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Abstract
This thesis describes development of a real-time-implementable algorithm for si-

multaneous estimation of a heavy vehicle’s mass and time-varying road grade and its ver-

ification with experimental data. Accurate estimate of a heavy vehicle’s mass is critical

in several vehicle control functions such as in transmission and stability control. The goal

is to utilize the standard signals on a vehicle in a model-based estimation strategy, as op-

posed to a more costly sensor-based approach. The challenge is that unknown road grade

complicates model-based estimation of vehicle mass and therefore the time-varying grade

should be estimated simultaneously. In addition an estimate of road grade may be used

as a feedforward input to transmission control and cruise control systems enhancing their

responsiveness.

The vehicle longitudinal dynamics model (F=ma) forms the core of this model-

based approach. Mathematically this is a single equation with one unknown parameter

(mass) and one time-varying input disturbance (grade). The goal is to estimate the constant

parameter and time-varying grade by using engine torque and speed, vehicle speed and

transmission state. The problem is fundamentally difficult because of i) variation of grade

over time ii) lack of “rich” data during most of vehicle’s cruise time, iii) uncertainty about

available traction force during gear-shift periods and braking, and iv) low signal-to-noise

ratio for vehicle acceleration signal.

We have tested two independent estimation schemes using experimental data sets

provided by Eaton Corporation. The first algorithm uses recursive least square with two

forgetting factors for simultaneous estimation of mass and grade. The second algorithm is a

two-stage scheme which cascades a Lyapunov-based nonlinear estimator next to a recursive

least square scheme. These algorithms were conceived in our group in the past; however

they needed modification and refinements for robust real-time implementation. After these
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refinements, the modified algorithms are capable of generating estimates for mass and time-

varying road grade which are more accurate in realistic scenarios and for most part of the

vehicle run. More specifically we are able to generate very accurate estimates of road grade,

when the clutch is fully engaged and we have proposed fixes that improve the quality of

estimates even during periods of gear change. Provided persistence of excitations we are

able to generate accurate estimates of mass which in turn improves the quality of grade

estimate. It is important to robustify initialization of algorithm 1 further which is now

sensitive to an initial batch size; a task listed in the future work. Algorithm 2 does not rely

on an initial batch and therefore is expected to be adopted as the preferred approach for

implementation.

After an overview in Chapter 1, development and verification of the vehicle longitu-

dinal dynamics model and the first proposed methodology a recursive least square scheme

with multiple forgetting for estimation of mass and time-varying grade are described in

Chapter 2. The algorithm required a number of modification from its originally devel-

oped form; Chapter 3 explains the changes made to the original algorithm and the results

obtained for different sets of experimental data provided by Eaton. Chapter 4 outlines a

second two-stage estimation algorithm; and chapter 5 summarizes the modifications and

refinements made to second algorithm and the improved results obtained using this algo-

rithm. A description of the remaining issues and directions for improvement concludes the

thesis.
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Chapter 1

Introduction

1.1 Introduction

In vehicle control, many control decisions can be improved if the unknown pa-

rameters of the vehicle such as mass of the vehicle, coefficient of rolling resistance, drag

coefficient and external disturbances such as road grade can be estimated. Accurate esti-

mation of the mass of a heavy duty vehicle (HDV) is particulary important as it can vary as

much as 400% depending on the load it carries [8], [9]). Road grade is a major source of

external loading [4] for heavy vehicle and is normally unknown. An anti-lock brake con-

troller relies on an estimate of mass and road grade for calculating vehicle’s cruise speed

which is necessary for estimation of wheel slip. The engine control unit (ECU) can also

utilize an accurate estimate of the road grade for estimating the engine torque which may

reduce the need for in-line torque-meters [31]. In longitudinal control of automated vehi-

cles, knowledge of the participating vehicle mass and road grade is necessary for avoiding

issuing infeasible acceleration and braking commands [3]. Moreover, mass estimation is

essential to the engine control unit (ECU) for reduced emission, and to transmission con-

trol for reduced gear hunting. The closed loop experiments performed by Yanakiev et al.
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[33] indicate that the longitudinal controllers with fixed gains have limited capability in

handling large parameter variations of an HDV. Therefore it is necessary to use an adaptive

control approach with an implicit or explicit online estimation scheme for estimation of un-

known vehicle parameters. Application of adaptive controllers that compensate for vehicle

parameter variations has been presented in a number of references including in [12], [15],

[29], and [17].

This thesis describes development of a real-time-implementable algorithm for si-

multaneous estimation of a heavy vehicle’s mass and time-varying road grade and its ver-

ification with experimental data. The goal is to utilize the standard signals on a vehicle

in a model-based estimation strategy, as opposed to a more costly sensor-based approach.

The challenge is that unknown road grade complicates model-based estimation of vehicle

mass and therefore the time-varying grade should be estimated simultaneously. In addition

an estimate of road grade may be used as a feedforward input to transmission control and

cruise control systems enhancing their responsiveness. The problem is fundamentally dif-

ficult because of i) time-varying grade disturbance ii) lack of persistent excitations during

most of vehicle’s cruise time, iii) uncertainty about available traction force during gear-shift

periods and braking, and iv) low signal-to-noise ratio for vehicle acceleration signal.

1.2 Existing Methods for Estimation of Vehicle Mass and

Road Grade

Importance of vehicle mass and road grade estimation has led to considerable re-

search in this area in the past few years. Different sensor-based and model-based ap-

proaches have been proposed: In sensor-based methods the time-varying grade is typically

estimated using sensor data such as an accelerometer [18] or GPS receiver [4], then a con-
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ventional parameter estimation algorithm is utilized for estimation of the mass [32]. The

drawback of sensor-based estimation is the cost and added complexity of extra sensors and

therefore is not the preferred industry approach. A model-based estimation strategy on the

other hand, uses existing signals from vehicle Control Area Network (CAN) and is a much

cheaper alternative to sensor based estimation. Standard signals such as engine torque, ve-

hicle speed, gear number, and gear shifting progress are utilized in a model based-estimator

along with a model of longitudinal or lateral dynamics of the vehicle.

In particular model-based methods for simultaneous estimation of vehicle mass and

road grade have been proposed recently. In a series of papers [26, 28, 30], Vahidi et al.

have provided a method for simultaneous estimation of mass and time-varying grade using

a novel recursive least square (RLS) method. In particular since standard RLS with a

single forgetting factor was not capable of estimation of a constant mass and time-varying

grades, an RLS with multiple forgetting factors was formulated. It was demonstrated, with

both simulated and some test data, that incorporating two distinct forgetting factors could

be effective in resolving the difficulties in estimating mass and time-varying grade. In a

different approach presented in [26], a Lyapunov-based input observer is used to generate

an estimate of the road grade given an initial estimate of the vehicle mass.

To address some of the standing issues of RLS with forgetting, McIntyre et al. [16]

have proposed a two-stage Lyapunov based estimation approach, which combines a RLS

strategy for mass estimation and nonlinear Lyapunov-based strategy for grade estimation.

In its first stage, a least-squares estimator, based on the vehicle longitudinal dynamic model

was developed which determined an estimate of the vehicle mass and a constant estimate

of the road grade. Due to the time-varying nature of the road grade (which negatively influ-

ences the road grade estimate), a nonlinear estimator (see [20] and [2]) was then developed

to provide a more accurate estimate of the road grade. Specifically, the HDV’s mass was

first determined by the adaptive least-squares estimator, then the mass estimate was utilized

3



by the nonlinear estimator to provide an estimate of time-varying road grade. Experimental

results were presented illustrating the validity of the estimation strategy when the persis-

tence of excitation was guaranteed. A filter augmented with the least-square estimator for

the mass reduced the numerical difficulties that arose due to the noisy acceleration signal

and was an improvement over the integration technique proposed in [30]. Moreover the

nonlinear observer utilized for the road grade produced more accurate estimates than the

results obtained before in [28, 30].

