
Clemson University
TigerPrints

All Theses Theses

5-2015

A Method for the Characterization and Selection of
Compliant Joints
Ronald George Saleeby
Clemson University

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

Part of the Mechanical Engineering Commons

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized
administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Saleeby, Ronald George, "A Method for the Characterization and Selection of Compliant Joints" (2015). All Theses. 2157.
https://tigerprints.clemson.edu/all_theses/2157

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2157&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2157&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2157&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2157&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2157&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/2157?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2157&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

A METHOD FOR THE CHARACTERIZATION AND

SELECTION OF COMPLIANT JOINTS

A Thesis

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

Mechanical Engineering

by

Ronald George Saleeby

May 2015

Accepted by:

Dr. Gregory Mocko, Committee Chair

Dr. Georges Fadel, Committee Member

Dr. Gang Li, Committee Member

ii

ABSTRACT

A compliant joint is a connection between two bodies that derives its movement

from the deflection of flexible members rather than rigid connections, like traditional

joints. Compliant joints have potential advantages that include longer part life, reduction

of parts in assemblies, and reduced wear. Traditional compliant mechanism design

methodologies have limitations involving the burden of necessary knowledge required to

satisfactorily use them. The method presented in this thesis was developed to provide

compliant joint design solutions independent of the traditional methods of compliant joint

design by allowing the selection of compliant joints from a repository. The repository is

populated by a set of twenty compliant joint models which are characterized by their

geometric characteristics and parametric equations. A Finite Element Analysis (FEA)

simulation is used to validate each of the individual models. The selection algorithm

solves the models systematically using the design requirements set by the user. Results

are presented to the user in the form of a list of compliant joints that fulfill the user

requirements, and Pareto curves that represent the potential range of stiffness and

deflection of compliant joints across the set of geometric characteristics in the design

space. Ten test cases were applied to the selection algorithm to validate the output results.

iii

DEDICATION

I dedicate this thesis to my wonderful wife, Mary. Without her support, love, and

care, I would be lost.

iv

ACKNOWLEDGEMENTS

I would like to thank all the people who helped me through the development and

completion of this thesis.

My deepest gratitude goes to my advisor, Dr. Mocko. His knowledge, experience,

guidance, and most importantly, enthusiasm, kept me engaged with my research, while

pushing me to become more productive, inquisitive, and involved in the development of

my thesis.

I offer my sincere appreciation to my committee members, Dr. Fadel and Dr. Li,

for their support and encouragement, as well as the learning opportunities they provided

me during my time at Clemson.

I would also like to acknowledge all my colleagues in the Clemson Engineering

Design Applications and Research (CEDAR) lab. Their attentiveness, knowledge, and

good humor were invaluable during my studies.

I would like to acknowledge Clemson University‟s Mechanical Engineering

Department, which provided financial support and indispensible experience through my

employment as an Undergraduate Lab Teaching Assistant.

Above all, I am indebted to my family, whose support and love were crucial

components to my accomplishments throughout school. I acknowledge my wife, Mary,

who contributed greatly to my happiness and success, at home and in the office.

v

TABLE OF CONTENTS

Page

ABSTRACT .. ii

DEDICATION ... iii

ACKNOWLEDGEMENTS ... iv

TABLE OF CONTENTS ...v

LIST OF TABLES .. vii

LIST OF FIGURES ... viii

CHAPTER 1. INTRODUCTION AND MOTIVATION ..1

1.1 Background and Importance ..1

1.2 Current Methods for the Development and Design of Compliant Joints3

1.3 Motivation for Research ..8

1.4 Research Questions and Hypotheses ...11

CHAPTER 2: LITERATURE REVIEW ...13

2.1 Improvements to Methodology for the Development of Compliant Mechanisms 13

2.2 Design of Compliant Mechanisms for Specific Applications22

2.3 Conclusions from the Literature Review ...26

CHAPTER 3: DEVELOPMENT OF A COMPLIANT JOINT MODEL

REPOSITORY ...28

3.1 Adding Compliant Joints to the Repository ...30

3.2 Example 1: Translational Compliant Joint – Smith Notch Hinge34

3.3 Example 2: Rotational Compliant Joint – Jensen Cross Axis39

3.4 Compliant Mechanism Repository Results ...44

3.5 Conclusions from Compliant Joint Repository ..52

CHAPTER 4: THE COMPLIANT JOINT SELECTION METHOD53

4.1 Selecting Compliant Joints from the Repository ...53

4.3 Validation of Test Cases ..65

4.4 Selection Algorithm Conclusions ...67

CHAPTER 5: CONCLUSIONS AND FUTURE WORK ...68

vi

TABLE OF CONTENTS (CONTINUED)

Page

5.1 Conclusions ..68

5.2 Potential Impact ...69

5.3 Future Work ...70

CHAPTER 6: REFERENCES ...72

APPENDICES ...75

APPENDIX A. COMPLIANT JOINT REPOSITORY ...76

A.1 Translational Compliant Joints ...76

A.2 Rotational Compliant Joints ..90

APPENDIX B. COMPLETE SELECTION ALGORITHM MATLAB CODE125

APPENDIX C. MATLAB GUI CODE ...163

APPENDIX D. MATLAB PARETO CURVE GENERATING CODE170

APPENDIX E. TEST CASES USED TO VALIDATE SELECTION

ALGORITHM..178

E.1 Test Case 1 ..178

E.2 Test Case 2 ..181

E.3 Test Case 3 ..184

E.4 Test Case 4 ..187

E.5 Test Case 5 ..192

E.6 Test Case 6 ..195

E.7 Test Case 7 ..198

E.8 Test Case 8 ..201

APPENDIX F. ADDITIONAL APPROACHES CONSIDERED204

vii

LIST OF TABLES

Table Page

Table 1. Research questions and research hypotheses ...12

Table 2. Geometric properties of the Smith Notch Hinge compliant joint used for

comparison between the MATLAB model and the FEA model............................37

Table 3. Geometric properties of the Jensen Cross Axis compliant joint used for

comparison between the MATLAB model and the FEA model............................43

Table 4. Translational Compliant Joint Repository List ..46

Table 5. Rotational Compliant Joint Repository List ..47

Table 6. A comparison of FEA models and parametric equations for translational

compliant joints for a unit force of 1 N..50

Table 7. A comparison of FEA models and parametric equations for rotational

compliant joints for a unit force of 1 N..51

Table 8. Inputs for the test cases. ...60

Table 9. Test Cases, with the True Positives, True Negatives, False Positives, and

False Negatives determined for each. ..66

Table A 1. Input values for Test Case 1...178

Table A 2. Input values for Test Case 2...181

Table A 3. Input values for Test Case 3...184

Table A 4. Input values for Test Case 4...187

Table A 5. Input values for Test Case 5...192

Table A 6. Input values for Test Case 6...195

Table A 7. Input values for Test Case 7...198

Table A 8. Input values for Test Case 8...201

viii

LIST OF FIGURES

Figure Page

Figure 1: A traditional joint pair of locking pliers and a compliant joint pair of

locking pliers [1]. ...1

Figure 2. (a) Psuedo-rigid body model comparison for a flexure hinge, and (b)

pseudo-rigid-body model comparison for a buckling compliant beam [2]..............3

