

1 11.5812 0.3942 4.7696 18.9610 -0.2319 -2.9945 5.5689 8.2073 0.8041 0.3336 
2 11.5809 0.3941 4.7676 18.9605 -0.2319 -2.9945 5.5672 8.1988 0.8041 0.3336 
3 11.5817 0.3943 4.7729 18.9617 -0.2319 -2.9944 6.5286 7.1703 0.8041 0.3336 
4 11.5624 0.3889 -3.6033 18.9321 -0.2318 -2.9958 0.0684 0.0861 0.8035 0.3334 
5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
6 7.7303 -0.4066 0.0438 5.8523 6.6119 -4.8646 0.0298 0.0410 1.2132 1.3956 

 
Table 4.7 – Normalized version of Table 4.6. 

 
PMU Line 1 Line 2 Line 3 Line 4 Line 5 Line 6 Line 7 Line 8 Line 9 Line 10 

1 0.4745 0.4455 0.5292 0.4943 -0.0350 -0.3881 0.5444 0.6018 0.3992 0.2157 
2 0.4744 0.4454 0.5289 0.4943 -0.0350 -0.3881 0.5443 0.6012 0.3992 0.2157 
3 0.4745 0.4457 0.5295 0.4944 -0.0350 -0.3881 0.6382 0.5258 0.3992 0.2157 
4 0.4737 0.4396 -0.3998 0.4936 -0.0350 -0.3883 0.0067 0.0063 0.3989 0.2155 
5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
6 0.3167 -0.4596 0.0049 0.1526 0.9975 -0.6304 0.0029 0.0030 0.6023 0.9022 

 
Next, the distance of the absolute value between each column of Table 4.5 and 

Table 4.7 was found.  The resulting distances are shown in Table 4.8.  In each column, 

the shortest distance has been bordered in bold.  Similar to the OT method, each line was 
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correctly identified as being taken out of service.  Also, similar to the OT method, the 

distances are all less than 0.01.   

Table 4.8 – Distances between each column of Table 4.5 and Table 4.7. 
 

 Line 1 Line 2 Line 3 Line 4 Line 5 Line 6 Line 7 Line 8 Line 9 Line 10
Line 1 0.0070 0.2230 0.3284 0.1655 1.1004 0.3522 0.6012 0.5997 0.3193 0.7938 
Line 2 0.1483 0.0683 0.4772 0.3197 0.9676 0.1985 0.6792 0.6779 0.1653 0.6490 
Line 3 0.3409 0.5442 0.0398 0.1882 1.3509 0.6663 0.4151 0.4128 0.6353 1.0763 
Line 4 0.1758 0.3900 0.1690 0.0034 1.2375 0.5172 0.5411 0.5394 0.4849 0.9459 
Line 5 1.1058 0.9192 1.3640 1.2453 0.0133 0.8012 1.3708 1.3708 0.8318 0.3603 
Line 6 0.3511 0.1363 0.6721 0.5196 0.7838 0.0058 0.8122 0.8113 0.0392 0.4524 
Line 7 0.5980 0.7177 0.4465 0.5354 1.3601 0.8027 0.0074 0.1392 0.7804 1.1262 
Line 8 0.5969 0.7168 0.4447 0.5341 1.3600 0.8019 0.1401 0.0070 0.7797 1.1259 
Line 9 0.3159 0.1007 0.6385 0.4850 0.8165 0.0300 0.7882 0.7873 0.0035 0.4871 

Line 10 0.7749 0.5712 1.0676 0.9310 0.3606 0.4448 1.1203 1.1200 0.4773 0.0136 

 
4.4 Comparison 

Each of the line outage detection algorithms described rely upon the DC power 

flow assumptions.  In addition, both attempt to model the effect of a line outage on the 

change in one or more bus voltage angles.  Thus, each algorithm should perform equally 

well in terms of line outage identification success.  In fact, under further examination, the 

two algorithms produce identical results.  The table below illustrates the similarities 

between the two algorithms.  

Table 4.9 – Algorithm comparison. 
 

Requirements OT Algorithm Proposed Algorithm 
DC Power Flow Assumptions Yes Yes 
Synchrophasor Angles Yes Yes 
Line Flow Measurements Yes No 
PTDF Matrix Yes No 
Impedance Change Matrix No Yes 
System Impedance Matrix Yes Yes 
Nearest Neighbor Search Yes Yes 
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The following explanation shows why the proposed algorithm for line outage 
identification produces identical results as the OT algorithm without the requirement of 
line flow measurements.  As a step in calculating the NAD in the OT method both the 

calculated angle changes and the measured angle changes are divided by their lengths.  In 
essence, the step is the same as normalizing the PMU measurement vectors to unit length.  
In addition, the division by length step removes all scaling due to bus injections.  Stated 

differently, only the relationship between the line flow measurements remains as opposed 
to the absolute magnitude of flow.  This does not indicate, however, that the OT does not 

require line flow measurements.  Line flow measurements are required to calculate 

,
lP

calc l


 for each outage.  However, if each ,
lP

calc l


 is normalized, the result is the same 

as if the angle changes were calculated from the proposed method.  The normalized 
version of  

 

Table 4.2 is shown below in Table 4.10.  These results are not only close, but 

identical to those for the proposed method. 

Table 4.10 – Normalized version of  
 

Table 4.2. 
 

PMU 
Line 1 
Outage 

Line 2 
Outage 

Line 3 
Outage 

Line 4 
Outage

Line 5 
Outage

Line 6 
Outage

Line 7 
Outage

Line 8 
Outage

Line 9 
Outage 

Line 10
Outage

1 0.4732 0.4274 0.5197 0.4939 -0.0416 -0.3899 0.5437 0.6017 0.4002 0.2095
2 0.4732 0.4274 0.5197 0.4939 -0.0416 -0.3899 0.5437 0.6017 0.4002 0.2095
3 0.4732 0.4274 0.5197 0.4939 -0.0416 -0.3899 0.6393 0.5253 0.4002 0.2095
4 0.4732 0.4274 -0.4357 0.4939 -0.0416 -0.3899 0.0000 0.0000 0.4002 0.2095
5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
6 0.3233 -0.5190 0.0000 0.1559 0.9965 -0.6259 0.0000 0.0000 0.5996 0.9080