1.3 Thesis Contribution

The two different solutions to the problem of mass and grade estimation described

above have been promising when evaluated with two sets of experimental data obtained

in 2002 on Interstate 15 north of San Diego by Vahidi and his colleagues. However there

were still several issues that required further investigation before the algorithms could be

implemented reliably and robustly in a vehicle. Therefore over the course of this master

thesis research, we have worked closely with Eaton Corporation’s Research and Develop-

ment Group to refine and improve these existing algorithms and to extend their use to a

wider range of operating conditions. In particular we have researched methods for mini-

mizing the influence of gear shift, clutch disengagement, braking, and lack of excitations

at low velocities on the estimation results. Along this path we have performed analysis and

comparative studies to determine where and which of the algorithms is strongest and where

they need further development. The fixes we have proposed have improved the estimators

in a number of areas in particular during critical gear shift period. For the first algorithm

we have selected a suitable filter for removing noise and the forgetting factors that give

consistent results over a number of data sets. With the refinements made, the only major

remaining issue of algorithm I (“Recursive Least Square with Multiple Forgetting”) is its
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sensitivity to initialization which influences the mass estimate. We have verified that algo-

rithm II (“Two Stage Lyapunov-Based Nonlinear Estimator”) does not face this issue and

therefore can be the solution to initialization. Another strength of algorithm II validated

with Eaton data is its more robust convergence to the actual values of grade. The main

issues with second algorithm were related to the speed of convergence and to reduce the

computation time to make algorithm feasible to implement in real time. We have resolved

several of these issues and the fixes for the same are explained in chapter 5 in detail.

Development and verification of the vehicle longitudinal dynamics model and the

first proposed methodology, RLS with multiple forgetting, are described in Chapter 2. In

Chapter 3 we explain the changes made in the original algorithm and the results obtained

for different sets of experimental data provided by Eaton. We also describe the remaining

issues to be addressed in the future. Chapter 4 outlines the second two-stage estimation

algorithm; and chapter 5 summarizes the results obtained using this second algorithm to

this date. The conclusions also outline directions for future research.
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Chapter 2

Algorithm I: Recursive Least Square

with Multiple Forgetting

The proposed estimation approach is a model-based scheme; it uses a model of

vehicle longitudinal dynamics and signals available from vehicle Control Area Network to

estimate the vehicle acceleration. The difference between the estimated acceleration and

measured acceleration drives the estimator for mass and grade. The vehicle longitudinal

dynamics model is laid out next followed by the least square estimation strategy.

2.1 Vehicle Longitudinal Dynamics

The vehicle longitudinal dynamics equation is simply described by Newton’s sec-

ond law of motion. The vehicle acceleration is a result of traction produced by the engine

and resistive forces due to braking, aerodynamic drag, rolling resistance, and road grade.

Here we assume that the wheels do not slip and the vehicle travels on a straight path. It is

also assumed that all engine torque is passed to the wheels when the clutch is fully engaged.

With these assumptions longitudinal dynamics of vehicle can be presented in the following
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simple form,

Mv̇ =
Te− Jeω̇

rg
−Ff b−Faero−Fgrade (2.1)

In this equation M is the total mass of the vehicle, v is the velocity of the vehicle and ω is the

engine’s rotational speed. The net engine output torque is Te. The engine torque is positive

when engine is in fueling mode, it can be negative when fuel is cut or when compression

braking is activated1 The combined powertrain inertia is reflected in Je and the term Jeω̇ in

equation (2.1) represents the portion of torque spent on rotating the powertrain. We define

rg as the ratio of wheel radius to total gear ratio,

rg =
rw

gdg f

where rw is the wheel radius, gd is the gear ratio and g f is the final driveline ratio. The

braking force generated at the wheel while braking is Ff b, and the aerodynamic drag force

is given by,

Faero =
1
2

CdρAv2

where Cd is the drag coefficient, ρ is a mass density of air and A is frontal area of the

vehicle. Fgrade represents the combined force due to road grade and rolling resistance of

the road. It can be defined as,

Fgrade = Mg(µcosβ+ sinβ),

where g is the gravity constant. In this equation β represents road grade where β = 0

represents no inclination, positive β corresponds to uphill grade, and negative β corresponds

to downhill grade.
1In the experimental results provided by Eaton, the engine compression braking mode was never activated.
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Equation (2.1) can be rearranged to separate vehicle mass and road grade in two

different terms. After rearranging equation (2.1) can be written as,

v̇ = (
Te− Jeω̇

rg
−Ff b−Faero)

1
M
− g

cos(βµ)
sin(β+βµ) (2.2)

where tan(βµ) = µ. We can rewrite Eq. (2.2) in the following form,

y = φT θ, φ = [φ1,φ2]T θ = [θ1,θ2]T (2.3)

where

θ = [θ1,θ2]T = [
1
M

, sin(β+βµ)]T

are the unknown parameters of the model, which we try to estimate and

y = v̇, φ1 =
Te− Jeω̇

rg
−Ff b−Faero, φ2 =− g

cos(βµ)

can be calculated based on measured signals and known variables.

Had the parameters θ1 and θ2 been constant, a simple recursive algorithm, like

recursive least squares, could have been used for estimation. However while θ1 depends

only on mass and is constant, the parameter θ2 is in general time-varying.

2.1.1 Calculation of Model Parameters

In the vehicle longitudinal dynamics equation (2.2), the wheel radius rw, driveline

inertia Je, drag coefficient Cd , and coefficient of rolling resistance µ, are unknown and

should be determined before the model can be used for estimation of mass and grade.

The value for tire rolling radius, rw = 20inch was provided by Eaton Trucks. We

fixed the coefficient of rolling resistance to 0.008 and drag coefficient to 0.65. A range for
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these values was provided to us by our industrial collaborator at Eaton. The values have

been fine-tuned such that the simulated acceleration matched the actual acceleration of the

truck closely. In the model we have assumed that velocity and engine speed are always

proportionally related and that transmission is always engaged. These assumptions do not

hold during gearshift periods due to interruption in flow of power to the wheels. However

this only results in local mismatch between the model outcomes and experimental results

and in general the model represents the longitudinal dynamics adequately well.

Having identified a model of the vehicle longitudinal dynamics, we continue with

the theory of RLS estimation and the estimated algorithm.

2.2 Recursive Least Square Estimation

In least square estimation strategy the unknown parameters θ, are selected in such a

way that the sum of the square of the difference (error) of observed and estimated value is

minimized [1]. With the longitudinal dynamics equation represented in (2.2), we seek the

estimate θ̂ that minimize the following function,

V (θ̂,n) =
1
2

n

∑
i=1

(
y(i)−φT (i)θ̂

)2
(2.4)

The closed-loop solution for (2.4) is,

θ̂ =

(
n

∑
i=1

φ(i)φT (i)

)−1 (
n

∑
i=1

φ(i)y(i)

)
(2.5)

In this problem we are interested in real-time implementation of the estimation

scheme, so it is more appropriate to update the estimates recursively. The recursive update
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law for least-square is standard and can be written as,

θ̂(k) = θ̂(k−1)+L(k)
(
y(k)−φT (k)θ̂(k−1)

)
(2.6)

where

L(k) = P(k)φ(k) = P(k−1)φ(k)
(
1+φT (k)P(k−1)φ(k)

)−1
(2.7)

and

P(k) =
(
I−L(k)φT (k)

)
P(k−1) (2.8)

Here P(k) is referred to as covariance matrix. Equation (2.6) updates the the parameter

estimation in each step based on the difference between measured and estimated signal. In

most recursive estimation schemes the basic form of equation is similar to (2.6); the only

difference is how the gain L(k) is updated.

