
Clemson University
TigerPrints

All Theses Theses

7-2008

ENHANCEMENT OF INFORMATION
MANAGEMENT CAPABILITIES IN MDO
FRAMEWORK
Santosh Hiriyannaiah
Clemson University, shiriya@clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

Part of the Engineering Mechanics Commons

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized
administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Hiriyannaiah, Santosh, "ENHANCEMENT OF INFORMATION MANAGEMENT CAPABILITIES IN MDO FRAMEWORK"
(2008). All Theses. 453.
https://tigerprints.clemson.edu/all_theses/453

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Clemson University: TigerPrints

https://core.ac.uk/display/268631226?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_theses%2F453&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F453&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F453&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F453&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/280?utm_source=tigerprints.clemson.edu%2Fall_theses%2F453&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/453?utm_source=tigerprints.clemson.edu%2Fall_theses%2F453&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

ENHANCEMENT OF INFORMATION MANAGEMENT CAPABILITIES IN MDO

FRAMEWORK

A Thesis

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

Mechanical Engineering

by

Santosh Hiriyannaiah

August 2008

Accepted by:

Dr. Gregory M. Mocko, Committee Chair

Dr. Georges Fadel

Dr. Joshua D. Summers

 ii

ABSTRACT

Multidisciplinary Design Optimization (MDO) frameworks have been developed

to facilitate the integration of disciplinary analysis codes and optimization techniques.

Recent advances in MDO frameworks have addressed issues related to data exchange,

distributed computing, process integration and trade study. However, managing, storing

and sharing MDO problem information have not yet been fully addressed. In this research

a software configuration is proposed. The configuration is built upon a structured

repository, common file system and software applications. The configuration is integrated

into a commercially available MDO framework to manage, store and share MDO

problem information. A common file system proposed in this research provides a

structure to store MDO components and enable sharing of components over the network.

The ModelCenter framework is selected for the integration of the repository based on the

evaluation of the MDO frameworks against a set of extended information management

requirements. The repository is a relational database which provides an information

model to store information related to MDO problems. A Java interface is utilized to

provide access to the structured repository and the common file system in the

ModelCenter framework. Java applications are developed to demonstrate the benefits

offered by the proposed repository and the common file system. The proposed features

and the Java applications are tested for the functionality and performance utilizing IEEE

software testing standards.

 iii

DEDICATION

This thesis is dedicated to my parents who have a major contribution for what I

am today and my sister who has helped and supported me to achieve my goals.

 iv

ACKNOWLEDGMENTS

I would like to thank Dr. Mocko for his continuous support and guidance without

which this research would not have taken the present form. I would also like to express

my gratitude to my committee members Dr. Fadel and Dr. Summers for their support and

valuable advice.

I would like to thank Ben Caldwell, Pavan Kumar, Chiradeep Sen, Santosh Tiwari

and Carl Lamar who have provided me timely feedback and have helped me review this

thesis.

 v

TABLE OF CONTENTS

Page

TITLE PAGE .. i

ABSTRACT ... ii

DEDICATION .. iii

ACKNOWLEDGMENTS .. iv

LIST OF TABLES ... vii

LIST OF FIGURES .. viii

CHAPTER

1. INTRODUCTION ..1

1.1 Research Questions and Validation Plans ..3

1.2 Thesis overview ..4

2. LITRATURE REVIEW ..6

2.1 General requirements ...7

2.2 Available features in MDO frameworks ..10

2.3 Need for Reuse and reconfigurability of MDO

problems ...15

3. FRAMEWORK EVALUATION..19

3.1 Extended information management requirements19

3.2 Evaluation of MDO Frameworks ...21

3.3 Suitable Framework for Research in Reuse and

Reconfigurability ..27

3.4 ModelCenter software and hardware configuration28

3.5 Usage of analysis model in current ModelCenter –

Analysis Server configuration ..30

3.6 Drawbacks of Current Configuration ...34

 vi

Table of Contents (Continued)

Page

3.7 Features to support reuse and reconfiguration of

MDO problems ...35

4. PROPOSED MODELCENTER – ANALYSIS SERVER

CONFIGURATION AND IMPLEMENTATION37

4.1 Structured repository ..38

4.2 Common file system ...53

4.3 Methods for accessing structured repository and

common file system ..56

4.4 Java Applications ...56

4.5 Benefits of the proposed configuration ..68

5. EXAMPLE PROBLEM AND DATABASE

IMPLENTATION ...69

5.1 Example problem: Analysis and optimization of the

beam structure supporting walkways ...69

6. TESTING AND INFERENCES ...79

6.1 Overview of the testing ..79

6.2 TEST 1: File wrapper and batch file creation ..80

6.3 TEST 2: Migration of analysis software ..101

6.4 TEST 3: Reconfiguration of MDO problem ..114

7. CONCLUSION ...124

7.1 Addressing Research Questions ...125

7.2 Future work ..127

APPENDICES ..128

LIST OF REFERENCES ..153

 vii

LIST OF TABLES

Table Page

2.1 Identification of features addressing general requirements 15

3.1 Evaluation of information management requirements

against MDO frameworks ...21

4.1 Class description ... 43

4.2 Attribute description ... 44

4.3 Relationship description.. 46

4.4 Functional characteristics of the transactions ... 47

4.5 MySQL data definition statements ... 48

4.6 Pseudo code for wrapper generator application .. 61

4.7 Pseudo code for reconfiguration application .. 66

6.1 Overview of the functions tested .. 80

6.2 Test 1 result summary ... 100

6.3 Test 2 result summary ... 112

6.4 Test 3 result summary ... 123

 viii

LIST OF FIGURES

Figure Page

3.1 Current ModelCenter configuration .. 28

3.2 Information describing analysis models available on

Analysis Server ...29

3.3 Sections of file wrapper .. 30

3.4 Flowchart to create a file wrapper .. 32

3.5 Flowchart for batch file creation ... 33

3.6 Overview of steps involved in preparing ANSYS analysis

model for execution ..34

4.1 Proposed ModelCenter - Analysis Server configuration 38

4.2 Structured repository in proposed ModelCenter-Analysis

Server configuration.. 39

4.3 Phases in structured repository development .. 40

4.4 UML Class diagram .. 42

4.5 Relationship schema ... 48

4.6 Common file system in Proposed configuration ... 54

4.7 File structure in common file system .. 55

4.8 Java applications in proposed configuration ... 57

4.9 Black box overview of wrapper generator application ... 58

4.10 Structural overview of wrapper generator application .. 59

4.11 Black box overview of reconfiguration application .. 65

4.12 Structural overview of wrapper generator application .. 66

 ix

List of Figures (Continued)

Figure Page

5.1 Walkway structure setup ... 70

5.2 Modification in rectangular beam analysis model .. 73

5.3 Modification in I beam analysis model ... 74

6.1 Walkway structure setup ... 70

6.2 Modification in rectangular beam analysis model .. 73

6.3 Modification in I beam analysis model ... 74

7.1 Functions addressing information management requirements 124

7.2 CenterLink in ModelCenter configuration .. 128

CHAPTER ONE

INTRODUCTION

In recent years, emphasis has been on the advances that can be achieved with the

interaction between two or more disciplines [1]. Many disciplines interact with each other

to solve a complex engineering design problem. The design of an aircraft involves

interaction between specialized disciplines such as aerodynamics, propulsion and

structural analysis to mention a few, often times with conflicting objectives and

constraints. The overall desired objective to increase aircraft’s performance is divided

into many sub level objectives which are solved separately by the specialized disciplines.

In this process several analysis models are generated from each discipline and are

brought together to optimize for the overall desired objectives using several optimization

techniques. One such methodology which integrates analysis models and optimization

techniques to solve engineering design problems involving multiple disciplines is called

Multidisciplinary design optimization (MDO). A hardware and software architecture that

enables integration, execution and communication among diverse disciplinary processes

is referred as MDO framework [21]. The key requirements for architecting MDO

frameworks and supporting features are identified by Salas in the early 1990s. These

requirements include: architectural design; problem formulation; problem execution; and

information access. Several commercially available and research-based software

frameworks have been developed to enable disciplinary analysis code, geometric design

models, and optimization routines to be coupled. The frameworks have fulfilled the

requirements to varying degree. These frameworks include ModelCenter, iSIGHT-FD,

 2

and modeFRONTIER. Several issues in these frameworks associated with integration,

execution and communication have been addressed with significant contributions and

advancements made by the MDO community. Advances in technologies such as

distributed computing and data exchange are being incorporated in these frameworks.

Analysis Server and CenterLink by Phoenix Integration and Fiper from Engineous

software are examples of such advancements[10, 19, 20]. These developments help in the

best utilization of resources and automate information exchange thereby making it easier

for the designer.

While current frameworks enable models to be linked and information to be

exchanged between heterogeneous codes, they do not provide sufficient information

management capabilities. Current MDO frameworks do not provide a structured

representation and information model for capturing information, such that designers can

easily store, organize, and retrieve previous MDO decisions and projects for reuse. Thus,

the principle objective in this research is to develop a structured repository (database) for

capturing MDO related information to facilitate reuse, reconfiguration and exchange of

MDO problems. The structured repository will enable information across disciplines to

be shared such that the designer is benefited with the necessary prior information

required to setup and solve an MDO problem.

 3

1.1 Research Questions and Validation Plans

In order to achieve the above stated principle objective the following research

questions have been proposed. Addressing these research questions not only help to

achieve the principle objective, but also provide a road map for the research.

Research Question 1: What are the information management requirements

of MDO framework to support reuse and reconfiguration?

Research Question 1 focuses on the identification of requirements for managing

MDO related information. The correlations between current frameworks and the

requirements enable gaps to be identified. These gaps include retrieval and

reconfiguration of existing MDO problems; capture and storage of information for the

integration of disciplinary analysis models; representing constraints and requirements in

formulating MDO problems

Research Question 2: What are the features that need to be integrated into

the MDO framework to enhance information management capabilities?

Research Question 2 focuses on developing features to enhance information

management capabilities in MDO framework. This is done first, by evaluating currently

available frameworks against the information management requirements and selecting a

suitable framework for extension. Second, by identifying the drawbacks of the selected

framework configuration and finally by identifying structured repository and common

file system as features that help address these drawbacks and enhance the information

management capabilities

 4

Research Question 3: What is the structure of the information model to

enable efficient reuse and reconfiguration in MDO problems?

The focus of Research Question 3 is to design and develop the conceptual

information model of the repository. The information model provides MDO information

to be stored in a structure and retrieved. This enables designers to reuse and reconfigure

the MDO problems with the help of information from the repository.

Research Question 4: How will the repository be interfaced/ integrated with

an MDO framework in general and ModelCenter/Analysis server specifically?

Research Question 4 focuses on the integration of the structured repository and

the common file system in ModelCenter/Analysis Server configuration. A Java

application is developed to connect the repository and to incorporate method calls

provided by the ModelCenter and Analysis Server API’s.

1.2 Thesis overview

A comprehensive set of requirements obtained from literature to understand the

development of MDO frameworks is described in Chapter 2. Currently available features

addressing these requirements are discussed in detail and need for reuse and

reconfiguration of MDO problems is explained. Information management requirements

are extended to support reuse and reconfiguration in Chapter 3. The three frameworks

under study in this research are evaluated against these requirements and a suitable

framework is selected. The drawbacks of the selected framework configuration are

identified. A new ModelCenter – Analysis Server configuration is proposed to address

the stated drawbacks. The proposed configuration is built upon a structured repository,

 5

common file system and software applications. The design and development details of

the proposed configuration are discussed in Chapter 4. The repository is implemented

with information from a walkway beam structure analysis example problem in Chapter 5.

The quality and performance of the features in the proposed configuration are tested and

demonstrated under a scenario in Chapter 6. Finally the thesis is concluded in Chapter 7

by presenting a research summary which includes the advantages of enhancing

information management capabilities and the future opportunities this research leads to.

 6

CHAPTER TWO

LITRATURE REVIEW

The development of model integration frameworks and dedicated MDO software

packages has been addressed from a research perspective (i.e., DAKOTA, FIDO,

MIDAS) and from commercial software solution perspectives (i.e., iSIGHT-FD,

ModelCenter, modeFRONTIER and LMS OPTIMUS). Additionally, many of the

commercial software packages have evolved from research thrusts at universities and

government research laboratories into commercially available software solutions. The

available software solutions have strengths and shortcomings in the context of

formulating engineering design problems, integrating disparate design and analysis

models, representing mathematical solutions, and subsequently solving the MDO

problems. These software frameworks differ in their ease of integration with existing

design support tools, their human computer interface, their ability to capture the design

intent, incorporating changes, providing optimization routines, tracking the information

generated and many more. However, underlying each of the frameworks is the same set

of core requirements. These requirements are grouped into Architectural Design

requirements; Problem Formulation requirements; Problem Execution requirements and

Information Access requirements [21]. The list of requirements is generated based on a

review of the existing model integration framework literature, available common

functionality from several software packages, and leveraging from information and

knowledge reuse of complementary engineering domains. In this context a

 7

comprehensive set of requirements for MDO software frameworks is developed and

discussed in the following section based on a critical review of existing literature [15, 17,

21].

2.1 General requirements

Architectural requirements: Architectural requirements are generated to develop a

method or style for designing a framework. These requirements are in terms of

extensibility of the framework, incorporation of standards into the framework, use of

existing legacy codes and collaborative design support.

 Incorporation of standards: Standards like message passing interface, database access

and languages incorporated into the framework help reduce the maintenance cost and

also preserve investments. [21]

 Extensibility: Modification of disciplinary analysis codes, integration of new

processes into the system and incorporating changes in the design problem makes the

framework more flexible. Incorporating new developments and technology will help

the designer to continuously improve the design process. [21]

 Incorporation of legacy codes: Legacy codes exist in various forms. These codes are

tested and proven over years; they are improved and expanded over time.

Incorporation of these codes into the framework supports code reuse and also helps in

achieving best results. The designer will be able to use codes with no changes

required when incorporated in a framework. [21]

 Support for collaborative design: The architecture of the framework is important in

collaborative design. The architecture should support versioning of documents to

 8

prevent duplication of documents and to update the designers with the new version.

Effective utilization of available resources supports complex multidisciplinary

interactions. Multiple discipline designers can collaborate and work on the same

problem by sharing the files over the network and utilizing the updated documents. It

enables them to access the problem data at the same time. [17]

Problem Execution requirements: These requirements are generated in order to

maintain and facilitate the execution of MDO problems. The key problem execution

requirements are in terms of distributed computing, automated data transfer and

automated problem execution

 Automation of problem execution: Input file preparation, the execution of disciplines

and optimization methods, data extraction from output files and data transfer between

processes should be automated in a framework. This helps in reducing design cycle

time and also eliminates human intervention when not required. [17]

 Parallel processing: Distributed computing enables integrated product design,

collaboration between multidisciplinary design teams and increase in computational

speed. Parallel processing helps designers to work from different workstations and

share design ideas at the same time. [17, 21]

 Creation of a wrapper: Creation of a wrapper helps in automating the data transfer

and integrating various analysis codes from different disciplines. The framework

should provide tools for creating wrappers generated by appropriate input files;

invoke disciplinary programs and should automatically extract the output of interest

[17].

 9

Problem Formulation requirements: These requirements are generated to ease the

formulation of MDO problems and to emphasize reuse and reconfiguration to make the

framework flexible.

 Variable fidelity configurable models: Saving the assembly of linked codes and

design exploration tools from the framework enables reuse. By facilitating the

deletion or replacement of elements of various level of fidelity in the model,

flexibility can be achieved. [15]

 Ease to reconfigure: Reconfiguration in problem formulation includes replacing

existing processes with new ones, deleting processes or adding new ones to the

application. Reconfiguration helps users to explore alternative views of the problem.

Incorporating customizable tools and plug in components supports reconfiguration in

a framework. [17]

Information Management requirements: Information management requirements

pertain to structured storage and retrieval of optimization problems implemented in MDO

frameworks and supporting analysis models. Specifically, these requirements define the

architecture and interfaces for managing information.

 Modularity: The concept of modularity adapted in a framework makes the code more

manageable and understandable. Modularity means that components of analysis and

optimization tasks can be constructed from a library of interchangeable modules.

Modularity also helps in understanding the design better and incorporates changes if

necessary. [15, 21]

 10

 Database Management: A central database for maintaining data used by multiple

disciplines enables efficient numerical analysis, process restart capabilities and reuse

of codes. It also encourages multidisciplinary analysis to reduce the number of

translation routines needed. The option of defining which data is written to and read

from the database, helps designers to manage and share information. An efficient

search system enables effective retrieval of information from the database. [17]

 Plug and play user interface: The user should have the option of selecting from a set

of analysis codes, linking and executing the codes in a process. This pick and place

option illustrates a plug and play user interface. The components linked should be

able to be broken, repaired or expanded as design requires. [14]

2.2 Available features in MDO frameworks

Three commercially available software frameworks are evaluated against the

requirements described in Section 2.1. This evaluation is based on several information

sources including user manuals [7-11, 20], software usage experiences [18], and informal

interviews with graduate students currently conducting research utilizing the frameworks.

The evaluation is summarized in Table 1. The software frameworks include primary and

supporting software systems. The software includes:

 ModelCenter 7.1, Analysis Server 5.1, and CenterLink from Phoenix Integration

 iSIGHT-FD and FIPER from Engineous, and

 modeFRONTIER 3 from ESTECO

 11

ModelCenter

Model Center is a visual environment for process integration developed by

Phoenix integration. ModelCenter helps designers to integrate similar codes together and

perform complex design analysis. The architecture includes simple Graphical User

Interface which makes it easy to link applications, several trade study tools and

optimization techniques. The architecture also includes a Java based software server

called Analysis Server and a web based server called CenterLink to help support

distributed computing, wrapping of software tools and data management. Java and COM

API’s are provided to call ModelCenter from external applications. These API’s helps the

designer to custom write their interface programs specific to their design process. Legacy

codes can be incorporated with the help of a wrapper. An excel wrapper and a file

wrapper wrap the analysis codes and make them available to designers by publishing

them on a network with the help of an analysis server. ModelCenter allows wrapping

analysis programs and running them in an automated fashion, linking multiple programs

together to form systems engineering models, Perform trade studies on the models and

Archive results from multiple trade studies into a single project [20]. Input and output

from different components can be linked in ModelCenter Environment with the help of a

key feature called Link Editor. Similar key features available in ModelCenter are auto

link and link checker which makes the linking easier. The Scheduler feature helps in

knowing which components need to be run and when. It allows mapping of design model

graphically and run them in parallel. Valid and invalid are the two states given by the

scheduler to show which model needs to be run. The plug-in tool kits are available to

 12

extend the functionality of the framework. This is done by providing various plug-in

types like trade study plug-Ins, component plug-Ins and data analysis plug-Ins. Variable

influence profiler and prediction profiler features enables the designer to effectively

formulate MDO problems. These features help the designer to analyze the most

impacting input design variable on the output and choose the design parameters carefully.

The other support tools available in the Model center are the optimization tool and data

explorer tool. Visualization and analysis of the results in the trade study can be done

using data explorer. These analysis results can be saved in an SQL database to share the

results with other designers in the team. Optimization tool allows gaining insight into key

design parameters and their impact in design process to efficiently find optimal design.

modeFRONTIER

modeFRONTIER is a multiobjective optimization and design environment which

allows the designers to couple commercial analysis codes together in a design process.

This optimization framework is developed by ESTECO. modeFRONTIER is

implemented using Java and Inter platform communication is achieved using CORBA. It

supports integration of various CAE tools such as CAD Finite Element Structural

Analysis and Computational Fluid Dynamics (CFD) software. Problem formulation is

done in a modular fashion with the help of node library. Node library contains node types

or components which are used to formulate a process. Components can be picked and

placed from the node library into the workflow as modeFRONTIER has a plug and play

interface. Graphical process flow and Logic flow facilitates designer to keep track on

changes and to ensure proper linking between components. Optimizer in

 13

modeFRONTIER is referred to as scheduler. Base schedulers, advanced scheduler and

evolutionary strategy schedulers are the three types of scheduler available.

modeFRONTIER provides a plug-In interface for the third party optimization algorithms

to be integrated into the framework. The Projects are multi-platform. Software like Catia,

Pro-Engineer and Matlab can be directly integrated using their respective software nodes

available in the node library. Other software can be executed using batch mode node.

Summary of the design problem formulated and executed can be created by report

module. After creating the report it can be shared with other designers using email node.

Information about specific runs can be viewed by Runtime design space. Decision

making tools such as goal programming, weighted sum of objectives and non linear

utility function are provided to help to convert user intuitions or design knowledge into

algorithms that extract best solutions.

iSIGHT-FD

iSIGHT-FD is a software framework developed by Engineous software helps

improve the productivity in a design process. It automates the manual design process by

integrating and coupling multidisciplinary simulation codes. The architecture of iSIGHT-

FD includes Multidisciplinary optimization Language (MDOL), Tcl language interpreter

engine and easy to use Graphical User Interface. Interpreter engine has the capability to

receive and send commands and allows creating customized expressions at run time [7-

10]. Design Gateway, Runtime Gateway, Component editors and Library are the four

categories of interface available. These four interfaces help in formulation, execution,

creating and publishing models. The Task plan functionality available in the Design

 14

Gateway allows design drivers to be added to the work flow. The design drivers available

in iSIGHT-FD are approximations, DOE, Monte Carlo simulation, and optimization

tools. A special feature called pointer automatic optimizer is available which makes

appropriate choices and determine which algorithms as well as their control parameters

are most successful for the design. A set of resources can be connected to iSIGHT-FD

using FIPER. It provides thin client interface using WebTop and also provides

communication with WebLogic application Server. This facilitates for distributed

computing to run jobs in a heterogeneous computing environment and provides access to

Libraries and Databases. Application Control System (ACS) controls and manages these

internal operations in FIPER. Model selector functionality allows the user to select

several models and run them parallel. A process controller controls various job

executions and communicates with the database. Database and description file store

history of the project and a compressed XML files stores the characteristics of the

component used in the design problem. The database component in iSIGHT-FD allows

access to the database to store input and output values obtained after execution. The

supported databases are MS access, oracle, DB2, MySQL and SQL Server. Data

Exchanger is a unique feature in iSIGHT-FD that reads, writes and manages the data

between two objects (parameter-text file, text file-text file). Engineering Data Mining

(EDM) provides for post processing capabilities for multi objective optimization results

to understand design better.