Figure 3. Example of a size optimization design space [1]. ..4

Figure 4. An example of shape optimization: (a) is the design space used for the

problem, and (b) through (d) are the potential shape topologies that

connect the input and output ports. Note: These are not necessarily the

solutions for this problem, just examples that illustrate possibilities [1].5

Figure 5. (a) Discretization of a design space for continuous material density

topology optimization. (b) Possible topology solution with black (solid),

white (void) and grey (intermediate density). (c) Possible interpretation of

the topology solution. Note: This is not necessarily the solution for this

problem, just an example that illustrates a possibility. ..7

Figure 6. Overview of compliant joint selection method. ...11

Figure 7. (a) A simple fixed pin segment, and (b) its pseudo-rigid-body model [7].14

Figure 8. (a) Design domain for compliant hand tool (b) optimal topologies for

different fixed handle sizes (c) constructed hand tool from interpreted

topology optimization design [15]. ..18

Figure 9. (a) Compliant straight line mechanism (deformed and undeformed)

created by pseudo-rigid-body design and (b) the same mechanism

(deformed and undeformed) created by optimal synthesis with continuum

model [17]. ...19

Figure 10. A compliant translational joint and its characterization as a compliant

building block [18]. ..20

Figure 11. An example of a displacement amplifying compliant mechanism

defined in Jhawar‟s catalogue [19]. ...21

ix

LIST OF FIGURES (CONTINUED)

Figure Page

Figure 12. Prototype design of Mahler‟s pediatric prosthetic knee [20].22

Figure 13. Schematic of an isolation joint system [25]. ..25

Figure 14. (a) Direct compression and (b) application of the Inversion theory [25].26

Figure 15. Defined movement of rotational compliant joints. ...29

Figure 16. Defined movement of rotational compliant joints. ...30

Figure 17. Outline of process used to develop models of compliant joints.30

Figure 18. Geometric characteristics of the Smith Notch Hinge compliant joint.35

Figure 19. The initial MATLAB file used to test the Smith Notch Hinge

compliant joint model, SmithNotchHinge.m36

Figure 20. The completed Smith Notch Hinge model, as a MATLAB function.37

Figure 21. Boundary conditions used for the Smith Notch Hinge compliant joint

model simulations. ...38

Figure 22. Mesh and deformed shape for the Smith Notch Hinge FEA simulation.39

Figure 23. Geometric characteristics of the Jensen Cross Axis compliant joint.40

Figure 24. The initial MATLAB file used to test the Jensen Cross Axis compliant

joint model, JensenCrossAxis.m. ...41

Figure 25. The completed Jensen Cross Axis model, as a MATLAB function.42

Figure 26. Boundary conditions used for the Jensen Cross Axis compliant joint

model simulations. ...43

Figure 27. Mesh and deformed shape for the Jensen Cross Axis FEA simulation.44

Figure 28. Overview of selection algorithm for determining compliant joints that

fulfill the user‟s requirements. ...53

Figure 29. Graphical user interface for selection algorithm. ...54

Figure 30. Example Pareto chart outputs from the algorithm. ...57

Figure 31. Example output from the selection algorithm. ...58

Figure 32. GUI input for Test Case 1. ...61

x

LIST OF FIGURES (CONTINUED)

Figure Page

Figure 33. Pareto output for Test Case 1. ..62

Figure 34. MATLAB text output for Test Case 2. ...62

Figure 35. GUI input for Test Case 2. ...63

Figure 36. Pareto curves for Test Case 2, using an applied force of 10 N.64

Figure 37. MATLAB text output for Test Case 2. ...65

Figure A 1. Solid model representation of the Smith Rectilinear compliant joint.76

Figure A 2. Geometric characteristics of the Smith Rectilinear compliant joint.77

Figure A 3. MATLAB function model of the Smith Rectilinear compliant joint.77

Figure A 4. Solid model representation of the Kyusojin Parallel Strip compliant

joint. ...78

Figure A 5 Geometric characteristics of the Kyusojin Parallel Strip compliant

joint. ...78

Figure A 6. MATLAB function model of the Kyusojin Parallel Strip compliant

joint. ...79

Figure A 7. Solid model representation of the Kyusojin Linear 6L1 compliant

joint, (a) original position and (b) deflected position. ...80

Figure A 8. Side view of solid model representation of the Kyusojin Linear 6L1

compliant joint, (a) original position and (b) deflected position.80

Figure A 9. Geometric characteristics of the Kyusojin Linear 6L1 compliant joint.81

Figure A 10. MATLAB function model of the Kyusojin Linear 6L1 compliant

joint. ...82

Figure A 11. Solid model representation of the Trease Translational compliant

joint. ...83

Figure A 12. Geometric characteristics of the Trease Translational compliant

joint. ...83

Figure A 13. MATLAB function model of the Trease Translational compliant

joint. ...84

xi

Figure A 14. Solid model representation of the Xu Translational compliant joint............85

Figure A 15. Geometric characteristics of the Xu Translational compliant joint.85

Figure A 16. MATLAB function model of the Xu Translational compliant joint.87

Figure A 17. Solid model representation of the Smith Notch Hinge compliant

joint. ...88

Figure A 18. Geometric characteristics for the Smith Notch Hinge compliant

joint. ...88

Figure A 19. MATLAB function model of the Smith Notch Hinge compliant

joint. ...89

Figure A 20. Solid model representation of the Lobontiu Symmetric Notch

compliant joint. ..90

Figure A 21. Geometric characteristics of the Lobontiu Symmetric Notch

compliant joint. ..90

Figure A 22. MATLAB function model of the Lobontiu Symmetric Notch

compliant joint. ..91

Figure A 23. Solid model representation of the Lobontiu Corner Filleted

compliant joint. ..92

Figure A 24. Geometric characteristics of the Lobontiu Corner Filleted compliant

joint. ...92

Figure A 25. MATLAB function model of the Lobontiu Corner Filleted compliant

joint. ...94

Figure A 26. Solid model representation of the Lobontiu Symmetric Circle

compliant joint. ..95

Figure A 27. Geometric characteristics of the Lobontiu Symmetric Circle

compliant joint. ..95

Figure A 28. MATLAB function model of the Lobontiu Symmetric Circle

compliant joint. ..97

Figure A 29. Solid model representation of the Tian V Shape Flexure compliant

joint. ...98

xii

Figure A 30. Geometric characteristics of the Tian V Shape Flexure compliant

joint. ...98

Figure A 31. MATLAB function model of the Tian V Shape Flexure compliant

joint. ...100

Figure A 32. Solid model representation of the Tang Symmetric Circular

compliant joint. ..101

Figure A 33. Geometric characteristics of the Tang Symmetric Circular compliant

joint. ...101

Figure A 34. MATLAB function model of the Tang Symmetric Circular

compliant joint. ..102

Figure A 35. Solid model representation of the Smith Two Axis compliant joint.103

Figure A 36. Geometric characteristics of the Smith Two Axis compliant joint.103

Figure A 37. MATLAB function model of the Smith Two Axis compliant joint.104

Figure A 38. Solid model representation of the Smith Annulus compliant joint.105

Figure A 39. Geometric characteristics of the Smith Annulus compliant joint.105

Figure A 40. MATLAB function model of the Smith Annulus compliant joint.107

Figure A 41. Solid model representation of the Smith Cartwheel compliant joint..........108

Figure A 42. Geometric characteristics of the Smith Cartwheel compliant joint.108

Figure A 43. MATLAB function model of the Smith Cartwheel compliant joint.109

Figure A 44. Solid model representation of the Smith Cruciform compliant joint.110

Figure A 45. Geometric characteristics of the Smith Cruciform compliant joint.110

Figure A 46. MATLAB function model of the Smith Cruciform compliant joint.111

Figure A 47. Solid model representation of the Jensen Cross Axis compliant joint.112