 
Although not investigated in this thesis, it is possible that a more robust algorithm 

for line outage detection could be created using a combination of the OT method and the 

proposed method.  For instance, the line flow measurements and bus injection 

measurements may be used to augment the distances calculated between measured and 

calculated angle changes.  To further illustrate the utility of the proposed line outage 
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detection algorithm, a dynamic simulation of the 47 bus TVA system above was 

constructed in the following chapter. 
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CHAPTER FIVE  

DYNAMIC SIMULATIONS 

5.1 Dynamic Simulation Description 

Identifying a line outage in a real system relies heavily on the assumption that the 

line outage event can first be detected.  The primary focus of this thesis is on the line 

outage identification methods, but Overbye and Tate explore detection in greater depth 

[14], so their findings will be utilized in this thesis.  Section 5.2 will cover the findings of 

Overbye and Tate so that their results may be utilized in the sections to follow.  A 

dynamic simulation constructed in PSS/E v32 is then presented using the same 47 bus 

system, but with generator dynamical models.  Line outages are examined based on their 

detectability and their likelihood of correct identification. Before concluding, the 

proposed method is utilized on PMU data from the full, non-reduced system which 

consists of 6000+ buses.  

5.2 Detection of a Possible Outage 

Any type of event detection algorithm generally consists of two parts.  The first is 

the detection of the event and the second is the identification of the event.  For the 

purposes of line outage detection PMU measurements may be constantly monitored for 

an abrupt change in the bus voltage angle.  Although the idea is simple, in practice such a 

technique is complicated by noise and non-outage events like capacitor switching.  The 

task then, is to decide on the criteria which separate line outages from everything else. 

Before any processing can be performed, the PMU angles must first be filtered to 

remove erroneous high frequency content.  By applying a low pass filter to the PMU 
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signals, events such as momentary lapses in communication and noise can be removed to 

prevent false indication of power system events.  While it may seem counter intuitive to 

remove the high frequency content from the signal, line outage detection only requires 

that a change from one angular value to another be seen.  Much research has been 

completed on the topic of filtering PMU signals.  For line outage detection Overbye and 

Tate propose an order 61 FIR filter with a Hamming window and a cutoff frequency of 

0.1Hz.  By design, the electromechanical oscillations are kept below 0.1Hz and the cutoff 

frequency was chosen for this reason.  Once the PMU angles are filtered, the process of 

detecting abrupt changes then begins. 

Abrupt changes in a signal can also be thought of as edges, visually the change 

looks like the edge of a cliff.  This analogy is utilized in image processing to detect edges 

in an image.  By examining the first derivative of the intensity values of pixels, a very 

primitive edge detection system can be constructed.  The same applies to any signal since 

we know that the derivate can be thought of as the slope of a line tangent to the curve or 

signal.  Thus, when small numbers result from the derivative, not much change is 

happening in the signal.  When large numbers are encountered, drastic or possibly abrupt 

changes are occurring in the signal.  All of this description is qualitative however, so the 

terms “small” and “large” in terms of the derivative must be defined.  A threshold,  is 

used to mark the distinction between what is small and what is large. 

For real signals, the analytical derivative cannot be applied since a signal is 

actually a discrete sampled version of the continuous one.  The typical form of an 

analytical derivative is shown below which is simply a representation of the slope of a 
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line tangent to the function f at a point a.  The term h is simply the distance between the 

two points which are evaluated in the numerator.  As h approaches zero in the limit, the 

equation below becomes the exact analytical form of a derivative. 

  ' ( ) ( )f a h f a
f a

h

 
  (5.2.1)

In the discrete time version, h can never truly reach zero but can be as small as 

one sample.  Therefore, a discrete approximation to the equation above is shown below. 

      ' 1f a f a f a    (5.2.2)

Or, more simply, the discrete approximation to a derivative can be found by 

taking the difference between successive samples.  Equation (5.2.2) requires future 

knowledge of the signal however, so the equivalent equation below can be utilized: 

      ' 1 1f a f a f a     (5.2.3)

Some caveats arise with this expression though.  For instance, when a quick 

disturbance occurs such that the sampling rate of the PMU is too low, the event may be 

missed.  In addition, it is necessary to determine not only when the event starts, but when 

the event also ends.  Any major change in the power system topology will create a 

transient condition which diminishes after some time.  Therefore, an indication of the end 

of the event may simply occur when the angular difference between two consecutive 

samples reaches zero, or very near zero.  The figure below illustrates this method. 
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assumption is between 0.01 and 0.57 degrees.  These bounds come from manufacturers’ 

noise tolerance and PMU standards.  The same threshold was also used to determine the 

end of the event.  These two times are annotated in Figure 5.6 above.  The same process 

was performed for each of the ten line outages.  In order to determine the angular 

difference, the pre and post event, low pass filtered bus voltage angles at the times 

indicated above were used.  The resultant el basis vectors after scaling are shown in the 

table below. 

Table 5.1 – Simulated angle change vectors using the proposed method. 
 

PMU Line 1 Line 2 Line 3 Line 4 Line 5 Line 6 Line 7 Line 8 Line 9 Line 10 
1 0.476 0.399 0.520 0.495 -0.025 -0.355 0.543 0.610 0.418 0.234 
2 0.475 0.386 0.521 0.494 -0.027 -0.356 0.642 0.511 0.413 0.228 
3 0.476 0.403 0.519 0.495 -0.025 -0.355 0.542 0.606 0.419 0.237 
4 0.472 0.346 -0.435 0.491 -0.030 -0.358 -0.006 -0.018 0.403 0.214 
5 -0.001 0.000 0.001 -0.001 -0.001 0.006 0.000 0.000 0.001 -0.001 
6 0.314 -0.641 -0.007 0.159 0.999 -0.702 -0.002 -0.005 0.563 0.890 

 
Similar to the process performed in Chapter 4, the basis vectors in the table above were 

compared with the calculated basis vectors to find the distances between each.  The result 

is shown in the table below.  For seven out of the ten line outages, the algorithm correctly 

ranks the line.  While there are three line outages which are identified incorrectly, in each 

of these cases, the correct ranking is still in the top two or three.  In order to better tune 

the algorithm, the parameters above may have to be changed based on a particular system 

or a particular situation. 
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Table 5.2 – Distance between simulations (columns) and calculations (rows). 
 