2.2.1 Recursive Least Square Estimation with Forgetting

When the unknown parameters are expected to remain constant, a simple RLS

method as described above can be used for parameter estimation. However when the un-

known parameters are time-varying, the standard RLS approach is not suitable. Two differ-

ent heuristic approaches have been traditionally used to handle time-varying parameters[1]:

i) In a covariance-resetting approach the covariance matrix P is reset periodically to ensure

the estimator remains sensitive to the new data received. ii) In another approach the esti-

mation error is penalized by a “forgetting factor” which gives the recent data more weight

than older data. As a result the older information is gradually “forgotten” in favor of newer

information and a change in parameter values may be detected. The modified cost function
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for “RLS with forgetting” is,

V (θ̂,k) =
1
2

k

∑
i=1

λk−i (y(i)−φT (i)θ̂(k)
)2

(2.9)

where λ is called the forgetting factor and λ ∈ [0,1]. The forgetting factor operates as a

weight which diminishes for the older data. The scheme is known as least-square with

exponential forgetting and θ can be calculated recursively using the same update equation

(2.6) but with L(k) and P(k) derived as follows:

L(k) = P(k−1)φ(k)
(
λ+φT (k)P(k−1)φ(k)

)−1
(2.10)

and

P(k) =
(
I−L(k)φT (k)

)
P(k−1)

1
λ
. (2.11)

The main difference between simple RLS method and and RLS with forgetting is how

the covariance matrix P(k) is updated with each sample. In classical RLS method the

covariance matrix P(k) goes to zero with time losing the sensitivity to new data. Where

as in RLS with forgetting factor, in each step the covariance matrix P(k) is divided by the

forgetting factor λ < 1 and therefore is kept “alive” (2.11). This keeps the estimator more

sensitive to parameter variation and is proven to converge, under certain persistence of

excitation conditions, and when the unknown parameters reach a constant value [6], [13].

The RLS with forgetting is widely used in many engineering applications to esti-

mate time-varying parameters. Like any other estimation scheme existence of persistent

excitation is key to successful estimation. For RLS with forgetting specifically, lack of

excitation may lead to covariance wind-up resulting in poor estimation or blow-up. This

problem has been addressed by many researchers and many different solutions have been

proposed. Author of [10] has proposed time-varying forgetting factor, in which during low

11



excitation higher forgetting factor (closer to unity) is selected. The scheme proposed in [25]

suggests turning off the estimator during period of low excitation along with a time-varying

forgetting factor. Resetting the covariance matrix during low excitation is proposed in [23].

The concept of ”directional forgetting” is also proposed as a fix in various publications

including [11], [14], [7], [5].

The estimator windup may also occur when estimating multiple parameters that

vary at different rates. In the mass and grade estimation problem, the vehicle mass remains

constant in one trip while road grade can vary continuously. Vahidi et al. show in [30] that

RLS with a single forgetting factor fails to generate reliable estimates for both mass and

road grade. In the literature strategies such as RLS with vector forgetting [21], [22] and

selective forgetting [19] are proposed to handle different rates of parameter variation.

In RLS with vector forgetting, the covariance matrix is scaled by a diagonal matrix

of different forgetting factors instead of dividing the covariance matrix by single forgetting

factor,

P(k) = Λ−1 (
I−L(k)φT (k)

)
P(k−1)Λ−1 (2.12)

where

Λ = diag[λ1,λ2, . . . ,λn]

is a diagonal matrix of different forgetting factors each corresponding to one unknown

parameter. This method, although heuristic, has proved effective in estimating multiple

parameters which vary at different rates (see for example [34]).

In [27] a method similar to vector-type forgetting for estimation of vehicle mass and

road grade is proposed. This method has been promising in estimating a constant vehicle

mass and slowly-varying road grade when tested with experimental data. This is one of the

two algorithms that are further refined in this master thesis and therefore is summarized

next.
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2.2.2 Recursive Least Square with Multiple Forgetting

In RLS with multiple forgetting proposed in [27] the estimation cost function is

broken in two parts allowing use of different forgetting factors for each parameter,

V (θ̂1(k), θ̂2(k),k) = 1
2 ∑k

i=1 λk−i
1

(
y(i)−φ1(i)θ̂1(k)−φ2(i)θ2(i)

)2
+

1
2 ∑k

i=1 λk−i
2

(
y(i)−φ1(i)θ1(i)−φ2(i)θ̂2(k)

)2
. (2.13)

With this definition for the loss function the first term on the right hand side of equation

(2.13) represents the error of the step k due to first parameter θ̂1(k) and the second term

corresponds to the error due to second parameter θ̂2(k). Here λ1 and λ2 are the forgetting

factors for first and second parameters respectively. Use of multiple forgetting factors

provides more degrees of freedom for tuning the estimator. After some manipulation the

final form of this recursive estimator is given in [27] as follows,

θ̂(k) = θ̂(k−1)+Lnew(k)
(
y(k)−φT (k)θ̂(k−1)

)
(2.14)

where Lnew(k) is defined as follows:

Lnew(k) =
1

1+ P1(k−1)φ1(k)2

λ1
+ P2(k−1)φ2(k)2

λ2




P1(k−1)φ1(k)
λ1

P2(k−1)φ2(k)
λ2


 (2.15)

and the covariance matrix is now decoupled into P1 and P2 each recursively obtained by,

P1(k) =
(
I−L1(k)φT

1 (k)
)

P1(k−1)
1
λ1

P2(k) =
(
I−L2(k)φT

2 (k)
)

P2(k−1)
1
λ2
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The RLS with multiple forgetting described above is referred to as algorithm I in the rest

of this thesis. In the next chapter modifications are proposed that improves the robustness

and applicability of the method. Experimental data are used to test the algorithm.

Direct implementation of (2.2) in least square estimation requires differentiation of

velocity and engine speed signals. Differentiation of velocity will magnify the velocity

noise to much higher values and the differentiated data may not be useable. In [27] to

circumvent this problem, it is proposed to integrate both sides of (2.2) over time and apply

the estimation scheme to the new formulation. We adopt the same methodology in our

implementation of Algorithm I.
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Chapter 3

Refinement of Algorithm I and Results

This section explains the modifications made to Algorithm I and demonstrates the

performance using experimental data. We have used three different data sets to verify this

algorithm. After a brief description of the experimental data sets and measured signals,

and validation of vehicle longitudinal dynamics, the performance of the estimator with

experimental data are shown.

3.1 The Road Profiles

Algorithm I was tested using three sets of data provided by Eaton. The data sets are

referred as data set 1, 2 and 3. The road profiles of all three runs are shown in Figures 3.1,

3.2, and 3.3.

3.2 Measured Signals

Many signals required for estimation are available through vehicle Control Area

Network (CAN). Most of these signals are communicated based on the SAE J1939 proto-

15



0 100 200 300 400 500 600
−10

−5

0

5

10

Time(sec)−−−>

G
ra

de
(d

eg
re

e)

Figure 3.1: Data set-1 grade profile.
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Figure 3.2: Data set-2 grade profile.
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Figure 3.3: Data set-3 grade profile.

col, the standard for heavy duty vehicles. There were also data coming from a number of

sensors including a torque sensor mounted on the vehicle drivetrain.

Accelerator pedal signal(0 to 100), brake pedal signal, clutch engagement signal,

current gear number, selected gear number, net engine output torque, retarded torque, gear

shift state are the signals available from the CAN of the vehicle. Torque on the final drive-

line is measured using a customized sensor. Pitch angle, forward velocity and acceleration,

altitude, etc. signals are available from GPS. All signals are sampled at 0.01 second.
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3.3 Signal Filtering

In a real scenario the situation can become more challenging due to higher level of uncer-

tainties. The signals are potentially delayed and many times the signals are noisy and biased in

one direction rather than being only affected by pure white noise. Moreover, the delay or noise

level in one signal is normally different from the other signals. However use of low-pass filters

with the same cut-off frequency seemed accurate for the purpose of mass and grade estimation. To

reduce the noise and hence the oscillations in the measured signals we have filtered the (1) engine

torque, (2) velocity, and (3) estimated grade using Butterworth filters. In particular we have used a

second-order low-pass Butterworth filter with cutoff frequency of 0.5 Hz to filter the engine torque

and velocity signals. Moreover to reduce the noise level in the estimated grade, we have used a

second-order low-pass Butterworth filter with cutoff frequency of 0.8 Hz.