Figure A 48. Geometric characteristics of the Jensen Cross Axis compliant joint.112

Figure A 49. MATLAB function model of the Jensen Cross Axis compliant joint.113

Figure A 50. Solid model representation of the Smith Rotationally Symmetric

Leaf Hinge compliant joint. ...114

Figure A 51. Geometric characteristics of the Smith Rotationally Symmetric Leaf

Hinge compliant joint. ...114

xiii

Figure A 52. MATLAB function model of the Smith Rotationally Symmetric Leaf

Hinge compliant joint. ...116

Figure A 53. Solid model representation of the Trease Rotational compliant joint.117

Figure A 54. Geometric characteristics of the Trease Rotational compliant joint.117

Figure A 55. MATLAB function model of the Trease Rotational compliant joint.118

Figure A 56. Solid model representation of the Kyusojin Rotational 6R2

compliant joint. ..119

Figure A 57. Geometric characteristics of the Kyusojin Rotational 6R2 compliant

joint. ...119

Figure A 58. MATLAB function model of the Kyusojin Rotational 6R2 compliant

joint. ...121

Figure A 59. Solid model representation of the Goldfarb Conventional Split Tube

compliant joint. ..122

Figure A 60. Geometric characteristics of the Goldfarb Conventional Split Tube

compliant joint. ..123

Figure A 61. MATLAB function model of the Goldfarb Conventional Split Tube

compliant joint. ..124

Figure A 62. Complete MATLAB function selection algorithm.162

Figure A 63.The MATLAB function that controls the GUI. ...169

Figure A 64. Complete MATLAB function used to build Pareto curves for a

translational joint set. ...172

Figure A 65. Complete MATLAB function used to build Pareto curves for a

rotational joint set. ...177

Figure A 66. GUI inputs used for Test Case 1. ..179

Figure A 67. Pareto curve outputs for Test Case 1. ...180

Figure A 68. MATLAB text output for Test Case 1. ...180

Figure A 69. GUI inputs used for Test Case 2. ..182

Figure A 70. Pareto curve outputs for Test Case 2. ...183

Figure A 71. MATLAB text output for Test Case 2. ...183

xiv

Figure A 72. GUI inputs used for Test Case 3. ..185

Figure A 73. Pareto curve outputs for Test Case 3. ...186

Figure A 74. MATLAB text output for Test Case 3. ...186

Figure A 75. GUI inputs used for Test Case 4. ..188

Figure A 76. Pareto curve outputs for Test Case 4, using an applied force of 0.1

N. ..189

Figure A 77. Pareto curve outputs for Test Case 4, using an applied force of 1 N.189

Figure A 78. Pareto curve outputs for Test Case 4, using an applied force of 10 N.190

Figure A 79. MATLAB text output for Test Case 4. ...191

Figure A 80. GUI inputs used for Test Case 5. ..193

Figure A 81. Pareto curve outputs for Test Case 5. ...194

Figure A 82. MATLAB text output for Test Case 5. ...194

Figure A 83. GUI inputs used for Test Case 6. ..196

Figure A 84. Pareto curve outputs for Test Case 6, using an applied force of 0.1

N. ..196

Figure A 85. Pareto curve outputs for Test Case 6, using an applied force of 1 N.197

Figure A 86. Pareto curve outputs for Test Case 6, using an applied force of 10 N.197

Figure A 87. MATLAB text output for Test Case 6. ...197

Figure A 88. GUI inputs used for Test Case 7. ..199

Figure A 89. Pareto curve outputs for Test Case 7. ...200

Figure A 90. MATLAB text output for Test Case 7. ...200

Figure A 91. GUI inputs used for Test Case 8. ..202

Figure A 92. MATLAB text outputs for Test Case 8. ...203

1

CHAPTER 1. INTRODUCTION AND MOTIVATION

The primary objective of this research is the development of a method of

characterizing compliant joints that enables their selection from a repository. The

repository will be comprised of compliant joints of different characteristics and types,

which can be defined geometrically by certain parameters and by parametric equations.

An algorithm will be used to select compliant joints from the repository based on user

requirements.

1.1 Background and Importance

A connection between two bodies that imposes constraints on their relative

movement is called a joint. Compliant joints are a type of joint which derive their motion

from the deflection of flexible members rather than rigid connections, like traditional

mechanical joints. A compliant mechanism is a type of mechanism that uses a

combination of compliant joints to achieve a desired motion [1]. A comparison of a

traditional joint pair of locking pliers and a compliant pair of locking pliers is shown in

Figure 1.

Figure 1: A traditional joint pair of locking pliers and a compliant joint pair of

locking pliers [1].

2

Certain advantages are inherent to this type of construction. Compliant joints are

typically produced as a single part, which results in a reduction in total parts needed for

assembly. This can attribute to a reduction in assembly time in mass production. Since

compliant joints rely on deflection rather than mobile interconnections, they typically will

not be as affected by contaminants or abrasives, and therefore can experience reduced

wear and less need for lubrication. This can result in a longer part life. Disadvantages of

compliant joints include reduced range of motion compared to traditional joints, since the

motion is derived from deflection. They have from reduced absolute strength, since the

deflection of thin members generally cannot handle large loads. It is also possible for

compliant joints to experience degradation of bending characteristics over time, due to

the loss of resilience of polymers over extended use [1, 2, 3].

A goal of this research is to utilize the advantages of compliant joints by

increasing accessibility to the end-user. Designers, fabricators, and inventors do not

typically have the background or experience to design complex compliant joints, and may

not be aware of the capabilities of them. If a user inexperienced in compliant joint design

can reach a satisfactory design without the knowledge required for traditional compliant

joint design methodology, then it is possible for them to have the opportunity to

incorporate it into their designs. A designer could set requirements, select, and rapid

prototype a compliant joint in a matter of hours. This is further bolstered by the ease at

which compliant joints are made from thermoplastics and other common rapid

prototyping materials. To facilitate this, a methodology that simplifies the selection of

compliant joints and presents them in an ordered fashion to a user is necessary. Fields of

3

production have not traditionally had access to the software and design theory behind the

creation of new compliant joints, or the use of them to satisfying standing criteria, and

thus they have suffered a lack of use in mass production.

1.2 Current Methods for the Development and Design of Compliant Joints

Two main methods exist for the design of new compliant joints and the

implementation of compliant joints into various applications. The first is the pseudo-

rigid-body model approach, also known as the kinematics approach. This method

involves drawing the compliant sections of a mechanism as rigid links and calculating the

required spring constant of those sections. This technique is most effective to represent

the movement of joints that undergo large deflections or have complex movement. The

disadvantage of this method is that it requires known rigid-body comparisons for all

compliant sections that will be used [2]. An example of how this method is applied to

represent a leaf spring flexure and a buckling beam is shown in Figure 2.

(a) (b)

Figure 2. (a) Psuedo-rigid body model comparison for a flexure hinge, and (b)

pseudo-rigid-body model comparison for a buckling compliant beam [3].

Flexure Hinge

Rigid link

(fixed)
Pseudo-rigid-body model

Torsion spring

Rigid link

M1z

F1z

F1y

Pseudo-rigid-body model

Spring Slider

Buckling Compliant Beam

F1z

4

The second method of compliant mechanism design is the structural optimization

approach. This method uses a design domain that is divided into discretized elements in a

mesh. The locations of the loads, supports, and desired characteristics of the joint are

modeled on nodes within this mesh, and then various numerical techniques can be solved

iteratively to determine the final characteristics of the compliant joint. Howell [1] divides

structural optimization for compliant mechanisms into three levels of hierarchy.

