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Abstract

Satellite measurements of water surface temperature can benefit several environmental ap-

plications such as predictions of lake evaporation, meteorological forecasts, and predictions of lake

overturning events, among others. However, limitations on the temporal resolution of satellite mea-

surements restrict these improvements. A model of the diurnal variation in lake surface temperature

could potentially increase the effective temporal resolution of satellite measurements of surface tem-

perature, thereby enhancing the utility of these measurements in the above applications. Herein,

a one-dimensional transient thermal model of a lake is used in combination with surface tempera-

ture measurements from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument

aboard the Aqua and Terra satellites, along with ambient atmospheric conditions from local weather

stations, and bulk temperature measurements to calculate the diurnal surface temperature variation

for the five major lakes in the Savannah River Basin in South Carolina: Lakes Jocassee, Keowee,

Hartwell, Russell, and Thurmond. The calculated solutions are used to obtain a functional form for

the diurnal surface temperature variation of these lakes. Differences in diurnal variation in surface

temperature between each of these lakes are identified and potential explanations for these differences

are presented.
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Chapter 1

Introduction

The air/water interface of lakes and reservoirs is the location where numerous environmen-

tally relevant processes are mediated. These include the transfer of dissolved gases such as oxygen,

carbon dioxide and methane, the transfer of heat to and from the atmosphere, and the evaporation

and condensation of water at the surface. All of these processes depend critically on the water sur-

face temperature, Ts, which directly or indirectly controls the driving force for all of the transport

processes listed above. In addition, meteorological predictions of the global climate and predictions

of lake overturning events depend critically on Ts.

1.1 Surface temperature measurement

Measuring Ts is generally more difficult than measuring other ambient parameters relevant

to atmospheric processes. Measurements in the literature have been performed using a thermocouple

or thermistor located just below the water surface or a radiometer located above the water surface.

One advantage of these methods is the capability to obtain a continuous time trace of Ts. However,

each of these methods also has its own problems.

When using a thermocouple or thermistor it is difficult to obtain a true Ts measurement

since Ts has been shown to vary within the first few mm of water.2 Thus, waves and variations in

lake level can cause the sensor to move above the surface or too deep to measure the true surface

temperature. Additionally, although the measurement device itself has a low cost, each measurement

location on each lake will require some form of buoy system with a power supply and data acquisition
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capability, all of which make it a challenge to deploy enough sensors to ascertain spatial variation

of Ts.

Radiometer measurements have the advantage of measuring Ts very close to the surface.

However, the accuracy of these measurements can be affected by changes in the spectral properties

of the water surface due to waves or large scale mixing. Additionally, radiometers are expensive

and will also require some form of buoy system for each measurement location. Thus, until recently

obtaining Ts measurements over the surface of a body of water having any significant horizontal

extent has been difficult.

Recent advancements in satellite remote sensing allow for measurements of Ts over large

areas and with reasonable spatial resolution. When dealing with satellite measurements, there is

always some trade-off between spatial and temporal resolution. For example, USGS LANDSAT

images of the visible and infrared spectrum are obtained with a spatial resolution of 30 meters, but

with a temporal resolution of approximately once every 16 days.3 This spatial resolution is excellent;

however, if knowledge of diurnal variation is desired, the temporal resolution is insufficient. The

Moderate Resolution Imaging Spectroradiometer (MODIS) satellites on the other hand have a spatial

resolution of 1000 meters obtained twice daily. The two MODIS satellites, Aqua and Terra, follow

a similar orbit but have a temporal offset of approximately 3 hours. By compiling data from these

two satellites a maximum of 4 measurements per day is obtained.4

While a temporal resolution of 4 satellite measurements per day may be satisfactory in some

cases, for many applications this resolution will be inadequate since it will make difficult obtaining

even a daily maximum and minimum Ts, for example. Having a functional form for the diurnal

variation in Ts would effectively enable an increase in the temporal resolution of satellite-obtained

measurements of Ts. If such a function existed, the 4 satellite measurements currently available

could be used to obtain the unknown constants in such a function, thereby providing an equation

for Ts, continuous in time, for each day.

1.2 Motivation

The utility of such a function can be illustrated using lake evaporation measurement as an

example. The most common method for measuring lake evaporation is the evaporation pan, where

a pan is located on the lake shore. Evaporation from the pan is measured and related to that of

2



a lake through an empirically determined pan coefficient.5 However specific setup, maintenance,

and environmental and operational conditions significantly affect pan measurements, which makes

it difficult to achieve consistent evaporation measurements from such pans.5 Moreover, several

aspects of pan evaporation measurements cause significant inaccuracies which may not be completely

accounted for by the pan coefficient. For example, because the thermal inertia of a pan and a lake

are so different, the temperature of the pan and the lake water are likely to differ, resulting in errors.

Also, the air temperature, humidity, and wind speed above the surface of a shore-based pan will, in

general, differ from that above a lake, causing further complications.

A method that has the potential to obtain evaporation rates, Em, that are more accurate

than the pan method is to use a mass transfer equation of the form:

Em = hm(qs − qa) (1.1)

where Em is the water evaporation rate, hm is a mass transfer coefficient, typically parameterized

as a function of wind speed, u, qs is the vapor concentration at the water surface, which is the

saturation value at the water surface temperature, Ts, and qa is the water vapor concentration of

the bulk air above the water surface, which is the saturation value at the air temperature, Ta,

multiplied by the relative humidity, φ. The parameterization of hm in terms of wind speed u

typically uses a wind speed measured at a ten meter height, u10. This method for obtaining Em

is restricted by the accuracy of hm in Eq. (1.1). However, the strength of this approach is that

it enables estimates of Em over the surface of the lake, unlike for the shore-based pan method.

Using this approach, Em is a function of Ts, Ta, u10, and φ6,5, 7 (all other variables being essentially

constant for typical conditions). Hence, limitations on the spatial and temporal measurements of

Em over a lake are restricted only by the resolutions of (Ts, Ta, u10, φ). Of these four parameters,

(Ta, u10, φ) are easily obtained from meteorological stations such as the National Weather Service

(NWS) Automated Surface Observing System (ASOS).8 However, Ts is not provided by ASOS or

other meteorological resources (e.g. the Meteorological Terminal Aviation Routine Weather Report

[METAR]) due to the challenges associated with measuring Ts, described earlier in this section.

Accordingly, it would be very useful to know the general functional form of the diurnal variation in

Ts so that the temporal resolution on the MODIS measurements could be improved to match that

3



of the ASOS system.

A diurnal function of lake surface temperature would be useful to better understand gas

exchange between the air-water interface. This mass transfer occurs via multiple physical processes,

such as penetrative convection, wind shearing, and bubbling.9 The literature has focused much of

its attention in this field on variations due to the turbulent mixing by wind.9,10 However it is not

uncommon for buoyancy to drive mixing in inland bodies of water. One example would be during

the evening when the wind is mild over a lake. In cases such as this, the evaporative and sensible

heat fluxes can result in large variation in Ts which drive buoyant mixing of the surface layer with

the quiescent lower layers. Researchers interested in understanding diurnal habits of aquatic life, or

performing water quality studies could benefit from a better understanding of these diurnal mixing

events.

The goal of this work is to determine the functional form of the diurnal variation of Ts

which, to the authors’ knowledge, has not been developed to date. Herein a one-dimensional model

of a lake is used in combination with Ts measurements from Aqua and Terra, and measurements

of (Ta, u10, φ) from ASOS to calculate the diurnal surface temperature variation on the five major

lakes in the Savannah River Basin, Lakes Jocasse, Keowee, Hartwell, Russell, and Thurmond. Using

data obtained from these simulations, the general functional form for the diurnal variation in Ts is

developed, and lake to lake variation in the average diurnal cycle of Ts is examined.

1.3 Area Description

The Savannah River Basin (SRB) is an inter-connected series of lakes and reservoirs located

in the United States in the north-western corner of South Carolina. The Savannah River begins as

it flows out of Lake Hartwell. The primary tributaries of the Savannah River are the Tugaloo river

from Georgia, and the Seneca River from South Carolina. The Savannah River generally flows from

northwest to southeast along the border between South Carolina and Georgia. There are eight lakes

and reservoirs typically included within the SRB: Lake Jocassee, Lake Keowee, Lake Hartwell, Lake

Russell, Lake Thurmond, Lake Toxaway, Bad Creek Reservoir, and Lake Issaqueena. Estimated

volumes of these lakes based on average depth and surface area information from the United States

Army Corps of Engineers (USACE) are 3.2 km3, 1.4 km3, 1.6 km3, 1.3 km3, 3.2 km3, 0.01 km3, 0.01

km3, and 0.002 km3. Thus, this work focuses on the five major lakes in the SRB, Lakes Jocassee,
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Keowee, Hartwell, Rusell, and Thurmond. A map of the SRB presenting these five lakes is shown

in Fig. 1.1.

These five reservoirs are used for recreation, power generation, and consumption by many

residents of upstate South Carolina. From upstate SC to Hilton Head, SC, the SRB and its rivers

provide drinking water to more than 1.5 million people each year. Additionally, industrial facili-

ties consume water from this basin. The demands on the fresh water content in the SRB can be

exceedingly high, especially in times of drought. Three of the reservoirs, Lakes Hartwell, Russell,

and Thrumond, are maintained by USACE and used for hydroelectric power generation. Lakes Ke-

owee, Jocassee, and Bad Creek Reservoir contain hydroelectric stations operated by Duke Energy.

Additionally, Lake Keowee provides cooling water to the Oconee Nuclear Station (ONS).

The five lakes considered in this work are all warm monomictic lakes based on mixing

classification. Generally, this means that the lakes get cold enough in the winter to mix thoroughly;

however, they do not get cold enough to freeze over. This type of lake is common throughout many

areas of the United States. Thus, the diurnal function developed in this work has the potential to

be applicable to many more lakes than those considered herein.
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Lake Jocassee

Lake Keowee

Lake Hartwell

Lake Russell

Lake Thurmond

Figure 1.1: Map of the five major lakes considered in this work in the Savannah River Basin. South
Carolina counties are shown in white, North Carolina in a darker gray, and Georgia in a lighter gray.
Information provided by the South Carolina Department of Natural Resources.
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Chapter 2

Methods

The one-dimensional transient model of the lake used here was developed by applying con-

servation of energy at the water surface, and within the mixed layer, and applying a turbulent kinetic

energy balance within the mixed layer. These equations were solved to obtain Ts in the the time

intervals between the Aqua and Terra measurements of Ts, herein referred to as Tsat. The result-

ing simulation Ts was then averaged over all the days investigated to obtain an average functional

form for the diurnal variation for each lake. The measurements used in this analysis, the equations

describing these energy balances, and the simulation algorithm, are presented below.

2.1 ASOS measurements of ambient parameters

Ambient atmospheric measurements of relative humidity, φ, air temperature, Ta, and wind

speed, u, were available every hour from multiple ASOS stations in the SRB.8 A map of the SRB

with the available ASOS stations is shown in Fig. 2.1. The station closest to the center of each lake

was used for the simulation of that lake. Thus, the Oconoee County Regional Airport (KCEU) was

used for Lakes Keowee and Jocassee, the Anderson Regional Airport (KAND) was used for Lakes

Hartwell and Russell, and the Augusta Regional Airport (KAGS) was used for Lake Thurmond.

Ideally the ambient parameters would be measured on the lake; however historical measurements

were not available over the desired time interval.

ASOS weather stations use a fully automated hygro-thermometer which uses a resistive

temperature device (RTD) to measure Ta. The reported working range of the device is −62 to 54
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Lake Jocassee

Lake Keowee

Lake Hartwell

Lake Russell

Lake Thurmond

KAGS

KAND
KCEU

Figure 2.1: Map of the five major lakes and three weather stations considered in this work in the
Savannah River Basin. South Carolina counties are shown in white, North Carolina in a darker gray,
and Georgia in a lighter gray. Information provided by the South Carolina Department of Natural
Resources.
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◦C with a maximum error of ±1− 2 ◦C depending on where in the range the measurement lies. The

resolution is 0.06 ◦C.8 The dew point temperature is measured using this device in combination with

a heat pump, a small LED light and a mirror. The mirror is cooled until the reflection of the LED

light is impaired by condensate on the mirror. The measurement of the temperature of the mirror

is then taken to be the dew point temperature. The relative humidity is calculated using the wet

and dry bulb temperatures.8

Wind measurements are made using a rotating cup anemometer and a simple wind vane

in the ASOS system. Wind measurements are generally taken at 10 m above ground, but some

variation is allowed based on site specific restrictions. The reported working range of the device is

0 to 64 m/s, with a maximum error of ±1 m/s, and a resolution of 0.5 m/s.8

2.2 MODIS measurements of surface temperature

The Moderate Resolution Imaging Spectroradiometer (MODIS) device on the two satellites,

Aqua and Terra, is used to calculate surface temperature all over the world. The satellites image

36 spectral bands ranging from 0.4 µ m to 14.4 µ m with a maximum spatial resolution of 1 km.

The surface temperature measurements utilized in this work come from a level 3 product created via

post-processing of these spectral images.4 The maximum error under typical conditions has been

shown to be ±0.5 K; however in the presence of heavy aerosol loading the maximum error can move

up to ±1 K.11

To try and minimize error in MODIS measurements, only pixels which contained only water

were included in this work. This means any pixels where some of the lake shore or any islands were

present were rejected. Pixels were accepted or rejected visually using GIS data from USACE. There

were 12 pixels available on Lake Hartwell, 6 pixels available on Lake Jocassee, 1 pixel available on

Lake Keowee, 3 pixels available on Lake Russell, and 19 pixels available on Lake Thurmond.

2.3 MODIS measurements of cloud cover

In addition to Tsat measurements, MODIS provides cloud cover measurements. The level 2

cloud fraction product was used in this work for cloud cover index.4 All measurements within a box

bounded by 4 GPS coordinates were averaged to give the measurement at each satellite overpass

9



time. The bounding box coordinates for each lake are shown in Table 2.1. Cloud cover was linearly

interpolated between available measurements in this work.

Lake Max Longitude Min Longitude Max Latitude Min Latitude
Jocassee -82.90 -83.00 35.07 34.95
Keowee -82.85 -83.00 34.95 34.68
Hartwell -82.69 -83.10 34.30 34.70
Russell -82.40 -82.80 34.30 33.85
Thurmond -82.15 -82.60 33.85 33.65

Table 2.1: GPS bounding boxes for each lake used in cloud cover measurements.

2.4 USACE measurements of bulk temperature

Measurements of the bulk temperature of the lake, Tb, were available for Lake Hartwell

from the United States Army Corps of Engineers (USACE) 6-12 times a year. To facilitate the

simulations, a continuous function for Tb was needed. Accordingly, each year of Tb data was fit by a

third order polynomial and these were concatenated. To ensure the polynomial fits were continuous,

the initial point of each year was forced to match the final point of the polynomial curve for the

previous year. For five years (2004, 2006, 2007, 2013, and 2014), the temporal resolution of the

measurements was insufficient to create a good fit. For these years, the average yearly trend from

all of the Tb measurements was used, with a vertical offset based on the final temperature from

the previous year. The developed curve fit was used herein for the simulation. The curve fit of Tb

and the USACE data used in developing this curve are shown in Fig. 2.2. Herein the Tb function

defined for Lake Hartwell was used for the other four lakes since historical measurements of Tb were

unavailable for them. The consequences of this approach will be discussed in Chapter 4.
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Figure 2.2: Lake Hartwell bulk temperature measurements, Tb versus year. The data from USACE
is denoted by the points, and the solid line is the conctenated polynomial curve created from the
data.

2.5 Conservation of energy at the surface

The surface energy balance was calculated following the method presented by Alcantara et

al.7 The primary energy fluxes which contribute to the net heat flux at the surface, ΦN , were the

incident short wave radiation, Φs, the long wave radiation, Φri, the sensible heat flux, Φsf , and

the latent heat flux, Ee.
7,12 Thus, neglecting the effects of precipitation, chemical and biological

reactions, and kinetic energy, the net energy flux at the lake surface was12,7

ΦN = Φs(1 −A) − (Φri + Φsf + Ee) (2.1)

where A was the albedo of water, and Ee was the energy flux due to evaporation or, rarely, conden-

sation. When ΦN was positive, there was a net flux of energy into the lake.

The incident short wave radiation was:

Φs = b1Φ0(sin d)b2(1 − 0.65C2) (2.2)
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where the two calibration parameters b1 and b2 were determined from radiometer data to be 0.79

and 1.15 respectively,7 Φ0 was the solar constant, 1390 Wm−2, d was the solar elevation angle, and

C was the cloud cover index which was obtained from MODIS L2 data.12,7, 4 The solar elevation

angle was calculated using the method presented by Reda et al..13

The longwave radiation flux was:

Φri = εσT 4
s (0.39 − 0.05e1/2a )(1 − λC) + 4εσT 3

s (Ts − Ta) (2.3)

which was positive when there was a loss of energy from the lake, and where ε = 0.97 was the thermal

infrared emissivity of water,7 σ was the Stefan-Boltzmann constant, λ was the Reed correction

factor,14,7, 15 and ea was the partial pressure of water vapor,

ea = φesat(Ta) (2.4)

where esat was the saturated vapor pressure in mb using the equation due to Lowe:16

esat(T ) = 6984.505294 − 188.9039310 × T + 2.133357675 × T 2

− 1.288580973 × 10−2 × T 3 + 4.393587233 × 10−5 × T 4

− 8.023923082 × 10−8 × T 5 + 6.136820929 × 10−11 × T 6

(2.5)

where T was temperature in K.

The sensible heat flux was calculated using the equation

Φsf = ρacpacHu10(Ts − Ta) (2.6)

where ρa was the air density, cpa was the specific heat capacity of air, u10 was the wind velocity ten

meters above the surface, and cH was a coefficient of turbulent exchange.7,6

The energy flux due to evaporation was:

Ee = ρacEhfgu10(esat(Ts) − φesat(Ta))
0.622

Pa
(2.7)
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where hfg was the latent heat of vaporization for water, Pa was the atmospheric air pressure, and

cE was another coefficient of turbulent exchange.7,6

The following assumptions were made in the development of Eqs. (2.1) - (2.7). First, the

electromagnetic spectrum was lumped into two separate bands (short wave and long wave radiation),

which assumed that at some critical wavelength the spectral response of water experiences a step

change. This approach is commonly used in limnology.7 Next, the latent heat flux and sensible heat

flux were assumed to be functions of (Ts, Ta, u10, φ), with the remaining complexity being summed

up in the turbulent exchange coefficients, CH and CE (Eqs. [2.6] and [2.7]). Finally, the short wave

radiation was only included during the day since it has been shown that its effects were negligible

at night;7 the other terms in Eq. (2.1) were included at all times in the day and night.

2.6 Conservation of energy of the mixed layer

Most lakes exhibit some degree of thermal stratification, and the temperature distribution

in a stratified lake is typically described by three distinct layers where lateral temperature variations

are ignored: the mixed layer, the metalimnion, and the hypolimnion. The mixed layer, also called

the epilimnion, is the region closest to the surface in which buoyant forces and/or convective forces

mix the layer, yielding a layer of finite thickness where the temperature is essentially uniform. Hence,

in the simulations presented here, the temperature of the mixed layer and the surface temperature

are made equal and are both referred to as Ts. The metalimnion, or thermocline, is the region of

sharp temperature change in the lake. The hypolimnion is the quiescent region of the lake which

changes temperature slowly from season to season. The temperature of this layer is referred to as

the bulk lake temperature, Tb.