3.4 Refinement and Validation of the Vehicle Model

The longitudinal vehicle dynamics model given in equation (2.2) assumes a clutch that is

always engaged, a perfect gear shift process and knowledge of all the forces including the braking

force Ff b. These assumptions are not valid during the gearshift period when the clutch is disen-

gaged. Also in a standard setting the service brake pressure and subsequently the torques cannot be

accurately determined. Developing an accurate model of the transmission and the gear shift process

is an option but overcomplicates the model used for estimation; therefore we employed a simple but

effective approach to model the flow of torque during shifting: When the shift state is 1 (complete

engagement) the driveline torque is obtained by multiplying the engine torque by the gear ratio;

and when the shift state is 5 (complete clutch disengagement); the driveline torque is assumed to be

zero. Because the applied brake forces are not known, we have tuned and determined fixed brake

pressures that cause the modelel velocity match the measured velocity. Figures 3.4, 3.5, and 3.6
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show the modeled velocity versus measured velocity, for all three data sets. Figure 3.4 shows good

agreement between the measured and modeled velocities for the data set-1 where the uncertainties

in the road profile is minimal. Slight differences between the model and actual velocity in this figure

can be attributed to periods of gear shift or braking and the approximations we made in the model.

In some portions of Figures 3.5 and 3.6 the discrepancies between the model and actual velocity are

larger which may be due to inaccurate road grade assumptions. Because the data set-1 seems more

reliable we base most of our estimation analysis on this set of data.
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Figure 3.4: Comparison of model velocity and measured velocity - data set-1
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Figure 3.5: Comparison of model velocity and measured velocity - data set-2

Eaton had also provided a torque sensor reading on the final drive. To ensure validity of the

gear shift model we have compared the final-drive torque, as measured by the torque sensor, to the

the engine torque reflected on the final driveline;

Tf inaldrive = Tengine×Gear Ratio×Clutch State×Driveline Efficiency
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Figure 3.6: Comparison of model velocity and measured velocity - data set-3

and have shown the results in Figure 3.7. There is a close correspondence between torque sensor

reading and calculated torque from engine.
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Figure 3.7: Comparison of sensor torque and engine torque when reflected on final driveline

With the accuracy of the model tested, the next section describes the results obtained

with the original version of algorithm I.

3.5 Results With Algorithm-I

The estimation is initialized in a batch mode to obtain an initial estimate of mass

and road grade. During the batch period, which does not last more than a few seconds, we

assume the unknown mass and grade are constant and use a standard least-square algorithm

to find a constant estimate for mass and grade. Good initial estimates are obtained only

when the chosen batch is rich in excitations. Therefore it is critical to initialize the estimator
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in a period when sufficient excitations are present. Once an initial estimate of mass and

grade is obtained; the algorithm switches to its recursive mode for which the recursive least

square with multiple forgetting factors described in Chapter 2 is used.

We first apply the algorithm I in its original form to data set-1. The results are

shown in the Figure 3.8. The estimation starts around the recorded time of 60 seconds from

when the truck starts moving. The initial batch size included 200 sampling intervals, that is

2 seconds with the sampling time of 0.01 seconds. The recursive scheme kicks in next; the

forgetting factors for mass and grade are chosen to be 0.95 and 0.5 respectively to reflect

a constant mass and time-varying road grade. The first plot in Figure 3.8 compares the

estimated road grade to the actual grade. The second subplot in figure 3.8 shows the mass

estimate and Figure 3.9 shows the percentage error in the mass estimate. As shown in the

figure the maximum percent mass error after 250 seconds is around 10%. Figure 3.10 su-

perimposes the clutch engagement signal on the grade estimate, showing a correspondence

between shift periods and intervals when the grade estimate is poor. The main difficulty seen

in the above estimation results is the sporadic spikes in the grade estimates which are believed to

be triggered by the gear shift process. The reason could be due to unmodeled shift dynamics and/or

vibrations caused by the shift process. Also part of the data included periods when the truck was

stopped (between 100 and 200 seconds for example) during which the mass estimate deviates from

the actual value; this is due to lack of excitations at zero velocity. We dedicated a big part of our

effort to understanding and providing a solution to these problems. Next section summarizes the

final results.

3.5.1 Adjustments to Algorithm I

During periods of low excitations, in particular when the vehicle is stopped, the

estimator is not receiving persistently exciting data and therefore it should be turned off.

To remedy this problem, as a first fix, periods of zero velocity are detected and omitted from
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Figure 3.8: Estimated road grade and mass using algorithm I for data set-1(batch size= 200,
forgetting factor for grade= 0.5 and for mass= 0.95)
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Figure 3.9: Percent mass error for data set-1; (batch size=200, forgetting factor for grade =
0.5 and for mass = 0.95)

the data fed to the estimator. Therefore in the forthcoming results stopping periods are not

included in the plots. Another major problem is the spiky grade estimate during the gearshift

periods. Because including an accurate dynamic shifting model complicates the estimation, we

decided to stop the estimator when shift is in progress and turn it back on when the shift is complete.

During these periods the mass and grade estimates are taken as their latest calculated values. Since

the gearshift period is on the order of a second; this approximation should not have a large influence
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Figure 3.10: Comparison of estimated grade with clutch engagement signal

on the applications that use mass and grade estimates. The performance of algorithm I with this fix

was tested and improvements in grade estimates were observed.
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Figure 3.11: Estimated road grade with the fixes to the algorithm using data set-1. (batch
size=390, forgetting factor for grade = 0.6 and for mass = 0.9).

However even after full engagement of the clutch, the grade estimates had occasional spikes.

The drivetrain vibration subsequent to clutch engagement may be the cause of this problem. To

reduce the spikes in grade estimate, we decided to discard the estimated values of mass and grade

for an additional 40 sampling times (0.4 seconds) after clutch engagement and report the latest
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Figure 3.12: Percent mass error with the fixes to the algorithm using data set-1. (batch
size=390, forgetting factor for grade = 0.6 and for mass = 0.9).
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Figure 3.13: Estimated road grade and mass with the fixes to the algorithm using data set-2.
(batch size=390, forgetting factor for grade = 0.2 and for mass = 0.98).

estimates obtained before the shift started (note that the estimator is turned back on right after the

clutch is engaged). When the brakes are applied a constant brake pressure, determined from the

23



0 200 400 600 800 1000 1200 1400
−10

−5

0

5

10

Time(sec)−−−>

%
 e

rr
or

Figure 3.14: Percent mass error with the fixes to the algorithm using data set-2. (batch
size=390, forgetting factor for grade = 0.2 and for mass = 0.98).
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Figure 3.15: Estimated road grade and mass with the fixes to the algorithm using data set-3.
(batch size=550, forgetting factor for grade = 0.6 and for mass = 0.9).

model validation stage, is assumed. While the estimator continues to run during the braking period;

we discard its estimates and report the latest estimate obtained before the application of brakes. This

helps improve the estimation outcomes.

Figures 3.11 and 3.12 show the performance of the estimator with these additional fixes for

data set-1. In these figures the vehicle stop time data are removed and therefore the time plots are

shorter than those reported in the last section. It can be seen that the grade estimate has significantly

improved over the results shown in Figures 3.8 and 3.9. The mass estimate also improves and
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Figure 3.16: Percent mass error with the fixes to the algorithm using data set-3. (batch
size=550, forgetting factor for grade = 0.6 and for mass = 0.9).

reaches within 8% of its actual value at the end of the run. The remaining spikes at or around

t = 100 second are believed to be due to the mass estimate which is not accurate at this initial stage.

The same process is repeated using the remaining two data sets and results are shown in

Figures 3.13, 3.14,3.15, and 3.16. The grade estimates for both cases are accurate for most part of

the run and follow the actual grade profile closely except when there is a gear-shift. Also the mass

estimates for both cases are within 10% of the actual mass. We tried to get the results using the

same setup as we used for data set-1 (e.g. same forgetting factors, same batch size); with those we

do not necessarily get the best results. Therefore for data set-2 we have used forgetting factor for

mass and grade as 0.98 and 0.2 respectively and batch size of 390(same as used for data set-1), and

for data set-3 we have used 0.9 and 0.6 as mass and grade forgetting factors respectively and batch

size of 550. The robustness to the choice of forgetting factors and batch size is listed as one of the

future steps for improving algorithm I.

