
Clemson University
TigerPrints

All Theses Theses

12-2006

A BAYESIAN APPROACH FOR BANDWIDTH
SELECTION IN KERNEL DENSITY
ESTIMATION WITH CENSORED DATA
Chinthaka Kuruwita
Clemson University, ckuruwi@clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

Part of the Applied Mathematics Commons

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized
administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Kuruwita, Chinthaka, "A BAYESIAN APPROACH FOR BANDWIDTH SELECTION IN KERNEL DENSITY ESTIMATION
WITH CENSORED DATA" (2006). All Theses. 25.
https://tigerprints.clemson.edu/all_theses/25

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Clemson University: TigerPrints

https://core.ac.uk/display/268631413?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_theses%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=tigerprints.clemson.edu%2Fall_theses%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/25?utm_source=tigerprints.clemson.edu%2Fall_theses%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu


A BAYESIAN APPROACH FOR BANDWIDTH SELECTION IN

KERNEL DENSITY ESTIMATION WITH CENSORED DATA

A Thesis
Presented to

the Graduate School of
Clemson University

In Partial Fulfillment
of the Requirements for the Degree

Master of Science
Mathematical Sciences

by
Chinthaka Kuruwita

December 2006

Accepted by :
Dr.K.B.Kulasekera, Committee Chair

Dr.W.J.Padgett
Dr.C.Park



ABSTRACT

Estimating an unknown probability density function is a common problem arising fre-

quently in many scientific disciplines. Among many density estimation methods, the kernel

density estimators are widely used. However, the classical kernel density estimators suffer

from an intrinsic problem as they assign positive values outside the support of the target

density. This problem is commonly known as the ’Spill over’ effect. A modification to the

regular kernel estimator is proposed to circumvent this problem. The proposed method

uses a lognormal kernel and can be used even in the presence of censoring to estimate any

density with a positive support without any spill over at the origin. Strong consistency of

this estimator is established under suitable conditions.

A Bayesian approach using as inverted gamma prior density is used in the computation

of local bandwidths. These bandwidths yield better density estimates. It was shown that

these bandwidths converge to zero for suitable choices of prior parameters and as a result

the density estimator achieved its asymptotic unbiasedness.

A simulation study was carried out to compare the performance of the proposed method

with two competing estimators. The proposed estimator was shown to be superior to both

competitors under pointwise and global error criteria.
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Chapter 1

Introduction

Like many other branches of statistics, nonparametric statistical methods have advanced

in many directions from its inception. With the advent of high speed computing power in

the recent past at a low cost, applications of nonparametric statistical methods grew many

fold. These technological advancements and the vast array of problems which came to the

fore as a result of these developments brought about a new era in nonparametric statistics.

Nonparametric density estimation is one of the major branches in nonparametric statistics

that has been developed since the late 1950’s. Its extensive application both in theoretical

and practical settings has opened up new avenues in the field of statistics, particularly in

data analysis.

1.1 Density Estimation

The theory and methods of density estimation focus on obtaining an accurate, and a robust

estimator of an unknown probability density function. Typically, the functional form of the

probability density function (pdf) f(x) is unknown. Even if it is known, or assumed to be

of a certain type, it will usually depend on some unknown parameters; i.e f(x, θ) = fo(x|θ)



for a known function fo. In such situations we may estimate the density by a ‘plug in’

method: that is plugging in an estimator for θ to come up with a density estimator of the

form fo(
.|θ̂). This is referred to as the parametric approach for density estimation as we

only estimate unknown parameters. In this setting, the prior assumption of the functional

form of the density function restricts our search to a small class of functions, within which

the estimator is chosen. As a result, the density estimator may not adequately represent

important features of the underlying probability density. Wand & Jones (1995) provide a

classic example of the perils of this approach, by showing how important features such as

multi-modes will be undetected when we restrict our density estimator to be of a predeter-

mined parametric family.

In contrast, nonparametric density estimation procedures do not make any assumptions of

the functional form of the target density. Rather, they attempt to uncover the underlying

density, guided primarily by the data. This usually is known as “letting the data speak for

themselves”.

One of the main advantages that this approach has over the parametric approach is the

flexibility to choose an estimator from a very large class of functions, e.g. all the nonneg-

ative continuous functions that integrate to unity. Consequently, nonparametric density

estimators can and often will detect important features of the data which could otherwise

be undetected.

However, if a parametric density estimator is justifiable, then the use of a nonparametric

density estimator instead will reduce the precision of the inferences that one makes based

2



on such an estimator. Another drawback of nonparametric density estimators is their heavy

usage of computing power. However, at present powerful computing resources are readily

available and as a result, nonparametric density estimators are used extensively in many

areas of research.

1.2 Kernel Density Estimation

Among many available techniques, kernel density estimation (KDE) is probably the most

widely used nonparametric density estimation method because of its simplicity. This es-

timator is a generalization of a naive estimator which is based on the definition of a pdf.

A naive density estimator can be defined based on the definition of a probability density

function. We know for an absolutely continuous probability distribution function F (.) of a

random variable X, the pdf is defined as

f(x) =
d

dx
F (x) = lim

h→0

F (x + h) − F (x − h)

2h
= lim

h→0

P (x − h < X < x + h)

2h
.

Given a random sample from F , P (x − h < X < x + h) could be estimated by the relative

frequency of the sample and therefore, for small h values a naive estimator of f(x) is formed

as

f̂(x) =
1

2h

Number of observations falling in (x − h, x + h)

n
.

By defining a weighting function W (t), this can be expressed as

3



f̂(x) =
1

n

n
∑

i=1

1

h
W (x − Xi)

where

W (t) =















1
2 −h < t < h

0 otherwise

.

The kernel density estimator is a generalization of the naive estimator above. Given a

random sample from a density f , the kernel density estimator at a point x in the support

of f is defined as a weighted sum of the observations,

f̂(x) =
1

n

n
∑

i=1

1

h
K

(

x − Xi

h

)

,

where K(.) is a weighting function called the kernel and h is a user defined quantity which is

called the smoothing parameter or the bandwidth. This estimator is based on the intuitive

notion of denseness and sparseness of the observations around the point of estimation x.

If there are many observations (dense) around x , we would expect the true density to be

high at x. On the other hand, the lesser the concentration of observations around x , the

smaller the true density. The kernel K(.) assures that the density estimate f̂(x) adapts to

sparse regions of the data.

4



Typically, the kernel function is a symmetric probability density function. It is desirable to

have the kernel to satisfy the following conditions:

∫ ∞

−∞
K(u) du = 1,

∫ ∞

−∞
uK(u) du = 0, (1.1)

∫ ∞

−∞
u2K(u) du = k2 < ∞.

These conditions are useful in the analysis of the performance of the kernel density estima-

tor for finite sample sizes as well as in deriving their asymptotic properties. Some of the

commonly used kernels are given in Table 1.1.