1. Size optimization is the simplest type of structural optimization. It can be used to

determine the cross section profile and thickness dimensions of beam and truss

elements, thickness of plate and shell elements, size of a holes and similar design

variables. Figure 3 is an example of the design space for an application of size

optimization. In this example, the thickness profile w(x) of a simply supported

beam of length L is the design variable. The beam is subjected to the constraints

of a certain transverse deflection at distance a, and a certain load across the beam,

p(x). The objective is the minimization of the volume of the beam.

Figure 3. Example of a size optimization design space [1].

a

p(x)

L

Δ

5

2. Shape optimization is generally more difficult and computationally intensive than

size optimization. The design space is a set of all potential shapes. The topology

of these shapes can be specified through different types of design variables. An

example of these design variables could be the control points on a Bezier or spline

interpolation curve, which would determine the overall shape of the design. The

shape changes with each iteration, which can lead to the accuracy of the finite

element model diminishing unless directed to remesh. The designer must be

aware of the effects of the shape design variables on the objective and constraint

functions by performing a sensitivity analysis. An example of various shape

optimizations for a given design space is shown in Figure 4.

Figure 4. An example of shape optimization: (a) is the design space used for the

problem, and (b) through (d) are the potential shape topologies that connect the

input and output ports. Note: These are not necessarily the solutions for this

problem, just examples that illustrate possibilities [1].

3. Topology optimization is considered the most general type of optimization. This

method determines the location of material across the entire design domain, like

the connectivity between input ports, output ports, and fixed locations. This is

Input force

Output displacement

Fixed(a)

(b) (c) (d)

6

useful because a designer does not have to commit to a certain shape like size

optimization, or a set of shapes defined by a mathematical relation, like shape

optimizations. Topology optimization utilizes a mesh that discretizes the entire

design space, and then determines the material density that will be distributed in

each element of the mesh. The form of the resultant design is derived from the

final presented mesh, but depending on the fidelity of the mesh, some post-

processing to the design may have to be completed before it can be finalized.

Figure 5 shows a topology optimization of a design space with a set input force,

output displacement, and fixed region. The density of each cell is a design

variable ranging from void to solid [4].

(a)

(b)

Output displacement

Input force

7

(c)

Figure 5. (a) Discretization of a design space for continuous material density

topology optimization. (b) Possible topology solution with black (solid), white (void)

and grey (intermediate density). (c) Possible interpretation of the topology solution.

Note: This is not necessarily the solution for this problem, just an example that

illustrates a possibility.

Topology optimization considers the widest variety of potential topologies for a

design space. This makes it a useful technique to be used in the design of new compliant

mechanisms. The designer does not have to have an underlying background or

comprehension of the various building blocks of compliant mechanisms to design a

particular topology. Instead, the optimization algorithm determines the shape and size

simultaneously to satisfy the design requirements. The weakness of this technique is that

the success of a topology optimization is entirely dependent on the user‟s initial setting of

the design domain. There is a possibly that an initial guess can result in no potential

possibilities due to local minima or maxima. To avoid this, a sensitivity analysis should

be performed iteratively with the analysis to determine the effects of changes in the

design variables to the objective and constraint functions [1].

8

The pseudo-rigid-body method requires that the user know and understand the

underlying compliant joint to rigid-body comparisons to be used as a design method.

Similarly, the structural optimization method requires the user to understand how to set

up a design space such that potential solutions are possible, while minimizing iteration

time. The high burden of knowledge required to use these methods translates to user

difficulty when attempting to design compliant joints.

1.3 Motivation for Research

The properties of compliant joints have resulted in many diverse research

applications being developed, ranging from microscopic compliant joints for precision

movement in Microelectromechanical systems (MEMS) to macroscopic compliant joints

that provide structural support in lieu of beams. A gap analysis was performed to identify

potential research gaps and the research applications that have not been fully explored.

The following are several of the identified research gaps.

1. Compliant joint designs have not been developed that are optimized to take

advantage of the parasitic nature of axial drift to achieve a desired motion.

Research has been done previously on the minimization of axial drift to increase

the precision of compliant joints, especially on a micro-scale level. The use of

axial drift to develop slider-crank type motion joints has not been well established

[5].

2. The application of newly developed compliant mechanisms in the macroscale

(hand-size) as a replacement for traditional joints has not been adequately

explored. Much of compliant mechanism research focuses on the application of

9

compliant mechanisms in the micro- and nano-scales, due to their inherent

advantages over traditional joints (like lack of required lubrication), which make

them ideal in this environment. Development of compliant mechanisms for use in

the macro-design industries could increase the volume of compliant mechanisms

in the mainstream industry [2]. An illustration of this potential can be seen with

the compliant locking pliers in Chapter 1.

3. To design and develop new compliant mechanisms for an application, the

pseudo-rigid-body method, topology optimization method, a derivative of

these two methods, or trial and error must be used. Current compliant

mechanism design methodologies are constantly improving, but some limitations

of these methods have not been addressed. Parallel methodologies and

alternatives to these methods are scarce. If a pseudo-rigid-body model has been

constructed, but transformations into compliant structures to not exist, it cannot be

converted into a compliant mechanism. Topology optimization can fail if the user

does not have an understanding of the design domain, and how it affects the final

result. [1, 4, 7].

4. Current compliant mechanism design methodologies have a steep learning

curve, and the accompanying software is difficult to use. The previously

outlined methods are the most widely used techniques for developing new

compliant mechanisms. An understanding of pseudo-rigid-body to compliant joint

comparisons is required for the pseudo-rigid-body method to be feasible.

Alternatively, the learning curve for developing a design space that will produce

10

feasible solutions in topology optimization software requires that the user

understand the design space and how its implementation will affect the final

result. Both of these methods of selection and design of compliant mechanisms

are only as powerful as the user developing the problem [1, 4, 6].

5. The focus of a large amount of compliant mechanism research is on a single

or limited number of applications, rather than a large range of applications.

A section of compliant mechanism research and development has been the

creation of new compliant joints for specified applications. Compliant joints can

be applied to a vast number of applications, but limited research has been done in

this arena. A methodology than can be applied to the widest reaching amount of

compliant mechanism design would bridge this gap [4, 8, 9].

This research primarily focuses on the gaps of user accessibility and the broad

reach of potential applications. The overall goal is the development of a method that

allows a user to select a compliant joint that has the capability to fulfill their design

requirements. The approach used to bridge these gaps is as follows. A repository of

compliant joint models will be created to represent different compliant joint possibilities.

Users will be able to narrow the selection of compliant joints by filling in some

requirements that are desired. The selection algorithm will not be limited by user input,

and will still be able to successfully present potential solutions to the user even with

missing requirements. The algorithm can determine a range of values for the missing

parameters and provide the user with a list of compliant joints that most closely fulfill

their requirements. A brief overview of this approach is shown in Figure 6.

11

Figure 6. Overview of compliant joint selection method.

1.4 Research Questions and Hypotheses

Research questions and accompanying hypotheses were developed to aid in the

clarification of goals for this research. These research questions and support of the

hypotheses will result in satisfactory fulfillment of the research. In Table 1, they are

divided into the research questions, hypotheses, and the potential solution for fulfillment.

Compliant joints are developed as

individual models

Models are located within a repository

User enters requirements into a GUI

Selection algorithm determines

potential solutions

Results are presented to user

12

Table 1. Research questions and research hypotheses

Research Questions Research Hypotheses Fulfillment

What parameters can a

compliant joint be

characterized by such

that it can be objectively

compared to other

compliant joints?

