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ABSTRACT 

A compliant joint is a connection between two bodies that derives its movement 

from the deflection of flexible members rather than rigid connections, like traditional 

joints. Compliant joints have potential advantages that include longer part life, reduction 

of parts in assemblies, and reduced wear. Traditional compliant mechanism design 

methodologies have limitations involving the burden of necessary knowledge required to 

satisfactorily use them. The method presented in this thesis was developed to provide 

compliant joint design solutions independent of the traditional methods of compliant joint 

design by allowing the selection of compliant joints from a repository. The repository is 

populated by a set of twenty compliant joint models which are characterized by their 

geometric characteristics and parametric equations. A Finite Element Analysis (FEA) 

simulation is used to validate each of the individual models. The selection algorithm 

solves the models systematically using the design requirements set by the user. Results 

are presented to the user in the form of a list of compliant joints that fulfill the user 

requirements, and Pareto curves that represent the potential range of stiffness and 

deflection of compliant joints across the set of geometric characteristics in the design 

space. Ten test cases were applied to the selection algorithm to validate the output results. 
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CHAPTER 1. INTRODUCTION AND MOTIVATION 

The primary objective of this research is the development of a method of 

characterizing compliant joints that enables their selection from a repository. The 

repository will be comprised of compliant joints of different characteristics and types, 

which can be defined geometrically by certain parameters and by parametric equations. 

An algorithm will be used to select compliant joints from the repository based on user 

requirements. 

1.1 Background and Importance 

A connection between two bodies that imposes constraints on their relative 

movement is called a joint.  Compliant joints are a type of joint which derive their motion 

from the deflection of flexible members rather than rigid connections, like traditional 

mechanical joints. A compliant mechanism is a type of mechanism that uses a 

combination of compliant joints to achieve a desired motion [1]. A comparison of a 

traditional joint pair of locking pliers and a compliant pair of locking pliers is shown in 

Figure 1. 

 

Figure 1: A traditional joint pair of locking pliers and a compliant joint pair of 

locking pliers [1]. 
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Certain advantages are inherent to this type of construction. Compliant joints are 

typically produced as a single part, which results in a reduction in total parts needed for 

assembly. This can attribute to a reduction in assembly time in mass production. Since 

compliant joints rely on deflection rather than mobile interconnections, they typically will 

not be as affected by contaminants or abrasives, and therefore can experience reduced 

wear and less need for lubrication. This can result in a longer part life. Disadvantages of 

compliant joints include reduced range of motion compared to traditional joints, since the 

motion is derived from deflection. They have from reduced absolute strength, since the 

deflection of thin members generally cannot handle large loads. It is also possible for 

compliant joints to experience degradation of bending characteristics over time, due to 

the loss of resilience of polymers over extended use [1, 2, 3]. 

A goal of this research is to utilize the advantages of compliant joints by 

increasing accessibility to the end-user. Designers, fabricators, and inventors do not 

typically have the background or experience to design complex compliant joints, and may 

not be aware of the capabilities of them. If a user inexperienced in compliant joint design 

can reach a satisfactory design without the knowledge required for traditional compliant 

joint design methodology, then it is possible for them to have the opportunity to 

incorporate it into their designs. A designer could set requirements, select, and rapid 

prototype a compliant joint in a matter of hours. This is further bolstered by the ease at 

which compliant joints are made from thermoplastics and other common rapid 

prototyping materials. To facilitate this, a methodology that simplifies the selection of 

compliant joints and presents them in an ordered fashion to a user is necessary. Fields of 
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production have not traditionally had access to the software and design theory behind the 

creation of new compliant joints, or the use of them to satisfying standing criteria, and 

thus they have suffered a lack of use in mass production.  

1.2 Current Methods for the Development and Design of Compliant Joints 

Two main methods exist for the design of new compliant joints and the 

implementation of compliant joints into various applications. The first is the pseudo-

rigid-body model approach, also known as the kinematics approach. This method 

involves drawing the compliant sections of a mechanism as rigid links and calculating the 

required spring constant of those sections. This technique is most effective to represent 

the movement of joints that undergo large deflections or have complex movement. The 

disadvantage of this method is that it requires known rigid-body comparisons for all 

compliant sections that will be used [2]. An example of how this method is applied to 

represent a leaf spring flexure and a buckling beam is shown in Figure 2. 

  

(a)      (b) 

Figure 2. (a) Psuedo-rigid body model comparison for a flexure hinge, and (b) 

pseudo-rigid-body model comparison for a buckling compliant beam [3]. 

Flexure Hinge

Rigid link 

(fixed)
Pseudo-rigid-body model

Torsion spring

Rigid link

M1z

F1z

F1y

Pseudo-rigid-body model

Spring Slider

Buckling Compliant Beam

F1z
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The second method of compliant mechanism design is the structural optimization 

approach. This method uses a design domain that is divided into discretized elements in a 

mesh. The locations of the loads, supports, and desired characteristics of the joint are 

modeled on nodes within this mesh, and then various numerical techniques can be solved 

iteratively to determine the final characteristics of the compliant joint. Howell [1] divides 

structural optimization for compliant mechanisms into three levels of hierarchy.  

1. Size optimization is the simplest type of structural optimization. It can be used to 

determine the cross section profile and thickness dimensions of beam and truss 

elements, thickness of plate and shell elements, size of a holes and similar design 

variables. Figure 3 is an example of the design space for an application of size 

optimization.  In this example, the thickness profile w(x) of a simply supported 

beam of length L is the design variable. The beam is subjected to the constraints 

of a certain transverse deflection at distance a, and a certain load across the beam, 

p(x). The objective is the minimization of the volume of the beam. 

 

Figure 3. Example of a size optimization design space [1]. 

a

p(x)

L

Δ
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2. Shape optimization is generally more difficult and computationally intensive than 

size optimization. The design space is a set of all potential shapes. The topology 

of these shapes can be specified through different types of design variables. An 

example of these design variables could be the control points on a Bezier or spline 

interpolation curve, which would determine the overall shape of the design. The 

shape changes with each iteration, which can lead to the accuracy of the finite 

element model diminishing unless directed to remesh. The designer must be 

aware of the effects of the shape design variables on the objective and constraint 

functions by performing a sensitivity analysis. An example of various shape 

optimizations for a given design space is shown in Figure 4. 

 

Figure 4. An example of shape optimization: (a) is the design space used for the 

problem, and (b) through (d) are the potential shape topologies that connect the 

input and output ports. Note: These are not necessarily the solutions for this 

problem, just examples that illustrate possibilities [1]. 

3. Topology optimization is considered the most general type of optimization. This 

method determines the location of material across the entire design domain, like 

the connectivity between input ports, output ports, and fixed locations. This is 

Input force

Output displacement

Fixed(a)

(b) (c) (d)
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useful because a designer does not have to commit to a certain shape like size 

optimization, or a set of shapes defined by a mathematical relation, like shape 

optimizations. Topology optimization utilizes a mesh that discretizes the entire 

design space, and then determines the material density that will be distributed in 

each element of the mesh. The form of the resultant design is derived from the 

final presented mesh, but depending on the fidelity of the mesh, some post-

processing to the design may have to be completed before it can be finalized. 

Figure 5 shows a topology optimization of a design space with a set input force, 

output displacement, and fixed region. The density of each cell is a design 

variable ranging from void to solid [4]. 

 

(a) 

 

(b) 

Output displacement

Input force
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(c) 

Figure 5. (a) Discretization of a design space for continuous material density 

topology optimization. (b) Possible topology solution with black (solid), white (void) 

and grey (intermediate density). (c) Possible interpretation of the topology solution. 

Note: This is not necessarily the solution for this problem, just an example that 

illustrates a possibility. 

Topology optimization considers the widest variety of potential topologies for a 

design space. This makes it a useful technique to be used in the design of new compliant 

mechanisms. The designer does not have to have an underlying background or 

comprehension of the various building blocks of compliant mechanisms to design a 

particular topology. Instead, the optimization algorithm determines the shape and size 

simultaneously to satisfy the design requirements. The weakness of this technique is that 

the success of a topology optimization is entirely dependent on the user‟s initial setting of 

the design domain. There is a possibly that an initial guess can result in no potential 

possibilities due to local minima or maxima. To avoid this, a sensitivity analysis should 

be performed iteratively with the analysis to determine the effects of changes in the 

design variables to the objective and constraint functions [1]. 
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The pseudo-rigid-body method requires that the user know and understand the 

underlying compliant joint to rigid-body comparisons to be used as a design method. 

Similarly, the structural optimization method requires the user to understand how to set 

up a design space such that potential solutions are possible, while minimizing iteration 

time. The high burden of knowledge required to use these methods translates to user 

difficulty when attempting to design compliant joints. 

1.3 Motivation for Research 

The properties of compliant joints have resulted in many diverse research 

applications being developed, ranging from microscopic compliant joints for precision 

movement in Microelectromechanical systems (MEMS) to macroscopic compliant joints 

that provide structural support in lieu of beams. A gap analysis was performed to identify 

potential research gaps and the research applications that have not been fully explored. 

The following are several of the identified research gaps. 

1. Compliant joint designs have not been developed that are optimized to take 

advantage of the parasitic nature of axial drift to achieve a desired motion. 

Research has been done previously on the minimization of axial drift to increase 

the precision of compliant joints, especially on a micro-scale level. The use of 

axial drift to develop slider-crank type motion joints has not been well established 

[5]. 

2. The application of newly developed compliant mechanisms in the macroscale 

(hand-size) as a replacement for traditional joints has not been adequately 

explored. Much of compliant mechanism research focuses on the application of 
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compliant mechanisms in the micro- and nano-scales, due to their inherent 

advantages over traditional joints (like lack of required lubrication), which make 

them ideal in this environment. Development of compliant mechanisms for use in 

the macro-design industries could increase the volume of compliant mechanisms 

in the mainstream industry [2]. An illustration of this potential can be seen with 

the compliant locking pliers in Chapter 1. 

3. To design and develop new compliant mechanisms for an application, the 

pseudo-rigid-body method, topology optimization method, a derivative of 

these two methods, or trial and error must be used. Current compliant 

mechanism design methodologies are constantly improving, but some limitations 

of these methods have not been addressed. Parallel methodologies and 

alternatives to these methods are scarce. If a pseudo-rigid-body model has been 

constructed, but transformations into compliant structures to not exist, it cannot be 

converted into a compliant mechanism. Topology optimization can fail if the user 

does not have an understanding of the design domain, and how it affects the final 

result. [1, 4, 7].  

4. Current compliant mechanism design methodologies have a steep learning 

curve, and the accompanying software is difficult to use. The previously 

outlined methods are the most widely used techniques for developing new 

compliant mechanisms. An understanding of pseudo-rigid-body to compliant joint 

comparisons is required for the pseudo-rigid-body method to be feasible. 

Alternatively, the learning curve for developing a design space that will produce 
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feasible solutions in topology optimization software requires that the user 

understand the design space and how its implementation will affect the final 

result. Both of these methods of selection and design of compliant mechanisms 

are only as powerful as the user developing the problem [1, 4, 6].  

5. The focus of a large amount of compliant mechanism research is on a single 

or limited number of applications, rather than a large range of applications. 

A section of compliant mechanism research and development has been the 

creation of new compliant joints for specified applications. Compliant joints can 

be applied to a vast number of applications, but limited research has been done in 

this arena. A methodology than can be applied to the widest reaching amount of 

compliant mechanism design would bridge this gap [4, 8, 9].  

This research primarily focuses on the gaps of user accessibility and the broad 

reach of potential applications. The overall goal is the development of a method that 

allows a user to select a compliant joint that has the capability to fulfill their design 

requirements. The approach used to bridge these gaps is as follows. A repository of 

compliant joint models will be created to represent different compliant joint possibilities. 

Users will be able to narrow the selection of compliant joints by filling in some 

requirements that are desired. The selection algorithm will not be limited by user input, 

and will still be able to successfully present potential solutions to the user even with 

missing requirements. The algorithm can determine a range of values for the missing 

parameters and provide the user with a list of compliant joints that most closely fulfill 

their requirements. A brief overview of this approach is shown in Figure 6.  
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Figure 6. Overview of compliant joint selection method. 

1.4 Research Questions and Hypotheses 

Research questions and accompanying hypotheses were developed to aid in the 

clarification of goals for this research. These research questions and support of the 

hypotheses will result in satisfactory fulfillment of the research. In Table 1, they are 

divided into the research questions, hypotheses, and the potential solution for fulfillment. 

Compliant joints are developed as 

individual models

Models are located within a repository

User enters requirements into a GUI

Selection algorithm determines 

potential solutions

Results are presented to user
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Table 1. Research questions and research hypotheses 

Research Questions Research Hypotheses Fulfillment 

What parameters can a 

compliant joint be 

characterized by such 

that it can be objectively 

compared to other 

compliant joints? 

A compliant joint can be 

characterized by geometry and 

parametric equations such that 

it can be compared by 

objective metrics to other 

compliant joints. 

Compliant joints can be 

compared to one another 

based on normalized 

characteristics, to facilitate 

selection. 

How can a user achieve 

results that include a 

compliant joint that most 

closely fulfills their 

requirements? 

A compliant joint can be 

consistently selected from a 

repository, to fulfill a user‟s 

requirements. 

A correct compliant joint 

can be determined and 

presented to the user, after 

the selection process has 

been completed. 

How can the information 

be presented to the user 

so that it is possible to 

differentiate between 

multiple satisfactory 

solutions? 

Using the characteristics 

specific to a compliant joint, it 

is possible to present 

information that assists in the 

selection of the most applicable 

compliant joint from a set of 

two or more. 

The research provides the 

tools for a list of compliant 

joints to be differentiated 

objectively by their 

characteristics, to facilitate 

final selection. 

 

For the compliant joint repository and selection method to be considered 

successful, it will need to accomplish the goals outlined here and thus prove its value as a 

compliant joint selection methodology. This includes facilitating characterization and 

normalization of a number of compliant joints, allowing them to be compared to one 

another objectively, providing a means of selection between these models such that they 

fulfill user requirements, and providing results that allow a user to determine the “best” 

compliant joint from a list which contains all satisfactory compliant joints. 
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CHAPTER 2: LITERATURE REVIEW 

To create the frame of reference for this thesis, a literature review had to be 

performed on the following topics: (1) the improvement of currently existing methods for 

the design and synthesis of compliant joints, and (2) the design and implementation of 

new compliant joints. This includes a study of some of the compliant joints that have 

been designed for a variety of specific applications. These two topics are common themes 

within compliant mechanism research, driving new innovations and improvements. 

2.1 Improvements to Methodology for the Development of Compliant Mechanisms 

Pseudo-rigid-body models of compliant mechanisms were developed to represent 

the design requirements of potential applications. A designer using this method can take 

advantage of well documented rigid-body mechanisms to approximate the movement of a 

compliant mechanism. This allows large nonlinear deflections of compliant flexures to be 

modeled as rigid links attached at pin joints, that have equivalent force-deflection 

characteristics [1]. Howell and Midha [6] developed some of the first techniques for the 

pseudo-rigid-body model approach when they replaced flexural pivots with kinematic 

joints at the center of a flexible segment, using a torsion spring to represent the stiffness 

of the joint. Prior to the development of this method, the design and development of new 

compliant mechanisms was primarily trial and error. An example of the pseudo-rigid-

body model approach models that Howell developed can be seen in Figure 7. 
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(a) 

 

(b) 

Figure 7. (a) A simple fixed pin segment, and (b) its pseudo-rigid-body model [6]. 

As the need to represent more complex compliant mechanisms for a variety of 

applications increased, more approximations and representations were required to ensure 
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accuracy of a pseudo-rigid-body model. Howell [7] offered an improved model of large 

deflection beams under end load, which was able to approximate the nonlinear path of a 

deflected cantilever beam within 0.5 percent of the closed-form elliptic integral solutions. 

Many other researchers have contributed additional improvements to pseudo-rigid-body 

models catalogue. Edwards  [8] produced a concept capable of simulating pinned-pinned 

connections as two individual rigid members connected at pin joints, with a torsion spring 

at the pin joint representing the flexible member‟s stiffness. The accuracy of this model 

was tested analytically using fabricated aluminum, steel, and polypropylene segments. It 

was shown that the model accurately predicted the segment‟s deflection characteristics. 

Additional work in the field of pseudo-rigid-body models has been completed by 

Espinosa [9] for the purpose of improving the modeling of straight and curved flexures 

subject to compressive loads. He included a new parameter called the characteristic 

radius factor, which is a function of the moment of the beam, to describe the motion of 

the deflected beam over a large range of motion. This was developed for use in the design 

of ortho-planar micro-electromechanical systems (MEMS), which can achieve motion out 

of the plane of fabrication. Tang and colleagues [10] studied a method of modeling large 

displacement precision positioning flexures, by decoupling the kinematic structure and 

comparing it to a pseudo-rigid-body model. This work was verified through the design of 

a large displacement prismatic joint that achieved very precise linear movements with 

minimized parasitic rotation (less than 1.5 mrad). They also showed that their method 

was more accurate than a traditional pseudo-rigid-body model. 
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Topology optimization methodology for the development and design of compliant 

mechanisms has undergone various improvements as well. Topological synthesis for 

compliant joints, which is the development of new compliant joints from a series of 

flexures, allows flexures to be combined in the most optimal way to achieve a desired 

output. Frecker and colleagues [11] contributed to the methodology of topological 

synthesis with a method that utilized multi criteria optimization. This was developed to 

combine the conflicting design objectives of flexibility and stiffness required for a 

specific deflection. The functionality of the solutions was proved through both finite 

element models and prototype designs. Frecker and her coauthors [12] also developed 

two methods of topology optimization for compliant mechanisms with multiple outputs, 

both of which used a ratio of potential energy to strain energy as a design objective to 

produce compliant joints that have a specified stiffness and flexibility. The 

methodologies that were produced were named combined virtual load and weighted sum 

of objectives. Of the two, combined virtual load used significantly less computational 

time. Another topology synthesis development that was function driven was Lu‟s work 

[13] in the synthesis of compliant mechanisms to achieve a specific curve, while 

simultaneously using a minimum number of actuators. This was applied to topologies 

that require an adaptive shape change, like antenna reflectors, which can potentially 

increase system performance and flexibility through changing the signal pattern or 

coverage area of the reflectors. 

Continuum topology optimization of compliant mechanisms, which uses a set 

design domain and specified positions and directions of all input and outputs, has been 
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improved upon by the development of certain techniques. Sigmund [14] used a technique 

that controlled the maximum stress level in a compliant mechanism by constraining the 

allowed displacement at the input port. Another technique he used involved utilizing a 

design constraint of reduced internal stresses by limiting allowed displacement output. 

This could be used to design compliant mechanisms with specific complex behaviors. 

These methods allowed him to design and develop a compliant hand tool which 

maximized the mechanical advantage between the input and output ports. The process 

and design domain for this compliant hand tool is detailed in Figure 8.  

 

(a) 
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(c) 

Figure 8. (a) Design domain for compliant hand tool (b) optimal topologies for 

different fixed handle sizes (c) constructed hand tool from interpreted topology 

optimization design [14].  

Pedersen [15] further improved continuum topology optimization methods in 

large displacement compliant mechanisms through a Finite Element Analysis (FEA) 

method that utilized non-linear analysis. He demonstrated that the gain in output 

performance can be as high as 2.5 when comparing non-linear analysis to linear analysis, 

although the computational cost increases substantially. These techniques were used to 

demonstrate that topology optimization can be used for the generation of complex path-

generating compliant mechanisms.  

A deterministic approach was tested by Pavlović [16] which developed two 

rectilinear compliant mechanisms that each had a specific output deflection. A direct 

comparison was made between a compliant mechanism created using the pseudo-rigid-

body method and a compliant mechanism created using optimal synthesis with 

continuum models. He found that the resultant compliant mechanism from these methods 

had different optimized characteristics depending on the method used. The rigid-body-

model approach of the coupler points showed greater guiding accuracy than the optimal 

synthesis with continuum model. The greater overall stiffness of the compliant 
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mechanism can be obtained through the optimal synthesis with continuum model, and as 

a result of this, this model has a higher velocity of guiding point, higher output force as 

well as higher mechanical advantage. The two compliant straight-line mechanisms that 

were designed and compared are shown in Figure 9.  

   

(a)        (b) 

Figure 9. (a) Compliant straight line mechanism (deformed and undeformed) 

created by pseudo-rigid-body design and (b) the same mechanism (deformed and 

undeformed) created by optimal synthesis with continuum model [16]. 

Alternatives to the previously highlighted methods of compliant mechanism 

design and selection have been posed as well. Bernardoni [17] proposed a method which 

considered compliant mechanisms an assembly composed of compliant “building blocks” 

which are modeled by elementary frame ground structures. The method characterizes the 

structural parameters of the blocks between flexures by height, width, and thickness, as 

well as the Young‟s modulus, Poisson ratio, and density. The whole structure is complete 

as a “square block,” acting as a compliant sliding joint characterized by defined stiffness 

matrices that link the nodes. Figure 10 presents a translational compliant joint as realized 

as a compliant building block. 
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Figure 10. A compliant translational joint and its characterization as a compliant 

building block [17]. 

These building blocks are then used in a topological optimization. The user must 

define the discrete topology and boundary-condition variables that will define the desired 

compliant joint. The discrete topology variables that the user must define are the type of 

blocks, size of blocks, material, and thickness. The user must also define the boundary-

conditions that are steady for all outputs. These are the minimum and maximum number 

of fixed nodes, locations of these fixed nodes, the minimum and maximum number of 

contacts, the allowed location of contacts, and the backlash of the contacts. The 

boundary-conditions that change for each output, which include the minimum and 

maximum number of actuators, the allowed location of actuators, the forces provided by 

the actuators and the maximum strokes, and the stiffness of each actuator, must also be 

defined. The topology, dimensions, material, contacts, fixed frame, and actuators are 

generated using a multi objective genetic algorithm (based on NSGA2) with the design 

object of achieving a maximized force/motion ratio. A trial and error procedure must be 

performed by the user to determine if the optimization has found errors, like buckling 

phenomenon or Von Mises stresses that exceed the material limits. This method was 

tested to create a two degree of freedom compliant mechanism, and references the 
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procedure was completed in a short computational time, although that time is not listed 

[17].  

A catalogue and selection method was put forth by Jhwar [18] to select 

Displacement amplifying Compliant Mechanisms (DaCM) for a given application. This 

method uses a catalogue of defined compliant mechanisms to select the most suitable 

mechanism for the quantitative specifications of the user. This required data includes 

force, displacement and stiffness specifications at the input and output. The DaCM 

catalogue consists of slender beams connected by flexures configured in specific 

topologies. These are analyzed using finite element analysis and the mechanism‟s 

springs-mass lever (SML) model parameters are extracted and stored parametrically as 

functions of the size of the device.  These pre-computed SML models are used to select a 

suitable DaCM of appropriate user-specified size. The final catalogue presented with 

eight models that contain different topologies found in current literature, although more 

could be completed with topology optimization. Parallels could be drawn between this 

research‟s approach to a selection algorithm and the research presented in this thesis. An 

example of a DaCM model that is used in the catalogue is shown in Figure 11. 

 

Figure 11. An example of a displacement amplifying compliant mechanism defined 

in Jhawar’s catalogue [18]. 
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2.2 Design of Compliant Mechanisms for Specific Applications 

Efforts in compliant joint research have also been geared towards the 

development of new compliant mechanisms for specific applications. The precision, lack 

of friction, reduced wear, and absence of backlash make compliant mechanisms a 

convenient and practical tool to be used in design for the use in medical and 

micromanufacturing fields.  

The application of these unique qualities can lead to innovations in prosthetics, 

like Mahler‟s design [19] of a compliant joint mimicking the human knee for pediatric 

patients. He was able to implement a design that maintained the requirements of light 

weight, durability, and stability, while maintaining simplicity and a single-joint design. 

He was also able to address the unique scenarios that pediatric knees tend to find use, like 

the harsh environments that children tend to play in, such as water or sand. Allowing 

adjustability required to accommodate for differences in gait between individuals was 

also proposed. The prototype design is shown in Figure 12.  

 

Figure 12. Prototype design of Mahler’s pediatric prosthetic knee [19]. 
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Innovations in compliant mechanism design can also be applied to the design of 

microstructures, since there are requirements for carefully calibrated flexures. This has 

been applied many times for use within MEMS. All traditional compliant mechanism 

design methods can be applied, and single part manufacturing of compliant mechanisms 

make miniaturization simple [4]. Kyusojin and colleagues [20] designed a compliant 

mechanism that implements flexible strips in parallel, relying on their good linear 

displacement characteristics to move precise horizontal distances while minimizing 

vertical displacement. They were able to conclude that a submicron degree of accuracy 

could be achieved in the horizontal movement, with a sufficiently long platform. Due to 

the simplicity of the instruments, the results showed good repeatability and 

reproducibility characteristics. This study laid the ground work for many other compliant 

mechanism designs that were developed later.  

Another precision translational compliant mechanism was developed by Xu and 

colleagues [21], who achieved very precise linear movements with their design. It 

showed over 5000 linearity within a 5 mm displacement, and their work proposed that 

large deflection flexural joints can be developed into approximate straight line joints, 

with incredibly high precision. 

Other work that increased the overall knowledge of compliant flexures‟ 

characteristics includes Tian‟s development of closed form equations for V-shaped 

flexures [22]. Typically, compliant mechanisms devised of multiple flexures use notch 

hinges or circular flexure hinges, due to the simplicity of manufacture, but the 

development of descriptions of geometry and deflection characteristics allows V-shape 
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flexures to be better defined, with the goal of wider integration. A unique compliant 

mechanism was developed by Goldfarb and Speich [23], who created a unique revolute 

joint called a split tube flexure. It was defined by its ability to achieve “well behaved” 

motions, which were defined as the optimization of compliance in the desired rotation 

direction, while maintaining stiffness along structural axes. This compliant mechanism 

can be designed to be used in macrostructure applications, due to its large potential 

rotation and fixed axis of rotation. 

Trease and colleagues [5] designed multiple translational and rotational compliant 

mechanisms that were developed to have an increased range of motion and good 

movement characteristics. The intention of this design was minimizing the traditional 

drawbacks of compliant mechanisms. These were verified through finite element 

analysis, with attention to stress concentrations, to ensure the joints can be utilized in 

multiple scales of size. 

Guérinot [24] used compliant joints in the unique arena of support of compression 

loads. This work attempts to avoid the drawback of compliant joints of being unable to 

handle high compressive loads due to buckling. His work includes two principles, 

isolation and inversion, which can be applied to compliant joints to increase the 

maximum load handled by avoiding buckling-prone conditions. Isolation involves the 

isolation of the flexible segments from the compressive load that the system must carry. 

The large compressive load will be diverted from the flexible segments to the rigid 

elements. In this case, the compliant sections are limited to precise motion control and 
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energy storage that benefit the device carrying large compressive loads. An example of 

this isolation theory is shown in Figure 13. 

 

Figure 13. Schematic of an isolation joint system [24]. 

The inversion principle uses the proposition of tensurial pivots, which are flexures 

loaded in tension. This follows the idea that flexible segments generally have a higher 

maximum tensile force before yielding than critical buckling force. Therefore, a system 

made to function under a direct compressive force can be inverted in order to use flexible 

segments in tension rather than compression [24]. The concept inversion is illustrated in 

Figure 14. 
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(a)     (b) 

Figure 14. (a) Direct compression and (b) application of the Inversion theory [24]. 

2.3 Conclusions from the Literature Review  

Compliant mechanism design and development techniques have improved vastly 

since their introduction. As the desire to build more complex compliant mechanisms 

grew, so did the requirements of the techniques to build them. Although these techniques 

have improved over the years, there are still gaps in them to be addressed. For pseudo-

rigid-body methodology, this consists of the burden of knowledge on the designer to 

understand the catalogue of transformations between compliant mechanisms and their 

pseudo-rigid-body representations. For topology optimization, the burden of knowledge 

on the designer is the understanding of the creation of a design space that will get the 

correct and satisfactory results.  

Many compliant mechanisms have been designed for use in specific and diverse 

applications. The advantages of compliant mechanism when compared to traditional 
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mechanical mechanisms allow their use in a wide variety of applications where 

traditional mechanisms fall short. However, this breadth of use has not been fully 

integrated into a wide variety of processes, possibly due to the lack of knowledge and 

experience needed to design these mechanisms. 
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CHAPTER 3: DEVELOPMENT OF A COMPLIANT JOINT MODEL REPOSITORY 

A compliant joint selection method must produce results that lead a user to an 

optimal solution for their requirements. To facilitate this, a repository of compliant joints 

is required that provides solutions for the widest variety of user needs possible. This 

chapter details the process used to convert current research publications of compliant 

joints designs into models to be used within the repository and selection algorithm. 