Kernel K(t)

Epanechnikov
3
4
(1− t2

5
)√

5
for | t |<

√
5 and 0 otherwise

Biweight 15
16(1 − t2)2 for | t |< 1 and 0 otherwise

Triangular 1− | t | for | t |< 1 and 0 otherwise

Gaussian 1√
2π

e−
t2

2

Rectangular 1
2 for | t |< 1 and 0 otherwise

Table 1.1: Commonly Used Kernels

5



1.3 Properties of Kernel Estimators

Assessing the performance of the estimators is an essential part of any density estima-

tion problem. For density estimators, a widely used measure of performance is the Mean

Integrated Squared Error ( MISE ) criterion is defined as

MISE f̂(x) = E

∫

[f̂(x) − f(x)]2 dx. (1.2)

This is a measure of global accuracy of the density estimator and it accounts for the sam-

pling variability in the data by taking the expectation of the integrated squared error across

all possible samples . The MISE criterion is a widely used measure of performance of den-

sity estimators due to its mathematical tractability. Performance measures such as mean

integrated absolute error (MIASE) which is defined as E
∫

|f̂(x)− f(x)| dx, although more

intuitive is much harder to compute than the MISE. Furthermore, MISE of f̂(x) can be de-

composed to give an alternative representation in terms of its bias and variance resembling

the classical MSE of a parametric estimator θ̂ :

MISE f̂(x) = E

∫

[f̂(x) − f(x)]2 dx

=

∫

E[f̂(x) − f(x)]2 dx

=

∫

MSE[f̂(x)] dx

=

∫

V [f̂(x)] dx +

∫

[Biasf̂(x)]2 dx.

6



As stated in Silverman (1986) one can show that the bias and the variance of f̂(x) depends

on the smoothing parameter h in a complicated way. Except in very special cases, the

formulae for bias and variance become intractable and have very little intuitive meaning.

However, more appealing formulae can be derived for asymptotic bias and variance of kernel

density estimators.

1.4 Large Sample Properties of Kernel Density Estimators

Using Taylor series expansion one can show

∫

[Biashf̂(x)]2 dx ≈ 1

4
h4k2

∫

f ′′(x) dx,

∫

Vh[f̂(x)] dx ≈ 1

nh

∫

K(x)2 dx.

Note that the only quantity, other than the kernel K(.), which is at the control of the

experimenter is the smoothing parameter h. Any attempt to decrease either the bias or

the variance with respect to h will result in an increase of the other. This is a fundamen-

tal problem in kernel density estimation. Further, the quantity
∫

f ′′(x) dx is commonly

known as the ‘curvature’ and it measures how ‘wiggly’ the density is. The bias of f̂ will be

substantial for densities with high ‘curvature’ even with large samples .

7



1.5 Background and Overview of the Study

Although symmetric kernels are widely used in KDE, for densities with a bounded support

such as [0,∞), the resulting density estimate will pose problems at the boundary of the

support. When estimating a density with a bounded support, we would want our estimate

f̂(x) to be zero for all x outside the support of the underlying density. However, typical

kernel estimators will assign positive weights for x values outside the support. This problem

is known as the ‘Spill Over Effect’. In this study we will be looking at a remedy for the spill

over problem at the origin when estimating a lifetime density with a positive support [0,∞).

Moreover, in lifetime data analysis problems it is of particular interest to estimate certain

percentiles and other features of the underlying lifetime density related to one or few x

values in the domain. Hence, locally optimal bandwidths are preferred than global band-

widths. We will examine how to compute locally optimal bandwidths for density estimators

using Bayesian methods.

Further, we propose a methodology for computing bandwidth values for kernel estimators

entirely based on the data at hand. In other words, devising a method that will eliminate

the role of the experimenter in bandwidth selection by utilizing the data to govern the

bandwidth. These automatic bandwidth selection techniques will serve as guides to develop

bandwidth selection routines in statistical software packages. Moreover, these methods

could be used as preliminary analytical tools to provide insights for sophisticated analysis.

We will explore these issues in a Bayesian framework in relation to estimating a lifetime

density. Therefore, we would inevitably work under the additional constraint of censored

8



data. Spill over of the density estimate at the origin is avoided by using an asymmetric ker-

nel with a bounded support, and bandwidth selection is automated by using improper priors.

1.6 Literature Review

Available literature on nonparametric density estimation is vast. Pioneering work on non-

parametric density estimation was initiated by Rosenblatt (1956) and Parzen (1962). Since

then numerous studies have been done on various aspects of nonparametric density esti-

mation. Wegman (1972) provides a survey of some of the earliest nonparametric density

estimation methods, and more recent developments are discussed in Izenman (1991).

Studies on nonparametric density estimation with censored data are comparatively less. Lit-

erature on this area did not appear until the 1980’s and Blum & Susarla (1980) constructed

the first density estimator and failure rate estimator based on censored data. Padgett &

McNichols (1984) have compiled a comprehensive survey of the earlier nonparametric den-

sity estimation methods designed for censored observations.

Bandwidth selection on its own has generated an extensive amount of literature. Mar-

ron (1988) gives an excellent exposition about various bandwidth selection procedures and

Jones et al. (1996) have surveyed some of the recent advancements in bandwidth selection

methods including data driven bandwidths.

Bayesian methodologies in nonparametric density estimation began to be developed in

1970’s. Ferguson & Phadia (1979) discuss a nonparametric method based on censored data

9



for estimating a distribution function using Bayesian methodologies. A recent study was

carried out by Gangopadhyay & Cheung (2002) on bandwidth selection using a Bayesian

approach. Chen (1999) and Chen (2000) and Scalliet (2004) have proposed the use of asym-

metric kernels to circumvent the spill over effect at the origin for estimating densities with

bounded supports. By combining the Bayesian concept in bandwidth selection and asym-

metric kernel method, Kulasekera & Padgett (2006) have developed a novel methodology

for estimating probability densities with bounded support, with the presence of random

censoring.

10



Chapter 2

Methodology

The notation and some existing results that are being used in this study will be introduced

in this section. General theories are stated as references and will not be presented here.

2.1 Notation for Randomly Right Censored Data

Let X1, . . , Xn be independent and identically distributed lifetimes of n individuals or

items that are censored from the right by a sequence of random variables U1, . . , Un which

are independent from the Xi’s. Let F be the unknown distribution function of the Xi’s with

density f and G be the distribution function of the censoring variables Ui’s. The observed

data will be denoted by the pairs (Zi, δi) where

Zi = min{Xi, Ui} and

δi =















1 , Xi ≤ Ui

0 , Xi > Ui.

(2.1)



Then Zi’s will be independent and identically distributed random variables with distribution

function H satisfying [1− H(x)] = [1 − F (x)][1 − G(x)]. These observations are considered

as randomly right censored data. When all the Ui’s are equal to a constant ‘c’ then they

are called Type I censored observations. If all the Ui’s are equal to the rth order statistic

X(r) then we call them Type II censored observations.

2.2 Kaplan-Meier Product Limit Estimator

This is the most widely used estimator of an unknown survival function (1 − F ) and is

defined as follows:

Ŝn(t) =



































∏

j:Zj≤t

(

n − j

n − j + 1

)δj

, t < Zn

0, t ≥ Zn

(2.2)

where Zj is the jth order statistic of the sample and δj =















1 if Zj uncensored

0 if Zj censored .

By reversing the role of the indicator variable δi, we get the following estimator of the

survival function 1 − G of the censoring variable :

Ŝ∗
n(t) =



































∏

j:Zj≤t

(

n − j

n − j + 1

)1−δj

t < Zn .

0 t ≥ Zn

(2.3)
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2.3 Least Squares Cross Validation Bandwidth Selector for

Censored Data

This estimator was developed by Marron & Padgett (1987). The optimal data based band-

width estimator ĥc is defined as the minimizer of the least squares cross validation criterion

CV (h) =

∫

(

f̂(x)
)2

w(x)dx − 2

n

n
∑

i=1

f̂i(Xi)
w(Xi)

S∗∗
n (Xi)

I[δi=1]

and for a suitable weight function w(.). Here f̂i is the “leave out one” version of a density

estimator f̂ which is defined as

f̂i(x) =
∑

j 6=i

1

(n − 1)S∗∗
n (Xj)h

K

(

x − Xj

h

)

I[δi=1] ,

where the kernel function K(.) is as defined in (1.1) and S∗∗
n is a modified version of the

Kaplan-Meier estimator which was proposed by Blum & Susarla (1980),

S∗∗
n (t) =







































































1 0 ≤ t ≤ Z1

k−1
∏

i=1

(

n − i + 1

n − i + 2

)1−δi

Zk−1 < t ≤ Zk k = 2, ..., n

n
∏

i=1

(

n − i + 1

n − i + 2

)1−δi

Zn < t .