A compliant joint can be

characterized by geometry and

parametric equations such that

it can be compared by

objective metrics to other

compliant joints.

Compliant joints can be

compared to one another

based on normalized

characteristics, to facilitate

selection.

How can a user achieve

results that include a

compliant joint that most

closely fulfills their

requirements?

A compliant joint can be

consistently selected from a

repository, to fulfill a user‟s

requirements.

A correct compliant joint

can be determined and

presented to the user, after

the selection process has

been completed.

How can the information

be presented to the user

so that it is possible to

differentiate between

multiple satisfactory

solutions?

Using the characteristics

specific to a compliant joint, it

is possible to present

information that assists in the

selection of the most applicable

compliant joint from a set of

two or more.

The research provides the

tools for a list of compliant

joints to be differentiated

objectively by their

characteristics, to facilitate

final selection.

For the compliant joint repository and selection method to be considered

successful, it will need to accomplish the goals outlined here and thus prove its value as a

compliant joint selection methodology. This includes facilitating characterization and

normalization of a number of compliant joints, allowing them to be compared to one

another objectively, providing a means of selection between these models such that they

fulfill user requirements, and providing results that allow a user to determine the “best”

compliant joint from a list which contains all satisfactory compliant joints.

13

CHAPTER 2: LITERATURE REVIEW

To create the frame of reference for this thesis, a literature review had to be

performed on the following topics: (1) the improvement of currently existing methods for

the design and synthesis of compliant joints, and (2) the design and implementation of

new compliant joints. This includes a study of some of the compliant joints that have

been designed for a variety of specific applications. These two topics are common themes

within compliant mechanism research, driving new innovations and improvements.

2.1 Improvements to Methodology for the Development of Compliant Mechanisms

Pseudo-rigid-body models of compliant mechanisms were developed to represent

the design requirements of potential applications. A designer using this method can take

advantage of well documented rigid-body mechanisms to approximate the movement of a

compliant mechanism. This allows large nonlinear deflections of compliant flexures to be

modeled as rigid links attached at pin joints, that have equivalent force-deflection

characteristics [1]. Howell and Midha [6] developed some of the first techniques for the

pseudo-rigid-body model approach when they replaced flexural pivots with kinematic

joints at the center of a flexible segment, using a torsion spring to represent the stiffness

of the joint. Prior to the development of this method, the design and development of new

compliant mechanisms was primarily trial and error. An example of the pseudo-rigid-

body model approach models that Howell developed can be seen in Figure 7.

14

(a)

(b)

Figure 7. (a) A simple fixed pin segment, and (b) its pseudo-rigid-body model [6].

As the need to represent more complex compliant mechanisms for a variety of

applications increased, more approximations and representations were required to ensure

15

accuracy of a pseudo-rigid-body model. Howell [7] offered an improved model of large

deflection beams under end load, which was able to approximate the nonlinear path of a

deflected cantilever beam within 0.5 percent of the closed-form elliptic integral solutions.

Many other researchers have contributed additional improvements to pseudo-rigid-body

models catalogue. Edwards [8] produced a concept capable of simulating pinned-pinned

connections as two individual rigid members connected at pin joints, with a torsion spring

at the pin joint representing the flexible member‟s stiffness. The accuracy of this model

was tested analytically using fabricated aluminum, steel, and polypropylene segments. It

was shown that the model accurately predicted the segment‟s deflection characteristics.

Additional work in the field of pseudo-rigid-body models has been completed by

Espinosa [9] for the purpose of improving the modeling of straight and curved flexures

subject to compressive loads. He included a new parameter called the characteristic

radius factor, which is a function of the moment of the beam, to describe the motion of

the deflected beam over a large range of motion. This was developed for use in the design

of ortho-planar micro-electromechanical systems (MEMS), which can achieve motion out

of the plane of fabrication. Tang and colleagues [10] studied a method of modeling large

displacement precision positioning flexures, by decoupling the kinematic structure and

comparing it to a pseudo-rigid-body model. This work was verified through the design of

a large displacement prismatic joint that achieved very precise linear movements with

minimized parasitic rotation (less than 1.5 mrad). They also showed that their method

was more accurate than a traditional pseudo-rigid-body model.

16

Topology optimization methodology for the development and design of compliant

mechanisms has undergone various improvements as well. Topological synthesis for

compliant joints, which is the development of new compliant joints from a series of

flexures, allows flexures to be combined in the most optimal way to achieve a desired

output. Frecker and colleagues [11] contributed to the methodology of topological

synthesis with a method that utilized multi criteria optimization. This was developed to

combine the conflicting design objectives of flexibility and stiffness required for a

specific deflection. The functionality of the solutions was proved through both finite

element models and prototype designs. Frecker and her coauthors [12] also developed

two methods of topology optimization for compliant mechanisms with multiple outputs,

both of which used a ratio of potential energy to strain energy as a design objective to

produce compliant joints that have a specified stiffness and flexibility. The

methodologies that were produced were named combined virtual load and weighted sum

of objectives. Of the two, combined virtual load used significantly less computational

time. Another topology synthesis development that was function driven was Lu‟s work

[13] in the synthesis of compliant mechanisms to achieve a specific curve, while

simultaneously using a minimum number of actuators. This was applied to topologies

that require an adaptive shape change, like antenna reflectors, which can potentially

increase system performance and flexibility through changing the signal pattern or

coverage area of the reflectors.

Continuum topology optimization of compliant mechanisms, which uses a set

design domain and specified positions and directions of all input and outputs, has been

17

improved upon by the development of certain techniques. Sigmund [14] used a technique

that controlled the maximum stress level in a compliant mechanism by constraining the

allowed displacement at the input port. Another technique he used involved utilizing a

design constraint of reduced internal stresses by limiting allowed displacement output.

This could be used to design compliant mechanisms with specific complex behaviors.

These methods allowed him to design and develop a compliant hand tool which

maximized the mechanical advantage between the input and output ports. The process

and design domain for this compliant hand tool is detailed in Figure 8.

(a)

(b)

x1 mm

x2 mm

Fin

Fin 225 mm

7
5

 m
m Fout

Design Domain

18

(c)

Figure 8. (a) Design domain for compliant hand tool (b) optimal topologies for

different fixed handle sizes (c) constructed hand tool from interpreted topology

optimization design [14].

Pedersen [15] further improved continuum topology optimization methods in

large displacement compliant mechanisms through a Finite Element Analysis (FEA)

method that utilized non-linear analysis. He demonstrated that the gain in output

performance can be as high as 2.5 when comparing non-linear analysis to linear analysis,

although the computational cost increases substantially. These techniques were used to

demonstrate that topology optimization can be used for the generation of complex path-

generating compliant mechanisms.

A deterministic approach was tested by Pavlović [16] which developed two

rectilinear compliant mechanisms that each had a specific output deflection. A direct

comparison was made between a compliant mechanism created using the pseudo-rigid-

body method and a compliant mechanism created using optimal synthesis with

continuum models. He found that the resultant compliant mechanism from these methods

had different optimized characteristics depending on the method used. The rigid-body-

model approach of the coupler points showed greater guiding accuracy than the optimal

synthesis with continuum model. The greater overall stiffness of the compliant

19

mechanism can be obtained through the optimal synthesis with continuum model, and as

a result of this, this model has a higher velocity of guiding point, higher output force as

well as higher mechanical advantage. The two compliant straight-line mechanisms that

were designed and compared are shown in Figure 9.