Table 3.1 shows and compares the estimation result qualitatively when the same setup is

used for the estimator (same batch size and forgetting factors) for all sets of data. Three different

batch sizes and four different sets of forgetting factors were used for all sets of data. In the table

we have displayed the percent error in mass at the end of the cycle for each case and grade estimate

is rated only qualitatively as good or poor. The percent error for grade would not be meaningful

because the actual grade for most part of the run is zero or close to zero, making the percent error

meaningless.
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Table 3.1: Results for all sets of data using different batch size and forgetting factors
Batch Size Forgetting Factor Data set-1 Data set-3 Data set-3

For Mass For Grade % mass error Grade % mass error Grade % mass error Grade
370 0.9 0.6 5 good 26 good 58 poor

0.8 0.6 7.5 good 32 poor 38 poor
0.8 0.7 6.5 poor 36 poor 30 poor
0.98 0.2 55 poor 39 poor 5 good

450 0.9 0.6 9 good 32 good 63 poor
0.8 0.6 15 good 30 good 39 poor
0.8 0.7 10 good 28 good 36 poor
0.98 0.2 45 poor 34 good 21 good

550 0.9 0.6 20 poor 3 good 65 poor
0.8 0.6 1 good 70 poor 43 poor
0.8 0.7 1.5 good 60 bad 30 poor
0.98 0.2 60 poor 80 poor 28 poor

3.5.2 Extended Simulation Results

To investigate the performance of the estimator over longer time, the simulations were ran

over an extended set of data. We created a new data set by augmenting the data set-1 back-to-back.

Figures 3.17 and 3.18 show the results of an extended simulation with the data set-1 repeated twice.

The results indicate that the estimator remains robust when running for longer times. Figure

3.19 superimposes the grade estimates from the two simulation cycles for better comparison. From

this figure there does not seem to be a major improvement in grade estimates when the estimator

runs longer. We also ran the estimator for five cycles to further investigate the convergence of

estimated valued over the time; while the mass estimate converged further, the remaining spikes in

the estimated grade are not significantly reduced over time.

3.6 Future Research For Algorithm I

While the performance of algorithm I is further scrutinized and subsequently improved,

there is still room for improvement in several areas.
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Figure 3.17: Estimated road grade and mass in an extended run (batch size=390, forgetting
factor for grade = 0.6 and for mass = 0.9)
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Figure 3.18: Percent mass error in an extended run (batch size=390, forgetting factor for
grade = 0.6 and for mass = 0.9)

3.6.1 Adaptive Batch Sizing

The main bottleneck to the performance of algorithm I is selection of a suitable batch size

which determines the initial estimates and influences the rest of the recursive estimation procedure.

While for each set of data we have been able to determine a batch size that results in acceptable

initialization, the best batch size has often deferred between various data sets. For example when

data set-1 was used a batch size of 390 sample provided better results and in the case of data set-3 a
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Figure 3.19: Comparison of grade estimated over two cycles of data set-1 (batch size=390,
Forgetting factor for grade = 0.6 and for mass = 0.9)

batch of 550 samples. We believe this difference could be attributed to different levels of excitations

available in each set of data. Before the algorithm can be implemented in production, it is important

to devise a methodology that detects the level of signal excitation and intelligently selects an appro-

priate batch size. One method would be to check an index attributed to the persistence excitation

and continue the batch estimation up to when the persistent excitation is above the particular limit.

To ensure the sufficient excitation level we can use the following condition:

N

∑
i=1

φ(i)φ(i)T > ρ× I(2×2)

where φ is the regressor vector at each time and ρ is a threshold indicating level of excitation.

A different approach would be devising a logic that depicts the right portions of data that

makes up a rich batch. For example an algorithm can be devised to detect periods of large accelera-

tion but with minimum gear shift which is believed to be a good batch candidate and should result

in more accurate estimates of mass.

3.6.2 Forgetting Factors

While the algorithm is not as sensitive to a reasonable variation in forgetting factors, still

the quality of the estimates depends on the choice of forgetting factors. For example for data set-

1 and data set-3 we have used forgetting factor for mass = 0.9 and for grade = 0.6. The same
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forgetting factors for data set-2, did not generate the possible estimates. Instead for data set-2 the

forgetting factors of 0.98 for mass and 0.2 for grade generated better results. This might be due to

lower quality of signals as compared to the two other set of data; however further investigation is

necessary before implementation. Use of a time-varying forgetting factor has been proposed in

the past for estimating a single time-varying parameter using RLS with single forgetting [10] and

is known to improve the estimation results. This is another area which warrants investigation, as so

far we have always used fixed forgetting factors.

3.6.3 Issues During Gear-shift

As mentioned previously, the original algorithm was designed with the assumption that

there is no gear-shift during the run. So, there were spikes in the estimated grade during the shift

when the original algorithm was employed. To overcome these spikes we turned the estimator

off when the clutch was not fully engaged which significantly improved the quality of estimation.

However there still remain some spikes in the grade estimates. It is important to more closely

examine these occurrences and determine the cause. A challenging but worthwhile future track is

to develop a more accurate model of the transmission and integrate it effectively with the vehicle

longitudinal dynamics model. To the best of our knowledge this has not been done in the past for

the purpose of vehicle parameter estimation.

3.6.4 Covariance Resetting

A well-known problem with a recursive least-square algorithm is the fact that the estimator

covariance diminishes to zero quickly and as a result the estimator loses sensitivity to new measure-

ments. This is not a desirable effect when we wish to track time-varying parameters. In fact, the

benefit of forgetting factors is their influence on magnifying the covariance matrix. Another valid

approach proposed in the estimation literature is to reset the covariance matrix periodically so that

the estimator remains sensitive to variation in parameter values. This could be one more promising

direction for improving the performance of algorithm I.
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Chapter 4

Algorithm II: The Two-Stage Nonlinear

Estimator

The second algorithm shown here is a two-stage approach for estimation of vehicle mass

and time-varying road grade. The first stage of this algorithm is a least square estimator which

determines estimates of the vehicle mass and constant grade, based on the longitudinal dynamics

of the vehicle. Because the road grade is time-varying, in the second stage a nonlinear estimator

[20, 2] based on Lyapunove method is used which provides more accurate estimate of road grade.

In this estimation scheme, the mass of the vehicle is determined using adaptive least square method

[28, 30] and estimated mass in the first stage is utilized in the 2nd stage to estimate the road grade1.

4.1 Longitudinal Dynamics of the Vehicle

The vehicle longitudinal dynamics model developed before in equation (2.2) is used here

as well,

v̇ = (
Te− Jeω̇

rg
−Ff b−Faero)

1
M
− g

cos(βµ)
sin(β+βµ)

1This chapter is based on a paper: McIntyre, M., Vahidi, A., and Dawson, D., “An Online Estimator for
Heavy Vehicles Mass and Road Grade” Proceedings of IMEC, Chicago, Il, 2006. The original publication is
copyrighted by ASME.
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The following assumptions are made to facilitate the design of the estimator.

Assumption 1: The road grade β(t) varies continuously with vehicle longitudinal position if the

velocity of vehicle v(t) is a continuous function of time, i.e. β̇(t) ∈ L∞.

Assumption 2: The signals v(t) , ω̇e (t) , Te (t) and gear number are measurable.

Assumption 3: The values of the the engine crankshaft inertia Je, the coefficient of rolling resis-

tance µ and drag coefficient Cd , are known and remain constant with time.

Assumption 4: For second stage, the mass of the vehicle is a known constant and the road grade

β(t) varies with time very slowly, i.e. rate of change of β(t) is almost equal to zero
(

β̇(t)≈ 0
)

.