13



Chapter 3

Bandwidth Selection

One of the main challenges in density estimation problems is to choose the smoothing pa-

rameter or the bandwidth appropriately so that the estimator f̂ neither will contain any

unwarranted noise due to undersmoothing nor will it not detect important features of the

density due to oversmoothing. For complete samples there are several bandwidth selection

methods available for researchers. These methods have been developed to satisfy various

optimality criteria, such as minimizing pointwise mean squared error. Jones et.al [1996] pro-

vide a survey of existing bandwidth selection procedures that are frequently used in practice.

We propose a local bandwidth selection method under a Bayesian framework and it is

specifically designed to compute local bandwidths that can be used to estimate densities

arising in reliability and lifetime data analysis, i.e. with support over [0,∞). The local

nature of these bandwidths are expected to provide more reliable estimates at desired points

of the support than global bandwidths. In addition we propose to use a lognormal kernel

to avoid the spill over effect at the origin.



3.1 Derivation of the Bayesian Bandwidth

We derive the Bayesian bandwidth formula for a kernel estimator using the lognormal ker-

nel which could be used to estimate densities with positive support, in particular lifetime

densities. We develop our methodology for randomly right censored data.

We can define a function fh(x) associated with an unknown probability density f(x) at a

point x using a convolution of kernel weights as fh(x) =
∫

k(x, y, h)dF (y) where, k(x, y, h)

is a kernel function centered at y with a scale parameter h. Since F is unknown we use a

suitable estimator F̂ of the associated probability distribution function F and estimate fh

by

f̂h(x) =

∫

k(x, y, h)dF̂ (y) .

Note that
∫

f̂h(x) dx = 1 and f̂h(x) ≥ 0 , making it a proper pdf.

In this work, we use the Kaplan-Meier product limit estimator Ŝn defined in (2.2) to get

the estimator F̂ of F , by F̂ = 1 − Ŝn. This will then lead to the following estimator of fh:

f̂h(x) =

n
∑

i=1

sjk(x, ln Zj , h) (3.1)

where sj = Ŝn(Zj) − Ŝn(Z−
j ) are the jump sizes at each observation Zj s defined in (2.1)

and k(x, µ, σ) is a lognormal kernel with parameters µ and σ which is defined as

k(x, µ, σ) =
1√
2π

1

xσ
e− 1

2(
ln x−µ

σ )
2

and h is the smoothing parameter or the bandwidth associated with the estimation process.
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In the Bayesian framework, we would treat the smoothing parameter h as a random quantity

with a prior distribution. Suppose that the bandwidth h follows an inverted gamma prior

distribution with parameters α and β given by

ξ(h) =
1

βαΓ(α)hα+1
e− 1

βh , h > 0.

Then the posterior density of h given the data Z = {Zi, δi}, i = 1, 2, ...n is given by

P (h|x,Z) =
fh(x)ξ(h)

∫

fh(x)ξ(h)dh
.

Since fh is unknown, we use f̂h in (3.1) as our estimator of fh, leading to

P̂ (h|x,Z) =
f̂h(x)ξ(h)

∫

f̂h(x)ξ(h)dh
. (3.2)

Consider the denominator of (3.2). It simplifies to

∫

f̂h(x)ξ(h)dh =

∫ ∞

0

n
∑

j=1

sjk(x, ln Zj , h)ξ(h) dh

=

∫ ∞

0

n
∑

j=1

sj
1√
2π

1

xh
e− 1

2

“

ln x−ln Zj
h

”2
1

βαΓ(α)hα+1
e− 1

βh dh.

Finding a closed form for the posterior density of h is difficult under this parameterization.

Therefore, let δ = h2 and assign the same prior to δ instead of h. Then, the prior distribution

of h could be calculated using the square root transformation. For example suppose that

the random variable has an inverted gamma (α, β) density. Let Y=g(X)=
√

X. Therefore,

the inverse mapping g−1(y) = y2. Now by using the transformation technique the density

16



of Y could be derived as follows:

fY (y) = fX(g−1(y)).

∣

∣

∣

∣

d

dy
g−1(y)

∣

∣

∣

∣

= fX(y2).2y

=
1

βαΓ(α)(y2)α+1
e− 1

βy2 .2y

=
2

βαΓ(α)y2α+1
e− 1

βy2 .

Therefore, if δ = h2 ∼ Inverted Gamma(α, β), then h =
√

δ has a pdf given by

ξ(h) =
2

βαΓ(α)h2α+1
e− 1

βh2 , h > 0 .

Then the denominator of (3.2) can be written as

∫

f̂h(x)ξ(h)dh =

∫ ∞

0

n
∑

j=1

sj
1√
2π

1

xh
e− 1

2

“

ln x−ln Zj
h

”2
2

βαΓ(α)h2α+1
e− 1

βh2 dh

=

∫ ∞

0

n
∑

j=1

sj
1√
2π

1

x

2

βαΓ(α)(h2)α+1
e− 1

h2

h

1
β

+ 1
2
(ln x−ln Zj)

2
i

dh .

Let

β∗
j =

[

1

β
+

1

2
(lnx − lnZj)

2

]−1

and α∗ = α +
1

2
(3.3)

17



Now changing variables by letting h2 = t we obtain

∫

f̂h(x)ξ(h)dh =

∫ ∞

0

n
∑

j=1

sj
1√
2π

1

x

1

βαΓ(α)tα+1
e
− 1

tβ∗

j .
1√
t

dt

=
1

x

n
∑

j=1

sj

(β∗
j )α∗

Γ(α∗)
√

2πβαΓ(α)

∫ ∞

0

1

(β∗
j )α∗Γ(α∗)tα∗+1

e
− 1

tβ∗

j dt .

The integral in the last expression above is just unity as the integrand is the pdf of an

inverted gamma random variable with parameters α∗ and β∗
j . Therefore the denominator

of equation (3.2) becomes

Γ(α∗)

Γ(α)x

n
∑

j=1

sj

(β∗
j )α∗

√
2πβα

.

Likewise, the numerator of equation (3.2) simplifies to

f̂h(x)ξ(h) =

n
∑

j=1

sj
1√
2π

1

x

2

βαΓ(α)(h2)α+1
e
− 1

h2β∗

j .

Therefore, the estimated posterior density of h given the data Z becomes

P̂ (h|x,Z) =

n
∑

j=1

sj
1√
2π

1

x

2

βαΓ(α)(h2)α+1
e
− 1

h2β∗

j

Γ(α∗)

Γ(α)x

n
∑

j=1

sj

(β∗
j )α∗

√
2πβα

=

n
∑

j=1

sj
2

(h2)α+1
e
− 1

h2β∗

j

Γ(α∗)
n
∑

j=1

sj(β
∗
j )α∗

.
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Under the squared error loss, the Bayes estimator of the smoothing parameter h is the

posterior mean, i.e.

h̃(x) =

∫ ∞

0
h.P̂ (h|x,Z) dh

=

∫ ∞

0
h.