 15

Table 2. 1: Identification of features addressing general requirements

General

requirements
ModelCenter 7.1 modeFRONTIER 3 iSIGHT-FD 2.5

Architectural

Java and COM API’s

Simple intuitive

GUI’s

Legacy codes can be

incorporated with the

help of wrapper

Java language

Distributed object

model RMI

Inter platform

communication using

CORBA

Tcl language

interpreter

Simple intuitive

GUI’s

MDOL

Problem

execution

Link editor

Analysis Server

Center link

Scheduler

Plug-in tool kit

Batch mode execution

for other software

Projects are multi-

platform

FIPER

 Parallel processing

Web Top&Web

Logic

Runtime Gateway

Problem

formulation

Analysis Wrapper

File wrapper and

Excel wrapper

Plug and play

interface

Variable influence

profiler

Prediction profiler

Plug and play interface

Node Library

Graphical process flow

and Logic log

Plug in interface for

third party algorithms

Scheduler

Design Gateway

Pointer automatic

optimizer

Plug and play

interface

Version control

capability

Design drivers

Information

management

Data explorer

SQL Database

Email node

Report module

Runtime design space

view

Remote monitoring for

optimization progress

Database

component

ACS

Data Exchanger

Publisher

2.3 Need for Reuse and reconfigurability of MDO problems

Several researchers have described design as a decision making process and

selection of design parameters represents decision [13]. Multidisciplinary design

optimization is a decision making process where design decisions are the optimization

based representation. Effective decisions can be taken if the designer formulating an

MDO problem is given a set of choices of analysis code and optimization techniques

along with information about them. These set of choices can be design variables that are

 16

linked to various output parameters; several constraints that are imposed on an objective

function; decisions taken by other designers; information about analysis code used and

optimization techniques performed. Information about MDO problems stored can later be

utilized to reuse and reconfigure the MDO problem. It is important to note that reuse and

reconfiguration are not mutually exclusive. In this context the key definitions of reuse

and reconfiguration follows.

Need For reuse

Several researchers have addressed the idea of reuse to help reduce integration

gaps and to facilitate knowledge sharing. Grosse et al.[12] define reusability as ability to

reuse an analysis model for the same applications by someone other than the model

developer. Mocko and colleagues [16] discuss about reusability of behavioral models to

benefit engineering design by capturing design analysis knowledge in a repository. While

definitions change slightly with domains, reuse in the context of MDO problems can be

defined as repetitive use of MDO components (analysis and optimization) and MDO

project files stored in a file system for formulating similar design problems. Storing the

MDO components would facilitate efficient reuse for formulating a new MDO problem.

An example scenario to better understand reuse concept is presented below.

Reuse scenario

Consider a design of component from multiple disciplines where two experts are

handling the same design problem i.e. an analyst and a designer. Analysts create

disciplinary analysis code and store the file in a file system. Designers use this code to

link it with an optimizer to form an MDO problem. The MDO problem is then executed

 17

and the result is then analyzed using various trade study tools to study the effect of the

design variables on the desired output. Therefore the code generated by an analyst is

reused by the designer to formulate an MDO problem.

Need For reconfiguration

According to Alexandrov and Lewis [2, 3] most of the MDO formulations share

the basic computational components, comprising output/input couplings and attendant

sensitivity information. Here idea of reconfiguration is addressed in a mathematical

approach. They define reconfiguration as a straight forward transformation among

problem formulations with a single operation. In an MDO problem, reconfiguration can

be defined as reassembling of analysis and optimization components to form a new

design problem, with addition or deletion of components/objects to incorporate changes

in design. In order to further explain the reconfiguration concept an example scenario is

presented below.

Reconfiguration scenario

The MDO problem formulated by a designer is saved as a project file in a local

file system with a specific file naming convention. This can only be accessed by other

designers in the team if they are permitted access. When a requirement to create a similar

design problem occurs such as change in optimization method, the saved project file is

opened in a framework and changes are made by adding or deleting several design

components. The same analysis file can be used with a different optimizer. Also if the

design requirement changes, where analysis files used in the previous project can be used

with minor modifications. For example analysis of a rectangular beam changes to

 18

analysis of an I-beam. Thus, instead of formulating a new problem an existing project file

can be used and reconfigured to meet new design changes.

Reuse and reconfiguration of MDO problem have potential to save time; reduce

computational costs and also to speed up the formulation process. The main advantage of

reuse and reconfiguration in MDO problem is (1) to gain knowledge about the outcome

of the previous run, (2) to predict the impact of design parameters on the outcome if the

designer is using similar analysis code, (3) to support the use of same analysis component

to run in different optimization methods. To facilitate for efficient reuse and

reconfiguration in MDO problem, capturing and storing information and meta

information is essential. This requires an efficient information management system.

However, information management tools available in the current frameworks are limited;

resulting in difficulties with reuse and reconfiguration of design problem

formulated/developed in MDO frameworks.

 19

CHAPTER THREE

FRAMEWORK EVALUATION

As discussed in Chapter 2 problem formulation and information management are

the key requirements that are not fully addressed. The main focus of this chapter is to

emphasize the above mentioned key requirements to extend the information access

capabilities in MDO frameworks. This is done by first applying and expanding on the

general characteristics of the key requirements to facilitate reuse and reconfiguration of

MDO problems. Subsequently, from these extended requirements, current MDO

frameworks are evaluated and a suitable framework is selected for the extension.

Drawbacks from the selected framework configuration are identified and new features to

enhance information access capabilities are proposed.

3.1 Extended information management requirements

Database management: Capturing, storing, sharing and managing information

related to MDO problems in a database helps in collaborative design [17]. Providing

access to the information associated with the MDO problem and its components should

facilitate intelligent querying of MDO components for reuse and MDO problems for

reconfiguration. Database should store information shared by many disciplines such as

design objectives, critical design considerations and requirements, important design

parameters, design constraints, optimization technique used, results from previous runs,

designer’s rationale, decisions taken and component locations in the file system.

Database management systems should help the designer to effectively utilize these MDO

 20

information stored in a database during the three phases of problem formulation i.e.

before formulation- when designer selects components for a particular MDO problem;

during formulation- when linking of components to form an MDO problem; after

formulation- when trade study and analysis is carried out.

Modularity in problem formulation: Formulation of MDO problem in a modular

structure helps the framework to be flexible in incorporating changes. Modularity is

breaking down of the components of a multidisciplinary design problem and information

associated with it, such that reusable components can be identified. Modularity enhances

transparency in problem formulation such that designers are able to view the dataflow

and linking between components. This also helps in re-linking of components of a design

problem.

Reconfiguration capability: Adding or replacing components in an MDO problem

facilitates designer to explore alternative views in design. This helps in achieving

desirable results in considerably less time and also avoids creation of new problems when

a similar problem already exists. Loose coupling between MDO components ensures easy

re-linking and re-assembling to incorporate changes in design. Features for automatic

linking of the new component should be supported by the framework. Providing MDO

components information to the designer is essential for a reconfiguration process.

Intelligent Search and retrieval: An interface providing information about the

components stored in the file system enables intelligent search of that component.

Querying service for the retrieval of MDO components enables the designer to effectively

utilize the components already available for problem formulation. The framework should

 21

support of such interface and querying services such that the components are intelligently

search and retrieved.

Plug and play interface: A framework should have a plug and play interface

which would allow the user to pick and place components from a file system into the

design problem.

3.2 Evaluation of MDO Frameworks

Based on extended information management requirements from previous section,

three readily available commercial frameworks are evaluated (see Table 2). This

evaluation is based upon the features available in these frameworks that meet the

extended requirements.

Table 3.1: Evaluation of information management requirements against MDO frameworks

Requirements Model Center mode FRONTIER iSIGHT-FD

(1) Database Management   

(2) Modularity in problem

formulation
  

(3) Reconfiguration capability   

(4) Intelligent search and

retrieval
  

(5) Plug and Play interface   

- fully met  - partially met  - not met

(1) Database Management requirement

ModelCenter - partially meets

ModelCenter partially meets the database management requirement. A centralized

grid computing system called CenterLink supports database functionality by storing the

trade study results in a standard SQL database for future reference. However this is

 22

limited to trade study results and there in no much scope of storing information about

MDO components. Analysis Server enables the analysis application to be reused by

publishing them over a network. This application can be manipulated only by the analysts

who create it and designers who have prior knowledge about the application. The

information about the application is only made available by a naming convention, if

followed. There is no file information system which gives information about where the

file is stored.

modeFRONTIER - not met

modeFRONTIER does not meet the database management requirement as there

are no database features available to store and retrieve the information about MDO

problems. The files are saved in the local file system as a project file. These files are not

available to any designer who doesn’t have an access to the local file system as there are

no distributed computing technologies in modeFRONTIER. This makes it difficult for

data exchange and for the files to be shared across networks.

iSIGHT-FD - Partially met

iSIGHT-FD partially meets the database management requirement. Database

currently available in iSIGHT-FD stores only input and output values obtained after

execution. A library exists which stores all the design models which can be later reused

by the designers to use it appropriately in their models. Fiper integration in iSIGHT-FD

provides powerful distributed computing which accesses the library to allocate available

resources. However there is no file system which helps in reuse of the components of

design problem.

 23

(2) Modularity in problem formulation

ModelCenter - Partially met

ModelCenter only partially supports modularity. Wrapping technology in

Analysis Server allows analysis files to be decomposed into 3 parts input; output and

executable. The analysis executable code is considered as a black box. The designer can

only manipulate the code in terms of input and output and not the code parameters. In

ModelCenter, MDO problem formulated has only two modules analysis module and

optimization module. With this, the only modification done is by varying with the design

variables, objectives constraints and optimization technique. The designer would not

know what the code includes and thus is only limited to reuse analysis code as a black

box. The information about the component can be viewed in the work flow, which

facilitated the user to visualize the information flow and the link editor helps to define the

data flow.

modeFRONTIER- Fully met

modeFRONTIER formulates the work flow in a modular way. It provides input

variable icon, output variable icon, objective icon, constraint icon (referred as nodes) and

a scheduler thereby making it easy for the designer to understand the workflow. Re

linking input and output variables can be easily done as the work flow is set up in a

modular fashion. The executed design problem is saved as a project file and the whole

project file has to be used to make it reusable. Reconfiguring the existing design problem

is a cumbersome procedure in modeFRONTIER.

iSIGHT-FD-Partially met

 24

Component generator enables the wrapping of the analysis files similar to the one

in ModelCenter. The design problem is formulated in a modular fashion by dragging and

dropping components into the workspace. The design problems are saved as project files

and can be retrieved and used as a whole problems and reconfiguring it is a difficult

process. Change in design required re parsing of input and output files which is almost

equivalent to creating a new design problem. The Library feature provides brief

description about the component which can be replaced. Hence it partially meets the

modularity requirement.

(3) Reconfiguration capability

ModelCenter - Partially met

ModelCenter environment provides good linking between components and can be

re-linked with ease with the help of auto link and link editor features. The components

can be created added and replaced easily but only with the help of knowledge of the

designer, who knows what to add and why to replace a component. There is no feature to

provide information to the designer about the components before the files are opened in

ModelCenter.

modeFRONTIER- Not met

Once the work flow is fully defined it can be re-linked with the help of link

creator. But if the variables are to be changes then a whole new process of data mining

has to take place in order to make the project executable. There is a logic log window

which helps the designer to formulate the design problem. However it is limited to only

the components added to the work flow. It does not suggest addition of new component

 25

as there is no information system or an expert system like knowledge repository

supported in modeFRONTIER.

iSIGHT-FD-Partially met

iSIGHT-FD partially meets the reconfiguration capability requirement. The

component can be easily added or replaced in the work flow in Design Gateway. The

design models once formulated can be reconfigured only in the design work flow. This

reconfiguration is done by re linking of the new variables and parsing the output files.

But it does not provide any information to the user which would help reconfiguration.

Hence it still is a difficult process to edit the existing problem to form a new design

problem.

(4) Intelligent Search and retrieval

ModelCenter - Partially met

ModelCenter partially supports for intelligent search and retrieval. A server

browser facilitates for access to the Analysis Server file system from ModelCenter

environment where the designer can view the models before using them. But this is

effective only when the designer has prior information about the files stored in the server.

But it just shows the files in that folder. It does not show what those files contain and

does not tell how to use those files in a design problem. There is no information system to

provide information about the usability of that component. Moreover if the files are not

saved in a proper file naming convention it would be difficult to identify the files which

need to be used again in a new design problem.

 26

modeFRONTIER - Not met

modeFRONTIER does not meet intelligent search and retrieval requirement.

There are no search techniques incorporated for the retrieval of components required in

design problem. The only way of retrieving is by storing the file in a particular folder and

opening it from the framework. modeFRONTIER does not provide any interface for

search and retrieval of components.

iSIGHT-FD-Partially met

iSIGHT-FD partially meet intelligent search and retrieval requirement. It does

provide description about the component after the components are opened. There are no

querying services for the retrieval of component stored in the file system. The library

feature provides a brief description about the component and also stores the version of the

component.

(5) Plug and play interface

ModelCenter - Fully met

ModelCenter work environment enables plug and play interface such as server

browser, where the user can pick/select components from Analysis Server and place them

into the work flow window.

modeFRONTIER -Fully met

modeFRONTIER enables plug and play interface by allowing the users to pick

the components ore nodes from the node library and place them into the work flow

window.

 27

iSIGHT-FD- Fully met

iSIGHT-FD’s interface provides efficient plug and play interface where the user

can select from a set of components, pick and place them into the work flow window

with the help of a design gateway. Drag and drop functionality is also available for the

published components to add them to the workflow

3.3 Suitable Framework for Research in Reuse and Reconfigurability

From the evaluation made ModelCenter is chosen for extending the information

management capability. The developments incorporated in ModelCenter in terms of

component sharing over the network by Analysis Server and interface to this server by

server browser makes ModelCenter a suitable framework to extend information

management capability. This is achieved by developing a structured repository and a file

information system to provide information about the components stored in the server file

system (see Figure 3.1). Phoenix integration’s CenterLink which is a powerful support

tool for grid computing can also be utilized for the design process execution. Java and

COM API’s provided in ModelCenter helps in creating an application to call the

ModelCenter and Analysis Server method externally. These API’s also helps to custom

write their interface programs specific for reuse and reconfiguration of MDO problems.

With these functionalities provided by Phoenix integration in ModelCenter, it gives us

sufficient opportunity to extend the information management capabilities and emphasize

on reuse and reconfiguration of design models to help the designer to efficiently

formulate the design problem.

 28

3.4 ModelCenter software and hardware configuration

The current software and hardware configuration in ModelCenter, Analysis

Server, and CenterLink is as shown in Figure 3.1. The (1) Analysis Server is a Java-

based software server which “publishes” available analysis models over the network. The

models are located on the (2) Server File System and are published using (A) Java-based

Wrapper technologies.

Figure 3.1: Current ModelCenter configuration

The (3) ModelCenter client is a process integration engine which utilizes models

from Analysis Server through a (B) protocol similar to HTTP. Multiple analysis models

can be accessed from multiple servers. Information about the models including: name,

author, date, and a brief description are available in ModelCenter (see Figure 3.2).

Server File System

Wrapper

Analysis Server

Java

Client

ModelCente
r

ModelCenter

Java

Local File system

HTTP

CenterLink
3

1

2

5

4

HTTP

B

A

C

ModelCenter
Clients

6

A

 29

Figure 3.2: Information describing analysis models available on Analysis Server

The Analysis Server and ModelCenter follow a client-server architecture that

enables distributed resourced to be utilized. Analysis applications are served from the

Analysis Server to the ModelCenter client, where the analysis models are integrated into

a design process. These design processes enable trade studies, optimization, and general

model integration to be performed. This is then saved as a project file on the (4) Local

file system of the ModelCenter client. Computationally expensive engineering design

problems can be solved more quickly by taking advantage of distributed resources.

CenterLink (5) is an environment to manage and distribute the job execution over several

(6) ModelCenter clients available over the network.

 30

3.5 Usage of analysis model in current ModelCenter – Analysis Server configuration

In the current ModelCenter – Analysis Server configuration, the plug-ins

available are limited for the direct integration of the analysis models using analysis

software. Models are wrapped with the help of file wrapper utility and stored in the

Analysis Server. The file wrapper is a text file with a .fileWrapper extension that contains

information about how to execute the analysis [20]. It provides instructions to generate an

input file, run analysis software in batch mode, and parse the result to an output file.

Figure 3.3: Sections of file wrapper

The header section

@ author:

@ version:

@ description:

The run command section

RunCommands

{

generate inFile

run “batch file name"

parse outFile

}

The Input file section

RowFieldInputFile inFile

{

templateFile:

initializationFile:

fileToGenerate:

variable:

}

The Output file section

RowFieldOutputFile outFile

{

fileToParse: output file name

setDelimiters " ="

KeyVar:

}

1

2

3

4

 31

The structure of the four main sections in the file wrapper provided by the

ModelCenter documentation is as shown in Figure 3.3. Section (1) is the header section

which includes creation details of the file wrapper such as author name, version and

description. Section (2) is the run command section which calls the batch file to run

analysis in batch mode. Section (3) is the input file section which contains the name of

the analysis file to be used and the corresponding input variable details. Section (4) is the

output file section which contains the name of the output file generated by the analysis

model along with the output variable details.

The steps involved in the creation of the file wrapper are as shown in the flow

chart in Figure 3.4. File wrapper creation is a 9 step process which involves main steps

such as identification of information associated with the analysis model, writing the four

sections of the file wrapper with proper syntax and saving the file wrapper in Analysis

Server. The information required to create the file wrapper are input and output variable

details; name of the output file generated by the analysis model; name of the batch file to

execute analysis in batch mode and the name of the input file to be generated by the

wrapper. This information has to be identified by the user creating the file wrapper which

required prior knowledge about the analysis models. It is also important to ensure that the

file wrapper, along with the corresponding batch file and analysis models should be

stored in the same folder in the Analysis Server for the file wrapper to be executed in

ModelCenter.

 32

Figure 3.4 : Flowchart to create a file wrapper

Identify the required analysis model to be

wrapped

Identify the associated analysis information required to

generate the file wrapper

Create a .fileWrapper file

Write the file wrapper commands section in .fileWrapper

Input variables – data types – row and field values

Output variables –data types – row and field values

Output file name generated by the analysis model

Name of the batch file to run ANSYS in batch mode

Name of the input file that is to be generated by the file wrapper

Run command section

Input file section

Output file section

Create a folder in Analysis Server file system

Copy the .fileWrapper into the folder

Ensure the batch file is saved in the fileWrapper folder

Retrieve the analysis model saved by the analyst

Store the copy of analysis model into the fileWrapper folder

1

2

3

4

5

6

7

8

9

 33

The ANSYS analysis model is executed by the file wrapper in a batch mode. This

requires the batch file to be created and saved in the file wrapper folder. The steps

involved in the creation of batch file are shown in the flowchart in Figure 3.5. Creation of

the batch file for the file wrapper is a 9 step process in which main steps such as

identification of the analysis software executable location and the writing of the batch

command with proper syntax.

Figure 3.5 : Flowchart for batch file creation

Identify the analysis software1

Identify the format of the batch file

Identify the location of the analysis software executable

Create a .bat file

Identify the analysis input file

Write the command in the .bat file with proper syntax

Log into the Analysis server

Copy and paste the .bat file into the respective fileWrapper folder in

the Analysis Server file system

Log off Analysis Server

2

3

4

5

6

7

8

9

 34

Thus in order to prepare analysis model for execution in ModelCenter it takes a

total of 18 steps (see Figure 3.6) , 9 steps for file wrapper creation and 9 steps for Batch

file creation. These 18 steps have to be carried out for each analysis model if it has to be

integrated and executed in ModelCenter.

Figure 3.6 : Overview of steps involved in preparing ANSYS analysis model for execution

3.6 Drawbacks of Current Configuration

The configuration detailed in the previous section enables designers and analysts

to share models over a distributed network, better utilize computer resources, and

integrate various design process intelligently. The file wrapper and the batch file creation

enables for the integration of analysis models in ModelCenter. However there are certain

drawbacks in this configuration. These drawbacks are listed below.

Analysis Model

Batch file

File wrapper
9 STEPS

9 STEPS

Analysis Server1

 35

 The designer formulating an MDO problem should have prior knowledge about

analysis component used in formulation. There is no structured repository to store the

information and provide this knowledge to the designer during formulation.

 Without a lengthy file naming convention or a brief description about the

components, it would be difficult for the designer to identify the right MDO

component to be reused.

 Database features available are limited. They only capture trade study details. They

do not capture information about components of the MDO problem, so that the

designer can decide which components need to be used to create his design problem.

 The manual creation of file wrapper and batch file are error prone and time

consuming. Without proper file wrapper and batch file syntax, the analysis model

cannot be used in ModelCenter.

 The information about a particular analysis model which is entered into the file

wrapper template and the batch file information entirely depends on the designer’s

prior knowledge and the familiarity with the analysis model. Without the prior

knowledge it would be very difficult and time consuming to get the information by

opening and looking into the analysis model.

3.7 Features to support reuse and reconfiguration of MDO problems

Structured repository: The primary function of a structured repository is to

capture and store the information generated such as design objectives, critical design

considerations and requirements, important design parameters, design constraints,

optimization technique used, results from previous runs, designer’s rationale, and

 36

decisions taken while formulating a design problem. The knowledge data generated from

a process is helpful for determining the purpose of a particular analysis code; the

optimization process methods used; the input and output data for the process; and

knowledge about the components available in the analysis code, including those used and

those which was not.