Assumption 5: It is assumed that the clutch is always fully engaged and friction brakes are never

applied. These assumptions are not valid during the gearshift and braking periods. Unfor-

tunately in a standard setting the service brake pressure and subsequently the brake torques

cannot be accurately determined. Developing an accurate model of the transmission and the

gear shift process is an option but overcomplicates the model used for estimation. To address

this issues later pre- and post-conditioning of the signals and the estimates are proposed to

handle periods of gearshift and braking.

In equation (2.2) tan(βµ) = µ. We can rewrite equation (2.2) in the following form,

y = φT θ, φ = [φ1,φ2]T θ = [θ1,θ2]T (4.1)

where

θ = [θ1,θ2]T = [
1
M

, sin(β+βµ)]T (4.2)

are the unknown parameters of the model and this algorithm is developed to estimate those param-

eters and

y = v̇, φ1 =
Te− Jeω̇

rg
−Ff b−Faero, φ2 =− g

cos(βµ)
(4.3)

can be calculated based on measured signals and known variables.
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4.2 Adaptive Least-Squares Estimator For Estimating Ve-

hicle Mass

A prediction error ε(t)∈R is defined as the difference between measured acceleration and

estimated acceleration using equation (2.2),

ε , y f − ŷ f (4.4)

Here the subscript f denotes a filtered signal. The measured acceleration y is filtered by a first-order

low-pass filter,

ẏ f =−αoy f +αoy (4.5)

where y f (t0) = 0, and α0 is the filter’s constant.

The filtered estimated longitudinal acceleration ŷ f (t), in equation (4.4) is related to the

parameter estimates θ̂ =
[

θ̂1 θ̂2

]T

as follows,

ŷ f = φ f θ̂ (4.6)

where φ f (t) ∈ R1×2 is the regression vector filtered by the same low-pass filter described in (4.5)

and the initial condition for φ f , φ f (t0) =
[

0 0

]
.

Using the above equations, the prediction error dynamics are described by,

ε̇+α0ε =
d
dt

(
φ f θ̃

)
+α0φ f θ̃ (4.7)

where θ̃(t) is the error in parameter estimates defined as,

θ̃ , θ− θ̂. (4.8)
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Therefore from (4.7), the prediction error ε(t) is related to parameter estimation error,

ε = φ f θ̃. (4.9)

This equation is used for the first stage of estimation for which a continuous version of recursive

least square is used. The parameter update law is [24],

.

θ̂,−Kls
PlsφT

f ε
1+ γφ f PlsφT

f
(4.10)

where Kls ∈ R2×2 is a constant diagonal gain matrix, γ is a constant tunable gain, ε(t) is defined

in equation (4.4), φ f is the regression vector, and Pls (t) ∈ R2×2 is the covariance matrix. The

covariance matrix Pls (t) is updated at every step and recursively as follows,

Ṗls ,−Kls
PlsφT

f φ f Pls

1+ γφ f φT
f

(4.11)

where the initial condition of Pls is given by, Pls (to) = k0I2×2and k0 is a constant positive gain. The

estimated vehicle mass M̂ (t) is the inverse of θ̂1,

M̂ =
1
θ̂1

(4.12)

and an initial estimate of road grade β̂(t) is given by,

β̂ , sin−1 (
θ̂2

)−βµ. (4.13)

The first stage estimator assumes a constant road grade. A second-stage nonlinear estimator

is developed next to calculate a more accurate estimate when the grade is time-varying.
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4.3 A Nonlinear Estimator for Estimating Road Grade

A Lyapunov-based estimator design is presented that receives the vehicle CAN signals and

the mass estimate from the first stage and generates an estimate for the road-grade.

The longitudinal dynamics of the vehicle from equation (2.2) is rewritten as,

y = φ1θ1 + f (4.14)

where φ1 (t) and θ1 were defined in equations (4.3) and (4.2) respectively. The term f (t) represents

the remaining (φ2θ2) from the longitudinal dynamic model as defined in equation (2.2),

f , −g
cos(βµ)

sin(β+βµ) . (4.15)

In the first stage, the prediction error ε(t) was defined as the difference between estimated acceler-

ation and actual acceleration. Here we define the velocity estimation error e(t) as,

e , v− v̂ (4.16)

where v̂(t) is the estimated velocity and is estimated using the following equation,

v̂ =
∫ t f

t0
φ1 (t)θ1 (t)dt +

∫ t f

t0
f̂ (t)dt (4.17)

where f̂ (t) is an estimate for f (t); its calculation is explained next.

Differentiation with respect to time of (4.16) yields,

ė = v̇−
.
v̂ . (4.18)

From equation (4.17) we have,
.
v̂= φ1θ1 + f̂ . (4.19)
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Substituting values of v̇ and
.
v̂ from equations (4.14) and (4.19) into (4.18), results in the following

simplified form,

ė = f̃ (4.20)

where f̃ (t) is the estimator error defined as,

f̃ , f − f̂ . (4.21)

Finally we propose a proportional-integral nonlinear estimator for estimating f (t) ,

f̂ = (k1 +1)
[

e(t)− e(Tls)+
∫ t

t0
e(σ)dσ

]
+

∫ t

t0
k2sgn(e(σ))dσ (4.22)

where k1, k2 ∈ R+ are constant gains, and sgn(.) denotes the signum function. Once f (t) is esti-

mated above, an estimate for the time-varying road grade can be obtained from equation (4.15) and

is,

β̂ = sin−1
(
− f̂

g
cos(βµ)

)
−βµ. (4.23)

The convergence can be proven provided that value of k2 is selected such that the following sufficient

condition is satisfied,

k2 >
∣∣ ḟ (t)

∣∣+ ∣∣ f̈ (t)
∣∣ . (4.24)

Based on Assumption 1 it can be shown that there exist an upper bound for ḟ (t) and f̈ (t) and

therefore a finite value for k2 that meets this condition always exists. The proof is shown next.

4.4 Proof of Convergence

Lets define an auxiliary error term s(t) as,

s , ė+ e. (4.25)
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Taking the time derivative of (4.25) and substituting the values of ë we can write the dynamic

expression for s(t) as,

ṡ = ḟ − (k1 +1)s− k2sgn(e)+ ė (4.26)

We would like to show that the estimate f̂ (t) from the nonlinear estimator defined in equation (4.22)

converges to actual value f (t):

f̂ (t)→ f (t) as t → ∞ (4.27)

For the convergence proof a nonnegative Lyapunov function V (t) is selected as,

V =
1
2

e2 +
1
2

s2 (4.28)

where e(t) and s(t) are defined in equations (4.16) and (4.25) respectively. Taking the derivative of

equation (4.28) with respect to time and using equations (4.25) and (4.26), we obtain,

V̇ (t) = e(s− e)

+s
(

ḟ − (k1 +1)s− k2sgn(e)+ ė
)
.

(4.29)

Using the auxiliary error defined in equation (4.25), a simplified form of equation (4.29) can be

written as,

V̇ (t) = −e2− k1s2 + ė ḟ + e ḟ

−k2 (ė+ e)sgn(e).
(4.30)

Taking integral of equation (4.30) from t0 to t yields,

V (t) ≤ V (t0)−
∫ t

t0
|e(σ)|2 dσ (4.31)

−k1

∫ t

t0
|s(σ)|2 dσ+

∫ t

t0
ė(σ) ḟ (σ)dσ

−k2

∫ t

t0
ė(σ)sgn(e(σ))dσ

+
∫ t

t0
e(σ)

(
ḟ (σ)− k2sgn(e(σ))

)
dσ.
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After integrating the fourth term of the above by parts and the fifth term over time, we get,

V (t) ≤ V (t0)−
∫ t

t0
|e(σ)|2 dσ+ e(t) ḟ (t)

−k1

∫ t

t0
|s(σ)|2 dσ− e(t0) ḟ (t0)

+k2e(t0)sgn(e(t0))− k2e(t)sgn(e(t))

+
∫ t

t0
e(σ)

(
ḟ (σ)− f̈ (σ)− k2sgn(e(σ))

)
dσ.