∑n
j=1 sj

2
(h2)α+1e

− 1
h2β∗

j

Γ(α∗)
∑n

j=1 sj(β∗
j )α∗

dh

=
1

Γ(α∗)
∑n

j=1 sj(β∗
j )α∗

∫ ∞

0
h.

n
∑

j=1

sj
2

(h2)α+1
e
− 1

h2β∗

j dh

=

n
∑

j=1

sj

∫ ∞

0
h.

2

(h2)α+1
e
− 1

h2β∗

j dh

Γ(α∗)
∑n

j=1 sj(β∗
j )α∗

Let h2 = t in the above expression to get

h̃(x) =

n
∑

j=1

sj

∫ ∞

0

1

(t)α+1
e
− 1

tβ∗

j dt

Γ(α∗)
∑n

j=1 sj(β∗
j )α∗

.

We can simplify the integral in the above expression by making the integrand into an

inverted gamma density with parameters α and β∗
j as follows

h̃(x) =
Γ(α)

∑n
j=1 sj(β

∗
j )α

Γ(α∗)
∑n

j=1 sj(β∗
j )α∗

.

∫ ∞

0

1

(β∗
j )αΓ(α)(t)α+1

e
− 1

tβ∗

j dt .

Thus, the Bayesian local bandwidth h for estimating the pdf at x is given by

h̃(x) =
Γ(α)

∑n
j=1 sj(β

∗
j )α

Γ(α∗)
∑n

j=1 sj(β∗
j )α∗

, (3.4)

where β∗
j and α∗ are defined in (3.3) .
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3.2 Data Based Bandwidths Using Improper Priors

Suppose we assume the prior distribution is improper where ξ(h) ∝ 1

hr
, where r ∈ R, and

r ≥ 0. Then, the denominator of (3.2) becomes

∫ ∞

0
f̂h(x)ξ(h)dh ∝

∫ ∞

0

n
∑

j=1

sjk(x, ln Zj , h)
1

hr
dh

=

∫ ∞

0

n
∑

j=1

sj
1√
2π

1

xh
e− 1

2

“

ln x−ln Zj
h

”2
c

hr
dh .

Note that c is the constant of proportionality for the improper prior. Now, changing vari-

ables using h2 = v and letting φ∗
j =

[

1
2 (lnx − lnZj)

2
]−1

and r∗ = r
2 , we get,

∫ ∞

0
f̂h(x)ξ(h)dh =

∫ ∞

0

n
∑

j=1

sj
1√
2π

1

x(v1/2)r+1
e
− 1

vφ∗

j
c

2v1/2
dv

=

n
∑

j=1

sj
c√
2π

(φ∗
j )

r∗Γ(r∗)

2x

∫ ∞

0

1

(φ∗
j )

r∗Γ(r∗)v(r∗+1)
e
− 1

vφ∗

j dv .

As the value of the integral in the above expression is unity, the denominator reduces to

∫ ∞

0
f̂h(x)ξ(h)dh ∝

n
∑

j=1

sj
1√
2π

(φ∗
j )

r∗Γ(r∗)

2x
.

Similarly, the numerator of (3.2) ∝
n
∑

j=1

sj
1√
2π

1

xh(r+1)
e
− 1

h2φ∗

j .
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Hence, the posterior density of the smoothing parameter h at a point of estimation x with

data Z can be written as,

P̂ (h, x,Z) =

∑n
j=1 sj

1√
2π

c
xh(r+1)e

− 1
h2φ∗

j

∑n
j=1 sj

c√
2π

(φ∗

j )r∗Γ(r∗)

2x

.

Under squared error loss, the Bayes estimator of h is found by computing the posterior

mean in the following manner:

h̃(x) =

∫ ∞

0
h P̂ (h, x,Z)dh

=

∫ ∞

0
h

∑n
j=1 sj

1√
2π

1
xh(r+1)e

− 1
h2φ∗

j

∑n
j=1 sj

1√
2π

(φ∗

j )r∗Γ(r∗)

2x

dh

=
1

Γ(r∗)
2

∑n
j=1 sj(φ∗

j )
r∗

∫ ∞

0

n
∑

j=1

sj
1

hr
e
− 1

h2φ∗

j dh .

By changing variables as h2 = v we get,

h̃(x) =
1

Γ(r∗)
2

∑n
j=1 sj(φ∗

j )
r∗

n
∑

j=1

sj

∫ ∞

0

1

(
√

v)r
e
− 1

vφ∗

j
1

2
√

v
dv

=
Γ(r∗ − 1

2)
∑n

j=1 sj(φ
∗
j )

(r∗− 1
2
)

Γ(r∗)
∑n

j=1 sj(φ∗
j )

r∗

∫ ∞

0

1

(φ∗
j )

(r∗− 1
2
)Γ(r∗ − 1

2)v(r∗− 1
2
)+1

e
− 1

vφ∗

j dv.

As before, the integral on the right hand side is unity since the integrand is an inverted

gamma density with parameters (r∗ − 1
2 , φ∗

j ).
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Hence,

h̃(x) =

Γ( r−1
2 )

n
∑

j=1

sj(φ
∗
j )

( r−1
2

)

Γ( r
2)

n
∑

j=1

sj(φ
∗
j )

r
2

(3.5)

where φ∗
j =

[

1
2 (lnx − lnZj)

2
]−1

.

In particular, when r = 1, i.e. ξ(h) ∝ 1

h
, the Bayes estimator of the smoothing parameter

h at a point of estimation x reduces to,

h̃(x) =
1√
2π





n
∑

j=1

sj

[lnx − lnZj ]





−1

.
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Chapter 4

Asymptotic Properties

Now we explore the large sample properties of the proposed kernel density estimator using

the lognormal kernel with Bayesian bandwidths. In particular, we will establish that the

proposed density estimator converges almost surely to the underlying pdf and show that

the Bayesian bandwidths converge to zero as n → ∞ under suitable conditioins.

4.1 Convergence of the Bayesian Estimator

Theorem 1

Let f be a bounded density with distribution function F and let G be any censoring

distribution satisfying G(τF ) < 1, where τF = sup{t : F (t) < 1}. Then the Bayesian

estimator (3.1) defined at a point of estimation x by f̂h(x) =
∫

k(x, y, h)dF̂ (y) satis-

fies |f̂h(x) − f(x)| → 0 a.s. , whenever h = hn(x) → 0 as n → ∞ at a rate

slower than
√

log log n
n

.



Proof :

The Bayesian estimator of the lifetime density f(x) is given by

f̂h(x) =
n
∑

i=1

sjk(x, ln zj, h)

where k(x, µ, σ) is a lognormal kernel with parameters µ and σ . Consider f̂h(x) for

a fixed x and a particular h.

Then,

f̂h(x) =
n
∑

i=1

sjk(x, lnZj, h) =

∫ ∞

0

k(x, ln u, h) dF̂ (u)

where sj is the jump size of the Kaplan-Meier survival function at the observation

value Zj. Therefore we can write,

f̂h(x) =

∫ ∞

0

k(x, ln u, h) d[1 − Ŝn(u)] = −
∫ ∞

0

k(x, ln u, h) dŜn(u)

where Ŝn(u) is the Kaplan-Meier estimator of the survival function. Consider fh(x)

defined in Chapter 3,

fh(x) = −
∫ ∞

0

k(x, lnu, h) dS(u) .

Then,

|f̂h(x) − f(x)| = |f̂h(x) − fh(x) + fh(x) − f(x)|

≤ |f̂h(x) − fh(x)| + |fh(x) − f(x)| . (4.1)
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Consider the first term on the right hand side of (4.1),

f̂h(x) − fh(x) =

∫ ∞

0

k(x, ln u, h) dŜn(u) −
∫ ∞

0

k(x, lnu, h) dS(u)

=

∫ ∞

0

k(x, ln u, h) d[Ŝn(u) − S(u)] .