(a) (b)

Figure 9. (a) Compliant straight line mechanism (deformed and undeformed)

created by pseudo-rigid-body design and (b) the same mechanism (deformed and

undeformed) created by optimal synthesis with continuum model [16].

Alternatives to the previously highlighted methods of compliant mechanism

design and selection have been posed as well. Bernardoni [17] proposed a method which

considered compliant mechanisms an assembly composed of compliant “building blocks”

which are modeled by elementary frame ground structures. The method characterizes the

structural parameters of the blocks between flexures by height, width, and thickness, as

well as the Young‟s modulus, Poisson ratio, and density. The whole structure is complete

as a “square block,” acting as a compliant sliding joint characterized by defined stiffness

matrices that link the nodes. Figure 10 presents a translational compliant joint as realized

as a compliant building block.

20

Figure 10. A compliant translational joint and its characterization as a compliant

building block [17].

These building blocks are then used in a topological optimization. The user must

define the discrete topology and boundary-condition variables that will define the desired

compliant joint. The discrete topology variables that the user must define are the type of

blocks, size of blocks, material, and thickness. The user must also define the boundary-

conditions that are steady for all outputs. These are the minimum and maximum number

of fixed nodes, locations of these fixed nodes, the minimum and maximum number of

contacts, the allowed location of contacts, and the backlash of the contacts. The

boundary-conditions that change for each output, which include the minimum and

maximum number of actuators, the allowed location of actuators, the forces provided by

the actuators and the maximum strokes, and the stiffness of each actuator, must also be

defined. The topology, dimensions, material, contacts, fixed frame, and actuators are

generated using a multi objective genetic algorithm (based on NSGA2) with the design

object of achieving a maximized force/motion ratio. A trial and error procedure must be

performed by the user to determine if the optimization has found errors, like buckling

phenomenon or Von Mises stresses that exceed the material limits. This method was

tested to create a two degree of freedom compliant mechanism, and references the

21

procedure was completed in a short computational time, although that time is not listed

[17].

A catalogue and selection method was put forth by Jhwar [18] to select

Displacement amplifying Compliant Mechanisms (DaCM) for a given application. This

method uses a catalogue of defined compliant mechanisms to select the most suitable

mechanism for the quantitative specifications of the user. This required data includes

force, displacement and stiffness specifications at the input and output. The DaCM

catalogue consists of slender beams connected by flexures configured in specific

topologies. These are analyzed using finite element analysis and the mechanism‟s

springs-mass lever (SML) model parameters are extracted and stored parametrically as

functions of the size of the device. These pre-computed SML models are used to select a

suitable DaCM of appropriate user-specified size. The final catalogue presented with

eight models that contain different topologies found in current literature, although more

could be completed with topology optimization. Parallels could be drawn between this

research‟s approach to a selection algorithm and the research presented in this thesis. An

example of a DaCM model that is used in the catalogue is shown in Figure 11.

Figure 11. An example of a displacement amplifying compliant mechanism defined

in Jhawar’s catalogue [18].

22

2.2 Design of Compliant Mechanisms for Specific Applications

Efforts in compliant joint research have also been geared towards the

development of new compliant mechanisms for specific applications. The precision, lack

of friction, reduced wear, and absence of backlash make compliant mechanisms a

convenient and practical tool to be used in design for the use in medical and

micromanufacturing fields.

The application of these unique qualities can lead to innovations in prosthetics,

like Mahler‟s design [19] of a compliant joint mimicking the human knee for pediatric

patients. He was able to implement a design that maintained the requirements of light

weight, durability, and stability, while maintaining simplicity and a single-joint design.

He was also able to address the unique scenarios that pediatric knees tend to find use, like

the harsh environments that children tend to play in, such as water or sand. Allowing

adjustability required to accommodate for differences in gait between individuals was

also proposed. The prototype design is shown in Figure 12.

Figure 12. Prototype design of Mahler’s pediatric prosthetic knee [19].

23

Innovations in compliant mechanism design can also be applied to the design of

microstructures, since there are requirements for carefully calibrated flexures. This has

been applied many times for use within MEMS. All traditional compliant mechanism

design methods can be applied, and single part manufacturing of compliant mechanisms

make miniaturization simple [4]. Kyusojin and colleagues [20] designed a compliant

mechanism that implements flexible strips in parallel, relying on their good linear

displacement characteristics to move precise horizontal distances while minimizing

vertical displacement. They were able to conclude that a submicron degree of accuracy

could be achieved in the horizontal movement, with a sufficiently long platform. Due to

the simplicity of the instruments, the results showed good repeatability and

reproducibility characteristics. This study laid the ground work for many other compliant

mechanism designs that were developed later.

Another precision translational compliant mechanism was developed by Xu and

colleagues [21], who achieved very precise linear movements with their design. It

showed over 5000 linearity within a 5 mm displacement, and their work proposed that

large deflection flexural joints can be developed into approximate straight line joints,

with incredibly high precision.

Other work that increased the overall knowledge of compliant flexures‟

characteristics includes Tian‟s development of closed form equations for V-shaped

flexures [22]. Typically, compliant mechanisms devised of multiple flexures use notch

hinges or circular flexure hinges, due to the simplicity of manufacture, but the

development of descriptions of geometry and deflection characteristics allows V-shape

24

flexures to be better defined, with the goal of wider integration. A unique compliant

mechanism was developed by Goldfarb and Speich [23], who created a unique revolute

joint called a split tube flexure. It was defined by its ability to achieve “well behaved”

motions, which were defined as the optimization of compliance in the desired rotation

direction, while maintaining stiffness along structural axes. This compliant mechanism

can be designed to be used in macrostructure applications, due to its large potential

rotation and fixed axis of rotation.

Trease and colleagues [5] designed multiple translational and rotational compliant

mechanisms that were developed to have an increased range of motion and good

movement characteristics. The intention of this design was minimizing the traditional

drawbacks of compliant mechanisms. These were verified through finite element

analysis, with attention to stress concentrations, to ensure the joints can be utilized in

multiple scales of size.

Guérinot [24] used compliant joints in the unique arena of support of compression

loads. This work attempts to avoid the drawback of compliant joints of being unable to

handle high compressive loads due to buckling. His work includes two principles,

isolation and inversion, which can be applied to compliant joints to increase the

maximum load handled by avoiding buckling-prone conditions. Isolation involves the

isolation of the flexible segments from the compressive load that the system must carry.

The large compressive load will be diverted from the flexible segments to the rigid

elements. In this case, the compliant sections are limited to precise motion control and

25

energy storage that benefit the device carrying large compressive loads. An example of

this isolation theory is shown in Figure 13.

Figure 13. Schematic of an isolation joint system [24].

The inversion principle uses the proposition of tensurial pivots, which are flexures

loaded in tension. This follows the idea that flexible segments generally have a higher

maximum tensile force before yielding than critical buckling force. Therefore, a system

made to function under a direct compressive force can be inverted in order to use flexible

segments in tension rather than compression [24]. The concept inversion is illustrated in

Figure 14.

Segment B

Segment A

Passive Rest
Compliant

Joint

26

(a) (b)

Figure 14. (a) Direct compression and (b) application of the Inversion theory [24].

2.3 Conclusions from the Literature Review

Compliant mechanism design and development techniques have improved vastly

since their introduction. As the desire to build more complex compliant mechanisms

grew, so did the requirements of the techniques to build them. Although these techniques

have improved over the years, there are still gaps in them to be addressed. For pseudo-

rigid-body methodology, this consists of the burden of knowledge on the designer to

understand the catalogue of transformations between compliant mechanisms and their

pseudo-rigid-body representations. For topology optimization, the burden of knowledge

on the designer is the understanding of the creation of a design space that will get the

correct and satisfactory results.