If k2 is selected such that,

k2 >
∣∣ ḟ (t)

∣∣+ ∣∣ f̈ (t)
∣∣ . (4.32)

then the expression for V (t) can be further simplified to,

V (t)≤−k0

∫ t

t0
|s(σ)|2 dσ−

∫ t

t0
|e(σ)|2 dσ+C (4.33)

where C is a boundary constant and can be defined as,

C , V (t0)− e(t0)
(

ḟ (t0)− k2sgn(e(t0))
)
. (4.34)

From the structure of (4.33) and the definition in (4.34), it is proven that V (t) ∈ L∞; hence, s(t),

e(t) ∈ L∞. Since s(t), e(t) ∈ L∞, (4.25) can be used to prove that ė(t) ∈ L∞. From Assumption 1,

and the definition in (4.15), it is possible to demonstrate that ḟ (t) ∈ L∞. From the fact that ḟ (t) ,

s(t), e(t), and ė(t) ∈ L∞, it is clear from (4.26) that ṡ(t) ∈ L∞. The inequality defined by (4.33) can

be used to prove that s(t), e(t) ∈ L2. Since s(t), e(t), ṡ(t) and ė(t) ∈ L∞ and s(t), e(t) ∈ L2, then

Barbalat’s Lemma can be used to prove that |s(t)| and |e(t)| → 0 as t → ∞, and based on (4.20) and

(4.21), it is clear that f̂ (t)→ f (t) as t → ∞.
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Chapter 5

Refinement of Algorithm II and Results

To validate and fine-tune the second algorithm, we have used the three experimental data

sets presented in section 3.1. First results with the original version of algorithm II are presented

and the problems are discussed. Next refinements are proposed which improve the outcome of

estimation.

5.1 Initial Results and the Issues of Algorithm II

First Algorithm II is implemented in its originally developed form with minor changes. In

this case whenever brakes are applied, we have assumed zero brake pressure values whereas we had

assumed constant brake pressure values in the first algorithm. Also algorithm II is not initialized by

a batch; it runs recursively from start. Figure 5.1 shows the grade and mass estimation results for

the data set-1. It can be seen that, although not very fast but very consistently the mass estimate is

converging to the actual value with time, and hence the grade estimates is getting closer to the actual

value of grade. The percent mass error at the end of the cycle is around 30%. The grade estimates

seem to be smoother than those obtained by algorithm I; however spikes can be seen which may

be again attributed to the gear shift. At this stage the estimator is not turned off when the clutch is

38



disengaged. The gain values used for data set-1 are Kls =




40 0

0 25


, k1 = 5, k2 = 10 and β = 10.
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Figure 5.1: Estimated road grade and mass with algorithm II for data set-1.
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Figure 5.2: Estimated road grade and mass with algorithm II for data set-2.

Figures 5.2 and 5.3 show initial results for data sets 2 and 3 respectively using second

algorithm. For data set-2 percent error in mass is around 30%. Even though the percent error in
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Figure 5.3: Estimated road grade and mass with algorithm II for data set-3.

mass is around 30%, the grade estimate follows the actual grade closely. For data set-3 the percent

error in estimated mass is around 20% at the end of first cycle but grade estimate follows the actual

grade profile closely. For data sets-2 and 3 the estimator gains are the same as data set-1, however

the filter constant had to be changed to β = 5 for the reported results.

The main issue detected during simulation seems to be robustness of algorithm 2 to se-

lection of estimator gains. Also unknown brake pressure values and model mismatch during gear

shift result in deviation of estimation from actual value when brake is applied or clutch is not fully

engaged (in particular notice the spikes in estimate of road grade in figures 5.2 and 5.1). The small

signal-to-noise ratio for some of the signals is also a major challenge. Another issue with the orig-

inal code of algorithm II is the computational time which is well-above the real-time requirements.

For a 400-second window of real-time data set, the original estimation time took more than 90

minutes. In order for the algorithm to be real-time implementable it is necessary to optimize the

estimation code.
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5.2 Refinements to Algorithm II

As explained in the previous chapter, there are two stages to algorithm II: The first stage

estimates mass of the vehicle recursively. Based on the mass estimate the second stage estimates

the road grade using the nonlinear estimator (4.3). Preliminary results show that once a fairly good

mass estimate is obtained from stage 1, the second stage estimates the grade fairly accurately and

robustly. Considering this, most of our effort was focused toward improving the estimate of vehicle

mass from first stage. This section explains the different directions explored.

Signal Filtering: Section 3.3 described the importance of filtering when using experimental

data. For example Figure (5.4) shows the unfiltered acceleration signal which is very noisy making

acceleration-based estimation a real challenge. To reduce the noise level in the measured signals

we have used a low-pass filters to filter engine torque, velocity, and acceleration before feeding

them to the estimator. Also the generated grade estimate is passed through another low-pass filter.

For engine torque and velocity a second-order low-pass butterworth filter with cut-off frequency of

3rad/sec. is used. The acceleration signal is filtered using a first-order low-pass filter as shown in

equation (4.5).
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Figure 5.4: Unfiltered acceleration for data set-2.

Estimation Hold During Braking and Gearshift: The brake pressure values and therefore

brake torques are not standard measurements and not available to us. Unknown brake torque can

“confuse” the estimator when brakes are applied. To circumvent this problem, while the estimation

process continues with the assumption of zero-brake torque, the estimation results are discarded and

the mass and grade estimates are not updated. Updating of mass and grade estimates is resumed
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when the brakes are released. Also during gearshift period, the clutch is completely or partially

disengaged disrupting the flow of power to the wheels. Therefore during this period the simple

longitudinal dynamics we have used does not predict the torque at the wheel accurately. Again the

mass and grade estimates are not updated during clutch disengagement. Updating is resumed a few

seconds after clutch is re-engaged to ensure that the induced vibrations in the driveline are damped.

Covariance Resetting: The recursive least square’s covariance matrix dies with time and

makes it impossible to track changes in mass that occur after each loading and unloading of the

truck. To remedy this we reset the covariance matrix in the beginning of each trip while using the

previous estimates as the initial values for the estimator.

Reduced Computation Time: As explained in section previous section, computational

time of the algorithm was very large. By optimizing the estimator code, relying more on SIMULINK

blocks and minimizing use of MATLAB function blocks we have been able to reduce the execution

time of the algorithm by more than 10 folds. As a result the algorithm can now run in real-time.

The pre and post-processing of signals is now streamlined such that the code is ready for on-vehicle

testing which is being considered as a next step.

5.3 Results with the Refined Algorithm

5.3.1 Simulation Results

The refined estimator is first tested using simulated data. Two simulated data sets are cre-

ated, one with step changes in road grade and one with sinusoidal grade variation. A constant

vehicle mass of M=20,000 kg is assumed for both data sets. Persistent excitation is required for

accurate estimation of parameters and this is enforced by choice of a sufficiently varying fueling

profile. The engine torque signal is calculated based on this fueling command; in addition a random

noise signal was added to the torque signal to reflect a more realistic situation. It was assumed that

brakes are not applied and there is no gearshift during simulation.

Figure 5.5 shows the estimation results for step changes in road grade. The mass estimate
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reaches within 10% of its actual value within 7 seconds. As mass estimate nears its actual value,

the estimate of grade also tracks the actual grade closely. Figure 5.5 shows the same for sinusoidal

variation of grade profile. Again after around 7 seconds, the mass estimate reaches within 10% of

its value.
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Figure 5.5: Estimate of mass and road grade compared to actual values for simulated data
when grade is varied in steps.

5.3.2 Experimental Results

With the two-stage estimation strategy proven effective with simulated data, the algorithm
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Figure 5.6: Estimate of mass and grade compared to actual values for simulated data when
grade is varied sinusoidally.

was next tested with several experimental data sets. The experimental data sets were obtained at

Eaton from a heavy duty vehicle with automated manual transmission. The data was obtained from

Engine Control Module through J1939, and from driveline control module and from the clutch

control module. The truck was driven on three different roads, Referred to as the data set 1 2 and

3. Each experimental run was selected to demonstrate varying road and load conditions. At each

experimental run, the total vehicle mass was modified by changing the payload, and was known a

priori.