File information system: File information system is a subset in the structured

repository. The primary function of this file information system is to store the

information about components /files used in a MDO problem. It includes properties of a

file and also keeps track of the changes made to the components in a design problem.

Example of which include elements used in an analysis code, instances of various objects

created to formulate a design problem, optimization techniques and other components

used in a design process.

 37

CHAPTER FOUR

PROPOSED MODELCENTER – ANALYSIS SERVER CONFIGURATION AND

IMPLEMENTATION

The focus of this chapter is to provide design details of the proposed ModelCenter

and Analysis Server configuration (see Figure 4.1). The main components in the

configuration are (1) the structured repository, (2) the common file system and (3) Java

applications. The repository is implemented using a relational database. It provides a

structured information model to store and organize the MDO information. The common

file system enables shared access and provides a structure to store analysis models and

project files. Java applications are developed to complement the benefits offered by the

structure repository and the common file system. Together the structured repository and

the common file system enhance the information management capability in ModelCenter

and Analysis Server configuration, by capturing Meta information about the MDO files

organized and stored in the common file system. The subsequent sections in this chapter

are organized to discuss the details of structured repository design; the structure of the

common file system; and the development of java applications.

 38

Figure 4.1 : Proposed ModelCenter - Analysis Server configuration

4.1 Structured repository

The structured repository (see Figure 4.2) is a relational database which stores

information about analysis models, input and output variables, MDO projects,

optimization techniques used, file locations, and file creation. In order to manage, store

and retrieve information from the database, the MYSQL database management system is

utilized in this research. The design of the repository is explained in details in the

subsequent sections.

The main functionalities of the structured repository are listed below:

 Provide information model to store MDO information

 Manage the storing and sharing of MDO information

Common File System

Structured Repository

Analysis Server

HTTP

Client

ModelCente
r

ModelCenter

3
1

2

B

Reconfiguration
application

Wrapper
generator

CenterLink5

C

ModelCenter
Clients

6

HTTP

Java A

Java A

Java

A

Java A

Java A

 39

 Allow users to update MDO information

 Allow users to retrieve MDO information

Figure 4.2 : Structured repository in proposed ModelCenter-Analysis Server configuration

4.6.1 Design of the structured repository

The design and development of the structured repository involves four phases as

shown in Figure 4.3. Phase 1 is the conceptual database design, Phase 2 is the

Transaction design, Phase 3 is the data model mapping and Phase 4 is the transaction

implementation details. Phase 2 is executed in parallel with Phase 1 in order to include

the characteristics of the transactions in the conceptual database design.

Common File System

Structured Repository

Analysis Server

HTTP

Client

ModelCente
r

ModelCenter

3
1

2

B

Reconfiguration
application

Wrapper
generator

CenterLink5

C

ModelCenter
Clients

6

HTTP

Java A

Java A

Java

A

Java A

Java A

 40

Figure 4.3: Phases in structured repository development

PHASE 1: The conceptual database design phase includes conceptual database

schema and identification of basic components of the schema. The conceptual database

schema provides a high level overview of the information model. The three basic

components of the schema are entity types, attributes and relationship types provide the

structure to store the MDO information. Unified Modeling Language (UML) class

diagrams are utilized to provide conceptual schema, which are similar to the ER diagrams

in the traditional database design. The UML convention followed in this development is

according to the convention followed in [5]. The convention is to list the class name in

boldface and center the name in the box. The UML class is a box consisting of three

•Query transactions

•Data Modification Language

•Conceptual database schema

•Entity types

•Attributes

•Relationships

•Functional characteristics of

database transactions

•Information associated

•Relationship schema

•Data Definition Language

Conceptual database design
Transaction Design

Data model Mapping

1
2

3

Transactions4

 41

sections. The first section is for the class name (entity name), second for the attributes of

the class and third section is for the operations that can be performed by the class.

The UML class diagram shown in Figure 4.4 represents the information model of

the repository to store and organize the MDO information. MDO projects are created in

the MDO framework and stored as project files. MDO projects are uniquely identified the

project name and the file name. MDO project integrates analysis models and optimizers

to find the optimum value for the objective. Analysis models are created using many

analysis software. Analysis models which cannot be directly integrated into the MDO

framework utilize wrappers for integration. Analysis models, wrappers and MDO

projects are created by a person and stored in a particular location in the server. The

person belongs to a particular department and is uniquely identified by name and

position. MDO problems are formulated and implemented in MDO projects to find the

optimum value of the objective. MDO problems formulated contain objectives,

constraints, design variables and design parameters. Objectives and constraints are the

associated output variables of an analysis model. Design variables and design parameters

are the associated input variables of an analysis model.

 42

Figure 4.4: UML Class diagram

Class description: Each class in the UML diagram is described and its associated

attributes are listed in Table 4.1. The class name in the UML classes is mapped to table

name in the database.

+perform design calculation()

+provide design problem composition()

-problem_formulation

-objective_function

-objective_direction

-design_variables

-constraints

-design_parameters

MDOProblem

+provide variables details ()

+provide variable association ()

-variable name

-variable type

-data type

-analysis model name

Variables

+retrieve project()

+retrieve analysis model()

+create new projects()

+store projects()

-name

-department

-position

Designer

+calculate stress()

+calculate deflection()

+calculate cost()

+analysis model name

+Afile name

+analysis type

+input file

+output file

+software name

AnalysisModel

+provide user details()

+decide view of database()

+create wrapper()

+create batch file()

-person name

-department

-user ID

Person

+creates analysis model()

+stores analysis model()

-name

-department

-position

Analyst

+integrate analysis code ()

+integrate otimizer()

+perform design experimentation()

-project name

-project_file name

-problem_formulation

-optimizer_component

-number_of_analysis_model

MDOProject

+provide details of the software()

-software name

-executable URL

-version

-product name

Software

+provide file creation details()

+provide file location()

-file name

-user ID

-created on

-URL

Creation

+provide wrapper details()

-wrapper file name

-analysis model name

-project name

-batch file name

-description

Wrapper

1..*

1..*

1
1..*

1

*

1

0..*

1
0..*

1

1..*

1
1..*

1 1..*

11

1

1..*

-DP name

-problem formulation

-parameter value

Design Parameter
-DV name

-problem formulation

-lower bound

-upper bound

DesignVariable

 43

Table 4.1: Class description

Class Name Description Attributes

Analysis

Model

Describes the analysis model

information. It also provides the analysis

software name used to create the

analysis model along with the input and

output file required for the model

 File name

 Software used

 Analysis type

 Input file

 Output file

Software Software class supports the analysis

model class by storing the directory

information of the executable and the

latest available version of the software

 Software name

 Executable URL

 Version

 Output file

Variables Variable class stores the variable

information corresponding to an

analysis model. Input, output and data

type for a particular variable is also

stored

 Variable name

 Analysis model name

 Variable type

 Data type

Wrapper Wrapper class connects the MDO

project class and the analysis model

class if a wrapper is used for integrating

analysis model in the project. It also

provide the batch file information

 Wrapper name

 Analysis model name

 Project name

 Batch file name

MDO Project

MDO project class stores information

about the main components

(optimization and Analysis model) used

in a particular project file

 Project name

 File name

 Optimization name

 Analysis model name

 Number of optimizer

 Number of analysis model

MDO

Problem

MDO Problem describes the problem

formulation details in a particular MDO

project

 Project name

 Objective function

 Design variables

 Constraints

Creation

Creation class provides the file creation

and file location details

 File name

 Person name

 Created on

 Version

 URL

Person Person class supports the creation class

by providing the user information. It is a

super class of Designer class and

Analyst class.

 Fname, Lname

 UserID

 Department

 Position

 44

Attribute description: The description of the attributes and their data types are

listed in Table 4.2. Attributes and data types provide the characteristics for the entity

type. The data types used here are the SQL data types. The attributes in the UML classes

can be mapped to column name in the database.

Table 4.2: Attribute description

Attribute name Data type Description

Software_name VARCHAR(n) Name of the analysis software

Version FLOAT Version of the software available

Product_name VARCHAR(n) Product name of the analysis software

Executable_URL VARCHAR(n)
Directory of the analysis software

executable

Fname VARCHAR(n) First name of the person

Lname VARCHAR(n) Last name of the person

UserID VARCHAR(n) ID of the person

Department VARCHAR(n) Name of the department the user belongs

Position VARCHAR(n) Position name of the user in a department

Analysis_model_name VARCHAR(n) Name of the analysis model

AFile_name VARCHAR(n) Name of the analysis file

Analysis_type VARCHAR(n) Type of analysis used in analysis model

Input_file VARCHAR(n) Input file for the analysis model

Output_file VARCHAR(n) Output file for the analysis model

Variable_name VARCHAR(n) Name of the variable in an analysis model

Variable_type VARCHAR(n) Type of a particular variable (Input/output)

Data_type VARCHAR(n)
Data type of the variable in an analysis

model

Problem_formulation VARCHAR(n) Name of the problem formulation

Objective_function TEXT
Objective function definition for the design

problem

Design_variable TEXT
Name of the design variables for the design

problem

Constraints TEXT Constraints for the design problem

Project_name VARCHAR(n) Name of the MDO project

PFile_name VARCHAR(n) Name of the MDO project file

Optimization_component
VARCHAR(n) Name of the optimization component used

in the MDO project

 45

Wrapper_File_name
VARCHAR(n) Name of the wrapper along with its file

extension

Batch_file_name VARCHAR(n) Name of the batch file user in the wrapper

Description VARCHAR(n) Brief description of the wrapper

DV_name VARCHAR(n) Name of the design variable

Lower bound FLOAT Lower limit value for a design variable

Upper bound FLOAT Upper limit value for a design variable

Created_on DATETIME Date and time of the creation

URL TEXT Location of the file

CVariable_name VARCHAR(n) Name of the constraint variable

Relationship description: The relationship between the classes are identified and

described in Table 4.3. The relationship column specifies the name of two tables of the

repository whose relationship is being described. Association column provides the type of

association between the tables specified in the relationship column i.e. Many to Many

(M: M), One to Many (1: M) and One to One (1:1). The description column describes in

detail the relationship shared between the two specified tables.

 46

Table 4.3: Relationship description

Relationship Associations Description

MDO PROJECT – ANALYSIS

MODEL

M:M Many MDO projects can have

many analysis models, one

MDO Projects can have many

analysis models and many

MDO projects can have one

analysis model

SOFTWARE – ANALYSIS

MODEL

1:M One software creates many

analysis model

ANALYSIS MODEL –

WRAPPER

1:M An analysis model can have

many wrappers

ANALYSIS MODEL –

CREATION

1:M An analysis model can have one

or many creation data

ANALYSIS MODEL –

VARIABLES

1:M An analysis model can have

many variables

MDO PROJECT – CREATION 1:M An MDO project can have one

or many creation data

WRAPPER – CREATION 1:M A wrapper can have many

creation

MDO PROJECT – WRAPPER 1:M An MDO project can have

many wrappers and an MDO

project can have no wrappers

PERSON – CREATION 1:M One person can create many

files

MDO PROJECT - MDO

PROBLEM

1:1 An MDO project can have one

MDO problem

PHASE 2: The transaction design phase provides the functional characteristics of

transactions carried out on the database and the information associated with it.

Identifying the functional characteristics of the repository transaction is important to

conceptualize the database schema. The functional characteristics and the information

associated are tabulated in Table 4.4.

 47

Table 4.4: Functional characteristics of the transactions

Functional characteristic Associated information

Provide details of the project file Analysis model used

 Optimization used

Retrieve analysis model information Analysis software used

 Analysis type: structural, thermal etc.

 Project the analysis model is used in

 Input file for the analysis model

 Output file for the analysis model

Retrieve variable information Input variables in the analysis model

 Output variables in the analysis

model

Retrieve optimization information Objective direction: max or min

 Objective parameter: target

 Constraints: stress constrain,

deflection constrain etc.

 Variable upper bound and lower

bound

Retrieve file location information Analysis file name and location

 Project file name and location

Retrieve the analysis software information Name of the analysis software

 Software version

 URL of the software (depending on

the version)

Retrieve wrapper information Name of the wrapper file

 Name of the analysis model it wraps

 Name of the project the wrapper is

used for

Update wrapper information Name of the wrapper file

 Name of the analysis model it wraps

PHASE 3: The data model mapping involves developing a relational schema and

providing the data definition language. The relationship schema provides the relationship

mapping between the tables of the database along with the key constraints. The primary

keys are identified and mapped as shown in Figure 4.5.

 48

Figure 4.5: Relationship schema

The data definition language provides a set of statements to create the database.

MySQL data definition statements are as shown in Table 4.5.

Table 4.5: MySQL data definition statements

CREATE DATABASE Structured_Repository;

USE Structured_Repository

CREATE TABLE SOFTWARE

(Software_name VARCHAR (45) NOT NULL,

 Version FLOAT NOT NULL,

 Product_name VARCHAR (45),

Executable_URL VARCHAR (60),

PRIMARY KEY (Software_name)

);

CREATE TABLE PERSON

(Fname VARCHAR (45) NOT NULL,

Lname VARCHAR (45) NOT NULL,

User_ID VARCHAR(11),

Department VARCHAR (45) NOT NULL,

Position VARCHAR(45),

PRIMARY KEY (User_ID)

 49

);

CREATE TABLE ANALYSISMODEL

(Analysis_model_name VARCHAR (80) NOT NULL,

 AFile_name VARCHAR (45) NOT NULL,

 Analysis_type VARCHAR (45) NOT NULL,

 Input_file VARCHAR (45),

 Output_file VARCHAR (45),

 Software_name VARCHAR (45),

PRIMARY KEY (Analysis_model_name),

FOREIGN KEY (Software_name) REFERENCES SOFTWARE (Software_name)

);

CREATE TABLE VARIABLES

(Variable_name VARCHAR (45) NOT NULL,

 Variable_type VARCHAR (45) NOT NULL,

 Data_type VARCHAR (45),

 Analysis_model_name VARCHAR (45) NOT NULL,

PRIMARY KEY (Variable_name),

FOREIGN KEY (Analysis_model_name) REFERENCES ANALYSISMODEL

(Analysis_model_name)

);

CREATE TABLE MDOPROBLEM

(Problem_formulation VARCHAR (80) NOT NULL,

 Objective_function TEXT(100),

 Design_variable TEXT(100),

 Constraints TEXT(100),

PRIMARY KEY (Problem_formulation)

);

CREATE TABLE MDOPROJECT

(Project_name VARCHAR (80) NOT NULL,

 PFile_name VARCHAR (80) NOT NULL,

Problem_formulation VARCHAR (80) NOT NULL,

 Analysis_model_name VARCHAR (45),

Optimization_component VARCHAR (45),

PRIMARY KEY (Project_name,PFile_name),

FOREIGN KEY (Analysis_model_name) REFERENCES ANALYSISMODEL

(Analysis_model_name),

FOREIGN KEY (Problem_formulation) REFERENCES MDOPROBLEM

(Problem_formulation)

);

 50

CREATE TABLE WRAPPER

(Wrapper_File_name VARCHAR (45) NOT NULL,

 Analysis_model_name VARCHAR (45) NOT NULL,

 Project_name VARCHAR (45) NOT NULL,

 Batch_file_name VARCHAR (45) ,

Description TEXT(100),

PRIMARY KEY (Wrapper_File_name),

FOREIGN KEY (Analysis_model_name) REFERENCES ANALYSISMODEL

(Analysis_model_name),

FOREIGN KEY (Project_name) REFERENCES MDOPROJECT (Project_name)

);

CREATE TABLE DESIGNVARIABLE

(DV_name VARCHAR (45) NOT NULL,

Problem_formulation VARCHAR (80) NOT NULL,

 Lower_bound FLOAT,

Upper_bound FLOAT,

PRIMARY KEY (DV_name, Problem_formulation),

FOREIGN KEY (Problem_formulation) REFERENCES MDOPROBLEM

(Problem_formulation)

);

CREATE TABLE CREATION

(File_name VARCHAR (80) NOT NULL,

 User_ID VARCHAR (11),

 Created_on DATETIME,

 URL TEXT(100),

PRIMARY KEY (File_name),

FOREIGN KEY (User_ID) REFERENCES PERSON (User_ID)

);

CREATE TABLE CONSTRAINT

(CVariable_name VARCHAR (45) NOT NULL,

Problem_formulation VARCHAR (80),

 Lower_bound FLOAT,

Upper_bound FLOAT,

PRIMARY KEY (CVariable_name),

FOREIGN KEY (Problem_formulation) REFERENCES MDOPROBLEM

(Problem_formulation)

);

 51

PHASE 4: The database transactions phase includes details of the transactions

carried out on the database. The transactions for the database along with the data

modification statements are listed below.

 Transaction to get input variable and output variable details for an analysis model

DATABASE structured_repository

BEGIN WORK

SELECT Variable_name,Data_type

FROM variables

WHERE Analysis_model_name = "name of the analysis model"

AND Variable_type="input"

SELECT Variable_name,Data_type

FROM variables

WHERE Analysis_model_name = "name of the analysis model"

AND Variable_type=\"output\”

COMMIT WORK

 Transaction to get the count of number of input variable in an analysis model

DATABASE structured_repository

BEGIN WORK

SELECT COUNT(*) AS rowcount

FROM variables

WHERE Analysis_model_name = “name of the analysis model”

AND Variable_type= "input”

COMMIT WORK

 Transaction to get the count of number of output variable in an analysis model

DATABASE structured_repository

BEGIN WORK

SELECT COUNT(*) AS rowcount

FROM variables

WHERE Analysis_model_name = “name of the analysis model”

AND Variable_type= "output"

COMMIT WORK

 52

 Transaction to get output file name generated by an analysis model

DATABASE structured_repository

BEGIN WORK

SELECT Output_file

FROM analysismodel

WHERE Analysis_model_name = “name of the analysis model”

COMMIT WORK

 Transaction to get the name of the analysis software used to create an analysis model

DATABASE structured_repository

BEGIN WORK

SELECT Software_name

FROM analysismodel

WHERE Analysis_model_name= “name of the analysis model”

COMMIT WORK

 Transaction to get the location of the analysis software executable for an analysis

software

DATABASE structured_repository

BEGIN WORK

SELECT Executable_URL

FROM software

WHERE software_name = “name of the software”

COMMIT WORK

 Transaction to get the list of analysis models available

DATABASE structured_repository

BEGIN WORK

SELECT Analysis_model_name

FROM Analysismodels

COMMIT WORK

 53

4.2 Common file system

The goal of the common file system as shown in Figure 4.6 is to store files in an

organized folder structure and to provide shared access to the analysis models and the

ModelCenter project files. It is to facilitate for the distribution of files over the network.

An organized structure of the common file system as shown in Figure 4.5 enables for

intelligent search and retrieval of the files. Files are grouped into project folders, analysis

folders and file wrapper folders and are shared with the help of file information system

which is a subset of the repository.

The main functionalities of the common file system are to:

 Provide structure to store files

 Allow users to share file

 Store analysis models

 Store ModelCenter projects

 Store file wrapper and batch files

 54

Figure 4.6: Common file system in proposed configuration

In order to enable for efficient search and retrieval of files a proper file and folder

naming convention is followed in the common file system. The details of the naming

convention are as follows:

 Name of the analysis model files – analysis_model_ name + file extension

 Name of the project file - project_name + file extension

 Name of the file wrapper - analysis_model_ name + wrapper file extension

 Name of the batch file analysis_model_ name + batch file extension

Common File System

Structured Repository

Analysis Server

HTTP

Client

ModelCente
r

ModelCenter

3
1

2

B

Reconfiguration
application

Wrapper
generator

CenterLink5

C

ModelCenter
Clients

6

HTTP

Java A

Java A

Java

A

Java A

Java A

 55

Figure 4.7: File structure in common file system

Analysis model folder: This folder contains all the analysis model files that need

to be shared. The analysis models are created using several analysis software such as

ANSYS, Matlab and FORTRAN are stored in this folder. Once the files are stored in this

folder the location details have to be updated into the creation table and the software

details are updated in the software table in the repository.

ModelCenter projects folder: This folder contains the project files created in

ModelCenter. This folder stores only ModelCenter specific projects to provide shared

access to the project files. Once the project files are stored in this folder the creation

details have to be updated into the creation table in the repository

File wrapper folder: This folder contains the file wrapper and the corresponding

batch file. The file wrapper and the batch file are stored in their respective folder. Once

the file wrapper and batch files are stored in this folder the location information is

updated in the creation table and file wrapper information is updated in the wrapper table

in the structured repository.

Common File System

Analysis models

ModelCenter projects

File wrapper

Analysis model 1

Analysis model 2

 56

4.3 Methods for accessing structured repository and common file system

Structured repository is accessed by the Java application using a MYSQL – JDBC

DRIVER. This driver establishes the connection to the repository and parse the

connection session to the Java application to perform queries on the repository.

Common file system is accessed by the Java application with the help of the file

system URL and stored the files in the folder structure of the common file system.

4.4 Java Applications

To demonstrate the usage of the structured repository and the common file

system, two Java applications are developed as shown in Figure 4.8. This Java

application is compiled and built using NetBeans 5.5.1 IDE. The details of the Java

applications developed are discussed in this section. The sections first describe the

purpose for which the application was developed, and then the development of the

application with the help of pseudo code. These Java applications enable intelligent

search and retrieval of the MDO files and automate the repeatable processes such as file

wrapper and batch file creation.

 57

Figure 4.8 : Java applications in proposed configuration

4.6.2 Wrapper generator application: Batch file and file wrapper automation

The wrapper generator application is designed and developed to automate the

repeatable and manual process of creating the file wrapper and the batch file. It also

demonstrates how the information from the structured repository can be effectively

utilized to reduce the user interactions in the creation, thereby save time and avoid errors

which might occur during the manual generation. The details of the Wrapper generator

application are discussed in the subsequent sections.