Surface temperature on Lakes Jocasse, Keowee, Hartwell, Russell, and Thurmond located

in northwestern South Carolina were simulated. These lakes are warm monomictic lakes, having

a single mixing season which lasts through the winter.17 As shown in Fig. 2.3, a one-dimensional

transient mixed layer model was used to simulate these lakes where each lake was divided into

two uniform temperature regions: the mixed layer at temperature Ts and the hypolimnion at a

temperature Tb. Data on the change in temperature with depth in the thermocline is often used in

lake models to increase the simulation accuracy. However such data was not available and herein the

13



L

dL
dt

+Z

φN

φE H

Tb

Ts
ρ0cpwLdTs

dt

lake surface

epilimnion

hypolimnion

control volume

lake bed

}

}
φB

Figure 2.3: Control volume of the mixed layer where L was the effective mixed layer depth, H
was the effective lake depth, ρ0 was the reference water density, cpw was the specific heat capacit
of water, Ts was the mixed layer temperature, Tb was the bulk lake temperature, ΦN was the net
surface flux, and ΦE was the energy flux due to entrainment.

thermocline was modeled as having a step change in temperature. With this assumption in mind,

L from the simulation should be thought of as an effective mixed layer depth for the whole lake

rather than a precise measure of mixed layer depth for any individual point of the lake. The control

volume used for this model is shown in Fig. 2.3. The general equation for conservation of energy of

the control volume was:

ρ0cpwL
dTs
dt

= ΦN − ΦE − ΦB (2.8)

where ρ0 was the reference water density, cpw was the specific heat capacity of water, L was the

mixed layer depth and the energy flux due to entrainment, ΦE was calculated using the equation:

ΦE = ρ0cpw(Ts − Tb)
dL

dt
(2.9)
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The energy flux due to heat transfer to the hypolimnion, ΦB was calculated using the equation:

ΦB = −ρ0cpw (H − L)
dTb
dt

(2.10)

where H was the lake depth. Equation (2.9) corresponded to the energy required to change the

temperature of the entrained fluid to match Ts, and Eq. (2.10) corresponded to the energy required

to change Tb. Combining Eqs. (2.8), (2.9), and (2.10) and rearranging terms, yielded an equation

for the time rate of change of Ts:

dTs
dt

=
ΦN
cpρ0L

− (Ts − Tb)

L

dL

dt
− (H − L)

L

dTb
dt

(2.11)

2.7 Turbulent kinetic energy budget

Since Eqs. (2.1) and (2.11) had three unknowns (dTs

dt , L, and dL
dt ) these two equations were

not a closed system. To close the system, the turbulent kinetic energy budget was used. The mixed

layer depth, L, increased due to wind and buoyant mixing, and these effects were modeled in the

turbulent kinetic energy budget as a change in potential and kinetic energy of the entrained water

from the hypolimnion. As water was entrained, the control volume increased in size, changing the

center of gravity of the control volume, and the velocity of the entrained fluid was accelerated to

the turbulent state of the mixed layer.18

The turbulent kinetic energy budget was calculated following the method presented by

Fischer et al.18 The equation for the time rate of change of the mixed layer depth was

dL

dt
=

Cfk q
3
∗

CT q2∗ + α (Ts − Tb) gL
(2.12)

where Cfk was the internal losses coefficient, α was the volumetric thermal expansion coefficient of

water, g was the acceleration due to gravity, CT was the kinetic energy coefficient, and q∗ was the

combined velocity scale:18

q3∗ = (w3
∗ + η3u3∗) (2.13)
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where η was the net efficiency of introduction of kinetic energy at the surface, u∗ was the shear

velocity, modeled as:

u∗ =

√
ρaCDu210

ρ0
(2.14)

CD was the drag coefficient, modeled as:7

CD = 0.00052u0.4410 , (2.15)

and w∗ was the buoyant velocity scale,18,19

w∗ =

(
αgΦNL

Cpwρ0

)1/3

. (2.16)

The constants CT , and η were set to 0.5, and 1.75 respectively as recommended by Fischer et al.18

Preliminary simulations showed that the solution was most sensitive to the value of the

internal loses coefficient, Cfk , which determines how quickly the mixed layer responds to a change in

ambient parameters. The default value of Cfk = 10 was used in the simulation; however, in certain

instances the simulations were iterated over Cfk to decrease the errors in the simulations (simulation

error is defined below). The method used to set values for Cfk is described in Section 2.9.

2.8 Winter Algorithm

The five lakes considered in this study are warm climate monomictic lakes experiencing

overturn and complete mixing during the winter.20 This corresponds to the seasonal mixed layer

depth extending to the lake bottom, which the simulations presented herein predict. Since the lake

is no longer stratified under such conditions, the assumptions used in the model described above are

not valid. Specifically, during overturn Ts would remain essentially constant for the entire season

since there is not enough energy on a diurnal time scale to significantly change the temperature of

the entire bulk of the lake in a single day. However, from satellite measurements it is known that

Tsat varies significantly during the course of a day in the winter and that Tsat deviates from bulk

temperature measurements. Hence, a different simulation algorithm was used for the winter.

Other one dimensional transient models were examined such as utilizing a conduction in
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stagnant water approach as proposed by Snider et al.21 and Girgis et al.22 However, these methods

assume that the mixing effects of wind are negligible, which is not the case for lakes in the Savannah

River Basin in the winter. The eddy coefficient hypothesis presented by Niiler et al.23 was considered;

however, this method depends greatly on empirically determined coefficients which would likely not

be constant for the duration of the simulation. The mixed layer model presented by Spigel et al.24

was considered; however, it required more knowledge of the development of the diurnal thermocline

than was available for this study, such as thermocline thickness, inclination, and the existence of

many thermoclines from previous history. The momentum balance method proposed by Imberger

et al.19 was considered as well; however, poor agreement was found between simulation results and

the satellite measurements during overturn.

Here, the same method described in Sections 2.5 - 2.7 was used but with a constant effective

mixed layer depth for the winter. When the simulation predicted overturn, L was set to a constant

value which minimized the residual error between simulation results and satellite measurements.

Herein a default value of 1.1 m was used for this constant; however, similar to Cfk mentioned in

the previous section, L was varied between satellite measurements to reduce error. This approach

will be described more fully in Section 2.9. The winter start and end dates were chosen so as to

minimize the simulation error at satellite measurements. These dates were November 15 and March

31 respectively, though the simulations were not overly sensitive to these dates.

2.9 Simulation Algorithm

Simulations were conducted from the summer of 2002 which was the earliest time at which

two daily satellite measurements were available from both Aqua and Terra, and continued through

the beginning of the summer of 2014. An assumed value for L based on the seasonal thermocline

was used as an initial condition. The inputs consisted of four daily Ts measurements from Aqua and

Terra, hourly ambient atmospheric conditions (Ta, and φ) from the nearest ASOS weather station

to the lake being simulated.

Using u10 from weather stations yielded poor agreement with satellite measurements of

Tsat. Accordingly, the simulations were iterated over u10 to minimize the root mean square (rms)

deviation of Tsat from satellite measurements. It has been shown that u10 can vary significantly both

temporally and spatially over bodies of water compared to land measurements.25 The consequences
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of this approach are presented in Chapter 4.

The details of the solution algorithm are presented below and are graphically illustrated in

Fig. 2.4. An example of how the solution converged to a value for Ts between two satellite points is

presented in Fig. 2.5. In the following description, t corresponds to the time since the first satellite

measurement, t1sat, and is incremented in time steps of ∆t = 60 sec.

For each pair of satellite measurements, the following process was used. First, the net flux

at the surface was calculated using Eqs. (2.1) - (2.5). Next, dL
dt was calculated using Eqs. (2.12) -

(2.16). Then dTs

dt was calculated using Eq. (2.11). New values for Ts were then obtained using the

equations:

Ts(t+ ∆t) = Ts(t) +
dTs
dt

∆t (2.17)

and

L(t+ ∆t) = L(t) +
dL

dt
∆t (2.18)

The above process was repeated until t was equal to the time of the next satellite measurement,

tn+1
sat . As noted above, this process was repeated over a range of u10 to give a solution with the least

deviation of the simulation from the satellite measurements. The approach for doing this was to run

a simulation for u10 equal to 0 m/s and 20 m/s. An example of this is shown in Fig. 2.6. As this figure

shows, both values of u10 yielded values of Ts at tn+1
sat unequal to the satellite measurement; however

the satellite measurement was between the two solutions. Thus, the next step was a straightforward

iteration over u10 to find the converged solution, i.e. the solution where Ts at the second satellite

measurement time was as close as possible to that second satellite measurement, i.e. where the error

was minimized. Here, error was defined as:

Terr =
∣∣Ts(tn+1

sat ) − Tn+1
sat

∣∣ (2.19)

where Ts(t
n+1
sat ) was the simulated temperature, and Tn+1

sat was the satellite measurement tempera-

ture. The next value of u10 was calculated using linear interpolation from the previous u10 and the
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n = 1

t = tnsat,
Ts(t) = Tnsat

Calculate:
ΦN

Calculate:
dL
dt

Calculate:
dTs

dt

Calculate:
Ts(t + ∆t),
L(t + ∆t),
t = t + ∆t

if t = tn+1
sat

Calculate: Terr = Ts(t
n+1
sat )−Tn+1

sat

if u10 is
converged

n = n + 1

Start

update u10
yes

no

yes

no

Figure 2.4: Simulation algorithm flow chart. Process starts at with the first pair of satellite mea-
surements and continues until the simulation is complete.
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Figure 2.5: Example of converged solution for Ts versus time in hours between two satellite mea-
surements.

u10 at which Terr was a minimum. The process was repeated until u10 was converged within 1/1000

m/s. Typical values of Terr ranged from 0 K to 2 K, with an average at less than 2 K.

In certain cases, the two initial values for u10 used (u10 = 0 m/s and u10 = 20 m/s) gave two

values of Ts at tn+1
sat that did not span the value of Tn+1

sat , as was the case in Fig. 2.6. An example

of such a situation is shown in Fig. 2.7 where both of the simulations give values of Ts at tn+1
sat

that are less than the satellite measurement. Since Ts is typically monotonic in u10 (when all other

parameters are held constant) a second parameter must be varied in these cases to adjust the range

of possible solutions until the satellite measurement falls between the two simulated values (this

assumes that for 0 m/s < u10 < 20 m/s, which is a safe assumption for the lakes investigated here).

The result of this is shown in Fig. 2.8 where Cfk was varied to force upward the two Ts solutions

shown in Fig. 2.7, thereby spanning the satellite measurement. In the spring, summer, and fall,

Cfk was used as the second parameter, forcing upward (or downward) the solutions for the initial

guesses of u10 = 0, 20 m/s if necessary. However, as noted in Section 2.8, varying Cfk in the winter

does not significantly affect the solution and so L was used as the second parameter in the winter

simulations, when necessary.

Once the satellite measured Tsat fell within the possible solutions for Ts, u10 was varied to

force the Ts solution to hit the satellite point as discussed earlier. The solution with the minimum
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Figure 2.6: Simulation for Ts using u10 = 0 m/s and u10 = 20 m/s, 1st example. Note that one
simulation gives a final value of Ts greater than T 2

sat and the other gives a final value of Ts less than
T 2
sat. This enables a straightforward iteration over u10 to find the converged solution.

residual error calculated using Eq. (2.19) was selected and the simulation then proceeded to the

next satellite point and set of ambient parameters. This algorithm was performed for the five lakes

considered in this work: Lakes Jocassee, Keowee, Hartwell, Russell, and Thurmond.
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Figure 2.8: Simulation for Ts using u10 = 0 m/s and u10 = 20 m/s after iterating over Cfk . Note
that one simulation gives Ts > T 2

sat and the other gives Ts < T 2
sat. This enables a straightforward

iteration over u10 to find the converged solution.
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Chapter 3

Results

Surface temperature was calculated between MODIS measurements of Tsat for the five major

lakes in the Savannah River Basin. Surface temperatures were simulated from July 2002 (the first

time where all four daily Tsat measurements from MODIS were available) to July 2014 for Lakes

Hartwell, Keowee, and Russell. Lakes Jocassee and Thurmond were simulated from 2006-2014 due

to limited availability of KCEU measurements (Ta and φ) for earlier years. The simulations of Ts

for Lakes Hartwell, Jocassee, Keowee, Russell, and Thurmond are presented in Fig. 3.1, revealing

the annual variation in Ts.

Figure 3.1 shows some instances where the simulations deviate significantly from any of

the measured values. These events were rare; those instances where Ts deviated from the entire

max/min for the satellite data set occured less than 0.1% of the time. The cause of this is described

in Chapter 4. These points were omitted and therefore had no impact on the results presented here.

To quantify how well the simulation results matched the satellite measurements, the root

mean square deviation of the simulations from the satellite measurement was computed:

Trms =

[
1

N

N∑
n=1

(Tns − Tnsat)
2

]1/2
(3.1)

where n was the satellite measurement number, Tnsat is nth the satellite surface temperature measure-

ment, Tns was the simulation surface temperature at the time of the nth satellite measurement, and

N was the total number of satellite measurements. For Lakes Hartwell, Jocassee, Keowee, Russell,
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Figure 3.1: Lake surface temperature, Ts in K versus time, t in years from simulation results for
Lakes (a) Jocassee, (b) Keowee, (c) Hartwell, (d) Russell, and (e) Thurmond.

and Thurmond, Trms was 1.4 K, 1.5 K, 2.7 K, 2.0 K, and 1.5 K, respectively.

To show the behavior of Ts in greater detail the results for Lake Hartwell are now presented.

Figure 3.2(b) presents the simulations of Ts for the entire 12 year time period considered for Lake

Hartwell, along with the satellite measurements of Tsat. Because of the density of the data, the

satellite measurements are difficult to see in Fig. 3.2(b); these data are presented alone in Fig. 3.2(a).

As Fig. 3.2 shows, the trend from year to year was periodic. To show the simulations of

Ts more clearly, the simulations from a sample year, 2011, are presented in Fig. 3.3, revealing the

seasonal variation. Starting on January 1, 2011 (Day 0 in Fig. 3.3), Ts dropped until it reached a

minimum around the middle of February, then steadily increased until it reaches a maximum in the

middle of August, and finally began to decrease until the end of the year.

To focus on the diurnal variation, the simulations for a sample week are shown in Fig. 3.4

which shows that the largest Ts was generally found in the early afternoon, and the coolest slightly

before sunrise. To obtain the diurnal variation in the surface temperature using the entire data set,

a non-dimensional temperature T ∗ was developed so as to prevent seasonal trends from obscuring

24



200

250

300

T
s (

K
)

2004 2006 2008 2010 2012 2014
200

250

300

T
s (

K
)

Years

 

 

Simulation
Measurement

(a)

(b)
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Figure 3.3: Lake Hartwell Ts, in K versus day number from simulation results for 2011. Day 0
corresponds to January 1, 2011, and Day 365 corresponds to December 31, 2011. (a) Satellite
measurements only. (b) Satellite measurements and simulation results.
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the diurnal trend:

T ∗ =
T − Tmin

Tmax − Tmin
(3.2)

Here the subscripts min and max corresponded to the minimum and maximum values of each

individual day. A time trace of T ∗
s for a sample week is presented in Fig. 3.5. To further prevent

obscuration of the diurnal trend by the seasonal trend, a non-dimensional time scale t∗, was used to

define time based on local sunrise and sunset time:

t∗ =



24+t−tset
24−tset+trise + 1 0 ≤ t < trise

t−trise
tset−trise trise ≤ t ≤ tset

t−tset
24−tset+trise + 1 trise ≤ t ≤ tset

(3.3)

In Eq. (3.3) trise and tset were sunrise and sunset in hours since midnight local time. Hence t∗ = 0

at sunrise on the current day; t∗ = 1 at sunset; and t∗ = 2, its maximum value, at sunrise the

following day.

This scaling has a few key advantages over simply using local time. The growth of a new

thermocline begins at sunrise when the surface layer begins to absorb solar energy. Using this scaling

ensured that this growth began at the same t∗ every day, which was useful for averaging purposes

across multiple days. Additionally, since solar position and length of day were key parameters in

modeling the diurnal variation of Ts, averaging the results from different parts of the year using t

instead of t∗ may have concealed diurnal trends that were common for the whole year, a further

advantage of using t∗. A plot of T ∗ versus t∗ obtained by averaging over every day of the 12 year

simulation period is shown in Fig. 3.6 for Lake Jocassee, Fig. 3.7 for Lake Keowee, Fig. 3.8 for Lake

Hartwell, Fig 3.9 for Lake Russell, and Fig. 3.10 for Lake Thurmond. The average diurnal cycles

shown in Figs. 3.6- 3.10 show some noise. This noise is a result of averaging over t∗ which resulted

in some bins having less data than others due to the changes in sunrise and sunset times.
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Figure 3.4: Surface temperature, Ts, in K versus day from simulation results for a typical week. (a)
Satellite measurements only. (b) Satellite measurements and simulation results.
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Figure 3.5: Non dimensional temperature scaling applied to a sample week. (a) Ts in K versus time
in days from the simulation results for a sample week. (b) Surface temperature transform, T ∗

s , from
Eq. (3.2) of the sample week in part (a).
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The abrupt change in temperature observed in Figs. 3.6- 3.10 between t∗ = 0.4 and t∗ = 0.5

is an artifact of the simulation algorithm. The algorithm iterates over wind speed between satellite

measurements of Tsat. There are times (primarily in the middle of the afternoon) where two satellite

measurements are very different. When disagreement with Tsat is observed, the simulation will

iterate over a second parameter which causes L to change rapidly, which results in Ts changing

quickly. An example of this result is shown in Fig. 3.11. The second order discontinuity in Ts

predicted by the simulation in day 6 of Fig. 3.11 likely does not predict the real variation in Ts. This

difference could come from any number of factors which are not considered in this work. Examples

include movement of a front into the region, a sudden change from clear skies to very overcast

conditions and precipitation. Using precipitation as an example, a summer storm coming in after

the first daytime Tsat measurement would cause the second daytime Tsat measurement to drop

significantly. This adds uncertainty to the simulation which, even after averaging over many days,

still appears in the diurnal average. A similar step is observed in the additional averaging methods

discussed in Chapter 4. Additional discussion of how the simulation predicts Fig. 3.11 is provided

in Chapter 4.

The next step in this work was to develop a functional description of the diurnal variation of

lake surface temperature. Moreover, the desire was to develop a function with four fitting parameters

so that the known surface temperatures obtained from the four daily satellite measurements which

can be obtained from Aqua and Terra could be used to develop an individual equation for any given

day. To do this, the Fourier transform of the data presented in Figs. 3.6- 3.10 were obtained. The

result of this transform on Lake Hartwell is presented in Fig. 3.12 which shows that the primary

dimensionless frequency, f∗1 , using the t∗ scaling is 0.5, which was expected since t∗ had a fixed

period of 2. Additionally, the second, third, and fourth harmonics were at f∗ = 1, 1.5 and 2, where

k is the harmonic. Accordingly, the average diurnal cycles shown in Fig. 3.8- Fig. 3.10 may be fit

to:

T ∗(t∗) =

4∑
k=1

[Bksin (2πf∗k t
∗ − ψk)] −D (3.4)

Bk is the amplitude of each Fourier component, ψk is the phase shift for each Fourier component,

and D is a DC offset. Of course Eq. (3.4) actually has nine unknown constants, not four. Iterative
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solution was used to obtain the optimal values of (Bk, ψk, D) for the average diurnal cycle (t∗, T ∗)

data shown in Figs. 3.8-Figs. 3.10 for each individual lake. These values are summarized in Table 3.1.

The peak temperature occurs at t∗ = 0.80, and the minimum temperature occurs at t∗ = 0.01. Thus,

the peak occurs a few hours before sunset and the minimum shortly after sunrise. This reconstruction

is shown along with the original average (t∗, T ∗) results for Lake Hartwell in Fig. 3.13.
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Figure 3.6: Lake Jocassee average plot of T ∗
s versus t∗ for the entire simulation period (2006-2014).
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Figure 3.7: Lake Keowee average plot of T ∗
s versus t∗ for the entire simulation period (2006-2014).
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Figure 3.8: Lake Hartwell average plot of T ∗
s versus t∗ for the entire simulation period (2002-2014).
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Figure 3.9: Lake Russell average plot of T ∗
s versus t∗ for the entire simulation period (2002-2014).
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Figure 3.10: Lake Thurmond average plot of T ∗
s versus t∗ for the entire simulation period (2002-

2014).
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Figure 3.11: Surface temperature, Ts, in K versus day from simulation results for a typical week
where both u10 and Cfk are large. (a) Satellite measurements only. (b) Satellite measurements and
simulation results.
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This same non-dimensional scaling, averaging, and fitting using a Fourier transform was

applied to the simulation results for Lakes Jocassee, Keowee, Russell, and Thurmond. The resulting

average diurnal cycles of Ts for each lake are presented in Fig. 3.14. The constant values for Eq. (3.4)

for each lake are presented in Table 3.1.
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Figure 3.12: Fourier transform of data presented in Fig. 3.8.

Lake B1 B2 B3 B4 ψ1 ψ2 ψ3 ψ4 D
Jocassee 0.4145 0.1036 0.0166 0.0456 1.14 2.66 7.83 8.64 -0.4807
Keowee 0.4665 0.1120 0.0140 0.0187 1.03 2.82 3.43 2.94 -0.4407
Hartwell 0.4442 0.1110 0.0178 0.0311 2.88 6.63 8.94 8.94 -0.4212
Russell 0.4592 0.1148 0.0046 0.0230 0.99 2.82 3.93 2.74 -0.4285
Thurmond 0.4677 0.1029 0.0047 0.0281 0.99 2.80 2.93 2.94 -0.4348

Table 3.1: Constant values for Eq. (3.4) for lakes in the Savannah River Basin.
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Figure 3.13: Average T ∗
s versus t∗, from simulation results from 2002-2014 with sinusoidal function,

Eq. (3.4).
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Figure 3.14: Plots of T ∗
s versus t∗ obtained from Eq. (3.4) for all 5 lakes.
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Chapter 4

Discussion

To the author’s knowledge, Eq. (3.4) is the first functional description of the diurnal variation

in Ts for a lake, which complicates comparison with other results in the literature. Similar work has

been presented by Jin et al. for the land surface skin temperature diurnal cycle (LSTD).1 Similar

to what is presented here, the LSTD model uses a min/maxed temperature in terms of local sunrise

and sunset times. The LSTD authors propose a sinusoidal fit between sunrise and sunset; however,

for the period from sunset to midnight they use a power law fit, and a linear fit from midnight to

sunrise.

The LSTD authors did not present their average diurnal cycle in t∗. Thus, to fit their data

to the scaling defined in this work, first the T ∗ values of the LSTD as a function of local time were

calculated using the equations presented by Jin et al. for sunrise and sunset times matching their

data. The constants in the LSTD equations were solved iteratively by modifying them one by one

and visually checking the resultant plot with the one presented in the LSTD paper. Once the plots

matched, the t∗ scaling was applied to the LSTD authors’ data.

The LSTD function is presented in Fig. 4.1, along with that obtained for lakes showing

the similarities and differences between the two models. The minimum occurs at approximately

the same time; however the peak time is later in the day on the lake than on land. On land, the

heat transfer from the surface layer to the layers below is primarily through conduction, which is a

fast mode of heat transfer. Consequently, the temperature as a function of depth should follow the

general conduction solution for a radiated surface with a sinusoidal source. Thus, land temperature

should monotonically decrease with depth. However as discussed in Section 2.7, on water this is not
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the case. Turbulent mixing due to buoyancy and wind shear cause the water to mix to a constant

temperature throughout the mixed layer. Therefore there is a much larger volume of water that

must gain or lose energy to experience a change in temperature than the volume of land. Thus, it

is expected that the land surface temperature would respond more rapidly to radiative forcing than

lake surface temperature.
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Figure 4.1: Plot of T ∗
s , versus t∗ for the results developed herein and that of the LSTD model due

to Jin et al.1

Lakes Jocassee, Keowee, Hartwell, Russell, and Thurmond are geographically very close

to each other and therefore experience, essentially, the same insolation and weather conditions.