Six translational compliant joints (also known as linear compliant joints) and 

fourteen rotational compliant joints are included in this repository. These were chosen to 

represent a wide variety of applications, as well as distinct characteristics between 

different compliant joints. The compliant joints included in the repository have varied 

characteristics in the regions of precision, stiffness, and mobility.  

The six linear compliant joints were defined as compliant joints that move and 

have compliance in the linear x-direction when a force is applied. These joints typically 

have little rotational and translational compliance and movement in the y and z 

directions, which is sometimes called the off axis compliance/movement. Generally, the 

movement in these directions would be minimized so that the intended linear movement 

of the joint will be more accurate. Movement in these directions that is not intended is 

called parasitic movement. A diagram of the expected movement of the translational 

compliant joints is shown in Figure 15.  
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Figure 15. Defined movement of rotational compliant joints. 

Fourteen rotational joints were chosen from current publications and research. 

These rotational joints were defined as compliant joints that can rotate an end around the 

y-axis when a force is applied to the end of the joint in the z-direction. These joints have 

little compliance and range of motion in the z- and x-directions – this is normally 

minimized through the development of the compliant joint. It is important to note that 

there is much of the research develops rotational joints prioritizes the minimization of 

axial drift, or motion that moves the axis of rotation of the joint away from its original 

position. This is typically a goal of MEMS research, where accuracy and precision are the 

most important characteristics of a compliant joint. A diagram of the expected movement 

of the rotational compliant joints is shown in Figure 16. 
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Figure 16. Defined movement of rotational compliant joints. 

3.1 Adding Compliant Joints to the Repository 

A defined methodology needs to be followed when adding new compliant joints 

to the repository to ensure that each joint has consistently defined inputs and outputs. 

This establishes direct comparisons between compliant joints of the same type, even 

when the characteristics they were designed for differ greatly. The process used to 

develop and add new compliant joints to the repository is outlined in Figure 17.  

 

Figure 17. Outline of process used to develop models of compliant joints. 

The joints are first developed as parametric models within MATLAB, which 

includes defining the joint‟s movement and stiffness characteristics as functions of the 
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geometric characteristics of the joint. Then the compliant joints are normalized, since all 

joints do not have their characteristics outlined identically within research. This 

normalization consists of manipulating the compliant joints models to produce outputs of 

stiffness (K/mm for translational and K/degree for rotational) and displacement (mm or 

degrees). This normalization is used not to reduce the complexity of the compliant joints‟ 

parametric equations, but to allow joints with different applications to be compared on 

similar performance standards. These standards were determined to allow a user to 

specify basic information about the compliant joint, so that more results could be selected 

for the user. Verification of these parametric equations is performed using FEA 

simulations that compared the displacement output of the joint from the parametric 

equations to the displacement output of the FEA model. Finally, if the models were 

proven to simulate the compliant joint correctly, the model was added to the repository 

for use in the selection algorithm. 

Two criteria were necessary of the compliant joints for them to be selected for the 

repository. These criteria are: 

1. The joint must be characterized by parametric equations, which defined the 

movement of the joint. 

2. The joint must be geometrically defined so that it was possible to construct the 

joint within finite element analysis (FEA) software.  

These are required so that normalization and verification of the joint‟s parametric 

equations could be performed. The geometric dimensions of the compliant joints were 
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used in the search algorithm to determine a range of potential displacements and spring 

constants within the user defined constraints of the compliant joint.  

3.1.1 Development of Parametric Models within MATLAB 

The parametric models are developed within MATLAB as individual program 

files. Parametric equations are derived from current research publications on the design 

of specific compliant joints. These equations are used such that a single MATLAB code 

file contains all the information necessary to test the input and output relations of the 

compliant joint. In all cases, the geometric dimensions of the joint need to be defined as 

variables, with appropriate comments included so that the joint could be later constructed 

within the FEA software. These geometric variables typically include the thickness of 

leaf springs, the length of leaf springs, the depth of the joint, and other characteristics 

unique to the individual joint design. The file also must include material properties and 

an applied force that is used with the stiffness to determine the amount of displacement 

the joint experiences. 

The MATLAB files are named using the developer‟s name, and a brief 

description of the compliant joint. For example, a compliant joint from Smith [25], which 

was identified as a cartwheel shape, would be named SmithCartwheel.m. To ensure 

consistency, this name is also used for the MATLAB function files and FEA models that 

will be discussed later in this chapter.  
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3.1.2 Normalization of Inputs and Outputs 

Normalization of inputs and outputs of the compliant joint models is performed to 

ensure consistency between all of the compliant joint models, as well as giving a standard 

method of comparison between different compliant joints. The MATLAB models are 

transformed into MATLAB function files, which use inputs of material properties, 

geometric constraints, and applied force. The outputs of these functions are the 

displacement of the joint and its stiffness in the movement direction. The parametric 

equations are normalized such that these inputs and outputs are the same for every 

MATLAB function. For example, literature containing a rotational compliant joint may 

produce its end displacement value as a linear distance. The model is required to have a 

displacement of a rotational value in degrees so that it can be related to the other 

rotational compliant joints within the repository. 

Each function runs under an assumption that the thickness of leaf springs or 

similar parameters within each model is 20% of the “smallest size” entered by the user. 

This is used because the accuracy of the models increases as the ratio of length to 

thickness of the leaf springs increases. This also provides a larger range of results for the 

range of motion. Without this assumption the displacement ranges are small and difficult 

to pinpoint for a user to get satisfactory results. It is the user‟s responsibility to fill this 

parameter to adequately represent their manufacturing capabilities. 

3.1.3 Verification of Parametric Models with Finite Element Models 

The parametric equations that define the motion of the selected compliant joints 

are verified using an FEA program. For translational compliant joints, the x-direction 
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motion is directly compared between the parametric model and the FEA model, using a 

consistent applied force. For the rotational compliant joints, the rotational motion is 

determined using the end deflection, and then is converted into a linear value for 

comparison with total deflection within the FEA software. The results of the two models 

are compared to determine if the parametric model adequately described the motion of 

the joint. However, due to limitations of the parametric equations, some of the equations 

lose accuracy as the deflection becomes increasingly nonlinear. Therefore, it is 

recommended that a user not exceed potential deflections of more than 30% of the total 

length of the joint without doing additional studies of the compliant joint‟s movement. 

This will maintain a reasonable degree of accuracy.  

3.1.4 Model Added to Repository 

The model is added to the repository so that it can be used in the selection 

algorithm alongside the other compliant joints. The geometric characteristics are pre-

allocated using the user defined size constraints so that a maximum displacement 

value/minimum stiffness value is calculated, as well as a minimum displacement 

value/maximum stiffness value. The algorithm then will select models that fulfill the 

user‟s requirements, using these limits.  

3.2 Example 1: Translational Compliant Joint – Smith Notch Hinge 

The following section will exemplify the process of developing a translational 

compliant joint model, specifically the Smith Notch Hinge. This compliant joint is 

detailed by Smith [25] as a compound compliant joint that approximates straight line 
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motion. The geometric characteristics that define this compliant joint are shown Figure 

18. 

 

Figure 18. Geometric characteristics of the Smith Notch Hinge compliant joint. 

The parametric equations that represent the movement characteristics of this 

compliant joint are as follows. The total „static‟ linear stiffness of this flexure is defined 

by  

  

 
 

       

         
‟      (1) 

where   is Young‟s modulus,        and   are geometric characteristics,   is movement 

in the x-direction of the movement point, and    is the force applied in the x direction to 

the upper table of the compliant mechanism.   

From the equation, an MATLAB model is developed to represent the 

characteristics of the compliant joint. This facilitates early testing of the model with 

various parameters. The MATLAB model, SmithNotchHinge.m, is shown in Figure 

19. 
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E = 73000; %N/mm^2 (73.1 GPa) 

%Young's Modulus 

  

%%----Joint Dimensional Characteristics----%% 

%Length between flexures edges 

L=9.2; %mm 

%Depth of joint 

b=1; %mm 

%Radius of flexures 

R=0.4; %mm 

%Thickness between flexures 

t=0.2; 

%Force Applied 

F=1; 

  

%%----Solution of Joint----%% 

%Distance from centerpoint of flexures 

Lstar=L+2*R; 

%Stiffness 

K=(8*E*b*t^(5/2))/(9*pi()*R^.5*Lstar^2); 

%Linear Displacement 

Disp=F/K; 

Figure 19. The initial MATLAB file used to test the Smith Notch Hinge compliant 

joint model, SmithNotchHinge.m .  

This model must now be normalized to ensure that this compliant joint model is 

consistent with the others in the repository. All of the linear compliant joints must have 

outputs of a linear stiffness as well as a linear range of motion, so that it is possible to 

compare them to one another. The MATLAB file is changed into a MATLAB function 

file, where the outputs are the stiffness and deflection and the inputs are the material 

properties, geometric constraints, and force applied. A representation of the resultant 

function is shown in Figure 20. 
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Figure 20. The completed Smith Notch Hinge model, as a MATLAB function. 

 An FEA model is developed of the compliant joint to compare with the 

parametric model. The geometric values used to calculate the two models are listed in 

Table 2. 

Table 2. Geometric properties of the Smith Notch Hinge compliant joint used for 

comparison between the MATLAB model and the FEA model. 

 
Parameter Value  

b 10 mm 

t 0.2 mm 

r 0.4 mm 

L 9.2 mm 

F 1 N 

 

Inputs: Material Properties, Geometric 

Characteristics, Force Applied

Function: Parametric Equations

Outputs: Range of motion, Stiffness

MATLAB 

function

t

R

L
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The boundary conditions between the two models must be the same. Since the 

parametric models are already developed for certain boundary conditions, the FEA model 

is made to mimic the parametric model. The boundary conditions used for both model 

simulations are given in Figure 21. 

 

Figure 21. Boundary conditions used for the Smith Notch Hinge compliant joint 

model simulations. 

The FEA model required a mesh with necessary refinement in the areas of interest 

in order to provide correct results. When the compliant joint deformed as expected and 

represented the literature response correctly, the FEA model was determined to be 

providing correct results. A mesh of elements approximately 0.5 mm in length was used. 

The mesh and deflected FEA model are shown in Figure 22. 
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Fixed End
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Figure 22. Mesh and deformed shape for the Smith Notch Hinge FEA simulation. 

The result of this comparison is a deflection of 1.71e-2 mm from the parametric 

model and a 1.65e-2 mm deflection using the FEA model. These two models have a 

difference of 5.70e-4 mm, and a percent difference of 3.45%. This result shows that both 

the models have similar deflection characteristics, and the parametric model can be 

considered correct. For most of the compliant joints models, as displacements becomes 

more nonlinear the accuracy is reduced. It is important to note that the FEA simulation is 

simply used for verification of the parametric model, and the final design does not 

necessarily reflect the characteristics used for the FEA representations. 

3.3 Example 2: Rotational Compliant Joint – Jensen Cross Axis 

The following section describes the process of developing a rotational compliant 

joint model, specifically the Jensen Cross Axis. This compliant joint‟s load-deflection 

behavior was detailed by Jensen and Howell [26], and verified by comparing results to 
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non-linear FEA models and physical models made of polypropylene and steel. The 

geometric characteristics that defined this compliant joint are shown in Figure 23. 

 

Figure 23. Geometric characteristics of the Jensen Cross Axis compliant joint. 

Jensen and Howell [26] describe this compliant joint‟s characteristics as if it were 

a torsional spring. In this case, the spring stiffness is given by  

  
    

  
‟     (2) 

where   is Young‟s modulus,   is the moment of inertia of the flexible sections,   is the 

length of the flexible segments, and    is known as the “stiffness coefficient”. The 

stiffness coefficient is determined over a range of values, which are a function of a 

geometric relationship n, where 

    .      (3) 

The polynomial curve fit that defines the relation of n with    is 

                                                  .   (4) 

This curve is valid for          , with a correlation coefficient of 0.99910 [26]. 
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From the equations provided, an initial MATLAB model can be developed to test 

different parameters with this compliant joint model. The initial MATLAB model, 

JensenCrossAxis.m, is shown in Figure 24. 

E = 73000; %N/mm^2 (73.1 GPa) 

%Young's Modulus 

  

%%----Joint Dimensional Characteristics----%% 

%Total length of gap 

r = 10; %mm 

%Length of cross spring 

l = 14.142136; %mm 

%Height of joint 

w = 10; %mm 

%Thickness of Leaf Spring 

t = 0.707107; %mm 

%Lever arm 

L = 0.1; %mm 

%Depth of joint 

D = 10; %mm 

%Force Applied 

F = 1; %N 

 

%%----Solution of Joint----%% 

n=r/w; 

KTheta=5.300185-1.6866*n+0.885356*n^2-0.2094*n^3+0.018385*n^4; 

I=(1/12)*D*t^3; 

%Stiffness 

K=(KTheta*E*I)/(2*l); 

Torque=F*(L+r); 

%Angular Displacement 

Disp=Torque/(K); 

Figure 24. The initial MATLAB file used to test the Jensen Cross Axis compliant 

joint model, JensenCrossAxis.m.  

The normalization of this model is performed next through the transforming of it 

into a MATLAB function. This ensures that this compliant joint model is consistent with 

the other models in the repository. Since some parametric equations for rotational 

compliant joints were developed with results of linear displacements, it is required to 

normalize them to ensure all rotational compliant joint models have the same outputs of 

rotational displacement and rotational stiffness. It is also required that the model have 
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outputs of the stiffness and deflection, and inputs of the material properties, geometric 

constraints, and force applied. Figure 25 shows the resultant function from this 

normalization, where the final line shows a normalize of the stiffness to Nmm/deg.  

function [Disp,K] = JensenCrossAxisFun( E,t,w,r,D,F) 

% E = Young's Modulus  

%N/mm^2  

%%----Joint Dimensional Characteristics----%% 

% r = Total length of gap 

%mm 

% l = Length of cross spring 

% w = Height of joint 

% t = Thickness of Leaf Spring 

% L = Lever arm 

% D  = Depth of joint 

% F = Force Applied 

  

%%----Solution of Joint----%% 

L=0.1; % 

t=t/5; 

x = 1.404*t; %estimation, can be determined geometrically 

  

l=sqrt((w-x)^2+r^2); 

n=r/w; 

  

KTheta=5.300185-1.6866*n+0.885356*n^2-0.2094*n^3+0.018385*n^4; 

I=(1/12)*D*t^3; 

%Stiffness 

K=(KTheta*E*I)/(2*l); 

M=F*(L+r); 

%Angular Displacement 

Theta=M/(K); 

-%Transform stiffness to Nmm/deg 

K=K*pi()/180; 

end 

Figure 25. The completed Jensen Cross Axis model, as a MATLAB function. 

The FEA model must be constructed to represent the inputs used by the 

parametric model. The geometric values used to compare the two models are listed in 

Table 3.  
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Table 3. Geometric properties of the Jensen Cross Axis compliant joint used for 

comparison between the MATLAB model and the FEA model. 

 
Parameter Value 

w 10 mm 

t 0.74 mm 

r 10 mm 

l 13.45 mm 

L 2 mm 

F 1 N 

 

The boundary conditions that the two models use to calculate the displacements 

must be the same. The parametric models are has defined boundary conditions, so the 

FEA model was created to represent the parametric model. The boundary conditions used 

in both model simulations are given in Figure 26. 

 

Figure 26. Boundary conditions used for the Jensen Cross Axis compliant joint 

model simulations. 
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The FEA model was composed of a mesh of elements approximately 0.5 mm in 

length. This was determined to provide a result in line with literature defined responses. 

The accuracy of the FEA was determined to be adequate because extreme accuracy is not 

required for the calculation, due to the FEA results only being needed verify the 

parametric equations. The mesh and deflected FEA model are shown in Figure 27. 

   

Figure 27. Mesh and deformed shape for the Jensen Cross Axis FEA simulation. 

The result of this comparison is a deflection of 9.9e-3 mm given by the parametric 

model and a 9.6e-3 mm deflection using the FEA model. This has a difference of 2.27e-4 

mm, and a percent difference of 2.35%. This result shows that the models are 

experiencing a similar deflection amount. It should be noted, however, that many of the 

parametric equations lose accuracy as deflection increases. 

3.4 Compliant Mechanism Repository Results 

A full catalogue of the compliant joints in the repository is listed in Appendix A. 

All compliant joints in the repository were validated using this method. Appendix A 



45 

 

includes their parametric equations as listed in the original research, diagrams of their 

geometric characteristics, and their MATLAB function models. Table 4 lists the names 

given to the translational compliant joints that are stored within the repository, the 

literature reference where the compliant joint‟s model was sourced, and a 3D computer-

aided design (CAD) solid model representation. These joints have a variety of 

characteristics, some being focused on accurate movement, while others focusing on 

maximum possible displacement. It should be noted that some linear compliant joints are 

created from a set of rotational compliant joints attached to a “table” which moves. This 

allows small rotational movements to be transferred into linear movements. 
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Table 4. Translational Compliant Joint Repository List 

Compliant Joint Name Solid Model Representation 

Smith Rectilinear [25] 

 

Kyusojin Parallel Strip [20] 

 

Kyusojin Linear 6L1 [20] 

 

Trease Translational [5] 

 

Xu Translational [27] 

 

Smith Notch Hinge [25] 

 
 

Table 5 lists the rotational compliant joints stored in the repository, as well as 

their sources, and a 3-D CAD solid model representation. These compliant joints were 

designed for many different applications. Some maintain higher precision of movement, 
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others maximize rotational movement (these are typically called large-displacement 

compliant joints), and others were developed for the minimization of axial drift.  

Table 5. Rotational Compliant Joint Repository List 

Compliant Joint Name Solid Model Representation 

Lobontiu Symmetric Notch [3] 

 

Lobontiu Corner Filleted [3] 

 

Lobontiu Symmetric Circular [3] 

 

Tian V Shape Flexure [22] 

 

Tang Symmetric Circular [10] 

 

Smith Two Axis [25] 
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Table 5 Cont’d. Rotational Compliant Joint Repository List 

Compliant Joint Name Solid Model Representation 

Smith Annulus [25] 

 

Smith Cartwheel [25] 

 

Smith Cruciform [25] 

 

Jensen Cross Axis [26] 

 

Smith Rotationally Symmetric Leaf Hinge [25] 

 

Trease Rotational [5] 
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Table 5 Cont’d. Rotational Compliant Joint Repository List 

Compliant Joint Name Solid Model Representation 

Kyusojin Rotational 6R2 [28] 

 

Goldfarb Conventional Split Tube [23] 

 
 

All of the compliant joints in these two lists, translational and rotational, were 

modeled using the method described previously in this chapter. Each model was 

validated through comparison to a matching FEA model. All of the comparisons were 

performed using a material of aluminum 2024. The results of the comparisons for the 

translational compliant joints are shown in Table 6. The dimensions used for comparison 

are related to examples found in the literature of the compliant joint. The locations of the 

geometric dimensions used in the models can be found in Appendix A.  
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Table 6. A comparison of FEA models and parametric equations for translational 

compliant joints for a unit force of 1 N. 

Compliant Joint 

Name 

Dimensions used 

for Comparison 

[mm] 

Deflection [mm] Difference 

[mm] 
% 

Difference FEA Parametric 

Smith Rectilinear t=0.1, b=10, L=10 6.15E-01 6.85E-01 7.04E-02 11.46% 

Kyusojin Parallel 

Strip 
t=0.1, b=10, L=10 6.15E-01 6.85E-01 7.04E-02 11.46% 

Kyusojin Linear 6L1 t=1, w=50, l=50 2.74E-02 2.74E-02 1.00E-05 0.04% 

Trease Translational t=1, w=10, LB=30 1.19E-02 1.23E-02 3.60E-04 3.02% 

Xu Translational 
hf=8.75, H=20, 

Hp=26.89, t=0.5, 

dc=5 
1.41E-02 1.10E-02 3.08E-03 28.00% 

Smith Notch Hinge 
R=0.4, t=.2, b=10, 

L=9.2 
1.65E-02 1.71E-02 5.70E-04 3.45% 

 

These results suggest that the parametric equations are reasonable estimates of the 

deflection of the joint, as they relate to the FEA models. However, the Xu translational 

compliant joint has inherent error due to its design. This compliant joint‟s linear motion 

is achieved through the deflection of long thin leaf springs, utilizing their motion to 

achieve small linear motions. This design can achieve precise movements in the micro-

range. The precision of the joint decreases as the size of the joint increases. Due to open-

ended nature of the design repository, joints that were designed for the purpose of small 

precise movements and large deflections were included to offer users a wide variety of 

potential selectable joints. 

The results of the comparisons of the rotational compliant joint parametric 

equations and finite element analysis are shown in Table 7.  
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Table 7. A comparison of FEA models and parametric equations for rotational 

compliant joints for a unit force of 1 N. 

Compliant Joint 

Name 

Dimensions used 

for Comparison 

[mm] 

Deflection [mm] 
Difference 

[mm] 
% 

Difference FEA Parametric 

Lobontiu Symmetric 

Notch 
t=1, w=10, l=10 5.20E-03 5.50E-03 3.01E-04 5.79% 

Lobontiu Corner 

Filleted 
r=2 ,t=1, w=10, 

l=10 
3.59E-03 3.80E-03 2.14E-04 5.97% 

Lobontiu Symmetric 

Circular 
r=5, t=1, w=10 9.62E-04 1.10E-03 1.38E-04 14.31% 

Tian V Shape 

Flexure 
R=2.25, t=1, l=5, 

c=4, θ=20°, b=10 
8.92E-04 8.47E-04 4.55E-05 5.37% 

Tang Symmetric 

Circular 
r=5, t=1, b=10 9.62E-04 1.10E-03 1.38E-04 14.31% 

Smith Two Axis r=5, t=1 1.69E-02 1.53E-02 1.55E-03 10.13% 

Smith Annulus r1=5, r2=3.25, t=.1 3.44E-01 3.18E-01 2.52E-02 7.92% 

Smith Cartwheel r=4, t=0.3, b=10 2.07E-02 1.95E-02 1.17E-03 6.00% 

Smith Cruciform t=1, L=10, d=2 2.00E-03 2.40E-03 4.02E-04 20.12% 

Jensen Cross Axis 
t=0.74, w=10, 

r=10, D=5 
9.67E-03 9.90E-03 2.27E-04 2.35% 

Smith Rotationally 

Symmetric Leaf 

Hinge 
d=1, Ro=5 2.54E-03 2.70E-03 1.64E-04 6.47% 

Trease Rotational L=40, t=1, w=10 6.99E-04 7.24E-04 2.45E-05 3.51% 

Kyusojin Rotational 

6R2 
t=1, w=50, l=50 2.71E-01 2.74E-01 3.00E-03 1.11% 

Goldfarb 

Conventional Split 

Tube 
t=1, r=5, L=25 2.78E-03 2.10E-03 6.82E-04 32.48% 

 

The results for the rotational compliant joints are similar to the translational 

compliant joints, in that most parametric equations represent the actual deflection within 

15%. Two joints are outliers within this result, the Smith Cruciform joint and the 

Goldfarb Conventional Split Tube joint. These two joints rely on the torsional deflection 
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of the joint around an axis instead of conventional bending. Since the method of 

comparison used between the FEA model and the parametric model was a linear 

displacement (node to node for the FEA, a geometric relationship for the parametric 

models), this may have resulted in additional error. A node to node linear distance on a 

cross-section in the FEA will give a smaller estimation of rotational distance than the 

parametric model. This could be analyzed and corrected for using an additional 

verification of physically produced compliant joint models. This would also add another 

layer of robustness to this method, but is beyond the scope of what is covered in this 

thesis. 

3.5 Conclusions from Compliant Joint Repository 

A compliant joint repository of parametric equation based models has been 

developed. Each model is an individually packaged MATLAB function, which can be 

called through an overall MATLAB selection algorithm. Twenty models have currently 

been developed, which include six linear compliant joints and fourteen rotational 

compliant joints. The parametric equation function models have shown to produce similar 

deflection results when compared with 3-D FEA models. A benefit of this structure is 

that additional compliant joints could be added to the repository using this method. This 

would increase the number of potentially selected joints, and which would increase the 

likelihood a user achieve results of a compliant joint that adequately fulfills their 

requirements. 
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CHAPTER 4: THE COMPLIANT JOINT SELECTION METHOD 

4.1 Selecting Compliant Joints from the Repository 

 The compliant joint selection algorithm detailed can be implemented by a user to 

find compliant joints from the repository that fit their requirements. The user must list 

their requirements in a format detailed enough to allow selection, but vague enough to 

allow the algorithm to select from the largest possible number of compliant joint models, 

which gives the algorithm the opportunity of picking the most adequate one. The overall 

compliant joint selection algorithm is handled by a MATLAB function that is listed in 

full in Appendix B. A flowchart of the selection algorithm‟s process is outlined in Figure 

28.  

 

Figure 28. Overview of selection algorithm for determining compliant joints that 

fulfill the user’s requirements. 

User enters design requirements in GUI

User requirements are processed

Output to user

The selection algorithm determines compliant joints that fulfill 

user requirements.

The compliant joint models are evaluated using user input

List of compliant joints that 

fulfill requirements

Pareto curves that represent 

the range of properties

User performs final selection
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For a designer to interact with the selection algorithm and find a compliant joint 

that fulfills their requirements, a user interface was desired. This Graphical User Interface 

(GUI) handles the transfer of information from the user to the algorithm. The user can 

specify up to six potential design requirements for the selection algorithm to use. The 

MATLAB code that generates the graphical interface is a MATLAB file, 

JointMenu.m, which is shown in Appendix C. The graphical interface that was 

developed is shown in Figure 29. 

 

Figure 29. Graphical user interface for selection algorithm. 

Required 

Inputs

Non-required 

Inputs
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To achieve a final result, the three inputs designated by arrows in Figure 29, Type 

of joint, Size constraints, and Material, must be filled in by the user. If these are not 

defined, the selection algorithm cannot achieve a result. All three have default values that 

will be used if a user does not enter any input. This is done so that it is impossible for the 

user to not fulfill these requirements. It should be noted again that an assumption the 

algorithm uses within the individual models is that a user can manufacture compliant 

joints with thicknesses 20% of the smallest size text input. As stated previously, this is 

used because the accuracy of the models increases as the ratio of length to thickness of 

the leaf springs increase. This also provides a larger range of results for the range of 

motion. Without this assumption the displacement ranges are small and difficult to 

pinpoint for a user to get satisfactory results. It is recommended to use higher smallest 

size values when using ABS or PLA, due to the flexibility of these materials. Small 

thicknesses with these materials can cause large ranges of motion that are primarily non-

linear, and will produce less accurate results. A user can also add additional materials to 

the GUI through the use of the JointMenu.m file, if so desired. The other available 

inputs are Range of motion, Stiffness, and Applied Force. It should be noted that range of 

motion should be entered as desired linear range of motion in millimeters for translational 

joints, and as desired rotational range of motion in degrees for rotational joints. Stiffness 

should be entered in the units N/mm for translational joints and Nmm/degree for 

rotational joints.  Applied force is the force that is to be applied to the compliant joint, 

which can potentially be the force of a piston or motor that is used to actuate the joint. 

None of these three values are required for a solution to be displayed, however, and if 
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none are entered, the selection algorithm will return all possible joints, organized by 

range of motion, for specified applied force values (0.1 N, 1 N, 10 N). When the applied 

force is not specified, the same set of generic values will be used. These are to provide a 

sense of possibilities at difference scales of force values. It is possible for a user to 

change this set of applied force values by changing the fset variable in the 

DecisiontreeFunction.m MATLAB function file.   

After a user has filled in the desired requirements in the GUI, the MATLAB 

function processes the user information. It ensures that all the data that has been entered 

is in numerical values. Then it processes which input data has been filled in and which is 

missing, so that it can execute the algorithm accordingly. Based on the user‟s initial 

requirements, different results can be given to the user.  

The set of compliant joints (rotational or translational) that was selected by the 

algorithm have the displacement and stiffness values calculated through the parametric 

models. Each parametric model is utilized twice, to determine the minimum and 

maximum of both of these values. Then a search is performed between all of the 

compliant model‟s properties to determine which compliant joints have the potential to 

fulfill the user‟s design requirements. The algorithm saves this set of joints and performs 

post-processing. 