The main goal of this application is to create a file wrapper and its corresponding

batch file with minimal user interaction. The main functionalities of this application are:

(1) Connect to the repository for update and retrieval of information

Common File System

Structured Repository

Analysis Server

HTTP

Client

ModelCente
r

ModelCenter

3
1

2

B

Reconfiguration
application

Wrapper
generator

CenterLink5

C

ModelCenter
Clients

6

HTTP

Java A

Java A

Java

A

Java A

Java A

 58

(2) Retrieve file wrapper and batch file specific information from the repository

(3) Create file wrapper and batch files

(4) Update file wrapper and batch file specific information into the repository

(5) Connect to the common file system to store files

(6) Store the file wrapper and batch file in the common file system structure

(7) Prevent duplication of file wrapper files and batch files

Application overview

In order to provide a design overview of the application two types of overviews

are presented. The first is a black box overview as shown in Figure 4.9, which explains

the user and application interaction. The second is the structural overview as shown in

Figure 4.10, which explains the internal structure of the application.

Black box overview: In this overview, the application is viewed as a black box

which takes the analysis model name as the input from the user and creates the file

wrapper and batch files such that it can be accessed through the server browser in

ModelCenter.

Figure 4.9: Black box overview of wrapper generator application

Analysis

model name

Access file wrapper

through server browser

in ModelCenter

Wrapper generator

application

 59

Structural overview: In this overview, the internal structure of the application is

provided. The application has a main class which calls in two other classes i.e. a file

wrapper generator class and a batch file generator class. These two classes in turn call the

database connector class. In the main class, the user entered analysis model name is fed

into both the file wrapper generator class and the batch file generator class. The file

wrapper generator class connects to the database with the help of database connecter

class, queries for the information to create a file wrapper, creates the file wrapper and

updated the database with the new creation details. The batch file generator class

connects to the database with the help of database connector class, retrieves the

information to create a batch file, created the batch file and updates the batch file

information into the database.

Figure 4.10: Structural overview of wrapper generator application

Wrapper generator application

Main Class

File wrapper

generator class

Batch file

generator class

Database

connector class

 60

Application programming details

A pseudo code of the wrapper generator application is shown in Table 4.5. The

pseudo code provides a detailed overview of the program to automate the file wrapper

and the batch file. The complete Wrapper generator application can be seen in Appendix

B. The information required for the file wrapper creation is obtained from Analysis

model table; variables table and the software table in the database (see Figure 4.2). The

user selects the analysis model for which a file wrapper needs to be created in the main

class. The file wrapper generator class takes this analysis model name as input from the

main class. Connection to the database is established and query for the wrapper file name

in the wrapper table of the database is executed. The program then checks to see if the

query returns any row value. If it does return a value then the program stop and prompt

the user that a file wrapper already exists. If not the program continues. It creates the file

wrapper in file wrapper folder of the common file system under. Finally the file wrapper

generator class updates the wrapper information in the wrapper table and returns to the

main program which then calls the batch file generator.

After the file wrapper generator class is executed, the main class executes the

batch file generator class. The batch file generator takes the analysis model name from

the main class as input and queries the database for the analysis software name,

executable location and version from the software table. A batch file is created in the

corresponding file wrapper folder and the command line is written into the batch file.

 61

Table 4.6: Pseudo code for wrapper generator application

----------- WRAPPER GENERATOR APPLICATION MAIN CLASS ---------------

// Get user input for analysis model name

/*User input = analysis model name */

// Generate wrapper

/*Call the file wrapper generator class*/

// Generate batch file

 /*Call the batch file generator class*/

END CLASS

-------------------------- FILE WRAPPER GENERATOR CLASS --------------------------

//Connect to the database

/*Call the connect to database class*/

Query = query for wrapper file name from the selected analysis model;

/*Check if the wrapper already exits

IF(Query returns a row)

Print file wrapper already exists

ELSE

try

//Query using SQL to retrieve information from the database

Query1 = query for input variable name and its data type from the selected

analysis model;

Query2 = query for output variable name and its data type from the selected

analysis model;

Query3 = query to count number of input variables in the selected analysis model;

Query4 = query to count number of output variables in the selected analysis

model;

Query5 = query for output file name of the selected analysis model;

Query6 = query to get the file name of the analysis model;

Query7 = query to get analysis software name used to create analysis model;

Query8 = query to get the location of the analysis software executable;

// Store all the result from the queries their respective result set

Result Set1= statement from query 1

Result Set2= statement from query 2

Result Set3= statement from query 3

 62

Result Set4= statement from query 4

Result Set5= statement from query 5

Result Set6= statement from query 6

Result Set7= statement from query 7

Result Set8= statement from query 8

// Create a folder and file wrapper file in the common file system

SET parent directory path = common file system URL;

CREATE folder = name of the user selected analysis model;

APPEND the folder name to the parent directory path;

CREATE File Wrapper file in the APPENDED directory path;

// Write the file wrapper sections into the created file wrapper file

SET FilewrapperName = selected analysis model name + .fileWrapper;

SET BatchFileName = selected analysis model name + .bat;

SET fileGenerateName = selected analysis model name + .in;

/*Header section commands*/

@author: Santosh Hiriyannaiah

@version: Trial

@description: File wrapper

/*File wrapper Run section commands */

RunCommands

 {

 generate inputFile

run = “ BatchFileName”

parse outputFile

}

/*File wrapper RowFieldInputFile Section commands */

{

templateFile: String from result set of query 6

fileToGenerate: fileGenerateName

 markAsBeginning “Input Variables”

WHILE (there exists next line in the result set 1)

Variable : Variable name from result set + data type from result set + Row

value + 3

 j=j+1;

END WHILE

}

/*File wrapper RowFieldOutputFile Section commands */

RowFieldOutputFile outputFile

 63

{

fileToParse: String from result set of query 5

setDelimiters “= “

WHILE (there exists next line in the result set 2)

keyvar: Variable name from result set + data type from result set

END WHILE

}

/*Close writing to file wrapper*/

// Update database

END CLASS

------------------------- BATCH FILE GENERATOR CLASS ------------------------------

//Connect to the database

/*Call the connect to database class*/

Query = query for wrapper file name from the selected analysis model;

// Create a folder and file wrapper file in the common file system

SET parent directory path = common file system URL;

CREATE folder = name of the user selected analysis model;

APPEND the folder name to the parent directory path;

/*Check if the batch file exists*/

IF (it exists)

Delete the file

ELSE

Try

CREATE batch file in the APPENDED directory path;

// Write the batch file command line into the created batch file

WRITE <Executable_URL>+ “-b” +"-p"+ProductName+" -i <input file> + “-o”

<OutputFile>

Close the batchfile

Return batch file result to the main class

// Update database

END CLASS

------------------------------ CONNECT TO DATABASE CLASS ----------------------------

// Register the mysql – jdbc driver

// Establish connection with the database

Connect to the database named structuredrepository

Log in to the database providing user and password information

Return the connection session details

END CLASS

 64

4.6.3 Reconfiguration application: Reconfiguration of ModelCenter projects

The Reconfiguration application is designed and developed to provide details of

the ModelCenter project file and to demonstrate reconfiguration of ModelCenter projects.

This application focuses on providing details of the project file location, details of

analysis model used in the project, optimizer details and the problem formulation details.

The development of the Reconfiguration application is discussed in the following

sections.

The main functionalities of this application are

(1) Provide available analysis model information

(2) Provide information of the project file components

(3) Reconfigure analysis components in ModelCenter projects

Application overview

There are two types of design overview presented in this section are the black box

overview and the structural overview. The black box overview explains the user and

application interaction and the structural overview provides the structure of the Java

application 2.

Black box overview: The black box overview is as shown in Figure 4.11.First the

user first enters the project file name to the application and the application provides all

the information about the project available in the repository. Then the user enters the new

analysis model name to be reconfigured into the project file and the name of the new

ModelCenter project for the application to reconfigure and save the new project.

 65

Figure 4.11: Black box overview of reconfiguration application

Structural overview: The structural overview is as shown in Figure 4.12. it

provides the internal structure of the application. This application had a main class and

three other classes which the main class calls. The main class first prompts the user to

enter project file name for which the user requires information. taking the user input it

then calls for the project information and analysis model information classes. Finally the

main class once again prompts the user to enter the analysis model name and the new

project name and then calls reconfiguration class to reconfigure the project.

ModelCenter

Project name

Provide details of the

ModelCenter project

Provide details of the

analysis models

available
Reconfiguration

application

Analysis model name

to be reconfigured

Reconfigure

ModelCenter project

Save as ModelCenter

Project name

 66

Figure 4.12: Structural overview of wrapper generator application

Application programming details

A pseudo code of the Reconfiguration application is shown in Table 4.6. The

pseudo code provides a detailed overview of the program to provide project file specific

information to the user and to reconfigure the MDO problem.

Table 4.7: Pseudo code for reconfiguration application

 ------------------ RECONFIGURATION APPLICATION MAIN CLASS --------------

// Get user input for project file name

/*User input = project file name */

// Provide project specific information

/*Call the file project information class*/

// Provide available analysis model information

 /*Call the analysis information class*/

// Get user input for reconfiguration

Reconfiguration application

Main Class

Project

Information

Reconfiguration

Database

connector

Analysis

Information

 67

/*User input = analysis model name */

/*User input = new project file name */

END CLASS

------------------------ PROJECT INFORMATION CLASS -----------------------------

//Connect to the database

/*Call the connect to database class*/

//Query using SQL to retrieve information from the database

Query1 = query the MDO project class for project details

Query2 = query the MDO project class for project file location

Query3 = query the problem formulation class for formulation details

Query4 = query the wrapper class for wrapper information

// Store all the result from the queries their respective result set

Result Set1= statement from query 1

Result Set2= statement from query 2

Result Set3= statement from query 3

Result Set4= statement from query 4

// Print out the queried information to display to the user

END CLASS

-------------------- ANALYSIS MODEL INFORMATION CLASS -------------------

//Connect to the database

/*Call the connect to database class*/

//Query using SQL to retrieve information from the database

Query1 = query the analysis model class for available analysis model names

// Store all the result from the queries their respective result set

Result Set1= statement from query 1

// Print out the queried information to display to the user

END CLASS

------------------------- RECONFIGURATION CLASS ----------------------------

//Create a new model center session

/*Load the project file selected */

/*remove the analysis model component */

/*Add the selected analysis model component*/

/*Save the project file as specified by the user*/

//Close model center session

Return the successful creation string

// Update database

END CLASS

 68

------------------------- CONNECTION CLASS ----------------------------

// Register the mysql – jdbc driver

// Establish connection with the database

Connect to the database named structured_repository

Log in to the database providing user and password information

Return the connection session details

END CLASS

4.5 Benefits of the proposed configuration

The structured repository, common file system and the Java application together

provide an efficient information management system. It enables efficient database

management, intelligent search and retrieval of MDO components and enhances reuse

and reconfiguration capabilities of ModelCenter framework.

Benefit 1: Structured repository along with common file system enables

intelligent search of the project files and analysis models. Structured repository along

with Java applications enable efficient retrieval system. Design project and analysis

models can be queried and selected using a structure repository and Java applications.

Benefit 2: The Common file system provides a centralized location for distributed

design. Analysts can store analysis models and projects files into their respective folders

and update the information in the repository.

Benefit 3: The Structured Repository enables queries to be performed based on

problem information such as design objectives, critical design considerations and

requirements, important design parameters, design constraints, optimization technique

used, results from previous runs, and designer’s rationale.

 69

CHAPTER FIVE

EXAMPLE PROBLEM AND DATABASE IMPLENTATION

In order to demonstrate and test the usage of the proposed ModelCenter –

Analysis Server configuration an example walkway beam structure optimization problem

taken. The focus of this chapter is to provide details this example problem, extract the

information and to populate the structured repository with the extracted information such

that the example problem can be utilized during testing and demonstration. The

implementation of the example problem in ModelCenter along with the necessary

preparations is also discussed in the following sections.

5.1 Example problem: Analysis and optimization of the beam structure supporting

walkways

The walkway platforms provide access between upper floors in multistoried

buildings. The walkway platforms are supported by walkway structures which consist of

number of beams and columns. A cross section of this beam structure with three walkway

platforms one above the other is considered in this example as shown in Figure 5.1. The

structure is designed to withstand the load of the concrete platform as well as the load of

the people. In this example problem cantilever beams are used to support the walkway.

The main objective in this example problem is to minimize the mass of the beam

structure and to minimize the deflection in the walkway structure. This is an example of

multi-objective analysis and optimization. While the optimization problem formulation

remains the same for his example, the implementation is in two folds. First the analysis

 70

model is generated for a rectangular cross sectional beam and is implemented in

ModelCenter. Second the analysis model is generated for an I cross sectional beam. In

this chapter since the focus is on the implementation of this example in database, only the

details of the information extraction and implementation is discussed. The assumptions

made and problem formulation is specified below.

Figure 5.1 Walkway structure setup

Assumptions

 The weight of the concrete is neglected while considering the load.

 Average human weight of 85Kgs is considered and is taken as force acting on the

beam by multiplying it with gravitational constant.

 Only two persons can walk on the walkway so that both of them are 1 meter from

the ends.

 71

 Length of the beam is assumed to be equal to the width of the walkway.

 Only a part of the walkway is taken into consideration for analysis

 Length of the beam and the vertical distance between the beams are assumed to be

3 meters.

 Material selected is same for all the elements in the structure.

Mathematical formulation

Minimize: (mass of the beam) and (deflection of the beam)

Subjected to: Stress constrain max imum allowable

Where,

Z = (Density * Length* Width * height) = * Li* Wi * Hi

Design Parameters

 = Density

Li = Length of the walkway

Design variables

Wi = width of the cross-section of the beam (number of beams i = 1, 2, 3)

Hi = height of the cross-section of the beam (number of beams i = 1, 2, 3)

Rj= radius of the support cable (number of links j = 1, 2)

Bounds

Minimum width <= Wi <= Maximum width

Minimum Height<= Hi <= Maximum height

 72

6.2.1 Preparing ANSYS analysis model for ModelCenter integration

ANSYS is the analysis software used in this example to carry out the analysis.

ANSYS provides a set of APDL commands to make the analysis reusable. The set of

APDL commands along with the ANSYS commands are referred to as ANSYS analysis

models in this research. Since ModelCenter currently does not support direct integration

of ANSYS analysis models, the model needs to be modified and prepared for the

integration. As the value of the input design variables keeps changing per run in

ModelCenter, the design variables and other depending variables have to be defined and

named. While the optimization problem formulation remains the same for his example,

the implementation is in two folds. First the analysis model is generated for a rectangular

cross sectional beam and is implemented in ModelCenter. Second the analysis model is

generated for an I cross sectional beam. I-beam analysis is later implemented in

ModelCenter during the testing in chapter six to demonstrate reconfiguration capability

of the proposed configuration. Both rectangular beam analysis and I-beam analysis

models have to be prepared modified and prepared for the ModelCenter integration. The

details of this modification are discussed below.

A snapshot of the modification in the analysis model is shown in Figure 5.2 and

Figure 5.3. These Figures includes APDL codes up to the preprocessing stage of the

analysis model and has been simplified for explanation purpose. A complete ANSYS

analysis model can be seen in Appendix A. The modification done is highlighted in the

box. Input variables are defined and are highlighted as box 1. These input variables are

used in calculating the areas and moments and highlighted in box 2. The variable named

 73

beam length is parsed into the command line while defining the key points and is

highlighted in box 3. Finally the input variables and the calculating variables are parsed

while defining the real constants. It can also be seen from the figure that before the start

of the input variables it has to be commented as “! Input variables” as it is required by the

file wrapper.

Figure 5.2: Modification in rectangular beam analysis model

Rectangular beam analysis model

! Start model setup

!Input Variables

beam_length = 1.0

beam_width_1 = 1.0

beam_width_2 = 1.0

beam_width_3 = 1.0

beam_height_1 = 1.0

beam_height_2 = 1.0

beam_height_3 = 1.0

link_radius_1 = 0.1

link_radius_2 = 0.1

beam_area_1 = beam_width_1*beam_height_1

beam_area_2 = beam_width_2*beam_height_2

beam_area_3 = beam_width_3*beam_height_3

beam_moa_1 = (1/12)*beam_width_1*beam_height_1**3

beam_moa_2 = (1/12)*beam_width_2*beam_height_2**3

beam_moa_3 = (1/12)*beam_width_3*beam_height_3**3

link_area_1 = 3.14159*link_radius_1**2

link_area_2 = 3.14159*link_radius_2**2

! Define Key Points

K,1,0,0,0

K,2,0,5,0

K,3,0,10,0

K,4,beam_length,0,0

K,5,beam_length,5,0

K,6,beam_length,10,0

! Define a line between two key points

! Define Material property

! Define element types

! Define real constants for beam and link

R,1,beam_area_1,beam_moa_1,beam_height_1

R,2,beam_area_2,beam_moa_2,beam_height_2

R,3,beam_area_3,beam_moa_3,beam_height_3

R,4,link_area_1,0

R,5,link_area_2,0

! Selects a subset of components and assemblies

! Generate nodes and line elements along lines

! Enters the solution processor

1

2

3

4

Required by the file wrapper

 74

Figure 5.3 : Modification in I beam analysis model

I-beam analysis model

! Start model setup

!Input Variables

beam_length = 18

beam_width_1 = 6

beam_width_2 = 6

beam_width_3 = 6

beam_height_1 = 4

beam_height_2 = 4

beam_height_3 = 4

beam_webheight_1 = 2

beam_webheight_2 = 2

beam_webheight_3 = 2

beam_webwidth_1 = 3

beam_webwidth_2 = 3

beam_webwidth_3 = 3

link_radius_1 = 0.1

link_radius_2 = 0.1

beam_area_1 = (beam_width_1*((2*beam_height_1)+beam_webheight_1))-

(beam_webheight_1*(beam_width_1-beam_webwidth_1))

beam_area_2 = (beam_width_2*((2*beam_height_2)+beam_webheight_2))-

(beam_webheight_2*(beam_width_2-beam_webwidth_2))

beam_area_3 = (beam_width_3*((2*beam_height_3)+beam_webheight_3))-

(beam_webheight_3*(beam_width_3-beam_webwidth_3))

beam_moa_1 =

2*(beam_height_1*beam_width_1)*((beam_webheight_1/2)+(beam_height_1/2))**2+(beam_

webwidth_1*beam_webheight_1**3)/12

beam_moa_2 =

2*(beam_height_2*beam_width_2)*((beam_webheight_2/2)+(beam_height_2/2))**2+(beam_

webwidth_2*beam_webheight_2**3)/12

beam_moa_3 =

2*(beam_height_3*beam_width_3)*((beam_webheight_3/2)+(beam_height_3/2))**2+(beam_

webwidth_3*beam_webheight_3**3)/12

link_area_1 = 3.14159*link_radius_1**2

link_area_2 = 3.14159*link_radius_2**2

! Define Key Points

K,1,0,0,0,

K,2,segment_length,0,0,

K,3,2*segment_length,0,0,

K,4,3*segment_length,0,0,

K,5,0,6,0,

K,6,segment_length,6,0,

K,7,2*segment_length,6,0,

K,8,3*segment_length,6,0,

K,9,0,12,0,

K,10,segment_length,12,0,

K,11,2*segment_length,12,0,

K,12,3*segment_length,12,0,

K,13,3*segment_length,0,0,

K,14,3*segment_length,6,0,

K,15,3*segment_length,12,0,

! Define a line between two key points

! Define Material property

! Define element types

! Define real constants for beam and link

!define real constants for beam

R,1,beam_area_1,beam_moa_1,beam_height_1, , , ,

R,2,beam_area_2,beam_moa_2,beam_height_2, , , ,

R,3,beam_area_3,beam_moa_3,beam_height_3, , , ,

R,4,link_area_1,0,

R,5,link_area_2,0,

! Selects a subset of components and assemblies

! Generate nodes and line elements along lines

! Enters the solution processor

Required by the file wrapper

1

2

3

4

 75

6.2.2 Information extraction

The problem is implemented in ModelCenter using rectangular beam analysis

model and the information associated with this problem is extracted with the help of the

information model as shown in Figure 4.4 in chapter four. The information is then

uploaded into the repository using the Data Modification Language as shown in Table

5.1. The information extracted from this example problem is recorded as follows.

 ANALYSIS MODEL

Analysis model name Analysis_of_rectangular_beam

File name Analysis_of_rectangular_beam.txt

Analysis type Structural

Output file Beam_Analysis_Output.txt

 VARIABLES

Variable Name Variable Type Data Type

beam_length Input Double

beam_width_1 Input Double

beam_width_2 Input Double

beam_width_3 Input Double

beam_height_1 Input Double

beam_height_2 Input Double

beam_height_3 Input Double

link_radius_1 Input Double

link_radius_2 Input Double

BeamDeflection1 Output Double

BeamDeflection2 Output Double

BeamDeflection3 Output Double

BeamDeflection4 Output Double

BeamDeflection5 Output Double

BeamStress1 Output Double

BeamStress2 Output Double

BeamStress3 Output Double

BeamStress4 Output Double

BeamStress5 Output Double

mass Output Double

 76

SOFTWARE

Analysis software Ansys

Version 11.0

Executable URL C:\Program Files\Ansys Inc\V110\ANSYS\bin\intel\ansys110

 MDO PROBLEM

Problem_formulation Walkway_structure_analysis

Objective function Z=Length*Area*Density

Design variables Width, Height, Link Radius

Design parameters Density, Length

Constraints Stress constrain

CREATION

File name Analysis_of_rectangular_beam.txt

User_ID MDO_user_2

Created on 2008-06-03

Version number 1.0

URL C:\Program Files\Phoenix Integration\Analysis Server

5.1\analyses\commonfilesystem\AnalysisModels

 CREATION

File name Walkway_structure_analysis_retangular_beam.pxc

User_ID MDO_user_1

Created on 2008-06-03

Version number 1.0

URL C:\Program Files\Phoenix Integration\Analysis Server

5.1\analyses\commonfilesystem\ModelCenter Projects

File name Analysis_of_rectangular_beam.fileWrapper

User_ID MDO_user_1

Created on 2008-06-03

Version number 1.0

URL C:\Program Files\Phoenix Integration\Analysis Server

5.1\analyses\commonfilesystem\ ModelCenter Projects

MDO PROJECT

Project name Walkway_structure_analysis_retangular_beam

File name Walkway_structure_analysis_retangular_beam.pxc

 77

WRAPPER
Wrapper file name Analysis_of_rectangular_beam.fileWrapper

Batch_file_name Analysis_of_rectangular_beam.bat
Description This is a file wrapper component which wraps the analysis model

Analysis_of_rectangular_beam.txt

Database implementation

The information extracted above is implemented in the database using the data

modification language as shown in Table 5.1.