Many compliant mechanisms have been designed for use in specific and diverse

applications. The advantages of compliant mechanism when compared to traditional

Compliant

Joint
Compliant

Joint

27

mechanical mechanisms allow their use in a wide variety of applications where

traditional mechanisms fall short. However, this breadth of use has not been fully

integrated into a wide variety of processes, possibly due to the lack of knowledge and

experience needed to design these mechanisms.

28

CHAPTER 3: DEVELOPMENT OF A COMPLIANT JOINT MODEL REPOSITORY

A compliant joint selection method must produce results that lead a user to an

optimal solution for their requirements. To facilitate this, a repository of compliant joints

is required that provides solutions for the widest variety of user needs possible. This

chapter details the process used to convert current research publications of compliant

joints designs into models to be used within the repository and selection algorithm.

Six translational compliant joints (also known as linear compliant joints) and

fourteen rotational compliant joints are included in this repository. These were chosen to

represent a wide variety of applications, as well as distinct characteristics between

different compliant joints. The compliant joints included in the repository have varied

characteristics in the regions of precision, stiffness, and mobility.

The six linear compliant joints were defined as compliant joints that move and

have compliance in the linear x-direction when a force is applied. These joints typically

have little rotational and translational compliance and movement in the y and z

directions, which is sometimes called the off axis compliance/movement. Generally, the

movement in these directions would be minimized so that the intended linear movement

of the joint will be more accurate. Movement in these directions that is not intended is

called parasitic movement. A diagram of the expected movement of the translational

compliant joints is shown in Figure 15.

29

Figure 15. Defined movement of rotational compliant joints.

Fourteen rotational joints were chosen from current publications and research.

These rotational joints were defined as compliant joints that can rotate an end around the

y-axis when a force is applied to the end of the joint in the z-direction. These joints have

little compliance and range of motion in the z- and x-directions – this is normally

minimized through the development of the compliant joint. It is important to note that

there is much of the research develops rotational joints prioritizes the minimization of

axial drift, or motion that moves the axis of rotation of the joint away from its original

position. This is typically a goal of MEMS research, where accuracy and precision are the

most important characteristics of a compliant joint. A diagram of the expected movement

of the rotational compliant joints is shown in Figure 16.

Applied Force

z

y

x

Compliant

Joint

Motion of Joint

F
ix

ed
 e

n
d

30

Figure 16. Defined movement of rotational compliant joints.

3.1 Adding Compliant Joints to the Repository

A defined methodology needs to be followed when adding new compliant joints

to the repository to ensure that each joint has consistently defined inputs and outputs.

This establishes direct comparisons between compliant joints of the same type, even

when the characteristics they were designed for differ greatly. The process used to

develop and add new compliant joints to the repository is outlined in Figure 17.

Figure 17. Outline of process used to develop models of compliant joints.

The joints are first developed as parametric models within MATLAB, which

includes defining the joint‟s movement and stiffness characteristics as functions of the

F
ix

ed
 e

n
d

Applied Force

z

y

x

Compliant

Joint

Rotation of Joint

1. Development of parametric model

within MATLAB

2. Normalization of input and output

3. Verification of parametric model with

finite element model

4. Model added to repository

31

geometric characteristics of the joint. Then the compliant joints are normalized, since all

joints do not have their characteristics outlined identically within research. This

normalization consists of manipulating the compliant joints models to produce outputs of

stiffness (K/mm for translational and K/degree for rotational) and displacement (mm or

degrees). This normalization is used not to reduce the complexity of the compliant joints‟

parametric equations, but to allow joints with different applications to be compared on

similar performance standards. These standards were determined to allow a user to

specify basic information about the compliant joint, so that more results could be selected

for the user. Verification of these parametric equations is performed using FEA

simulations that compared the displacement output of the joint from the parametric

equations to the displacement output of the FEA model. Finally, if the models were

proven to simulate the compliant joint correctly, the model was added to the repository

for use in the selection algorithm.

Two criteria were necessary of the compliant joints for them to be selected for the

repository. These criteria are:

1. The joint must be characterized by parametric equations, which defined the

movement of the joint.

2. The joint must be geometrically defined so that it was possible to construct the

joint within finite element analysis (FEA) software.

These are required so that normalization and verification of the joint‟s parametric

equations could be performed. The geometric dimensions of the compliant joints were

32

used in the search algorithm to determine a range of potential displacements and spring

constants within the user defined constraints of the compliant joint.

3.1.1 Development of Parametric Models within MATLAB

The parametric models are developed within MATLAB as individual program

files. Parametric equations are derived from current research publications on the design

of specific compliant joints. These equations are used such that a single MATLAB code

file contains all the information necessary to test the input and output relations of the

compliant joint. In all cases, the geometric dimensions of the joint need to be defined as

variables, with appropriate comments included so that the joint could be later constructed

within the FEA software. These geometric variables typically include the thickness of

leaf springs, the length of leaf springs, the depth of the joint, and other characteristics

unique to the individual joint design. The file also must include material properties and

an applied force that is used with the stiffness to determine the amount of displacement

the joint experiences.

The MATLAB files are named using the developer‟s name, and a brief

description of the compliant joint. For example, a compliant joint from Smith [25], which

was identified as a cartwheel shape, would be named SmithCartwheel.m. To ensure

consistency, this name is also used for the MATLAB function files and FEA models that

will be discussed later in this chapter.

33

3.1.2 Normalization of Inputs and Outputs

Normalization of inputs and outputs of the compliant joint models is performed to

ensure consistency between all of the compliant joint models, as well as giving a standard

method of comparison between different compliant joints. The MATLAB models are

transformed into MATLAB function files, which use inputs of material properties,

geometric constraints, and applied force. The outputs of these functions are the

displacement of the joint and its stiffness in the movement direction. The parametric

equations are normalized such that these inputs and outputs are the same for every

MATLAB function. For example, literature containing a rotational compliant joint may

produce its end displacement value as a linear distance. The model is required to have a

displacement of a rotational value in degrees so that it can be related to the other

rotational compliant joints within the repository.

Each function runs under an assumption that the thickness of leaf springs or

similar parameters within each model is 20% of the “smallest size” entered by the user.

This is used because the accuracy of the models increases as the ratio of length to

thickness of the leaf springs increases. This also provides a larger range of results for the

range of motion. Without this assumption the displacement ranges are small and difficult

to pinpoint for a user to get satisfactory results. It is the user‟s responsibility to fill this

parameter to adequately represent their manufacturing capabilities.

3.1.3 Verification of Parametric Models with Finite Element Models

The parametric equations that define the motion of the selected compliant joints

are verified using an FEA program. For translational compliant joints, the x-direction

34

motion is directly compared between the parametric model and the FEA model, using a

consistent applied force. For the rotational compliant joints, the rotational motion is

determined using the end deflection, and then is converted into a linear value for

comparison with total deflection within the FEA software. The results of the two models

are compared to determine if the parametric model adequately described the motion of

the joint. However, due to limitations of the parametric equations, some of the equations

lose accuracy as the deflection becomes increasingly nonlinear. Therefore, it is

recommended that a user not exceed potential deflections of more than 30% of the total

length of the joint without doing additional studies of the compliant joint‟s movement.

This will maintain a reasonable degree of accuracy.