 Line 1 Line 2 Line 3 Line 4 Line 5 Line 6 Line 7 Line 8 Line 9 Line 10

Line 1  0.0102 0.3674 0.3291 0.1692 1.1194 0.4450 0.5994 0.5880 0.2686 0.7490
Line 2 0.2256 0.1567 0.5369 0.3835 0.9338 0.2318 0.7191 0.7096 0.0541 0.5444
Line 3 0.3253 0.6816 0.0067 0.1741 1.3762 0.7611 0.4476 0.4358 0.5917 1.0427
Line 4 0.1629 0.5346 0.1667 0.0045 1.2581 0.6114 0.5367 0.5246 0.4383 0.9060
Line 5 1.1026 0.7719 1.3494 1.2323 0.0301 0.6948 1.3609 1.3582 0.8603 0.3886
Line 6 0.3548 0.0489 0.6605 0.5108 0.8164 0.1017 0.8040 0.7956 0.0791 0.4177
Line 7 0.5978 0.7950 0.4527 0.5407 1.3827 0.8787 0.1388 0.0830 0.7489 1.0931
Line 8 0.5963 0.7956 0.4501 0.5391 1.3826 0.8779 0.0737 0.1236 0.7485 1.0933
Line 9 0.3220 0.0694 0.6291 0.4785 0.8467 0.1350 0.7818 0.7731 0.0465 0.4502

Line 10 0.7961 0.4408 1.0734 0.9400 0.3766 0.3586 1.1272 1.1223 0.5337 0.0452
 

5.4 PMU Data 

PMU data for the 6000+ bus system, which was reduced for the previous analysis, 

are examined in the following section.  For consistency, only the PMU locations used in 

the 47 bus reduced system are used for 6000+ bus system.  In this way, the following 

analysis will show the effect of the power system dynamics and the generality of the 

proposed line outage detection algorithm.  In the full 6000+ bus system, a different slack 

bus is utilized than the reduced 47 bus system.  The slack bus in the larger system was 

equivalenced, so a different bus was chosen as the reference.  Since the proposed line 

outage detection algorithm is based on relative angular change and all scaling due to bus 

injection is removed, the algorithm should perform well for any choice of slack or 

loading \ generation condition.  Figure 5.7 below shows a three line to ground fault with 2 

seconds of pre-fault data and approximately 16 seconds afterward.  Corrective action was 

taken at approximately 0.5 seconds after the fault. 
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Figure 5.7 – PMU data during a line to ground fault. 
 

As described above, the first step in processing this data is to apply an order 61 

FIR filter with a Hamming window and cutoff frequency of 0.1Hz.  The resultant angles 

are shown below in Figure 5.8.  This figure shows an important aspect of the filtering 

algorithm.  Unfortunately, the data that was provided only starts 2 seconds before the 

event.  Therefore, the startup effects of the low-pass filter begin to interfere with the 

event itself.  This occurs because the data must be pre-pended with zeros to allow the 

causal FIR filter to operate.  If instead, the data is pre-pended with its edge value (the 

angles at t = -2s), this startup effect can be diminished as shown in Figure 5.9.  

-60
-40
-20

0
20
40
60
80

100
120
140
160
180
200
220
240
260
280
300
320

-2
.0

0
-1

.3
3

-0
.6

7
0.

00
0.

67
1.

33
2.

00
2.

67
3.

33
4.

00
4.

67
5.

33
6.

00
6.

67
7.

33
8.

00
8.

67
9.

33
10

.0
0

10
.6

7
11

.3
3

12
.0

0
12

.6
7

13
.3

3
14

.0
0

14
.6

7
15

.3
3

16
.0

0
16

.6
7

A
n

gl
e 

(D
eg

re
es

)

Time Relative to Fault (Seconds)

Bus 3
Bus 5
Bus 6
Bus 16
Bus 26



77 
 

 

Figure 5.8 – Low Pass filtered PMU measurements. 
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Figure 5.9 – Low pass filtered angles with pre-pended edge value. 
 

After low-pass filtering the angles, the angular difference was found as shown 

below.  Unfortunately, the data provided does not fully allow the algorithm to come to 

completion since the angular difference does not fall below the threshold for 5 out of the 

6 angle measurements. 
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Figure 5.10 – Angular difference for PMU data. 
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CHAPTER SIX  

CONCLUSION AND FUTURE RESEARCH 

Modern power systems have become increasingly complex.  The mere speed at 

which electricity travels may lead one to believe that controlling such a force is 

impossible.  Electric power systems as a whole, however, do not change drastically from 

second to second.  This fairly constant characteristic is what has allowed power systems 

to operate, in large part, with minimal closed loop, on-line control.  As power systems 

have grown, the possibility for major catastrophes has also grown.  No longer can a 

power system operate without automated intervention.  In order to prevent large scale 

blackouts and interruption of service to essential loads, closed loop automated control 

must become the norm for power system operation.  The basis for any type of such 

control is a synchronized measurement across the entire power system.  With an accurate, 

up-to-date snapshot of all or part of the power system many new applications become 

possible. 

While completely automated power system control and operation may not be 

possible in the near future, it is feasible that small strides can be made today.  Preventing 

large cascading blackouts caused by something as simple as a single line outage is a very 

real possibility.  The 2003 blackout, along with most of the major U.S. blackouts before 

it, was caused by a lack of information and communication, also dubbed situational 

awareness.  Such blackouts may be caused by the outage of a single line.  In this case, 

traditional power system protection schemes should prevent local area events from 

affecting the wider power system.  If one or more levels of backup protection fail, 
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however, wide area protection may not exist to prevent a catastrophe.  Synchronized 

phasor measurements can be used to create wide area monitoring systems to prevent such 

catastrophes. 

In Chapter 2 it was shown that principle component analysis can be used to elicit 

information from wide area measurements.  The method of line outage detection which 

was presented, dubbed “Principle Outage Vectors,” requires a possibly large number of 

simulations similar to the Eigenfaces technique used in facial recognition.  This method 

may not necessarily be practical, but it does show the utility of the PCA technique.  Such 

statistical techniques may prove more useful in wide area monitoring systems.  However, 

an analytical basis for the results garnered from PCA is not always available.  In order to 

create a new, more deterministic algorithm, the line outage problem was explored more 

deeply in Chapter 3.  