However, several aspects of these lakes differ. This is shown in Table 4.1 which reveals significant

differences in the depth, area, and coast length of these lakes. In spite of these differences, as

Fig. 3.14 shows, there is almost no difference in the averaged diurnal variation in Ts when presented in

dimensionless form according to Eqs. (3.2) and (3.3). This suggests a certain robustness in the diurnal

variation of lake surface temperature when considered in the dimensionless form developed here,

although whether this robustness holds up for lakes experiencing different meteorological conditions

would require further research.

Of course by making the Ts versus t data dimensionless, significant variations are purposely

masked and such variations may provide useful information. To further develop an understanding

of how these lakes are similar and different, the results presented in Fig. 3.14 were reprocessed in

two additional ways, each using the same t∗ as used in Fig. 3.14, but scaling Ts differently. First,
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Lake Lat Long Elev Davg Dmax C As
Jocassee2 34.96◦N 82.92◦W 338 m 48 m 107 m 121 km 30 km2

Keowee2 34.80◦N 82.89◦W 240 m 16 m 91 m 623 km 75 km2

Hartwell1 34.47◦N 82.85◦W 201 m 14 m 56 m 1548 km 230 km2

Russell1 34.09◦N 82.63◦W 145 m 12 m 45 m 869 km 108 km2

Thurmond1 33.66◦N 82.20◦W 100 m 11 m 42 m 1930 km 288 km2

Table 4.1: Physical characteristics of lakes in the Savannah River Basin where Davg is the average
lake depth, Dmax is the max lake depth, C is the coast length and As is the lake surface area. Data
supplied by USACE.1 Data supplied by DNR.2

the daily time traces of Ts versus t∗ were averaged over the entire period of record for each lake.

The resulting diurnal cycle is the average day for the entire data set, in Kelvins. The results are

presented in Fig. 4.2. This method has the advantage of showing vertical offsets in yearly average

temperatures between the lakes.

In the second method the daily mean is subtracted from each daily Ts versus t∗ time trace

and then all of the days in the period of record are averaged together for each lake. This yields a

time trace of the deviation from the daily mean Ts for the simulation. The results of this approach

are presented in Fig. 4.3. This method has the advantage of showing which lakes experience the

greatest range of temperature change on an average day.

It is noted that in Figs. 4.2 and 4.3, the actual Ts simulations are presented, not the Fourier

fit which was shown in Fig. 3.14. This is why Figs. 4.2 and 4.3 are somewhat noisier. The reason

for this noise was discussed briefly in Chapter 3, and will be discussed more later in this section.

The next step is to determine if the lake-to-lake differences shown in Figs. 4.2 and 4.3 are

related to any of the physical lake characteristics presented in Table 4.1. Observing the trends of

Ts versus t∗ shown in Fig. 4.2, the ordering of lakes from the highest average Ts to the lowest are:

Keowee, Thurmond, Hartwell, Russell, and Jocassee. None of the parameters listed in Table 4.1

follow this same trend. However Lake Keowee is a heat sink for the Duke Energy Oconee Nuclear

Station (ONS), and this excess energy may cause Lake Keowee’s Ts results in Fig. 4.2 to be an

outlier. The likelihood of this is supported by the experimental work of Oliver et al. where Ts was

observed to increase by 4 K when ONS became operational.26 Neglecting Lake Keowee, computing

the average over the diurnal cycle Ts for the data in Fig. 4.2, and plotting this versus As and C for

the remaining four lakes reveals a monotonically increasing trend in both cases, as shown in Figs. 4.4

and 4.5, respectively.
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Figure 4.2: Ts versus t∗ time trace obtained by averaging all daily time traces for the period of
record.
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Figure 4.3: Ts versus t∗ time trace where the daily mean is subtracted from each day and then all
days were averaged over the period of record.
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Figure 4.4: Average Ts from each lake diurnal cycle versus coast length for the four lakes in the
Savannah River Basin.
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Figure 4.5: Average Ts from each lake diurnal cycle versus surface area for the four lakes in the
Savannah River Basin.
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Both C and As generally increase as the size of the lake increases. However, it is not

immediately apparent why a larger lake would have a higher Ts than a smaller lake under similar

meteorological conditions. One possible explanation for the increase in Ts presented in Figs. 4.4 and

4.5 can be explained by the existence and extent of dendrites. Many lakes contain inlets, outlets,

bays, and coves which can account for a substantial amount of As and C. In the SRB, these dendrites

generally have a smaller depth than that of the rest of the lake. In some instances, these dendrites

are shallow enough that solar radiation penetrates to the bottom of the lake and creates a buoyantly

unstable system which causes the water to fully mix in this area. This can result in dendrites having

a higher Ts than the rest of the lake. Wind across the surface and circulation within the lake can

spread these higher Ts regions toward the center of the lake. Thus, it would make sense for lakes

with a higher proportion of dendrites to have a higher Ts. To quantify the dendrites in the SRB,

the ratio:

Dr =
C

P
(4.1)

was used where Dr is the dendritic ratio, C is the coast length of the lake, and P is the perimeter

of a circle with a surface area equal to that of the lake. Thus Dr is the ratio of the actual coast

length to the minimum possible coast length, which correlates to how prevalent dendrites are. As

an example, the outline of Lake Jocassee (Dr = 6.2) and Lake Hartwell (Dr = 28.8) are shown side

by side in Fig. 4.6. Values for Dr for each lake in the SRB are presented in Table 4.2. A plot of

Ts versus Dr is presented in Fig. 4.7, which shows that Ts increases monotonically with Dr which

supports the theory that the prevalence of dendrites affects Ts.

Lake Jocassee Keowee Hartwell Russell Thurmond
Dr 6.2 13.5 28.8 23.6 31.6

Table 4.2: Dendritic ratio, Dr, for the lakes in the SRB
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Lake Jocassee Lake Hartwell
Figure 4.6: Comparison of Lake Jocassee (Dr = 6.2) and Lake Hartwell (Dr = 28.8). Note that the
two lakes have been scaled to appear the same size to better present the dendrites.
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Figure 4.7: Average Ts from each lake diurnal cycle versus dendritic ratio for four of the lakes in
the Savannah River Basin.
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To better show the relationships between C, As and Dr, Eq. 4.1 can be rewritten as the

following:

Dr =
C

2
(
4As

π

)1/2 (4.2)

According to Eq. 4.2, as As increases, Dr should decrease, and as C increases, Dr should increase.

Figure 4.8 shows that the lakes in this work follow the expected trend of Dr and C being directly

correlated. However, Fig. 4.9 shows that As also monotonically increases with Dr within the SRB.

This increase in the prevalence of dendrites as lake size increases in the SRB is due to C increasing

proportionally more than As in these lakes. This is likely due to an increase in tributary basins as

lake size increases in the SRB. Thus, the trends observed in Fig. 4.4 and 4.5 may not be true of

other basins which may have different inlet and outlet conditions. Although Ts scales similarly with

As, C, and Dr for the lakes examined in this work, using Dr provides a physical explanation for

why Ts would behave in this way. However, additional data from lakes varying Dr with different

combinations of large and small As and C would be needed to test this hypothesis.
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Figure 4.8: Lake Dr versus C for each of the lakes in the SRB

Plots of the deviation from the mean of Ts versus t∗ shown in Fig. 4.3 indicates that Lakes

Keowee and Russell experience the largest range of temperature change in the average diurnal cycle;

whereas the other three lakes (Hartwell, Jocassee, and Thurmond) experience essentially the same
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Figure 4.9: Lake Dr versus As for each of the lakes in the SRB

trend. This means that on an average day, Ts on Lakes Keowee and Russell will change more than

on Lakes Hartwell, Jocassee, and Thurmond. None of the parameters cataloged in Table 4.1 explain

this deviation. However, if Lake Keowee is discounted for the same reasons discussed above, then

the only outlier is Lake Russell.

Lake Russell is interesting since it utilizes pumpback turbines. This means that periodically

the flow of the Savannah River is reversed to pump water from Lake Thurmond to Lake Russell.

Pumpback systems are generally designed such that the water entering the upper and lower basins

enters the lake with an angle above horizontal. The water coming from the upper reservoir is

typically as vertical as possible, and the water coming from the lower reservoir is just slightly above

horizontal.27 The water from the lower reservoir is taken from well below the lake surface to ensure

that there will be enough water in the lake for the pumpback systems to operate during drought.

Thus, the water being pumped from Lake Thurmond at night is coming from the colder, bulk layer

and being pumped into Lake Russell.27 For a lake the size of Lake Russell, it is possible that this jet

of cold water could travel through the bulk of the lake and mix with the epilimnion layer, resulting

in a reduction of Ts at night. This drop in Ts at night would explain the larger range of temperatures

experienced by Lake Russell in Fig. 4.3. Looking at the trend for Lake Russell shown in Fig. 4.2, the

night time average Ts is less than that of Lake Hartwell which has a similar Dr. This observation

agrees with the explanation that the pumpback system lowers Ts for Lake Russell at night. Lake
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Jocassee also utilizes pumpback systems with Bad Creek Reservoir. However, the pumpback system

into Lake Jocassee discharges into the hypolimnion and it is less likely that the plume of water from

the pumpback system penetrates the epilimnion and affects Ts due to the depth of Lake Jocassee.28

After having eliminated Lakes Russell and Keowee, only Lakes Jocassee, Hartwell, and

Thurmond remain. These three lakes exhibit very similar behavior in Fig. 4.3. This is intriguing

since Lake Jocassee is so much deeper than the other two. This suggests that variations in the

parameters listed in Table 4.1 do not affect the range of temperature change on a daily basis.

However, significant differences in latitude and longitude were not considered in this work, which

seem to be the parameters most likely to cause deviation in this averaging method by increasing or

decreasing the length of day.

In this work Tb for each lake was considered to be the same as Lake Hartwell since Tb

measurements were only available from Lake Hartwell throughout the simulation duration. As

discussed in Chapter 2.4, the Tb used for Lake Hartwell was a concatenation of third-order polynomial

best fits to USACE measurements for individual years. Using Tb measurements from Lake Hartwell

for all five lakes could lead to an overestimation of the collapse in the diurnal function. However, in

the development of the model on Lake Hartwell, it was found that changing Tb values changed the

solution for L in the model but did not significantly affect Ts. This is because the model calculates

an effective mixed layer depth which best fits the Ts measurements from the MODIS instruments.

Thus, changing Tb would not affect the Ts solution unless it were very different.29

To confirm that the trend observed in Fig. 4.2 was not affected by the use of Lake Hartwell

bulk measurements for all the lakes, the average Tsat at each satellite over-pass time was computed.

These measurements were obtained directly from MODIS, and were not affected by any assumptions

made in the simulation. These average measurements are presented in Fig. 4.10 along with the

simulations presented in Fig. 4.2. The order from minimum to maximum Tsat follows the same

trend as that of the simulation results as shown in Fig. 4.11 which is a plot of Ts versus Tsat for

each of the five lakes. Here, Ts is computed by averaging Ts for the diurnal cycle for each lake

shown in Fig. 4.2. Tsat is computed by averaging Tsat shown in Fig 4.10 for each lake. This further

demonstrates that the variation in average surface temperature from lake to lake follows the same

trend in the simulation results and in the MODIS measurements. The values of both Ts and Tsat are

presented in Table 4.3. The satellite average temperatures were generally higher than the simulation

average temperatures at the same t∗. This is likely due to Tsat being limited to clear sky days, since
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MODIS cannot provide Tsat through clouds. However, the simulation predicts Ts for cloudy days

even when there are Tsat dropouts. Since cloudy days would experience less solar insolation, these

days would have a lower average Ts.

Lake Jocassee Keowee Hartwell Russell Thurmond

Tsat(K) 289.8 292.4 291.1 290.8 291.2
Ts(K) 287.2 291.2 289.8 289.2 290.3

Table 4.3: Tsat for the satellite measurements on on each lake.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
284

286

288

290

292

294

296

t*

T
s (

K
)

 

 

Jocassee Simulation
Keoweee Simulation
Hartwell Simulation
Russell Simulation
Thurmond Simulation
Jocassee Satellite
Keoweee Satellite
Hartwell Satellite
Russell Satellite
Thurmond Satellite

Figure 4.10: Ts versus t∗ time trace obtained by averaging all daily time traces for the period of
record with average Tsat

The purpose of developing a diurnal function for Ts was to enable one to obtain values at

times in between satellite overpasses. To determine the utility of Eq. (3.4) in doing this, four daily

Tsat satellite measurements were fit to Eq. (3.4). Fitting was accomplished by generating a linear

set of four equations and then solving for B1 through B4 in Eq. (3.4). The values for fk, ψk, and

D were obtained from Table 3.1, i.e. the values obtained when fitting to the entire data simulation

period presented in Fig. 3.8. A comparison between the satellite data, the simulations and Eq. (3.4)

is presented for two sample days in Figs. 4.12 and 4.13. As these figures show, fitting Eq. (3.4) to

the satellite data gives very poor performance; the resulting plot agrees with neither the satellite

data nor the simulations. The average diurnal trend presented in Fig. 3.8 shows that the average

diurnal Ts is driven primarily by the sun. The variation in the ambient parameters (u10, Ta, φ) is
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Figure 4.11: Ts and Tsat from each lake diurnal cycle for five of the lakes in the Savannah River
Basin.

damped when enough days are averaged. However, for any given individual day, Ts can be greatly

affected by variation in these ambient parameters, and this is the main reason for our inability to

use Eq. (3.4) to predict Ts in between satellite overpasses. Consequently, a useful, though less than

dramatic result of this work is that a simple linear interpolation between satellite measurements is

likely to give better results for daily estimates of Ts than use of Eq. (3.4). However, performing

the full simulation presented herein may still be useful in providing daily maximum and minimum

temperatures.

In this work u10 was calculated by minimizing the error between the simulation Ts and

MODIS measurements of Tsat. To compare the validity of the u10 used in the simulations with the

ASOS measurements, the correlation coefficient between the ASOS measurements and the simula-

tion u10 for Lake Hartwell was computed. Specifically, the u10 used in the simulations was compared

to those measured at three neighboring weather stations: the Anderson Regional Airport (AND),

the Greenville Downtown Airport (GMU), and the Oconee County Regional Airport (CEU). Ad-

ditionally, the correlation coefficient was calculated using the average of the three stations. For

comparison, the correlation coefficients of the wind measurements between each of the three stations

were also calculated. These correlation coefficients are presented in Table 4.4. None of the correla-

tion coefficients between individual data sets exceeded 0.04, showing there is very little correlation
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between the calculated wind speed values and the available measurements. It is not entirely unex-

pected that there is poor agreement of simulation predicted wind speeds and ASOS measurements

since the calculated wind speed was used to incorporate all the unknown conditions that occurred

throughout the day to ensure convergence at satellite measurements of Tsat. Ideally there would

be greater correlation; however based on the lack of correlation between individual stations, spa-

tial variation in wind is significant, and it would not be reasonable to expect the calculated wind

values to be more correlated than the individual stations. Thus, leaving u10 as a floating variable

in the simulation likely will yield better results than simply choosing a single individual station’s

measurements. The correlation coefficient of each individual station is higher with the average of

the three stations, which is expected since each individual station counts for 1/3 of the average in

the calculation.

Wind Source AND GMU CEU AVG
SIM -0.0075 0.0323 0.0042 0.0160
AND - 0.0322 0.0181 0.6357
GMU 0.0322 - 0.0035 0.5908
CEU 0.0181 0.0035 - 0.5330

Table 4.4: Correlation coefficient, R, between measured u10 and simulation output u10, and corre-
lation coefficients of each of the station with each other.

One of the biggest sources of error in the simulation algorithm comes from how u10 is handled

when the equations predict large values. The maximum allowed u10 of 20 m/s for the simulation

was chosen based on the maximum ASOS measurement observed in the simulation time frame.

However, due to the solution method, u10 is set to 20 m/s more often than ASOS measurements

predict. However, setting u10 = 20 m/s generally results in large spikes in Ts. Simulation results

for a sample week where Ts experiences such a spike are shown in Fig. 3.11. The sharp change in

temperature at day 6 occurs when both u10 and Cfk are changing rapidly, as is shown in the sample

week in Figs. 4.14 and 4.15 for u10 and Cfk respectively. This causes a large shift in L, shown for

the sample week in Fig. 4.16, which causes the entrained water at Tb to change Ts rapidly. The

first order discontinuity in Ts in this situation makes the simulation results less reliable. With more

knowledge of u10 on the lake surface, this error could be reduced. This error occurs in less than 7%

of the simulation.
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Figure 4.12: Plot of T ∗
s versus t∗ for the satellite data, the simulations, and Eq. (3.4) for a sample

day.
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Figure 4.13: Plot of T ∗
s versus t∗ for the satellite data, the simulations, and Eq. (3.4) for a sample

day.
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Figure 4.14: Wind speed, u10, in m/s versus day number from simulation results for a typical week.
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Figure 4.15: Internal losses coefficient, Cfk versus day number from simulation results for a typical
week.
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Figure 4.16: Mixed layer depth, L, in m versus day number from simulation results for a typical
week.
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Chapter 5

Conclusion

Hourly surface temperature, Ts, was simulated for Lakes Jocassee, Keowee, Hartwell, Rus-

sell, and Thurmond in the Savannah River Basin using measurements of ambient atmospheric con-

ditions from the Oconee County Regional Airport, the Anderson Regional Airport, and the Augusta

Regional Airport along with bulk temperature measurements from USACE and four daily satel-

lite measurements of Ts from the MODIS sensors on NASA’s two satellites, Aqua and Terra. The

simulation results were collapsed based on daily temperature extrema and daily sunrise and sunset

times.

The average diurnal cycle for each of the lakes on the non dimensional scales presented in

this work were found to collapse to similar functions, approximated by a summation of four Fourier

components. This functional form is an excellent approximation of the average trend and, to the

author’s knowledge is the first suggested functional form for the diurnal variation of Ts on a lake

surface. However, applying this average trend to individual days does not enable good estimation

of Ts between satellite overpasses, and a simple linear interpolation between satellite measurements

exhibits better performance. However, using linear interpolation between measurements will miss

the daily minimum and maximum Ts.

The consistency of the results for each of the lakes implies generality to all warm, monomictic

lakes. However, the diurnal cycle of the dimensional temperature versus time does show differences

between the lakes, generally scaling with coastal length and surface area of the lake. A dendritic ratio

was defined which collapsed the effects of coastal length and surface area on Ts. Future investigations

comparing these results to those of warm, monomictic lakes in other regions of the world would be
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illuminating. Additionally, future work investigating polymictic and bimictic lakes using the method

presented herein could lead to a greater fundamental understanding of the general diurnal variation

on all inland lakes and reservoirs.
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Appendix A

Simulation

This appendix contains the primary MATLAB code which follows the simulation algorithm

presented in the previous chapters.

function [Message,results_path,results_name] =

TKE_method(Lake,f_dir,r_dir,varargin)

%% This program calculates the mixing depth of a lake from the input file

% Syntax: TKE_method(Lake,f_dir,r_dir,’OptionalName1’,’OptionalValue1’,

% ’OptionalName2’,’OptionalValue2’,...,’OptionalNameN’,

% ’OptionalValueN’)

%

% The optional values allow the user to specifiy simulation settings

% different from the saved defaults. The available options are the

% following:

%

% ’fixT’ = Binary 0 or 1. If 1, simulation temperatures will be auto-

% corrected to match satellite measurements before the next data set is

% calculated. If 0, this feature is turned off. Default is 0.

% NOTE: residual error is calculated before this correction is made.

%

% ’itErr’ = Binary 0 or 1. If 1, the simulation will ensure that the

% residual error always gets close to 0 by including an error term.

% Useful for seeing how much energy is actually required to hit the

% satellite measurement. If 0, this feature is turned off. Default is

% 0.

%

% ’TbType’ = Binary 0 or 1. If 1, simulation uses polynomial curve fits

% for bulk temperature produced from USACE data. If 0, simulation uses a

% step change in bulk temperature at each month change. Default is 1.

%

% ’dTbType’ = Binary 0 or 1. If 0, energy required to change the bulk

% temperature over time is included in conservation of energy. If 1, it

% is not included. Default is 0.
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%

% ’Utype’ = 0, 1 or 2. If 0, CK is iterated using measurements for wind

% speed. If 1, wind speed is brute force iterated. If 2, wind speed is

% iterated using a root finding algorithm. Default is 2.

%

% ’dt’ = Simulation time step in seconds. Default it 60 seconds.

%

% ’N’ = Number of days to simulate. If N = 0, the entire input file is

% simulated. Default is 0.

%

% ’CKdef’ = Default value of the coefficient used in the Turbulent

% Kinetic Energy budget, CK. Default is 5.

%

% ’U10min’ = Minimum wind speed to consider for iterating in (m/s).

% Default is 0 m/s.

%

% ’U10max’ = Maximum wind speed to consider for iterating in (m/s).

% Default is 10 m/s.

%

% ’U10int’ = Resolution for wind speed brute force iteration. Default is

% 0.2 m/s.

%

% ’maxL’ = Maximum mixed layer depth allowed in m. Default is 15 m.