Table 5.1: Data modification language

INSERT INTO SOFTWARE (Software_name, Version, Product_name,

Executable_URL)

VALUES (“ANSYS”, 10.0, “aa_t_me”, “C:\Program Files\Ansys

Inc\V100\ANSYS\bin\intel\ansys100”);

INSERT INTO PERSON (Fname, Lname, User_ID, Department, Position)

VALUES (“Santosh”, “Hiriyannaiah”, “MDO_user_1”, “Mechanical Engineering”,

“Designer”);

INSERT INTO PERSON (Fname, Lname, User_ID, Department, Position)

VALUES (“S”, “Hiriya”, “MDO_user_2”, “Mechanical Engineering”, “Analyst”);

INSERT INTO ANALYSISMODEL (Analysis_model_name, AFile_name,

Analysis_type ,Input_file, Output_file, Software_name)

VALUES (“Analysis_of_rectangular_beam”, “Analysis_of_rectangular_beam.txt”,

“Structural”, “null”, “rec_beam_fea_output.txt”, “ANSYS”);

INSERT INTO VARIABLES (Variable_name, Variable_type , Data_type,

Analysis_model_name)

VALUES (“beam_length”, “Input”, “Double”, “Analysis_of_rectangular_beam”);

INSERT INTO MDOPROBLEM (Problem_formulation, Objective_function,

Design_variable, Constraints)

VALUES (“walkway_structure_analysis”, “Z=Length*Area*Density”,

“Width,Height,LinkRadius”, “Stess constraint”);

INSERT INTO MDOPROJECT (Project_name, PFile_name, Problem_formulation,

 78

Analysis_model_name, Optimization_component)

VALUES (“walkway_structure_analysis_rectangular_beam”,

“walkway_structure_analysis_rectangular_beam.pxc”, “walkway_structure_analysis”,

“Analysis_of_rectangular_beam”, “GradientOptimizer”);

INSERT INTO WRAPPER (Wrapper_File_name, Analysis_model_name,

Project_name, Batch_file_name, Description)

VALUES (“Analysis_of_rectangular_beam.fileWrapper”,

“Analysis_of_rectangular_beam”, “walkway_structure_analysis_rectangular_beam”,

“Analysis_of_rectangular_beam.bat”, “This is a file wrapper component which wraps

the analysis model Analysis_of_rectangular_beam. txt”);
INSERT INTO DESIGNVARIABLE (DV_name, Problem_formulation, Project_name,

Lower_bound, Upper_bound)

VALUES (“beam_width_1”, “walkway_structure_analysis”,

“walkway_structure_analysis_rectangular_beam”, null ,null);

INSERT INTO CREATION (File_name, User_ID, Created_on, URL)

VALUES (“Analysis_of_rectangular_beam.txt”, “MDO_user_2”, “2008-06-03”,

“C:\Program Files\Phoenix Integration\Analysis Server

5.1\analyses\commonfilesystem\AnalysisModels”);

INSERT INTO CONSTRAINT

(CVariable_name,Problem_formulation,Lower_bound,Upper_bound) VALUES

(“BeamStress1”, “walkway_structure_analysis”, null, null);

 79

CHAPTER SIX

TESTING AND INFERENCES

Testing is a process of exercising a software component using a selected set of

test cases with intent of revealing defect and evaluating quality [6]. In this chapter testing

is referred to as a process of exercising the components of the proposed ModelCenter –

Analysis Server configuration under a scenario, with intent of evaluating the quality and

the performance. The quality is measured in terms of adherence to the scenario specific

requirements and performance is measured by the consistency in the output and ease in

usage of the components of the proposed configuration. Three tests are conducted and a

functional based testing approach is utilized to see how ModelCenter – Analysis Server

configuration performs under a particular scenario. For these tests the example of

analysis and optimization of walkway beam structure described in chapter five is

considered.

Testing is monitored, executed and recorded with the help of test documents

which are adopted from the documentation standards specified in IEEE standard for

software test documentation [14].The test documents for testing include test plan, test

case specification, test procedure specification, test log and a test summary report.

6.1 Overview of the testing

Each test is designed and developed to test and demonstrate specific functionality

of the proposed configuration. An overview of the functionality demonstrated in the tests

is as shown in Table 6.1

 80

Table 6.1 : Overview of the functions tested

Functions offered by proposed configuration Test 1 Test 2 Test 3

Automate batch file creation  

Automate of file wrapper creation 

Update information  

Retrieve information 

Reconfigure MDO problem 

Efficient search of files  

Reuse MDO components 

Update batch file 

Store files in a structure   

6.2 TEST 1: File wrapper and batch file creation

In this test a scenario is presented in which a new file wrapper and a batch file

needs to be created for a new analysis model such that it can be integrated into

ModelCenter. The overall objective of this test is to evaluate the quality and performance

of the wrapper generator, structured repository and common file system under the test

scenario. The quality is measured in terms of adherence to the task specific requirements

while creating the file wrapper and performance is measured by the consistency in the

output and ease in creating the file wrapper and its corresponding batch file.

 81

6.2.3 Test plan

Introduction

In this test structured repository, common file system and wrapper generator

application are tested. Structured repository is tested for retrieval of information for file

wrapper and batch file creation and for allowing the update of the wrapper file

information. Common file system is tested for storage of these files in a structure and

Wrapper generator application is tested for automation of file wrapper and batch file

creation.

Scenario

When a new ANSYS analysis model is introduced into the design, a file wrapper

and a corresponding batch file needs to be created. In a design environment the main

focus of the designer is to find alternatives for the design through design exploration

techniques and trade off studies provided by ModelCenter. At the same time it is also

important to take care that the file wrapper and batch files are properly created and stored

in Analysis Server. This ensures proper integration and execution of the analysis model in

ModelCenter.

Scenario specific requirements

1. File wrapper format should adhere to the format specified in the documentation

2. Batch file should have the same name as specified in file wrapper

3. Batch file should run the analysis model for the user specified inputs

 (The input file should be the copy of the analysis file generated by the file wrapper)

4. Analysis model, batch file and file wrapper should be in the same folder

 82

Test items

The item or components of the proposed configuration tested are

 Wrapper generator application

 Common file system

 Structured repository

Functions to be tested

 Automate batch file creation

 Automate of file wrapper creation

 Storage of file wrapper, batch file and other files

 Update of the file information.

 Retrieve information for file wrapper

Approach

 Test case 1 and test case 2 are executed to test update and retrieval function of the

structured repository.

 Test case 3 and test case 4 are executed to test storage function of the common file

system to store file wrapper, batch file and analysis model file

 Test case 5, test case 6 and test case 7 are executed to test the function of the wrapper

generator application to automate of file wrapper creation

 Test case 8 and test case 9 are executed to test function of the wrapper generator

application to automate batch file creation

(Refer test case specification for more details)

 83

Item pass/fail criteria

PASS: When actual output agrees with the expected output

FAIL: When actual output does not agrees with the expected output

Testing tasks

Task 1: Execute test case 1 and test case 2

 Check if information of analysis model for file wrapper creation is retrieved

 Check if information of analysis model for file wrapper creation is updated

Task 2: Execute test case 3 and test case 4

 Check for the creation of file wrapper folder in Common File System

 Check if a copy of analysis file is placed in the file wrapper folder

 Check if analysis file, batch file and file wrapper in the same folder

Task 3: Execute test case 5, test case 6 and test case 7

 Check the format of the automated file wrapper to match the prescribed format

Task 4: Execute test case 8 and test case 9

 Check if the format of the automated batch file matches to the prescribed

format

 Check the name of the batch file to be same as specified in file wrapper

 Check if the input file name in batch file is same as file to generate name in file

wrapper

 84

Environmental needs

Before the execution of the test some test preparation steps have to be carried out.

The software tools required to run the test are ModelCenter 7.1, Analysis Server 5.1 and

NetBeans5.5.1 IDE. Mentioned below are the steps involved to set up a test environment

1. Load wrapper generator application into the NetBeans IDE and is set for the

run

2. Provide print statements in the application to view queried results in the output

window of NetBeans IDE

3. Log into Analysis Server 5.1to access common file system under the path

“C: /Program Files/Phoenix Integration/Analysis Server

5.1/analyses/commonfilesystem/”

4. Open ModelCenter 7.1 to view the server browser

6.2.4 Test case specification

Purpose

Details of each of the test cases are specified. The test cases test certain functions

of structured repository, common file system and wrapper generator application. This

section is referred by Section 6.2.3 for the details of the test cases. These test cases are

executed sequentially by the tasks.

 85

TEST CASE 1

Test items Wrapper generator application and Structured Repository

Function tested Retrieve information for file wrapper

Inputs “Analysis_of_rectangular_beam” into wrapper generator

Outputs Queried output from Wrapper generator

o Name of input variables

o Name of output variables

o Number of input and output variables

o Analysis software name

o Analysis model file name

o Analysis model generated output file name

pass/fail criteria Pass: If the actual queried output displayed in the output

window matches with the expected output

 Fail: If the actual queried output displayed in the output

window does not matches with the expected output

TEST CASE 2

Test items Wrapper generator application and structured repository

Function tested Update file wrapper and batch file information

Inputs Submit query:

SELECT Wrapper_file_name,Project_name, Batch_file_name

FROM wrapper

WHERE Analysis_model_name='Analysis_of_rectangular_beam';

Outputs Should return updated information about file wrapper and batch file

from wrapper table of the repository

pass/fail criteria Pass: If test query returns file wrapper and batch file

information

 Fail: If test query does not returns file wrapper and batch file

information

TEST CASE 3

Test items Wrapper generator application and common file system

Function tested Store file wrapper and batch file

Inputs “Analysis_of_rectangular_beam” into wrapper generator

application

Outputs Folder created in Common file system under file wrapper folder

 (Folder name = Analysis_of_rectangular_beam)

 File wrapper and batch file stored in the file wrapper folder

pass/fail criteria Pass: If folder name equals “Analysis of a rectangular beam “

and file wrapper and batch file exists in that folder

 Fail: If folder name is not equals “Analysis of a rectangular

beam” and file wrapper and batch file does not exists in that

folder

 86

TEST CASE 4

Test items wrapper generator application and Common file system

Function tested Store a copy of analysis model file into file wrapper folder

Inputs “Analysis_of_rectangular_beam” into Wrapper generator

application

Outputs “Analysis_of_rectangular_beam.txt” stored in file wrapper folder

pass/fail criteria Pass: If “Analysis of a rectangular beam.txt” exists in the file

wrapper folder

 Fail: If “Analysis of a rectangular beam.txt” does not exists in

the file wrapper folder

TEST CASE 5

Test items Wrapper generator application and Common file system

Function tested Automate file wrapper creation

Inputs “Analysis_of_rectangular_beam” to wrapper generator application

Outputs Access “Analysis_of_rectangular_beam.fileWrapper” in server

browser in ModelCenter

pass/fail criteria Pass: If “Analysis_of_rectangular_beam.fileWrapper” can be

accessed through server browser in ModelCenter

 Fail: If “Analysis_of_rectangular_beam”fileWrapper” cannot

be accessed through server browser in ModelCenter

TEST CASE 6

Test items Wrapper generator application

Function tested Automate file wrapper creation

Inputs “Analysis_of_rectangular_beam” to wrapper generator application

Outputs “Analysis_of_rectangular_beam.fileWrapper” file with commands

adhering to the prescribed syntax

pass/fail criteria Pass: If the format of the

Analysis_of_rectangular_beam.fileWrapper command match

the prescribed format

 Fail: If the format of the

Analysis_of_rectangular_beam.fileWrapper command does not

match the prescribed format

 87

TEST CASE 7

Test items Wrapper generator application

Function tested Automate of batch file creation

Inputs “Analysis_of_rectangular_beam” to wrapper generator application

Outputs Batch file name “Analysis of a rectangular beam.bat”= Batch file

name specified in Analysis of a rectangular beam.fileWrapper

pass/fail criteria Pass: If the batch file name specified in the automated file

wrapper is same as the automated batch file name

 Fail: If the batch file name specified in the automated file

wrapper is not same as the automated batch file name

TEST CASE 8

Test items Wrapper generator application

Function tested Automate batch file creation

Inputs Analysis model name to wrapper generator application

Outputs “Analysis_of_ rectangular_beam.bat” file with commands adhering

to the prescribed syntax

pass/fail criteria Pass: If the format of the Analysis_of_ rectangular_beam.bat

command match the prescribed format

 Fail: If the format of the Analysis_of_ rectangular_beam.bat

command match the prescribed format

TEST CASE 9

Test items Wrapper generator application

Function tested Automate batch file creation

Inputs Analysis model name to wrapper generator application

Outputs Automated “Analysis_of_ rectangular_beam.fileWrapper” and

“Analysis of a rectangular beam.bat “with input file name in the

command line of .bat file = file name in File to generate section of

.file wrapper file

pass/fail criteria Pass: If input file name in.bat file equals file name in File to

generate section of .file wrapper file

 Fail: If input file name in.bat file not equals file name in File to

generate section of .file wrapper file

 88

6.2.5 Test procedure specification

This section provides details of the steps required to execute the task specific test

cases. This procedure details is referred by testing task section in the test plan. Each task

is executed sequentially as described to ensure the prerequisite for a particular task

execution is met in the previous task.

Test procedure for task 1

Purpose

This procedure describes the steps required for the execution of test case 1 and

test case 2 to check for the retrieval of analysis model information and to check if the

newly created file wrapper information is updated in the repository

Procedure steps

1. Run Wrapper generator application

2. Enter the analysis model name as “Analysis_of_rectangular_beam” when

prompted by the wrapper generator application

3. View the queried output from wrapper generator application

4. Query the repository to check if the file wrapper information is updated

5. State weather the test is a pass or fail based on the criteria specified in the test

case specification of test case 1and test case 2

6. Log the result along with the pass/fail criteria in the Test log document

 89

Test procedure for task 2

Purpose

This procedure describes the steps required for the execution of test case 3, test

case 4 to check if the file wrapper folder is created in the common file system and to

check if a copy of analysis file , batch file and file wrapper are in the in the same folder

Procedure steps

1. Ensure test procedure 1is executed

2. Go to the path “C: /Program Files/Phoenix Integration/Analysis Server

5.1/analyses/commonfilesystem/ Analysis_of_ rectangular_beam /” in Analysis

Server

3. State weather the test is a pass or fail based on the criteria specified in the test

case specification of test case 3and test case 4

4. Log the result along with the pass/fail criteria in the Test log document

Test procedure for task 3

Purpose

This procedure describes the steps required for the execution of test case 5, test

case 6 and test case 7 to check if the format of the automated file wrapper matches to the

prescribed format

Procedure steps

1. Ensure test procedure 1is executed

2. Go to the path “C: /Program Files/Phoenix Integration/Analysis Server

5.1/analyses/commonfilesystem/ Analysis_of_ rectangular_beam /” in Analysis

Server

 90

3. Open Analysis_of_ rectangular_beam.fileWrapper

4. Compare it to the prescribed file wrapper format to the one specified in

ModelCenter documentation

5. State weather the test is a pass or fail based on the criteria specified in the test

case specification of test case 5 test case 6and test case 7

6. Log the result along with the pass/fail criteria in the Test log document

Test procedure for task 4

Purpose

This procedure describes the steps required for the execution of test case 8, test

case 9 to check if the format of the automated batch files matches to the prescribed

format and to ensure if the input file name in batch file is same as file to generate name in

file wrapper

Procedure steps

1. Ensure test procedure 1is executed

2. Go to the path “C: /Program Files/Phoenix Integration/Analysis Server

5.1/analyses/commonfilesystem/ Analysis_of_ rectangular_beam /” in Analysis

Server

3. Open Analysis of a rectangular beam.bat

4. Compare it to the prescribed batch file format

5. Open Analysis of a rectangular beam.fileWrapper

6. Compare the input file name in batch file to the file to generate name in file

wrapper

 91

7. State weather the test is a pass or fail based on the criteria specified in the test

case specification of test case 8and test case 9

8. Log the result along with the pass/fail criteria in the Test log document

6.2.6 Test log

Description

The items tested in this test are wrapper generator application, structured

repository and common file system. For each task the expected procedure result is

described and the pass and fail decision is based on the criteria mentioned in their

respective test case specification (refer test case specification section 6.2.3). The test is

executed task wise and the results are recorded below.

TASK 1 Execution

Expected procedure results: Test case 1

 Input variables: beam_length, beam_width_1, beam_width_2, beam_width_3,

beam_height_1, beam_height_2, beam_height_3, link_radius_1, link_radius_2

 Output variables: BeamDeflection1, BeamDeflection2, BeamDeflection3,

BeamDeflection4, BeamDeflection5 , BeamStress1, BeamStress2,

BeamStress3, BeamStress4, BeamStress5, mass

 Number of input variables: 9

 Number of output variables: 11

 Analysis software name: Ansys

 Analysis model file name: Analysis_of_ rectangular_beam.txt

 92

 Analysis model generated output file name: Beam_Analysis_Output.txt

Expected procedure results: Test case 2

 Analysis model name = Analysis_of_ rectangular_beam

 Wrapper file name Analysis_of_ rectangular_beam.fileWrapper

 Batch file name = Analysis_of_ rectangular_beam.bat

Actual procedure results: Test case 1

The snapshots of the actual result are obtained from the output window of NetBeans

5.5.1.

 Input variables

 93

 Output variable

 Number of input variables

 Number of output variables

 Analysis software name

 Analysis model file name

 Analysis model generated output file name

 94

Actual procedure results: Test case 2

Pass / Fail decision

 Test case 1: Pass

The actual queried output displayed in the output window matches with the

expected output

 Test case 2: Pass

The test query returns file wrapper and batch file information

TASK 2 Execution

Expected procedure results

 Folder name in file wrapper folder = Analysis_of_rectangular_beam

 File wrapper and batch file stored in the file wrapper folder

Actual procedure results

 Folder name = Analysis_of_rectangular_beam

 File wrapper and batch file stored in the file wrapper folder

 95

Pass / Fail decision

 Test case 3: Pass

The folder name equals “Analysis of a rectangular beam” and file wrapper and

batch file exists in that folder

 Test case 4: Pass

The file “Analysis of a rectangular beam.txt” exists in the Analysis of a

rectangular beam file wrapper folder

TASK 3 Execution

Expected procedure results

 Access “Analysis_of_rectangular_beam.fileWrapper” in server browser in

ModelCenter

 “Analysis_of_rectangular_beam.fileWrapper” file with commands adhering to

the prescribed syntax. Should include header,Run, RowFieldInputfile and

RowFieldOutnputfile

 96

 Batch file name “Analysis_of_rectangular_beam.bat”= Batch file name specified

in the run section of Analysis_of_rectangular_beam.file Wrapper

Actual procedure results

 “Analysis_of_rectangular_beam.fileWrapper” in server browser in ModelCenter

 The sections in “Analysis_of_rectangular_beam.fileWrapper” adhering to the

prescribed syntax. It includes all the four sections

 97

 Batch file name “Analysis_of_rectangular_beam.bat” and Batch file name

specified in Analysis_of_rectangular_beam.file Wrapperare same

Pass / Fail decision

 Test case 5: Pass

“Analysis_of_rectangular_beam.fileWrapper” can be accessed through server

browser in ModelCenter

 98

 Test case 6: Pass

Format of the Analysis_of_rectangular_beam.fileWrapper command match the

prescribed format

 Test case7: Pass

The batch file name specified in the automated file wrapper is same as the

automated batch file name

TASK 4 Execution

Expected procedure results

 “Analysis_of_rectangular_beam.bat” file with commands adhering to the syntax

specified below

"<drive>:\Program Files\Ansys Inc\V100\ANSYS\bin\intel\ansys100" –b

 -i inputname -o outputname

 Automated “Analysis_of_rectangular_beam.fileWrapper” and “Analysis of a

rectangular beam.bat “with input file name in the command line of .bat file = file

name in File to generate section of .file wrapper file

Actual procedure results

 The command line in “Analysis_of_rectangular_beam.bat” file adhering to the

prescribed syntax

 99

 Input file name in the command line of Analysis_of_rectangular_beam .bat file =

file name in FiletoGenerate section of .file wrapper file

Pass / Fail decision

 Test case8: Pass

The format of the Analysis_of_rectangular_beam.bat command match the

prescribed format

 Test case 9: Pass

Input file name in.bat file equals file name in File to generate section of .file

wrapper file

6.2.7 Test summary report

The test results are tabulated in Table 6.2. The pass result from test case 1 and test

case 2 indicates that the structured repository allows the queries to be performed to

retrieve and update information. The pass result from test case 3 and test case 4 indicates

 100

that the common file system stores the file wrapper, batch file and the analysis model in a

folder structure. The pass result from test case 5, test case 6, test case 7, test case 8 and

test case 9 indicates that the wrapper generator Java application successfully generates

the file wrapper and batch file with minimal user interaction.