The two methods of line outage detection explored in Chapter 3 are distinct but 

rely upon similar assumptions.  Overbye and Tate assumed that the topology and line 

flow data for the entire system will be available.  In addition, they assumed that all 

synchrophasor measurements and line flow measurements are aggregated at a central 

location.  In an effort to make an algorithm which is both more efficient and more 

universal, the proposed method does not rely on line flow measurements in any capacity.  

Rather, the algorithm was created under the assumption that a line outage will impose 

some basic characteristics on the bus voltage angles which are independent of anything 

but the topology of the system.  Therefore, the bus voltage angles alone can be used to 

detect line outages. 
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Both the OT algorithm and the novel algorithm described in Chapter 3 rely on the 

DC power flow assumptions.  Since the power flow is non-linear in reality, the DC power 

flow assumptions are an important tool for simplified power flow analysis.  In order to 

compare both of these algorithms, steady state simulations were performed in Chapter 4 

using a 47 bus reduced equivalent system.  After applying both algorithms, it was 

discovered that the results from each are identical.  Through further investigation, the 

calculated bus voltage angle changes in each case are identical after normalization.  The 

majority of the scaling comes from the injected powers in the DC power flow 

assumptions.  Thus, when normalizing the bus voltage angles, the effect of these 

injections is effectively removed.  Plus, since both the proposed and OT algorithms 

utilize a normalization step, it is easy to see why their results might be identical. 

Chapter 5 consisted of dynamic simulations using the proposed algorithm.  The 

intention of this research was focused more so on the identification aspect of the 

algorithm, so much of the work performed by Overbye and Tate on event detection was 

replicated.  As expected, the line outage detection method performs reasonably well for 

dynamically generated PMU measurements.  However, some tuning of key parameters is 

required for specific systems with a given number of PMU measurements.  While these 

dynamic simulations still depend solely on bus voltage angles, most PMUs can supply 

much more information. 

The bus voltage angles depend on many system parameters other than the 

topology alone.  However, it has been empirically shown that the bus voltage angles and 

line current magnitudes are the two most telling aspects of power system topology 
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changes [22].  Thus, it is possible that an algorithm which utilizes a combination of the 

two approaches above could minimize the required number of line flow measurements 

while maximizing the line outage detection accuracy.  In addition, the DC power flow 

assumptions utilized above are simple, but with a reduced degree of accuracy.  More 

accurate line outage detection algorithms such as the Principle Outage Vector technique 

may need to rely on a full Newton Raphson power flow solution.  In fact, when 

examining the proposed algorithm, the method lends itself to such an approach.  Since 

Newton-Raphson power flow uses an approximation to the derivative at a single point, 

known as the Jacobian, the method is quite similar to the line outage detection method 

proposed above.  The proposed method utilizes the difference between bus voltage angles 

which is equivalent to the second term of the Kron Reduction.  As seen above, a discrete 

difference is also an approximation to a derivate.  Since the second term in the Kron 

Reduction has a rank of one, all angular differences are simply scaled versions of the 

basis.  It is possible that the same reasoning could be applied to the Jacobian.  The 

Jacobian, however, is typically full rank, so a more in depth analysis would be required. 

In summary, the conclusions of this thesis are two-fold.  First, statistical 

techniques such as PCA are invaluable to the future synchrophasor applications.  The 

accuracy of algorithms derived from PCA is extremely high.  However, PCA based 

algorithms tend to be less concise and are only somewhat based on the underlying 

structure of the problem.  Next, Overbye and Tate’s algorithm for line outage detection, 

while useful, was improved upon.  The OT algorithm requires line flow measurements on 

every line in the system to be effective.  This requirement is both unnecessary and likely 
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impossible in some cases.  Lastly, despite the inherent complexity of the power system 

the DC power flow assumptions can provide valuable insight into both line outage 

detection and power system operation as a whole. 
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Appendix A 

Six Bus Test System Parameters 

 

 

 

 

 

 

From Bus To Bus R(pu) X(pu) BCAP/2 (pu)
1 2 0.10 0.20 0.02 
1 4 0.05 0.20 0.02 
1 5 0.08 0.30 0.03 
2 3 0.05 0.25 0.03 
2 4 0.05 0.10 0.01 
2 5 0.10 0.30 0.02 
2 6 0.07 0.20 0.0025 
3 5 0.12 0.26 0.0025 
3 6 0.02 0.10 0.01 
4 5 0.20 0.40 0.04 
5 6 0.10 0.30 0.03 
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Bus Number Bus Type V Schedule Pgen Pload Qload 
1 Swing 1.05    
2 Gen. 1.05 0.50   
3 Gen. 1.07 0.6   
4 Load   0.7 0.7 
5 Load   0.7 0.7 
6 Load   0.7 0.7 
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Appendix B 

Overbye and Tate Method 

%typical usage of OandT_sim 
function OandT_Run  
  
   %lines of interest 
   lines=[1,27,20,29,54,43,19,18,50,51]; 
    
   %locations of actual PMU installations 
   actual_PMUs=zeros(1,47); 
   actual_PMUs(3)=1; 
   actual_PMUs(5)=1; 
   actual_PMUs(6)=1; 
   actual_PMUs(16)=1; 
   actual_PMUs(26)=1; 
   actual_PMUs(45)=1; 
    
   [Oe,Fe,Ae]=OandT_sim(loadcase('TVA'),actual_PMUs,lines); 
  
   Oe 
   Fe 
   Ae 
  
end 
  
%OANDT_SIM      Simulate line outage detection using Overbye, Tate 
Method. 
%  [Osuccess,Fsuccess,Asuccess]=OANDT_SIM(cse,actual_PMUs,lines)  
%   
%  Calculate the success rates in detecting line outages for full PMU  
%  coverage, optimal PMU coverage, and a vector of actual PMU 
locations. 
%  The optimal PMU locations are determined using integer programming. 
%  Line outage detection is performed by simulating line outages using 
DC 
%  power flow assumptions and pre-outage line flows, then comparing the 
%  result to another simulation with randomized loading/generation.  It 
is 
%  assumed that the power injections are constant throughout the event. 
% 
%Usage: 
%     cse         - system case given in MATPOWER format 
%     actual_PMUs - for the N bus base_case system, PMUs is a 1xN 
vector 
%                   containg 1's and 0's where column i is 1 if a PMU 
is 
%                   installed at bus i. 
%     lines       - line numbers to be studied.  For all lines, use 
%                   lines=[1:num_lines] 
%Note: 
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%     Requires MATPOWER and optimization toolbox. 
  