Integration by parts yields,

f̂h(x) − fh(x) = k(x, ln u, h)[Ŝn(u) − S(u)]
∣

∣

∣

∞

0
−
∫ ∞

0

[Ŝn(u) − S(u)]duk(x, lnu, h)

=

∫ ∞

0

[Ŝn(u) − S(u)]duk(x, ln u, h)

≤
∫ ∞

0

Ŝn(u) − S(u) duk(x, ln u, h) .

Then we can write,

f̂h(x) − fh(x) ≤
∫ ∞

0

sup
0<u<∞

|Ŝn(u) − S(u)| duk(x, lnu, h)

≤ sup
0<u<∞

|Ŝn(u) − S(u)|
∫ ∞

0

duk(x, lnu, h) .
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Now consider the integral on the right hand side of the above inequality

=

∫ ∞

0

d

du
{ 1√

2π

1

xh
e− 1

2
( ln x−ln u

h
)2} du

=

∫ ∞

0

1√
2π

1

xh
e− 1

2
( ln x−ln u

h
)2
(

ln x− lnu

h

)

1

hu
du

=

∫ ∞

0

1

(2π)
1
4

1

xh
1
2u

1
2

e− 1
4
( ln x−ln u

h
)2 1

(2π)
1
4

1

h
1
2u

1
2

e− 1
4
( ln x−ln u

h
)2
(

ln x− lnu

h2

)

du

=

∫ ∞

0

ψ(u).ψ∗(u) du

where

ψ(u) =
1

(2π)
1
4

1

xh
1
2u

1
2

e− 1
4
( ln x−ln u

h
)2

ψ∗(u) =
1

(2π)
1
4

1

h
1
2u

1
2

e− 1
4
( ln x−ln u

h
)2
(

ln x− lnu

h2

)

.

Then by Hölder’s inequality we obtain

∫ ∞

0

| ψ(u).ψ∗(u)| du ≤
[
∫ ∞

0

|ψ(u)|2 du
]

1
2
[
∫ ∞

0

|ψ∗(u)|2 du
]

1
2

.
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Therefore the integral
∫∞

0
duk(x, lnu, h)

≤
[
∫ ∞

0

1√
2π

1

x2hu
e− 1

2
( ln x−ln u

h
)2du

]
1
2

[

∫ ∞

0

1√
2π

1

hu
e− 1

2
( ln x−ln u

h
)2
(

ln x− lnu

h2

)2

du

]
1
2

=

[

1

x2

∫ ∞

0

1√
2π

1

hu
e− 1

2
( ln u−ln x

h
)2du

]
1
2
[

1

h4

∫ ∞

0

(lnu− ln x)2 1√
2π

1

hu
e− 1

2
( ln u−ln x

h
)2du

]
1
2

.

The integral in the first term of the above inequality is just unity because the inte-

grand is nothing but the density of a lognormal random variable. The integral of the

second term is the expectation of [lnU − ln x]2 with U being a lognormal random

variable with parameters µ = lnx and σ = h.

Note that

U ∼ LogNormal( lnx, h ) ⇒ lnU ∼ N( lnx, h2 ) .

Therefore,

Eu[lnU − ln x]2 = V ar[lnU ] = h2 .
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This results in

∫ ∞

0

duk(x, lnu, h) ≤
[

1

x2
.1

]
1
2
[

1

h4
.h2

]
1
2

=
1

xh
.

Finally, we get

f̂h(x) − fh(x) =

∫ ∞

0

[Ŝn(u) − S(u)]duk(x, ln u, h) ≤ sup
0<u<∞

|Ŝn(u) − S(u)| . 1

xh

where Ŝn(.) is the Kaplan-Meier product limit estimator of the true survival function

S(.) associated with the underlying lifetime distribution F (.). Földes & Rejtő (1981)

have shown that Ŝn(t) is almost sure consistent with rate O

(

√

log log n
n

)

if G(τF ) < 1

where τF = supx{x : F (x) < 1}

i.e.

P

[

sup
−∞<t<∞

|Ŝn(t) − S(t)| = O

(

√

log log n

n

)]

= 1 as n→ ∞

where F and G are the distribution functions of the lifetime and censoring random

variables respectively.
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Using this result we see that for bandwidth sequences h = hn, that converge to zero at

a rate slower than
√

log log n
n

, we can achieve strong convergence of f̂h(x)−fh(x) to

zero in (4.1) provided the distribution function G of the censoring random variable

satisfies the condition, G(τF ) < 1 where, τF = supx{x : F (x) < 1} .

Now consider the second term fh(x) − f(x) in equation (4.1). Noting that

fh(x) =

∫ ∞

0

k(x, lnu, h) dF (u)

=

∫ ∞

0

1√
2π

1

xh
e− 1

2
( ln x−ln u

h
)2 f(u) du ,

we make the substitution
(

ln x−ln u
h

)

= v to get lnu = lnx − hv . This gives us

u = e ln x−hv and du = xe−hv(−h)dv. Therefore fh(x) becomes,

fh(x) =

∫ −∞

∞

1√
2π

1

xh
e− 1

2
v2

f(xe−hv)xe−hv(−h) dv

=

∫ ∞

−∞

1√
2π

e− 1
2
v2

f(xe−hv)e−hv dv .
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Now we examine limn→∞ fh(x).

lim
n→∞

fh(x) = lim
h→0

∫ ∞

−∞

1√
2π

e− 1
2
v2

f(xe−hv)e−hv dv

=

[

lim
h→0

e 1
2
h2

∫ ∞

−∞

1√
2π

e− 1
2
(v+h)2 f(xe−hv) dv

]

=
[

lim
h→0

e 1
2
h2
]

.

[

lim
h→0

∫ ∞

−∞

1√
2π

e− 1
2
(v+h)2 f(xe−hv) dv

]

provided both limits exists. It is clear that the first limit exists and equals to one.

The second limit also exists as the terms in the integrand are bounded in the following

manner. The first term, 1√
2π
e− 1

2
(v+h)2 is bounded on (−∞,∞) regardless of h. The

second term f(xe−hv) is bounded on (0,∞) as f is a bounded lifetime pdf on (0,∞),

and hence is bounded on (−∞,∞) .

Also note that

lim
h→0

1√
2π

e− 1
2
(v+h)2 f(xe−hv) =

1√
2π

e− 1
2
v2

f(x) .
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Therefore by the bounded convergence theorem, we get

lim
h→0

∫ ∞

−∞

1√
2π

e− 1
2
(v+h)2 f(xe−hv) dv =

∫ ∞

−∞
lim
h→0

1√
2π

e− 1
2
(v+h)2 f(xe−hv) dv

=

∫ ∞

−∞

1√
2π

e− 1
2
v2

f(x) dv

= f(x)

Hence fh(x) − f(x) → 0 as n → ∞. We have now shown that the two terms

in (4.1) converge to zero almost surely as n → ∞ for a suitably chosen bandwidth

sequence hn that converges to zero at a rate slower than
√

log log n
n

. This proves the

strong convergence of f̂h(x) − f(x) to zero.

4.2 Convergence of the Bayesian Bandwidths

We now establish the convergence of the Bayesian bandwidths to zero as n→ ∞. This

is a highly desirable property for any bandwidth estimator as it will ensure that the

window width of the kernel estimator will shrink as more and more data is available.