Table 6.2: Test 1 result summary

Test cases Result

Test case 1 ; Test case 2 Pass

Test case 3 ; Test case 4 Pass

Test case 5 ; Test case 6; Test case 7 Pass

Test case 8 ; Test case 9 Pass

The features/items of the proposed configuration meet the task specific

requirements while creating the file wrapper. Thus the wrapper generator creates file

wrapper and batch files with good quality.

Figure 6. 1: Steps in wrapper creation using wrapper generator application

Analysis Model

Batch file

File wrapper
1 STEP

Analysis Server1

 101

With the help of the information from the structured repository and the wrapper

generator the file wrapper and batch file creation is reduced to 1 step process (see Figure

6.1) from 18 step process. This demonstrated the utilization the structured repository and

the wrapper generator for better performance.

6.3 TEST 2: Migration of analysis software

In this test a scenario is presented in which there is a migration of analysis

software version from ANSYS 10.0 to ANSYS 11.0. The overall objective of this test is

to evaluate under a scenario the quality in terms of adherence to task specific

requirements and performance of the wrapper generator in terms of ease in updating the

batch file. The test demonstrates ease in updating a batch file when the migration occurs.

6.3.1 Test plan

Introduction

In this test structured repository and wrapper generator application are tested.

Structured repository is tested for retrieval of analysis software executable location

information to update the batch file. Wrapper generator application is tested for function

in which the batch file is updated.

Scenario

In spite of setting up the problem and creating file wrappers for the ANSYS

analysis models, designers might face issue such as migration of analysis software

version. This migration of analysis software from across version requires change in the

batch files for the proper execution of the corresponding file wrapper. The change to be

 102

made is in the command line of the batch file. The ANSYS 10.0 software executable

location needs to be updated to ANSYS 11.0 software executable location. It is also

required to ensure proper command line syntax in the batch file and the storage of the

batch file in the corresponding file wrapper folder.

Scenario specific requirements

1. The batch file should run the latest version of analysis software

2. The batch file should be stored in the corresponding file wrapper folder

Test items

The item or components of the proposed configuration tested are

 Wrapper generator application

 Structured repository

Functions to be tested

 Automate batch file creation

 Retrieve information for batch file creation

 Store the batch file in the file wrapper folder

 Update batch file

Approach

 Test case 10 is executed to test if the retrieval function of the repository

 Test case 3 is executed to test the storage function of the wrapper application

 Test case 8 is executed to test the automate batch file function

 Test case 11 is executed to test the update batch file function of the wrapper generator

 103

(Refer Section 6.3.2 Test case specification for more details)

Item pass/fail criteria

PASS: When actual output agrees with the expected output

FAIL: When actual output does not agrees with the expected output

Testing tasks

Task 1: Execute test case 10

 Check the queried output for batch file information

Task 2: Test case 3

 Check the batch file storage in the corresponding file wrapper folder

Task 2: Test case 8

 Check the batch file creation for proper syntax

Task 2: Test case 11

 Check the batch file is updated with latest version

Environmental needs

Before the execution of the test some test preparation steps have to be carried out.

The software tools required to run the test are ModelCenter 7.1, Analysis Server 5.1 and

NetBeans5.5.1 IDE. Mentioned below are the steps involved to set up a test environment

1. Load Wrapper generator application into the NetBeans IDE

2. Provide print statements in the application to view queried results in the output

window of NetBeans IDE

3. Log into Analysis Server 5.1to access common file system under the path

 104

“C: /Program Files/Phoenix Integration/Analysis Server

5.1/analyses/commonfilesystem/”

4. Update the repository with the new analysis software version information

6.3.2 Test case specification

Purpose

Details of each of the test cases are specified. The test cases test certain functions

of structured repository, common file system and wrapper generator application. This

section is referred by Section 6.3.1 test plan document for the details of the test cases.

Test case 3 and test case 8 from reused from test 1.

TEST CASE 10

Test items Wrapper generator application and structured repository

Function tested Retrieve information for batch file

Inputs “Analysis_of_rectangular_beam” to wrapper generator application

Outputs Queried output from Batch File Generator class

o Executable_URL

o Product name

pass/fail criteria Pass: If the actual queried output displayed in the output

window matches with the expected output

 Fail: If the actual queried output displayed in the output

window does not matches with the expected output

TEST CASE 3

Test items Wrapper generator application and common file system

Function tested Store the batch file in the file wrapper folder

Inputs “Analysis_of_rectangular_beam” to wrapper generator application

Outputs Folder created in Common file system under file wrapper folder

(Folder name = Analysis_of_rectangular_beam)

 File wrapper and batch file stored in the file wrapper folder

pass/fail criteria Pass: If folder name equals “Analysis of a rectangular beam “

and file wrapper and batch file exists in that folder

 Fail: If folder name is not equals “Analysis of a rectangular

beam” and file wrapper and batch file does not exists in that

folder

 105

TEST CASE 8

Test items Wrapper generator application

Function tested Automate batch file creation

Inputs “Analysis model name” to wrapper generator application

Outputs “Analysis_of_ rectangular_beam.bat” file with commands adhering

to the prescribed syntax

pass/fail criteria Pass: If the format of the Analysis_of_ rectangular_beam.bat

command match the prescribed format

 Fail: If the format of the Analysis_of_ rectangular_beam.bat

command match the prescribed format

TEST CASE 11

Test items Wrapper generator application

Function tested Automate batch file creation

Inputs “Analysis_of_rectangular_beam” into Wrapper generator

application

Outputs Batch file command line includes ANSYS 11.0 version executable

location

pass/fail criteria Pass: If input file name in.bat file equals file name in File to

generate section of .file wrapper file

 Fail: If input file name in.bat file not equals file name in File to

generate section of .file wrapper file

6.3.3 Test procedure specification

This section provides details of the steps required to execute the task specific test

cases. This procedure details is referred by testing task Section in the test plan. Each task

is executed sequentially as described to ensure the prerequisite for a particular task

execution is met in the previous task.

Test procedure for task 1

Purpose

This procedure describes the steps required for the execution of test case 10 to

check the queried output for batch file information

 106

Procedure steps

1. Run Wrapper generator application

2. Enter the analysis model name as Analysis_of_rectangular_beam when

prompted by the wrapper generator application

3. View the queried batch file output from wrapper generator application

4. State weather the test is a pass or fail based on the criteria specified in the test

case specification of test case 1and test case 10

5. Log the result along with the pass/fail criteria in the Test log document

Test procedure for task 2

Purpose

This procedure describes the steps required for the execution of test case 3 to

check the batch file storage in the corresponding file wrapper folder

Procedure steps

1. Go to the path “C: /Program Files/Phoenix Integration/Analysis Server

5.1/analyses/commonfilesystem/ Analysis_of_ rectangular_beam /” in Analysis

Server

2. Look in the folder for “Analysis_of_rectangular_beam.bat”

3. State weather the test is a pass or fail based on the criteria specified in the test

case specification of test case 3

4. Log the result along with the pass/fail criteria in the Test log document

 107

Test procedure for task 3

Purpose

This procedure describes the steps required for the execution of test case 8 to

check the batch file creation for proper syntax

Procedure steps

1. Ensure test procedure 1is executed

2. Go to the path “C: /Program Files/Phoenix Integration/Analysis Server

5.1/analyses/commonfilesystem/ Analysis_of_ rectangular_beam /” in Analysis

Server

3. Open Analysis_of_rectangular_beam.bat

4. Compare it to the prescribed batch file format

5. State weather the test is a pass or fail based on the criteria specified in the test

case specification of test case 8and test case 8

6. Log the result along with the pass/fail criteria in the Test log document

Test procedure for task 4

Purpose

This procedure describes the steps required for the execution of test case 11 to check

the batch file is updated with the new analysis software executable location

 108

Procedure steps

1. Go to the path “C: /Program Files/Phoenix Integration/Analysis Server

5.1/analyses/commonfilesystem/ Analysis_of_ rectangular_beam /” in Analysis

Server

2. Open Analysis_of_rectangular_beam.bat

3. Check the executable location details in the command line

4. State weather the test is a pass or fail based on the criteria specified in the test

case specification of test case 11

5. Log the result along with the pass/fail criteria in the Test log document

6.3.4 Test log

Description

The items tested in this test are wrapper generator application and the structured

repository. For each task the expected procedure result is described and the pass and fail

decision is based on the criteria mentioned in their respective test case specification. The

test is executed task wise and the results are recorded below.

TASK 1 Execution

Expected procedure results: Test case 10

 Analysis software name = ANSYS

 Executable URL = C:\ Program Files\Ansys Inc\V110\ANSYS\bin\intel\ansys110

 Product name = aa_t_me

 109

Actual procedure results: The snapshots of the actual result are obtained from the output

window of NetBeans 5.5.1.

 Analysis software name

 Executable URL

 Product name

Pass / Fail decision

 Test case 10: Pass

The actual queried output displayed in the output window matches with the

expected output

TASK 2 Execution

Expected procedure results: Test case 3

 “Analysis_of_rectangular_beam.bat” stored in Analysis_of_rectangular_beam

folder under file wrapper folder

 110

Actual procedure results

Pass / Fail decision

 Test case 3: Pass

The file “Analysis_of_rectangular_beam.bat” exists in the

Analysis_of_rectangular_beam file wrapper folder

TASK 3 Execution

Expected procedure results: Test case 8

 “Analysis_of_rectangular_beam.bat” file with commands adhering to the syntax

specified below

"<drive>:\Program Files\Ansys Inc\V110\ANSYS\bin\intel\ansys110" -b -i inputname -o

outputname

 111

Actual procedure results

Pass / Fail decision

 Test case 8: Pass

The format of the Analysis_of_rectangular_beam.bat command match the

prescribed format

TASK 4 Execution

Expected procedure results: Test case 11

 Batch file command line includes ANSYS 11.0 version executable location

“C:\ Program Files\Ansys Inc\V110\ANSYS\bin\intel\ansys110”

Actual procedure results (snapshot of the file wrapper folder in common file system)

Pass / Fail decision

 Test case 11: Pass

Batch file command line includes ANSYS 11.0 version executable

location

 112

6.3.5 Test summary report

The test results are tabulated in Table 6.3. The pass result from test case 10

indicates that the structured repository allows the queries to be performed to retrieve

information. The pass result from test case 3 indicates that the common file system stores

batch file in the folder structure. The pass result from test case 8 indicates that the

wrapper generator Java application successfully generates the batch file with minimal

user interaction and adheres to the prescribed syntax. The pass result from test case 11

indicates that the wrapper generator Java application generates batch file with the updated

version of the analysis software version.

 Table 6. 3: Test 2 result summary

Test cases Result

Test case 10 Pass

Test case 3 Pass

Test case 8 Pass

Test case 11 Pass

 113

The features/items of the proposed configuration meet the task specific

requirements while updating the batch file and adhere to the prescribed syntax. Thus the

wrapper generator creates file batch files with good quality and with the updated version

of the analysis software version.

Figure 6.2: Steps involved in the update of batch file

With the help of the information from the structured repository and the wrapper

generator updating the batch file creation is reduced to 1 step process (see Figure 6.2)

where the user inputs the analysis model name for which the latest version of batch file

needs to be generated. This demonstrated the utilization the structured repository and the

wrapper generator for better performance while updating the batch file thereby reducing

errors during manual generation.

Server installation directory

Analysis Server1

Structured

Repository

Common File System2

Java application 1

analysis software
executable location

Query software
executable location

Edit and save
the batch file

batch file location

Query batch file
location

 114

6.4 TEST 3: Reconfiguration of MDO problem

In this test a scenario is presented where the design changes from analysis of a

rectangular beam to analysis of an I-beam. The overall objective of this test is to evaluate

the performance reconfiguring an existing problem under the test scenario. This test also

demonstrates the reconfiguration capability of the proposed configuration.

6.4.1 Test plan

Introduction

In this test structured repository and reconfiguration applications are tested.

Structured repository is tested for retrieval of project and analysis model information to

provide users the details of the project file. Common file system is tested for storage of

these files and Wrapper generator application is tested for automation of file wrapper and

batch file creation.

Scenario

In the walkway beam structure analysis there is a requirement to change the

analysis from rectangular beam to an I-beam. This required the use of I-beam analysis

model instead of a rectangular beam analysis model. The mathematical formulation

remains the same hence the existing walkway beam structure project should be

reconfigured.

Scenario specific requirements

1. Should use an existing I-beam analysis model

2. Project file should be stored in the respective folder structure

 115

Test items

The item or components of the proposed configuration tested are

 Reconfiguration application

 Common file system

 Structured repository

Functions to be tested

 Retrieve information

 Reuse MDO component

 Reconfigure MDO project

 Store the project file in the project folder

Approach

 Test case 12 is executed to test the retrieval function of the repository

 Test case 13 is executed to test the storage of MDO projects

 Test case 14 is executed to test reconfiguration application

(Refer Section 6.4.2 Test case specification for more details)

Item pass/fail criteria

PASS: When actual output agrees with the expected output

FAIL: When actual output does not agrees with the expected output

Testing tasks

Task 1: Execute test case 12

 Check the queried output for project file and available analysis model information

 116

Task 2: Execute test case 13

 Check the storage of the project files in the projects folder of the common file

system

Task 3: Execute test case 14

 Check the reconfiguration capability of reconfiguration application

Environmental needs

Before the execution of the test some test preparation steps have to be carried out.

The software tools required to run the test are ModelCenter 7.1, Analysis Server 5.1 and

NetBeans5.5.1 IDE. Mentioned below are the steps involved to set up a test environment

1. Load reconfiguration application into the NetBeans IDE

2. Provide print statements in the application to view queried results in the output

window of NetBeans IDE

3. Log into Analysis Server 5.1to access common file system under the path

“C: /Program Files/Phoenix Integration/Analysis Server

5.1/analyses/commonfilesystem/ModelCenterProjects/”

6.4.2 Test case specification

Purpose

Details of each of the test cases are specified. The test cases test certain functions

of structured repository, common file system and Java application. This section is

referred by section Test plan document for the details of the test cases. These test cases

are executed sequentially by the tasks.

 117

TEST CASE 12

Test items Structured repository

Function tested Retrieve information

Inputs “walkway_structure_analysis_rectangular_beam” into

reconfiguration application

Outputs Queried output from ProjectInfo class of the application

o Project details
o Problem formulation details
o MDO component Details

pass/fail criteria Pass: If the actual queried output displayed in the output

window matches with the expected output

 Fail: If the actual queried output displayed in the output

window does not matches with the expected output

TEST CASE 13

Test items Reconfiguration application and common file system

Function tested Store project files

Inputs walkway_structure_analysis_I_beam into reconfiguration

application

Outputs walkway_structure_analysis_I_beam.pxc saved in ModelCenter

projects folder

pass/fail criteria Pass: If the project file exists in the ModelCenter projects

folder

 Fail: If the project file does not exist in the ModelCenter

projects folder

TEST CASE 14

Test items Reconfiguration application

Function tested Reconfigure MDO problem

Inputs “Analysis_of_I_beam” into reconfiguration application

Outputs “Analysis_of_I_beam” model used in the

walkway_structure_analysis_I_beam project

pass/fail criteria Pass: If the Analysis_of_I_beam is used in the project

 Fail: If the Analysis_of_I_beam is not used in the project

6.4.3 Test procedure specification

This section provides details of the steps required to execute the task specific test

cases. This procedure details is referred by testing task section in the test plan. Each task

 118

is executed sequentially as described to ensure the prerequisite for a particular task

execution is met in the previous task.

Test procedure for task 1

Purpose

This procedure describes the steps required for the execution of test case 12 to

check for the retrieval of project information and analysis model information

Procedure steps

1. Run reconfiguration application

2. Enter the project name as “walkway_structure_analysis_rectangular_beam”

when prompted by the reconfiguration application

3. View the queried output from reconfiguration application

4. State weather the test is a pass or fail based on the criteria specified in the test

case specification of test case 12

5. Log the result along with the pass/fail criteria in the Test log document

Test procedure for task 2

Purpose

This procedure describes the steps required for the execution of test case 13 to

check if the new reconfigured project file is stored in the ModelCenter projects folder.

Procedure steps

1. Run reconfiguration application

2. Enter the project name as “walkway_structure_analysis_I_beam” when

prompted by the reconfiguration application

 119

3. View the project file in the path

“C: /Program Files/Phoenix Integration/Analysis Server

5.1/analyses/commonfilesystem/ModelCenterProjects/”

4. State weather the test is a pass or fail based on the criteria specified in the test

case specification of test case 13

5. Log the result along with the pass/fail criteria in the Test log document

Test procedure for task 3

Purpose

This procedure describes the steps required for the execution of test case 14 to

check if the new reconfigured project file uses the “Analysis_of_I_beam “analysis model.

Procedure steps

1. Ensure task 1 and task 2 are executed

2. Open the project file walkway_structure_analysis_I_beam.pxc in the path

“C: /Program Files/Phoenix Integration/Analysis Server

5.1/analyses/commonfilesystem/ModelCenterProjects/”

3. View the project file in ModelCenter and check if “Analysis_of_I_beam” is

used

4. State weather the test is a pass or fail based on the criteria specified in the test

case specification of test case 14

5. Log the result along with the pass/fail criteria in the Test log document

 120

6.4.4 Test log

Description

The items tested in this test are reconfiguration application, the structured

repository and the common file system. For each task the expected procedure result is

described and the pass and fail decision is based on the criteria mentioned in their

respective test case specification.

TASK 1 Execution

Expected procedure results: Test case 12

o Project details

o Problem formulation details

o MDO component Details

Actual procedure results

________________Project Details________________

Project name :: walkway_structure_analysis_rectangular_beam

Project file name :: walkway_structure_analysis_rectangular_beam.pxc

Project file location :: C:\Program Files\Phoenix Integration\Analysis Server

5.1\analyses\commonfilesystem\ModelCenterProjects

-------------------------------0---------------------------

_________Problem Formulation Details_________

Problem formulation used :: walkway_structure_analysis

Objective function :: Z=Length*Area*Density

Design Variables :: Width,Height,LinkRadius

Constraints :: Stess constraint

----------------------0----------------------

_________MDO component Details_________

Optimizer used :: GradientOptimizer

Analysis Model used :: Analysis_of_rectangular_beam

Wrapper name :: Analysis_of_rectangular_beam.fileWrapper

Batch file name :: Analysis_of_rectangular_beam.bat

Description :: This is a file wrapper component which wraps the analysis

model Analysis_of_rectangular_beam. txt

-----------------0-----------------

 121

Pass / Fail decision

 Test case 12: Pass

The actual queried output displayed in the output window matches with the

expected output

TASK 2 Execution

Expected procedure results: Test case 13

 “walkway_structure_analysis_I_beam.pxc” is saved in ModelCenter projects

folder

Actual procedure results

Pass / Fail decision

 Test case13 : Pass

The project file exists in the ModelCenter projects folder and the

Analysis_of_I_beam is used in the project

TASK 3 Execution

Expected procedure results: Test case 14

 122

 “Analysis_of_I_beam” model used in the walkway_structure_analysis_I_beam

project

Actual procedure results

Pass / Fail decision

 Test case14 : Pass

The project file exists in the ModelCenter projects folder and the

Analysis_of_I_beam is used in the project

 123

6.4.5 Test summary report

The test results are tabulated in Table 6.4. The pass result from test case 12

indicates that the structured repository allows the queries to be performed to retrieve

information.

Table 6.4: Test 3 result summary

Test cases Result

Test case 12 Pass

Test case 13 Pass

Test case 14 Pass

The pass result from test case 13 indicates that the common file system stores

project file in the folder structure. The pass result from test case 14 indicates that the

reconfiguration application successfully reconfigures the project file

 124

CHAPTER SEVEN

CONCLUSION

From the testing, it is observed that storing the MDO related information in a

structured repository benefits the designers with the prior content information required to

reuse and reconfigure the existing MDO problems. The stored information can be

efficiently utilized to automate the manual and repeatable processes such as file wrapper

and batch file creation, thus reducing time taken in MDO problem set up in the MDO

frameworks. The common file system enables the MDO components and projects to be

stored in a structure and shared. The file information system which is the subset of the

structured repository stores the information about the location of the file in the common

file system. This information enhances the intelligent search and retrieval of the

components in the MDO frameworks.

Figure 7.1: Functions addressing information management requirements

Information management requirements

Database Management Modularity Reconfiguration Intelligent

search and

retrieval
Provide MDO

information

Utilize MDO

information

Reusable

components

Incorporate

changes

F
u

n
c

ti
o

n
s

 o
ff

e
re

d
 b

y
 p

ro
p

o
s

e
d

c

o
n

fi
g

u
ra

ti
o

n

Automate batch file creation  

Automate file wrapper

creation
 

Update information  

Retrieve information   

Reconfigure MDO problem  

Efficient search of files  

Reuse MDO components   

Store files in a structure    

 125

The functions offered by the features of the proposed configuration meet the

extended information management requirements as shown in Figure 7.1. It can be seen

that automating the file wrapper and batch file creation address the database management

requirement. Storing the files in a structure facilitates reuse along with the information

provided by the repository. The reconfiguration application utilizes the information from

the repository and enhances the reconfiguration capability of the MDO framework. Thus

the structured repository, common file system and the software applications enhance the

information management capability of ModelCenter framework as seen in Figure 7.1.

Table 7.1: ModelCenter meets requirement 1

Requirements
Model

Center

(1) Database Management 

(2) Modularity in problem formulation 

(3) Reconfiguration capability 

(4) Intelligent search and retrieval 

Fully met - 

7.1 Addressing Research Questions

The Research Questions formulated in Chapter 1 have been addressed at different

stages in the research and in different chapters of this thesis.

Research Question 1: What are the information management requirements

of MDO framework to support reuse and reconfiguration?

This Research Question focused on the identification of requirements for

managing MDO related information is addressed in Chapter three. The Research

Question is addressed first by identifying the general requirements for MDO framework

development, correlating these requirements with current MDO frameworks to identify

 126

the gaps in development. The gaps include retrieval and reconfiguration of existing MDO

problems; capture and storage of information for the integration of disciplinary analysis

models; representing constraints and requirements in formulating MDO problems. Based

on these gaps the information management requirements such as database management,

modularity, reconfiguration capability and intelligent search and retrieval are extended.