function [Osuccess,Fsuccess,Asuccess]=OandT_sim(cse,actual_PMUs,lines) 
  
   %number of buses in the system 
   buses=size(cse.bus,1); 
    
   %number of branches in the system 
   branches=size(cse.branch,1); 
  
   %begin optimal PMU placement 
   TPMUs=build_PMUs(cse); 
  
   %b vector for optimization, for complete observability at each bus 
   b=ones(buses,1); 
    
   %determine optimal PMU locations 
   PMUs=bintprog(b,-TPMUs,-b) 
  
   %if only one PMU is returned, try again with 2 PMUs observing each 
bus 
   if(sum(PMUs)==1) 
       
         %new b vector with 2 PMUs observing each bus 
         b=2*ones(buses,1); 
       
         %rerun optimization 
         PMUs=bintprog(b,-TPMUs,-b) 
          
   end 
  
   %calculate success rates 
   Osuccess=1-OandT(cse,PMUs,lines)/branches; 
   Fsuccess=1-OandT(cse,ones(1,buses),lines)/branches; 
   Asuccess=1-OandT(cse,actual_PMUs,lines)/branches; 
  
end 
  
%Overbye and Tate line outage detection for given PMUs and lines 
function errors=OandT(base_case, PMUs, lines) 
  
   %suppress MATPOWER output 
   opt=mpoption('OUT_ALL',0,'VERBOSE',0); 
    
   %number of lines in the system 
   num_lines=size(base_case.branch,1); 
  
   %number of buses in the system 
   num_bus=size(base_case.bus,1); 
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   %create a copy of the case for changing the load values 
   new_case=base_case; 
  
   %run the base case Newton Raphson load flow 
   results=runpf(base_case,opt); 
  
   %get the bus voltage angles before outage 
   pre_angles=results.bus(:,9); 
  
   %form the matrix of power transfer distribution factors (PTDFs) 
   ptdf=makePTDF(base_case.baseMVA,base_case.bus,base_case.branch); 
  
   %determine the power injections required to force the line flow to 
zero 
   %for each outaged line 
   for branch=1:size(lines,2); 
  
         Plhat(branch)=results.branch(lines(1,branch),14)/(1-
ptdf(lines(1,branch),results.branch(lines(1,branch),1))); 
  
   end 
  
   %form the B matrix 
   [B, Bf, Pbusinj, Pfinj] = makeBdc(base_case.baseMVA, base_case.bus, 
base_case.branch); 
  
   %form the PMU connection matrix 
   K=zeros(sum(PMUs),num_bus); 
    
   %initialize PMU counter 
   num_pmu=0; 
    
   %cycle through buses looking for PMUs 
   for b=1:num_bus 
  
         %if a PMU exists at a bus add a one to the connection matrix 
         if PMUs(b) 
            num_pmu=num_pmu+1; 
            K(num_pmu,b)=1; 
         end  
  
   end 
  
   %prefill K*X product result with zeros. 
   KBinv=zeros(sum(PMUs),num_bus); 
  
   %KBinv = K * inv(B) = K * X - > only take rows of X with PMUs 
   
KBinv(1:end,2:num_bus)=K(1:end,2:num_bus)*full(inv(B(2:num_bus,2:num_bu
s))); 
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   %prefill calculated delta theta with zeros 
   delta_t_l=zeros(size(KBinv,1),size(base_case.branch,1)); 
  
   %cycle through branches formin vector of injections 1 = in, -1 = out 
   for br=1:size(lines,2) 
       
      %prefill with zeros 
      inj=zeros(num_bus,1); 
       
      %cycle through buses 
      for bus=1:size(base_case.bus,1) 
         if(bus==base_case.branch(lines(1,br),2)) 
            inj(bus,1)=1; 
         elseif(bus==base_case.branch(lines(1,br),1)) 
            inj(bus,1)=-1; 
         end 
      end 
  
      %calculated change in bus voltage angles 
      delta_t_l(:,br)=Plhat(br)*KBinv*inj; 
  
   end 
  
   %pre-fill vector of simulated bus voltage angle differences 
   dt=zeros(sum(PMUs),1); 
  
   %cycle through branches and simulate line outages  
   for branch=1:size(lines,2) 
       
      %calculate angles after the outage 
      outage_angles=lo_angles(base_case,lines(1,branch),0); 
      num_pmu=0; 
      for b=1:num_bus 
         if(PMUs(b)) 
            num_pmu=num_pmu+1; 
            dt(num_pmu,branch)=pre_angles(b,1)-outage_angles(b,1); 
         end 
      end 
  
   end 
  
   %determine the normalized angular distances between simulated and 
   %calculated line outages 
   for line_int=1:size(lines,2) 
      for line_out=1:size(lines,2) 
  
         
NAD(line_int,line_out)=min(norm(dt(:,line_out)./norm(dt(:,line_out))-
delta_t_l(:,line_int)./norm(delta_t_l(:,line_int))),... 
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norm(dt(:,line_out)./norm(dt(:,line_out))+delta_t_l(:,line_int)./norm(d
elta_t_l(:,line_int)))); 
  
      end 
   end 
  
   %initialize errors 
   errors=0; 
    
   %vector to determine troublesome lines 
   error_place=zeros(size(lines,2),1); 
    
   %rank lines in terms of closeness to actual outaged line 
   for line_rank=1:size(lines,2) 
  
      %find minimum normalized angular distance in each column 
      [val,I]=min(NAD(:,line_rank)); 
       
      %search each row for the minumum 
      idx=knnsearch(val,NAD(:,line_rank),1); 
      if(line_rank~=idx) 
  
         errors=errors+1; 
         error_place(line_rank,1)=1; 
          
      end 
  
   end 
  
end 
  
%return the bus angles for a line outage on case mpc 
function angles=lo_angles(mpc,line,flag) 
    