Theorem 2

The Bayesian bandwidth estimator h̃n(x) at a point of estimation x given in (3.4) will

converge to zero almost surely as n → ∞, for prior parameter sequences satisfying

βn → 0 as n→ ∞ for fixed α ∈ N and α > 2.
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Proof :

First, note that (3.4) can be written as,

h̃n(x) =

Γ(α)

∫
[

1

β
+

1

2
(lnx− lnu)2

]−α

dŜn(u)

Γ(α∗)

∫
[

1

β
+

1

2
(lnx− lnu)2

]−α∗

dŜn(u)

where α and β are the prior parameters of the inverted gamma distribution and inte-

gration is over [0,∞), the support of the density . We would pick β as a function of

the sample size so that we could make the prior to be concentrated at zero as n→ ∞.

Let βn be a sequence of real numbers that diverges. Then, for fixed α > 2, the mean

of the prior distribution 1
βn(α−1)

→ 0 as n → ∞ and the variance 1
β2

n(α−1)2(α−2)
→

0 as n → ∞. Now rewriting (3.4) by letting c = Γ(α)
Γ(α∗)

and adding and subtracting

the true survival function S of the density we get

h̃n(x) =

c

∫
[

1

βn

+
1

2
(lnx − lnu)2

]

−α

d[Ŝn(u) − S(u) + S(u)]

∫
[

1

βn

+
1

2
(lnx − lnu)2

]

−α
∗

d[Ŝn(u) − S(u) + S(u)]

=

c

∫
[

1

βn

+
1

2
(lnx − lnu)2

]

−α

d[Ŝn(u) − S(u)] + c

∫
[

1

βn

+
1

2
(lnx − lnu)2

]

−α

dS(u)

∫
[

1

βn

+
1

2
(lnx − lnu)2

]

−α
∗

d[Ŝn(u) − S(u)] +

∫
[

1

βn

+
1

2
(lnx − lnu)2

]

−α
∗

dS(u)

.

By the consistency result of the Product Limit Estimator Ŝn by Földes & Rejtő

(1981), we see that the first integral in both the numerator and the denominator of
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the above expression converges to zero almost surely as n → ∞ . Hence, to prove

that h̃n(x) converge to zero, it suffices to show that the ratio

Rn(x) =
c√
βn

∫
[

1 +
βn

2
(lnx− lnu)2

]−α

dS(u)

∫
[

1 +
βn

2
(lnx− lnu)2

]−α∗

dS(u)

goes to zero as n → ∞. Now let φn(u) =
[

1 + βn

2
(lnx− lnu)2

]

and ǫ = ǫn(x) be a

sequence such that 0 < ǫn(x) < x and ǫn(x) → 0 as n→ ∞. Then

Rn(x) =
c√
βn

∫

∞

0

φn(u)−αdS(u)
∫

∞

0

φn(u)−α
∗

dS(u)

=
c√
βn

∫ x−ǫ

0

φn(u)−αdS(u) +

∫ x+ǫ

x−ǫ

φn(u)−αdS(u) +

∫

∞

x+ǫ

φn(u)−αdS(u)

∫ x−ǫ

0

φn(u)−α
∗

dS(u) +

∫ x+ǫ

x−ǫ

φn(u)−α
∗

dS(u) +

∫

∞

x+ǫ

φn(u)−α
∗

dS(u)

≤ c√
βn

∫ x−ǫ

0

φn(u)−αdS(u) +

∫ x+ǫ

x−ǫ

φn(u)−αdS(u) +

∫

∞

x+ǫ

φn(u)−αdS(u)

∫ x+ǫ

x−ǫ

φn(u)−α
∗

dS(u)

=
c√
βn

∫ x−ǫ

0

φn(u)−αdS(u) +

∫ x+ǫ

x−ǫ

φn(u)−αf(u)du +

∫

∞

x+ǫ

φn(u)−αdS(u)

∫ x+ǫ

x−ǫ

φn(u)−α
∗

f(u)du

(4.2)

≤ c√
βn

∫ x−ǫ

0

φn(u)−αdS(u) + sup
x−ǫ<u<x+ǫ

f(u)

∫ x+ǫ

x−ǫ

φn(u)−αdu +

∫

∞

x+ǫ

φn(u)−αdS(u)

inf
x−ǫ<u<x+ǫ

f(u)

∫ x+ǫ

x−ǫ

φn(u)−α
∗

du

.
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Now, consider the Taylor series expansion of g(u) = (lnx − lnu) of order 1 around

the point x in the neighbourhood of (x− ǫ, x+ ǫ) with ǫ = ǫn → 0 as n→ ∞ . Then,

g(u) ≈ g(x) + (u− x)g
′

(u)|u=x

= lnx− ln x+ (u− x)
−1

x

g(u) ≈ (x− u)

x

For fixed βn , consider the two integrals

∫ x+ǫ

x−ǫ

φn(u)−αdu and

∫ x+ǫ

x−ǫ

φn(u)−α∗

du in

(4.2),

∫ x+ǫ

x−ǫ

φn(u)−αdu ≈
∫ x+ǫ

x−ǫ

1
[

1 + βn

2
(x−u

x
)2
]αdu

=

∫ x+ǫ

x−ǫ

1
[

1 + βn

2
(x−u

x
)2
]αdu .

Let
√

βn

2x2 (x− u) = w. Then we can rewrite the above integral as

∫ x+ǫ

x−ǫ

φn(u)−αdu ≈
√

2x2

βn

∫ δ

−δ

1

(1 + w2)αdw

where δ = ǫ

√

βn

2x2 that converge to ∞ as n → ∞ by propoerly choosing ǫn → 0 and

βn → ∞.
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Now repeatedly using the fact that for α ∈ N

∫

1

(a2 + u2)α
du =

1

2a2(α− 1)

(

u

(a2 + u2)α−1
+ (2α− 3)

∫

1

(a2 + u2)α−1

)

we get

∫ x+ǫ

x−ǫ

φn(u)−αdu ≈
√

2x2

βn

(

α−1
∑

i=1

2δ

[1 + δ2]i
+K(α) tan−1(δ)

)

,

where

K(α) =
(2α− 3)(2α− 5)(2α− 7)...1

2α−1(α− 1)(α− 2)(α− 3)...1

and

∫ x+ǫ

x−ǫ

φn(u)−α∗

du ≈
√

2x2

βn

(

α−1
∑

i=1

2δ

[1 + δ2]i+
1
2

+K(α∗)
2δ√

1 + δ2

)

where

K∗(α) =
(2α∗ − 3)(2α∗ − 5)(2α∗ − 7)...1

2α∗−1(α∗ − 1)(α∗ − 2)(α∗ − 3)...1

with α∗ = α+ 1
2
.
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Using these approximations in (4.2) we get

Rn(x) ≤ c√
βn

∫

A

+ sup
x−ǫ<u<x+ǫ

f(u)

√

2x2

βn

(

α−1
∑

i=1

2δ

[1 + δ2]
i

+ K(α) tan−1(δ)

)

+ cn +

∫

B

inf
x−ǫ<u<x+ǫ

f(u)

√

2x2

βn

(

α−1
∑

i=1

2δ

[1 + δ2]
i+ 1

2

+ K(α∗)
2δ√

1 + δ2

)

+ c∗n

where cn and c∗n are the first order approximation errors in the Taylor expansion and

∫

A

=

∫ x−ǫ

0

φn(u)−αdS(u) ,

∫

B

=

∫ ∞

x+ǫ

φn(u)−αdS(u) .