%

% ’minL’ = Minimum mixed layer depth allowed in m. Default is 0.099 m.

%

% ’constL’ = Constant mixed layer depth in m for winter. Default is 0.25

% m.

%

% ’initL’ = Initial mixed layer depth in m. Default is 5 m.

%

% ’ProFlag’ = Flag whether to output current progress to command window.

% Useful for debugging, can make running many different test cases

% annoying. 0 is off, 1 is on. Default is 0.

%

% ’ItArr’ = Flag whether arrays should be allocated to maximum size and

% set to 0 after each dataset or if they should be cleared and

% reallocated after each dataset. There is a minor time saving for data

% sets greater than 5 years. Binary, 0 is off, 1 is on. Default is 1.

%

% Primary references used in the creation of this program:

%

% [1] National Aeronautics and Space Administration. Land Processes

% Distributed Active Archive Center (NASA LP DAAC). Products MOD06L2,

% MYD06L2, MOD11A1, and MYD11A1. USGS/Earth resources observation and

% science (EROS) center, South Dakota, 2014.

% [2] E. H. Alcantara, J. L. Stech, J. A. Lorenzzetti, M. P. Bonnet, X.

% Casamitjana, A. T. Assireu, and E. M. Novo. Remote sensing of water

% surface temperature and heat flux over a tropical hydroelectric

% reseroir. Remote sensing of environment, 114:2651-2665, 2010.

% [3] National Oceanic and Atmospheric Administration, Department of
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% Defense, Federal Aviation Administration, United States Navy.

% Automated surface observing system (ASOS_ user’s guide, 1988.

% [4] I. Reda and Andreas A. Solar position algorithm for solar radiation

% applications. Technical report, National Renewable Energy Laboratory,

% 2008.

% [5] P.R. Lowe. An approximating polynomial for the computation of

% saturation vapor pressure. Journal of Applied Meteorology, 16:100-103,

% 1976.

% [6] H.B. Fischer, E. J. List, R. C. Y. Koh, J. Imberger, and N. H.

% Brooks. Mixing in Inland and Coastal Waters. Academic Press, London,

% 1979.

% [7] J. Imberger. The diurnal mixed layer. Limnol. Oceanogr.,

% 30:737-770, 1985.

% [8] S. S. Girgis and A. C. Smith. On thermal stratification in stagnant

% lakes. Int. J. Egng ci., 18:69-79, 1980.

% [9] R. H. Spigel, J. Imberger, and Rayner K. N. Modelling the diurnal

% mixed layer. Limnol. Oceanogr., 31:533-556, 1986.

% [10] C. O. Justice, and A. Mikhail. Height variation of wind speed and

% wind distribution statistics. Geophysical Research Letters, 3,

% 261-264.

%

%

tic()

%% Read varargin inputs

% input_poss contains the variable name to be replaced by varargin input

% input_def contains the default value for the corresponding variable name

% in input_poss.

input_poss{1,1} = ’fixT’; input_def(1,1) = 0; % Binary, 0 or 1

input_poss{2,1} = ’itErr’; input_def(2,1) = 0; % Binary, 0 or 1

input_poss{3,1} = ’TbType’; input_def(3,1) = 1; % Binary, 0 or 1

input_poss{4,1} = ’dTbType’;input_def(4,1) = 0; % Binary, 0 or 1

input_poss{5,1} = ’UType’; input_def(5,1) = 2; % 0, 1, or 2

input_poss{6,1} = ’dt’; input_def(6,1) = 60; % seconds

input_poss{7,1} = ’N’; input_def(7,1) = 0; % Number of days

% 0 = entire file

input_poss{8,1} = ’CKdef’; input_def(8,1) = 5;

input_poss{9,1} = ’U10min’; input_def(9,1) = 0; % m/s

input_poss{10,1} = ’U10max’;input_def(10,1) = 10; % m/s

input_poss{11,1} = ’U10int’;input_def(11,1) = 0.2; % m/s

input_poss{12,1} = ’maxL’; input_def(12,1) = 15; % m

input_poss{13,1} = ’minL’; input_def(13,1) = 0.099; % m

input_poss{14,1} = ’constL’;input_def(14,1) = 0.25; % m

input_poss{15,1} = ’initL’; input_def(15,1) = 5; % m

input_poss{16,1} = ’ProFlag’; input_def(16,1) = 0; % Binary, 0 or 1

input_poss{17,1} = ’ItArr’; input_def(17,1) = 1; % Binary, 0 or 1

input_poss{18,1} = ’CKmax’; input_def(18,1) = 10;

input_poss{19,1} = ’CKmin’; input_def(19,1) = 1;

%% Break varargin inputs into names and values
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vargs = varargin;

nargs = length(varargin); % Store number of non-default parameters

names = vargs(1:2:nargs); % Store names of non-default parameters

values = vargs(2:2:nargs); % Store values of non-default parameters

%% Load varargin input values into workspace

for i = 1:1:nargs/2 % Loop through all varargin values

for j = 1:1:length(input_def(:,1)) % Loop through possible varargin

% prameters

if strcmp(names{1,i},... % Check if varargin name i matches

input_poss{j,1}) == 1; % possible name j

dat_name = genvarname(... % Generate variable name from

names{1,i}); % string

eval(strcat(dat_name,... % Add varargin value to matched

’=’,num2str(... % possible input name to the

values{1,i}),’;’)); % workspace.

end

end

end

%% Load default values for varargin inputs not included

for j = 1:1:length(input_def(:,1)) % Loop through all varargin values

if eval(strcat(’~exist(’’’,... % Check if possible varargin name

input_poss{j,1},... % was already added to workspace.

’’’,’’var’’)’)) == 1;

eval(strcat(... % Add default value to the

input_poss{j,1},’=’,... % workspace.

num2str(input_def(j,1)),’;’));

end

end

%% Designate input data file name and location

% Syntax: LakeName_data.txt Rows correspond to different time stamps,

% Columns correspond to different data measurements. See Data

% Format below.

%

% Data Format:

%

% Column Description

% 1 latitude

% 2 longitude

% 3 date (yyyymmdd)

% 4 time

% 5 ambient air temperature, T_a

% 6 air velocity, U_z

% 7 relative humidity, r

% 8 Satellite surface temperature

% 9 Solar altitude, degrees
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% 10 Sunrise local time, hours since local midnight

% 11 Sunset local time, hours since local midnight

% 12 Cloud fraction from modis 0 (clear skies) to 1 (very cloudy)

%

% Workspace Variable Names:

% C := Cloud cover index

% d := solar altitude

% jd := number of days since the start of the data year

% r := relative humidity

% T_a := surface air temperature

% T_b := bulk water temperature

% T_s := surface water temperature

% U_10 := wind speed 10 m above the surface (m/s)

% U_z := wind speed z_a m above the surface (m/s)

input_path = strcat(f_dir,Lake,’_data.txt’);

%% Programaticaly generate result name

% Syntax: Lakename_NonDefaultNameOne_NonDefaultValueOne_NonDefaultNameTwo_

% NonDefaultValueTwo etc...

% Note: The order of the non default parameters in the file name is

% based on the order of the variables included in input_poss above

results_name = Lake; % Base results name, just the lake name

for j = 1:1:length(input_def(:,1))

loc = find(strncmp(... % Find loc of varargin name

input_poss{j,1},names,10)); % matching possible inputs

if isempty(loc) == 0 % Check for no match

results_name = strcat(results_name,... % Load current name

’_’,input_poss{j,1},... % Append "_NonDefaultName"

’_’,num2str(values{1,loc})); % Append "_NonDefaultValue"

results_name = strrep(... % Replace any "." from

results_name,’.’,’_’); % NonDefaultValues with "_"

end

end

%% Designate result path

% Syntax: Base directory for all results. New directory will be added for

% an individual lake if it does not currently exist.

results_dir = strcat(r_dir,Lake,’\’);

results_path = strcat(results_dir,results_name,’.txt’);

if exist(results_dir,’dir’) == 0

mkdir(results_dir);

end

%% Find full length of input data if N = 0

i = 0; p = 0; j = 0; max_dist=0;% Initialize counters
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f_id = fopen(input_path); % Open the file for reading

while ~feof(f_id); % Continue reading file until end of

val = load_data(f_id); % file is reached.

if ~isempty(val); % Check if end of file has been reached

if val(8,1) ~= 0 % Check if row contains a valid

i = i+1; % surface temperature measurement

j = j+1;

if i == 1;

k = 1; j = 1;

end

if j == 2

if k+1 > max_dist

max_dist = k+1;

end

j = 1;

k = 1;

end

else

k = k+1;

end

p = p+1; % Increment number of hours in file, p

end

end

if N == 0 % Check if N = 0

N = p/24; % Store number of days as p/24 hours

elseif N > p/24

fprintf(’Data file does not contain %0.0f days.\n’,N);

N = p/24;

fprintf(’Simulating full data file, %0.0f days.\n’,N);

end

k_max = i; % Store number of satellite points

fclose(f_id); % Close the file

%% Alcantara Constants

% These constants were defined in Alcantara 2012.

% A := albedo of water, 0.07

% a_1 := calibration parameter for phi_s

% b_1 := calibration parameter for phi_s

% B_k := empirical coefficient ~= to von Karman’s constant, 0.4

% c_E := coefficient of turbulent exchange

% c_H := coefficient of turbulent exchange

% M := vaporization of latent heat

% epsilon := thermal infrared emissivity of water

% lambda := Reed correction factor, 0.8

A = 0.07; a_1 = 0.79; b_1 = 1.15; B_k = 0.4; c_E = 1.1*10^-3;

M = 2.501*10^6; c_H = 1.1*10^-3; epsilon = 0.97; lambda = 0.8;

%% Fischer Constants

% The constants were defined by Fischer 1979
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% CN := coefficient describing relative effectiveness of mixing due to

% wind shear and buoyant plumes

% CT := coefficient describing relative effectiveness of mixing due to

% the combination velocity scale and entrainment of the quiescent

% fluid

% CK := coefficient describing the conversion of Turbulent Kinetic Energy

% to Thermal Energy.

% Note: CK is defined earlier in the varargin section.

CN = 1.75; CT = 0.5;

%% Physical Constants

% The constants are the physical constants used for the air and water.

% Most are well established in the literature.

% c_p_water := specific heat of water (J/kgK)

% c_p_air := specific heat of air (J/kgK)

% g := gravitational acceleration (m/s^2)

% alpha := volumetric coefficient of thermal expansion for water (1/C)

% phi_0 := solar constant (w/M^2)

% rho := density of water (kg/m^3)

% rho_a := density of air (kg/m^3)

% sigma := Stefan-Boltzmann constant (W/m^2 K^4)

c_p_water = 4186; % (J/kgK)

c_p_air = 1.005*10^3; % (J/kgK)

g = 9.81; % (m/s^2)

alpha = 1.8 * 10^-4; % (1/C)

phi_0 = 1390; % (W/m^2) Alcantara 2010

rho = 1000; % (kg/m^3)

rho_a = 1.2; % (kg/m^3)

sigma = 5.670373*10^-8; % (W/m^2 K^4)

%% Lake Specific Constants

% These constants will be different for each lake dependant.

% Lat := Latitude of the data

% Note: Latitude is stored in the data file

% Long := Longitude of the data

% Note: Longitude is stored in the data file

% P_a := atmospheric surface pressure (Pascal)

% z := height at which U_10 is desired (m)

% z_a := height at which U_z is measured (m)

Lat = 34.4652; % (Degrees)

P_a = 101325; % (Pa)

z = 10; % (m)

z_a = 3; % (m)

%% Data set constants

% These constants do not change from dataset to dataset

inter = floor(3600/dt);
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max_leng = (max_dist-1)*inter+1;

%% Allocate variable spaces

% Matlab allocates space based on the first time it is called. By

% creating each of these arrays with a fixed length independently, the

% memory addresses are stored automatically. Only used if ItArr = 1.

if ItArr == 1

r = zeros(max_leng,1);

year = zeros(max_leng,1);

month = zeros(max_leng,1);

day = zeros(max_leng,1);

time = zeros(max_leng,1);

T_a = zeros(max_leng,1);

U_z = zeros(max_leng,1);

d = zeros(max_leng,1);

jd = zeros(max_leng,1);

T_check = zeros(max_leng,1);

U_10 = zeros(max_leng,1);

phi_N = zeros(max_leng,1);

phi_s = zeros(max_leng,1);

phi_ri = zeros(max_leng,1);

phi_sf = zeros(max_leng,1);

phi_lf = zeros(max_leng,1);

e_a = zeros(max_leng,1);

w_star = zeros(max_leng,1);

q_star = zeros(max_leng,1);

dLdt = zeros(max_leng,1);

u_star = zeros(max_leng,1);

err_1 = zeros(max_leng,1);

err_2 = zeros(max_leng,1);

err_3 = zeros(max_leng,1);

dLdt = zeros(max_leng,1);

dTdt = zeros(max_leng,1);

dTbdt = zeros(max_leng,1);

dEdt = zeros(max_leng,1);

L = zeros(max_leng,1);

T_s = zeros(max_leng,1);

CK = zeros(max_leng,1);

C = zeros(max_leng,1);

T_b = zeros(max_leng,1);

Sunrise = zeros(max_leng,1);

Sunset = zeros(max_leng,1);

end

%% Initialize counter variables

p = 0; i = 0; k = 0; newpoint = 0; redo = 0; CK_signchange = 1;

daynum = 0; constL_old = constL; constL_in = constL;
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%% Begin Simulation

% The simulation herein solves the coupled system of equations for

% surface temperature and mixed layer depth. The general method is

% described by Fischer 1979. The simulation continues reading input data

% until it has found two satellite measurements of surface temperature.

% Since the temporal resolution on ASOS measurements of ambient parameters

% is much higher than that of the MODIS satellites, these ambient

% parameters are used to predict the surface temperature between satellite

% measurements. The section between two satellite measurements in solved

% by assuming a constant wind speed between measurements and iterating

% over this value until the simulation predicted final temperature matches

% the second satellite measurement. Once this temperature matches, the

% next set of data is read and the simulation continues until the desired

% length of simulation (N days) is reached.

f_id = fopen(input_path); % Open data file for reading

while daynum < N % Define outer loop for number of processed

% days.

divy = 1; % Initialize counter variables

phi_error = 0;

ct3 = 0;

% dbloop

%% Read new values

% The reading process varies slightly for the first dataset. See notes

% on right of code for more details.

if redo == 0 % Check if "redo" flag is

% tripped (=1).

k = k+1; % Increment k

if p ~= 0; % Read new values for second

% set and onward.

prev = data(leng1,1:12); % Store the last row of the old

% data.

i = 1; % Initialize counters

newpoint = 0;

clear data; % Clear previous data

data(1,1:12) = prev; % Set the first row of the new

% data equal to the last row of

% the old data.

data(1,8) = last_T; % Set the temperature at the

% first satellite point either

% equal to the satellite

% measurement or to the

% simulation result, based on

% fix_T flag.

else % Read new values for first set

% of data.

T_s_all = 0; % Initialize T_s_all.

sat_loc(k,1) = 1; % Store the location in the

60



% data array of the first

% satellite point.

end

while newpoint == 0 % Import data line by line

val = load_data(f_id);

p = p+1; i = i+1; % Increment counters

data(i,1:12) = val; % Save data in data variable

if val(8,1) == 0; % Check if imported line has a

% surface temperature

% measurement

newpoint = 0; % If it does not, flag as not a

% new satellite point.

elseif i ~= 1;

newpoint = 1; % If it does, flag as a new

% satellite point.

end

end

CK_new = CKdef; % Define new CK value (useful

% if iterating over CK instead

% of wind speed).

end

%% Clear previous values

% Ready the workspace by removing value calculated in previous data

% sets. This is important since the time between satellite

% measurements is rarely the same from set to set.

if ItArr == 0

clear year; clear month; clear day; clear time; clear T_a;

clear U_z; clear r; clear d; clear jd; clear T_check; clear diff;

clear U_10; clear phi_N; clear phi_s; clear phi_ri; clear phi_sf;

clear phi_lf; clear e_a; clear w_star; clear q_star; clear dLdt;

clear u_star; clear err_1; clear err_2; clear dLdt; clear dTdt;

clear L; clear T_s; clear CK; clear C;

else

if k ~= 1

r(1:leng,1) = 0;

year(1:leng,1) = 0;

month(1:leng,1) = 0;

day(1:leng,1) = 0;

time(1:leng,1) = 0;

T_a(1:leng,1) = 0;

U_z(1:leng,1) = 0;

d(1:leng,1) = 0;

jd(1:leng,1) = 0;

T_check(1:leng,1) = 0;
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U_10(1:leng,1) = 0;

phi_N(1:leng,1) = 0;

phi_s(1:leng,1) = 0;

phi_ri(1:leng,1) = 0;

phi_sf(1:leng,1) = 0;

phi_lf(1:leng,1) = 0;

e_a(1:leng,1) = 0;

w_star(1:leng,1) = 0;

q_star(1:leng,1) = 0;

dLdt(1:leng,1) = 0;

u_star(1:leng,1) = 0;

err_1(1:leng,1) = 0;

err_2(1:leng,1) = 0;

err_3(1:leng,1) = 0;

dLdt(1:leng,1) = 0;

dTdt(1:leng,1) = 0;

dTbdt(1:leng,1) = 0;

dEdt(1:leng,1) = 0;

L(1:leng,1) = 0;

T_s(1:leng,1) = 0;

CK(1:leng,1) = 0;

C(1:leng,1) = 0;

T_b(1:leng,1) = 0;

Sunrise(1:leng,1) = 0;

Sunset(1:leng,1) = 0;

end

end

clear L_with_U; clear U_old; clear T_with_U; clear U_old;

%% Check for data dropouts

clear data2; data2(1,:) = data(1,:);

for i = 2:1:length(data(:,1))

d2l = length(data2(:,1))+1;

if data(i,4) - data(i-1,4) == 2

data2(d2l,:) = data(i,:);

data2(d2l,4) = (data(i,4)+data(i-1,4))/2;

data2(d2l,5) = (data(i,5)+data(i-1,5))/2;

data2(d2l,6) = (data(i,6)+data(i-1,6))/2;

data2(d2l,7) = (data(i,7)+data(i-1,7))/2;

data2(d2l,8) = 0;

data2(d2l,9) = (data(i,9)+data(i-1,9))/2;

data2(d2l,12) = (data(i,12)+data(i-1,12))/2;

data2(d2l+1,:) = data(i,:);

else

data2(d2l,:) = data(i,:);

end

end

clear data; data = data2; clear data2;
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%% Organize new values

% Define the length of the data set and the number of points between

% each ASOS measurement that must be interpolated.

leng1 = length(data(:,1));

leng = (leng1-1)*inter+1;

if ItArr == 0

[year,month,day,time,T_a,U_z,r,... % This function take the

d,jd,T_check,diff,Sunrise,... % curent working dataset and

Sunset,C]=organ_data2(data,... % interpolates to the desired

leng1,inter); % length.

else

[year,month,day,time,T_a,U_z,r,d,jd,T_check,Sunrise,Sunset,C]=...

organ_data3(data,leng1,leng,inter,...

year,month,day,time,T_a,U_z,r,d,jd,T_check,Sunrise,Sunset,C);

end

if k > 1 % Reset inital T_check point to

T_check(1,1) = last_T; % the desired output from

end % previous set.

%% Allocate space

% Re-allocate space for all the variables requried for the simulation

% for the current dataset if ItArr = 0.

if ItArr == 0

T_b=zeros(leng,1);phi_N=T_b;phi_s=T_b;phi_ri=T_b;phi_sf=T_b;

phi_lf=T_b; e_a=T_b;w_star=T_b;q_star=T_b;dLdt=T_b;L=T_b;err_1=T_b;

err_2=T_b; dTdt=T_b; u_star = T_b; dTbdt = T_b; dEdt = T_b;

end

%% Initial values

% Define inital values for T_s, L, and jd. Process is slightly

% different for the first data set due to initial conditions. See

% comments to right of code for details.

if k == 1

T_s(1:leng)=T_check(1:leng)+273;% Set the initial surface

% temperature equal to the

% satellite measurements

L(1,1) = initL; % Set the initial mixed layer depth

% to the pre-defined initial value.

jd_all(1,1) = jd(1,1); % Set initial jd to that of the

% first point.

else

T_s(1,1) = data(1,8)+273; % Set the initial surface

% temperature equal to the new

% satellite measurement

L(1,1) = L_old; % Set the initial mixed layer depth

% to the final value from the
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% simulation on the previous data

% set.

end

%% Define Bulk Temperature

% The temperature of the hypolimnion, herein referred to as the bulk

% temperature of the lake was taken from USACE measurements. There

% are two different possible bulk temperatures currently included in

% this code. First, TbType = 0 corresponds to a hard-coded bulk

% temperature for each month based on the minimum value observed from

% the USACE data. Second (preferred), TbType = 1 corresponds to a

% polynomial bet fit to the USACE measurements based on the data

% available for each individual year.

if redo == 0 % Check if redo is flagged (=1)

for i = 1:1:leng % Loop through length of dataset

if TbType == 0 % Hard code bulk temperature method

floor(month(i,1)); % Determine month number

if and(month(i,1)>= 1,month(i,1)<2)==1;T_b(i,1)= 7.4;

elseif and(month(i,1)>= 2,month(i,1)<3)==1;T_b(i,1) = 7.4;

elseif and(month(i,1)>= 3,month(i,1)<4)==1;T_b(i,1)= 7.5;

elseif and(month(i,1)>= 4,month(i,1)<5)==1;T_b(i,1)= 7.9;

elseif and(month(i,1)>= 5,month(i,1)<6)==1;T_b(i,1)= 7.9;

elseif and(month(i,1)>= 6,month(i,1)<7)==1;T_b(i,1)= 8.6;

elseif and(month(i,1)>= 7,month(i,1)<8)==1;T_b(i,1)= 9.5;

elseif and(month(i,1)>= 8,month(i,1)<9)==1;T_b(i,1)= 9.7;

elseif and(month(i,1)>= 9,month(i,1)<10)==1;T_b(i,1)= 9.9;

elseif and(month(i,1)>= 10,month(i,1)<11)==1;T_b(i,1)=10.1;

elseif and(month(i,1)>= 11,month(i,1)<12)==1;T_b(i,1)=10.6;

elseif month(i,1)>= 12;T_b(i,1)=11.4;%14

end

elseif TbType == 1 % Yearly bet fit polynomial

% method

if month(i,1) == 1 ... % Define number of days in

|| month(i,1) == 3 ... % the current month.

|| month(i,1) == 5 ...

|| month(i,1) == 7 ...

|| month(i,1) == 8 ...

|| month(i,1) == 10 ...

|| month(i,1) == 12

mon_days = 31;

elseif month(i,1) == 4 ...

|| month(i,1) == 6 ...

|| month(i,1) == 9 ...

|| month(i,1) == 11

mon_days = 30;

elseif month(i,1) == 2 ...