These requirements also help in emphasizing the reuse and reconfiguration in MDO

frameworks.

Research Question 2: What are the features that need to be integrated into

the MDO framework to enhance information management capabilities?

This Research Question focused on developing features to enhance information

management capabilities in MDO framework is addressed in Chapter three. ModelCenter,

modeFRONTIER, and iSIGHT FD frameworks are evaluated against the information

management requirements extended while addressing Research Question 1. Based on the

evaluation ModelCenter framework is selected as the suitable framework for extending

the information management capabilities. The drawbacks of the ModelCenter framework

configuration are identified and structured repository and common file system are the

features proposed to help address these drawbacks and enhance the information

management capabilities

Research Question 3: What is the structure of the information model to

enable efficient reuse and reconfiguration in MDO problems?

This Research Question focused on providing the information model is addressed

in Chapter four. The information model of the repository stores MDO information and

 127

allows the user to update and retrieve the information. The information stored provides

the designer the prior knowledge and facilitates for reuse and reconfiguration.

Research Question 4: How will the repository be interfaced/ integrated with

an MDO framework in general and ModelCenter/Analysis server specifically?

This Research Question focused on the integrating proposed structured repository

and the common file system in ModelCenter/Analysis Server configuration is addressed

in Chapter four. Java interface provides the methods to access the repository and the

common file system. Structured repository is accessed using MYSQL-JDBC driver and

the common file system is accessed using the file system URL.

7.2 Future work

The immediate future work is to refine and extend the structure of the information

model to capture information related to MDO formulations and to enable content based

search. The information model currently stores information related to MDO project files.

The structure of the information model enables the information to be searched and

queried based on the name of the project files and name of the analysis models.

The compatibility of the information model with other MDO frameworks was not

considered in this research. Framework specific versions of the repository need to be

developed such that the repository can be incorporated into other MDO frameworks.

The reconfiguration applications developed in this research reconfigures the

project file by replacing the analysis model. The linking between the variables of the

analysis models and the optimizer is not achieved with this application. Therefore the

Java API’s to link the variables need to used in the application.

 128

Figure 7.2: CenterLink in ModelCenter configuration

 The proposed structured repository can be extended to include information model

to store and manage information in the grid computing module called CenterLink

available in the current ModelCenter configuration (see Figure 7.2). The Analysis library

in CenterLink can be coupled with a repository to enable intelligent search of analysis

models uploaded into the library.

Common File System

Structured Repository

Analysis Server

HTTP

Client

ModelCente
r

ModelCenter

3
1

2

B

Reconfiguration
application

Wrapper
generator

CenterLink5

C

ModelCenter
Clients

6

HTTP

Java A

Java A

Java

A

Java A

Java A

 129

APPENDICES

Appendix A

APDL code for analysis of a rectangular beam

/COM,Preferences for GUI filtering

have been set to display:

/COM, Structural

/PREP7

!Input Variables

beam_length = 1.0

beam_width_1 = 1.0

beam_width_2 = 1.0

beam_width_3 = 1.0

beam_height_1 = 1.0

beam_height_2 = 1.0

beam_height_3 = 1.0

link_radius_1 = 0.1

link_radius_2 = 0.1

beam_area_1 =

beam_width_1*beam_height_1

beam_area_2 =

beam_width_2*beam_height_2

beam_area_3 =

beam_width_3*beam_height_3

beam_moa_1 =

(1/12)*beam_width_1*beam_height_1*

*3

beam_moa_2 =

(1/12)*beam_width_2*beam_height_2*

*3

beam_moa_3 =

(1/12)*beam_width_3*beam_height_3*

*3

link_area_1 =

3.14159*link_radius_1**2

link_area_2 =

3.14159*link_radius_2**2

mat_density = 7826

!define Key Points

k,1,0,0,0

k,2,0,5,0

k,3,0,10,0

k,4,beam_length,0,0

k,5,beam_length,5,0

k,6,beam_length,10,0

!Defines a line between two keypoints

l,1,4

l,2,5

l,3,6

l,4,5

l,5,6

mptemp, , , , , , , ,

mptemp,1,0

mpdata,ex,1, ,200e9

mpdata,prxy,1,,0.33

mpdata,dens,1,,mat_density

!define element types

ET,1,BEAM3

ET,2,LINK1

!define real constants for beam and link

R,1,beam_area_1,beam_moa_1,beam_he

ight_1

R,2,beam_area_2,beam_moa_2,beam_he

ight_2

R,3,beam_area_3,beam_moa_3,beam_he

ight_3

R,4,link_area_1,0

R,5,link_area_2,0

 130

CMSEL,S,,LINE,1

LATT,1,1,1, , , ,

lmesh,1

cmsel,all

CMSEL,S,,LINE,2

LATT,1,2,1, , , ,

lmesh,2

cmsel,all

CMSEL,S,,LINE,3

LATT,1,3,1, , , ,

lmesh,3

cmsel,all

CMSEL,S,,LINE,4

LATT,1,4,2, , , ,

lmesh,4

cmsel,all

CMSEL,S,,LINE,5

LATT,1,5,2, , , ,

lmesh,5

cmsel,all

FINISH

/SOLU

cmsel,all

cmsel,s,,KP,2

fk,4,FY,-100

cmsel,all

dk,1,all,0

dk,2,all,0

dk,3,all,0

SOLVE !solve the system

FINISH !finish the solution for post

processing

/POST1

/shrink,0

/eshape,1.0

/efacet,1

/ratio,1,1,1

/cformat32,0

/replot

lsel,s,,,1

nsll,r,1

nsort,u,y,0,1

*GET, defymax1,sort,0,max

ALLSEL, ALL

lsel,all

lsel,s,,,2

nsll,r,1

nsort,u,y,0,1

*GET, defymax2,sort,0,max

ALLSEL,ALL

lsel,all

lsel,s,,,3

nsll,r,1

nsort,u,y,0,1

*GET, defymax3,sort,0,max

ALLSEL,ALL

lsel,all

lsel,s,,,4

nsll,r,1

nsort,u,y,0,1

*GET, defymax4,sort,0,max

ALLSEL,ALL

lsel,all

lsel,s,,,5

nsll,r,1

nsort,u,y,0,1

*GET, defymax5,sort,0,max

ALLSEL,ALL

lsel,s,,,5

esll,r

ETABLE,SAXL,LS, 1

! Axial Stress

ESORT,ETAB,SAXL,0,0,,

 131

*GET,smax5,sort,,max

ALLSEL,ALL

lsel,s,,,4

esll,r

ETABLE,SAXL,LS, 1

 ! Axial Stress

ESORT,ETAB,SAXL,0,0,,

*GET,smax4,sort,,max

ALLSEL,ALL

lsel,s,,,1

esll,r

ETABLE,SMAX, NMISC, 1

 ! Axial Stress

ESORT,ETAB,SMAX,0,0,,

*GET,smax1,sort,,max

ALLSEL,ALL

lsel,s,,,2

esll,r

ETABLE,SMAX, NMISC, 1

 ! Axial Stress

ESORT,ETAB,SMAX,0,0,,

*GET,smax2,sort,,max

ALLSEL,ALL

lsel,s,,,3

esll,r

ETABLE,SMAX, NMISC, 1

 ! Axial Stress

ESORT,ETAB,SMAX,0,0,,

*GET,smax3,sort,,max

ALLSEL,ALL

*CFOPEN,'BeamAnalysisOutput',txt,,

*VWRITE,defymax1

('BeamDeflection1 =',f20.10)

*VWRITE,defymax2

('BeamDeflection2 =',f20.10)

*VWRITE,defymax3

('BeamDeflection3 =',f20.10)

*VWRITE,defymax4

('BeamDeflection4 =',f20.10)

*VWRITE,defymax5

('BeamDeflection5 =',f20.10)

*VWRITE,smax1

('BeamStress1 =',f20.10)

*VWRITE,smax2

('BeamStress2 =',f20.10)

*VWRITE,smax3

('BeamStress3 =',f20.10)

*VWRITE,smax4

('BeamStress4 =',f20.10)

*VWRITE,smax5

('BeamStress5 =',f20.10)

*VWRITE,(beam_area_1+beam_area_2

+beam_area_3)*beam_length*0.1+(link

_area_1+link_area_2)*5*0.1

('Mass =',G17.11)

*CFCLOS

 132

APDL code for analysis of a I beam

/COM,

/COM,Preferences for GUI filtering

have been set to display:

/COM, Structural

!*

/REPLOT,RESIZE

/PREP7

!Input Variables

beam_length = 18

segment_length = beam_length/3

beam_width_1 = 6

beam_width_2 = 6

beam_width_3 = 6

beam_height_1 = 4

beam_height_2 = 4

beam_height_3 = 4

beam_webheight_1 = 2

beam_webheight_2 = 2

beam_webheight_3 = 2

beam_webwidth_1 = 3

beam_webwidth_2 = 3

beam_webwidth_3 = 3

link_radius_1 = 0.1

link_radius_2 = 0.1

beam_area_1 =

(beam_width_1*((2*beam_height_1)+be

am_webheight_1))-

(beam_webheight_1*(beam_width_1-

beam_webwidth_1))

beam_area_2 =

(beam_width_2*((2*beam_height_2)+be

am_webheight_2))-

(beam_webheight_2*(beam_width_2-

beam_webwidth_2))

beam_area_3 =

(beam_width_3*((2*beam_height_3)+be

am_webheight_3))-

(beam_webheight_3*(beam_width_3-

beam_webwidth_3))

link_area_1 =

3.14159*link_radius_1**2

link_area_2 =

3.14159*link_radius_2**2

beam_moa_1 =

2*(beam_height_1*beam_width_1)*((be

am_webheight_1/2)+(beam_height_1/2)

)**2+(beam_webwidth_1*beam_webhei

ght_1**3)/12

beam_moa_2 =

2*(beam_height_2*beam_width_2)*((be

am_webheight_2/2)+(beam_height_2/2)

)**2+(beam_webwidth_2*beam_webhei

ght_2**3)/12

beam_moa_3 =

2*(beam_height_3*beam_width_3)*((be

am_webheight_3/2)+(beam_height_3/2)

)**2+(beam_webwidth_3*beam_webhei

ght_3**3)/12

total_beam_height_1=

(2*beam_height_1)+beam_webheight_1

total_beam_height_2=

(2*beam_height_2)+beam_webheight_2

total_beam_height_3=

(2*beam_height_3)+beam_webheight_3

mat_density = 7826

!define element types

ET,1,BEAM3

ET,2,LINK1

!* Section Type Information

SECTYPE, 1, BEAM, I, , 0

SECOFFSET, CENT

SECDATA,beam_width_1,beam_width_

1,total_beam_height_1,beam_height_1,b

eam_height_1,beam_webheight_1,0,0,0,

0

SECTYPE, 2, BEAM, I, , 0

SECOFFSET, CENT

 133

SECDATA,beam_width_2,beam_width_

2,total_beam_height_2,beam_height_2,b

eam_height_2,beam_webheight_2,0,0,0,

0

SECTYPE, 3, BEAM, I, , 0

SECOFFSET, CENT

SECDATA,beam_width_3,beam_width_

3,total_beam_height_3,beam_height_3,b

eam_height_3,beam_webheight_3,0,0,0,

0

!* Define Material Properties

MPTEMP,,,,,,,,

MPTEMP,1,0

MPDATA,EX,1,,200e9

! Young's modulus for material

MPDATA,PRXY,1,,0.33

! Poisson's ratios for material

MPDATA,dens,1,,mat_density

! Density for material

!define real constants for beam

R,1,beam_area_1,beam_moa_1,beam_he

ight_1, , , ,

R,2,beam_area_2,beam_moa_2,beam_he

ight_2, , , ,

R,3,beam_area_3,beam_moa_3,beam_he

ight_3, , , ,

!define real constants for link

R,4,link_area_1,0,

R,5,link_area_2,0,

!define Key points

K,1,0,0,0,

K,2,segment_length,0,0,

K,3,2*segment_length,0,0,

K,4,3*segment_length,0,0,

K,5,0,6,0,

K,6,segment_length,6,0,

K,7,2*segment_length,6,0,

K,8,3*segment_length,6,0,

K,9,0,12,0,

K,10,segment_length,12,0,

K,11,2*segment_length,12,0,

K,12,3*segment_length,12,0,

K,13,3*segment_length,0,0,

K,14,3*segment_length,6,0,

K,15,3*segment_length,12,0,

!define line between two key points

L, 1, 4

L, 5, 8

L, 9, 12

L, 13, 14

L, 14, 15

!MESHING

CMSEL,S,,LINE,1

LATT,1,1,1, , , ,1

lmesh,1

cmsel,all

CMSEL,S,,LINE,2

LATT,1,2,1, , , ,2

lmesh,2

cmsel,all

CMSEL,S,,LINE,3

LATT,1,3,1, , , ,3

lmesh,3

cmsel,all

CMSEL,S,,LINE,4

LATT,1,4,2, , , ,

lmesh,4

cmsel,all

CMSEL,S,,LINE,5

LATT,1,5,2, , , ,

lmesh,5

cmsel,all

!Defines coupled degrees of freedom at

an interface

 134

CPINTF,ux,1e-4

CPINTF,uy,1e-4

FINISH

/SOLU

! Apply Loads

CMSEL,all

CMSEL,S,,KP,2

!F,3,FY,-833

FK,4,FY,-8833

!F,7,FY,-833

!F,8,FY,-833

!F,11,FY,-833

!F,12,FY,-833

!give displacements

cmsel,all

DK,1, , , ,0,ALL, , , , , ,

DK,5, , , ,0,ALL, , , , , ,

DK,9, , , ,0,ALL, , , , , ,

!DK,1,ALL,0

!DK,5,ALL,0

!DK,9,ALL,0

SOLVE

FINISH

/POST1

/shrink,0

/eshape,1.0

/efacet,1

/ratio,1,1,1

/cformat32,0

/replot

!ALLSEL, ALL

lsel,s,,,1

nsll,r,1

nsort,U,Y,0,1

*GET, defymax1,sort,0,max

ALLSEL, ALL

lsel,all

lsel,s,,,2

nsll,r,1

nsort,u,y,0,1

*GET, defymax2,sort,0,max

ALLSEL,ALL

lsel,all

lsel,s,,,3

nsll,r,1

nsort,u,y,0,1

*GET, defymax3,sort,0,max

ALLSEL,ALL

lsel,all

lsel,s,,,4

nsll,r,1

nsort,u,y,0,1

*GET, defymax4,sort,0,max

ALLSEL,ALL

lsel,all

lsel,s,,,5

nsll,r,1

nsort,u,y,0,1

*GET, defymax5,sort,0,max

ALLSEL,ALL

lsel,s,,,5

esll,r

ETABLE,SAXL,LS, 1 ! Axial

Stress

ESORT,ETAB,SAXL,0,0,,

*GET,smax5,sort,,max

ALLSEL,ALL

lsel,s,,,4

esll,r

ETABLE,SAXL,LS, 1 ! Axial

Stress

ESORT,ETAB,SAXL,0,0,,

*GET,smax4,sort,,max

ALLSEL,ALL

 135

lsel,s,,,1

esll,r

ETABLE,SMAX, NMISC, 1 !

Axial Stress

ESORT,ETAB,SMAX,0,0,,

*GET,smax1,sort,,max

ALLSEL,ALL

lsel,s,,,2

esll,r

ETABLE,SMAX, NMISC, 1 !

Axial Stress

ESORT,ETAB,SMAX,0,0,,

*GET,smax2,sort,,max

ALLSEL,ALL

lsel,s,,,3

esll,r

ETABLE,SMAX, NMISC, 1 !

Axial Stress

ESORT,ETAB,SMAX,0,0,,

*GET,smax3,sort,,max

*CFOPEN,'Beam_Analysis_Output.txt',t

xt,,

*VWRITE, defymax1

('BeamDeflection1 =',f20.10)

*VWRITE,defymax2

('BeamDeflection2 =',f20.10)

*VWRITE,defymax3

('BeamDeflection3 =',f20.10)

*VWRITE,defymax4

('BeamDeflection4 =',f20.10)

*VWRITE,defymax5

('BeamDeflection5 =',f20.10)

*VWRITE,smax1

('BeamStress1 =',f20.10)

*VWRITE,smax2

('BeamStress2 =',f20.10)

*VWRITE,smax3

('BeamStress3 =',f20.10)

*VWRITE,smax4

('BeamStress4 =',f20.10)

*VWRITE,smax5

('BeamStress5 =',f20.10)

*VWRITE,(beam_area_1+beam_area_2

+beam_area_3)*beam_length*0.1+(link

_area_1+link_area_2)*5*0.1

('Mass =',G17.11)

*CFCLOS

 136

Appendix B

Wrapper Generator Application

//Main class

package wrapperapplication;

import java.io.*;

import java.sql.*;

import javax.sql.*;

import java.util.*;

import java.lang.*;

import javax.swing.table.*;

import javax.swing.JOptionPane;

public class Main {

 public Main() {

 }

 public static void main(String[] args) {

 try {

//FOR USER INPUT --*/

 String getter =JOptionPane.showInputDialog("Enter analysis model name:");

//Call Filewrapper generator --*/

 FileWrapperGenerator newobject1 = new FileWrapperGenerator();

 String FileWrapperresult= newobject1.main(getter);

 System.out.print("FILEWRAPPER RESULT

"+FileWrapperresult+System.getProperty("line.separator"));

//Call Filewrapper generator --*/

 BatchFileGenerator newobject2 = new BatchFileGenerator();

 String batchfileresult= newobject2.main(getter);

 System.out.print("BATCHFILE RESULT

"+batchfileresult+System.getProperty("line.separator"));

 }catch (Exception e){

 }

 }

}

//FileWrapperGenerator Class

package wrapperapplication;

import java.io.*;

 137

import java.sql.*;

import wrapperapplication.*;

import javax.sql.*;

import java.util.*;

import java.lang.*;

import javax.swing.table.*;

public class FileWrapperGenerator {

 public FileWrapperGenerator() {

 }

 public static String main(String getter)

{

 String FileWrapperresult = null;

 String S;

 Statement stmt = null;

 Statement stmt1 = null;

 Statement stmt2 = null;

 Statement stmt3 = null;

 Statement stmt4 = null;

 Statement stmt5 = null;

 Statement stmt6 = null;

 Statement stmt7 = null;

 Statement stmt8 = null;

 Statement stmt9 = null;

 Statement stmt10 = null;

 ResultSet res = null;

 ResultSet res1 = null;

 ResultSet res2 = null;

 ResultSet res3 = null;

 ResultSet res4 = null;

 ResultSet res5 = null;

 ResultSet res6 = null;

 ResultSet res7 = null;

 ResultSet res8 = null;

 ResultSet res9 = null;

 ResultSet res10 = null;

 String query = null;

 String query1 = null;

 String query2 = null;

 String query3 = null;

 String query4 = null;

 String query5 = null;

 String query6 = null;

 String query7 = null;

 138

 String query8 = null;

 String query9 = null;

 String query10 = null;

 String resultvalue = null;

 String Variable = null;

 String DataType = null ;

 String string = null;

 String string2 = null;

 String n =System.getProperty("line.separator");

 int i=0;

 int j=2;

ConnectToDatabase connect1 = new ConnectToDatabase();

Connection connect= connect1.main();

//QUERYING WITH SQL TO READ INFORMATION IN THE DATABASE

try {

 stmt =

connect.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,ResultSet.CONCU

R_READ_ONLY);

 stmt1 =

connect.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,ResultSet.CONCU

R_READ_ONLY);

 stmt2 =

connect.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,ResultSet.CONCU

R_READ_ONLY);

 stmt3 =

connect.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,ResultSet.CONCU

R_READ_ONLY);

 stmt4 =

connect.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,ResultSet.CONCU

R_READ_ONLY);

 stmt5 =

connect.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,ResultSet.CONCU

R_READ_ONLY);

 stmt6 =

connect.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,ResultSet.CONCU

R_READ_ONLY);

 stmt7 =

connect.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,ResultSet.CONCU

R_READ_ONLY);

 139

 stmt8 =

connect.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,ResultSet.CONCU

R_READ_ONLY);

 stmt9 =

connect.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,ResultSet.CONCU

R_READ_ONLY);

 stmt10 =

connect.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,ResultSet.CONCU

R_READ_ONLY);

query="SELECT Wrapper_file_name FROM wrapper where

Analysis_model_name=\""+getter+"\";";

res = stmt.executeQuery(query);

res.next();

int row= res.getFetchSize();

System.out.print("Entry in the database"+row+n+n);

 if (row != 0)//If there is an entry in the database

 {

 System.out.print("filewrapper exists ");

 FileWrapperresult = ("filewrapper exists");

 return FileWrapperresult;

 }

 else{

try{

 query1 = "SELECT Variable_name,Data_type FROM variables WHERE

Analysis_model_name=\"" +getter+"\" and Variable_type=\"Input\" ;";

 res1 = stmt1.executeQuery(query1);

 query2 = "SELECT Variable_name,Data_type FROM variables WHERE

Analysis_model_name=\"" +getter+"\" and Variable_type=\"Output\" ;" ;

 res2 = stmt2.executeQuery(query2);

 query3 = "SELECT COUNT(*) AS rowcount FROM variables WHERE

Analysis_model_name=\"" +getter+"\" and Variable_type=\"Input\" ;";

 res3 = stmt3.executeQuery(query3);

 res3.next();

 int iCount = res3.getInt("rowcount");

 System.out.println("Number of input variables = " + iCount+n);//FOR TESTING

 res3.close();

 query4 = "SELECT COUNT(*) AS rowcount FROM variables WHERE

Analysis_model_name=\"" +getter+"\" and Variable_type=\"Output\" ;";