We note that φn(u)−α is a sequence of functions bounded by 1 and converging to zero

and so is the sequence φn(u)−α∗

. Therefore, by the bounded convergence theorem we

obtain,

lim
n→∞

∫ x−ǫ

0

φn(u)−αdS(u) = 0 a.e

and

lim
n→∞

∫ ∞

x+ǫ

φn(u)−α∗

dS(u) = 0 a.e .
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Hence,

lim
n→∞

Rn(x) ≤ c

0 + sup
x−ǫ<u<x+ǫ

f(u) lim
n→∞

[

√

2x2

βn

(

α−1
∑

i=1

2δ

[1 + δ2]
i

+ K(α) tan−1(δ)

)

+ cn

]

+ 0

inf
x−ǫ<u<x+ǫ

f(u) lim
n→∞

[

√
2x2

(

α−1
∑

i=1

2δ

[1 + δ2]
i+ 1

2

+ K(α∗)
2δ√

1 + δ2

)

+ c∗n

]

=
0

inf
x−ǫ<u<x+ǫ

2f(u)
√

2x2K(α∗)

Therefore, when βn → ∞ as n→ ∞ we have hn(x) → 0 almost surely as desired.
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Chapter 5

Simulation Study

We will now discuss the results obtained from the simulation study carried out to

assess the performance of the proposed lognormal kernel density estimator (KDE).

We study the proposed estimator in two perspectives. First, we will examine the ef-

fect of the kernel on the proposed estimator. Then, we investigate how the Bayesian

bandwidths have affected the performance of the said estimator.

5.1 Overview

We use both pointwise and mean integrated squared error criteria as our measure of

closeness of the proposed density estimator to a target density. In particular, we will

compare the proposed lognormal KDE with another KDE which uses an inverse Gaus-

sian kernel that was shown to be promising in Kulasekera & Padgett (2006), with both

estimators using Bayesian local bandwidths associated with their respective kernels.

This comparison is expected to reflect the effect of the kernel on the KDE. Then we



will assess the performance of the proposed lognormal KDE with two different choices

of bandwidth selection methods, namely the Bayesian local bandwidths and the Least

Squares Cross Validation (LSCV) bandwidths proposed by Marron & Padgett (1987)

to demonstrate the superiority of the Bayesian local bandwidths.

We define the pointwise estimated mean squared error (EMSE) of a density estimator

f̂(t) at a point of estimation t , by

EMSE( f̂(t) ) =

N
∑

i=1

[

f̂i(t) − f(t)
]2

N
(5.1)

where N is the number of simulations which was chosen to be 1000 and all simulations

were carried out using R (2004).

Then, we will examine the ratio

Rf̂1,f̂2
(t) =

EMSE( f̂1(t) )

EMSE( f̂2(t) )
(5.2)

over a grid of t values in the domain of the underlying density, where f̂1 and f̂2 are any

two density estimators of a target density f . We plot these ratios against t to assess

the pointwise performance of the two density estimators f̂1 and f̂2. Furthermore, we

will use the mean integrated squared error ( MISE ) criterion defined in (1.2) as a

global measure of performance of the density estimators.
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5.2 Comparison of the Two Kernels

The performance of the two kernels, namely the lognormal and the inverse Gaussian,

is compared with 3 different sample sizes n=20,n=40 and n=100. Simulated data

from Weibull(θ,1) densities with pdf defined as

f(t) = θtθ−1e−tθ , t > 0 , θ > 0

were used and performance was assessed under 3 different failure rate models by

changing the parameter θ in the Weibull density where θ = 0.5, 1, 1.5 correspond-

ing to decreasing, constant and increasing failure rates respectively. These data are

randomly right censored by an exponential(λ) variate with pdf

g(x) = λe−λx , x > 0 , λ > 0

where λ was chosen to achieve three levels of censoring namely 10% , 20% and 50%.

All comparisons were made with both KDE s using Bayesian local bandwidths asso-

ciated with their respective kernels.

5.2.1 Decreasing Failure Rate Data

Density estimates of a Weibull(0.5,1) density were computed using the the two KDE’s

( LN and IG ) and the ratio Rf̂IG,f̂LN
(t) was plotted against the domain values t of the

underlying density. As shown in Figure 5.1 the lognormal KDE clearly outperformed

the inverse Gaussian KDE in the neighborhood of the origin. However, the decreasing
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ratio values indicate that the pointwise estimates for the lognormal KDE are not as

close as the ones we get from the inverse Gaussian KDE toward the end of the support.

The effect of the censoring fraction was only observable at the tail of the support. In

particular, within that region, the higher the censoring, the better the performance of

the inverse Gaussian KDE when compared with the lognormal KDE. The increasing

sample size shows no significant effect on the performance of the KDE’s.
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Figure 5.1: Comparison of inverse Gaussian and lognormal kernels using pointwise error
ratios with DFR data. (a) n=20 (b) n=40 (c) n=100.
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5.2.2 Constant Failure Rate Data

In this setting too, we observe a similar pattern in the performances of the two

density estimators as with the decreasing failure rate data. The lognormal KDE

is far superior than the inverse Gaussian KDE in the neighborhood of the origin.

Further, the proportion of domain values in which the lognormal KDE is superior

have increased with the increment of the sample size as indicated by Figure 5.2.
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Figure 5.2: Comparison of inverse Gaussian and lognormal kernels using pointwise error
ratios with CFR data. (a) n=20 (b) n=40 (c) n=100.
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5.2.3 Increasing Failure Rate Data

Almost all the features that we observed in the previous two settings can be seen with

increasing failure rate data as well. The most noticeable feature in this case is that

the lognormal KDE performed better than the inverse Gaussian KDE over a large

proportion of the support with the increment of the sample size. As before, the effect

of the censoring was only observed toward the tail of support as shown in Figure 5.3.
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Figure 5.3: Comparison of inverse Gaussian and lognormal kernels using pointwise error
ratios with IFR data. (a) n=20 (b) n=40 (c) n=100.
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5.3 Comparison of the Two Bandwidth Selection Methods

Smoothing parameter (bandwidth) selection is an extremely important step in any

density estimation problem. Numerous studies have been done on this issue and still

there is no ‘ideal’ method that one can use. However, there are several well established

methods available for experimenters for bandwidth selection. We will now compare

the proposed Bayesian local bandwidth selection method with a well known band-

width selection procedure, namely the least squares cross validation (LSCV) where

both methods use a lognormal kernel.

5.3.1 Decreasing Failure Rate Data

Simulated data were generated from a Weibull(0.5,1) density and density estimates

were computed using the Bayesian and the LSCV bandwidth selection. Then, point

wise error ratios,

Rf̂LSCV ,f̂Bayes
(t) =

EMSE(f̂LSCV (t))

EMSE(f̂Bayes(t))

were plotted against the values of the support of the underlying density. Figure 5.4

clearly indicates that the Bayesian bandwidth selection method is far superior than

the LSCV method. Moreover, neither the sample size nor the censoring level has

any appreciable effect on the pointwise error ratio, although under 50% censoring

the LSCV method appears to be have a lower pointwise MSE than 10% and 20%

censoring levels, at the first half of the support.
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Figure 5.4: Comparison of Bayesian and LSCV bandwidths using pointwise error ratios with
DFR data. (a) n=20 (b) n=40 (c) n=100.
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5.3.2 Constant Failure Rate Data

Density estimates were computed using the Bayesian and the LSCV bandwidths based

on data generated from a Weibull(1,1) density and then, pointwise error ratios were

plotted against the values of the support as before. We observe a uniform dominance
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Figure 5.5: Comparison of Bayesian and LSCV bandwidths using pointwise error ratios with
CFR data. (a) n=20 (b) n=40 (c) n=100.

of the Bayesian bandwidths over the LSCV bandwidths except at the tail of the

support. Toward the tail, both methods appears to have equal pointwise MSEs.
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5.3.3 Increasing Failure Rate Data

The behavior of the pointwise error ratios in this setting is almost similar to the

ones we observe with the DFR and CFR data. The Bayesian bandwidths clearly

outperformed the LSCV bandwidths in terms of pointwise MSE. No significant impact

can be seen with the increasing sample size or within the 3 levels of censoring.
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Figure 5.6: Comparison of Bayesian and LSCV bandwidths using pointwise error ratios with
IFR data. (a) n=20 (b) n=40 (c) n=100.
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5.4 Performance under Varying Scale Parameters in the Prior

It is highly desirable for any bandwidth estimator to converge to zero as n → ∞, to

achieve unbiasedness in the density estimator for which the bandwidths are computed.