&& year(i,1)/4-floor(year(i,1)/4) ~= 0

mon_days = 28;

elseif month(i,1) == 2 ...

&& year(i,1)/4-floor(year(i,1)/4) == 0
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mon_days = 29;

else

fprintf(’Error in month number.\n’);

mon_days = 30;

end

mon_temp = month(i,1)... % Define number

+(day(i,1)+time(i,1)/24)/mon_days; % decimal month

% number.

if year(i,1) == 2002 % Define polynomial for 2002.

B1 = -0.0212;B2 = 0.4682; B3 = -2.8666; B4 = 13.50;

elseif year(i,1) == 2003 % Define polynomial for 2003.

B1 = -0.0344;B2 = 0.6659; B3 = -3.0146; B4 = 11.00;

elseif year(i,1) == 2004 % Define polynomial for 2004.

B1 = -0.0063;B2 = 0.1211; B3 = -0.3467; B4 = 8.55;

elseif year(i,1) == 2005 % Define polynomial for 2005.

B1 = -0.0375;B2 = 0.7913; B3 = -3.9094; B4 = 13.75;

elseif year(i,1) == 2006 % Define polynomial for 2006.

B1 = -0.01623;B2 = 0.32988;B3 = -1.65474;B4 = 10.80;

elseif year(i,1) == 2007 % Define polynomial for 2007.

B1 = -0.01623;B2 = 0.32988;B3 = -1.65474;B4 = 10.80;

elseif year(i,1) == 2008 % Define polynomial for 2008.

B1 = -0.00876;B2 = 0.16304;B3 = -0.67704;B4 = 10.00;

elseif year(i,1) == 2009 % Define polynomial for 2009.

B1 = -0.01014;B2 = 0.21898;B3 = -1.18352;B4 = 10.00;

elseif year(i,1) == 2010 % Define polynomial for 20010.

B1 = -0.02341;B2 = 0.50918;B3 = -2.93464;B4 = 11.50;

elseif year(i,1) == 2011 % Define polynomial for 2011.

B1 = -0.00879;B2 = 0.20615;B3 = -0.94572;B4 = 8.75;

elseif year(i,1) == 2012 % Define polynomial for 2012.

B1 = -0.01946;B2 = 0.44512;B3 = -2.66665;B4 = 14.25;

elseif year(i,1) == 2013 % Define polynomial for 2013.

B1 = -0.01623;B2 = 0.32988;B3 = -1.65474;B4 = 12.00;

elseif year(i,1) == 2014

B1 = -0.01623;B2 = 0.32988;B3 = -1.65474;B4 = 10.80;

else % Define general polynomial for

% undefined years

B1 = -0.01623; B2 = 0.32988; B3 = -1.65474;B4 = 10.8;

end

T_b(i,1) = B1*mon_temp^3+B2*mon_temp^2+B3*mon_temp+B4;

end

end;

T_b = T_b + 273; % Convert T_b to Kelvin

end

%% Define CK

% This section defines the new CK value if CK is being iterated over

% instead of wind speed.

if redo == 0 % Check if redo is flagged (=1)

CK(1:leng,1) = CKdef; % Reset CK to original value
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else

CK(1:leng,1) = CK_new; % Change CK to predicted new

end % value.

%% Update number of days processed

% Number of days processed since the initial date.

daynum = jd(1,1)-jd_all(1,1);

%% Output current point identification

% Output current data set limits being simulated to command window

if ProFlag == 1

fprintf(...

’%0.4f %% Complete, k = %.0f, jd_init = %.4f, jd_fin = %.4f\n’,...

daynum/N,k,daynum,max(jd(:,1))-jd_all(1,1));

end

if k >= 2652

hihi = 1;

% T_s was = 0 from daynum = 908.3750 to next sat point

end

%% Define wind speed

% Define wind speed for current dataset. If UType = 0, use ASOS

% measurements. If UType = 1, use wind speed iteration process.

if UType == 0

U_10(1:leng,1) = ... % Convert measurement to

u10convert(U_z(1:leng,1),z_a,z,leng);% U10 (Alcantara 2010).

else

U_10(1:leng,1) = U10min;

end

%% Initialize Counters for inner loop

U_step = 0; wind_flag = 0; U_ct = 1; redo = 0; flag_redo = 0;

Terrors_2 = 5000; CK_ct = 0; CK_flag = 0;

%% Loop over wind speed

% This inner loop corresponds to attempts to minimize residual error

% between simulation results and satellite measurements. The inner

% loop either iterates over wind speed or CK.

while wind_flag < 1

%% Reset relevant terms to 0

phi_N(1:leng,1) = 0;

phi_s(1:leng,1) = 0;

phi_ri(1:leng,1) = 0;
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phi_sf(1:leng,1) = 0;

phi_lf(1:leng,1) = 0;

e_a(1:leng,1) = 0;

w_star(1:leng,1) = 0;

q_star(1:leng,1) = 0;

dLdt(1:leng,1) = 0;

u_star(1:leng,1) = 0;

err_1(1:leng,1) = 0;

err_2(1:leng,1) = 0;

err_3(1:leng,1) = 0;

dLdt(1:leng,1) = 0;

dTdt(1:leng,1) = 0;

dTbdt(1:leng,1) = 0;

dEdt(1:leng,1) = 0;

%% Define Winter

% Simulating the surface temperature in the winter is especially

% difficult since the entire lake is mixing, which corresponds to

% a mixed layer depth of L = max_L. At this point, there is not

% enough energy to change the surface temperature significantly at

% any point in time. However, since we know from the satellite

% meaurements that the surface temperature indeed does vary

% significantly, an alternative method is used in the winter.

% Herein, a constant "effective" mixed layer depth is used for the

% winter, defined as const_L. The value of const_L can be set

% using ’const_L’,value as an input to this function. The winter

% dates were arbitrarily set based on the when the average year

% tended to not match the satellite measurements well.

cond_flag = 0; % Set winter flag to 0

if month(1,1) < 3 % Define winter region in January-February

cond_flag = 2;

end

if month(1,1) == 3 % Define winter region in March

if day(1,1) < 31

cond_flag = 2;

end

end

if month(1,1) == 11 % Define winter region in November

if day(1,1) > 15

cond_flag = 2;

end

end

if month(1,1) > 11 % Define winter region in December

cond_flag = 2;

end

%% Define important simulation parameters

% These flux terms are used for the surface energy balance

% following the method presented by Alcantara 2010.
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% phi_lf := latent heat flux (W/m^2)

% phi_N := surface heat flux (W/m^2)

% phi_ri := longwave flux (W/m^2)

% phi_s := incident short-wave radiation (W/m^2)

% phi_sf := sensible heat flux (W/m^2)

%% Spring through fall TKE and CoE solver.

% Herein a Turbulent Kinetic Energy balance and Conservation of

% Energy within the mixed layer and at the surface of the mixed

% layer is used to calculate the development of surface

% temperature and mixed layer depth. Some important parameters

% for this method are defined below:

% C_D := drag coefficient Alcantara 2010

% u_star := shear velocity of the wind (m/s) Alcantara 2010

% w_star := buoyant velocity scale (m/s) Fischer 1979

% tau_s := shear stress at the air/water interface Alcantara 2010

if cond_flag == 0

for i = 1:1:leng % This loop moves the simulation from

% the initial timestamp to the final

% timestamp of the current dataset.

if flag_redo == 0 % Check if flag_redo is tripped (=1)

u_star(i,1) = ... % Calculate u_star

ustar2(U_10(i,1),rho_a,rho);

[phi_N(i,1),phi_s(i,1),... % Calculate flux

phi_ri(i,1),phi_sf(i,1),... % terms for the

phi_lf(i,1),e_a(i,1)] = ... % surface energy

energybalance(d(i,1),a_1,... % balance.

phi_0,b_1,C(i,1),r(i,1),...

T_a(i,1),epsilon,sigma,...

T_s(i,1),lambda,rho_a,...

c_p_air,c_H,U_10(i,1),...

c_E,M,P_a,A);

[w_star(i,1),q_star(i,1)] = ... % Calculate buoyant

qstar(g,alpha,phi_N(i,1),... % and combination

c_p_water,rho,L(i,1),CN,... % velocity scales.

u_star(i,1));

dLdt(i,1) = CK(i,1)*... % Calcualte dLdt

q_star(i,1)^3/(CT*...

q_star(i,1)^2+alpha*(T_s(i,1)...

-(T_b(i,1)))*g*L(i,1));

if i <= leng-1 % Calculate new L

L_new = L(i,1)+dLdt(i,1)*dt;

if isnan(L_new)==1; % Check if new L is

L_new = L(i,1); % not a number. If

dLdt(i,1) = 0; % yes, set new L

err_2(i,1) = 1; % equal to previous

end % set dLdt = 0, and

% flag err_2 (=1).
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if L_new >= maxL; % Check if new L is

L_new = maxL; % above max_L. If

if i ~= 1 % yes, set new L

dLdt(i,1) = (L(i,1)... % equal to max_L,

-L(i-1,1))/dt; % calculate dLdt

end % from finite

err_1(i,1) = 1; % difference, and

end % flag err_1 (=1).

if L_new <= minL; % Check if new L is

if minL == 0 % less than minL.

L(i,1) = constL; % If yes, set L

L_new = constL; % equal to minL,

else % calculate dLdt

L(i,1) = minL; % from finite

L_new = minL; % difference, and

err_2(i,1) = 2; % flag err_2 (=2).

end

if i == 1

dLdt(i,1) = 0;

else

dLdt(i,1) = (L(i,1)-L(i-1,1))/dt;

end

end

%% Calculate CoE terms

% Calculate the simulation surface temperature.

% Process is slightly different for i = 1

if i == 1

if dTbType == 0 % Check if dTbdt should

dTbdt(i,1) = ... % be included in CoE.

-(maxL-L(i,1))/L(i,1)...

*(T_b(i+1,1)-T_b(i,1))/dt;

else

dTbdt(i,1) = 0;

end

dEdt(i,1) = ... % Calculate entrainment

-((T_s(i,1)-(T_b(i,1)))/L(i,1))*dLdt(i,1);

dTdt(i,1) = ... % Calculate dTdt

phi_N(i,1)/(rho*c_p_water*L(i,1))...

+dEdt(i,1)+dTbdt(i,1)+phi_error;

else

if dTbType == 0 % Check if dTbdt should

dTbdt(i,1) = ... % be included in CoE

-(maxL-L(i,1))/L(i,1)...

*(T_b(i,1)-T_b(i-1,1))/dt;

else

dTbdt(i,1) = 0;
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end

dEdt(i,1) = ... % Calculate entrainment

-((T_s(i,1)-(T_b(i,1)))/L(i,1))*dLdt(i,1);

dTdt(i,1) = ... % Calcualte dTdt

phi_N(i,1)/(rho*c_p_water*L(i,1))...

+dEdt(i,1)+dTbdt(i,1)+phi_error;

end

L(i+1,1) = L_new; % Calculate new L

T_s(i+1,1) = T_s(i,1)+... % Calculate new T_s

dTdt(i,1)*dt;

end

end

end

end

%% Conduction solution

% This section contains code to calculate the surface temperature

% in the case of pure conduction using the method proposed by

% Girgis. However, this solution yields poor agreement with

% satellite measurements and is not used in the simulation.

if cond_flag == 1;

f = zeros(100,1); x(:,1) = linspace(0,maxL);

if ~exist(’T_1d’)

f(:,1) = f(:,1)+T_s(1,1);

else

f(:,1) = T_1d(:,length(T_1d(1,:)));

end

T_1d = zeros(length(x(:,1)),leng);

T_1d(:,1) = f(:,1); T_1d(:,2) = f(:,1);

beta = 0.4; eta = 1; N_max = 50;

A_cond = zeros(leng,1); B_cond = A_cond;

a = zeros(N_max,1); b = a;

A_cond(1,1) = eta*(1-beta)*...

(phi_s(1,1)-phi_ri(1,1))/(rho*c_p_water);

A_cond(2,1) = eta*(1-beta)*...

(phi_s(2,1)-phi_ri(2,1))/(rho*c_p_water);

B_cond(1,1) = ((phi_sf(1,1)+phi_lf(1,1))-...

beta*(phi_s(1,1)-phi_ri(1,1)))/(rho*c_p_water*alpha);

B_cond(2,1) = ((phi_sf(2,1)+phi_lf(2,1))-...

beta*(phi_s(2,1)-phi_ri(2,1)))/(rho*c_p_water*alpha);

B_prime(2,1) = (B_cond(2,1)-B_cond(1,1))/(dt);

for i = 3:1:leng
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[phi_N(i,1),phi_s(i,1),phi_ri(i,1),...

phi_sf(i,1),phi_lf(i,1),e_a(i,1)] = ...

energybalance(d(i,1),a_1,phi_0,b_1,C(i,1),...

r(i,1),T_a(i,1),epsilon,sigma,T_1d(1,i-1),...

lambda,rho_a,c_p_air,c_H,U_10(i,1),c_E,M,P_a,A);

t1 = dt*(i-1); t2 = dt*i;

f(:,1) = f(:,1)+T_1d(:,length(T_1d(1,:)));

A_cond(i,1) = eta*(1-beta)*...

(phi_s(i,1)-phi_ri(i,1))/(rho*c_p_water);

B_cond(i,1) = ((phi_sf(i,1)+phi_lf(i,1))-...

beta*(phi_s(i,1)-phi_ri(i,1)))/(rho*c_p_water*alpha);

B_prime(i,1) = (B_cond(i,1)-B_cond(i-1,1))/(t2-t1);

[T_1d(:,i),a,b] = conduction(eta,alpha,maxL,...

N_max,T_b(1,1),A_cond(i-1:i,1),B_cond(i-1:i,1),...

B_prime(i-1:i,1),x,t1,t2,a,b,f);

end

T_s(:,1) = T_1d(1,:);

cond_flag = 0;

end

%% Winter solution

% This section simulates thes surface temperature in the winter.

% Herein, the effective mixed layer depth is assumed to be a

% constant. Thus, the primary driving force for the surface

% temperature is the solar radiation.

if cond_flag == 2;

for i = 1:1:leng % This loop moves the simulation from

% the initial timestamp to the final

% timestamp of the current dataset.

u_star(i,1) = ... % Calculate u_star

ustar2(U_10(i,1),rho_a,rho);

[phi_N(i,1),phi_s(i,1),... % Calculate flux

phi_ri(i,1),phi_sf(i,1),... % terms for the

phi_lf(i,1),e_a(i,1)] = ... % surface energy

energybalance(d(i,1),a_1,... % balance.

phi_0,b_1,C(i,1),r(i,1),...

T_a(i,1),epsilon,sigma,...

T_s(i,1),lambda,rho_a,...

c_p_air,c_H,U_10(i,1),...

c_E,M,P_a,A);

if i <= leng-1

if i == 1

L(i,1) = constL; % Set L = const

dLdt(i,1) = 0; % Set dLdt = 0

if dTbType == 0 % Check if dTbdt should

dTbdt(i,1) = ... % be included in CoE.

-(maxL-L(i,1))/L(i,1)...
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*(T_b(i+1,1)-T_b(i,1))/dt;

else

dTbdt(i,1) = 0;

end

dEdt(i,1) = 0; % Set entrainment = 0

dTdt(i,1) = ... % Calculate dTdt

phi_N(i,1)/(rho*c_p_water*L(i,1))...

+dEdt(i,1)+dTbdt(i,1)+phi_error;

else

L(i,1) = constL; % Set L = const

dLdt(i,1) = 0; % Set dLdt = 0

if dTbType == 0 % Check if dTbdt should

dTbdt(i,1) = ... % be included in CoE.

-(maxL-L(i,1))/L(i,1)...

*(T_b(i,1)-T_b(i-1,1))/dt;

else

dTbdt(i,1) = 0;

end

dEdt(i,1) = 0; % Set entrainment = 0

dTdt(i,1) = ... % Calculate dTdt

phi_N(i,1)/(rho*c_p_water*L(i,1))...

+dEdt(i,1)+dTbdt(i,1)+phi_error;

end

L(i+1,1) = L(i,1)+dLdt(i,1)*dt; % Calculate new L

T_s(i+1,1) = T_s(i,1)+dTdt(i,1)*dt; % Calculate new T_s

if isnan(T_s(i+1,1)) == 1

hihi = 1;

end

end

end

end

%% Iterate_U == 1

% This section iterates U using a brute force method to find the

% minimum residual error. UType = 1.

if UType == 1

if U_step == 2

if itErr == 1 % Check if iterating over error

Terrors = (T_check(leng,1)+273)-T_s(leng,1);

ct3 = ct3+1;

if ct3 > 100 % Reduce step size if having difficulty

ct3 = 0; % finding a solution

divy = divy*0.1;

end
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if and(... % Check for error convergence

or(abs(Terrors) < 10^-3,divy< 0.00001) == 1,...

isnan(Terrors) == 0) == 1

% Reset parameters for next datset

redo = 0; wind_flag = 1; U_step = 2; divy = 100;

ct3 = 0;

end

else

con_flag = 0; % Unflag winter

wind_flag = 1; % Flag converged

end

end

%% Find minimum residual

% This section checks the residual error with each simulation

% wind speed value and finds the minimum.

if U_step == 1

clear Terrors; clear T_1d;

Terrors(1,1:length(T_with_U(1,:))) = ... % Calculate errors

T_with_U(leng,1:length(T_with_U(1,:)))...

-T_check(leng,1)-273;

GoodWindLoc = ... % Find best solution

find(abs(Terrors(1,:)) == min(abs(Terrors(1,:))));

[rw cl] = size(GoodWindLoc);% Find number of times best

% solution occurs

if cl == 0 % Check if no solution exists

redo = 0; % Unset redo to move on

T_s(:,1) = -999; % Flag T_s as being erronious

T_s(leng,1) = ... % Set Last T_s value to next

T_check(leng,1)+273; % satellite measurement

L(1:leng,1) = L(1,1); % set L to a constant

wind_flag = 1; % Flag converged

fprintf(strcat(’No’,... % Print error message

’valid solution without changing CK, setting’,...

’L to a constant and moving on.\n’));

else

% Reset parameters to the best solution and run through

% simulation one last time

T_s(1:leng,1) = T_with_U(1:leng,GoodWindLoc(1,1));

U_10(1:leng,1) = U_old(1:leng,GoodWindLoc(1,1));

L(1:leng,1) = L_with_U(1:leng,GoodWindLoc(1,1));

U_10(1:leng,1) = U_old(1:leng,GoodWindLoc(1,1));

redo = 0; divy = 100; ct3 = 0;

U_step = 2; % Flag that a minimum exists and cont.

end

end
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%% Calculate all the U10 solutions

% This section increments and store the various solutions from

% the different constant U10 values for the current dataset.

% Once all values have been evaluated, this section is flagged

% complete and the simulation moves on to the next section.

if U_step == 0

% Store simulation value for current U10

T_with_U(1:leng,U_ct) = T_s(1:leng,1);

L_with_U(1:leng,U_ct) = L(1:leng,1);

U_old(1:leng,U_ct) = U_10(1:leng,1);

if flag_redo == 1 % Check if flag_redo is flagged (=1)

flag_redo = 0;

redo = 1;

Terrors(1,1:U_ct) = ... % Store error term

T_with_U(leng,1:U_ct)-T_check(leng,1)-273;

GoodWindLoc = ... % Find best solution

find(abs(Terrors(1,:)) == min(abs(Terrors(1,:))));

[rw cl] = size(GoodWindLoc);

if and(GoodWindLoc(1,1) == 1,... % Increment CK

length(T_with_U(1,:)) == 1)

CK_new = CK(1,1)-1*CK_signchange;

elseif GoodWindLoc(1,1) <= length(T_with_U(1,:))

% Flag that all the individual solutions are

% complete.

redo = 0;

U_step = 1;

T_s(1:leng,1) = ...

T_with_U(1:leng,GoodWindLoc(1,1));

L(1:leng,1) =...

L_with_U(1:leng,GoodWindLoc(1,1));

U_10(1:leng,1) = ...