During the post-processing, Pareto charts of the selected compliant joints are 

generated and displayed to the user. This allows the user to view the potential output 

parameters of the compliant joints within the constraints they have used. Pareto charts 

were determined to be an adequate display of satisfactory compliant joints due to their 
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ability to show a user the potential range of motion and stiffness values, across all 

geometric parameters within their size input. An example of this output is shown in 

Figure 30. 

 

Figure 30. Example Pareto chart outputs from the algorithm. 

The Pareto curves generated by the algorithm can be interpreted by the user in 

various ways. For each individual joint, the Pareto curve represents the range of stiffness 

and displacement values possible within the geometric constraints the user has chosen 

with the size constraints input. The charts are shown in parallel so that a user can see the 

comparative stiffness and deflections between the compliant joints that satisfy their 

requirements. For example, using the results in Figure 30, a user can determine that the 

Trease Concept rotational compliant joint and the Smith Cartwheel rotational compliant 
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joint have similar range of motion characteristics. However, the stiffness of the Smith 

Cartwheel compliant joint is potentially an order of magnitude higher than the Trease 

concept compliant joint. A user viewing these Pareto curves can make a determination of 

which compliant joint has better characteristics for their needs between the compliant 

joints that fulfill their requirements. 

In addition to the Pareto charts, the algorithm displays the non required inputs the 

user has used and then lists the compliant joints that fit the user‟s requirements. For 

outputs that do not produce Pareto curves, this will also list the potential range of motion 

of the selected joints, as well as order them by this metric. An example of this output is 

shown in Figure 31.  

>> JointMenu 

Rotational Joints are selected. 

RoM has a value, 1.00 degrees. 

k does not have a value (na) 

F has a value, 1.00 N. 

 

Possible joints for this user input are: 

JensenCrossAxis           

LobontiuSymmetricCircular 

LobontiuSymmetricNotch    

SmithCartwheel            

TangSymmetricCircular     

TreaseConcept             

VShape                    

ConventionalSplitTube   

Figure 31. Example output from the selection algorithm. 

The user must now select a compliant joint they determine most adequately fits 

the requirements they have used. The user can iterate here to continue the process of 

getting a satisfactory compliant joint, or complete the design of any specific compliant 

joint. It is relatively trivial at this point to use a parametric model in conjunction with an 
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optimization program to determine the exact geometric parameters that a compliant joint 

will require within the range of the selection algorithm. 

 Accuracy of the compliant joint models can be reduced when experiencing large 

nonlinear deflections. For the purposes of this research, the accuracy is assumed to be 

reduced when the compliant joint experiences deflections larger than 30% of the total 

length of that compliant joint. A warning was added to all output of the algorithm to 

inform users of potential inaccuracies caused by this assumption. This display of the 

limitations of the model allows the user to understand the range in which the model is 

considered valid, such that the user can gain a quantitative understanding of the context 

of the results of the model. It is considered that the publishing of this information will 

reduce the likelihood of abuse of the model [29]. 

4.2 Testing Procedure for the Compliant Joint Selection Algorithm 

The selection algorithm methodology was tested through a series of inputs that 

were entered into the GUI. The results achieved were checked to test the precision and 

recall of the algorithm. The test inputs were selected to test all combinations of inputs 

used and unused.  Table 8 contains the input conditions of the selection algorithm that 

were used in the tests shown within this chapter. 
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Table 8. Inputs for the test cases. 

Test 

Case 
Type of 

Joint 

Range of 

Motion [mm 

or degrees] 

Stiffness 

[N/mm or 

Nmm/degree] 

Size 

Constraints 

[mm] 

Applied 

Force 

[N] 
Material 

1 Translational 5 7 4.1 - 41.5 5 ABS 

2 Rotational 10 3 1.2 - 29.2 - Aluminum 

3 Translational 2 - 1.7 - 27.5 3 ABS 

4 Rotational 4 - 2.5 - 45.9 - ABS 

5 Translational - 1 1.3 - 14.3 6 PLA 

6 Rotational - 2 3 - 37.9 - Aluminum 

7 Translational - - 2.4 - 19.0 2 PLA 

8 Rotational - - 1.8 - 28.4 - Aluminum 

 

As shown in Table 8, four of the tests had translational compliant joints selected, 

and four of the tests had rotational compliant joints selected. Range of motion, stiffness, 

and applied force, when used, were randomly generated integers between 1 and 10 (mm 

or degrees, N/mm or Nmm/degree, and N, respectively). This value range was chosen 

because it was known to have guaranteed results within the solution space. The input 

smallest size was randomly selected between 1 and 5 mm, and the input largest size was 

randomly selected between 5 and 50 mm. The reasons for these ranges were that the 

largest size must be a larger number than smallest size, and the large range of the largest 

size variable allows for more potential differences between compliant joint results. The 

smallest size input was limited to values larger than 1 mm because the range of motion 

for many of the parametric models becomes incredibly nonlinear with very small 

thicknesses, especially when the material is a thermoplastic. The material was randomly 

selected using a random integer 1-3, with 1 representing aluminum, 2 representing PLA, 

and 3 representing ABS. Test Case 1 and Test Case 2 are presented in the following 
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subsections as examples. Each of the eight test cases‟ inputs, outputs, and explanations 

are shown in Appendix E. 

4.2.1 Test Case 1 

Test Case 1 considers the condition of a user entering all three of the non-required 

inputs. The algorithm must select compliant joints that satisfy the stiffness and range of 

motion requirements, using the force applied, size constraints, and type of joint inputs. 

The GUI showing the input values can be seen in Figure 32. 

 

Figure 32. GUI input for Test Case 1. 
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Since all of the non-required inputs have been used, the output will be a list of 

compliant joints satisfying the requirements, and Pareto curves that show the range of 

properties the compliant joints can achieve, using the geometric characteristics that were 

initialized from the size constraints. Only one compliant joint within the repository 

satisfies the requirements that were input, the Smith Notch Hinge compliant joint. The 

Pareto output is shown in Figure 33, and the MATLAB text output is shown in Figure 34. 

 

Figure 33. Pareto output for Test Case 1. 

>> JointMenu 

Translational Joints are selected 

RoM has a value, 5.00 mm. 

K has a value, 7.00 N/mm. 

F has a value, 5.00 N. 

 

Possible joints for this user input are: 

SmithNotchHinge 

Figure 34. MATLAB text output for Test Case 2. 

4.2.2 Test Case 2 

Test Case 2 considers the condition of the user entering a value for the non-

required inputs range of motion and stiffness only. The GUI showing the input values is 

shown in Figure 35.  
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Figure 35. GUI input for Test Case 2. 

When the applied force input is left blank, the selection algorithm uses a series of 

forces for the calculation of joint potential characteristics. This set of forces includes 0.1 

N, 1 N, and 10 N. These values are an order of magnitude apart, and used to show the 

characteristics of the potential compliant joints at different scales. These allow a user to 

understand how the force applied affects the range of motion for the individual compliant 

joints. Due to the geometric characteristics of the compliant joint remaining constant, the 

stiffness of each set will remain the same. However, the displacement achieved by the 

different forces will change. This leads to Pareto curves that are identical on the y-axis 

(stiffness), but different on the x axis (displacement). Depending on the complexity of the 
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model, the displacement is usually a linear increase in relation to the force. This can be 

seen as a reasonable estimation until large non-linear displacements are reached. 

 In this test case, no results are returned for the first two generic applied forces. 

This means that there are no joints that will achieve the stiffness and range of motion 

required for those applied force values. The result of this is Pareto curve figures that are 

generated as blank. These figures were omitted for this reason. Two compliant joints 

satisfy the user requirements using a force applied of 10 N. The two joints are Jensen 

Cross Axis and Lobontiu Symmetric Notch. The Pareto curves for these compliant joints 

are shown in Figure 36. The MATLAB text output is shown in Figure 37. 

 

Figure 36. Pareto curves for Test Case 2, using an applied force of 10 N. 
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>> JointMenu 

Rotational Joints are selected. 

RoM has a value, 10.00 degrees. 

K has a value, 3.00 N/mm. 

F does not have a value (na) 

 

Possible joints for this user input using a force of 0.100000 N are: 

 

Possible joints for this user input using a force of 1.000000 N are: 

 

Possible joints for this user input using a force of 10.000000 N are: 

JensenCrossAxis           

LobontiuSymmetricNotch 

Figure 37. MATLAB text output for Test Case 2. 

4.3 Validation of Test Cases 

The test cases were validated through an analysis of true positives (TP), true 

negatives (TN), false positives (FP), and false negatives (FN). A true positive is identified 

by being a correct solution to the design problem. A true negative is identified by being a 

non-solution to the problem. False positives and False negatives are solutions provided as 

correct when they are not, and solutions provided as incorrect when they are, 

respectively.  

Test cases that had no applied force value are divided into a, b, and c sub cases, 

since the set of forces will be applied, and it will return three sets of results independent 

of one another. It should be noted that it is impossible to have a True Positive number of 

results of 20 due to translational compliant joints always being true negative for a 

rotational compliant joint search, and rotational compliant joints always being a true 

negative for a translational compliant joint search. The results for each of the test cases 

can be seen in Table 9. 
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Table 9. Test Cases, with the True Positives, True Negatives, False Positives, and 

False Negatives determined for each. 

Test 

Case 
True 

Positive 
True 

Negative 
False 

Positive 
False 

Negative 
Total 

1 1 19 0 0 20 

2a 0 20 0 0 20 

2b 0 20 0 0 20 

2c 2 18 0 0 20 

3 4 16 0 0 20 

4a 3 17 0 0 20 

4b 9 11 0 0 20 

4c 7 13 0 0 20 

5 4 16 0 0 20 

6a 1 19 0 0 20 

6b 1 19 0 0 20 

6c 1 19 0 0 20 

7 6 14 0 0 20 

8a 14 6 0 0 20 

8b 14 6 0 0 20 

8c 14 6 0 0 20 

 

The validation shows that no False Positives or False Negatives were determined 

by the algorithm. Test Cases 2, 4, 6, and 8 returned three sets of results (a, b, and c) each 

because the applied force input was not specified. A default set of forces is used to 

showcase the range of motion possibilities of each compliant joint. These Test Cases will 

determine potential compliant joints for the user requirements, using the default set of 

forces. Results are returned in sets based on which force in the set was applied. Test Case 

6 only returns a single compliant joint for each variation because it is a search for a 

certain stiffness, which is limited by the geometry. Test case 8 returns all fourteen of the 

rotational compliant joints because no non-required inputs have been used. This means 
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the algorithm returns the entire set of compliant joints of the correct type, and orders 

them by range of motion to display as a text output. The user must further refine the 

search to gain additional information. 

4.4  Selection Algorithm Conclusions  

A selection algorithm has been developed that selects compliant joint models 

from a repository. This selection algorithm can determine applicable compliant joints 

from any set of user inputs into a GUI. The models are used to determine the range of 

characteristics resulting from different geometric characteristics used by the models.  The 

results are returned to the user in Pareto curves and a text list, so that the user can make a 

final decision on the compliant joint that most satisfactorily fulfills their requirements. 

The selection algorithm was determined to perform adequately when given 

various test scenarios with random initial inputs. All possible input conditions were tested 

to verify that each received satisfactory results. No false positive or false negative results 

were displayed from the input conditions given. 
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CHAPTER 5: CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions 

The research presented has achieved the objective of creating a repository of 

compliant joints, which are characterized by parametric equations and geometric 

characteristics. The first research question of this thesis was “What parameters can a 

compliant joint be characterized by such that it can be objectively compared to other 

compliant joints?” The compliant joints within the repository were normalized through a 

process which adjusted the parametric equations to utilize the same inputs across all 

joints of the same type, and to produce outputs of stiffness and range of motion of the 

same units across all models. The second research question asks “How can a user achieve 

results that include a compliant joint that most closely fulfills their requirements?” The 

repository facilitates selection of compliant joints through a selection algorithm, and 

presents results to the user. The results are based upon three required user inputs, and the 

option of three non-required user inputs. The selection algorithm will produce results 

with any combination of non-required inputs. The final research question poses “How 

can the information (results) be presented to the user so that it is possible to differentiate 

between multiple satisfactory solutions?” The results include Pareto curves, which relate 

the potential range of motion to the stiffness of the compliant joint, over all possible 

geometries available from the user input. This allows the user to compare compliant 

joints that fulfill their requirements side by side on additional performance metrics, to 

determine objectively which compliant joint has the preferred qualities for the given 

requirements. 
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All models within the repository were validated through FEA comparisons of 

deflection. The FEA models show that the parametric models of each compliant joint 

were characterizing the movement of the compliant joints correctly. Ten test cases 

composed of input values within a range were applied to the selection algorithm. The 

algorithm generated results to all test cases, showing that all solutions sets only contained 

true positives, with no false positives or false negatives provided. 

5.2 Potential Impact 

The research presented has some potential impacts that should be highlighted. 

Due to the extensible design of the parametric model repository, it is possible for new 

users to follow the procedure outlined, and add additional models of compliant joints to 

the repository. This open ended work would increase the versatility of the selection 

algorithm by allowing more potential compliant joints to be highlighted.  

Another potential impact would be available if the repository and selection 

algorithm was integrated with Computer-Aided Design (CAD) software. Since the 

selection algorithm determines which compliant joints will fulfill user requirements over 

certain geometries, this information could be exported to use within solid-body models. 

From this, additional FEA testing could be performed, or the files could be converted into 

.STL files for use in additive manufacturing. Fused deposition modeling (or 3D printers) 

could be used to immediately print design solutions. Compliant joints are especially 

appropriate to be made using 3D printing due to their ability to be made as a singular 

piece. In this way, an inexperienced user could go from a design problem requiring a 

compliant joint to a functional, physical compliant joint in a matter of hours.  
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5.3 Future Work 

A number of additional problems could be addressed to increase the robustness 

and applicability of the method outlined in this thesis. First and foremost would be the 

addition of more compliant joints of each type, as well as potential combinations of the 

flexures listed here. More compliant joints in the repository would lead to a greater 

variety of selection, which could lead to a more satisfactory solution for the user. 

Combinations of flexures and compliant joints would open up a new solution space, with 

unique design combinations. This would give the repository some ability to create new 

compliant joints.  

The robustness of the current algorithm should be addressed as well. A number of 

additional options could be added to the material selection, as well as the types of 

compliant joints to select from. Allowing users to interact with the algorithm itself and 

change the geometric parameters that are explored over each joint would add a large 

amount of customizability, which power users may desire.  

The value of the algorithm would also increase if additional characteristics were 

explored to further define individual joints. Precision, especially for translational 

compliant joints, can be a more desired trait than range of motion or stiffness. The same 

could be said for axial drift control on rotational compliant joints. Additionally, mass of 

individual compliant joints could be used as a performance characteristic, which would 

allow for designs that wish to minimize material or weight for a final design.  

Meta-characteristics of the compliant joints, such as manufacturability, would 

inform the user about potential downfalls or limitations of the compliant joints within the 



71 

 

repository. Since an assumption had to be made for the thickness of the joints to achieve 

good ranges of motion, this assumption could be relaxed on a case by case basis based on 

the potential manufacturability of the parts. This could accommodate for new design or 

manufacture methods that were not developed at the time of this research. A visual 

representation of all results (the CAD renderings) would also help the user understand the 

context of the compliant joints and additional quantitative information about the 

construction and design of the joints. 

Additional parallel testing of the current algorithm could lead to further 

streamlining. Running parallel with topological optimization methods or pseudo-rigid-

body design of compliant mechanisms would quantify the potential of this research as a 

selection method for use in design, and see if all methods return the same final result. 

  



72 

 

CHAPTER 6: REFERENCES 

[1] L. L. Howell, Compliant Mechanisms. 2001. 

[2] S. Shuib, M. I. Z. Ridzwan, and A. H. Kadarman, “Methodology of Compliant 

Mechanisms and its Current Developments in Applications : A Review,” Am. J. 

Appl. Sci., vol. 4, no. 3, pp. 160–167, 2007. 

[3] N. Lobontiu, Compliant Mechanisms: Design of Flexure Hinges. 2002. 

[4] S. Zelenika and F. De Bona, “Design of Microsystems Based on Compliant 

Structures and Devices,” in International Design Conference, 2006, pp. 1033–

1040. 

[5] B. P. Trease, Y.-M. Moon, and S. Kota, “Design of Large-Displacement 

Compliant Joints,” J. Mech. Des., vol. 127, no. July, pp. 788–798, 2005. 

[6] L. L. Howell, “A generalized loop-closure theory for the analysis and synthesis of 

compliant mechanisms,” 1993. 

[7] L. L. Howell and A. Midha, “Parametric Deflection Approximations for End-

Loaded , Large-Deflection Beams in Compliant Mechanisms,” Trans. ASME, vol. 

117, no. March, pp. 156–165, 1995. 

[8] B. T. Edwards, B. D. Jensen, and L. L. Howell, “A Pseudo-Rigid-Body Model for 

Functionally Binary Pinned-Pinned Segments Used in Compliant Mechanisms,” in 

Proceedings of the 1999 ASME Design Engineering Technical Conferences, 1999, 

pp. 1–12. 

[9] D. A. Espinosa, “Moment-dependent pseudo-rigid-body models for beam 

deflection and stiffness kinematics and elasticity,” 2009. 

[10] X. Tang, I.-M. Chen, and Q. Li, “Design and nonlinear modeling of a large-

displacement XYZ flexure parallel mechanism with decoupled kinematic 

structure,” Rev. Sci. Instrum., vol. 77, no. 11, p. 115101, 2006. 

[11] M. Frecker, G. K. Ananthasuresh, S. Nishiwaki, S. Kota, and N. Kikuchi, 

“Topological Synthesis of Compliant Mechanisms Using Multi-Criteria 

Optimization,” J. Mech. Des., vol. 119, no. June, pp. 238–245, 1997. 

[12] M. Frecker, N. Kikuchi, and S. Kota, “Topology optimization of compliant 

mechanisms with multiple outputs,” Struct. Optim., no. 17, pp. 269–278, 1999. 



73 

 

[13] K. Lu and S. Kota, “Design of Compliant Mechanisms for Morphing Structural 

Shapes,” J. Intell. Mater. Syst. Struct., vol. 14, no. June, pp. 379–391, 2003. 

[14] O. Sigmund, “On the Design of Compliant Mechanisms Using Topology 

Optimization,” Mech. Struct. Mach. An Int. J., vol. 25, no. 4, pp. 493–524, Jan. 

1997. 

[15] C. B. W. Pedersen, T. Buhl, and O. Sigmund, “Topology synthesis of large-

displacement compliant mechanisms,” Int. J. Numer. Methods Eng., vol. 50, no. 

January, pp. 2683–2705, 2001. 

[16] N. D. Pavlović, D. Petković, and N. T. Pavlović, “Optimal selection of the 

compliant mechanism synthesis method,” in The International Conference: 

Mechanical Engineering in XXI Century, 2010, pp. 1–4. 

[17] P. Bernardoni, P. Bidard, C. Bidard, and F. Gosselin, “A new compliant 

mechanism design methodology based on flexible building blocks,” 2004. 

[18] N. Jhawar and G. K. Ananthasuresh, “Cataloguing and Selection of Displacement-

Amplifying Compliant Mechanisms,” in Research into Design: Supporting 

Multiple Facets of Product Development, 2009, pp. 26–34. 

[19] S. Mahler, “Compliant pediatric prosthetic knee,” University of South Florida, 

2007. 

[20] A. Kyusojin, D. Sagawa, and A. Toyama, “Development of linear and rotary 

movement mechanism by using flexible strips,” Bull. Japan Soc. Precis. Eng., 

1988. 

[21] X. Pei, J. Yu, G. Zong, and S. Bi, “Design of compliant straight-line mechanisms 

using flexural joints,” Chinese J. Mech. Eng., vol. 27, no. 1, pp. 146–153, Feb. 

2014. 

[22] Y. Tian, B. Shirinzadeh, and D. Zhang, “Closed-form compliance equations of 

filleted V-shaped flexure hinges for compliant mechanism design,” Precis. Eng., 

vol. 34, no. 3, pp. 408–418, Jul. 2010. 

[23] M. Goldfarb and J. E. Speich, “A well-behaved revolute flexure joint for compliant 

mechanism design,” Trans. ASME, vol. 121, no. September, pp. 424–429, 1999. 

[24] A. E. Gu rinot, S. P. Magleby, L. L. Howell, and R. H. Todd, “Compliant Joint 

Design Principles for High Compressive Load Situations,” J. Mech. Des., vol. 127, 

no. 4, pp. 774–781, 2005. 



74 

 

[25] S. Smith, Flexures, Elements of Elastic Mechanisms. 2002. 

[26] B. D. Jensen and L. L. Howell, “The modeling of cross-axis flexural pivots,” 

Mech. Mach. Theory, vol. 37, no. 5, pp. 461–476, May 2002. 

[27] Q. Xu and Y. Li, “A novel design of a 3-PRC translational compliant parallel 

micromanipulator for nanomanipulation,” Robotica, vol. 24, no. 04, p. 527, Jan. 

2006. 

[28] A. Kyusojin, D. Sagawa, and A. Toyama, “Development of Linear and Rotary 

Movement Mechanisms by Using Leaf Springs,” J. Jpn. Soc Prec. Eng, vol. 4, no. 

22, pp. 1092–1096, 1988. 

[29] G. Mocko, R. J. Malak, C. J. J. Paredis, and R. Peak, “A Knowledge Repository 

for Behaivoral Models in Engineering Design,” in Proceedings of DETC ’04, 

2004, pp. 1–10.  

 

 



75 

 

 

 

 

 

 

 

 

 

APPENDICES 

  



76 

 

APPENDIX A. COMPLIANT JOINT REPOSITORY 

Located in this appendix are all of the compliant joints that were used in the 

compliant joint repository. Each individual compliant joint section will contain the 

compliant joint‟s name, its geometric parameters, additional notes, a 3-D CAD solid 

model representation, the original equations found in the literature describing its motion, 

and the MATLAB function parametric model used in the selection algorithm. 

A.1 Translational Compliant Joints 

1. Name: Smith Rectilinear 

Geometric Parameters: w (thickness), d (depth), L (length), D (distance between 

leaf springs) 

Additional Notes:  

Accuracy increases as L>>w 

Same as Kyusojin Parallel Strip – calculated differently 

 

Figure A 1. Solid model representation of the Smith Rectilinear compliant joint. 
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Figure A 2. Geometric characteristics of the Smith Rectilinear compliant joint.  

 The linear stiffness of the compliant joint is described by 

       
 

 
  
 

  

where E is the Young‟s Modulus of the material, b is the depth of the material, L 

is the height of the leaf springs, and t is the thickness of the leaf springs. 

function [ Disp,K ] = SmithRectilinearSpringFun( E,t,b,L,F ) 

% E = Young's Modulus  

%N/mm^2  

%%----Joint Dimensional Characteristics----%% 

% w = thickness of leaf springs 

%mm 

% d = Depth of joint 

% L = Height of leaf springs 

% D  = Distance between leaf springs 

% F = Force Applied 

  

%%----Solution of Joint----%% 

%Stiffness 

K=2*E*b*(t/L)^3; 

%In plane displacement 

Disp=F/K; 

end 

Figure A 3. MATLAB function model of the Smith Rectilinear compliant joint. 
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2. Name: Kyusojin Parallel Strip  

Geometric Parameters: w (thickness), h (depth), L (length) 

Additional Notes: 

Accuracy increases as L>>w 

Same as Smith Rectilinear – calculated differently 

 

Figure A 4. Solid model representation of the Kyusojin Parallel Strip compliant 

joint. 

 

Figure A 5 Geometric characteristics of the Kyusojin Parallel Strip compliant joint. 

 The displacement of the upper table in the x-direction can be described by 
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where F is the applied force, l is the height of the leaf springs, E is the Young‟s 

modulus of the material, and I is the moment of inertia of the leaf springs about their 

center. 

function [ Dispx,K ] = ParallelStripFun( E,h,w,l,F ) 

% E = Young's Modulus  

%N/mm^2  

%%----Joint Dimensional Characteristics----%% 

% w = thickness of leaf springs 

%mm 

% h = Depth of joint 

% l = Height of leaf springs 

% F = Force Applied 

  

%%----Solution of Joint----%% 

w=w/5; 

I=h*w^3/12; 

%In plane deflection 

Dispx=sqrt((5*F^2*l^6)/(3*(240*(E*I)^2))); 

  

K=F/Dispx; 

%Only represents one spring, so 

Dispx=Dispx/2; 

K=K*2; 

%Out of plane deflection 

Dispy=F^2*l^5/(240*(E*I)^2); 

  

end 

Figure A 6. MATLAB function model of the Kyusojin Parallel Strip compliant joint. 
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3. Name: Kyusojin Linear 6L1 

Geometric Parameters: t (thickness), w (width of leaf spring), l (length of leaf 

spring) 

Additional Notes: Center table length is irrelevant 

  

(a)       (b) 

Figure A 7. Solid model representation of the Kyusojin Linear 6L1 compliant joint, 

(a) original position and (b) deflected position. 

  

(a)        (b) 

Figure A 8. Side view of solid model representation of the Kyusojin Linear 6L1 

compliant joint, (a) original position and (b) deflected position. 
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Figure A 9. Geometric characteristics of the Kyusojin Linear 6L1 compliant joint. 

 The displacement of the upper table in the x-direction can be described by 

    
     

       
  

where F is the force applied, l is the height of the leaf springs, E is the Young‟s 

Modulus of the material, and I is the moment of inertia of the leaf springs about their 

center.  

l

MotionForce
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function [ Disp,K ] = KyusojinLinear6L1Fun( E,t,w,l,F ) 

% E = Young's Modulus  

%N/mm^2  

%%----Joint Dimensional Characteristics----%% 

% w = Width of leaf springs 

%mm 

% t = Thickness of leaf springs 

% l = Height of leaf springs 

% F = Force Applied 

  

%Number of spring-pairs 

N=4; 

  

%%----Solution of Joint----%% 

t=t/5; 

I=(t*w^3)/12; 

a=sqrt(N/(E*I)); 

  

%Out of plane deflection 

dely=(F^2*l^5)/(60*(E*I)^2)*(1/(cos(a*l))-1); 

  

%In plane deflection (linear translation) 

Disp=sqrt((5*F^2*l^6)/(3*(60*(E*I)^2))); 

%Needed to fix scale 

Disp=Disp*1000; 

K=F/Disp; 

end 

Figure A 10. MATLAB function model of the Kyusojin Linear 6L1 compliant joint. 
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4. Name: Trease Translational 

Geometric Parameters: t (thickness), w (depth), LB (length) 

Additional Notes: This is the planar configuration – this joint also has a spatial 

configuration with two more sets of leaf springs on the other non translational axis 

 

Figure A 11. Solid model representation of the Trease Translational compliant joint. 

 

Figure A 12. Geometric characteristics of the Trease Translational compliant joint. 

LBeam
t

L2

Force
Motion

L4

L3
L
1

width

width



84 

 

 The linear stiffness of the compliant joint can be described by 

   
       

   
  

where E is the Young‟s Modulus of the material, t is the thickness of the leaf 

springs, w is the depth of the leaf springs, and LB is the length of the leaf springs. 

function [ Disp,kaxialp ] = TreaseTranslationalFun( E,t,w,LB,F ) 

% E = Young's Modulus  

%N/mm^2  

%%----Joint Dimensional Characteristics----%% 

% w = Depth of leaf springs 

%mm 

% t = Thickness of leaf springs 

% LB = Length of leaf springs 

% F = Force Applied 

  

%%----Solution of Joint----%% 

t=t/5; 

%Note: Planar is 2 sets of 6 beams, spatial is 4 sets of 6 beams 

%%Only planar is used as a joint in the solution 

%K for planar (2 sides) 

kaxialp = 3*(E*t^3*w)/(LB^3); 

%K for spatial (4 sides) 

kaxials = 6*(E*t^3*w)/(LB^3); 

%Displacement 

Disp= F/kaxialp; 

  

end 

Figure A 13. MATLAB function model of the Trease Translational compliant joint. 
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5. Name: Xu Translational 

Geometric Parameters: t (thickness), φ (angle), Hp (total length), H (length to 

fixed ends), hf (length to force applied) 

Additional Notes: Very precise for small translational distances  

 

Figure A 14. Solid model representation of the Xu Translational compliant joint. 

 

Figure A 15. Geometric characteristics of the Xu Translational compliant joint. 