As discussed in section 4.2, to achieve this convergence in the proposed Bayesian

bandwidths, we need to pick the scale parameter β of the prior density as a diverging

sequence as n→ ∞. Therefore, we are interested in assessing the performance of the

proposed lognormal density estimator in this setting.

To study the effect of the scale parameter of the inverted gamma prior density on the

Bayesian bandwidths and hence on the lognormal KDE for large samples, we gener-

ated data from a Weibull(1.5,1) with a sample size n=100 with 20% censoring and

then density estimates under different β values were computed. Five different scale

parameter values were chosen in increasing order of magnitude for the β parameter

(β = 3, 5, 7, 10, 20) and performance of the proposed lognormal KDE is compared

with the inverse Gaussian KDE with both kernels using their associated Bayesian

bandwidths. Further, we also compare the lognormal KDE with Bayesian and LSCV

bandwidths. As before all comparisons are assessed in terms of pointwise error ratios.
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5.4.1 Comparison of the two Kernels

As shown in the following figures the lognormal KDE is clearly superior to the inverse

Gaussian KDE at the origin and remains so in most part of the support.
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Figure 5.7: Comparison of pointwise error ratios of lognormal and inverse Gaussian KDEs
with increasing values of β. (a) β = 3, 5, 7 (b) β = 10, 20

As β increases the pointwise errors exhibit a more stable behavior. This is in line

with our argument because, in order to achieve better performance in our proposed

KDE for large sample sizes, we need to make the bandwidth smaller and therefore,

larger β values would naturally give better estimates and hence stabilizing pointwise

MSEs throughout the support of the underlying density, as indicated in Figure 5.7(b).
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5.4.2 Comparison of the two Bandwidth Selection Methods

Pointwise error ratios for the two bandwidth selection methods exhibit a similar be-

havior as we observed with the two kernels in section 5.4.1. The Bayesian bandwidth

selection method clearly outperformed the LSCV method.
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Figure 5.8: Comparison of pointwise error ratios of the lognormal KDE using Bayesian and
LSCV bandwiths with increasing values of β. (a) β = 3, 5, 7 (b) β = 10, 20

A noticeable feature in Figure 5.8 is that when β = 20 the LSCV method seems to

be yielding better pointwise estimates over some parts of the support, notably at the

origin. However, as a whole, the Bayesian bandwidths resulted in smaller pointwise

MSEs than the MSEs generated by the LSCV bandwidths.
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5.5 Assessment of Overall Performance

In preceding sections we examined the pointwise MSEs of the proposed lognormal

KDE, the inverse Gaussian KDE with both using Bayesian local bandwidths and the

lognormal KDE with global cross validated bandwidt. Although the proposed lognor-

mal KDE consistently outperformed the other two, it was difficult to conclude that

the proposed KDE is uniformly superior than the other two methods. To overcome

this, we looked at the MISE values of the density estimates generated by the 3 density

estimators. The MISE criterion defined in (1.2) is a global measure of performance

of density estimators and is a useful tool that is commonly used to compare several

density estimators.

Sample Censoring θ = 0.5 θ = 1 θ = 1.5
Size Level LN IG LSCV LN IG LSCV LN IG LSCV
n=20 10% 0.475 0.683 0.638 0.445 0.636 0.517 0.440 0.607 0.521

20% 0.485 0.696 0.591 0.436 0.632 0.533 0.445 0.615 0.525

50% 0.513 0.748 0.787 0.471 0.688 0.564 0.467 0.643 0.536

n=40 10% 0.439 0.544 0.569 0.404 0.526 0.477 0.415 0.536 0.451

20% 0.439 0.542 0.504 0.406 0.528 0.462 0.412 0.532 0.444

50% 0.441 0.569 0.618 0.417 0.552 0.478 0.428 0.558 0.477

n=100 10% 0.420 0.471 0.479 0.377 0.459 0.428 0.399 0.495 0.415

20% 0.416 0.471 0.481 0.382 0.464 0.436 0.398 0.495 0.416

50% 0.404 0.469 0.573 0.382 0.469 0.430 0.402 0.500 0.416

Table 5.1: Estimated mean integrated squared error values
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Table 5.1 shows the MISE values for the 3 density estimators considered, namely the

proposed lognomal KDE, the inverse Gaussian KDE and the lognormal KDE with

global cross validated bandwidth. We observe that the MISE of the lognormal KDE

(LN) is always less than the other two competing estimators in all experiment set-

tings. Further, as the sample size gets larger, the MISE have become smaller with

all 3 estimators as expected. However, the level of censoring has had only a minor

effect on the MISE in all 3 estimators, suggesting that all three of them are capable

of utilizing censored observations effectively.

5.6 Application to Real Data

We now give an example of a density estimation problem with censored data and

compare the performance of the proposed density estimator with the other 2 methods

discussed earlier. In an experiment by Harwell Harwell (1995), to determine debond

strength of carbon fibers, the stress at debonding for specimens were recorded after

placing under a tensile load. Some specimens were broke before debonding, resulting

in right censoring. Due to the complexity of the experiment, the data consisted of

only 12 observations out of which 3 are censored.
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The following figure shows the density estimates computed under the three methods,

together with the histogram of the data.
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Figure 5.9: Density estimates of the debond strength of carbon fibers using four estimation
methods. (a) Inverse Gaussian kernel with Bayesian bandwidths. (b) Lognormal kernel
with Bayesian bandwidths. (c) Lognormal kernel with LSCV bandwidths. (d) Histogram
estimate.

Figure 5.9 (b) shows clearly how the proposed lognormal KDE with the Bayesian

bandwidths was able to capture the two apparent modes in the data which invariably

gives more insight about the debond strength distribution. No such information was

uncovered with the other two density estimators as shown in Figure 5.9 (a) and (c).
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5.7 Conclusion and Future Work

The simulation study provided compelling evidence with regard to the potential of

the lognormal KDE with the Bayesian bandwidths. In particular, it is the Bayesian

local bandwidths that made the key contribution in achieving this superiority of the

lognormal KDE over the other two KDEs. The performance of the lognormal KDE

near the origin is undisputedly better the other two density estimators. Although

pointwise MSEs seems to be high toward the tail of the support, the global perfor-

mance of the proposed lognormal KDE as quantified by the MISE is consistently low

in all simulation settings.

More extensive simulations with comparisons with other types of kernels, e.g. gamma,

beta, reciprocal inverse Gaussian, etc. is needed to establish concrete evidence of the

performance of the proposed estimator. Further, a close examination of the boundary

effect on the right of the support, i.e. for densities with finite support of the form

[0, τ ], τ <∞ , would be a fruitful exercise as an extension of this study for the future.
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