   %don't display pf solution 
   if flag==1 
      opt=mpoption('PF_DC',1,'OUT_ALL',0,'VERBOSE',0); 
   elseif flag==2 
      
opt=mpoption('PF_ALG',3,'PF_MAX_IT_FD',5,'OUT_ALL',0,'VERBOSE',0); 
   else 
      opt=mpoption('OUT_ALL',0,'VERBOSE',0); 
   end 
  
   %switch out the specific line 
   mpc.branch(line,11)=0; 
    
   %run the power flow with the line outage 
   results=runpf(mpc,opt); 
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   %return the angles only 
   angles=results.bus(:,9); 
    
   %switch the line back into service 
   mpc.branch(line,11)=1; 
  
end 
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Appendix C 

B.2 Outage Vector Method 

%typical usage of LOD_sim 
function LOD_Run 
  %array of PMU bus numbers for actual PMU installations 
  actual_PMUs=[3,5,6,16,26,45]; 
   
  %array of lines of interest, top ten loaded lines 
  lines=[1,27,20,29,54,43,19,18,50,51]; 
   
  [Oe,Fe,Ae]=LOD_sim(loadcase('TVA'),actual_PMUs,lines); 
  
   Oe 
   Fe 
   Ae 
    
end 
  
%LOD_SIM      Simulate line outage detection using normalized vectors. 
%  [Osuccess,Fsuccess,Asuccess]=LOD_SIM(cse,actual_PMUs,lines)  
%   
%  Calculate the success rates in detecting line outages for full PMU  
%  coverage, optimal PMU coverage, and a vector of actual PMU 
locations. 
%  The optimal PMU locations are determined using integer programming. 
%  Line outage detection is performed by simulating line outages, 
finding 
%  the normalized bus voltage angular differences, then comparing the 
%  result to another simulation with randomized loading/generation.  It 
is 
%  assumed that the power injections are constant throughout the event. 
% 
%Usage: 
%     cse         - system case given in MATPOWER format 
%     actual_PMUs - for the N bus base_case system, PMUs is a 1xN 
vector 
%                   containg the bus numbers of actual PMU locations. 
%     lines       - line numbers to be studied.  For all lines, use 
%                   lines=[1:num_lines] 
%Note: 
%     Requires MATPOWER and optimization toolbox. 
  
function [Osuccess,Fsuccess,Asuccess]=LOD_sim(cse,actual_PMUs,lines) 
  
   %suppress MATPOWER output 
   opt=mpoption('OUT_ALL',0,'VERBOSE',0); 
    
   %make a copy of the case for changing the load values 
   new_case=cse; 
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   %number of buses in the system 
   num_bus=size(cse.bus,1); 
    
   %number of branches in the system 
   branches=size(cse.branch,1); 
  
   %begin optimal PMU placement 
   TPMUs=build_PMUs(cse); 
  
   %b vector for optimization, for complete observability at each bus 
   b=ones(num_bus,1); 
    
   %determine optimal PMU locations 
   PMUs=bintprog(b,-TPMUs,-b); 
    
   %if only one PMU is returned, try again with 2 PMUs observing each 
bus 
   if(sum(PMUs)==1) 
       
         %new b vector with 2 PMUs observing each bus 
         b=2*ones(num_bus,1); 
    
         %rerun optimization 
         PMUs=bintprog(b,-TPMUs,-b); 
          
   end 
    
   %MATPOWER function to build B matrix 
   [BBUS, BF, PBUSINJ, PFINJ]=makeBdc(cse.baseMVA,cse.bus,cse.branch); 
    
   %Invert non-slack bus portion of B matrix 
   Xp=inv(full(BBUS(2:end,2:end))); 
    
   %prefill X matrix with zeros, so that slack row/column is zero 
   X=zeros(num_bus); 
    
   %copy non-zero elements 
   X(2:end,2:end)=Xp; 
    
   %array of PMU bus numbers for the optimal PMU installations 
   optim_PMUs=find(PMUs); 
    
   %cycle through lines to study 
   for br=1:size(lines,2) 
       
      %X matrix after line removal 
      
X2=add_lp_to_bus_nc(X,cse.branch(lines(1,br),1),cse.branch(lines(1,br),
2),cse.branch(lines(1,br),4)); 
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      %difference in X matrices = L*M^(-1)*L.' 
      dx=X-X2; 
       
      %perform singular value decomposition to find optimal orthonormal 
      %basis for the range of dx. Alternately, could find rref of dx 
      [u,s,v]=svd(dx); 
       
      %prototypical outage vectors for full coverage 
      full_proto(:,br)=v(:,1); 
  
      %prototypical outage vectors for actual coverage 
      
actual_proto(:,br)=full_proto(actual_PMUs,br)/norm(full_proto(actual_PM
Us,br)); 
       
      %prototypical outage vectors for optimal coverage 
      
optim_proto(:,br)=full_proto(optim_PMUs,br)/norm(full_proto(optim_PMUs,
br)); 
       
   end 
  
   %create empty vector for load zones 
   zones=[]; 
    
   %cycle through buses to determine the load zones 
   for b=1:num_bus 
       
      %find indices of the current zone in the running list of zones 
      [r,c]=find(zones==cse.bus(b,11)); 
       
      %if it isn't already in the list, add it 
      if isempty(r) 
          
         zones(end+1,1)=cse.bus(b,11); 
  
      end 
       
   end 
    
   %randomize the loading at each load zone 
   for i=1:size(zones,1) 
          
      ld_vec(1,i)=0.2*(randn(1))+1; 
          
   end 
       
   %scale the load for the new case 
   new_case.bus=scale_load(ld_vec,cse.bus); 
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   %determine outage vector simulated measurements for optimal coverage 
   ovO_meas=outage_vectors(cse,optim_PMUs,lines,0); 
  
   %determine outage vector simulated measurements for full coverage 
   ovF_meas=outage_vectors(cse,[1:num_bus],lines,0); 
    
   %determine outage vector simulated measurements for actual coverage 
   ovA_meas=outage_vectors(cse,actual_PMUs,lines,0); 
    
   %initialize errors to zeros 
   Oerror=0; 
    
   Ferror=0; 
    
   Aerror=0; 
    