 The linear displacement of this compliant joint can be described by 
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where Hp is the height to the movement point from the origin point, and θ is the 

angle of movement of the center bar. This angle can be found from  

  
    

                    
  

where H is the height from the origin to the fixed locations, dc is the depth of the 

compliant joint, E is the Young‟s  Modulus of the material, t is the thickness of the leaf 

springs, φ is the angle of the leaf springs, and n is a geometric relation. This relation is 

described by 

  
 

      
  

where hf is the height to the platform where the force is applied. Additionally, Hp 

can be calculated using  

   
   

          
   

where gamma is a geometric relation described by  
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function [ dmax,K ] = XuTranslationalFun( E,t,dc,hf,H,F ) 

% E = Young's Modulus  

%N/mm^2  

%%----Joint Dimensional Characteristics----%% 

% t = Thickness of leaf springs 

%mm 

% phi = Angle (from vertical) to each fixed point,  

%%set to simplify optimization 

phi = 30; 

% Hf = Point to force application 

% H = Height to fixed points 

% F = Force Applied 

  

%%----Solution of Joint----%% 

t=t/5; 

  

n=H/(H-hf); 

gamma =15*n^2/(2-3*n+18*n^2); 

Hp=(n-gamma)/(gamma*cosd(phi)^2)*H; 

theta = (H*dc)/(E*t*(3*n-1)*n*cosd(phi)); 

dx=Hp*theta; 

  

%Deflection in x direction 

dmax=Hp*sin(theta); 

K=F/dmax; 

  

end 

Figure A 16. MATLAB function model of the Xu Translational compliant joint. 
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6. Name: Smith Notch Hinge 

Geometric Parameters: t (thickness), R (radius of circles), L* (distance between 

flexures) 

Additional Notes: More accurate when R>>L and t>>L 

 

Figure A 17. Solid model representation of the Smith Notch Hinge compliant joint. 

 

Figure A 18. Geometric characteristics for the Smith Notch Hinge compliant joint. 

The linear stiffness of this compliant joint can be described by 
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where E is the Young‟s Modulus of the material, b is the depth of the compliant 

joint, t is the thickness of the circular flexures, R is the radius of the circular flexures, and 

L* is the distance between the two circular flexures‟ centers. 

function [ Disp,K ] = SmithNotchHingeFun( E,R,t,b,L,F ) 

% E = Young's Modulus  

%N/mm^2  

%%----Joint Dimensional Characteristics----%% 

% R = Radius of circular notches 

%mm 

% t = Thickness between circular notches 

% b = Depth of Flexures 

% L = Length between circular notches 

% F = Force Applied 

  

%%----Solution of Joint----%% 

R=R/2; 

t=t/5; 

Lstar=L+2*R; 

%Stiffness calculation 

K=(8*E*b*t^(5/2))/(9*pi()*R^.5*Lstar^2); 

%Deflection 

Disp=F/K; 

  

end 

Figure A 19. MATLAB function model of the Smith Notch Hinge compliant joint. 
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A.2 Rotational Compliant Joints 

1. Name:  Lobontiu Symmetric Notch 

  Geometric Parameters: t (thickness), w (depth), l (length) 

Additional Notes: 

 

Figure A 20. Solid model representation of the Lobontiu Symmetric Notch 

compliant joint. 

 

Figure A 21. Geometric characteristics of the Lobontiu Symmetric Notch compliant 

joint.   

The linear compliance of this compliant joint is defined as 

   
   

    
  

l

t
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where E is the Young‟s modulus of the material, l is the length of the flexure, w is 

the depth of the flexure, and t is thickness of the flexure. 

function [Disp,K] = 

LobontiuSymmetricNotchFun(E,t,l,w,F) 

% E = Young's Modulus  

%N/mm^2  

%%----Joint Dimensional 

Characteristics---- 

% t = Thickness of flexure 

% w = Depth of flexure 

% l = Length of flexure 

% F = Force applied 

  

%%----Solution of Joint----%% 

t=t/5; 

  

%Compliance 

C = (4*l^3)/(E*w*t^3); 

%Stiffness 

K=1/C; 

%Linear Displacement 

Disp = F/K; 

%Angular Displacement 

Disp = asin(Disp/l)*180/pi(); 

%Rotational Stiffness 

K=(F*l/2)/Disp; 

  

end 

Figure A 22. MATLAB function model of the Lobontiu Symmetric Notch compliant 

joint. 
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2. Name: Lobontiu Corner Filleted 

 Geometric Parameters: r (radius of fillets), t (thickness), w (depth), l 

(length) 

Additional Notes: 

 

Figure A 23. Solid model representation of the Lobontiu Corner Filleted compliant 

joint. 

 

Figure A 24. Geometric characteristics of the Lobontiu Corner Filleted compliant 

joint. 

The linear compliance of the flexure is defined as  

r

t

l
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where E is the Young‟s modulus of the material, w is the depth of the flexure, l is 

the length of the flexure, r is the radius of the fillets, and t is the thickness of the flexure. 
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function [ Disp,K ] = LobontiuCornerFilletedFun( E,t,r,l,w,F ) 

% E = Young's Modulus  

%N/mm^2  

%%----Joint Dimensional Characteristics---- 

% r = Radius of filets 

%%mm 

% w = Depth of flexure 

% l = Length of flexure 

% t = Thickness of flexure 

% F = Force applied 

  

%%----Solution of Joint----%% 

r=r/2; 

t=t/5; 

%Compliance 

C=(3/(E*w))*(((4*(l-2*r)*(l^2-l*r+r^2))/(3*t^3))... 

    +(sqrt(t*(4*r+t))*(-

80*r^4+24*r^3*t+8*(3+2*pi())*r^2*t^2+4*(1+2*pi())*r*t^3+pi()*t^4))/(4*s

qrt(t^5*(4*r+t)^5))... 

    +((2*r+t)^3*(6*r^2-4*r*t-

t^2)*atan(sqrt(1+4*r/t)))/sqrt(t^5*(4*r+t)^5)... 

    +(-40*r^4+8*l*r^2*(2*r-

t)+12*r^3*t+4*(3+2*pi())*r^2*t^2+2*(1+2*pi())*r*t^3+(pi()*t^4)/2)/(2*t^

2*(4*r+t)^2)... 

    +(4*l^2*r*(6*r^2+4*r*t+t^2))/(t^2*(2*r+t)*(4*r+t)^2)... 

    -((2*r+t)*(-24*(l-r)^2*r^2-

8*r^3*t+14*r^2*t^2+8*r*t^3+t^4)/(t^5*(4*r+t)^5)^0.5)*atan(1+4*r/t)); 

%Stiffness 

K=1/C; 

%Displacement 

Disp=C*F; 

%Angular Displacement 

Disp = asin(Disp/l)*180/pi(); 

%Rotational Stiffness 

K=(F*l/2)/Disp; 

  

end 

Figure A 25. MATLAB function model of the Lobontiu Corner Filleted compliant 

joint. 
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3. Name: Lobontiu Symmetric Circular 

 Geometric Parameters: r (radius of circles), t (thickness), w (depth), l 

(length) 

Additional Notes: Same as Tang Symmetric Circle, but calculated differently 

 

Figure A 26. Solid model representation of the Lobontiu Symmetric Circle 

compliant joint. 

 

Figure A 27. Geometric characteristics of the Lobontiu Symmetric Circle compliant 

joint. 

The compliance of the flexure is given by 

r

t

l
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where E is the Young‟s modulus of the material, r is the radius of the flexure, l is 

the length of the flexure, and t is the thickness of the flexure.  
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function [ Disp,K ] = LobontiuSymmetricCircularFun( E,t,r,w,F ) 

% E = Young's Modulus  

%N/mm^2  

%%----Joint Dimensional Characteristics---- 

% r = Radius of circles 

r=r/2; 

%%mm 

% t = Distance between circles 

t=t/5; 

% w = Depth of Flexure 

% F = Force applied 

  

%%----Solution of Joint----%% 

%Compliance 

C = (3/(4*E*w*(2*r+t)))*... 

    

(2*(2+pi())*r+pi()*t+(8*r^3*(44*r^2+28*r*t+5*t^2))/(t^2*(4*r+t)^2)... 

    +((2*r+t)*sqrt(t*(4*r+t))*(-

80*r^4+24*r^3*t+8*(3+2*pi())*r^2*t^2+4*(1+2*pi())*r*t^3+pi()*t^4))/sqrt

(t^5*(4*r+t)^5)... 

    -((8*(2*r+t)^4*(-

6*r^2+4*r*t+t^2))/sqrt(t^5*(4*r+t)^5))*atan((1+(4*r)/t)^0.5)); 

% C=24*r^2/(E*w*t^3*(2*r+t)*(4*r+t)^3)*... 

%     (t*(4*r+t)*(6*r^2+4*r*t+t^2)... 

%     +6*r*(2*r+t)^2*sqrt(t*(4*r+t))*atan(sqrt(1+4*r/t))); 

%Stiffness 

K=1/C; 

%Linear Displacement 

Disp = F/K; 

%Angular Displacement 

Disp = asin(Disp/(r))*180/pi(); 

%Rotational Stiffness 

K=(F*r)/Disp; 

  

end 

Figure A 28. MATLAB function model of the Lobontiu Symmetric Circle compliant 

joint. 
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4. Name: Tian V Shape Flexure 

 Geometric Parameters: R (radius of circles), t (thickness), b (depth), 2l 

(length), c (height of slope), h (height of flexure),   (angle of flexure) 

Additional Notes: 

 

Figure A 29. Solid model representation of the Tian V Shape Flexure compliant 

joint. 

 

Figure A 30. Geometric characteristics of the Tian V Shape Flexure compliant joint. 

The deflection of the flexure around its center,   , for a given moment,   , 

θ

t

l

h

c
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where E is the Young‟s modulus, b is the depth of the flexure, R is the radius of 

the center circles, θ is the angle of the slopes, and β and γ are geometric relations. Β can 

be described by  

   
 

  
  

where t is the thickness of the flexure at the center, and R is the radius of the 

center circles. γ can be described by  

   
 

  
  

where t is the thickness of the flexure at the center, and c is the height of the 

sloped sections. 

function [alpha,K] = VShapeFun(E,t,h,l,R,b,F) 

% E = Young's Modulus  

%N/mm^2  

%%----Joint Dimensional Characteristics---- 

% t = Thickness of flexure at smallest point 

t=t/5; 

%%mm 

% R = Circles at middle of flexure 

%This ensures radius is not larger than half of height of flexure 

R=(R/2-t/2)/2; 

% l = Half length of flexure 

%Since l is half length,  

l=l/2; 
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% h = Total height of flexure 

%theta = Slope of flexure sides 

theta = 20;%maintained 

theta=theta*2*pi()/360; 

% c = Height of sloped portion  

%This logic ensures flexure has solution 

if h==b 

    %min def 

    c=h/2-t; 

else 

    c=0.1; 

end 

% F = Force applied 

  

%%----Solution of Joint----%% 

B=t/(2*R); 

y=t/(2*c); 

M=F*(l); 

%Compliance  

C=(3/(2*E*b*R^2))*((1/(2*B+B^2))*(((1+B)*sin(theta)/(1+B-

cos(theta))^2)... 

        +((3+2*B+B^2)*sin(theta)/((2*B+B^2)*(1+B-cos(theta))))... 

        

+(6*(1+B)/((2*B+B^2)^(3/2))*atan(sqrt((2+B)/B)*tan(theta/2))))... 

        -y^2*cot(theta)/(B^2*(1+y)^2)... 

        +cot(theta)/(1+B-cos(theta))^2); 

  

%Alternative compliance, for force applied rather than moment 

% C=(3*y+3*(B-y)*cos(theta))/(2*E*b*R*y*sin(theta))*... 

%     ((1/(2*B+B^2))*(((1+B)*sin(theta))/((1+B-cos(theta))^2)... 

%     +((3+2*B+B^2)*sin(theta))/((2*B+B^2)*(1+B-cos(theta)))... 

%     

+(6*(1+B))/((2*B+B^2)^(3/2))*atan(sqrt((2+B)/B)*tan(theta/2)))... 

%     -(y^2*cot(theta))/(B^2*(1+y)^2)... 

%     +cot(theta)/(1+B-cos(theta))^2); 

%Stiffness 

K=1/C; 

  

%Angular Displacement 

alpha=M*C*180/pi(); 

%Linear Displacement 

Disp=sin(alpha)*(l); 

%Transform stiffness to Nm/deg 

K=K*pi()/180; 

  

end 

Figure A 31. MATLAB function model of the Tian V Shape Flexure compliant joint. 
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5. Name: Tang Symmetric Circular 

Geometric Parameters: t (thickness), b (depth), R (radius) 

Additional Notes: Same as Lobontiu Symmetric Circle, but with a simplified 

calculation for stiffness.  

 

Figure A 32. Solid model representation of the Tang Symmetric Circular compliant 

joint. 

 

Figure A 33. Geometric characteristics of the Tang Symmetric Circular compliant 

joint. 

 The angular stiffness about the center of the flexure is described as 

  
       

      
  

R

t
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where E is the Young‟s modulus of the material, b is the depth of the flexure, t is 

the thickness of the flexure at the center, and R is the radius of the circles. 

function [Disp,K] = TangSymmetricCircularFun(E,R,t,b,F) 

% E = Young's Modulus  

%N/mm^2  

%%----Joint Dimensional Characteristics---- 

% t = Thickness of flexure at smallest point 

t=t/5; 

%%mm 

% R = Radius of circles 

R=R/2; 

% b = Depth of Flexure 

% F = Force applied 

  

%%----Solution of Joint----%% 

M= F*R; 

%Stiffness 

K=(2*E*b*t^(5/2))/(9*pi()*R^.5); 

%Angular Displacement 

Disp = M/K*180/pi(); 

%Linear Displacement 

% Disp=sind(Disp)*R; 

%Transform stiffness to Nm/deg 

K=K*pi()/180; 

 

end 

Figure A 34. MATLAB function model of the Tang Symmetric Circular compliant 

joint. 
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6. Name: Smith Two Axis 

 Geometric Parameters: r (radius of circles), t (thickness) 

Additional Notes: 

 

Figure A 35. Solid model representation of the Smith Two Axis compliant joint. 

 

Figure A 36. Geometric characteristics of the Smith Two Axis compliant joint. 

 The angular stiffness of the flexure can be described by 

  
     

      
  

where E is the Young‟s Modulus of the material, t is the thickness at the center of 

the flexure, and R is the radius of the circles. 

r

t
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function [Disp,K] = SmithTwoAxisFun(E,R,t,F) 

% E = Young's Modulus  

%N/mm^2  

%%----Joint Dimensional Characteristics---- 

% t = Thickness of flexure at smallest point 

t=t/5; 

%%mm 

% R = Radius of circles 

R=R/2; 

% F = Applied force 

  

%%----Solution of Joint----%% 

%Stiffness 

K=(E*t^(7/2))/(20*R^(3/2)); 

%Angular Displacement for a force applied at the end 

Disp=F/K*180/pi(); 

%Linear Displacement 

% Disp=sin(Disptheta)*(R); 

%Angular Stiffness 

K=F*R/Disp; 

  

end 

Figure A 37. MATLAB function model of the Smith Two Axis compliant joint. 
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7. Name: Smith Annulus 

 Geometric Parameters: t (thickness), r2 (inner radius), r1 (outer radius) 

Additional Notes: 

 

Figure A 38. Solid model representation of the Smith Annulus compliant joint. 

 

Figure A 39. Geometric characteristics of the Smith Annulus compliant joint. 

 This compliant joint‟s angular stiffness can be described by 

  
    

  
    

r2
r1
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where E is the Young‟s modulus of the material, I is the moment of inertia of the 

annulus, r1 is the outer radius of the annulus, and fm is a geometric relation. This relation 

can be described by  

    
            

                                       
  

where λ is an additional geometric relation. This is described by  

  
  

  
  

where E is the Young‟s modulus of the material, G is the shear modulus of the 

material, I is the moment of inertia of the annulus, and J is the polar moment of inertia of 

the annulus. 
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function [ Disp,K ] = SmithAnnulusFun( E,G,r1,t,F ) 

% E = Young's Modulus  

%N/mm^2  

%%----Joint Dimensional Characteristics---- 

% t = Thickness of central disk 

t=t/5; 

%%mm 

% r1 = Radius of outer circle 

% r2 = Radius of inner circle 

r1=r1/2; 

r2=r1-(r1*.2); 

% F = Applied force 

  

%%----Solution of Joint----%% 

M=F*r1; 

b=r1-r2; 

  

J=(b*t^3)/3; 

  

I=pi()/4*(r1^4-r2^4); 

  

lamda=E*I/(G*J); 

fm1=((pi()+4)+lamda*(8-pi())); 

fm2=((2*pi()^2-4*pi()-4)+lamda*(8*pi()^2-18*pi()-16)+lamda^2*(6*pi()^2-

14*pi()-12)); 

fm=fm1/fm2; 

%Stiffness 

K=((16*E*I)/r1)*fm; 

%Angular displacement 

Disp=M/K *180/pi(); 

%Transform stiffness to Nm/deg 

K=K*pi()/180; 

 

end 

Figure A 40. MATLAB function model of the Smith Annulus compliant joint. 
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8. Name: Smith Cartwheel 

Geometric Parameters: t (thickness), R (radius), b (depth) 

Additional Notes: 

 

Figure A 41. Solid model representation of the Smith Cartwheel compliant joint. 

 

Figure A 42. Geometric characteristics of the Smith Cartwheel compliant joint. 

 The angular stiffness of the compliant joint can be described by 
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t
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where E is the Young‟s Modulus of the material, I is the moment of inertia of the 

beams, and R is the radius of the circle that contains the flexure. 

function [thetadeg,K] = SmithCartwheelFun(E,t,R,b,F) 

% E = Young's Modulus  

%N/mm^2  

%%----Joint Dimensional Characteristics---- 

% t = Thickness of flexure beams 

t=t/5; 

%%mm 

% R = Radius of circle 

R=R/2; 

% b = Depth of flexure 

% F = Applied force 

  

%%----Solution of Joint----%% 

I=(b*t^3)/12; 

  

%Stiffness 

K=4*E*I/R; 

M=F*(R); 

theta=M/K; 

%Angular Displacement 

thetadeg=theta*180/pi(); 

%Linear Displacement 

Disp=sin(theta)*(2*R); 

%Transform stiffness to Nm/deg 

K=K*pi()/180; 

 

end 

Figure A 43. MATLAB function model of the Smith Cartwheel compliant joint. 
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9. Name: Smith Cruciform 

Geometric Parameters: t (thickness), w (width), l (depth) 

Additional Notes: 

 

Figure A 44. Solid model representation of the Smith Cruciform compliant joint. 

 

Figure A 45. Geometric characteristics of the Smith Cruciform compliant joint. 

 The angular stiffness of the compliant joint can be described by 
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where d is the height of the cruciform arms, t is the thickness of the cruciform 

arms, G is the shear modulus of the material, and L is the length of the cruciform. 

function [theta,K] = SmithCruciformFun(G,t,L,d,F) 

% G = Shear Modulus  

%N/mm^2  

%%----Joint Dimensional Characteristics---- 

% t = Thickness of cruciform 

t=t/5; 

%%mm 

% l = length of cruciform 

% d = height of cruciform arms 

d=d/2-t/2; 

% F = Applied force 

  

%%----Solution of Joint----%% 

M=F*(d); 

%Stiffness 

K=(d/t-0.373)*(2*G*t^4)/(3*L); 

%Angular Displacement 

theta=M/K*180/pi(); 

%Linear Displacement 

Disp=sind(theta)*(d); 

%Transform stiffness to Nm/deg 

K=K*pi()/180; 

  

end 

Figure A 46. MATLAB function model of the Smith Cruciform compliant joint. 
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10. Name: Jensen Cross Axis 

Geometric Parameters: t (thickness), r (length), L (Length of lever), l (length of 

cross springs), w (height of flexure), D (depth) 

Additional Notes: 

 

Figure A 47. Solid model representation of the Jensen Cross Axis compliant joint. 

 

Figure A 48. Geometric characteristics of the Jensen Cross Axis compliant joint. 

 The angular stiffness of the compliant joint can be described by 
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where E is the Young‟s Modulus, I is the moment of inertia of the leaf springs, l is 

the length of the leaf springs, and Kθ is a polynomial curve fit. This curve fit can be 

described by 

                                                    

where n is the geometric relation 

  
 

 
  

which is defined by the height of the joint, w and the length of the joint, r. 

function [Disp,K] = JensenCrossAxisFun( E,t,w,r,D,F) 

% E = Young's Modulus  

%N/mm^2  

%%----Joint Dimensional Characteristics----%% 

% r = Total length of gap 

%mm 

% l = Length of cross spring 

% w = Height of joint 

% t = Thickness of Leaf Spring 

% L = Lever arm 

% D  = Depth of joint 

% F = Force Applied 

  

%%----Solution of Joint----%% 

L=0.1; % 

t=t/5; 

x = 1.404*t; %estimation, can be determined geometrically 

  

l=sqrt((w-x)^2+r^2); 

n=r/w; 

  

KTheta=5.300185-1.6866*n+0.885356*n^2-0.2094*n^3+0.018385*n^4; 

I=(1/12)*D*t^3; 

%Stiffness 

K=(KTheta*E*I)/(2*l); 

M=F*(L+r); 

%Angular Displacement 

Theta=M/(K); 

%Linear Displacement 

Disp=sin(Theta)*(L+r); 

%Transform stiffness to Nm/deg 

K=K*pi()/180; 

  

end 

Figure A 49. MATLAB function model of the Jensen Cross Axis compliant joint. 
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11. Name: Smith Rotationally Symmetric Leaf Hinge  

Geometric Parameters: d (thickness of cut), Ri (inner radius), Ro (outer radius) 

Additional Notes: 

 

Figure A 50. Solid model representation of the Smith Rotationally Symmetric Leaf 

Hinge compliant joint. 

 

Figure A 51. Geometric characteristics of the Smith Rotationally Symmetric Leaf 

Hinge compliant joint. 

 The angular stiffness of this compliant joint can be described by 

Ri
Ro
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where E is the Young‟s Modulus of the material, d is the thickness of the material 

between the cuts, θ is the deflection of the center beams, and ε and γ are geometric 

relations. These relations are described by 

  
  

  
  

where Ri is the inner radius and Ro is the outer radius, and  
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function [ Theta,K ] = RotationallySymmetricLeafHingeFun(E,d,Ro,F ) 

% E = Young's Modulus  

%N/mm^2  

%%----Joint Dimensional Characteristics---- 

% d = Thickness of flexure at smallest point 

d=d/5; 

%%mm 

% Ro = Outer radius of circle 

Ro=Ro/2; 

% Ri = Inner radius of circle 

Ri=Ro-Ro/5; 

% F = Applied force 

  

%%----Solution of Joint----%% 

theta=75;%Simplification - deflection of  

%thin member when force is applied 

thetar=theta*pi()/180; 

epsilon=d/Ro; 

gamma=Ri/Ro; 

  

%Stiffness 

K=E*d/(2*thetar^3)*(epsilon/gamma)^2*(1-gamma^2); 

%Linear Displacement 

Disp=F/K; 

%Angular Displacement 

Theta=asin(Disp/Ro)*180/pi(); 

%Rotational Stiffness 

K=(F*Ro)/Theta; 

  

end 

Figure A 52. MATLAB function model of the Smith Rotationally Symmetric Leaf 

Hinge compliant joint. 
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12. Name: Trease Rotational 

Geometric Parameters: t (thickness), w (width), l (cruciform length) 

Additional Notes: Uses two Smith Cruciform flexures to achieve movement, but 

calculated from different geometric characteristics 

 

Figure A 53. Solid model representation of the Trease Rotational compliant joint. 

 

Figure A 54. Geometric characteristics of the Trease Rotational compliant joint. 

The angular stiffness of the compliant joint is described by 
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where w is the width of the cruciform, t is the thickness of the cruciform, G is the 

shear modulus of the material, and L is the length of the cruciforms. 

function [Disptheta,KTheta] = TreaseConceptFun(G,t,L,w,F) 

% G = Shear Modulus  

%N/mm^2  

%%----Joint Dimensional Characteristics---- 

% t = Thickness of flexure at smallest point 

t=t/5; 

%%mm 

% L = Length of cruciforms 

L=L/2; %B/C equations are both sides 

% w = Total width of cruciform 

% F = Applied force 

  

%%----Solution of Joint----%% 

T=F*(w/2); 

Q=(w^2*t^2)/(3*w+1.8*t); 

Tmax=T/Q; 

%Stiffness 

KTheta=(w/t-0.373)*(4*G*t^4)/(3*L); 

%Angular Displacement 

Disptheta=T/KTheta*180/pi(); 

%Linear Displacement 

Disp=sind(Disptheta)*(w/2); 

%Transform stiffness to Nm/deg 

KTheta=KTheta*pi()/180; 

  

end 

Figure A 55. MATLAB function model of the Trease Rotational compliant joint. 
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13. Name: Kyusojin Rotational 6R2 

Geometric Parameters: t (thickness of leaf spring), w (leaf spring width), l (leaf 

spring length), r (radius of circle) 

Additional Notes: The two spring leaf points are at a 90 degree angle 

 

Figure A 56. Solid model representation of the Kyusojin Rotational 6R2 compliant 

joint. 

 

Figure A 57. Geometric characteristics of the Kyusojin Rotational 6R2 compliant 

joint. 

The linear displacement of the upper table of this compliant joint can be defined 

by  

l

MotionForce

w
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where P is the applied force, l is the length of the leaf springs, E is the Young‟s 

Modulus, and I is the moment of inertia of the leaf springs about their center. A simple 

trigonometric relation, 

       
 

 
   

where i is the linear displacement, and r is the radius of the circle that makes up 

the table, can be used to determine the angular rotation of the center point of the table. 
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function [phi,K] = KyusojinRotational6R2Fun(E,t,l,w,P) 

% E = Young's Modulus  

%N/mm^2  

%%----Joint Dimensional Characteristics---- 

% t = Thickness of leaf spring 

t=t/5; 

%%mm 

% l = Length of leaf spring 

% w = width of leaf spring 

% P = Applied force 

N=4; %# of springs (constant for this geometry) 

r= w*2; %radius of circle (center platform) 

%Note - the size of the center platform  

% (that moves) does not matter 

  

%%----Solution of Joint----%% 

I=t*w^3/12; 

a=sqrt(N/(E*I)); 

%Out of plane deflection 

dell=(P^2*l^5)/(60*(E*I)^2)*(1/(cos(a*l))-1); 

% i=sqrt((5*P^2*l^6)/(3*(60*(E*I)^2))); 

%Linear displacement 

i=sqrt((5*l^6)/(3*(60*(E*I)^2))); 

%Stiffness 

K=P/i; 

P=kx 

%Angular Displacement 

phi=asin(i/r)*180/pi(); 

%Rotational Stiffness 

K=(P*r)/phi; 

  

end 

Figure A 58. MATLAB function model of the Kyusojin Rotational 6R2 compliant 

joint. 
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14. Name: Goldfarb Conventional Split Tube 

Geometric Parameters: t (thickness), w (leaf spring width), l (leaf spring 

length), r (radius of circle) 

Additional Notes: 

 

Figure A 59. Solid model representation of the Goldfarb Conventional Split Tube 

compliant joint. 
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Figure A 60. Geometric characteristics of the Goldfarb Conventional Split Tube 

compliant joint. 

 The angular stiffness of the compliant joint can be described by 

   
      

  
  

where G is the shear modulus, R is the outer radius of the tube, t is the thickness 

of the tube, and L is the length of the tube. 

l
r

t
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function [Disptheta,K] = ConventionalSplitTubeFun(G,t,L,R,F) 

% G = Shear Modulus  

%N/mm^2  

%%----Joint Dimensional Characteristics---- 

% t = Thickness of tube 

t=t/5; 

%%mm 

% R = Outer radius of tube 

R=R/2; 

% L = Tube length 

% F = Applied force 

  

%%----Solution of Joint----%% 

%Stiffness 

K=(2*pi()*G*R*t^3)/(3*L); 

%Angular Displacement 

Disptheta=(F*R)/K*180/pi(); 

%Linear Displacement 

Disp=sind(Disptheta)*R; 

%Rotational Stiffness 

K=(F*R)/Disptheta; 

  

end 

Figure A 61. MATLAB function model of the Goldfarb Conventional Split Tube 

compliant joint. 
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APPENDIX B. COMPLETE SELECTION ALGORITHM MATLAB CODE 

function [ a ] = DecisiontreeFunction( ty,rom,k,s1,s2,F,E,G ) 

    %type,range of motion,stiffness,sizevalue1,sizevalue2,E,G,load 

  

    %Used if no F value is specified - can be changed by user  

    Fset=[.1,1,10];  

     

    %a is used as a counter 

    a=0; 

    nfig=1; 

    %%---------------------------------------------------------------%% 

    %%Conversion of strings (user input from gui) to type double     

    s1 = str2double(s1); 

    s2 = str2double(s2); 

     

    romc=isequal('na',rom); 

    if romc==0     

        rom = str2double(rom); 

    end 

     

    kc=isequal('na',k); 

    if kc==0 

        k = str2double(k); 

    end 

         

    fc=isequal('na',F); 

    if fc==0 

        F=str2double(F); 

    end 

  

    %%---------------------------------------------------------------%% 

    %%Logic Tree%% 

    %%---------------------------------------------------------------%% 

  

    if ty==1 

        fprintf('Translational Joints are selected\n') 

        if romc==0 

            fprintf('RoM has a value, %2.2f mm.\n',rom) 

            if kc==0 

                fprintf('K has a value, %2.2f N/mm.\n',k) 

                if fc==0 

                    fprintf('F has a value, %2.2f N.\n',F) 

                    %This tree - Y,Y,Y -> Search using Load as F 

applied, 

                    %find geometry that results in rom and k. 