44



For all experimental runs, the least-squares estimator gains were chosen to be

β0 = 5, γ = 5 (5.1)

Kls = diag{69,40}

Pls (t0) = diag{1,1}

where diag{·} represents the diagonal elements of a 2×2 matrix. The nonlinear estimator had the

following gain values

k1 = 7and k2 = 10.

5.3.2.1 Experiment 1: Data set-1

The total vehicle mass for this run was M = 12,400[kg]. Figure 5.7 illustrates the results of

the least-squares mass estimator and the nonlinear road grade estimator. From Figure 5.7, it is clear

that this strategy provides an accurate mass estimate M̂ (t) owhen t ≥ 10[sec]. Percent mass error

for t ≥ 10[sec] is less then 4%. Compared to results from 5.1 estimate of mass converges to actual

mass quickly and grade estimate also tracks the actual grade with good accuracy.

5.3.2.2 Experiment 2: Data set-2

The total vehicle mass was approximately M = 12,400[kg]. Figure 5.8 illustrates the results.

Maximum percent error in mass after 20[sec] is less then 5%. Once the estimate of mass converges to

actual mass, the nonlinear road grade estimator also tracks the actual grade closely. Implementing

the refinements discussed in previous section, the spikes in road grade during braking and gear

shifting periods are considerably reduced. This can be observed by a comparison to earlier results

shown in Figure 5.2.

5.3.2.3 Experiment 3: Data set-3

For this run the truck was empty with the total mass M = 7,000[kg]. Figure 5.9 illustrates
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Figure 5.7: Estimation results for data set-1.

the results of the least-squares mass estimator and the nonlinear road grade estimator. Figure 5.9,

again demonstrates good mass estimate; the maximum percent error in mass reduces to less then

4% in less than 10 seconds.

5.3.2.4 Experiment 4: sensitivity of the grade estimate to mass error

For this experiment, we investigate a potential weakness in our estimation scheme. Due to

the fact that our two stage approach requires an estimation of the mass to subsequently estimate the

road grade, we wanted to establish how sensitive the road grade estimation was to potential masses
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Figure 5.8: Estimation results for data set-2.

estimation error. With this in mind, we injected a mass estimation error and re-ran the data-set from

Experiment 2. We introduced 15 and 20 percent mass estimation errors into the grade estimator.

Figure 5.10 illustrates the effect the individual mass estimation error signals has on the road grade

estimation β̂(t) when applied to the data set-2. From figure 5.10, it is clear that the injected mass

estimation error does not influence β̂(t) significantly. Table 5.1 shows RMS error in estimated grade

for different mass error. We have neglected the initial 50[sec] of data while calculating RMS error.
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Figure 5.9: Estimation results for data set-3.

Table 5.1: RMS error in grade for different percent mass errors for data set-2
% Mass error RMS error in grade

0% 0.55
15% 0.49
20% 0.49
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Figure 5.10: Sensitivity of the grade estimator to errors in mass estimate for data set-2.
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Figure 5.11: Estimation results when data sets 2 and 3 ran in series.

5.3.2.5 Experiment 5: Covariance resetting

To check robustness of the two-stage algorithm against changes in vehicle loading, data
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set-2 was ran followed by data set-3. Mass of the truck for data set-2 is M = 12,400[kg] and for

data set-3 M = 7,000[kg]. Figure 5.11 shows result for estimated mass and grade as compared to

the actual mass and grade profile. The spikes in estimate of mass when there is change in mass at

around t = 400[sec] is due to resetting the covariance matrix, which allows the estimate of mass to

converge to the new mass value. Estimate of grade also follows the actual grade very closely.

5.4 Future Research For Algorithm II

Overall it seems that algorithm II is more robust than algorithm I as its convergence does

not depend on initialization nor is as sensitive to the estimator parameters. The following issues

should be addressed for further improvements:

Adaptive Parameter set for Kls: We explored the possibility of adapting the gain Kls; the

values of empty truck mass and maximum possible mass are known and this information may be

utilized when adapting Kls. If the estimate of mass is grater then maximum possible value, Kls is

selected in such a way that it forces the estimate of mass to remain below upper bound of mass and

when the estimate of mass goes below the mass of empty truck, Kls is selected in such a way that it

pushes the estimate of mass to go above the lower bound. We believe there is room for improvement

by adaptation of Kls or other gains.

Persistent excitation condition for initialization: The original algorithm was very sensi-

tive to persistent excitation of incoming data. To remedy this we have added conditions that check

the velocity and acceleration levels and when low the algorithm is turned of. The result has been

promising however there is still room for including additional and more restrictive logic that check

the quality of incoming signals and stop algorithm during poor excitation periods.

Real time implementation: We are able to demonstrate the performance of two-stage

estimation strategy by getting accurate results for multiple simulated as well as experimental data

sets. Now the next step is to test the algorithm in a real-time scenario. Testing of the algorithm in

real-time scenario will be carried out at the Eaton Corporation (project partner) facility.
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Chapter 6

Conclusion and Future Work

Estimation of the vehicle mass and time-varying road grade simultaneously is a challenging

problem. Most of the existing work in the literature focuses on only estimating one of the param-

eters. In practice however estimation of one can not be completed without the knowledge of the

other. The novelty of the algorithms outlined in this thesis is simultaneous estimation of both un-

knowns. First we have validated the powertrain model by comparing the model velocity with the

measured velocity. We then presented the estimation results using two algorithms and presented

new fixes and refinements to improve the estimation quality. A major hurdle with the first algorithm

was the spikes in the grade estimate which was overcome by turning off the estimator during clutch

disengagement. Proper initialization of the recursive estimator by intelligent selection of the batch

size remains a good direction for future research. During the course of tests with algorithm I we

have also studied several other issues for example the appropriate filters and their bandwidth for

reducing the influence of signal noise and also use of a torque sensor to validate the engine torque

readings.

The second two-stage algorithm proved very promising. We have been able to show its

relatively robust performance using a number of experimental data sets. The major issue in the

second algorithm was the spikes in the grade estimates during braking and gearshift. This issue

was resolved by holding the estimate update during periods of braking and clutch disengagement.
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We have also faced and resolved several other issues for example selecting the appropriate filters

that reduce the influence of signal noise on the final estimation results and improving the speed of

estimator convergence and its computation time.

The algorithms are now more robust and can be tested in real-time in the next step. We

believe there is still room for improvement in both the algorithms in the following areas:

First algorithm: Selecting an adaptive batch size based on persistent excitation condition

of incoming data and time-varying forgetting factors are important areas for further investigation.

Fixed batch size can be replaced by adaptive batch size to ensure the convergence of estimation

results to actual values for all the experimental data sets with the same setup. Covariance resetting

is one of the areas of interest for further investigation. This will ensure that the algorithm doesn’t

lose its sensitivity to new incoming data and can track changes in parameters. Spikes during gear

shifting and braking periods are reduced significantly but still there are frequent spikes in estimate of

road grade, may be reduced by augmenting a model of transmission with the longitudinal dynamics

model.

Second algorithm: Compared to first algorithm, this algorithm is much more robust and

produces accurate results for multiple data sets with the same setup of initial conditions and gains.

This algorithm is ready for testing in real-time scenario but adaptation of the gain Kls and adding

more checks on persistent excitation condition can improve the estimation results and can increase

the robustness of the algorithm. For example the gain Kls can be adapted to ensure mass estimate

remains between feasible upper and lower bounds.

We are now filtering the data in both algorithms using fixed-gain low-pass filters. Use

of bandpass and low-pass filters with adaptive parameters is another direction to investigate. In

adaptive filtering, transfer function of a filter is selected based on perceived noise level of incoming

signal and best filter is selected accordingly.

Also the results presented in this thesis are produced without the knowledge of braking

forces and accurate powertrain model. It would be interesting to see the results when accurate

powertrain model along with all braking forces are available.
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