   %cycle through lines and search for closest match between simulated 
and  
   %calculated outage vectors for all three cases 
   for b=1:size(lines,2) 
       
       idx=knnsearch(abs(ovO_meas(:,b).'),abs(optim_proto.'),1); 
        
       if idx ~= b 
          Oerror=Oerror+1; 
           
       end 
        
       idx=knnsearch(abs(ovF_meas(:,b).'),abs(full_proto.'),1); 
  
       if idx ~= b 
           
          Ferror=Ferror+1; 
           
       end 
        
       idx=knnsearch(abs(ovA_meas(:,b).'),abs(actual_proto.'),1); 
  
       if idx ~= b 
           
          Aerror=Aerror+1; 
           
       end 
        
   end 
    
   %calculate success rates 
   Osuccess=1-Oerror/branches;  
   Fsuccess=1-Ferror/branches; 
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   Asuccess=1-Aerror/branches; 
        
end 

 

%OUTAGE_VECTORS      Normalized vector bus voltage angular differences. 
%  V=OUTAGE_VECTORS(base_case, PMUs, lines, flag) calculates the 
difference between pre  
%  and post outage bus voltage angles, then normalizes the length of 
the 
%  vector to one. 
% 
%Usage: 
%     base_case - system case given in MATPOWER format 
%     PMUs      - for the N bus base_case system, PMUs is a 1xN vector 
%                 containg 1's and 0's.  If bus m has a PMU measurment, 
%                 PMUs(1,m) will be 1, otherwise 0. This vector can be 
%                 found using the optimal placement of PMUs, for 
example, 
%                 with integer programming. 
%     lines     - line numbers to be studied.  For all lines, use 
%                 lines=[1:num_lines] 
%     flag      - flag to determine which power flow solution type to 
use 
%                 flag = 1 - uses DC power flow assumptions 
%                 flag = 2 - uses Decoupled power flow assumptions 
%                 flag = other - uses full Newton Raphson power flow 
  
function V=outage_vectors(base_case, PMUs, lines, flag) 
  
   %suppress output from MATPOWER 
   opt=mpoption('OUT_ALL',0,'VERBOSE',0); 
  
   %run the base case power flow 
   results=runpf(base_case,opt); 
  
   %number of lines in the system 
   num_lines=size(base_case.branch,1); 
  
   %number of buses in the system 
   num_bus=size(base_case.bus,1); 
  
   %bus voltage angles in the base case 
   pre_angles=results.bus(:,9); 
    
   %create empty vector to hold bus numbers of PMU locations 
   pmu_buses=[]; 
    
   %make sure the PMU vector is the right dimension 
   if size(PMUs,1)>size(PMUs,2) 
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      PMUs=PMUs.'; 
       
   end 
    
   %create vector of bus numbers where PMUs are installed 
   for bus=1:size(PMUs,2) 
    
      %if a PMU exists on a bus add the bus to the list 
      if PMUs(bus) 
         pmu_buses=[pmu_buses bus]; 
      end 
    
   end 
  
   %create array of prototype vectors 
   evec_proto=zeros(sum(PMUs),num_lines); 
  
   %cycle through lines 
   for branch=1:size(lines,2) 
       
      %determine the angles at each bus for each line outage 
      out_ang(:,branch)=lo_angles(base_case,lines(1,branch),flag); 
       
      %create vector of pre and post outage angles 
      %if the system has m PMUs, delta_theta will be m x 2 
      delta_theta(:,branch)=[pre_angles(:)-out_ang(:,branch)]; 
        
   end 
  
   %only select the rows corresponding to the PMUs that were given 
   V=delta_theta(PMUs.',:); 
    
   %normalize the vectors 
   for br=1:size(lines,2) 
       
      V(:,br)=V(:,br)/norm(V(:,br)); 
    
   end 
  
end 
  
%return the bus angles for a line outage on case mpc 
function angles=lo_angles(mpc,line,flag) 
    
   %don't display pf solution 
   if flag==1 
      opt=mpoption('PF_DC',1,'OUT_ALL',0,'VERBOSE',0); 
   elseif flag==2 
      
opt=mpoption('PF_ALG',3,'PF_MAX_IT_FD',5,'OUT_ALL',0,'VERBOSE',0); 
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   else 
      opt=mpoption('OUT_ALL',0,'VERBOSE',0); 
   end 
  
   %switch out the specific line 
   mpc.branch(line,11)=0; 
    
   %run the power flow with the line outage 
   results=runpf(mpc,opt); 
    
   %return the angles only 
   angles=results.bus(:,9); 
    
   %switch the line back into service 
   mpc.branch(line,11)=1; 
  
end 

 

%BUILD_PMUS Create PMU connection matrix for integer programmiing 
%     TPMU=build_PMUs(base_case) returns the connection matrix for 
%     determing the optimal PMU placement using integer programming. 
% 
%Usage: 
%     base_case is a MATPOWER case 
  
  
function TPMU=build_PMUs(base_case) 
    
   %number of branches in the system 
   branches=size(base_case.branch,1); 
    
   %Create PMU location matrix 
   TPMU=eye(size(base_case.bus,1)); 
    
   %cycle through all branches to determine the connection matrix 
   for branch=1:branches 
       
      %obtain from and two bus numbers for MATPOWER cases or simple 
brach 
      %matrices 
      if(isstruct(base_case)) 
         fr=base_case.branch(branch,1); 
         to=base_case.branch(branch,2); 
      else 
         fr=base_case(branch,1); 
         to=base_case(branch,2); 
      end 
       
      %if two buses are connected, set the corresponding element to 1 
      TPMU(fr,to)=1; 
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      TPMU(to,fr)=1; 
     
   end 
end  



102 
 

REFERENCES 

 
[1]  E. O. Schweitzer III and D. E. Whitehead, “Real world synchrophasors 
solutions,” IEEE PES, 62nd Annual Conference for Protective Relay Engineers, pp. 
536-547, 2009. 
 
[2]  A. G. Phadke, "Synchronized phasor measurements-a historical overview," 
IEEE/PES Asia Pacific Transmission and Distribution Conference and Exhibition, 2002, 
vol. 1, pp. 476-479. 
 
[3]  "IEEE Standard for Synchrophasors for Power Systems," IEEE Std C37.118-2005 
(Revision of IEEE Std 1344-1995) , vol., no., pp.0_1-57, 2006. 
 