                    %--------------------------------------------------

---% 

                    %n=# of joints in function 

                    n=6; 

                    Disp=zeros(n,5); 

                    for i=1:n 
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                        Disp(i,5)=i; 

                    end 

  

                    %Find the minimum and maximum displacement for each 

joint - leave thickness 

                    %constant, vary the depth of the joint from each 

iteration 

  

                    

[Disp(1,1),Disp(1,3)]=SmithRectilinearSpringFun(E,s1,s1,s2,F);%max disp 

                    

[Disp(1,2),Disp(1,4)]=SmithRectilinearSpringFun(E,s1,s2,s2,F);%min disp 

  

                    

[Disp(2,1),Disp(2,3)]=ParallelStripFun(E,s1,s1,s2,F); 

                    

[Disp(2,2),Disp(2,4)]=ParallelStripFun(E,s2,s1,s2,F); 

  

                    [Disp(3,1),Disp(3,3)]=KyusojinLinear6L1Fun( 

E,s1,s1,s2,F ); 

                    [Disp(3,2),Disp(3,4)]=KyusojinLinear6L1Fun( 

E,s1,s2,s2,F ); 

  

                    [Disp(4,1),Disp(4,3)]=TreaseTranslationalFun( 

E,s1,s2,s2,F ); 

                    [Disp(4,2),Disp(4,4)]=TreaseTranslationalFun( 

E,s1,s2,s1,F ); 

  

                    [Disp(5,1),Disp(5,3)]=XuTranslationalFun( 

E,s1,s2,s1,s2,F ); 

                    [Disp(5,2),Disp(5,4)]=XuTranslationalFun( 

E,s1,s1,s1,s2,F ); 

  

                    [Disp(6,1),Disp(6,3)]=SmithNotchHingeFun( 

E,s2,s1,s2,s2,F ); 

                    [Disp(6,2),Disp(6,4)]=SmithNotchHingeFun( 

E,s1,s1,s2,s1,F ); 

  

                    Check=zeros(n,2); 

  

                    for i=1:n 

                        

Check(i,1)=CheckRangeFun(Disp(i,2),Disp(i,1),rom);%min max value 

                        

Check(i,2)=CheckRangeFun(Disp(i,3),Disp(i,4),k); 

                    end 

  

                    

names=char('SmithRectilinear','ParallelStrip','KyusojinLinear6L1',... 

                        

'TreaseTranslational','XuTranslational','SmithNotchHinge'); 

                    b=1; 
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                    for i=1:n 

                        if (Check(i,1)==0 || Check(i,2)==0) 

                            a(b,1)=i; 

                            b=b+1; 

                        end 

                    end 

  

  

                    %--------------------------------------------------

---- 

                    % Inverse of above for pareto curve production % 

                    d=1;                

                    e=0; 

                    for i=1:n 

                        if (Check(i,1)==1 && Check(i,2)==1) 

                            e(d,1)=i; 

                            d=d+1; 

                        end 

                    end 

  

                    z = ParetoFunT_YYY( e,E,s1,s2,F,nfig); 

                    %-------------------- 

  

                    sa=size(a); 

                    c=sa(1); 

                    for i=1:sa(1) 

                        names(a(c),:)=[]; 

                        c=c-1; 

                    end 

                    fprintf('WARNING! Displacements larger than 30%% of 

\n the total length of the compliant joint may \n be be inaccurate.') 

                    fprintf('\nPossible joints for this user input 

are:\n') 

                    disp(names) 

                    %--------------------------------------------------

---% 

                    %%END OF Y,Y,Y TREE 

                    %--------------------------------------------------

---% 

  

                else 

                    fprintf('F does not have a value (na)\n') 

                    %This tree - Y,Y,N -> Search using generic F set 

applied, 

                    %find geometry that results in rom and k. 

                    %--------------------------------------------------

---% 

                    %n=# of joints in function 

                    n=6; 

                    Disp=zeros(n,5); 

                    for i=1:n 

                        Disp(i,5)=i; 

                    end 



128 

 

  

                    %Find the minimum and maximum displacement for each 

joint - leave thickness 

                    %constant, vary the depth of the joint from each 

iteration 

                    sizefset=size(Fset); 

                    nfset=sizefset(2); 

                    %This is a loop over the user defined forces, Fset 

(current 3 

                    %forces a factor of 10 apart, starting with .1) 

                    for j=1:nfset 

                        F=Fset(j); 

  

                        

[Disp(1,1),Disp(1,3)]=SmithRectilinearSpringFun(E,s1,s1,s2,F);%max disp 

                        

[Disp(1,2),Disp(1,4)]=SmithRectilinearSpringFun(E,s1,s2,s2,F);%min disp 

  

                        

[Disp(2,1),Disp(2,3)]=ParallelStripFun(E,s1,s1,s2,F); 

                        

[Disp(2,2),Disp(2,4)]=ParallelStripFun(E,s2,s1,s2,F); 

  

                        [Disp(3,1),Disp(3,3)]=KyusojinLinear6L1Fun( 

E,s1,s1,s2,F ); 

                        [Disp(3,2),Disp(3,4)]=KyusojinLinear6L1Fun( 

E,s1,s2,s2,F ); 

  

                        [Disp(4,1),Disp(4,3)]=TreaseTranslationalFun( 

E,s1,s2,s2,F ); 

                        [Disp(4,2),Disp(4,4)]=TreaseTranslationalFun( 

E,s1,s2,s1,F ); 

  

                        [Disp(5,1),Disp(5,3)]=XuTranslationalFun( 

E,s1,s2,s1,s2,F ); 

                        [Disp(5,2),Disp(5,4)]=XuTranslationalFun( 

E,s1,s1,s1,s2,F ); 

  

                        [Disp(6,1),Disp(6,3)]=SmithNotchHingeFun( 

E,s2,s1,s2,s2,F ); 

                        [Disp(6,2),Disp(6,4)]=SmithNotchHingeFun( 

E,s1,s1,s2,s1,F ); 

  

                        Check=zeros(n,2); 

  

                        for i=1:n 

                            

Check(i,1)=CheckRangeFun(Disp(i,2),Disp(i,1),rom); 

                            

Check(i,2)=CheckRangeFun(Disp(i,3),Disp(i,4),k); 

                        end 
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names=char('SmithRectilinear','ParallelStrip','KyusojinLinear6L1',... 

                            

'TreaseTranslational','XuTranslational','SmithNotchHinge'); 

                        b=1; 

                        for i=1:n 

                            if (Check(i,1)==0 || Check(i,2)==0) 

                                a(b,1)=i; 

                                b=b+1; 

                            end 

                        end 

  

                        %----------------------------------------------

-------- 

                        % Inverse of above for pareto curve production 

% 

                        d=1;                

                        e=0; 

                        for i=1:n 

                            if (Check(i,1)==1 && Check(i,2)==1) 

                                e(d,1)=i; 

                                d=d+1; 

                            end 

                        end 

  

                        z = ParetoFunT_YYY( e,E,s1,s2,F,nfig); 

                        %-------------------- 

                        sa=size(a); 

                        c=sa(1); 

                        for i=1:sa(1) 

                            names(a(c),:)=[]; 

                            c=c-1; 

                        end 

                        fprintf('WARNING! Displacements larger than 

30%% of \n the total length of the compliant joint may \n be be 

inaccurate.') 

                        fprintf('\nPossible joints for this user input 

using a force of %f are:\n',Fset(j)) 

                        disp(names) 

                        a=0; 

                    end 

                    %--------------------------------------------------

---% 

                    %%END OF Y,Y,N TREE 

                    %--------------------------------------------------

---% 

                end 

            else 

                fprintf('K does not have a value (na)\n') 

                if fc==0 

                    fprintf('F has a value, %2.2f N.\n',F) 

                    %This tree - Y,N,Y -> Set F as load applied, check 

for  
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                    %any joints that can result in rom. 

                    %--------------------------------------------------

---% 

                    %n=# of joints in function 

                    n=6; 

                    Disp=zeros(n,5); 

                    for i=1:n 

                        Disp(i,5)=i; 

                    end 

  

                    %Find the minimum and maximum displacement for each 

joint - leave thickness 

                    %constant, vary the depth of the joint from each 

iteration 

  

                    

[Disp(1,1),Disp(1,3)]=SmithRectilinearSpringFun(E,s1,s1,s2,F);%max disp 

                    

[Disp(1,2),Disp(1,4)]=SmithRectilinearSpringFun(E,s1,s2,s2,F);%min disp 

  

                    

[Disp(2,1),Disp(2,3)]=ParallelStripFun(E,s1,s1,s2,F); 

                    

[Disp(2,2),Disp(2,4)]=ParallelStripFun(E,s2,s1,s2,F); 

  

                    [Disp(3,1),Disp(3,3)]=KyusojinLinear6L1Fun( 

E,s1,s1,s2,F ); 

                    [Disp(3,2),Disp(3,4)]=KyusojinLinear6L1Fun( 

E,s1,s2,s2,F ); 

  

                    [Disp(4,1),Disp(4,3)]=TreaseTranslationalFun( 

E,s1,s2,s2,F ); 

                    [Disp(4,2),Disp(4,4)]=TreaseTranslationalFun( 

E,s1,s2,s1,F ); 

  

                    [Disp(5,1),Disp(5,3)]=XuTranslationalFun( 

E,s1,s2,s1,s2,F ); 

                    [Disp(5,2),Disp(5,4)]=XuTranslationalFun( 

E,s1,s1,s1,s2,F ); 

  

                    [Disp(6,1),Disp(6,3)]=SmithNotchHingeFun( 

E,s2,s1,s2,s2,F ); 

                    [Disp(6,2),Disp(6,4)]=SmithNotchHingeFun( 

E,s1,s1,s2,s1,F ); 

  

                    Check=zeros(n,1); 

  

                    for i=1:n 

                        

Check(i)=CheckRangeFun(Disp(i,2),Disp(i,1),rom); 

                    end 
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names=char('SmithRectilinear','ParallelStrip','KyusojinLinear6L1',... 

                        

'TreaseTranslational','XuTranslational','SmithNotchHinge'); 

                    b=1; 

                    for i=1:n 

                        if Check(i)==0 

                            a(b,1)=i; 

                            b=b+1; 

                        end 

                    end 

  

                    %--------------------------------------------------

---- 

                    % Inverse of above for pareto curve production % 

                    d=1;                

                    e=0; 

                    for i=1:n 

                        if Check(i,1)==1 

                            e(d,1)=i; 

                            d=d+1; 

                        end 

                    end 

  

                    z = ParetoFunT_YYY( e,E,s1,s2,F,nfig); 

                    %-------------------- 

                    sa=size(a); 

                    c=sa(1); 

                    for i=1:sa(1) 

                        names(a(c),:)=[]; 

                        c=c-1; 

                    end 

                    fprintf('WARNING! Displacements larger than 30%% of 

\n the total length of the compliant joint may \n be be inaccurate.') 

  

                    fprintf('\nPossible joints for this user input 

are:\n') 

                    disp(names) 

                    %--------------------------------------------------

---% 

                    %%END OF Y,N,Y TREE 

                    %--------------------------------------------------

---% 

  

                else 

                    fprintf('F does not have a value (na)\n') 

                    %This tree - Y,N,N -> Search using generic F set 

applied, 

                    %find joints that can result in rom. 

                    %--------------------------------------------------

---% 

                    %n=# of joints in function 

                    n=6; 
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                    Disp=zeros(n,5); 

                    for i=1:n 

                        Disp(i,5)=i; 

                    end 

  

                    %Find the minimum and maximum displacement for each 

joint - leave thickness 

                    %constant, vary the depth of the joint from each 

iteration 

                    sizefset=size(Fset); 

                    nfset=sizefset(2); 

                    %This is a loop over the user defined forces, Fset 

(current 3 

                    %forces a factor of 10 apart, starting with .1) 

                    for j=1:nfset 

                        F=Fset(j); 

  

                        

[Disp(1,1),Disp(1,3)]=SmithRectilinearSpringFun(E,s1,s1,s2,F);%max disp 

                        

[Disp(1,2),Disp(1,4)]=SmithRectilinearSpringFun(E,s1,s2,s2,F);%min disp 

  

                        

[Disp(2,1),Disp(2,3)]=ParallelStripFun(E,s1,s1,s2,F); 

                        

[Disp(2,2),Disp(2,4)]=ParallelStripFun(E,s2,s1,s2,F); 

  

                        [Disp(3,1),Disp(3,3)]=KyusojinLinear6L1Fun( 

E,s1,s1,s2,F ); 

                        [Disp(3,2),Disp(3,4)]=KyusojinLinear6L1Fun( 

E,s1,s2,s2,F ); 

  

                        [Disp(4,1),Disp(4,3)]=TreaseTranslationalFun( 

E,s1,s2,s2,F ); 

                        [Disp(4,2),Disp(4,4)]=TreaseTranslationalFun( 

E,s1,s2,s1,F ); 

  

                        [Disp(5,1),Disp(5,3)]=XuTranslationalFun( 

E,s1,s2,s1,s2,F ); 

                        [Disp(5,2),Disp(5,4)]=XuTranslationalFun( 

E,s1,s1,s1,s2,F ); 

  

                        [Disp(6,1),Disp(6,3)]=SmithNotchHingeFun( 

E,s2,s1,s2,s2,F ); 

                        [Disp(6,2),Disp(6,4)]=SmithNotchHingeFun( 

E,s1,s1,s2,s1,F ); 

  

                        Check=zeros(n,1); 

  

                        for i=1:n 

                            

Check(i)=CheckRangeFun(Disp(i,2),Disp(i,1),rom); 

                        end 
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names=char('SmithRectilinear','ParallelStrip','KyusojinLinear6L1',... 

                            

'TreaseTranslational','XuTranslational','SmithNotchHinge'); 

                        b=1; 

                        for i=1:n 

                            if Check(i)==0 

                                a(b,1)=i; 

                                b=b+1; 

                            end 

                        end 

  

                        %----------------------------------------------

-------- 

                        % Inverse of above for pareto curve production 

% 

                        d=1;                

                        e=0; 

                        for i=1:n 

                            if Check(i,1)==1 

                                e(d,1)=i; 

                                d=d+1; 

                            end 

                        end 

  

                        z = ParetoFunT_YYY( e,E,s1,s2,F,nfig); 

                        %-------------------- 

                        sa=size(a); 

                        c=sa(1); 

                        for i=1:sa(1) 

                            names(a(c),:)=[]; 

                            c=c-1; 

                        end 

                        fprintf('WARNING! Displacements larger than 

30%% of \n the total length of the compliant joint may \n be be 

inaccurate.') 

  

                        fprintf('\nPossible joints for this user input 

using a force of %f are:\n',Fset(j)) 

                        disp(names) 

                        a=0; 

                        nfig=nfig+1; 

                    end 

                    %--------------------------------------------------

---% 

                    %%END OF Y,N,N TREE 

                    %--------------------------------------------------

---%            

                end  

            end 

        else 

            fprintf('RoM does not have a value (na)\n') 
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            if kc==0 

                fprintf('K has a value, %2.2f N/mm.\n',k) 

                if fc==0 

                    fprintf('F has a value, %2.2f N.\n',F) 

                    %This tree - N,Y,Y -> Search using Load as F 

applied, 

                    %find geometry that results in k. 

                    %--------------------------------------------------

---% 

                    %n=# of joints in function 

                    n=6; 

                    Disp=zeros(n,5); 

                    for i=1:n 

                        Disp(i,5)=i; 

                    end 

  

                    %Find the minimum and maximum displacement for each 

joint - leave thickness 

                    %constant, vary the depth of the joint from each 

iteration 

  

                    

[Disp(1,1),Disp(1,3)]=SmithRectilinearSpringFun(E,s1,s1,s2,F);%max disp 

                    

[Disp(1,2),Disp(1,4)]=SmithRectilinearSpringFun(E,s1,s2,s2,F);%min disp 

  

                    

[Disp(2,1),Disp(2,3)]=ParallelStripFun(E,s1,s1,s2,F); 

                    

[Disp(2,2),Disp(2,4)]=ParallelStripFun(E,s2,s1,s2,F); 

  

                    [Disp(3,1),Disp(3,3)]=KyusojinLinear6L1Fun( 

E,s1,s1,s2,F ); 

                    [Disp(3,2),Disp(3,4)]=KyusojinLinear6L1Fun( 

E,s1,s2,s2,F ); 

  

                    [Disp(4,1),Disp(4,3)]=TreaseTranslationalFun( 

E,s1,s2,s2,F ); 

                    [Disp(4,2),Disp(4,4)]=TreaseTranslationalFun( 

E,s1,s2,s1,F ); 

  

                    [Disp(5,1),Disp(5,3)]=XuTranslationalFun( 

E,s1,s2,s1,s2,F ); 

                    [Disp(5,2),Disp(5,4)]=XuTranslationalFun( 

E,s1,s1,s1,s2,F ); 

  

                    [Disp(6,1),Disp(6,3)]=SmithNotchHingeFun( 

E,s2,s1,s2,s2,F ); 

                    [Disp(6,2),Disp(6,4)]=SmithNotchHingeFun( 

E,s1,s1,s2,s1,F ); 

  

                    Check=zeros(n,1); 
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                    for i=1:n 

                        Check(i)=CheckRangeFun(Disp(i,3),Disp(i,4),k); 

                    end 

  

                    

names=char('SmithRectilinear','ParallelStrip','KyusojinLinear6L1',... 

                        

'TreaseTranslational','XuTranslational','SmithNotchHinge'); 

                    b=1; 

                    for i=1:n 

                        if Check(i)==0 

                            a(b,1)=i; 

                            b=b+1; 

                        end 

                    end 

  

                    %--------------------------------------------------

---- 

                    % Inverse of above for pareto curve production % 

                    d=1;                

                    e=0; 

                    for i=1:n 

                        if Check(i,1)==1 

                            e(d,1)=i; 

                            d=d+1; 

                        end 

                    end 

  

                    z = ParetoFunT_YYY( e,E,s1,s2,F,nfig); 

                    %-------------------- 

                    sa=size(a); 

                    c=sa(1); 

                    for i=1:sa(1) 

                        names(a(c),:)=[]; 

                        c=c-1; 

                    end 

                    fprintf('WARNING! Displacements larger than 30%% of 

\n the total length of the compliant joint may \n be be inaccurate.') 

  

                    fprintf('\nPossible joints for this user input 

are:\n') 

                    disp(names) 

                    %--------------------------------------------------

---% 

                    %%END OF N,Y,Y TREE 

                    %--------------------------------------------------

---% 

                else 

                    fprintf('F does not have a value (na)\n') 

                    %This tree - N,Y,N -> Search using generic F set 

applied, 

                    %find geometry that results in k. 

                    %--------------------------------------------------
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---% 

                    %n=# of joints in function 

                    n=6; 

                    Disp=zeros(n,5); 

                    for i=1:n 

                        Disp(i,5)=i; 

                    end 

  

                    %Find the minimum and maximum displacement for each 

joint - leave thickness 

                    %constant, vary the depth of the joint from each 

iteration 

                    sizefset=size(Fset); 

                    nfset=sizefset(2); 

                    %This is a loop over the user defined forces, Fset 

(current 3 

                    %forces a factor of 10 apart, starting with .1) 

                    for j=1:nfset 

                        F=Fset(j); 

  

                        

[Disp(1,1),Disp(1,3)]=SmithRectilinearSpringFun(E,s1,s1,s2,F);%max disp 

                        

[Disp(1,2),Disp(1,4)]=SmithRectilinearSpringFun(E,s1,s2,s2,F);%min disp 

  

                        

[Disp(2,1),Disp(2,3)]=ParallelStripFun(E,s1,s1,s2,F); 

                        

[Disp(2,2),Disp(2,4)]=ParallelStripFun(E,s2,s1,s2,F); 

  

                        [Disp(3,1),Disp(3,3)]=KyusojinLinear6L1Fun( 

E,s1,s1,s2,F ); 

                        [Disp(3,2),Disp(3,4)]=KyusojinLinear6L1Fun( 

E,s1,s2,s2,F ); 

  

                        [Disp(4,1),Disp(4,3)]=TreaseTranslationalFun( 

E,s1,s2,s2,F ); 

                        [Disp(4,2),Disp(4,4)]=TreaseTranslationalFun( 

E,s1,s2,s1,F ); 

  

                        [Disp(5,1),Disp(5,3)]=XuTranslationalFun( 

E,s1,s2,s1,s2,F ); 

                        [Disp(5,2),Disp(5,4)]=XuTranslationalFun( 

E,s1,s1,s1,s2,F ); 

  

                        [Disp(6,1),Disp(6,3)]=SmithNotchHingeFun( 

E,s2,s1,s2,s2,F ); 

                        [Disp(6,2),Disp(6,4)]=SmithNotchHingeFun( 

E,s1,s1,s2,s1,F ); 

  

                        Check=zeros(n,1); 

  

                        for i=1:n 
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Check(i)=CheckRangeFun(Disp(i,3),Disp(i,4),k); 

                        end 

  

                        

names=char('SmithRectilinear','ParallelStrip','KyusojinLinear6L1',... 

                            

'TreaseTranslational','XuTranslational','SmithNotchHinge'); 

                        b=1; 

                        for i=1:n 

                            if Check(i)==0 

                                a(b,1)=i; 

                                b=b+1; 

                            end 

                        end 

  

                        %----------------------------------------------

-------- 

                        % Inverse of above for pareto curve production 

% 

                        d=1;                

                        e=0; 

                        for i=1:n 

                            if Check(i,1)==1 

                                e(d,1)=i; 

                                d=d+1; 

                            end 

                        end 

  

                        z = ParetoFunT_YYY( e,E,s1,s2,F,nfig); 

                        %-------------------- 

                        sa=size(a); 

                        c=sa(1); 

                        for i=1:sa(1) 

                            names(a(c),:)=[]; 

                            c=c-1; 

                        end 

                        fprintf('WARNING! Displacements larger than 

30%% of \n the total length of the compliant joint may \n be be 

inaccurate.') 

  

                        fprintf('\nPossible joints for this user input 

using a force of %f are:\n',Fset(j)) 

                        disp(names) 

                        a=0; 

                        nfig=nfig+1; 

                    end 

                    %--------------------------------------------------

---% 

                    %%END OF N,Y,N TREE 

                    %--------------------------------------------------

---%           

                end 
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            else 

                fprintf('K does not have a value (na)\n') 

                if fc==0 

                    fprintf('F has a value, %2.2f N.\n',F) 

                    %This tree - N,N,Y -> Set F as load applied, 

present user 

                    %all joints, organize by rom. 

                    %--------------------------------------------------

---% 

                    n=6; 

                    Disp=zeros(n,5); 

                    for i=1:n 

                        Disp(i,5)=i; 

                    end 

  

                    

[Disp(1,1),Disp(1,3)]=SmithRectilinearSpringFun(E,s1,s1,s2,F);%max disp 

                    

[Disp(1,2),Disp(1,4)]=SmithRectilinearSpringFun(E,s1,s2,s2,F);%min disp 

  

                    

[Disp(2,1),Disp(2,3)]=ParallelStripFun(E,s1,s1,s2,F); 

                    

[Disp(2,2),Disp(2,4)]=ParallelStripFun(E,s2,s1,s2,F); 

  

                    [Disp(3,1),Disp(3,3)]=KyusojinLinear6L1Fun( 

E,s1,s1,s2,F ); 

                    [Disp(3,2),Disp(3,4)]=KyusojinLinear6L1Fun( 

E,s1,s2,s2,F ); 

  

                    [Disp(4,1),Disp(4,3)]=TreaseTranslationalFun( 

E,s1,s2,s2,F ); 

                    [Disp(4,2),Disp(4,4)]=TreaseTranslationalFun( 

E,s1,s2,s1,F ); 

  

                    [Disp(5,1),Disp(5,3)]=XuTranslationalFun( 

E,s1,s2,s1,s2,F ); 

                    [Disp(5,2),Disp(5,4)]=XuTranslationalFun( 

E,s1,s1,s1,s2,F ); 

  

                    [Disp(6,1),Disp(6,3)]=SmithNotchHingeFun( 

E,s2,s1,s2,s2,F ); 

                    [Disp(6,2),Disp(6,4)]=SmithNotchHingeFun( 

E,s1,s1,s2,s1,F ); 

  

                    Check=zeros(n,1); 

  

                    Disp=sortrows(Disp,2); 

                    fprintf('\nThe following joints are organized by 

RoM,\nLargest to smallest, for the given force, %f N :\n',F) 

                    

namest=char('SmithRectilinear','ParallelStrip','KyusojinLinear6L1',... 
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'TreaseTranslational','XuTranslational','SmithNotchHinge'); 

                    names=cellstr(namest); 

                    for i=n:-1:1 

                        name=names{Disp(i,5)}; 

                        fprintf('%s with %2.4f mm displacement. 

\n',name,Disp(i,2)) 

  

                    end 

  

                    %--------------------------------------------------

---- 

                    % Inverse of above for creating pareto curves         

% 

                    d=1;                

                    e=[1; 2; 3; 4; 5; 6]; 

  

                    z = ParetoFunT_YYY( e,E,s1,s2,F,nfig); 

                    %-------------------- 

  

                    %--------------------------------------------------

---% 

                    %%END OF N,N,Y TREE 

                    %--------------------------------------------------

---% 

                else 

                    fprintf('F does not have a value (na)\n') 

                    %This tree - N,N,N -> Will result in all results 

being  

                    %returned, cannot specify with no information 

                    %--------------------------------------------------

---% 

                    n=6; 

                    Disp=zeros(n,5); 

                    for i=1:n 

                        Disp(i,5)=i; 

                    end 

  

                    sizefset=size(Fset); 

                    nfset=sizefset(2); 

                    %This is a loop over the user defined forces, Fset  

                    for j=1:nfset 

                        F=Fset(j); 

  

                        

[Disp(1,1),Disp(1,3)]=SmithRectilinearSpringFun(E,s1,s1,s2,F);%max disp 

                        

[Disp(1,2),Disp(1,4)]=SmithRectilinearSpringFun(E,s1,s2,s2,F);%min disp 

  

                        

[Disp(2,1),Disp(2,3)]=ParallelStripFun(E,s1,s1,s2,F); 

                        

[Disp(2,2),Disp(2,4)]=ParallelStripFun(E,s2,s1,s2,F); 
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                        [Disp(3,1),Disp(3,3)]=KyusojinLinear6L1Fun( 

E,s1,s1,s2,F ); 

                        [Disp(3,2),Disp(3,4)]=KyusojinLinear6L1Fun( 

E,s1,s2,s2,F ); 

  

                        [Disp(4,1),Disp(4,3)]=TreaseTranslationalFun( 

E,s1,s2,s2,F ); 

                        [Disp(4,2),Disp(4,4)]=TreaseTranslationalFun( 

E,s1,s2,s1,F ); 

  

                        [Disp(5,1),Disp(5,3)]=XuTranslationalFun( 

E,s1,s1,s1,s2,F ); 

                        [Disp(5,2),Disp(5,4)]=XuTranslationalFun( 

E,s1,s2,s1,s2,F ); 

  

                        [Disp(6,1),Disp(6,3)]=SmithNotchHingeFun( 

E,s2,s1,s2,s2,F ); 

                        [Disp(6,2),Disp(6,4)]=SmithNotchHingeFun( 

E,s1,s1,s2,s1,F ); 

  

                        Check=zeros(n,1); 

  

                        Disp=sortrows(Disp,2); 

                        

namest=char('SmithRectilinear','ParallelStrip','KyusojinLinear6L1',... 