 140

 res4 = stmt4.executeQuery(query4);

 res4.next();

 int iCount2 = res4.getInt("rowcount");

System.out.println("Number of output variables = " + iCount2+n);//FOR TESTING

 res4.close();

 query5 = "SELECT Output_file FROM analysismodel WHERE

Analysis_model_name=\"" +getter+"\" ;";

 res5 = stmt5.executeQuery(query5);

 res5.next();

System.out.println(n+n+"Analysis model generated output file name = " +

res5.getString(1)+n+n);//FOR TESTING

 query6 = "SELECT AFile_name FROM analysismodel WHERE

Analysis_model_name= \"" +getter+"\";";

 res6 = stmt6.executeQuery(query6);

 res6.beforeFirst();

 res6.next();

System.out.println(n+n+"Analysis model file name = " + res6.getString(1)+n+n);//FOR

TESTING

 query7 = "SELECT Software_name FROM analysismodel where

Analysis_model_name=\""+getter+"\";";

 res7 = stmt7.executeQuery(query7);

 res7.next();

 String softwarename= res7.getString(1);

System.out.print(n+n+"Analysis Software name = "+softwarename+n+n);//FOR

TESTING

 query8="SELECT Executable_URL FROM software where

software_name=\""+softwarename+"\";";

 res8 = stmt8.executeQuery(query8);

 res1.beforeFirst();

 } catch (SQLException sqe2){

 System.out.println("Caught SQL Exception: " + sqe2);

 } catch (Exception e){

 System.err.println ("Error writing to file");

 }

 try{

// CREATE A FOLDER AND THE FILE WRAPPER THE COMMON FILE SYSTEM

 String FilewrapperName =getter+".fileWrapper";

 String BatchFileName =getter+".bat";

 String fileGenerateName = (getter+".in");

 141

 StringBuffer parentDirPath = new

StringBuffer("//Peridot.ces.clemson.edu/c$/Program Files/Phoenix Integration/Analysis

Server 5.1/analyses/commonfilesystem/FileWrappers/");

 String folder = new String(getter);

 parentDirPath.append(folder);

 File parentDir = new File(parentDirPath.toString());

 parentDir.mkdir();

 String Ssd = parentDirPath.toString();

 System.out.println("Caught SQL Exception: " + Ssd);

 File file = new File(parentDir, FilewrapperName);

 parentDir.mkdirs();

 file.createNewFile();

 BufferedWriter out2 = new BufferedWriter(new PrintWriter(new

FileWriter(file)));

// COPY AND PASTE ANALYSIS FILE FROM ANALYSIS MODEL FOLDER TO

THE NEW FOLDER CREATED

// WRITE THE FILE WRAPPER COMMANDS INTO THE CREATED FILE

WRAPPER FILE

// Header section

 out2.write("# @author: Santosh Hiriyannaiah"+n);

 out2.write("# @version: Trial "+n);

 out2.write("# @description: File Wrapper "+n+n);

// File wrapper Run section

 out2.write("RunCommands "+n+"{"+ n);

 out2.write("generate inputFile"+n+"run \""+BatchFileName+"\""+ n);

 out2.write("parse outputFile"+ n+"}"+ n);

// File wrapper RowFieldInputFile Section

 out2.write("RowFieldInputFile inputFile"+ n+"{"+ n);

 out2.write("templateFile:"+ res6.getString(1)+ n) ;

 out2.write("fileToGenerate:"+fileGenerateName+ n+ n);

 out2.write("markAsBeginning \"Input Variables\""+ n+n);

 while(res1.next())

 {

 System.out.println(n+"Input Variable: " + res1.getString(1));//FOR

TESTING

 try {

 out2.write("variable: " + res1.getString(1) + " "+ res1.getString(2) +"

"+j+" 3 "+System.getProperty("line.separator"));

 }catch (IOException e) {

 142

 }

 j=j+1;

 }//end res1 while

 out2.write("}"+ n+ n);

//File wrapper RowFieldOutputFile Section

 out2.write("RowFieldOutputFile outputFile"+ n+"{"+ n);

 out2.write("fileToParse:"+res5.getString(1)+ n);

 out2.write("setDelimiters \" =\" "+ n+n);

 while(res2.next())

 {

System.out.println(n+"Output Variable: " + res2.getString(1));//FOR TESTING

 try {

 out2.write("keyVar: " + res2.getString(1) + " "+ res2.getString(2) +"

\""+res2.getString(1)+"\""+ System.getProperty("line.separator"));

 }catch (IOException e) {

 }

 }//end res2 while

 out2.write("}"+ n+ n);

 out2.close();

 FileWrapperresult = ("FileWrapperresult successfully created");

// Update database

 query10=("INSERT INTO wrapper (Wrapper_file_name,

Analysis_model_name, Batch_file_name)

VALUES(\'"+FilewrapperName+"\'"+","+"\'"+getter+"\'"+","+"\'"+BatchFileName+"\'"+

");") ;

 stmt10.executeUpdate(query10);

 System.out.println ("Updated in database");

 } catch (Exception e){

 System.err.println ("Error writing to file");

 }

 }

 } catch (SQLException sqe2){

 System.out.println("Caught SQL Exception: " + sqe2);

 } catch (Exception e){

 System.err.println ("Error writing to file");

 }

 return FileWrapperresult;

 }

}

// BatchFileGenerator

package wrapperapplication;

import java.io.*;

 143

import java.sql.*;

import javax.sql.*;

import java.util.*;

import java.lang.*;

import javax.swing.table.*;

public class BatchFileGenerator {

 public BatchFileGenerator() {

 }

 public static String main(String getter) {

 String batchfileresult = null;

 Statement stmt1 = null;

 Statement stmt2 = null;

 Statement stmt3 = null;

 Statement stmt4 = null;

 Statement stmt5 = null;

 ResultSet res1 = null;

 ResultSet res2 = null;

 ResultSet res3 = null;

 ResultSet res4 = null;

 ResultSet res5 = null;

 String query1 = null;

 String query2 = null;

 String query3 = null;

 String query4 = null;

 String query5 = null;

 String n =System.getProperty("line.separator");

 ConnectToDatabase connect1 = new ConnectToDatabase();

 Connection connect= connect1.main();

try{

 stmt1 =

connect.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,ResultSet.CONCU

R_READ_ONLY);

 stmt2 =

connect.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,ResultSet.CONCU

R_READ_ONLY);

 stmt3 =

connect.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,ResultSet.CONCU

R_READ_ONLY);

 144

 stmt4 =

connect.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,ResultSet.CONCU

R_READ_ONLY);

 stmt5 =

connect.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,ResultSet.CONCU

R_READ_ONLY);

 query1="SELECT Software_name FROM analysismodel where

Analysis_model_name=\""+getter+"\";";

 res1 = stmt1.executeQuery(query1);

 res1.next();

 String softwarename= res1.getString(1);

System.out.print(n+n+"Analysis Software name = "+softwarename+n+n);//FOR

TESTING

 res1.close();

 query4="SELECT Version FROM software where

software_name=\""+softwarename+"\";";

 res4 = stmt4.executeQuery(query4);

 res4.next();

 int softwareVersion= res4.getInt(1);

 System.out.print("Version of the software used =="+softwareVersion+n);

 res4.last();

 int softwareLatestVersion= res4.getInt(1);

System.out.print("Latest Version of the software used =="+softwareLatestVersion+n);

 String BatchFileName =getter+".bat";

 StringBuffer parentDirPath = new

StringBuffer("//Peridot.ces.clemson.edu/c$/Program Files/Phoenix Integration/Analysis

Server 5.1/analyses/commonfilesystem/FileWrappers/");

 String folder = new String(getter);

 parentDirPath.append(folder); //creates analysis model name folder in file

wrapper dir

 File parentDir = new File(parentDirPath.toString());

 parentDir.mkdir();

 parentDir.mkdirs();

 File file2 = new File(parentDir, BatchFileName);

 if(file2.exists())

 {

 file2.delete();

 }

 else

 {

 145

 file2.createNewFile();

 }

 BufferedWriter out3 = new BufferedWriter(new PrintWriter(new

FileWriter(file2)));

 String attach = (getter+".in");

 String softwareLatestVersionstring = Integer.toString(softwareLatestVersion);

 query2="SELECT Executable_URL FROM software where

Software_name=\""+softwarename+"\" AND Version

=\""+softwareLatestVersionstring+"\";";

 res2 = stmt2.executeQuery(query2);

 res2.next();

 String Executable_URL = res2.getString(1);

 System.out.print(n+n+"Executable_URL = "+Executable_URL+n+n);//FOR

TESTING

 res2.close();

 query3="SELECT Product_name FROM software where

software_name=\""+softwarename+"\" AND Version

=\""+softwareLatestVersionstring+"\";";

 res3 = stmt3.executeQuery(query3);

 res3.next();

 String ProductName = res3.getString(1);

System.out.print(n+n+"ProductName = "+ProductName+n+n+n+n);//FOR TESTING

 res3.close();

 String Dir = ("C:"+"\\"+"Program Files"+"\\"+"Phoenix

Integration"+"\\"+"Analysis Server

5.1"+"\\"+"analyses"+"\\"+"commonfilesystem"+"\\"+"");

 String OutputFile = ("ansys.out");

 out3.write("\""+ Executable_URL+ "\""+ " -b "+"-p "+ProductName+" -i

"+Dir+getter+"\\"+attach+"\""+"-o "+"\""+Dir+getter+"\\"+OutputFile+"\"");

 out3.close();

 batchfileresult = ("batch file successfully created");

 }catch (Exception e){

 System.err.println ("Error ");

 }

 return batchfileresult;

 }

}

 146

package wrapperapplication;

import java.io.*;

import java.sql.*;

import javax.sql.*;

import java.util.*;

import java.lang.*;

import javax.swing.table.*;

public class ConnectToDatabase {

 public ConnectToDatabase() {

 } public static Connection main() {

 Connection connect = null;

 try{

 Class.forName("com.mysql.jdbc.Driver").newInstance();

 System.out.println("Driver Registration Successful.");

 }

 catch (InstantiationException ie){

 System.out.println("Class Instantiation Exception: " + ie);

 } catch (ClassNotFoundException cnf){

 System.out.println("Class Not Found Exception: " + cnf);

 } catch (IllegalAccessException iae){

 System.out.println("Illegal Access Exception: " + iae);

 }

// Establish connection with the Database

 try {

 connect =

DriverManager.getConnection("jdbc:mysql://peridot.ces.clemson.edu/structured_reposito

ry?user=root&password=peridot");

 System.out.println("Connection to MySQL Database

Successful"+System.getProperty("line.separator"));

 } catch (SQLException sqe1){

 System.out.println("Caught SQL Exception: " + sqe1);

 }

 return connect;

 }

}

 147

Appendix C

Reconfiguration Application

package reconfigurationapplication;

import java.io.*;

import com.phoenix_int.ModelCenter.* ;

import com.phoenix_int.ModelCenter.util.*;

import com.phoenix_int.aserver.* ;

import java.sql.*;

import javax.sql.*;

import java.util.*;

import java.lang.*;

import javax.swing.table.*;

import javax.swing.JOptionPane;

public class Main {

 public Main() {

 }

 public static void main(String[] args) {

 String n =System.getProperty("line.separator");

try {

String Project_name =JOptionPane.showInputDialog("Enter Project name :");

//PROVIDE PROJECT FILE INFORMATION

 ProjectInfo info = new ProjectInfo();

 String Formulation_used = info.main(Project_name);

//PROVIDE ANAYSIS AVAILABLE INFORMATION

 AnalysisAvailable models = new AnalysisAvailable();

 models.main();

// --

String Analysis_name =JOptionPane.showInputDialog("Enter the Analysis model to

replace existing :");

String Project_nameAS =JOptionPane.showInputDialog("Project to be saved as :");

Reconfiguration reconfigure = new Reconfiguration();

String ReconfigurationResult= reconfigure.main(Analysis_name, Project_nameAS,

Project_name);

System.out.print("result : "+ReconfigurationResult);

 148

 } catch (Exception e){

 System.err.println ("Error writing to file");

 }

 }

}

// ProjectInformation Class

package reconfigurationapplication;

import java.io.*;

import com.phoenix_int.ModelCenter.* ;

import com.phoenix_int.ModelCenter.util.*;

import java.sql.*;

import javax.sql.*;

import java.util.*;

import java.lang.*;

import javax.swing.table.*;

public class ProjectInfo {

 public ProjectInfo() {

 }

 public static String main(String Project_name) {

 String Formulation_used=null;

 Statement stmt1 = null;

 Statement stmt2 = null;

 Statement stmt3 = null;

 Statement stmt4 = null;

 Statement stmt5 = null;

 Statement stmt6 = null;

 ResultSet res1 = null;

 ResultSet res2 = null;

 ResultSet res3 = null;

 ResultSet res4 = null;

 ResultSet res5 = null;

 ResultSet res6 = null;

 String query1 = null;

 String query2 = null;

 String query3 = null;

 String query4 = null;

 String query5 = null;

 String query6 = null;

String n =System.getProperty("line.separator");

try

{

 149

 Connecttodatabase connect1 = new Connecttodatabase();

 Connection connect= connect1.main();

 stmt1 = connect.createStatement();

query1="SELECT PFile_name,Problem_formulation,

Analysis_model_name,Optimization_component FROM mdoproject

where Project_name="+"\""+Project_name+"\";";

 res1 = stmt1.executeQuery(query1);

 res1.next();

 String ProjectFile_name= res1.getString(1);

 String Formulation= res1.getString(2);

 String Analysis_model_name= res1.getString(3);

 String Optimization_component= res1.getString(4);

 res1.close();

 stmt2 = connect.createStatement();

query2="SELECT URL FROM creation where

File_name=\""+ProjectFile_name+"\";";

 res2 = stmt2.executeQuery(query2);

 res2.next();

 String Location= res2.getString(1);

 res2.close();

 stmt3 = connect.createStatement();

query3="SELECT Objective_function,Design_variable,Constraints

FROM mdoproblem where Problem_formulation =\""+Formulation+"\";";

 res3 = stmt3.executeQuery(query3);

 res3.next();

 String Objective_function= res3.getString(1);

 String Design_variable= res3.getString(2);

 String Constraints= res3.getString(3);

 res3.close();

 stmt4 = connect.createStatement();

query4="SELECT Wrapper_File_name,Batch_file_name,Description

FROM wrapper where Project_name =\""+Project_name+"\";";

 res4 = stmt4.executeQuery(query4);

 res4.beforeFirst();

 res4.next();

 String Wrapper_File_name= res4.getString(1);

 String Batch_file_name= res4.getString(2);

 String Description= res4.getString(3);

 150

 res4.close();

 System.out.print(n+n+"_________Project Details_________ "+n);

 System.out.print("Project name :: "+Project_name+n);

 System.out.print("Project file name :: "+ProjectFile_name+n);

 System.out.print("Project file location :: "+Location+n);

 System.out.print("----------------0---------------- "+n);

 System.out.print("_________Problem Formulation Details_________ "+n);

 System.out.print("Problem formulation used :: "+Formulation+n);

 System.out.print("Objective function :: "+Objective_function+n);

 System.out.print("Design Variables :: "+Design_variable+n);

 System.out.print("Constraints :: "+Constraints+n);

 System.out.print("----------------------0---------------------- "+n);

 System.out.print("_________MDO component Details_________ "+n);

 System.out.print("Optimizer used :: "+Optimization_component+n);

 System.out.print("Analysis Model used :: "+Analysis_model_name+n);

 System.out.print("Wrapper name :: "+Wrapper_File_name+n);

 System.out.print("Batch file name :: "+Batch_file_name+n);

 System.out.print("Description :: "+Description+n);

 System.out.print("-----------------0----------------- "+n+n+n);

 Formulation_used = Formulation;

 }catch (SQLException sqe2){

 System.out.println("Caught SQL Exception: " + sqe2);

 }

 return Formulation_used;

 }

}

// Analysis Information class

package reconfigurationapplication;

import java.io.*;

import java.sql.*;

import javax.sql.*;

import java.util.*;

import java.lang.*;

import javax.swing.table.*;

public class AnalysisAvailable {

 public AnalysisAvailable() {

 }

 151

 public static void main() {

 Statement stmt1 = null;

 Statement stmt2 = null;

 ResultSet res1 = null;

 ResultSet res2 = null;

 String query1 = null;

 String query2 = null;

 String n =System.getProperty("line.separator");

 int m=1;

 try

 {

 Connecttodatabase connect1 = new Connecttodatabase();

 Connection connect= connect1.main();

 stmt1 = connect.createStatement();

 query1="SELECT Analysis_model_name FROM analysismodel;";

 res1 = stmt1.executeQuery(query1);

 System.out.println(n+"------------------------------") ;

 System.out.println(" ANALYSIS MODELS AVAILABLE ") ;

 System.out.println("------------------------------"+n) ;

 while(res1.next())

 {

 System.out.println("(#)"+res1.getString(1)+n) ;

 }

 }catch (Exception e){

 System.err.println ("Error ");

 }

 }

}

//Connecttodatabase Class

package reconfigurationapplication;

import java.io.*;

import java.sql.*;

import javax.sql.*;

import java.util.*;

import java.lang.*;

import javax.swing.table.*;

public class Connecttodatabase {

 152

 public Connecttodatabase() {

 }

 public static Connection main() {

 Connection connect = null;

 try{

 Class.forName("com.mysql.jdbc.Driver").newInstance();

 System.out.println("Driver Registration Successful.");

 }

 catch (InstantiationException ie){

 System.out.println("Class Instantiation Exception: " + ie);

 } catch (ClassNotFoundException cnf){

 System.out.println("Class Not Found Exception: " + cnf);

 } catch (IllegalAccessException iae){

 System.out.println("Illegal Access Exception: " + iae);

 }

// Establish connection with the Database

 try {

 connect =

DriverManager.getConnection("jdbc:mysql://peridot.ces.clemson.edu/structured_reposito

ry?user=root&password=peridot");

 System.out.println("Connection to MySQL Database Successful"+connect);

 } catch (SQLException sqe1){

 System.out.println("Caught SQL Exception: " + sqe1);

 }

 return connect;

 }

}

 153

LIST OF REFERENCES

1. AIAA Technical Committee on Multidisciplinary Design Optimization (MDO).

White paper on current state of art 1991: American Institute of Aeronautics and

Astronautics

2. Alexandrov, N.M. and R.M. Lewis. Reconfigurability in MDO Problem Synthesis,

Part 1; Paper No. AIAA-2004-4307. in 10th AIAA/ISSMO Multidisciplinary

Analysis and Optimization Conference. 2004. Albany, New York USA.

3. Alexandrov, N.M. and R.M. Lewis. Reconfigurability in MDO Problem Synthesis,

Part 2; Paper No. AIAA-2004-4308. in 10th AIAA/ISSMO Multidisciplinary

Analysis and Optimization Conference. 2004. Albany, New York USA.

4. Amitay I , S.K., Mujumdar P M, Design and Development of MDO Framework,

in MSO-DMES 2003.

5. Blaha, M.R., J., ed. Object-Oriented Modeling and Design with UML. 2005,

Prentice Hall: Upper Saddle River, NJ.

6. Brunstein, I., Practical Software Testing. 2003: Springer-Verlag New York, Inc.

7. Engineous Software Inc., iSIGHT-FD, version 2.5 Development Guide. 2006.

8. Engineous Software Inc., iSIGHT-FD, version 2.5 Getting Started Guide. 2006.

9. Engineous Software Inc., iSIGHT-FD, version 2.5 Runtime Gateway Guide. 2006.

10. Engineous Software Inc., iSIGHT-FD, version 2.5 User's Guide. 2006.

11. ESTECO, modeFRONTIER 3 User Manual. 2003.

12. Grosse, I.R., J.M. Milton–Benoit, and J.C. Wileden, Ontologies for Supporting

Engineering Analysis Models. Artificial Intelligence for Engineering Design,

Analysis and Manufacturing, 2005. 19(1): p. 1-18.

13. Hazelrigg, G., Systems Engineering: An Approach to Information-Based Design.

1996, Upper Saddle River, NJ: Prentice Hall.

14. IEEE Std 829-1998, IEEE Standard for Software Test Documentation.

 154

15. Isaacs, A., K. Sudhakar, and P.M. Mujumdar. Design and Development of MDO

Framework, Paper No. 78. in International Conference on Modeling, Simulation,

Optimization for Design of Multi-disciplinary Engineering Systems (MSO-

DMES). 2003. Goa, India.

16. Mocko, G., R. Malak, C. Paredis, and R.S. Peak. A Knowledge Repository For

Behavioral Models in Engineering Design. in 24th ASME Computers and

Information in Engineering Conference (CIE). 2004. Salt Lake City, Utah USA.

17. Padula, S.L. and R.E. Gillian, Multidisciplinary Environments: A History of

Engineering Framework Development, in 11th AIAA/ISSMO Multidisciplinary

Analysis and Optimization Conference. 2006: Portsmouth, Virginia USA.

18. Padula, S.L., J.J. Korte, H.J. Dunn, and A.O. Salas, Multidisciplinary

Optimization Branch Experience Using iSIGHT Software. 1999, NASA Langley

Technical Report Server.

19. Phoenix Integration Inc., AnalysisServer Help version 5.1. 2007.

20. Phoenix Integration Inc., ModelCenter Help, version 7.1. 2007.

21. Salas, A.O. and J.C. Townsend. Framework Requirements for MDO Application

Development, Paper No. AIAA-98-4740. in 7th AIAA/USAF/NASA/ISSMO

Symposium on Multidisciplinary Analysis and Optimization. 1998. St. Louis,

Missouri USA.

	Clemson University
	TigerPrints
	7-2008

	ENHANCEMENT OF INFORMATION MANAGEMENT CAPABILITIES IN MDO FRAMEWORK
	Santosh Hiriyannaiah
	Recommended Citation

	tmp.1387585722.pdf.c19cd