[4]  J. S. Thorp, A. G. Phadke, and K. J. Karimi, "Real time voltage-phasor measurement 
for static state estimation," IEEE Transactions on Power Apparatus and Systems, vol. 
PAS-104, no. 11, pp. 3098-3106, 1985. 
 
[5]  US-Canada Power System Outage Task Force, Final Report on August 14, 2003 the 
Blackout in the United States and Canada, 2004. [Online]. Available: 
https://reports.energy.gov/BlackoutFinal-Web.pdf. 
 
[6]  Hadley, et al. “Securing Wide Area Measurement Systems”, Pacific Northwest 
national Laboratory. June 2007. [Online]. Available: 
http://www.oe.energy.gov/DocumentsandMedia/Securing_WAMS.pdf 

[7]  J.Y. Cai, Z. Huang, J. Hauer and K. Martin. “Current status and experience of 
WAMS implementation in North America,” Transmission and Distribution Conference 
and Exhibition: Asia and Pacific, 2005 IEEE/PES pp. 1-7. 
 
[8]  J., Tate, "Event detection and visualization based on phasor measurement units for 
improved situational awareness". Ph.D. diss., University of Illinois at Urbana-
Champaign ,2008. In Dissertations & Theses: Full Text [database on-line]; available from 
http://www.proquest.com (publication number AAT 3337937; accessed January 17, 
2011). 

[9]  A. Tiwari and V. Ajjarapu,“Event identification and contingency assessment for 
voltage stability via PMU,” Power Symposium, 2007. NAPS '07. 39th North American 
pp. 413-420.  

[10]  A. R. Khatib, R. F. Nuqui, M. R. Ingram, and A. G. Phadke, "Real-time estimation 
of security from voltage collapse using synchronized phasor measurements," in IEEE 
Power Engineering Society General Meeting, 2004, vol. 1, pp. 582-588. 
 



103 
 

[11]  R.F. Nuqui, A.G. Phadke, R. P. Schulz, N.B. Bhatt, “Fast On-line Voltage Security 
Monitoring Using Synchronized Phasor Measurements and Decision Trees”, IEEE 2201 
Power Engineering Society Winter Meeting, vol. 3, Jan. 28-Feb. 1, 2001, pp 1347 -1352. 
 
[12]  R. Aggarwal and Y. Song, “Artificial neural networks in power systems,” 
PEJ, pp. 279–287, December 1998. 
 
[13]  M.J. Smith and K. Wedeward, "Event detection and location in electric power 
systems using constrained optimization," Power & Energy Society General Meeting, 
2009. PES '09. IEEE , vol., no., pp.1-6, 26-30, July 2009. 
  
[14]  J. E. Tate and T. J. Overbye, “Line outage detection using phasor angle 
measurements,”  IEEE Transactions on Power Systems, vol. 23, no. 4, pp. 1644-1652, 
Nov. 2008. 

[15]  J. E. Tate and T. J. Overbye; , "Double line outage detection using phasor angle 
measurements," Power & Energy Society General Meeting, 2009. PES '09. IEEE , pp.1-
5, 26-30 July 2009. 
 
[16]  A. Wood and B. Wollenberg, Power Generation, Operation, and Control. New 
York: Wiley, 1984. 
 
[17]  R.M. Gardner, J.K. Wang, Liu Yilu, "Power system event location analysis using 
wide-area measurements," Power Engineering Society General Meeting, 2006. IEEE , 
pp.7 
 
[18]  T.L. Baldwin, L. Mili, M. B. Boisen, and R. Adapa, “Power system observability 
with minimal phasor measurement placement”, IEEE Trans. Power Syst., vol. 8, 
no.2, pp. 707-715, May 1993. 
 
[19]  K. A. Clements, “Observability Methods and Optimal Meter Placement,” Electrical 
Power & Energy Systems, vol. 12, No. 2, pp. 88-93, Aptil 1990. 
 
[20]  Z. Zhao,  "Sensitivity constrained PMU placement utilizing multiple 
methods". M.S. diss., Clemson University, 2010. In Dissertations & Theses @ Clemson 
University [database on-line]; available from http://www.proquest.com (publication 
number AAT 1475592; accessed January 18, 2011). 
 
[21]  B. Gou, “ Optimal placement of PMUs by integer linear programming,” IEEE 
Trans. Power Syst., vol. 23, no. 3, pp. 1525-1526, Aug. 2008. 
 
 
 



104 
 

[22]  M. Vutsinas, "Contingency analysis using synchrophasor measurements". M.S. 
diss., Clemson University, 2008. In Dissertations & Theses @ Clemson University 
[database on-line]; available from http://www.proquest.com (publication number AAT 
1461004; accessed January 24, 2011). 
 
[23]  J. E. Jackson, A User’s Guide to Principal Components.  New York: John Wiley & 
Sons, Inc 1991. 
 
[24]  I.T. Jolliffe, Principal Component Analysis.  New York:  Springer 2002. 
 
[25]  S. Boyd  and L. Vandenberghe, Convex Optimization. New York: Cambridge 
University Press, 2004. 
 
[26]  M.A. Turk and A.P Pentland, “Face Recognition Using Eigenfaces,” Proc. IEEE 
Conference on Computer Vision and Pattern Recognition. pp. 586–591. 
 
[27]  R. D. Zimmerman, C. E. Murillo-Sánchez, and R. J. Thomas, "MATPOWER's 
Extensible Optimal Power Flow Architecture," Power and Energy Society General 
Meeting, 2009 IEEE, pp. 1-7, July 26-30 2009. 
 
[28]  J. Grainger and W. Stevenson, Power System Analysis, New York: McGraw Hill, 
1994. 
 
[30]  A. Michel and C. Herget, Applied Algebra and Functional Analysis, New York: 
Dover Publications, Inc. 1981. 
 
[31]  L. Ludeman, Fundamentals of Digital Signal Processing, John Wiley & Sonse, 
1986. 


	Clemson University
	TigerPrints
	1-2011

	IMPROVED LINE OUTAGE DETECTION USING SYNCHROPHASOR MEASUREMENTS
	Nick Mahoney
	Recommended Citation


	Microsoft Word - Thesis