                                

'TreaseTranslational','XuTranslational','SmithNotchHinge'); 

                        names=cellstr(namest); 

                        fprintf('WARNING! Displacements larger than 

30%% of \n the total length of the compliant joint may \n be be 

inaccurate.') 

     

                        fprintf('\nPossible joints for this user input 

using a force of %f N,\n organized by RoM are:\n',Fset(j)) 

                        for i=n:-1:1 

                            name=names{Disp(i,5)}; 

                            fprintf('%s with %2.4f mm displacement. 

\n',name,Disp(i,2)) 

  

                        end 

                        a=0; 

                        Disp=zeros(n,5); 

                        for i=1:n 

                            Disp(i,5)=i; 

                        end 

                    end 

                    %--------------------------------------------------

---% 

                    %%END OF N,N,N TREE 

                    %--------------------------------------------------

---% 

                end 

            end 
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        end 

    else 

        fprintf('Rotational Joints are selected.\n') 

  

        %ty,rom,k,s1,s2,E,p,G,maxf,fos 

        %ty,rom,k,sizevalue1,sizevalue2,E,ro,G,maxload,fos 

        

namest=char('SmithRectilinear','ParallelStrip','KyusojinLinear6L1',... 

                    

'TreaseTranslational','XuTranslational','SmithNotchHinge'); 

        

namesr=char('JensenCrossAxis','LobontiuCornerFilleted','LobontiuSymmetr

icCircular',... 

                    

'LobontiuSymmetricNotch','RotationallySymmetric','SmithAnnulus','SmithC

artwheel',... 

                    

'SmithCruciform','SmithTwoAxis','TangSymmetricCircular','TreaseConcept'

,... 

                    'VShape','Kyusojin6R2','ConventionalSplitTube'); 

        %n=# of joints in function 

        n=14; 

        Disp=zeros(n,5); 

        for i=1:n 

            Disp(i,5)=i; 

        end 

        if romc==0 

            fprintf('RoM has a value, %2.2f degrees.\n',rom) 

            if kc==0 

                fprintf('K has a value, %2.2f Nmm/degree.\n',k) 

                if fc==0 

                    fprintf('F has a value, %2.2f N.\n',F) 

                    %This tree - Y,Y,Y -> Search using Load as F 

applied, 

                    %find geometry that results in rom and k. 

                    %--------------------------------------------------

---% 

  

  

                    %Find the minimum and maximum displacement for each 

joint - leave thickness 

                    %constant, vary the depth of the joint from each 

iteration 

  

                    %Joint 1 

                    [Disp(1,1),Disp(1,3)] = 

JensenCrossAxisFun(E,s1,s1,s1,s2,F);%maxK 

                    [Disp(1,2),Disp(1,4)] = 

JensenCrossAxisFun(E,s1,s2,s2,s2,F);%max disp 

                    %Joint 2 

                    [Disp(2,1),Disp(2,3)] = 

LobontiuCornerFilletedFun(E,s1,s1,s1,s2,F);%maxK 

                    [Disp(2,2),Disp(2,4)] = 
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LobontiuCornerFilletedFun(E,s2,s2,s2,s2,F);%max disp 

                    %Joint 3 

                    [Disp(3,1),Disp(3,3)] = 

LobontiuSymmetricCircularFun(E,s1,s1,s2,F);%maxK 

                    [Disp(3,2),Disp(3,4)] = 

LobontiuSymmetricCircularFun(E,s1,s2,s2,F);%max disp 

                    %Joint 4 

                    [Disp(4,1),Disp(4,3)] = 

LobontiuSymmetricNotchFun(E,s1,s1,s2,F);%maxK 

                    [Disp(4,2),Disp(4,4)] = 

LobontiuSymmetricNotchFun(E,s1,s2,s2,F);%max disp 

                    %Joint 5 

                    [Disp(5,1),Disp(5,3)] = 

RotationallySymmetricLeafHingeFun(E,s1,s1,F);%maxK 

                    [Disp(5,2),Disp(5,4)] = 

RotationallySymmetricLeafHingeFun(E,s1,s2,F);%max disp 

                    %Joint 6 

                    [Disp(6,1),Disp(6,3)] = 

SmithAnnulusFun(E,G,s2,s2,F);%maxK 

                    [Disp(6,2),Disp(6,4)] = 

SmithAnnulusFun(E,G,s1,s1,F);%max disp 

                    %Joint 7 

                    [Disp(7,1),Disp(7,3)] = 

SmithCartwheelFun(E,s1,s1,s2,F);%maxK 

                    [Disp(7,2),Disp(7,4)] = 

SmithCartwheelFun(E,s1,s2,s2,F);%max disp 

                    %Joint 8 

                    [Disp(8,1),Disp(8,3)] = 

SmithCruciformFun(G,s1,s1,s1,F);%maxK 

                    [Disp(8,2),Disp(8,4)] = 

SmithCruciformFun(G,s1,s2,s1,F);%max disp 

                    %Joint 9 

                    [Disp(9,1),Disp(9,3)] = 

SmithTwoAxisFun(E,s1,s1,F);%maxK 

                    [Disp(9,2),Disp(9,4)] = 

SmithTwoAxisFun(E,s2,s1,F);%max disp 

                    %Joint 10 

                    [Disp(10,1),Disp(10,3)] = 

TangSymmetricCircularFun(E,s1,s1,s2,F);%maxK 

                    [Disp(10,2),Disp(10,4)] = 

TangSymmetricCircularFun(E,s2,s1,s2,F);%max disp 

                    %Joint 11 

                    [Disp(11,1),Disp(11,3)] = 

TreaseConceptFun(G,s1,s1,s1,F);%maxK 

                    [Disp(11,2),Disp(11,4)] = 

TreaseConceptFun(G,s1,s2,s1,F);%max disp 

                    %Joint 12 

                    [Disp(12,1),Disp(12,3)] = 

VShapeFun(E,s1,s1,s1,s1,s2,F);%maxK 

                    [Disp(12,2),Disp(12,4)] = 

VShapeFun(E,s1,s2,s2,s2,s2,F);%max disp 

                    %Joint 13 

                    [Disp(13,1),Disp(13,3)] = 
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KyusojinRotational6R2Fun(E,s1,s1,s2,F);%maxK 

                    [Disp(13,2),Disp(13,4)] = 

KyusojinRotational6R2Fun(E,s1,s2,s2,F);%max disp 

                    %Joint 14 

                    [Disp(14,1),Disp(14,3)] = 

ConventionalSplitTubeFun(G,s1,s1,s2,F);%maxK 

                    [Disp(14,2),Disp(14,4)] = 

ConventionalSplitTubeFun(G,s1,s2,s2,F);%max disp 

  

                    Check=zeros(n,2); 

  

                    for i=1:n 

                        

Check(i,1)=CheckRangeFun(Disp(i,1),Disp(i,2),rom); 

                        

Check(i,2)=CheckRangeFun(Disp(i,4),Disp(i,3),k); 

                    end 

  

                    b=1; 

                    for i=1:n 

                        if (Check(i,1)==0 || Check(i,2)==0) 

                            a(b,1)=i; 

                            b=b+1; 

                        end 

                    end 

  

                    %--------------------------------------------------

---- 

                    % Inverse of above for pareto curve production % 

                    d=1;                 

                    e=0; 

                    for i=1:n 

                        if (Check(i,1)==1 && Check(i,2)==1) 

                            e(d,1)=i; 

                            d=d+1; 

                        end 

                    end 

  

                    z = ParetoFunR_YYY( e,E,G,s1,s2,F,nfig); 

                    %-------------------- 

  

                    sa=size(a); 

                    c=sa(1); 

                    for i=1:sa(1) 

                        namesr(a(c),:)=[]; 

                        c=c-1; 

                    end 

                    fprintf('WARNING! Displacements larger than 30%% of 

\n the total length of the compliant joint may \n be be inaccurate.') 

  

                    fprintf('\nPossible joints for this user input 

are:\n') 

                    disp(namesr) 
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                    %--------------------------------------------------

---% 

                    %%END OF Y,Y,Y TREE 

                    %--------------------------------------------------

---% 

  

                else 

                    fprintf('F does not have a value (na)\n') 

                    %This tree - Y,Y,N -> Search using generic F set 

applied, 

                    %find geometry that results in rom and k. 

                    %--------------------------------------------------

---% 

  

                    %Find the minimum and maximum displacement for each 

joint - leave thickness 

                    %constant, vary the depth of the joint from each 

iteration 

                    sizefset=size(Fset); 

                    nfset=sizefset(2); 

                    %This is a loop over the user defined forces, Fset 

(current 3 

                    %forces a factor of 10 apart, starting with .1) 

                    for j=1:nfset 

                        F=Fset(j); 

                        %Joint 1 

                        [Disp(1,1),Disp(1,3)] = 

JensenCrossAxisFun(E,s1,s1,s1,s2,F);%maxK 

                        [Disp(1,2),Disp(1,4)] = 

JensenCrossAxisFun(E,s1,s2,s2,s2,F);%max disp 

                        %Joint 2 

                        [Disp(2,1),Disp(2,3)] = 

LobontiuCornerFilletedFun(E,s1,s1,s1,s2,F);%maxK 

                        [Disp(2,2),Disp(2,4)] = 

LobontiuCornerFilletedFun(E,s2,s2,s2,s2,F);%max disp 

                        %Joint 3 

                        [Disp(3,1),Disp(3,3)] = 

LobontiuSymmetricCircularFun(E,s1,s1,s2,F);%maxK 

                        [Disp(3,2),Disp(3,4)] = 

LobontiuSymmetricCircularFun(E,s1,s2,s2,F);%max disp 

                        %Joint 4 

                        [Disp(4,1),Disp(4,3)] = 

LobontiuSymmetricNotchFun(E,s1,s1,s2,F);%maxK 

                        [Disp(4,2),Disp(4,4)] = 

LobontiuSymmetricNotchFun(E,s1,s2,s2,F);%max disp 

                        %Joint 5 

                        [Disp(5,1),Disp(5,3)] = 

RotationallySymmetricLeafHingeFun(E,s1,s1,F);%maxK 

                        [Disp(5,2),Disp(5,4)] = 

RotationallySymmetricLeafHingeFun(E,s1,s2,F);%max disp 

                        %Joint 6 

                        [Disp(6,1),Disp(6,3)] = 

SmithAnnulusFun(E,G,s2,s2,F);%maxK 
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                        [Disp(6,2),Disp(6,4)] = 

SmithAnnulusFun(E,G,s1,s1,F);%max disp 

                        %Joint 7 

                        [Disp(7,1),Disp(7,3)] = 

SmithCartwheelFun(E,s1,s1,s2,F);%maxK 

                        [Disp(7,2),Disp(7,4)] = 

SmithCartwheelFun(E,s1,s2,s2,F);%max disp 

                        %Joint 8 

                        [Disp(8,1),Disp(8,3)] = 

SmithCruciformFun(G,s1,s1,s1,F);%maxK 

                        [Disp(8,2),Disp(8,4)] = 

SmithCruciformFun(G,s1,s2,s1,F);%max disp 

                        %Joint 9 

                        [Disp(9,1),Disp(9,3)] = 

SmithTwoAxisFun(E,s1,s1,F);%maxK 

                        [Disp(9,2),Disp(9,4)] = 

SmithTwoAxisFun(E,s2,s1,F);%max disp 

                        %Joint 10 

                        [Disp(10,1),Disp(10,3)] = 

TangSymmetricCircularFun(E,s1,s1,s2,F);%maxK 

                        [Disp(10,2),Disp(10,4)] = 

TangSymmetricCircularFun(E,s2,s1,s2,F);%max disp 

                        %Joint 11 

                        [Disp(11,1),Disp(11,3)] = 

TreaseConceptFun(G,s1,s1,s1,F);%maxK 

                        [Disp(11,2),Disp(11,4)] = 

TreaseConceptFun(G,s1,s2,s1,F);%max disp 

                        %Joint 12 

                        [Disp(12,1),Disp(12,3)] = 

VShapeFun(E,s1,s1,s1,s1,s2,F);%maxK 

                        [Disp(12,2),Disp(12,4)] = 

VShapeFun(E,s1,s2,s2,s2,s2,F);%max disp 

                        %Joint 13 

                        [Disp(13,1),Disp(13,3)] = 

KyusojinRotational6R2Fun(E,s1,s1,s2,F);%maxK 

                        [Disp(13,2),Disp(13,4)] = 

KyusojinRotational6R2Fun(E,s1,s2,s2,F);%max disp 

                        %Joint 14 

                        [Disp(14,1),Disp(14,3)] = 

ConventionalSplitTubeFun(G,s1,s1,s2,F);%maxK 

                        [Disp(14,2),Disp(14,4)] = 

ConventionalSplitTubeFun(G,s1,s2,s2,F);%max disp 

  

                        Check=zeros(n,2); 

                        

namesr=char('JensenCrossAxis','LobontiuCornerFilleted','LobontiuSymmetr

icCircular',... 

                        

'LobontiuSymmetricNotch','RotationallySymmetric','SmithAnnulus','SmithC

artwheel',... 

                        

'SmithCruciform','SmithTwoAxis','TangSymmetricCircular','TreaseConcept'

,... 



146 

 

                        

'VShape','Kyusojin6R2','ConventionalSplitTube'); 

  

                        for i=1:n 

                            

Check(i,1)=CheckRangeFun(Disp(i,1),Disp(i,2),rom); 

                            

Check(i,2)=CheckRangeFun(Disp(i,4),Disp(i,3),k); 

                        end 

  

                        b=1; 

                        for i=1:n 

                            if (Check(i,1)==0 || Check(i,2)==0) 

                                a(b,1)=i; 

                                b=b+1; 

                            end 

                        end 

  

                        %----------------------------------------------

-------- 

                        % Inverse of above for pareto curve production 

% 

                        d=1;                 

                        e=0; 

                        for i=1:n 

                            if (Check(i,1)==1 && Check(i,2)==1) 

                                e(d,1)=i; 

                                d=d+1; 

                            end 

                        end 

  

                        z = ParetoFunR_YYY( e,E,G,s1,s2,F,nfig); 

                        %-------------------- 

                        sa=size(a); 

                        c=sa(1); 

                        for i=1:sa(1) 

                            namesr(a(c),:)=[]; 

                            c=c-1; 

                        end 

                        fprintf('WARNING! Displacements larger than 

30%% of \n the total length of the compliant joint may \n be be 

inaccurate.') 

  

                        fprintf('\nPossible joints for this user input 

using a force of %f N are:\n',Fset(j)) 

                        disp(namesr) 

                        a=0; 

                        nfig=nfig+1; 

                    end 

                    %--------------------------------------------------

---% 

                    %%END OF Y,Y,N TREE 

                    %--------------------------------------------------
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---% 

                end 

            else 

                fprintf('K does not have a value (na)\n') 

                if fc==0 

                    fprintf('F has a value, %2.2f N.\n',F) 

                    %This tree - Y,N,Y -> Set F as load applied, check 

for  

                    %any joints that can result in rom. 

                    %--------------------------------------------------

---% 

  

                    %Find the minimum and maximum displacement for each 

joint - leave thickness 

                    %constant, vary the depth of the joint from each 

iteration 

  

                    %Joint 1 

                    [Disp(1,1),Disp(1,3)] = 

JensenCrossAxisFun(E,s1,s1,s1,s2,F);%maxK 

                    [Disp(1,2),Disp(1,4)] = 

JensenCrossAxisFun(E,s1,s2,s2,s2,F);%max disp 

                    %Joint 2 

                    [Disp(2,1),Disp(2,3)] = 

LobontiuCornerFilletedFun(E,s1,s1,s1,s2,F);%maxK 

                    [Disp(2,2),Disp(2,4)] = 

LobontiuCornerFilletedFun(E,s2,s2,s2,s2,F);%max disp 

                    %Joint 3 

                    [Disp(3,1),Disp(3,3)] = 

LobontiuSymmetricCircularFun(E,s1,s1,s2,F);%maxK 

                    [Disp(3,2),Disp(3,4)] = 

LobontiuSymmetricCircularFun(E,s1,s2,s2,F);%max disp 

                    %Joint 4 

                    [Disp(4,1),Disp(4,3)] = 

LobontiuSymmetricNotchFun(E,s1,s1,s2,F);%maxK 

                    [Disp(4,2),Disp(4,4)] = 

LobontiuSymmetricNotchFun(E,s1,s2,s2,F);%max disp 

                    %Joint 5 

                    [Disp(5,1),Disp(5,3)] = 

RotationallySymmetricLeafHingeFun(E,s1,s1,F);%maxK 

                    [Disp(5,2),Disp(5,4)] = 

RotationallySymmetricLeafHingeFun(E,s1,s2,F);%max disp 

                    %Joint 6 

                    [Disp(6,1),Disp(6,3)] = 

SmithAnnulusFun(E,G,s2,s2,F);%maxK 

                    [Disp(6,2),Disp(6,4)] = 

SmithAnnulusFun(E,G,s1,s1,F);%max disp 

                    %Joint 7 

                    [Disp(7,1),Disp(7,3)] = 

SmithCartwheelFun(E,s1,s1,s2,F);%maxK 

                    [Disp(7,2),Disp(7,4)] = 

SmithCartwheelFun(E,s1,s2,s2,F);%max disp 

                    %Joint 8 
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                    [Disp(8,1),Disp(8,3)] = 

SmithCruciformFun(G,s1,s1,s1,F);%maxK 

                    [Disp(8,2),Disp(8,4)] = 

SmithCruciformFun(G,s1,s2,s1,F);%max disp 

                    %Joint 9 

                    [Disp(9,1),Disp(9,3)] = 

SmithTwoAxisFun(E,s1,s1,F);%maxK 

                    [Disp(9,2),Disp(9,4)] = 

SmithTwoAxisFun(E,s2,s1,F);%max disp 

                    %Joint 10 

                    [Disp(10,1),Disp(10,3)] = 

TangSymmetricCircularFun(E,s1,s1,s2,F);%maxK 

                    [Disp(10,2),Disp(10,4)] = 

TangSymmetricCircularFun(E,s2,s1,s2,F);%max disp 

                    %Joint 11 

                    [Disp(11,1),Disp(11,3)] = 

TreaseConceptFun(G,s1,s1,s1,F);%maxK 

                    [Disp(11,2),Disp(11,4)] = 

TreaseConceptFun(G,s1,s2,s1,F);%max disp 

                    %Joint 12 

                    [Disp(12,1),Disp(12,3)] = 

VShapeFun(E,s1,s1,s1,s1,s2,F);%maxK 

                    [Disp(12,2),Disp(12,4)] = 

VShapeFun(E,s1,s2,s2,s2,s2,F);%max disp 

                    %Joint 13 

                    [Disp(13,1),Disp(13,3)] = 

KyusojinRotational6R2Fun(E,s1,s1,s2,F);%maxK 

                    [Disp(13,2),Disp(13,4)] = 

KyusojinRotational6R2Fun(E,s1,s2,s2,F);%max disp 

                    %Joint 14 

                    [Disp(14,1),Disp(14,3)] = 

ConventionalSplitTubeFun(G,s1,s1,s2,F);%maxK 

                    [Disp(14,2),Disp(14,4)] = 

ConventionalSplitTubeFun(G,s1,s2,s2,F);%max disp 

  

                    Check=zeros(n,1); 

  

                    for i=1:n 

                        

Check(i)=CheckRangeFun(Disp(i,1),Disp(i,2),rom); 

                    end 

  

  

                    b=1; 

                    for i=1:n 

                        if Check(i)==0 

                            a(b,1)=i; 

                            b=b+1; 

                        end 

                    end 

  

                    %--------------------------------------------------

---- 
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                    % Inverse of above for pareto curve production % 

                    d=1;                 

                    e=0; 

                    for i=1:n 

                        if Check(i,1)==1 

                            e(d,1)=i; 

                            d=d+1; 

                        end 

                    end 

  

                    z = ParetoFunR_YYY( e,E,G,s1,s2,F,nfig); 

                    %-------------------- 

                    sa=size(a); 

                    c=sa(1); 

                    for i=1:sa(1) 

                        namesr(a(c),:)=[]; 

                        c=c-1; 

                    end 

                    fprintf('WARNING! Displacements larger than 30%% of 

\n the total length of the compliant joint may \n be be inaccurate.') 

  

                    fprintf('\nPossible joints for this user input 

are:\n') 

                    disp(namesr) 

                    %--------------------------------------------------

---% 

                    %%END OF Y,N,Y TREE 

                    %--------------------------------------------------

---% 

  

                else 

                    fprintf('F does not have a value (na)\n') 

                    %This tree - Y,N,N -> Search using generic F set 

applied, 

                    %find joints that can result in rom. 

                    %--------------------------------------------------

---% 

  

                    %Find the minimum and maximum displacement for each 

joint - leave thickness 

                    %constant, vary the depth of the joint from each 

iteration 

                    sizefset=size(Fset); 

                    nfset=sizefset(2); 

                    %This is a loop over the user defined forces, Fset 

(current 3 

                    %forces a factor of 10 apart, starting with .1) 

                    for j=1:nfset 

                        F=Fset(j); 

                        %Joint 1 

                        [Disp(1,1),Disp(1,3)] = 

JensenCrossAxisFun(E,s1,s1,s1,s2,F);%maxK 

                        [Disp(1,2),Disp(1,4)] = 
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JensenCrossAxisFun(E,s1,s2,s2,s2,F);%max disp 

                        %Joint 2 

                        [Disp(2,1),Disp(2,3)] = 

LobontiuCornerFilletedFun(E,s1,s1,s1,s2,F);%maxK 

                        [Disp(2,2),Disp(2,4)] = 

LobontiuCornerFilletedFun(E,s2,s2,s2,s2,F);%max disp 

                        %Joint 3 

                        [Disp(3,1),Disp(3,3)] = 

LobontiuSymmetricCircularFun(E,s1,s1,s2,F);%maxK 

                        [Disp(3,2),Disp(3,4)] = 

LobontiuSymmetricCircularFun(E,s1,s2,s2,F);%max disp 

                        %Joint 4 

                        [Disp(4,1),Disp(4,3)] = 

LobontiuSymmetricNotchFun(E,s1,s1,s2,F);%maxK 

                        [Disp(4,2),Disp(4,4)] = 

LobontiuSymmetricNotchFun(E,s1,s2,s2,F);%max disp 

                        %Joint 5 

                        [Disp(5,1),Disp(5,3)] = 

RotationallySymmetricLeafHingeFun(E,s1,s1,F);%maxK 

                        [Disp(5,2),Disp(5,4)] = 

RotationallySymmetricLeafHingeFun(E,s1,s2,F);%max disp 

                        %Joint 6 

                        [Disp(6,1),Disp(6,3)] = 

SmithAnnulusFun(E,G,s2,s2,F);%maxK 

                        [Disp(6,2),Disp(6,4)] = 

SmithAnnulusFun(E,G,s1,s1,F);%max disp 

                        %Joint 7 

                        [Disp(7,1),Disp(7,3)] = 

SmithCartwheelFun(E,s1,s1,s2,F);%maxK 

                        [Disp(7,2),Disp(7,4)] = 

SmithCartwheelFun(E,s1,s2,s2,F);%max disp 

                        %Joint 8 

                        [Disp(8,1),Disp(8,3)] = 

SmithCruciformFun(G,s1,s1,s1,F);%maxK 

                        [Disp(8,2),Disp(8,4)] = 

SmithCruciformFun(G,s1,s2,s1,F);%max disp 

                        %Joint 9 

                        [Disp(9,1),Disp(9,3)] = 

SmithTwoAxisFun(E,s1,s1,F);%maxK 

                        [Disp(9,2),Disp(9,4)] = 

SmithTwoAxisFun(E,s2,s1,F);%max disp 

                        %Joint 10 

                        [Disp(10,1),Disp(10,3)] = 

TangSymmetricCircularFun(E,s1,s1,s2,F);%maxK 

                        [Disp(10,2),Disp(10,4)] = 

TangSymmetricCircularFun(E,s2,s1,s2,F);%max disp 

                        %Joint 11 

                        [Disp(11,1),Disp(11,3)] = 

TreaseConceptFun(G,s1,s1,s1,F);%maxK 

                        [Disp(11,2),Disp(11,4)] = 

TreaseConceptFun(G,s1,s2,s1,F);%max disp 

                        %Joint 12 

                        [Disp(12,1),Disp(12,3)] = 
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VShapeFun(E,s1,s1,s1,s1,s2,F);%maxK 

                        [Disp(12,2),Disp(12,4)] = 

VShapeFun(E,s1,s2,s2,s2,s2,F);%max disp 

                        %Joint 13 

                        [Disp(13,1),Disp(13,3)] = 

KyusojinRotational6R2Fun(E,s1,s1,s2,F);%maxK 

                        [Disp(13,2),Disp(13,4)] = 

KyusojinRotational6R2Fun(E,s1,s2,s2,F);%max disp 

                        %Joint 14 

                        [Disp(14,1),Disp(14,3)] = 

ConventionalSplitTubeFun(G,s1,s1,s2,F);%maxK 

                        [Disp(14,2),Disp(14,4)] = 

ConventionalSplitTubeFun(G,s1,s2,s2,F);%max disp 

  

                        Check=zeros(n,1); 

  

                        

namesr=char('JensenCrossAxis','LobontiuCornerFilleted','LobontiuSymmetr

icCircular',... 

                        

'LobontiuSymmetricNotch','RotationallySymmetric','SmithAnnulus','SmithC

artwheel',... 

                        

'SmithCruciform','SmithTwoAxis','TangSymmetricCircular','TreaseConcept'

,... 

                        

'VShape','Kyusojin6R2','ConventionalSplitTube'); 

  

                        for i=1:n 

                            

Check(i)=CheckRangeFun(Disp(i,1),Disp(i,2),rom); 

                        end 

  

  

                        b=1; 

                        for i=1:n 

                            if Check(i)==0 

                                a(b,1)=i; 

                                b=b+1; 

                            end 

                        end 

  

                        %----------------------------------------------

-------- 

                        % Inverse of above for pareto curve production 

% 

                        d=1;                 

                        e=0; 

                        for i=1:n 

                            if Check(i,1)==1 

                                e(d,1)=i; 

                                d=d+1; 

                            end 
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                        end 

  

                        z = ParetoFunR_YYY( e,E,G,s1,s2,F,nfig); 

                        %-------------------- 

                        sa=size(a); 

                        c=sa(1); 

                        for i=1:sa(1) 

                            namesr(a(c),:)=[]; 

                            c=c-1; 

                        end 

                        fprintf('WARNING! Displacements larger than 

30%% of \n the total length of the compliant joint may \n be be 

inaccurate.') 

  

                        fprintf('\nPossible joints for this user input 

using a force of %f N are:\n',Fset(j)) 

                        disp(namesr) 

                        a=0; 

                        nfig=nfig+1; 

                    end 

                    %--------------------------------------------------

---% 

                    %%END OF Y,N,N TREE 

                    %--------------------------------------------------

---%            

                end  

            end 

        else 

            fprintf('RoM does not have a value (na)\n') 

            if kc==0 

                fprintf('K has a value, %2.2f Nmm/degree.\n',k) 

                if fc==0 

                    fprintf('F has a value, %2.2f N.\n',F) 

                    %This tree - N,Y,Y -> Search using Load as F 

applied, 

                    %find geometry that results in k. 