U_old(1:leng,GoodWindLoc(1,1));

end

else

if or(isnan(sum(T_s(1:leng,1))),... % Check for not a

isinf(abs(sum(T_s(1:leng,1))))) == 0% number or

% infinite number

% errors

if U_10(1,1) >= U10max; % Check if U10max has

U_step = 1; % been reached. If yes

U_ct = U_ct+1; % flag that individual
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else % solutions are

U_10(1:leng,1) = ... % complete. If no

U_10(1,1)+U10int; % increment U10.

U_ct = U_ct+1;

end

else

U_step = 1; % Flag complete if in error.

end

end

end

if redo == 1 % Check if redo is flagged (=1)

flag_redo = 0;

wind_flag = 0;

U_step = 0;

redo = 0;

CK(1:leng,1) = CK_new;

end

end

%% Iterate_U == 2

% This section iterates U using a root finding method to find the

% minimum residual error. UType = 2.

if UType == 2

if U_step == 2

if k >= 228

hihi = 1;

end

% Store current solution

T_with_U(1:leng,U_ct) = T_s(1:leng,1);

L_with_U(1:leng,U_ct) = L(1:leng,1);

U_old(1:leng,U_ct) = U_10(1:leng,1);

Terrors(1,1:length(T_with_U(1,:))) = T_with_U(...

leng,1:length(T_with_U(1,:)))-T_check(leng,1)-273;

if length(T_with_U(1,:)) == 3 % Check if this is the

% first iteration with

% U_step = 2

GoodWindLoc = find(... % Find whether Umin or Umax

abs(Terrors(1,1:2)) ... % yielded a better solution

== min(abs(Terrors(1,1:2))));

pos_loc = find(Terrors(1,1:2)>0);

neg_loc = find(Terrors(1,1:2)<0);

clear pos_val; clear neg_val;
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for ze = 1:1:length(pos_loc);

pos_val(ze,1) = Terrors(1,pos_loc(ze));

end

for ze = 1:1:length(neg_loc);

neg_val(ze,1) = Terrors(1,neg_loc(ze));

end

GoodPosLoc = find(Terrors(1,1:2) == min(pos_val(:,1)));

GoodNegLoc = find(Terrors(1,1:2) == max(neg_val(:,1)));

% Linearly interpolate between Umin and Umax to find

% predicted U10 value needed to hit the satellite point

T2 = T_with_U(leng,GoodPosLoc);%T_with_U(leng,3);

T1 = T_with_U(leng,GoodNegLoc);%T_with_U(leng,GoodWindLoc);

U2 = U_old(leng,GoodPosLoc);%U_old(leng,3);

U1 = U_old(leng,GoodNegLoc);%U_old(leng,GoodWindLoc);

T3 = T_check(leng,1)+273;

slop = (T2-T1)/(U2-U1);

intp = T1-slop*U1;

else

% Linearly interpolate between Umin and Umax to find

% predicted U10 value needed to hit the satellite point

% T2 = T_with_U(leng,length(T_with_U(1,:)));

% T1 = T_with_U(leng,length(T_with_U(1,:))-1);

% T1 = T_with_U(leng,GoodWindLoc);

% U2 = U_old(leng,length(U_old(1,:)));

% U1 = U_old(leng,GoodWindLoc);

% T3 = T_check(leng,1)+273;

% slop = (T2-T1)/(U2-U1);

% intp = T1-slop*U1;

GoodWindLoc = find(... % Find whether Umin or Umax

abs(Terrors(1,:)) ... % yielded a better solution

== min(abs(Terrors(1,:))));

pos_loc = find(Terrors(1,:)>0);

neg_loc = find(Terrors(1,:)<0);

for ze = 1:1:length(pos_loc);

pos_val(ze,1) = Terrors(1,pos_loc(ze));

end

for ze = 1:1:length(neg_loc);

neg_val(ze,1) = Terrors(1,neg_loc(ze));

end

GoodPosLoc = find(Terrors(1,:) == min(pos_val(:,1)));

GoodNegLoc = find(Terrors(1,:) == max(neg_val(:,1)));

T2 = T_with_U(leng,GoodPosLoc);%T_with_U(leng,3);

T1 = T_with_U(leng,GoodNegLoc);%T_with_U(leng,GoodWindLoc);

U2 = U_old(leng,GoodPosLoc);%U_old(leng,3);
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U1 = U_old(leng,GoodNegLoc);%U_old(leng,GoodWindLoc);

T3 = T_check(leng,1)+273;

slop = (T2-T1)/(U2-U1);

intp = T1-slop*U1;

end

if isnan(slop) == 1 ... % Check for errors

|| isfinite(slop) == 0 ...

|| isnan(intp) == 1 ...

|| isfinite(intp) == 0

U_sat = U1;

else

U_sat = ... % Calculate predicted U10

(T_check(leng,1)+273-intp)/slop;

end

prev_check = find(... % Check uniqueness of new U10

floor(10^3*U_old(1,:)) == floor(10^3*U_sat));

if U_sat > max(U_old(1,:)) % Check if new U10 falls within

U_sat = max(U_old(1,:));% allowed range.

elseif U_sat < min(U_old(1,:));

U_sat = min(U_old(1,:));

end

err_flag = 0;

if isempty(prev_check) == 0 ... % Check convergence

|| and(U_ct > 10,...

abs(U_old(1,length(U_old(1,:)))...

-U_old(1,length(U_old(1,:))-1))...

<10^-3) == 1

% Check for errors

if isnan(sum(T_s(1:leng,1))) == 1

err_flag = 1;

end

if isinf(abs(sum(T_s(1:leng,1)))) == 1

err_flag = 1;

end

if min(T_s(1:leng,1)) < 250

err_flag = 1;

end

if max(T_s(1:leng,1)) > 350

err_flag = 1;

end

if err_flag == 0 || ct5 == 1;
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T_s(1:leng,1) = T_with_U(:,GoodWindLoc);

L(1:leng,1) = L_with_U(:,GoodWindLoc);

U_10(1:leng,1) = U_old(:,GoodWindLoc);

if isnan(T_s(leng,1)) == 1

T_s(leng,1) = T_check(leng,1)+273;

end

ct5 = 0;

wind_flag = 1;

constL = constL_in;

U_ct = 0;

else

ct5 = 1;

U_10(1:leng,1) = mean(U_old(1,1:2));

end

else

% U_10(1:leng,1) = ... % Increment U10

% U_10(1:leng,1)+0.1*(U_sat-U_10(1,1));

if length(T_with_U(1,:)) == 3 %

U_10(1:leng,1) = U_old(1,1)*0.8+0.2*U_sat;

else

U_10(1:leng,1) = U_old(1,U_ct)*0.8+0.2*U_sat;

end

U_ct = U_ct+1; redo = 0; U_step = 2; ct3 = 0;

end

con_flag = 0;

end

% Calculate mini

if U_step == 1

if k >= 228

hihi = 1;

end

clear Terrors; clear T_1d;

Terrors(1,1:length(T_with_U(1,:))) = T_with_U(...

leng,1:length(T_with_U(1,:)))-T_check(leng,1)-273;

GoodWindLoc = find(... % Find whether Umin or Umax

abs(Terrors(1,1:2)) ... % yielded a better solution

== min(abs(Terrors(1,1:2))));

if sign(Terrors(1,1)) ~= sign(Terrors(1,2))

slop = (T_with_U(leng,2)-T_with_U(leng,1))/...

(U_old(leng,2)-U_old(leng,1));

intp = T_with_U(leng,1)-slop*U_old(leng,1);

U_sat = (T_check(leng,1)+273-intp)/slop;
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if U_sat > max(U_old(1,:))

U_sat = max(U_old(1,:));

elseif U_sat < min(U_old(1,:));

U_sat = min(U_old(1,:));

end

U_10(1:leng,1) = ... % Increment U10

U_old(1,GoodWindLoc)+0.1*(U_sat-U_old(1,GoodWindLoc));

redo = 0;

U_step = 2;

ct3 = 0;

else

if cond_flag ~= 2

if CK_ct == 0

CK_new = CKmin;

elseif CK_ct >= 1

CK_new = CK(1,1)+0.1*(CKmax-CKmin);

end

if min(abs(Terrors_2(1,:))) > min(abs(Terrors(1,:)))

CK_store = CK(1,1);

U_10_store = U_old(1,GoodWindLoc);

Terrors_2 = Terrors;

end

redo = 1;

CK_ct = CK_ct+1;

if CK_flag == 1

T_s(1:leng,1) = T_with_U(:,GoodWindLoc);

L(1:leng,1) = L_with_U(:,GoodWindLoc);

U_10(1:leng,1) = U_old(:,GoodWindLoc);

wind_flag = 1;

U_ct = 1;

redo = 0;

elseif CK_ct > 11 || CK_new < 0 || CK_new > 20

CK(1:leng,1) = CK_store;

CK_new = CK_store;

U_10(1:leng,1) = U_10_store;

wind_flag = 0;

redo = 1;

CK_flag = 1;

end

else

sumphi = mean(phi_N(1:leng,1));

if min(abs(Terrors_2(1,:))) > min(abs(Terrors(1,:)))

constL_store = constL;

U_10_store = U_old(1,GoodWindLoc);
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Terrors_2 = Terrors;

end

if Terrors(1,GoodWindLoc) < 0

if sumphi < 0

constL = constL*1.5;

else

constL = constL*0.5;

end

else

if sumphi < 0

constL = constL*0.5;

else

constL = constL*1.5;

end

end

if constL > maxL

constL = maxL;

elseif constL < minL

constL = minL;

end

redo = 1;

CK_ct = CK_ct+1;

if CK_flag == 1

T_s(1:leng,1) = T_with_U(:,GoodWindLoc);

L(1:leng,1) = L_with_U(:,GoodWindLoc);

U_10(1:leng,1) = U_old(:,GoodWindLoc);

wind_flag = 1;

constL = constL_in;

U_ct = 1;

redo = 0;

elseif CK_ct > 11 %|| constL > maxL || constL < minL

constL = constL_store;

U_10(1:leng,1) = U_10_store;

wind_flag = 0;

redo = 1;

CK_flag = 1;

end

end

end

end

% Calculate minimum and maximum U10 solutions

if U_step == 0

% Store solutions

T_with_U(1:leng,U_ct) = T_s(1:leng,1);

L_with_U(1:leng,U_ct) = L(1:leng,1);

U_old(1:leng,U_ct) = U_10(1:leng,1);

err_flag = 0;
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% Check for errors

if isnan(sum(T_s(1:leng,1))) == 1

err_flag = 1;

end

if isinf(abs(sum(T_s(1:leng,1)))) == 1

err_flag = 1;

end

if min(T_s(1:leng,1)) < 250

err_flag = 1;

end

if max(T_s(1:leng,1)) > 350

err_flag = 1;

end

if err_flag == 0

if length(U_old(1,:)) == 2

U_step = 1;

U_ct = U_ct+1;

else

U_10(1:leng,1) = U10max;

U_ct = U_ct+1;

end

else % If there is an error, increase minimum or

% decrease maximum until error disappears.

U_step = 0; % Flag that solution must stay in this step

err_flag = 0;

if length(U_old(1,:)) == 1

U_10(1:leng,1) = U_10(1,1)+0.1;

if U_old(1,1) > 10

wind_flag = 1;

T_s(leng,1) = T_check(leng,1);

end

else

U_10(1:leng,1) = U_10(1,1)-0.1;

if U_old(1,1) < 0

wind_flag = 1;

T_s(leng,1) = T_check(leng,1);

end

end

end

end

if redo == 1 % Check if redo is flagged (=1)

clear U_old; clear Terrors;

flag_redo = 0;

wind_flag = 0;

U_step = 0;

redo = 0;

U_ct = 1;

U_10(1:leng,1) = U10min;

CK(1:leng,1) = CK_new;
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end

end

%% Iterate_U == 0

% This section iterates an error term to hit the satellite points.

% Unused in the simulation. UType = 0.

if UType == 0

Terrors = (T_check(leng,1)+273)-T_s(leng,1);

phi_error = divy*Terrors/(dt*(leng-1))+phi_error;

ct3 = ct3+1;

if ct3 > 100

ct3 = 0;

divy = divy*0.1;

end

if isnan(phi_error) == 1

phi_error = 0;

end

if and(or(abs(Terrors) < 10^-3,divy< 0.00001) == 1,...

isnan(Terrors) == 0) == 1

redo = 0; wind_flag = 1; U_step = 2;

divy = 100; ct3 = 0;

end

end

end

%% Print results to file

% This section prints the results to a file.

if redo == 0

% if k >= 228

hihi = 1;

% run exampleplot.m

% end

if ~exist(’L_old’,’var’)

fid_out = fopen(results_path,’wt’);

index1 = leng;

last_T = T_check(leng,1);

T_s_all(1:index1,1) = T_s(1:leng,1);

T_check_all(1:index1,1) = T_check(1:leng,1);

jd_all(1:index1,1) = jd(1:leng,1);

for i = 1:1:leng

fprintf(fid_out,...

’%0.10f\t%0.4f\t%0.4f\t%0.4f\t%0.4f\t

%0.4f\t%0.4f\t%0.4f\t%0.4f\t%0.4f\t

%0.4f\t%0.4f\t%0.4f\n’,...

jd(i,1),U_10(i,1),T_s(i,1),

T_check(i,1)+273,T_b(i,1),L(i,1),CK(i,1),

phi_N(i,1),phi_s(i,1),Sunrise(i,1),

Sunset(i,1),r(i,1),T_a(i,1));

end
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sat_loc(k+1,1) = leng;

else

fid_out = fopen(results_path,’at’);

index1 = length(T_s_all(:,1));

index2 = length(T_s_all(:,1))+leng-1;

last_T = T_check(leng,1);

T_s_all(index1:index2,1) = T_s(1:leng,1);

T_check_all(index1:index2,1) = T_check(1:leng,1);

jd_all(index1:index2,1) = jd(1:leng,1);

for i = 2:1:leng

fprintf(fid_out,...

’%0.10f\t%0.4f\t%0.4f\t%0.4f\t%0.4f\t%0.4f

\t%0.4f\t%0.4f\t%0.4f\t%0.4f\t%0.4f\t

%0.4f\t%0.4f\n’,...

jd(i,1),U_10(i,1),T_s(i,1),

T_check(i,1)+273,T_b(i,1),L(i,1),CK(i,1),

phi_N(i,1),phi_s(i,1),Sunrise(i,1),

Sunset(i,1),r(i,1),T_a(i,1));

end

sat_loc(k+1,1) = sat_loc(k,1)+leng-1;

end

fclose(fid_out);

CK_signchange = 1;

%% Check whether to correct final T_s to satellite measurement for

% the next dataset or not.

if fixT == 1 || isnan(sum(T_s(:,1))) == 1 ||

isfinite(sum(T_s(leng,1))) == 0 % Store final T

last_T = T_check(leng,1);

else

last_T = T_s(leng,1)-273;

end

L_old = L(leng,1); % Store final L

end

end

fclose(f_id);

% Clear unnecessary variables from workspace

clear year; clear month; clear day; clear time; clear T_a; clear U_z;

clear r; clear d; clear jd; clear T_check; clear diff; clear U_10;

clear phi_N; clear phi_s; clear phi_ri; clear phi_sf; clear phi_lf;

clear e_a; clear w_star; clear q_star; clear dLdt; clear u_star;

clear err_1; clear err_2; clear dLdt; clear dTdt; clear L; clear T_s;

clear sat_loc; clear dt; clear T_b;

clear Terrors; clear T_with_U; clear U_old;

toc()

Message = sprintf(’Simulation complete for Lake %s \n’,Lake);
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% Call the plotting function

% T_res = TKE_method_plot(results_dir,results_name,results_path)

end
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Appendix B

Post-Processing

This appendix contains the MATLAB code which performs most of the post processing on

the simulation results.

function [T_RMS,T_check_stat,RMS] =

TKE_method_plot(r_dir,results_name,results_path,varargin)

%% This program performs post-processing on the input results file and

% plots the desired results.

% Syntax: TKE_method_plot(r_dir,results_name,results_path,’OptionalName1’

% ,’OptionalValue1’,’OptionalName2’,’OptionalValue2’,...,

% ’OptionalNameN’,’OptionalValueN’))

% r_dir = the results directory.

% results_name = the result filename.

% results_path = the full result path+filename.

%

% The optional values allow the user to specifiy which plots and settings

% different from the saved defaults. The available options are the

% following:

%

% NOTE: ’<value>’_xxxx corresponds to whether or not to plot <value> for

% duration xxxx, where xxxx can be "full", "year", or "week". "full"

% correlates to plotting the full simulation, "year" correlates to

% plotting a single year, and "week" correlates to plotting a single

% week. If ’<value>’_xxx is set to 1, it will be plotted, if it is 0 it

% will not be plotted.

%

% NOTE: Which week or year to choose is chosen using the option ’year’

% and ’week’ respectively. If no ’year’ or ’week’ is included, the

% default is the first 365 days and the first 7 days included in the

% result file respectively.

%

% EXAMPLE: To plot Ts for the year 2005, the syntax would be:

% T_RMS = TKE_method_plot(...
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% r_dir,results_name,results_path,...

% ’Ts_year’,1,’year’,2005)

%

% ’Ts_full’ = Binary 0 or 1. Default is 1.

%

% ’Ts_year’ = Binary 0 or 1. Default is 1.

%

% ’Ts_week’ = Binary 0 or 1. Default is 1.

%

% ’L_full’ = Binary 0 or 1. Default is 1.

%

% ’L_year’ = Binary 0 or 1. Default is 1.

%

% ’L_week’ = Binary 0 or 1. Default is 1.

%

% ’U10_full’ = Binary 0 or 1. Default is 0.

%

% ’U10_year’ = Binary 0 or 1. Default is 1.

%

% ’U10_week’ = Binary 0 or 1. Default is 1.

%

% ’Tb_full’ = Binary 0 or 1. Default is 0.

%

% ’Tb_year’ = Binary 0 or 1. Default is 0.

%

% ’Tb_week’ = Binary 0 or 1. Default is 1.

%

% ’CK_full’ = Binary 0 or 1. Default is 0.

%

% ’CK_year’ = Binary 0 or 1. Default is 1.

%

% ’CK_week’ = Binary 0 or 1. Default is 1.

%

% ’Ter_full’ = Binary 0 or 1. Default is 0.

%

% ’Ter_year’ = Binary 0 or 1. Default is 1.

%

% ’Ter_week’ = Binary 0 or 1. Default is 1.

%

% ’year’ = Select which year to plot for all ’<value>_year’ plots. If an

% invalid year is selected, the default year will be plotted instead.

% Default is 0, which will plot the first 365 days in the result file.

%

% ’week’ = Select which week to plot for all ’<value>_week’ plots. If an

% invalid week is selected, the default week will be plotted instead.

% Default is 0, which will plot the first 7 days in the result file.

%

% ’Ts_di_yr’ = Binary 0 or 1. If 1, yearly diurnal trend for Ts is

% plotted. Default is 1.

%

% ’L_di_yr’ = Binary 0 or 1. If 1, yearly diurnal trend for L is
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% plotted. Default is 0.

%

% ’U10_di_yr’ = Binary 0 or 1. If 1, yearly diurnal trend for U10 is

% plotted. Default is 0.

%

% ’Ts_di_mo’ = Binary 0 or 1. If 1, monthly diurnal trend for Ts is

% plotted. Default is 0. To choose which month is plotted use ’month’.

%

% ’L_di_mo’ = Binary 0 or 1. If 1, monthly diurnal trend for L is

% plotted. Default is 0. To choose which month is plotted use ’month’.

%

% ’U10_di_mo’ = Binary 0 or 1. If 1, monthly diurnal trend for U10 is

% plotted. Default is 0. To choose which month is plotted use ’month’.

%

% ’month’ = 0 - 13. If 0, plots monthly diurnal trend for all months on a

% single plot. If 1-12, plots monthly diurnal trend for a single month.

% If 13, plots monthly diurnal trend for all months on individual plots

% for each month. Default is 0.

%

% ’full_x_style’ = 0, 1, or 2. If 0, x-axis in ’<value>_full’ plots will

% be in years. If 1, it will be in days. If 2, it will be in hours.

% Default is 0.

%

% ’year_x_style’ = 0, 1, or 2. If 0, x-axis in ’<value>_year’ plots will

% be in years. If 1, it will be in days. If 2, it will be in hours.

% Default is 1.

%

% ’week_x_style’ = 0, 1, or 2. If 0, x-axis in ’<value>_week’ plots will

% be in years. If 1, it will be in days. If 2, it will be in hours.

% Default is 1.

%

% ’full_y_style’ = 0, 1, or 2. If 0, y-axis in ’Ts_full’ plot will be in

% K. If 1, y-axis will be in non-dimensional units T*. If 2, individual

% plots for K and T* y-axises will be created. Default is 0.

%

% ’year_y_style’ = 0, 1, or 2. If 0, y-axis in ’Ts_year’ plot will be in

% K. If 1, y-axis will be in non-dimensional units T*. If 2, individual

% plots for K and T* y-axises will be created. Default is 2.

%

% ’week_y_style’ = 0, 1, or 2. If 0, y-axis in ’Ts_week’ plot will be in

% K. If 1, y-axis will be in non-dimensional units T*. If 2, individual

% plots for K and T* y-axises will be created. Default is 2.

%

% ’IncWinter’ = Flags whether or not to include winter in yearly average

% plots. If = 1, it is included, if = 0 it is not. Default is 1.