                    %--------------------------------------------------

---% 

  

                    %Find the minimum and maximum displacement for each 

joint - leave thickness 

                    %constant, vary the depth of the joint from each 

iteration 

                    %Joint 1 

                    [Disp(1,1),Disp(1,3)] = 

JensenCrossAxisFun(E,s1,s1,s1,s2,F);%maxK 

                    [Disp(1,2),Disp(1,4)] = 

JensenCrossAxisFun(E,s1,s2,s2,s2,F);%max disp 

                    %Joint 2 

                    [Disp(2,1),Disp(2,3)] = 

LobontiuCornerFilletedFun(E,s1,s1,s1,s2,F);%maxK 

                    [Disp(2,2),Disp(2,4)] = 

LobontiuCornerFilletedFun(E,s2,s2,s2,s2,F);%max disp 
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                    %Joint 3 

                    [Disp(3,1),Disp(3,3)] = 

LobontiuSymmetricCircularFun(E,s1,s1,s2,F);%maxK 

                    [Disp(3,2),Disp(3,4)] = 

LobontiuSymmetricCircularFun(E,s1,s2,s2,F);%max disp 

                    %Joint 4 

                    [Disp(4,1),Disp(4,3)] = 

LobontiuSymmetricNotchFun(E,s1,s1,s2,F);%maxK 

                    [Disp(4,2),Disp(4,4)] = 

LobontiuSymmetricNotchFun(E,s1,s2,s2,F);%max disp 

                    %Joint 5 

                    [Disp(5,1),Disp(5,3)] = 

RotationallySymmetricLeafHingeFun(E,s1,s1,F);%maxK 

                    [Disp(5,2),Disp(5,4)] = 

RotationallySymmetricLeafHingeFun(E,s1,s2,F);%max disp 

                    %Joint 6 

                    [Disp(6,1),Disp(6,3)] = 

SmithAnnulusFun(E,G,s2,s2,F);%maxK 

                    [Disp(6,2),Disp(6,4)] = 

SmithAnnulusFun(E,G,s1,s1,F);%max disp 

                    %Joint 7 

                    [Disp(7,1),Disp(7,3)] = 

SmithCartwheelFun(E,s1,s1,s2,F);%maxK 

                    [Disp(7,2),Disp(7,4)] = 

SmithCartwheelFun(E,s1,s2,s2,F);%max disp 

                    %Joint 8 

                    [Disp(8,1),Disp(8,3)] = 

SmithCruciformFun(G,s1,s1,s1,F);%maxK 

                    [Disp(8,2),Disp(8,4)] = 

SmithCruciformFun(G,s1,s2,s1,F);%max disp 

                    %Joint 9 

                    [Disp(9,1),Disp(9,3)] = 

SmithTwoAxisFun(E,s1,s1,F);%maxK 

                    [Disp(9,2),Disp(9,4)] = 

SmithTwoAxisFun(E,s2,s1,F);%max disp 

                    %Joint 10 

                    [Disp(10,1),Disp(10,3)] = 

TangSymmetricCircularFun(E,s1,s1,s2,F);%maxK 

                    [Disp(10,2),Disp(10,4)] = 

TangSymmetricCircularFun(E,s2,s1,s2,F);%max disp 

                    %Joint 11 

                    [Disp(11,1),Disp(11,3)] = 

TreaseConceptFun(G,s1,s1,s1,F);%maxK 

                    [Disp(11,2),Disp(11,4)] = 

TreaseConceptFun(G,s1,s2,s1,F);%max disp 

                    %Joint 12 

                    [Disp(12,1),Disp(12,3)] = 

VShapeFun(E,s1,s1,s1,s1,s2,F);%maxK 

                    [Disp(12,2),Disp(12,4)] = 

VShapeFun(E,s1,s2,s2,s2,s2,F);%max disp 

                    %Joint 13 

                    [Disp(13,1),Disp(13,3)] = 

KyusojinRotational6R2Fun(E,s1,s1,s2,F);%maxK 



154 

 

                    [Disp(13,2),Disp(13,4)] = 

KyusojinRotational6R2Fun(E,s1,s2,s2,F);%max disp 

                    %Joint 14 

                    [Disp(14,1),Disp(14,3)] = 

ConventionalSplitTubeFun(G,s1,s1,s2,F);%maxK 

                    [Disp(14,2),Disp(14,4)] = 

ConventionalSplitTubeFun(G,s1,s2,s2,F);%max disp 

  

                    Check=zeros(n,1); 

  

                    for i=1:n 

                        Check(i)=CheckRangeFun(Disp(i,4),Disp(i,3),k); 

                    end 

  

  

                    b=1; 

                    for i=1:n 

                        if Check(i)==0 

                            a(b,1)=i; 

                            b=b+1; 

                        end 

                    end 

  

                    %--------------------------------------------------

---- 

                    % Inverse of above for pareto curve production % 

                    d=1;                 

                    e=0; 

                    for i=1:n 

                        if Check(i,1)==1 

                            e(d,1)=i; 

                            d=d+1; 

                        end 

                    end 

  

                    z = ParetoFunR_YYY( e,E,G,s1,s2,F,nfig); 

                    %-------------------- 

                    sa=size(a); 

                    c=sa(1); 

                    for i=1:sa(1) 

                        namesr(a(c),:)=[]; 

                        c=c-1; 

                    end 

                    fprintf('WARNING! Displacements larger than 30%% of 

\n the total length of the compliant joint may \n be be inaccurate.') 

  

                    fprintf('\nPossible joints for this user input 

are:\n') 

                    disp(namesr) 

                    %--------------------------------------------------

---% 

                    %%END OF N,Y,Y TREE 

                    %--------------------------------------------------
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---% 

                else 

                    fprintf('F does not have a value (na)\n') 

                    %This tree - N,Y,N -> Search using generic F set 

applied, 

                    %find geometry that results in k. 

                    %--------------------------------------------------

---% 

  

  

                    %Find the minimum and maximum displacement for each 

joint - leave thickness 

                    %constant, vary the depth of the joint from each 

iteration 

                    sizefset=size(Fset); 

                    nfset=sizefset(2); 

                    %This is a loop over the user defined forces, Fset 

(current 3 

                    %forces a factor of 10 apart, starting with .1) 

                    for j=1:nfset 

                        F=Fset(j); 

  

                        %Joint 1 

                        [Disp(1,1),Disp(1,3)] = 

JensenCrossAxisFun(E,s1,s1,s1,s2,F);%maxK 

                        [Disp(1,2),Disp(1,4)] = 

JensenCrossAxisFun(E,s1,s2,s2,s2,F);%max disp 

                        %Joint 2 

                        [Disp(2,1),Disp(2,3)] = 

LobontiuCornerFilletedFun(E,s1,s1,s1,s2,F);%maxK 

                        [Disp(2,2),Disp(2,4)] = 

LobontiuCornerFilletedFun(E,s2,s2,s2,s2,F);%max disp 

                        %Joint 3 

                        [Disp(3,1),Disp(3,3)] = 

LobontiuSymmetricCircularFun(E,s1,s1,s2,F);%maxK 

                        [Disp(3,2),Disp(3,4)] = 

LobontiuSymmetricCircularFun(E,s1,s2,s2,F);%max disp 

                        %Joint 4 

                        [Disp(4,1),Disp(4,3)] = 

LobontiuSymmetricNotchFun(E,s1,s1,s2,F);%maxK 

                        [Disp(4,2),Disp(4,4)] = 

LobontiuSymmetricNotchFun(E,s1,s2,s2,F);%max disp 

                        %Joint 5 

                        [Disp(5,1),Disp(5,3)] = 

RotationallySymmetricLeafHingeFun(E,s1,s1,F);%maxK 

                        [Disp(5,2),Disp(5,4)] = 

RotationallySymmetricLeafHingeFun(E,s1,s2,F);%max disp 

                        %Joint 6 

                        [Disp(6,1),Disp(6,3)] = 

SmithAnnulusFun(E,G,s2,s2,F);%maxK 

                        [Disp(6,2),Disp(6,4)] = 

SmithAnnulusFun(E,G,s1,s1,F);%max disp 

                        %Joint 7 
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                        [Disp(7,1),Disp(7,3)] = 

SmithCartwheelFun(E,s1,s1,s2,F);%maxK 

                        [Disp(7,2),Disp(7,4)] = 

SmithCartwheelFun(E,s1,s2,s2,F);%max disp 

                        %Joint 8 

                        [Disp(8,1),Disp(8,3)] = 

SmithCruciformFun(G,s1,s1,s1,F);%maxK 

                        [Disp(8,2),Disp(8,4)] = 

SmithCruciformFun(G,s1,s2,s1,F);%max disp 

                        %Joint 9 

                        [Disp(9,1),Disp(9,3)] = 

SmithTwoAxisFun(E,s1,s1,F);%maxK 

                        [Disp(9,2),Disp(9,4)] = 

SmithTwoAxisFun(E,s2,s1,F);%max disp 

                        %Joint 10 

                        [Disp(10,1),Disp(10,3)] = 

TangSymmetricCircularFun(E,s1,s1,s2,F);%maxK 

                        [Disp(10,2),Disp(10,4)] = 

TangSymmetricCircularFun(E,s2,s1,s2,F);%max disp 

                        %Joint 11 

                        [Disp(11,1),Disp(11,3)] = 

TreaseConceptFun(G,s1,s1,s1,F);%maxK 

                        [Disp(11,2),Disp(11,4)] = 

TreaseConceptFun(G,s1,s2,s1,F);%max disp 

                        %Joint 12 

                        [Disp(12,1),Disp(12,3)] = 

VShapeFun(E,s1,s1,s1,s1,s2,F);%maxK 

                        [Disp(12,2),Disp(12,4)] = 

VShapeFun(E,s1,s2,s2,s2,s2,F);%max disp 

                        %Joint 13 

                        [Disp(13,1),Disp(13,3)] = 

KyusojinRotational6R2Fun(E,s1,s1,s2,F);%maxK 

                        [Disp(13,2),Disp(13,4)] = 

KyusojinRotational6R2Fun(E,s1,s2,s2,F);%max disp 

                        %Joint 14 

                        [Disp(14,1),Disp(14,3)] = 

ConventionalSplitTubeFun(G,s1,s1,s2,F);%maxK 

                        [Disp(14,2),Disp(14,4)] = 

ConventionalSplitTubeFun(G,s1,s2,s2,F);%max disp 

  

                        Check=zeros(n,1); 

                        

namesr=char('JensenCrossAxis','LobontiuCornerFilleted','LobontiuSymmetr

icCircular',... 

                        

'LobontiuSymmetricNotch','RotationallySymmetric','SmithAnnulus','SmithC

artwheel',... 

                        

'SmithCruciform','SmithTwoAxis','TangSymmetricCircular','TreaseConcept'

,... 

                        

'VShape','Kyusojin6R2','ConventionalSplitTube'); 
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                        for i=1:n 

                            

Check(i)=CheckRangeFun(Disp(i,4),Disp(i,3),k); 

                        end 

  

  

                        b=1; 

                        for i=1:n 

                            if Check(i)==0 

                                a(b,1)=i; 

                                b=b+1; 

                            end 

                        end 

  

                        %----------------------------------------------

-------- 

                        % Inverse of above for pareto curve production 

% 

                        d=1;                 

                        e=0; 

                        for i=1:n 

                            if Check(i,1)==1 

                                e(d,1)=i; 

                                d=d+1; 

                            end 

                        end 

  

                        z = ParetoFunR_YYY( e,E,G,s1,s2,F,nfig); 

                        %-------------------- 

                        sa=size(a); 

                        c=sa(1); 

                        for i=1:sa(1) 

                            namesr(a(c),:)=[]; 

                            c=c-1; 

                        end 

                        fprintf('WARNING! Displacements larger than 

30%% of \n the total length of the compliant joint may \n be be 

inaccurate.') 

  

                        fprintf('\nPossible joints for this user input 

using a force of %f N are:\n',Fset(j)) 

                        disp(namesr) 

                        a=0; 

                        nfig=nfig+1; 

                    end 

                    %--------------------------------------------------

---% 

                    %%END OF N,Y,N TREE 

                    %--------------------------------------------------

---%           

                end 

            else 

                fprintf('K does not have a value (na)\n') 
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                if fc==0 

                    fprintf('F has a value, %2.2f N.\n',F) 

                    %This tree - N,N,Y -> Set F as load applied, 

present user 

                    %all joints, organize by rom. 

                    %--------------------------------------------------

---% 

  

                    %Joint 1 

                    [Disp(1,1),Disp(1,3)] = 

JensenCrossAxisFun(E,s1,s1,s1,s2,F);%maxK 

                    [Disp(1,2),Disp(1,4)] = 

JensenCrossAxisFun(E,s1,s2,s2,s2,F);%max disp 

                    %Joint 2 

                    [Disp(2,1),Disp(2,3)] = 

LobontiuCornerFilletedFun(E,s1,s1,s1,s2,F);%maxK 

                    [Disp(2,2),Disp(2,4)] = 

LobontiuCornerFilletedFun(E,s2,s2,s2,s2,F);%max disp 

                    %Joint 3 

                    [Disp(3,1),Disp(3,3)] = 

LobontiuSymmetricCircularFun(E,s1,s1,s2,F);%maxK 

                    [Disp(3,2),Disp(3,4)] = 

LobontiuSymmetricCircularFun(E,s1,s2,s2,F);%max disp 

                    %Joint 4 

                    [Disp(4,1),Disp(4,3)] = 

LobontiuSymmetricNotchFun(E,s1,s1,s2,F);%maxK 

                    [Disp(4,2),Disp(4,4)] = 

LobontiuSymmetricNotchFun(E,s1,s2,s2,F);%max disp 

                    %Joint 5 

                    [Disp(5,1),Disp(5,3)] = 

RotationallySymmetricLeafHingeFun(E,s1,s1,F);%maxK 

                    [Disp(5,2),Disp(5,4)] = 

RotationallySymmetricLeafHingeFun(E,s1,s2,F);%max disp 

                    %Joint 6 

                    [Disp(6,1),Disp(6,3)] = 

SmithAnnulusFun(E,G,s2,s2,F);%maxK 

                    [Disp(6,2),Disp(6,4)] = 

SmithAnnulusFun(E,G,s1,s1,F);%max disp 

                    %Joint 7 

                    [Disp(7,1),Disp(7,3)] = 

SmithCartwheelFun(E,s1,s1,s2,F);%maxK 

                    [Disp(7,2),Disp(7,4)] = 

SmithCartwheelFun(E,s1,s2,s2,F);%max disp 

                    %Joint 8 

                    [Disp(8,1),Disp(8,3)] = 

SmithCruciformFun(G,s1,s1,s1,F);%maxK 

                    [Disp(8,2),Disp(8,4)] = 

SmithCruciformFun(G,s1,s2,s1,F);%max disp 

                    %Joint 9 

                    [Disp(9,1),Disp(9,3)] = 

SmithTwoAxisFun(E,s1,s1,F);%maxK 

                    [Disp(9,2),Disp(9,4)] = 

SmithTwoAxisFun(E,s2,s1,F);%max disp 
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                    %Joint 10 

                    [Disp(10,1),Disp(10,3)] = 

TangSymmetricCircularFun(E,s1,s1,s2,F);%maxK 

                    [Disp(10,2),Disp(10,4)] = 

TangSymmetricCircularFun(E,s2,s1,s2,F);%max disp 

                    %Joint 11 

                    [Disp(11,1),Disp(11,3)] = 

TreaseConceptFun(G,s1,s1,s1,F);%maxK 

                    [Disp(11,2),Disp(11,4)] = 

TreaseConceptFun(G,s1,s2,s1,F);%max disp 

                    %Joint 12 

                    [Disp(12,1),Disp(12,3)] = 

VShapeFun(E,s1,s1,s1,s1,s2,F);%maxK 

                    [Disp(12,2),Disp(12,4)] = 

VShapeFun(E,s1,s2,s2,s2,s2,F);%max disp 

                    %Joint 13 

                    [Disp(13,1),Disp(13,3)] = 

KyusojinRotational6R2Fun(E,s1,s1,s2,F);%maxK 

                    [Disp(13,2),Disp(13,4)] = 

KyusojinRotational6R2Fun(E,s1,s2,s2,F);%max disp 

                    %Joint 14 

                    [Disp(14,1),Disp(14,3)] = 

ConventionalSplitTubeFun(G,s1,s1,s2,F);%maxK 

                    [Disp(14,2),Disp(14,4)] = 

ConventionalSplitTubeFun(G,s1,s2,s2,F);%max disp 

  

                    Check=zeros(n,1); 

  

                    Disp=sortrows(Disp,2); 

                    fprintf('WARNING! Displacements larger than 30%% of 

\n the total length of the compliant joint may \n be be inaccurate.') 

  

                    fprintf('\nThe following joints are organized by 

RoM,\nLargest to smallest, for the given force, %f N :\n',F) 

  

                    names=cellstr(namesr); 

                    for i=n:-1:1 

                        name=names{Disp(i,5)}; 

                        fprintf('%s with %2.4f mm displacement. 

\n',name,Disp(i,2)) 

  

                    end 

  

                    %--------------------------------------------------

---- 

                    % Inverse of above for pareto curve production % 

                    d=1;                 

                    e=0; 

                    e=[1;2;3;4;5;6;7;8;9;10;11;12;13;14]; 

  

  

                    z = ParetoFunR_YYY( e,E,G,s1,s2,F,nfig); 

                    %-------------------- 
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                    %--------------------------------------------------

---% 

                    %%END OF N,N,Y TREE 

                    %--------------------------------------------------

---% 

                else 

                    fprintf('F does not have a value (na)\n') 

                    %This tree - N,N,N -> Will result in all results 

being  

                    %returned, cannot specify with no information 

                    %--------------------------------------------------

---% 

                    %Find the minimum and maximum displacement for each 

joint - leave thickness 

                    %constant, vary the depth of the joint from each 

iteration 

                    sizefset=size(Fset); 

                    nfset=sizefset(2); 

                    %This is a loop over the user defined forces, Fset 

(current 3 

                    %forces a factor of 10 apart, starting with .1) 

                    for j=1:nfset 

                        F=Fset(j); 

                        %Joint 1 

                        [Disp(1,1),Disp(1,3)] = 

JensenCrossAxisFun(E,s1,s1,s1,s2,F);%maxK 

                        [Disp(1,2),Disp(1,4)] = 

JensenCrossAxisFun(E,s1,s2,s2,s2,F);%max disp 

                        %Joint 2 

                        [Disp(2,1),Disp(2,3)] = 

LobontiuCornerFilletedFun(E,s1,s1,s1,s2,F);%maxK 

                        [Disp(2,2),Disp(2,4)] = 

LobontiuCornerFilletedFun(E,s2,s2,s2,s2,F);%max disp 

                        %Joint 3 

                        [Disp(3,1),Disp(3,3)] = 

LobontiuSymmetricCircularFun(E,s1,s1,s2,F);%maxK 

                        [Disp(3,2),Disp(3,4)] = 

LobontiuSymmetricCircularFun(E,s1,s2,s2,F);%max disp 

                        %Joint 4 

                        [Disp(4,1),Disp(4,3)] = 

LobontiuSymmetricNotchFun(E,s1,s1,s2,F);%maxK 

                        [Disp(4,2),Disp(4,4)] = 

LobontiuSymmetricNotchFun(E,s1,s2,s2,F);%max disp 

                        %Joint 5 

                        [Disp(5,1),Disp(5,3)] = 

RotationallySymmetricLeafHingeFun(E,s1,s1,F);%maxK 

                        [Disp(5,2),Disp(5,4)] = 

RotationallySymmetricLeafHingeFun(E,s1,s2,F);%max disp 

                        %Joint 6 

                        [Disp(6,1),Disp(6,3)] = 

SmithAnnulusFun(E,G,s2,s2,F);%maxK 
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                        [Disp(6,2),Disp(6,4)] = 

SmithAnnulusFun(E,G,s1,s1,F);%max disp 

                        %Joint 7 

                        [Disp(7,1),Disp(7,3)] = 

SmithCartwheelFun(E,s1,s1,s2,F);%maxK 

                        [Disp(7,2),Disp(7,4)] = 

SmithCartwheelFun(E,s1,s2,s2,F);%max disp 

                        %Joint 8 

                        [Disp(8,1),Disp(8,3)] = 

SmithCruciformFun(G,s1,s1,s1,F);%maxK 

                        [Disp(8,2),Disp(8,4)] = 

SmithCruciformFun(G,s1,s2,s1,F);%max disp 

                        %Joint 9 

                        [Disp(9,1),Disp(9,3)] = 

SmithTwoAxisFun(E,s1,s1,F);%maxK 

                        [Disp(9,2),Disp(9,4)] = 

SmithTwoAxisFun(E,s2,s1,F);%max disp 

                        %Joint 10 

                        [Disp(10,1),Disp(10,3)] = 

TangSymmetricCircularFun(E,s1,s1,s2,F);%maxK 

                        [Disp(10,2),Disp(10,4)] = 

TangSymmetricCircularFun(E,s2,s1,s2,F);%max disp 

                        %Joint 11 

                        [Disp(11,1),Disp(11,3)] = 

TreaseConceptFun(G,s1,s1,s1,F);%maxK 

                        [Disp(11,2),Disp(11,4)] = 

TreaseConceptFun(G,s1,s2,s1,F);%max disp 

                        %Joint 12 

                        [Disp(12,1),Disp(12,3)] = 

VShapeFun(E,s1,s1,s1,s1,s2,F);%maxK 

                        [Disp(12,2),Disp(12,4)] = 

VShapeFun(E,s1,s2,s2,s2,s2,F);%max disp 

                        %Joint 13 

                        [Disp(13,1),Disp(13,3)] = 

KyusojinRotational6R2Fun(E,s1,s1,s2,F);%maxK 

                        [Disp(13,2),Disp(13,4)] = 

KyusojinRotational6R2Fun(E,s1,s2,s2,F);%max disp 

                        %Joint 14 

                        [Disp(14,1),Disp(14,3)] = 

ConventionalSplitTubeFun(G,s1,s1,s2,F);%maxK 

                        [Disp(14,2),Disp(14,4)] = 

ConventionalSplitTubeFun(G,s1,s2,s2,F);%max disp 

  

                        Check=zeros(n,1); 

  

                        Disp=sortrows(Disp,2); 

                        fprintf('WARNING! Displacements larger than 

30%% of \n the total length of the compliant joint may \n be be 

inaccurate.') 

  

                        fprintf('\nPossible joints for this user input 

using a force of %2.3f N,\n organized by RoM are:\n',Fset(j)) 
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                        names=cellstr(namesr); 

                        for i=n:-1:1 

                            name=names{Disp(i,5)}; 

                            fprintf('%s with %2.4f degrees 

displacement. \n',name,Disp(i,2)) 

                        end 

                    end 

                    %--------------------------------------------------

---% 

                    %%END OF N,N,N TREE 

                    %--------------------------------------------------

---% 

                end 

            end 

        end 

    end 

end 

Figure A 62. Complete MATLAB function selection algorithm. 
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APPENDIX C. MATLAB GUI CODE 

function varargout = JointMenu(varargin) 

% JOINTMENU MATLAB code for JointMenu.fig 

%      JOINTMENU, by itself, creates a new JOINTMENU or raises the 

existing 

%      singleton*. 

% 

%      H = JOINTMENU returns the handle to a new JOINTMENU or the 

handle to 

%      the existing singleton*. 

% 

%      JOINTMENU('CALLBACK',hObject,eventData,handles,...) calls the 

local 

%      function named CALLBACK in JOINTMENU.M with the given input 

arguments. 

% 

%      JOINTMENU('Property','Value',...) creates a new JOINTMENU or 

raises the 

%      existing singleton*.  Starting from the left, property value 

pairs are 

%      applied to the GUI before JointMenu_OpeningFcn gets called.  An 

%      unrecognized property name or invalid value makes property 

application 

%      stop.  All inputs are passed to JointMenu_OpeningFcn via 

varargin. 

% 

%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only 

one 

%      instance to run (singleton)". 

% 

% See also: GUIDE, GUIDATA, GUIHANDLES 

  

% Edit the above text to modify the response to help JointMenu 

  

% Last Modified by GUIDE v2.5 12-Feb-2015 16:04:50 

  

% Begin initialization code - DO NOT EDIT 

gui_Singleton = 1; 

gui_State = struct('gui_Name',       mfilename, ... 

                   'gui_Singleton',  gui_Singleton, ... 

                   'gui_OpeningFcn', @JointMenu_OpeningFcn, ... 

                   'gui_OutputFcn',  @JointMenu_OutputFcn, ... 

                   'gui_LayoutFcn',  [] , ... 

                   'gui_Callback',   []); 

if nargin && ischar(varargin{1}) 

    gui_State.gui_Callback = str2func(varargin{1}); 

end 

  

if nargout 

    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 

else 
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    gui_mainfcn(gui_State, varargin{:}); 

end 

% End initialization code - DO NOT EDIT 

  

  

% --- Executes just before JointMenu is made visible. 

function JointMenu_OpeningFcn(hObject, eventdata, handles, varargin) 

% This function has no output args, see OutputFcn. 

% hObject    handle to figure 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

% varargin   command line arguments to JointMenu (see VARARGIN) 

  

% Create the values that will populate all pre-set fields 

handles.Translational=1; 

handles.Rotational=0; 

  

handles.rom='na'; 

  

handles.k='na'; 

  

handles.s1='0.5'; 

handles.s2='10'; 

  

handles.f='na'; 

  

handles.AlE=73000; 

handles.PLAE=2800; 

handles.ABSE=2587.5; 

handles.AlG=28000; 

handles.PLAG=875; 

handles.ABSG=875; 

  

  

%Set initial data value for drop down box values 

handles.type = handles.Translational; 

handles.matE = handles.AlE; 

handles.matG = handles.AlG; 

  

% Choose default command line output for JointMenu 

handles.output = hObject; 

  

% Update handles structure 

guidata(hObject, handles); 

  

% UIWAIT makes JointMenu wait for user response (see UIRESUME) 

% uiwait(handles.figure1); 

  

  

% --- Outputs from this function are returned to the command line. 

function varargout = JointMenu_OutputFcn(hObject, eventdata, handles)  

% varargout  cell array for returning output args (see VARARGOUT); 
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% hObject    handle to figure 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

% Get default command line output from handles structure 

varargout{1} = handles.output; 

  

  

% --- Executes on selection change in type_popup. 

function type_popup_Callback(hObject, eventdata, handles) 

% hObject    handle to type_popup (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

% Determine the selected data set. 

str = get(hObject, 'String'); 

val = get(hObject,'Value'); 

% Set current data to the selected data set. 

switch str{val}; 

case 'Translational' % User selects Translational. 

 handles.type = handles.Translational; 

case 'Rotational' % User selects Rotational. 

 handles.type = handles.Rotational; 

end 

% Save the handles structure. 

guidata(hObject,handles) 

  

% Hints: contents = cellstr(get(hObject,'String')) returns type_popup 

contents as cell array 

%        contents{get(hObject,'Value')} returns selected item from 

type_popup 

  

  

% --- Executes during object creation, after setting all properties. 

function type_popup_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to type_popup (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns 

called 

  

% Hint: popupmenu controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

  

  

function rom_edit_Callback(hObject, eventdata, handles) 

% hObject    handle to rom_edit (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 
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rom = get(hObject,'string'); 

handles.rom = rom; 

guidata(gcbo,handles);  

  

  

% --- Executes during object creation, after setting all properties. 

function rom_edit_CreateFcn(hObject, ~, handles) 

% hObject    handle to rom_edit (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns 

called 

  

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

  

  

  

function k_edit_Callback(hObject, eventdata, handles) 

% hObject    handle to k_edit (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

k = get(hObject,'string'); 

handles.k = k; 

guidata(gcbo,handles);  

% Hints: get(hObject,'String') returns contents of k_edit as text 

%        str2double(get(hObject,'String')) returns contents of k_edit 

as a double 

  

  

% --- Executes during object creation, after setting all properties. 

function k_edit_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to k_edit (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns 

called 

  

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

  

  

  

function s1_edit_Callback(hObject, eventdata, handles) 

% hObject    handle to s1_edit (see GCBO) 
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% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

s1 = get(hObject,'string'); 

handles.s1 = s1; 

guidata(gcbo,handles);  

% Hints: get(hObject,'String') returns contents of s1_edit as text 

%        str2double(get(hObject,'String')) returns contents of s1_edit 

as a double 

  

  

% --- Executes during object creation, after setting all properties. 

function s1_edit_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to s1_edit (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns 

called 

  

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

  

  

  

function s2_edit_Callback(hObject, eventdata, handles) 

% hObject    handle to s2_edit (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

s2 = get(hObject,'string'); 

handles.s2 = s2; 

guidata(gcbo,handles);  

% Hints: get(hObject,'String') returns contents of s2_edit as text 

%        str2double(get(hObject,'String')) returns contents of s2_edit 

as a double 

  

  

% --- Executes during object creation, after setting all properties. 

function s2_edit_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to s2_edit (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns 

called 

  

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 
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% --- Executes on selection change in mat_popupmenu. 

function mat_popupmenu_Callback(hObject, eventdata, handles) 

% hObject    handle to mat_popupmenu (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

% Determine the selected data set. 

str = get(hObject, 'String'); 

val = get(hObject,'Value'); 

% Set current data to the selected data set. 

switch str{val}; 

case 'Aluminum' % User selects Aluminum. 

 handles.matE = handles.AlE; 

 handles.matG = handles.AlG; 

case 'PLA' % User selects PLA. 