%

%

%% Read varargin inputs

% input_poss contains the variable name to be replaced by varargin input

% input_def contains the default value for the corresponding variable name
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% in input_poss.

input_poss{1,1} = ’Ts_full’; input_def(1,1) = 1; % Binary, 0 or 1

input_poss{2,1} = ’Ts_year’; input_def(2,1) = 1; % Binary, 0 or 1

input_poss{3,1} = ’Ts_week’; input_def(3,1) = 1; % Binary, 0 or 1

input_poss{4,1} = ’L_full’; input_def(4,1) = 1; % Binary, 0 or 1

input_poss{5,1} = ’L_year’; input_def(5,1) = 1; % Binary, 0 or 1

input_poss{6,1} = ’L_week’; input_def(6,1) = 1; % Binary, 0 or 1

input_poss{7,1} = ’U10_full’; input_def(7,1) = 0; % Binary, 0 or 1

input_poss{8,1} = ’U10_year’; input_def(8,1) = 1; % Binary, 0 or 1

input_poss{9,1} = ’U10_week’; input_def(9,1) = 1; % Binary, 0 or 1

input_poss{10,1} = ’Tb_full’; input_def(10,1) = 0; % Binary, 0 or 1

input_poss{11,1} = ’Tb_year’; input_def(11,1) = 0; % Binary, 0 or 1

input_poss{12,1} = ’Tb_week’; input_def(12,1) = 0; % Binary, 0 or 1

input_poss{13,1} = ’CK_full’; input_def(13,1) = 0; % Binary, 0 or 1

input_poss{14,1} = ’CK_year’; input_def(14,1) = 1; % Binary, 0 or 1

input_poss{15,1} = ’CK_week’; input_def(15,1) = 1; % Binary, 0 or 1

input_poss{16,1} = ’Ter_full’; input_def(16,1) = 0; % Binary, 0 or 1

input_poss{17,1} = ’Ter_year’; input_def(17,1) = 1; % Binary, 0 or 1

input_poss{18,1} = ’Ter_week’; input_def(18,1) = 1; % Binary, 0 or 1

input_poss{19,1} = ’year’; input_def(19,1) = 0; % 0 or yyyy

input_poss{20,1} = ’week’; input_def(20,1) = 0; % 0 or week#

input_poss{21,1} = ’Ts_di_yr’; input_def(21,1) = 1; % Binary, 0 or 1

input_poss{22,1} = ’L_di_yr’; input_def(22,1) = 0; % Binary, 0 or 1

input_poss{23,1} = ’U10_di_yr’; input_def(23,1) = 0; % Binary, 0 or 1

input_poss{24,1} = ’Ts_di_mo’; input_def(24,1) = 0; % Binary, 0 or 1

input_poss{25,1} = ’L_di_mo’; input_def(25,1) = 0; % Binary, 0 or 1

input_poss{26,1} = ’U10_di_mo’; input_def(26,1) = 0; % Binary, 0 or 1

input_poss{27,1} = ’month’; input_def(27,1) = 0; % 0-13

input_poss{28,1} = ’full_x_style’; input_def(28,1) = 0; % 0, 1, or 2

input_poss{29,1} = ’year_x_style’; input_def(29,1) = 1; % 0, 1, or 2

input_poss{30,1} = ’week_x_style’; input_def(30,1) = 1; % 0, 1, or 2

input_poss{31,1} = ’full_y_style’; input_def(31,1) = 0; % 0, 1, or 2

input_poss{32,1} = ’year_y_style’; input_def(32,1) = 2; % 0, 1, or 2

input_poss{33,1} = ’week_y_style’; input_def(33,1) = 2; % 0, 1, or 2

input_poss{34,1} = ’IncWinter’; input_def(34,1) = 1; % Binary, 0 or 1

close all;

%% Flag Outputs

% whichplot, 0 = off, 1 = on

whichplot = [1; % wind speed

1; % converged mixed depth

1; % converged surface temperature

0; % bulk temperature

0; % monthly diurnal trend, T

0; % monthly diurnal trend, L

0; % monthly diurnal trend, U_10

1; % CK
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0; % residual

0; % broad solution with U = 0 through U = 10

1; % total diurnal trend, T

0; % average diurnal solar radiation

1; % average diurnal net flux

0; % average trend divided by net flux

0]; % average trend divided by solar radiation

if exist(r_dir,’dir’) == 0

mkdir(r_dir);

end

fprintf(’Now plotting:\n%s\n’,results_path);

%% Find end of file

f_id = fopen(results_path);

i = 0;

while ~feof(f_id); val = fscanf(f_id,[

’%f’,’%f’,’%f’,’%f’,’%f’,’%f’,’%f’,’%f’,’%f’,

’%f’,’%f’],11); if ~isempty(val); i = i+1; end

end

eof_out = i;

fclose(f_id);

%% Load results

f_id = fopen(results_path);

jd = zeros(eof_out,1); U_10 = jd; T_s = jd;

T_check = jd; T_b = jd; L = jd; CK = jd; phi_N = jd;

phi_s = jd; ct = 0; Sunrise = jd; Sunset = jd;

jd_t_star = jd;

for i = 1:1:eof_out

val = fscanf(f_id,[

’%f’,’%f’,’%f’,’%f’,’%f’,’%f’,’%f’,’%f’,

’%f’,’%f’,’%f’],11);

jd(i,1) = val(1,1); U_10(i,1) = val(2,1);

T_s(i,1) = val(3,1); T_check(i,1) = val(4,1);

T_b(i,1) = val(5,1); L(i,1) = val(6,1);

CK(i,1) = val(7,1); phi_N(i,1) = val(8,1);

phi_s(i,1) = val(9,1); Sunrise(i,1) = val(10,1);

Sunset(i,1) = val(11,1);

jd_t_star(i,1) = tstar(jd(i,1),Sunrise(i,1),Sunset(i,1));

if T_check(i,1) ~= 273

ct = ct+1;

sat_loc(ct,1) = i;
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end

end

fclose(f_id);

%% Calculate dt and i_fin

clear day_number;

day_number(:,1) = jd(:,1)-jd(1,1);

dt = round((jd(2,1)-jd(1,1))*24*3600);

i_fin = floor(length(T_s(:,1))/1);

di_len = floor(24*3600/dt);

%% Calculate diurnal averages

T_di_noavg = zeros(di_len,12); cn = T_di_noavg;

for i = 1:1:i_fin%length(T_s(:,1))

[y,m,d,h,mi,s] = datevec(jd(i,1));

ti = 3600*h+60*mi+s; % seconds

ind = floor(ti/dt+1);

tempz(i,1) = ti/dt+1;

if i >= 2

tempz2(i,1) = (jd(i,1)-jd(i-1,1))*24*3600;

end

if isnan(T_s(i,1)) == 0 && and(T_s(i,1) > 250,T_s(i,1) < 350)

T_di_noavg(ind,m) = T_di_noavg(ind,m) + T_s(i,1);

cn(ind,m) = cn(ind,m)+1;

end

end

for i = 1:1:length(T_di_noavg(:,1))

for j = 1:1:length(T_di_noavg(1,:))

if cn(i,j) ~= 0

T_di_noavg(i,j) = T_di_noavg(i,j)/cn(i,j);

end

end

end

for i = 1:1:length(T_di_noavg(:,1))

if include_winter == 1

T_di_noavg_mn(i,1) = mean(T_di_noavg(i,:));

else

T_di_noavg_mn(i,1) = mean(T_di_noavg(i,4:11));

end

end
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ct = 0; avg_day = 0; T_s2 = T_s; T_s3 = T_s; T_s4 = T_s;

day_min = 300; day_max = 250;

for i = 1:1:i_fin

t_star(i,1) = tstar(jd(i,1),Sunrise(i,1),Sunset(i,1));

if i >= 523500

hihi = 1;

end

if T_s2(i,1) < day_min

day_min = T_s2(i,1);

end

if T_s2(i,1) > day_max

day_max = T_s2(i,1);

end

if i == i_fin

if T_s2(i_fin,1) < day_min

day_min = T_s2(i_fin,1);

elseif T_s2(i_fin,1) > day_max

day_max = T_s2(i_fin,1);

end

ct = ct+1;

avg_day = avg_day+T_s2(i,1);

T_s2(i-ct+1:i,1) = T_s2(i-ct+1:i,1)-(avg_day/ct);

T_s4(i-ct+1:i,1) = (T_s(i-ct+1:i,1)-day_min)/(day_max-day_min);

elseif floor(jd(i,1)) == floor(jd(i+1,1))

avg_day = avg_day+T_s2(i,1);

ct = ct+1;

else

if ct == 0

T_s2(i,1) = 0;

else

if or(abs(avg_day/ct) > 273+1000,abs(avg_day/ct)<200-1000) == 1

T_s2(i-ct:i,1) = -999;

T_s3(i-ct:i,1) = -999;

T_s4(i-ct:i,1) = -999;

else

T_s2(i-ct:i,1) = T_s2(i-ct:i,1)-(avg_day/ct);

T_s3(i-ct:i,1) = T_s3(i-ct:i,1);

T_s4(i-ct:i,1) = (T_s(i-ct:i,1)-day_min)/(day_max-day_min);

t_star(i-ct:i,1) = t_star(i-ct:i,1)-ct*2;

91



end

day_min = 300;

day_max = 250;

avg_day = 0;%T_s2(i,1);

ct = 0;

end

end

end

%% Find where L < 0.1m

L(:,2) = 0;

for i=1:1:length(L(:,1))

if L(i,1) <= 0.01 || isnan(T_s(i,1)) == 1 ||

T_s(i,1) < 250 || T_s(i,1) > 350

L(i,2) = 1;

end

end

fd = find(L(:,2) == 1);

for i = 1:1:length(fd(:,1))

jd_fd(i,1) = jd(fd(i,1),1);

T_fd(i,1) = T_s(fd(i,1),1);

L_fd(i,1) = L(fd(i,1),1);

T_s2(fd(i,1),1) = -999;

T_s3(fd(i,1),1) = -999;

T_s(fd(i,1),1) = 0;

end

T_di = zeros(di_len,12); phi_s_di = T_di; phi_N_di = T_di; L_di = T_di;

cn = T_di; U_di = T_di; jd_di = T_di; phi_error_di = T_di; T_di_tp2 = T_di;

for i = 1:1:i_fin%length(T_s(:,1))

[y,m,d,h,mi,s] = datevec(jd(i,1));

ti = 3600*h+60*mi+s; % seconds

ind = floor(ti/dt+1);

if isnan(phi_N(i,1)) == 1

hihi = 1;

end
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if and(or(ind == 1,ind == 2),m == 1) == 1

hihi = 1;

end

if T_s2(i,1) ~= -999

T_di(ind,m) = T_di(ind,m) + T_s3(i,1);

T_di_tp2(ind,m) = T_di_tp2(ind,m)+T_s4(i,1);

phi_s_di(ind,m) = phi_s_di(ind,m) + phi_s(i,1);

phi_N_di(ind,m) = phi_N_di(ind,m) + phi_N(i,1);

% phi_error_di(ind,m) = phi_error_di(ind,m) + phi_error_store_all(i,1);

L_di(ind,m) = L_di(ind,m) + L(i,1);

U_di(ind,m) = U_di(ind,m) + U_10(i,1);

cn(ind,m) = cn(ind,m)+1;

end

jd_di(ind,1) = ti/(3600*24);

end

for i = 1:1:length(T_di(:,1))

for j = 1:1:length(T_di(1,:))

if cn(i,j) ~= 0

T_di(i,j) = T_di(i,j)/cn(i,j);

phi_s_di(i,j) = phi_s_di(i,j)/cn(i,j);

phi_N_di(i,j) = phi_N_di(i,j)/cn(i,j);

% phi_error_di(i,j) = phi_error_di(i,j)/cn(i,j);

L_di(i,j) = L_di(i,j)/cn(i,j);

U_di(i,j) = U_di(i,j)/cn(i,j);

end

if T_di(i,j) <= 273

T_di(i,j) = 273;

end

end

end

for j = 1:1:length(T_di(1,:))

T_di_m(:,j) = T_di(:,j)-mean(T_di(:,j));

T_di_min(1,j) = min(T_di(:,j));

T_di_max(1,j) = max(T_di(:,j));

if T_di_min(1,j) <= 0

T_di_min(1,j) = 0;

end

T_di_tp(1:length(T_di(:,1)),j) =

(T_di(:,j)-T_di_min(1,j))/

(T_di_max(1,j)-T_di_min(1,j));

end
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for i = 1:1:length(T_di(:,1))

if include_winter == 1

T_di_mn(i,1) = mean(T_di_m(i,:));

phi_s_di_mn(i,1) = mean(phi_s_di(i,:));

phi_N_di_mn(i,1) = mean(phi_N_di(i,:));

else

T_di_mn(i,1) = mean(T_di_m(i,4:11));

phi_s_di_mn(i,1) = mean(phi_s_di(i,4:11));

phi_N_di_mn(i,1) = mean(phi_N_di(i,4:11));

end

% phi_error_di_mn(i,1) = mean(phi_error_di(i,:));

end

%% Create residual error array

clear Terrors; clear ct;

Terrors = zeros(nnz(T_check(:,1)-273),1); jd_errors = Terrors; ct = 0;

for i = 1:1:length(T_check(:,1))

if T_check(i,1)-273 == 0

else

ct = ct+1;

Terrors(ct,1) = T_s(i,1)-T_check(i,1);

jd_errors(ct,1) = jd(i,1);

end

end

%% Plot information

scr = get(0,’ScreenSize’); % Store screen size for figures

%% Output

%% U_10

[yr,mth,dy,mi] = datevec(jd(1,1));

im1 = figure;

set(im1,’Position’,[0 0 scr(3) scr(4)]);

hold on; clear x; clear y;
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x(:,1) = (jd(1:i_fin,1)-jd(1,1))/365.25+yr+(mth+dy/31)/12;

% x(:,1) = 1:1:i_fin’;

y(:,1) = U_10(1:i_fin,1);

plot(x,y(:,1),’-k’,’MarkerSize’,10,’LineWidth’,1);

ylabel(’U_1_0 (m/s)’,’fontsize’,28)

xlabel(’t (hr)’,’fontsize’,28)

xlim([min(x(:,1)) max(x(:,1))])

ylim([min(U_10(:,1))-0.1 max(U_10(:,1))+0.1])

% axis([0 i_fin 0 11])

set(gca,’fontsize’,28)

set(gcf,’Color’,[1 1 1 ])

box on

set(gca,’LineWidth’,4)

r = 150;

set(gcf,’PaperUnits’,’inches’,’PaperPosition’,[0 0 1800 900]/r);

export_fig(’filename’,strcat(r_dir,results_name,’_u_10’,’.png’),im1)

% saveas(im1,strcat(r_dir,results_name,’_u_10’),’png’);

saveas(im1,strcat(r_dir,results_name,’_u_10’),’fig’);

print(gcf,’-depsc2’,sprintf(’-r%d’,r),strcat(r_dir,’sim_U.eps’));

if whichplot(1,1) == 1

else

close(im1);

end

%% Converged L

im2 = figure; set(im2,’Position’,[0 0 scr(3) scr(4)]);

hold on; clear y

max_L = max(L(:,1));

y(:,1) = L(1:i_fin,1);

plot(x,y,’-k’,’MarkerFaceColor’,[1,1,1],’MarkerSize’,10,’LineWidth’,1);

ylabel(’L (m)’,’fontsize’,28)

xlabel(’t (hr)’,’fontsize’,28)

xlim([min(x(:,1)) max(x(:,1))])

ylim([-0.1 max_L+0.1])

set(gca,’fontsize’,28)

set(gcf,’Color’,[1 1 1 ])

box on

set(gca,’LineWidth’,4)

r = 150;

set(gcf,’PaperUnits’,’inches’,’PaperPosition’,[0 0 1800 900]/r);

print(gcf,’-depsc2’,sprintf(’-r%d’,r),strcat(r_dir,’sim_L.eps’));

export_fig(’filename’,strcat(r_dir,results_name,’_L’,’.png’),im2)

% saveas(im2,strcat(r_dir,results_name,’_L’),’png’);
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saveas(im2,strcat(r_dir,results_name,’_L’),’fig’);

if whichplot(2,1) == 1

else

close(im2);

end

%% Converged T_s

im3 = figure;

set(im3,’Position’,[0 0 scr(3) scr(4)]);

hold on; clear y; clear x2; clear y2; clear x3; clear y3; clear yT;

y(:,1) = T_s(1:i_fin,1);

yT(:,1) = T_check(1:i_fin,1);

for i = 1:length(sat_loc(:,1))

if sat_loc(i,1) <= i_fin

x2(i,1) = x(sat_loc(i,1),1);

y2(i,1) = yT(sat_loc(i,1),1);

RMS(i,1) = (yT(sat_loc(i,1),1)- y(sat_loc(i,1),1))^2;

end

end

T_RMS = (sum(RMS(:,1))/length(RMS(:,1)))^(1/2);

titl = sprintf(’RMS Error = %0.5f’,T_RMS);

%% Plot temperatures

plot(x,y’,’-k’,’MarkerFaceColor’,[1,1,1],’MarkerSize’,10,’LineWidth’,1);

plot(x2,y2,’ok’,’MarkerFaceColor’,[0,0,0],’MarkerSize’,2);

%% Make pretty

ylabel(’T_s (K)’,’fontsize’,28)

xlabel(’Years’,’fontsize’,28)

title(titl,’fontsize’,28)

xlim([min(x(:,1)) max(x(:,1))])

ylim([0+260 330])

set(gca,’fontsize’,28)

set(gcf,’Color’,[1 1 1 ])

box on

set(gca,’LineWidth’,4)

r = 150;

set(gcf,’PaperUnits’,’inches’,’PaperPosition’,[0 0 1800 900]/r);

print(gcf,’-depsc2’,sprintf(’-r%d’,r),strcat(r_dir,’sim_T.eps’));

export_fig(’filename’,strcat(r_dir,results_name,’_T’,’.png’),im3)

saveas(im3,strcat(r_dir,results_name,’_T’),’fig’);
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if whichplot(3,1) == 1

else

close(im3);

end

%% Plot CK

im8 = figure;

set(im8,’Position’,[0 0 scr(3) scr(4)]);

hold on; clear x; clear y;

% x(:,1) = (jd(1:i_fin,1)-jd(1,1))*24;

x(:,1) = (jd(1:i_fin,1)-jd(1,1));

y(:,1) = CK(1:i_fin,1);

plot(x,y’,’-k’,’MarkerFaceColor’,[1,1,1],

’MarkerSize’,10,’LineWidth’,2);

ylabel(’CK’,’fontsize’,28)

xlabel(’t (dy)’,’fontsize’,28)

xlim([0 (jd(i_fin,1)-jd(1,1))])

set(gca,’fontsize’,28)

set(gcf,’Color’,[1 1 1 ])

box on

export_fig(’filename’,strcat(r_dir,results_name,’_CK’,’.png’),im8)

saveas(im8,strcat(r_dir,results_name,’_CK’),’fig’);

if whichplot(8,1) == 1

else

close(im8);

end

%% Yearly diurnal trend, T

im11 = figure;

set(im11,’Position’,[0 0 scr(3) scr(4)]);

hold on; clear x; clear y; clear ymin; clear ymax;

x(:,1) = jd_di(:,1)*24;

y(:,1) = (T_di_mn(:,1));

plot(x,((y(:,1))),’-k’,’MarkerFaceColor’,

[1,1,1],’MarkerSize’,10,’LineWidth’,2); %’-sg’

ymin = min(min(y(:,:)));

ymax = max(max(y(:,:)));

if isnan(ymin) == 1

ymin = 0;
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end

if isnan(ymax) == 1

ymax = 3;

end

ylabel(’T_s (^{\circ}C)’,’fontsize’,28)

xlabel(’t (hr)’,’fontsize’,28)

title(’Average Diurnal Trend’,’fontsize’,28)

axis([0 24 ymin ymax])

set(gca,’XTick’, 0:2:floor(length(x(:,1))));

set(gca,’fontsize’,28)

set(gcf,’Color’,[1 1 1 ])

box on

export_fig(’filename’,strcat(r_dir,results_name,’_T_yr’,’.png’),im11)

saveas(im11,strcat(r_dir,results_name,’_T_yr’),’fig’);

if whichplot(11,1) == 1

else

close(im11);

end

star_bins = 100;

ct = 0; avg_day = 0; T_s2 = T_s; T_s3 = T_s;

T_s4 = T_s; clear freq; clear pow;

day_min = 300; day_max = 250;

which_plot_v2 = [1; %frequencies

1]; % diurnals

for i = 1:1:i_fin

if i >= 523500

hihi = 1;

end

if T_s2(i,1) < day_min

day_min = T_s2(i,1);

end

if T_s2(i,1) > day_max

day_max = T_s2(i,1);

end

if i == i_fin

if T_s2(i_fin,1) < day_min

day_min = T_s2(i_fin,1);

elseif T_s2(i_fin,1) > day_max

day_max = T_s2(i_fin,1);
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end

ct = ct+1;

avg_day = avg_day+T_s2(i,1);

T_s2(i-ct+1:i,1) = T_s2(i-ct+1:i,1)-(avg_day/ct);

T_s4(i-ct+1:i,1) = (T_s(i-ct+1:i,1)-day_min)/(day_max-day_min);

elseif floor(jd(i,1)) == floor(jd(i+1,1))

avg_day = avg_day+T_s2(i,1);

ct = ct+1;

else

if ct == 0

T_s2(i,1) = 0;

else

if or(abs(avg_day/ct) > 273+50,abs(avg_day/ct)<273-1) == 1

T_s2(i-ct:i,1) = -999;

T_s3(i-ct:i,1) = -999;

T_s4(i-ct:i,1) = -999;

else

tempz = (T_s(i-ct:i,1)-day_min)/(day_max-day_min);

T_s2(i-ct:i,1) = T_s2(i-ct:i,1)-(avg_day/ct);

T_s3(i-ct:i,1) = T_s3(i-ct:i,1);

T_s4(i-ct:i,1) = (T_s(i-ct:i,1)-day_min)/(day_max-day_min);

hihi=1;

end

day_min = 300;

day_max = 250;

avg_day = 0;%T_s2(i,1);

ct = 0;

end

end

% T_di2(i,ct) = T_s(i,1);

end

ct = 1; clear T_s5; clear jd_5;

for i=1:1:length(T_s4(:,1))

if T_s4(i,1) ~= -999

T_s5(ct,1) = T_s4(i,1);

jd_5(ct,1) = jd(i,1);

ct=ct+1;

end
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end

T_di = zeros(di_len,12); cn = T_di; T_di_m = T_di; T_di_tp = T_di; T_di_mn = T_di;

T_di_min = zeros(1,12); T_di_max = T_di_min;

T_di_star = zeros(2*star_bins,12); cn_2 = T_di_star; jd_di_star = T_di_star(:,1);

for i = 1:1:i_fin%length(T_s(:,1))

[y,m,d,h,mi,s] = datevec(jd(i,1));

ti = 3600*h+60*mi+s; % seconds

ind = floor(ti/dt+1);

ind2 = floor(jd_t_star(i,1)*star_bins)+1;

if T_s2(i,1) ~= -999

T_di(ind,m) = T_di(ind,m) + T_s3(i,1);

T_di_star(ind2,m) = T_di_star(ind2,m) + T_s3(i,1);

cn(ind,m) = cn(ind,m)+1;

cn_2(ind2,m) = cn_2(ind2,m)+1;

end

jd_di(ind,1) = ti/(3600*24);

jd_di_star(ind2,1) = floor(jd_t_star(i,1)*star_bins)/star_bins;

end

% jd_di_star(2001,1) = 2;

for i = 1:1:length(T_di(:,1))

for j = 1:1:length(T_di(1,:))

if cn(i,j) ~= 0

T_di(i,j) = T_di(i,j)/cn(i,j);

end

end

end

for i = 1:1:length(T_di_star(:,1))

for j = 1:1:length(T_di_star(1,:))
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if cn_2(i,j) ~= 0

T_di_star(i,j) = T_di_star(i,j)/cn_2(i,j);

end

end

end

for j = 1:1:length(T_di(1,:))

T_di_m(:,j) = T_di(:,j)-mean(T_di(:,j));

T_di_min(1,j) = min(T_di(:,j));

T_di_max(1,j) = max(T_di(:,j));

if T_di_min(1,j) <= 0

T_di_min(1,j) = 0;

end

T_di_tp(1:length(T_di(:,1)),j) =

(T_di(:,j)-T_di_min(1,j))/

(T_di_max(1,j)-T_di_min(1,j));

end

T_di_star_m = zeros(length(T_di_star(:,1)),12);

T_di_star_min = T_di_star_m;

T_di_star_max = T_di_star_m;

T_di_star_tp = T_di_star_m;

for j = 1:1:length(T_di_star(1,:))

T_di_star_m(:,j) = T_di_star(:,j)-mean(T_di_star(:,j));

T_di_star_min(1,j) = min(T_di_star(:,j));

T_di_star_max(1,j) = max(T_di_star(:,j));

if T_di_star_min(1,j) <= 0

T_di_star_min(1,j) = 0;

end

T_di_star_tp(1:length(T_di_star(:,1)),j) =

(T_di_star(:,j)-T_di_star_min(1,j))/

(T_di_star_max(1,j)-T_di_star_min(1,j));

end

for i = 1:1:length(T_di(:,1))

if include_winter == 1

T_di_mn(i,1) = mean(T_di_m(i,:));

T_di_tp_mn(i,1) = mean(T_di_tp(i,:));

else

T_di_mn(i,1) = mean(T_di_m(i,4:11));

T_di_tp_mn(i,1) = mean(T_di_tp(i,4:11));
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end

end

T_di_star_mn = zeros(length(T_di_star(:,1)),1); T_di_star_tp_mn = T_di_star_mn;

for i = 1:1:length(T_di_star(:,1))

if include_winter == 1

T_di_star_mn(i,1) = mean(T_di_star_m(i,:));

T_di_star_tp_mn(i,1) = mean(T_di_star_tp(i,:));

else

T_di_star_mn(i,1) = mean(T_di_star_m(i,4:11));

T_di_star_tp_mn(i,1) = mean(T_di_star_tp(i,4:11));

end

end

clear val;

for i = 0:1:23

val(i+1,1) = find(jd_di(:,1)*24 == i);

T_di_mn_lim(i+1,1) = T_di_noavg_mn(val(i+1,1),1);

T_di_tp_mn_lim(i+1,1) = T_di_tp_mn(val(i+1,1),1);

jd_di_lim(i+1,1) = jd_di(val(i+1,1),1);

end

clear x; clear y; clear x2; clear y2; ct = 1;

x = jd_di_lim(:,1);

y = T_di_tp_mn_lim(:,1);

% plot(x,y,’ok’,’MarkerSize’,10)

sun_mn = mean(Sunrise(:,1));

set_mn = mean(Sunset(:,1));

for i = 1:1:length(x(:,1))

if x(i,1)*24 < sun_mn

elseif x(i,1)*24 > set_mn

else
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x2(ct,1) = x(i,1);

y2(ct,1) = y(i,1);

ct = ct+1;

end

end

for i = 1:1:length(jd_di_lim(:,1))

jd_di_lim_scale(i,1) =

((jd_di_lim(i,1)-jd_di_lim(1,1))*24-sun_mn)/

(set_mn-sun_mn);

end

clear n; clear dt; clear v; clear fs;

clear x; clear y; clear v; clear v_x;

clear V2; clear V;

dt = 60;

if T_di_tp_mn(length(T_di_tp_mn(:,1)),1) ~= T_di_tp_mn(1,1)

T_di_tp_mn(length(T_di_tp_mn(:,1))+1,1) = T_di_tp_mn(1,1);

end

if T_di_star_tp_mn(length(T_di_star_tp_mn(:,1)),1) ~= T_di_star_tp_mn(1,1)

T_di_star_tp_mn(length(T_di_star_tp_mn(:,1))+1,1) = T_di_star_tp_mn(1,1);

end

if jd_di(length(jd_di(:,1)),1) ~= 1

jd_di(length(jd_di(:,1))+1,1) = 1;

end

if jd_di_star(length(jd_di_star(:,1)),1) ~= 2

jd_di_star(length(jd_di_star(:,1))+1,1) = 2;

end

% v = T_di_tp_mn(:,1);

% v = T_s5(:,1);

v = T_di_star_tp_mn(:,1);

% v_x = jd_di(:,1);

% v_x = jd_5(:,1);

v_x = jd_di_star(:,1);

for k=1:1:100
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v(length(v(:,1)):length(v(:,1))

+ length(T_di_star_tp_mn(:,1))-1)

= T_di_star_tp_mn(:,1);

v_x(length(v_x(:,1)):length(v_x(:,1))

+ length(T_di_star_tp_mn(:,1))-1)

= jd_di_star(:,1)+k;

end

dt = v_x(2,1)-v_x(1,1);

fs = 1/dt;

n = length(v(:,1));

d = 2^(nextpow2(n));

V = fft(v,d)/n;

V2(:,1) = 2*abs(V(1:(floor(d/2)+1))).^2;

x(:,1) = fs/2*linspace(0,1,(floor(d/2)+1));

if which_plot_v2(1,1) == 1

im1 = figure;

set(im1,’Position’,[0 0 scr(3) scr(4)]);

loglog(x,V2,’-k’,’MarkerFaceColor’,[1,1,1],’MarkerSize’,10,’LineWidth’,2)

ylabel(’Signal Power’,’fontsize’,28)

xlabel(’Frequency (1/s)’,’fontsize’,28)

set(gca,’fontsize’,28)

set(gcf,’Color’,[1 1 1 ])

box on

axis([10^-2 10^2 10^-15 10^0])

set(gca,’LineWidth’,4)

r = 150;

set(gcf,’PaperUnits’,’inches’,’PaperPosition’,[0 0 1800 900]/r);

% set(gcf,’PaperUnits’,’inches’,’PaperPosition’,[0 0 1500 900]/r);

print(gcf,’-depsc2’,sprintf(’-r%d’,r),strcat(r_dir,’signal1.eps’));

end

freq(:,1) = fs/2*linspace(0,1,(floor(d/2)+1));

[SRT POS] = sort(abs(V(1:(floor(d/2)+1))));
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% [SRT POS] = sort(abs(V));

sintouse = 120;%length(V(:,1));

% for i = 1:1:length(POS(:,1))-sintouse-1%3

%

% V(POS(i,1),1) = 0;

%

% end

%

ct2 = 0; clear V3; clear freq3; clear H100; clear H; clear loc; clear Hfreq;

for i =1:1:floor(d/2)+1

if and(freq(i,1) <= 1*10^-3,freq(i,1) >= 10^-5) == 1

ct2 = ct2+1;

V3(ct2,1) = V(i,1);

else

% V(i,1) = 0;

end

if or(or(or(and(freq(i,1) <= 0.5006,

freq(i,1) >= 0.5004),and(freq(i,1)

<= 1.0011,freq(i,1) >= 1.0009)),and(freq(i,1)

<= 1.5016,freq(i,1) >= 1.5014)),and(freq(i,1)

<= 2.0021,freq(i,1) >= 2.0019)) == 1

else

V(i,1) = 0;

end

end

V((floor(d/2)+1)+1:length(V(:,1)),1) = 0;

pow(:,1) = 2*abs(V(1:(floor(d/2)+1))).^2;

if which_plot_v2(1,1) == 1

im1 = figure;

set(im1,’Position’,[0 0 scr(3) scr(4)]);

loglog(freq,(real(V(1:d/2+1,1)).^2

+ imag(V(1:d/2+1,1)).^2).^(1/2),’sk’,

’MarkerFaceColor’,[1,1,1],’MarkerSize’,

10,’LineWidth’,2)

ylabel(’Signal Power’,’fontsize’,28)

xlabel(’Frequency (1/t^*)’,’fontsize’,28)

set(gca,’fontsize’,28)

set(gcf,’Color’,[1 1 1 ])

box on

axis([10^-2 10^2 10^-15 10^0])
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set(gca,’LineWidth’,4)

r = 150;

set(gcf,’PaperUnits’,’inches’,

’PaperPosition’,[0 0 1800 900]/r);

print(gcf,’-depsc2’,sprintf(’-r

%d’,r),strcat(r_dir,’signal2_tstar.eps’));

end

r = 150;

val6 = find(real(V(:,1)) ~= 0);

stopzz = 0;

f_change = 0;

shift_change = 0;

clear val; clear jd_di_lim_scale2;

clear val2; clear jd_di_2;

val = find(T_di_tp_mn(:,1)

== max(T_di_tp_mn(:,1)));

val3 = find(T_di_tp_mn(:,1)

== min(T_di_tp_mn(:,1)));

jd_di_2(:,1) = (jd_di(:,1)*24-sun_mn)/

(set_mn-sun_mn);

val5 = find(jd_di_2(:,1) == 0);

min_loc = val3;

peak_loc = val;

rise_loc = val5;

clear val; clear val2; clear val3; clear val4;

sum_pow = abs(V(val6(1,1),1))

+abs(V(val6(2,1),1))

+abs(V(val6(3,1),1))

+abs(V(val6(4,1),1));

p_c = 1.34;

A1 = 1;

A2 = 0.22;

A3 = 0.0031;

A4 = 0.0021;

C1 = -0.1+p_c;

C2 = 0.49+p_c*2;

C3 = 0.6+p_c*3;

C4 = 3.9+p_c*4;

B1 = freq(val6(1,1),1)*2*pi();
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B2 = freq(val6(2,1),1)*2*pi();

B3 = freq(val6(3,1),1)*2*pi();

B4 = freq(val6(4,1),1)*2*pi();

sum_phase = phase(V(val6(1,1),1))

+phase(V(val6(2,1),1))

+phase(V(val6(3,1),1))

+phase(V(val6(4,1),1));

for i = 1:1:length(jd_di(:,1))

y_recon(i,1) = A1*sin(B1*jd_di(i,1)*24-C1)...

+A2*sin(B2*jd_di(i,1)*24-C2)...

+A3*sin(B3*jd_di(i,1)*24-C3)...

+A4*sin(B4*jd_di(i,1)*24-C4);

end

A5 = 1/(max(y_recon(:,1))-min(y_recon(:,1)));

D = min(y_recon(:,1))*A5;

fprintf(’A_1: %0.4f\tA_2: %0.4f\tA_3: %0.4f

\tA_4: %0.4f\nB_1: %0.4f\tB_2: %0.4f\tB_3:

%0.4f\tB_4: %0.4f\nC_1: %0.4f\tC_2: %0.4f

\tC_3: %0.4f\tC_4: %0.4f\nD: %0.4f\nA_5:

%0.4f\n’,A1,A2,A3,A4,B1,B2,B3,B4,C1,C2,C3,C4,D,A5);

clear y_recon; y_recon

= zeros(length((T_di_tp_mn(:,1))),1);

for i = 1:1:length(jd_di(:,1))

y_recon(i,1) = A5*(A1*sin(B1*jd_di(i,1)*24-C1)...

+A2*sin(B2*jd_di(i,1)*24-C2)...

+A3*sin(B3*jd_di(i,1)*24-C3)...

+A4*sin(B4*jd_di(i,1)*24-C4))-D;

end

clear y_recon2

for i =1:1:length(jd_di_star(:,1))

y_recon2(i,1) = A5*(A1*sin(B1*jd_di_star(i,1)-C1)...

+A2*sin(B2*jd_di_star(i,1)-C2)...

+A3*sin(B3*jd_di_star(i,1)-C3)...

+A4*sin(B4*jd_di_star(i,1)-C4))-D;

end

q = 1;%amount of zero padding,

%1 = no zero padding,

%2 = double the length, etc.

% vr = ifft(vertcat(V(1:d/2),zeros((q-1)*d,1),V(d/2:d)),q*d)*q*n;

vr = real(ifft(V)*n);

y = vr(1:n);

x = dt*(0:n-1)/3600;
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if which_plot_v2(2,1) == 1

im2 = figure; hold on;

set(im2,’Position’,[0 0 scr(3) scr(4)]);

plot(jd_di_star(:,1),((v(1:201,1))

-min(v(1:201,1)))/(max(v(1:201,1))

-min(v(1:201,1))),’-k’,’MarkerFaceColor’,

[1,0,0],’MarkerSize’,10,’LineWidth’,4);

xlabel(’t^*’,’fontsize’,28);

ylabel(’T^*’,’fontsize’,28)

set(gca,’fontsize’,28)

set(gcf,’Color’,[1 1 1 ])

axis([0 2 0 1])

set(gca,’XTick’, 0:0.2:2);

box on

set(gca,’LineWidth’,4)

r = 150;

set(gcf,’PaperUnits’,’inches’,

’PaperPosition’,[0 0 1800 900]/r);

print(gcf,’-depsc2’,sprintf(’-r

%d’,r),strcat(r_dir,’diurnal_recon.eps’));

im2 = figure; hold on;

set(im2,’Position’,[0 0 scr(3) scr(4)]);

plot(jd_di_star(:,1),((v(1:201,1))

-min(v(1:201,1)))/(max(v(1:201,1))

-min(v(1:201,1))),’-k’,’MarkerFaceColor’,

[1,0,0],’MarkerSize’,10,’LineWidth’,4);

plot(jd_di_star(:,1),(y_recon2(:,1)

-min(y_recon2(:,1)))/(max(y_recon2(:,1))

-min(y_recon2(:,1))),’-.b’,’MarkerFaceColor’,

[1,0,0],’MarkerSize’,10,’LineWidth’,4);

xlabel(’t^*’,’fontsize’,28);

ylabel(’T^*’,’fontsize’,28)

set(gca,’fontsize’,28)

set(gcf,’Color’,[1 1 1 ])

axis([0 2 0 1])

set(gca,’XTick’, 0:0.2:2);

box on

set(gca,’LineWidth’,4)

r = 150;

hleg1 = legend(’Simulation’,strvcat(
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’Diurnal’,’Function’),’Location’,’EastOutside’);

set(hleg1,’LineWidth’,4);

set(gcf,’PaperUnits’,’inches’,’PaperPosition’,

[0 0 1800 900]/r);

print(gcf,’-depsc2’,sprintf(’-r

%d’,r),strcat(r_dir,’diurnal_recon2.eps’));

end

no_1 = ((v(1:1441,1))-min(v(1:1441,1)))/

(max(v(1:1441,1))-min(v(1:1441,1)));

no_2 = (y(1:1441,1)-min(y(1:1441,1)))/

(max(y(1:1441,1))-min(y(1:1441,1)));

no_avg = no_1-no_2;

no_avg = no_avg.^2;

no_avg_sum = sum(no_avg(:,1));

SEF = (no_avg_sum/(1441-(4+1)))^(1/2);

fprintf(’Number of periods:\t\t%.0f\n

Number of sine waves:\t%.0f\n

Standard Error of Fit:\t%.5f\n’,k,sintouse,SEF);

%% Create Typical Week T plot

OFFSET_typ_week = 5;

im3 = figure; set(im3,’Position’,[0 0 scr(3) scr(4)]);

hold on; clear x; clear y;

[yr,mth,dy,mi] = datevec(jd(1,1));

x(:,1) = (jd(1:i_fin,1)-jd(1,1))-OFFSET_typ_week;

y(:,1) = T_s(1:i_fin,1);

plot(x,y’,’-k’,’MarkerFaceColor’,[1,1,1],

’MarkerSize’,10,’LineWidth’,2);

ylabel(’T_s (K)’,’fontsize’,28)

xlabel(’Days’,’fontsize’,28)

xlim([0 7]); ylim([0+260 330]);

set(gca,’fontsize’,28); set(gcf,’Color’,

[1 1 1 ]); box on; set(gca,’LineWidth’,4);

r = 150; set(gcf,’PaperUnits’,’inches’,

’PaperPosition’,[0 0 1800 900]/r);

print(gcf,’-depsc2’,sprintf(’-r%d’,r),

strcat(r_dir,’sim1.eps’));

%% Create Typical Week T* plot

im3 = figure; set(im3,’Position’,[0 0 scr(3) scr(4)]);
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hold on; clear y;

[yr,mth,dy,mi] = datevec(jd(1,1));

y(:,1) = T_s4(1:i_fin,1);

plot(x,y’,’-k’,’MarkerFaceColor’,[1,1,1],

’MarkerSize’,10,’LineWidth’,2);

ylabel(’T_s^*’,’fontsize’,28)

xlabel(’Days’,’fontsize’,28)

xlim([0 7]); ylim([0 1]);

set(gca,’fontsize’,28); set(gcf,’Color’,

[1 1 1 ]); box on; set(gca,’LineWidth’,4);

r = 150; set(gcf,’PaperUnits’,’inches’,

’PaperPosition’,[0 0 1800 900]/r);

print(gcf,’-depsc2’,sprintf(’-r%d’,r),

strcat(r_dir,’sim2.eps’));

%% Create Typical Week L plot

im3 = figure; set(im3,’Position’,[0 0 scr(3) scr(4)]);

hold on; clear y;

[yr,mth,dy,mi] = datevec(jd(1,1));

y(:,1) = L(1:i_fin,1);

plot(x,y’,’-k’,’MarkerFaceColor’,[1,1,1],

’MarkerSize’,10,’LineWidth’,2);

ylabel(’L (m)’,’fontsize’,28)

xlabel(’Days’,’fontsize’,28)

xlim([0 7]); ylim([-0.1 max_L+0.1]);

set(gca,’fontsize’,28); set(gcf,’Color’,

[1 1 1 ]); box on; set(gca,’LineWidth’,4);

r = 150; set(gcf,’PaperUnits’,’inches’,

’PaperPosition’,[0 0 1800 900]/r);

print(gcf,’-depsc2’,sprintf(’-r%d’,r),

strcat(r_dir,’sim3.eps’));

%% Create Typical Week U plot

im3 = figure; set(im3,’Position’,[0 0 scr(3) scr(4)]);

hold on; clear y;

[yr,mth,dy,mi] = datevec(jd(1,1));

y(:,1) = U_10(1:i_fin,1);

plot(x,y’,’-k’,’MarkerFaceColor’,[1,1,1],

’MarkerSize’,10,’LineWidth’,2);

ylabel(’U_1_0 (m/s)’,’fontsize’,28)

xlabel(’Days’,’fontsize’,28)

xlim([0 7]); ylim([-0.1 10+0.1]);

set(gca,’fontsize’,28); set(gcf,’Color’,

[1 1 1 ]); box on; set(gca,’LineWidth’,4);

r = 150; set(gcf,’PaperUnits’,’inches’,

’PaperPosition’,[0 0 1800 900]/r);
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print(gcf,’-depsc2’,sprintf(’-r%d’,r),

strcat(r_dir,’sim4.eps’));

ct = 0;

sumTcheck = 0;

sumTchecksquare = 0;

for i = 1:1:length(T_check(i,1))

if T_check(i,1) ~= 273

sumTcheck = sumTcheck+T_check(i,1);

ct = ct+1;

end

end

mnTcheck = sumTcheck/ct;

for i = 1:1:length(T_check(i,1))

if T_check(i,1) ~= 273

sumTchecksquare = sumTchecksquare

+(T_check(i,1)-mnTcheck)^2;

end

end

stdevTcheck = (sumTchecksquare/ct)^(1/2);

T_check_stat(1,1) = mnTcheck;

T_check_stat(1,2) = stdevTcheck;

end
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