 handles.matE = handles.PLAE; 

 handles.matG = handles.PLAG; 

case 'ABS' % User selects PLA. 

 handles.matE = handles.ABSE; 

 handles.matG = handles.ABSG; 

end 

% Save the handles structure. 

guidata(hObject,handles) 

  

% Hints: contents = cellstr(get(hObject,'String')) returns 

mat_popupmenu contents as cell array 

%        contents{get(hObject,'Value')} returns selected item from 

mat_popupmenu 

  

  

% --- Executes during object creation, after setting all properties. 

function mat_popupmenu_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to mat_popupmenu (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns 

called 

  

% Hint: popupmenu controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

  

  

function f_edit_Callback(hObject, eventdata, handles) 

% hObject    handle to f_edit (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

f = get(hObject,'string'); 

handles.f = f; 

guidata(gcbo,handles);  
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% Hints: get(hObject,'String') returns contents of f_edit as text 

%        str2double(get(hObject,'String')) returns contents of f_edit 

as a double 

  

  

% --- Executes during object creation, after setting all properties. 

function f_edit_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to f_edit (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns 

called 

  

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

  

  

% --- Executes on button press in done_pushbutton1. 

function done_pushbutton1_Callback(hObject, eventdata, handles) 

% hObject    handle to done_pushbutton1 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

% Get user input from GUI 

% disp(handles.type); 

% disp(handles.rom); 

% disp(handles.k); 

% disp(handles.s1); 

% disp(handles.s2); 

% disp(handles.f); 

% disp(handles.matE); 

% disp(handles.matG); 

  

  

[ z ] = 

DecisiontreeFunction(handles.type,handles.rom,handles.k,handles.s1,hand

les.s2,handles.f,handles.matE,handles.matG); 

Figure A 63.The MATLAB function that controls the GUI. 
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APPENDIX D. MATLAB PARETO CURVE GENERATING CODE 

function [ fig ] = ParetoFunT_YYY( array,E,s1,s2,F,nfig ) 

  

    s1c=s1; 

    s2c=s2; 

    scount=(s2-s1)/10; 

    Disp=[0]; 

    k=[0]; 

  

    sizea=size(array); 

    nsubplot=sizea(1); 

    width=ceil(nsubplot/2); 

    height=2; 

    num=1; 

  

    fig=figure(nfig); 

    b=1; 

    a=ismember(1,array); 

    if a == 1 

        %pareto for joint 1 

        for i=s1:scount:s2 

            [Disp(b),k(b)]=SmithRectilinearSpringFun(E,s1c,i,s2c,F); 

            b=b+1;     

        end 

        subplot(height,width,num) 

        plot(Disp,k) 

        xlabel('Displacement (mm)') 

        ylabel('Stiffness (N/mm)') 

        title('Pareto Curve for Smith Rectilinear Spring')  

        num=num+1; 

    end 

  

    b=1; 

    a=ismember(2,array); 

    if a == 1 

        %pareto for joint 2 

        for i=s1:scount:s2 

            [Disp(b),k(b)]=ParallelStripFun(E,i,s1c,s2c,F); 

            b=b+1; 

        end 

        subplot(height,width,num) 

        plot(Disp,k) 

        xlabel('Displacement (mm)') 

        ylabel('Stiffness (N/mm)') 

        title('Pareto Curve for Parallel Strip') 

        num=num+1; 

    end 

  

    b=1; 

    a=ismember(3,array); 

    if a == 1 
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        %pareto for joint 3 

        for i=s1:scount:s2 

            [Disp(b),k(b)]=KyusojinLinear6L1Fun(E,s1c,i,s2c,F); 

            b=b+1;      

        end 

        subplot(height,width,num) 

        plot(Disp,k) 

        xlabel('Displacement (mm)') 

        ylabel('Stiffness (N/mm)') 

        title('Pareto Curve for Kyusojin Linear 6L1') 

        num=num+1; 

    end 

  

    b=1; 

    a=ismember(4,array); 

    if a == 1 

        %pareto for joint 4 

        j=s2; 

        for i=s1:scount:s2 

            [Disp(b),k(b)]=TreaseTranslationalFun( E,s1c,s2c,j,F ); 

            b=b+1; 

            j=j-scount; 

        end 

        subplot(height,width,num) 

        plot(Disp,k) 

        xlabel('Displacement (mm)') 

        ylabel('Stiffness (N/mm)') 

        title('Pareto Curve for Trease Translational') 

        num=num+1; 

    end 

  

    b=1; 

    a=ismember(5,array); 

    if a == 1 

        %pareto for joint 5 

        j=s2; 

        for i=s1:scount:s2 

            [Disp(b),k(b)]=XuTranslationalFun( E,s1c,j,s1c,s2c,F ); 

            b=b+1; 

            j=j-scount; 

        end 

        subplot(height,width,num) 

        plot(Disp,k) 

        xlabel('Displacement (mm)') 

        ylabel('Stiffness (N/mm)') 

        title('Pareto Curve for Xu Translational') 

        num=num+1; 

    end 

  

    b=1; 

    a=ismember(6,array); 

    if a == 1 

        %pareto for joint 6 
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        j=s2; 

        for i=s1:scount:s2 

            [Disp(b),k(b)]=SmithNotchHingeFun(E,j,s1c,s2c,j,F); 

            b=b+1;    

            j=j-scount; 

        end 

        subplot(height,width,num) 

        plot(Disp,k) 

        xlabel('Displacement (mm)') 

        ylabel('Stiffness (N/mm)') 

        title('Pareto Curve for Smith Notch Hinge') 

    end 

end 

Figure A 64. Complete MATLAB function used to build Pareto curves for a 

translational joint set. 

function [ fig ] = ParetoFunR_YYY( array,E,G,s1,s2,F,nfig ) 

  

    s1c=s1; 

    s2c=s2; 

    scount=abs(s2-s1)/10; 

    Disp=[0]; 

    k=[0]; 

  

    sizea=size(array); 

    nsubplot=sizea(1); 

    width=ceil(nsubplot/2); 

    height=3; 

    num=1; 

  

    fig=figure(nfig); 

    b=1; 

    a=ismember(1,array); 

    if a == 1 

        %pareto for joint 1 

        for i=s1:scount:s2 

            [Disp(b),k(b)]=JensenCrossAxisFun(E,s1c,i,i,s2c,F); 

            b=b+1;     

        end 

        subplot(height,width,num) 

        plot(Disp,k) 

        xlabel('Displacement (degrees)') 

        ylabel('Stiffness (Nmm/degree)') 

        title('Pareto Curve for Jensen Cross Axis') 

        num=num+1; 

    end 

  

    b=1; 

    a=ismember(2,array); 

    if a == 1 

        %pareto for joint 2 
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        j=s2; 

        for i=s1:scount:s2 

            [Disp(b),k(b)]=LobontiuCornerFilletedFun(E,i,i,i,s2c,F); 

            b=b+1; 

            j=j-scount; 

        end 

        subplot(height,width,num) 

        plot(Disp,k) 

        xlabel('Displacement (degrees)') 

        ylabel('Stiffness (Nmm/degree)') 

        title('Pareto Curve for Lobontiu Corner Filleted') 

        num=num+1; 

    end 

  

    b=1; 

    a=ismember(3,array); 

    if a == 1 

        %pareto for joint 3 

        j=s2; 

        for i=s1:scount:s2 

            [Disp(b),k(b)]=LobontiuSymmetricCircularFun(E,s1c,i,s2c,F); 

            b=b+1; 

            j=j-scount; 

        end 

        subplot(height,width,num) 

        plot(Disp,k) 

        xlabel('Displacement (degrees)') 

        ylabel('Stiffness (Nmm/degree)') 

        title('Pareto Curve for Lobontiu Symmetric Circular') 

        num=num+1; 

    end 

  

    b=1; 

    a=ismember(4,array); 

    if a == 1 

        %pareto for joint 4 

        j=s2; 

        for i=s1:scount:s2 

            [Disp(b),k(b)]=LobontiuSymmetricNotchFun(E,s1c,i,s2c,F); 

            b=b+1; 

            j=j-scount; 

        end 

        subplot(height,width,num) 

        plot(Disp,k) 

        xlabel('Displacement (degrees)') 

        ylabel('Stiffness (Nmm/degree)') 

        title('Pareto Curve for Lobontiu Symmetric Notch') 

        num=num+1; 

    end 

  

    b=1; 

    a=ismember(5,array); 

    if a == 1 
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        %pareto for joint 5 

        j=s2; 

        for i=s1:scount:s2 

            

[Disp(b),k(b)]=RotationallySymmetricLeafHingeFun(E,s1c,i,F); 

            b=b+1; 

            j=j-scount; 

        end 

        subplot(height,width,num) 

        plot(Disp,k) 

        xlabel('Displacement (degrees)') 

        ylabel('Stiffness (Nmm/degree)') 

        title('Pareto Curve for Rotationally Symmetric Leaf Hinge') 

        num=num+1; 

    end 

  

    b=1; 

    a=ismember(6,array); 

    if a == 1 

        %pareto for joint 6 

        for i=s1:scount:s2 

            [Disp(b),k(b)]=SmithAnnulusFun(E,G,i,i,F); 

            b=b+1;     

        end 

        subplot(height,width,num) 

        plot(Disp,k) 

        xlabel('Displacement (degrees)') 

        ylabel('Stiffness (Nmm/degree)') 

        title('Pareto Curve for Smith Annulus')  

        num=num+1; 

    end 

  

    b=1; 

    a=ismember(7,array); 

    if a == 1 

        %pareto for joint 7 

        for i=s1:scount:s2 

            [Disp(b),k(b)]=SmithCartwheelFun(E,s1c,i,s2c,F); 

            b=b+1;     

        end 

        subplot(height,width,num) 

        plot(Disp,k) 

        xlabel('Displacement (degrees)') 

        ylabel('Stiffness (Nmm/degree)') 

        title('Pareto Curve for Smith Cartwheel') 

        num=num+1; 

    end 

  

    b=1; 

    a=ismember(8,array); 

    if a == 1 

        %pareto for joint 8 

        j=s2; 
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        for i=s1:scount:s2 

            [Disp(b),k(b)]=SmithCruciformFun(G,s1c,j,s1c,F); 

            b=b+1;   

            j=j-scount; 

        end 

        subplot(height,width,num) 

        plot(Disp,k) 

        xlabel('Displacement (degrees)') 

        ylabel('Stiffness (Nmm/degree)') 

        title('Pareto Curve for Smith Cruciform') 

        num=num+1; 

    end 

     

    b=1; 

    a=ismember(9,array); 

    if a == 1 

        %pareto for joint 9 

        for i=s1:scount:s2 

            [Disp(b),k(b)]=SmithTwoAxisFun(E,i,s1c,F); 

            b=b+1;     

        end 

        subplot(height,width,num) 

        plot(Disp,k) 

        xlabel('Displacement (degrees)') 

        ylabel('Stiffness (Nmm/degree)') 

        title('Pareto Curve for Smith Two Axis') 

        num=num+1; 

    end 

     

    b=1; 

    a=ismember(10,array); 

    if a == 1 

        %pareto for joint 10 

        for i=s1:scount:s2 

            [Disp(b),k(b)]=TangSymmetricCircularFun(E,i,s1c,s2c,F); 

            b=b+1;     

        end 

        subplot(height,width,num) 

        plot(Disp,k) 

        xlabel('Displacement (degrees)') 

        ylabel('Stiffness (Nmm/degree)') 

        title('Pareto Curve for Tang Symmetric Circular') 

        num=num+1; 

    end 

     

    b=1; 

    a=ismember(11,array); 

    if a == 1 

        %pareto for joint 11 

  

        for i=s1:scount:s2 

            [Disp(b),k(b)]=TreaseConceptFun(G,s1c,i,s1c,F); 

            b=b+1;   
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        end 

        subplot(height,width,num) 

        plot(Disp,k) 

        xlabel('Displacement (degrees)') 

        ylabel('Stiffness (Nmm/degree)') 

        title('Pareto Curve for Trease Concept') 

        num=num+1; 

    end 

     

    b=1; 

    a=ismember(12,array); 

    if a == 1 

        %pareto for joint 12 

        j=s2; 

        for i=s1:scount:s2 

            [Disp(b),k(b)]=VShapeFun(E,s1c,i,i,i,s2c,F); 

            b=b+1;   

            j=j-scount; 

        end 

        subplot(height,width,num) 

        plot(Disp,k) 

        xlabel('Displacement (degrees)') 

        ylabel('Stiffness (Nmm/degree)') 

        title('Pareto Curve for V Shape Flexure') 

        num=num+1; 

    end 

     

    b=1; 

    a=ismember(13,array); 

    if a == 1 

        %pareto for joint 13 

        j=s2; 

        for i=s1:scount:s2 

            [Disp(b),k(b)]=KyusojinRotational6R2Fun(E,s1c,i,s2c,F); 

            b=b+1;   

            j=j-scount; 

        end 

        subplot(height,width,num) 

        plot(Disp,k) 

        xlabel('Displacement (degrees)') 

        ylabel('Stiffness (Nmm/degree)') 

        title('Pareto Curve for Kyusojin Rotational 6R2') 

        num=num+1; 

    end 

     

    b=1; 

    a=ismember(14,array); 

    if a == 1 

        %pareto for joint 14 

        for i=s1:scount:s2 

            [Disp(b),k(b)]=ConventionalSplitTubeFun(G,s1c,i,s2c,F); 

            b=b+1;   

        end 
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        subplot(height,width,num) 

        plot(Disp,k) 

        xlabel('Displacement (degrees)') 

        ylabel('Stiffness (Nmm/degree)') 

        title('Pareto Curve for Conventional Split Tube') 

    end 

end 

Figure A 65. Complete MATLAB function used to build Pareto curves for a 

rotational joint set. 
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APPENDIX E. TEST CASES USED TO VALIDATE SELECTION ALGORITHM 

E.1 Test Case 1 

 The values used for Test Case 1 can be seen in Table A 1. The GUI 

showing the input values, output Pareto curves, and MATLAB text output are shown in 

Figure A 66, Figure A 67, and Figure A 68, respectively. 

Table A 1. Input values for Test Case 1. 

Test 

Case 

Type of 

Joint 

Range of 

Motion 

[mm or 

degrees] 

Stiffness 

[N/mm or 

Nmm/degree] 

Size 

Constraints 

[mm] 

Applied 

Force 

[N] 

Material 

1 Translational 5 7 4.1 - 41.5 5 ABS 
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Figure A 66. GUI inputs used for Test Case 1. 
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Figure A 67. Pareto curve outputs for Test Case 1. 

>> JointMenu 

Translational Joints are selected 

RoM has a value, 5.00 mm. 

K has a value, 7.00 N/mm. 

F has a value, 5.00 N. 

 

Possible joints for this user input are: 

SmithNotchHinge 

Figure A 68. MATLAB text output for Test Case 1. 
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E.2 Test Case 2 

 The values used for Test Case 2 can be seen in Table A 2. The GUI 

showing the input values is shown in Figure A 69. Since this input does not have a force 

applied, a generic force set of 0.1 N, 1 N, and 10 N are used to show range of motion 

possibilities. In this test case, no results are returned for the first two applied forces, and 

as such, the Pareto curve figures that would be generated are blank. They are omitted for 

this reason. The Pareto curves for a force applied of 10 N are shown in Figure A 70. The 

MATLAB text output is shown in Figure A 71. 

Table A 2. Input values for Test Case 2. 

Test 

Case 

Type of 

Joint 

Range of 

Motion 

[mm or 

degrees] 

Stiffness 

[N/mm or 

Nmm/degree] 

Size 

Constraints 

[mm] 

Applied 

Force 

[N] 

Material 

2 Rotational 10 3 1.2 - 29.2 - Aluminum 
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Figure A 69. GUI inputs used for Test Case 2. 
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Figure A 70. Pareto curve outputs for Test Case 2. 

>> JointMenu 

Rotational Joints are selected. 

RoM has a value, 10.00 degrees. 

K has a value, 3.00 N/mm. 

F does not have a value (na) 

 

Possible joints for this user input using a force of 0.100000 N are: 

 

Possible joints for this user input using a force of 1.000000 N are: 

 

Possible joints for this user input using a force of 10.000000 N are: 

JensenCrossAxis           

LobontiuSymmetricNotch 

Figure A 71. MATLAB text output for Test Case 2. 
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E.3 Test Case 3 

 The values used for Test Case 3 can be seen in Table A 3. The GUI 

showing the input values, output Pareto curves, and MATLAB text output are shown in 

Figure A 72, Figure A 73, and Figure A 74, respectively. 

Table A 3. Input values for Test Case 3. 

Test 

Case 

Type of 

Joint 

Range of 

Motion 

[mm or 

degrees] 

Stiffness 

[N/mm or 

Nmm/degree] 

Size 

Constraints 

[mm] 

Applied 

Force 

[N] 

Material 

3 Translational 2 - 1.7 - 27.5 3 ABS 
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Figure A 72. GUI inputs used for Test Case 3. 
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Figure A 73. Pareto curve outputs for Test Case 3. 

>> JointMenu 

Translational Joints are selected 

RoM has a value, 2.00 mm. 

k does not have a value (na) 

F has a value, 3.00 N. 

 

Possible joints for this user input are: 

KyusojinLinear6L1   

TreaseTranslational 

XuTranslational     

SmithNotchHinge   

Figure A 74. MATLAB text output for Test Case 3. 
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E.4 Test Case 4 

 The values used for Test Case 4 can be seen in Table A 4. The GUI 

showing the input values is shown in Figure A 75. Since this input does not have a force 

applied, a generic force set of 0.1 N, 1 N, and 10 N are used to show range of motion 

possibilities. The Pareto curves for a force applied of 0.1N, 1 N, and 10 N are shown in 

Figure A 76, Figure A 77, and Figure A 78, respectively. The MATLAB text output is 

shown in Figure A 79. 

Table A 4. Input values for Test Case 4. 

Test 

Case 

Type of 

Joint 

Range of 

Motion 

[mm or 

degrees] 

Stiffness 

[N/mm or 

Nmm/degree] 

Size 

Constraints 

[mm] 

Applied 

Force 

[N] 

Material 

4 Rotational 4 - 2.5 - 45.9 - ABS 
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Figure A 75. GUI inputs used for Test Case 4. 
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Figure A 76. Pareto curve outputs for Test Case 4, using an applied force of 0.1 N. 

 

Figure A 77. Pareto curve outputs for Test Case 4, using an applied force of 1 N. 
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Figure A 78. Pareto curve outputs for Test Case 4, using an applied force of 10 N. 
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>> JointMenu 

JointMenu 

Rotational Joints are 

selected. 

RoM has a value, 4.00 

degrees. 

K does not have a value 

(na) 

F does not have a value 

(na) 

 

Possible joints for this 

user input using a force 

of 0.100000 N are: 

JensenCrossAxis           

SmithCruciform            

SmithTwoAxis              

 

Possible joints for this 

user input using a force 

of 1.000000 N are: 

JensenCrossAxis           

LobontiuSymmetricCircular 

LobontiuSymmetricNotch    

RotationallySymmetric     

SmithCartwheel            

SmithCruciform            

TangSymmetricCircular     

TreaseConcept             

ConventionalSplitTube     

 

Possible joints for this 

user input using a force 

of 10.000000 N are: 

LobontiuSymmetricCircular 

LobontiuSymmetricNotch    

SmithAnnulus              

SmithCartwheel            

TangSymmetricCircular     

TreaseConcept             

VShape        

Figure A 79. MATLAB text output for Test Case 4. 
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E.5 Test Case 5 

 The values used for Test Case 5 can be seen in Table A 5. The GUI 

showing the input values, output Pareto curves, and MATLAB text output are shown in 

Figure A 80, Figure A 81, and Figure A 82, respectively. 

Table A 5. Input values for Test Case 5. 

Test 

Case 

Type of 

Joint 

Range of 

Motion 

[mm or 

degrees] 

Stiffness 

[N/mm or 

Nmm/degree] 

Size 

Constraints 

[mm] 

Applied 

Force 

[N] 

Material 

5 Translational - 1 1.3 - 14.3 6 PLA 
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Figure A 80. GUI inputs used for Test Case 5. 
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Figure A 81. Pareto curve outputs for Test Case 5. 

>> JointMenu 

Translational Joints are selected 

RoM does not have a value (na) 

K has a value, 1.00 N/mm. 

F has a value, 6.00 N. 

 

Possible joints for this user input are: 

KyusojinLinear6L1   

TreaseTranslational 

SmithNotchHinge 

Figure A 82. MATLAB text output for Test Case 5. 
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E.6 Test Case 6 

 The values used for Test Case 6 can be seen in Table A 6. The GUI 

showing the input values is shown in Figure A 83. Since this input does not have a force 

applied, a generic force set of 0.1 N, 1 N, and 10 N are used to show range of motion 

possibilities. The Pareto curves for a force applied of 0.1N, 1 N, and 10 N are shown in 

Figure A 84, Figure A 85, and Figure A 86, respectively. The MATLAB text output is 

shown in Figure A 87. 

Table A 6. Input values for Test Case 6. 

Test 

Case 

Type of 

Joint 

Range of 

Motion 

[mm or 

degrees] 

Stiffness 

[N/mm or 

Nmm/degree] 

Size 

Constraints 

[mm] 

Applied 

Force 

[N] 

Material 

6 Rotational - 2 3 - 37.9 - Aluminum 
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Figure A 83. GUI inputs used for Test Case 6. 

 

Figure A 84. Pareto curve outputs for Test Case 6, using an applied force of 0.1 N. 
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Figure A 85. Pareto curve outputs for Test Case 6, using an applied force of 1 N. 

 

Figure A 86. Pareto curve outputs for Test Case 6, using an applied force of 10 N. 

>> JointMenu 

Rotational Joints are selected. 

RoM does not have a value (na) 

K has a value, 2.00 Nmm/degree. 

F does not have a value (na) 

 

Possible joints for this user input using a force of 0.100000 N are: 

SmithCruciform            

 

Possible joints for this user input using a force of 1.000000 N are: 

SmithCruciform            

 

Possible joints for this user input using a force of 10.000000 N are: 

SmithCruciform 

Figure A 87. MATLAB text output for Test Case 6. 
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E.7 Test Case 7 

 The values used for Test Case 7 can be seen in Table A 7. The GUI 

showing the input values, output Pareto curves, and MATLAB text output are shown in 

Figure A 88, Figure A 89, and Figure A 90, respectively. 

Table A 7. Input values for Test Case 7. 

Test 

Case 

Type of 

Joint 

Range of 

Motion 

[mm or 

degrees] 

Stiffness 

[N/mm or 

Nmm/degree] 

Size 

Constraints 

[mm] 

Applied 

Force 

[N] 

Material 

7 Translational - - 2.4 - 19.0 2 PLA 
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Figure A 88. GUI inputs used for Test Case 7. 
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Figure A 89. Pareto curve outputs for Test Case 7. 

>> JointMenu 

Translational Joints are selected 

RoM does not have a value (na) 

K does not have a value (na) 

F has a value, 2.00 N. 

 

The following joints are organized by RoM, 

Largest to smallest, for the given force, 2.000000 N : 

ParallelStrip with 1.1658 mm displacement.  

SmithRectilinear with 1.1658 mm displacement.  

XuTranslational with 0.1033 mm displacement.  

SmithNotchHinge with 0.0210 mm displacement.  

KyusojinLinear6L1 with 0.0030 mm displacement.  

TreaseTranslational with 0.0016 mm displacement. 

Figure A 90. MATLAB text output for Test Case 7. 
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E.8 Test Case 8 

 The values used for Test Case 3 can be seen in Table A 8. The GUI 

showing the input values and MATLAB text output are shown in Figure A 91 and Figure 

A 92, respectively. It should be noted that there is no Pareto curve output for this 

selection of inputs. This is because with no initial values, a large amount of output is 

shown to the user. To prevent the data from being displayed misleadingly, it is 

recommended the user add some additional requirements and use the selection algorithm 

again. 

Table A 8. Input values for Test Case 8. 

Test 

Case 

Type of 

Joint 

Range of 

Motion 

[mm or 

degrees] 

Stiffness 

[N/mm or 

Nmm/degree] 

Size 

Constraints 

[mm] 

Applied 

Force 

[N] 

Material 

8 Rotational - - 1.8 - 28.4 - Aluminum 
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Figure A 91. GUI inputs used for Test Case 8. 

>> JointMenu 

Rotational Joints are selected. 

RoM does not have a value (na) 

K does not have a value (na) 

F does not have a value (na) 

 

Possible joints for this user input using a force of 0.100 N, 

 organized by RoM are: 

SmithTwoAxis with 3.0006 degrees displacement.  

SmithCruciform with 0.2297 degrees displacement.  

LobontiuSymmetricNotch with 0.1911 degrees displacement.  

RotationallySymmetric with 0.1905 degrees displacement.  

JensenCrossAxis with 0.1862 degrees displacement.  

ConventionalSplitTube with 0.0595 degrees displacement.  

SmithCartwheel with 0.0358 degrees displacement.  
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LobontiuSymmetricCircular with 0.0270 degrees displacement.  

TangSymmetricCircular with 0.0269 degrees displacement.  

TreaseConcept with 0.0252 degrees displacement.  

VShape with 0.0189 degrees displacement.  

SmithAnnulus with 0.0025 degrees displacement.  

Kyusojin6R2 with 0.0001 degrees displacement.  

LobontiuCornerFilleted with 0.0000 degrees displacement.  

 

Possible joints for this user input using a force of 1.000 N, 

 organized by RoM are: 

ConventionalSplitTube with 30.0057 degrees displacement.  

SmithCartwheel with 2.2967 degrees displacement.  

VShape with 1.9114 degrees displacement.  

TreaseConcept with 1.9054 degrees displacement.  

LobontiuCornerFilleted with 1.8610 degrees displacement.  

SmithTwoAxis with 0.5947 degrees displacement.  

LobontiuSymmetricCircular with 0.3583 degrees displacement.  

SmithAnnulus with 0.2702 degrees displacement.  

JensenCrossAxis with 0.2689 degrees displacement.  

RotationallySymmetric with 0.2524 degrees displacement.  

LobontiuSymmetricNotch with 0.1889 degrees displacement.  

TangSymmetricCircular with 0.0247 degrees displacement.  

Kyusojin6R2 with 0.0001 degrees displacement.  

SmithCruciform with 0.0001 degrees displacement.  

 

Possible joints for this user input using a force of 10.000 N, 

 organized by RoM are: 

SmithTwoAxis with 300.0568 degrees displacement.  

LobontiuSymmetricCircular with 22.9673 degrees displacement.  

LobontiuSymmetricNotch with 19.4838 degrees displacement.  

RotationallySymmetric with 19.4201 degrees displacement.  

SmithCruciform with 17.3258 degrees displacement.  

ConventionalSplitTube with 5.9473 degrees displacement.  

SmithAnnulus with 3.5832 degrees displacement.  

TangSymmetricCircular with 2.7028 degrees displacement.  

LobontiuCornerFilleted with 2.6886 degrees displacement.  

TreaseConcept with 2.5238 degrees displacement.  

VShape with 1.8890 degrees displacement.  

JensenCrossAxis with 0.2469 degrees displacement.  

Kyusojin6R2 with 0.0015 degrees displacement.  

SmithCartwheel with 0.0001 degrees displacement. 

Figure A 92. MATLAB text outputs for Test Case 8. 
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APPENDIX F. ADDITIONAL APPROACHES CONSIDERED 

During the development of this research, multiple approaches were considered 

that did not provide results towards the development of the compliant joint repository and 

selection method. Two techniques of representing the models of compliant joints were 

partially implemented.  

One technique was the development of models within Modelica, an acausal 

modeling language, where models could be solved iteratively based on user requirements. 

This method of modeling allowed all inputs to be non-required, but the solution space 

provided was difficult to manage due to size. Models developed within Modelica were 

also difficult to relate to one another, since no normalization had been implemented at the 

time.  

Another technique was the development of models within Phoenix Integration‟s 

ModelCenter. ModelCenter had a few advantages over the current methodology, 

foremost was integrated optimization of compliant joints. Each individual model could be 

optimized to achieve precisely the requirements the user input. However, since each 

model would have to be optimized to determine if it was a potential solution, this 

technique was incredibly slow. ModelCenter also had difficulties processing complex 

logic to determine between different potential outcomes. Each model‟s optimization had 

to be pre-set for every combination of potential inputs, which led to a large library of 

potential optimizations that would be performed each time the selection algorithm was 

used. 
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