3.1.4 Model Added to Repository

The model is added to the repository so that it can be used in the selection

algorithm alongside the other compliant joints. The geometric characteristics are pre-

allocated using the user defined size constraints so that a maximum displacement

value/minimum stiffness value is calculated, as well as a minimum displacement

value/maximum stiffness value. The algorithm then will select models that fulfill the

user‟s requirements, using these limits.

3.2 Example 1: Translational Compliant Joint – Smith Notch Hinge

The following section will exemplify the process of developing a translational

compliant joint model, specifically the Smith Notch Hinge. This compliant joint is

detailed by Smith [25] as a compound compliant joint that approximates straight line

35

motion. The geometric characteristics that define this compliant joint are shown Figure

18.

Figure 18. Geometric characteristics of the Smith Notch Hinge compliant joint.

The parametric equations that represent the movement characteristics of this

compliant joint are as follows. The total „static‟ linear stiffness of this flexure is defined

by

‟ (1)

where is Young‟s modulus, and are geometric characteristics, is movement

in the x-direction of the movement point, and is the force applied in the x direction to

the upper table of the compliant mechanism.

From the equation, an MATLAB model is developed to represent the

characteristics of the compliant joint. This facilitates early testing of the model with

various parameters. The MATLAB model, SmithNotchHinge.m, is shown in Figure

19.

t

R

L*

y

x

36

E = 73000; %N/mm^2 (73.1 GPa)

%Young's Modulus

%%----Joint Dimensional Characteristics----%%

%Length between flexures edges

L=9.2; %mm

%Depth of joint

b=1; %mm

%Radius of flexures

R=0.4; %mm

%Thickness between flexures

t=0.2;

%Force Applied

F=1;

%%----Solution of Joint----%%

%Distance from centerpoint of flexures

Lstar=L+2*R;

%Stiffness

K=(8*E*b*t^(5/2))/(9*pi()*R^.5*Lstar^2);

%Linear Displacement

Disp=F/K;

Figure 19. The initial MATLAB file used to test the Smith Notch Hinge compliant

joint model, SmithNotchHinge.m .

This model must now be normalized to ensure that this compliant joint model is

consistent with the others in the repository. All of the linear compliant joints must have

outputs of a linear stiffness as well as a linear range of motion, so that it is possible to

compare them to one another. The MATLAB file is changed into a MATLAB function

file, where the outputs are the stiffness and deflection and the inputs are the material

properties, geometric constraints, and force applied. A representation of the resultant

function is shown in Figure 20.

37

Figure 20. The completed Smith Notch Hinge model, as a MATLAB function.

 An FEA model is developed of the compliant joint to compare with the

parametric model. The geometric values used to calculate the two models are listed in

Table 2.

Table 2. Geometric properties of the Smith Notch Hinge compliant joint used for

comparison between the MATLAB model and the FEA model.

Parameter Value

b 10 mm

t 0.2 mm

r 0.4 mm

L 9.2 mm

F 1 N

Inputs: Material Properties, Geometric

Characteristics, Force Applied

Function: Parametric Equations

Outputs: Range of motion, Stiffness

MATLAB

function

t

R

L

y

x

38

The boundary conditions between the two models must be the same. Since the

parametric models are already developed for certain boundary conditions, the FEA model

is made to mimic the parametric model. The boundary conditions used for both model

simulations are given in Figure 21.

Figure 21. Boundary conditions used for the Smith Notch Hinge compliant joint

model simulations.

The FEA model required a mesh with necessary refinement in the areas of interest

in order to provide correct results. When the compliant joint deformed as expected and

represented the literature response correctly, the FEA model was determined to be

providing correct results. A mesh of elements approximately 0.5 mm in length was used.

The mesh and deflected FEA model are shown in Figure 22.

Applied

Force

Fixed End

y

x

39

Figure 22. Mesh and deformed shape for the Smith Notch Hinge FEA simulation.

The result of this comparison is a deflection of 1.71e-2 mm from the parametric

model and a 1.65e-2 mm deflection using the FEA model. These two models have a

difference of 5.70e-4 mm, and a percent difference of 3.45%. This result shows that both

the models have similar deflection characteristics, and the parametric model can be

considered correct. For most of the compliant joints models, as displacements becomes

more nonlinear the accuracy is reduced. It is important to note that the FEA simulation is

simply used for verification of the parametric model, and the final design does not

necessarily reflect the characteristics used for the FEA representations.

3.3 Example 2: Rotational Compliant Joint – Jensen Cross Axis

The following section describes the process of developing a rotational compliant

joint model, specifically the Jensen Cross Axis. This compliant joint‟s load-deflection

behavior was detailed by Jensen and Howell [26], and verified by comparing results to

40

non-linear FEA models and physical models made of polypropylene and steel. The

geometric characteristics that defined this compliant joint are shown in Figure 23.

Figure 23. Geometric characteristics of the Jensen Cross Axis compliant joint.

Jensen and Howell [26] describe this compliant joint‟s characteristics as if it were

a torsional spring. In this case, the spring stiffness is given by

‟ (2)

where is Young‟s modulus, is the moment of inertia of the flexible sections, is the

length of the flexible segments, and is known as the “stiffness coefficient”. The

stiffness coefficient is determined over a range of values, which are a function of a

geometric relationship n, where

 . (3)

The polynomial curve fit that defines the relation of n with is

 . (4)

This curve is valid for , with a correlation coefficient of 0.99910 [26].

t

r L

w
y

x

41

From the equations provided, an initial MATLAB model can be developed to test

different parameters with this compliant joint model. The initial MATLAB model,

JensenCrossAxis.m, is shown in Figure 24.

E = 73000; %N/mm^2 (73.1 GPa)

%Young's Modulus

%%----Joint Dimensional Characteristics----%%

%Total length of gap

r = 10; %mm

%Length of cross spring

l = 14.142136; %mm

%Height of joint

w = 10; %mm

%Thickness of Leaf Spring

t = 0.707107; %mm

%Lever arm

L = 0.1; %mm

%Depth of joint

D = 10; %mm

%Force Applied

F = 1; %N

%%----Solution of Joint----%%

n=r/w;

KTheta=5.300185-1.6866*n+0.885356*n^2-0.2094*n^3+0.018385*n^4;

I=(1/12)*D*t^3;

%Stiffness

K=(KTheta*E*I)/(2*l);

Torque=F*(L+r);

%Angular Displacement

Disp=Torque/(K);

Figure 24. The initial MATLAB file used to test the Jensen Cross Axis compliant

joint model, JensenCrossAxis.m.

The normalization of this model is performed next through the transforming of it

into a MATLAB function. This ensures that this compliant joint model is consistent with

the other models in the repository. Since some parametric equations for rotational

compliant joints were developed with results of linear displacements, it is required to

normalize them to ensure all rotational compliant joint models have the same outputs of

rotational displacement and rotational stiffness. It is also required that the model have

42

outputs of the stiffness and deflection, and inputs of the material properties, geometric

constraints, and force applied. Figure 25 shows the resultant function from this

normalization, where the final line shows a normalize of the stiffness to Nmm/deg.

function [Disp,K] = JensenCrossAxisFun(E,t,w,r,D,F)

% E = Young's Modulus

%N/mm^2

%%----Joint Dimensional Characteristics----%%

% r = Total length of gap

%mm

% l = Length of cross spring

% w = Height of joint

% t = Thickness of Leaf Spring

% L = Lever arm

% D = Depth of joint

% F = Force Applied

%%----Solution of Joint----%%

L=0.1; %

t=t/5;

x = 1.404*t; %estimation, can be determined geometrically

l=sqrt((w-x)^2+r^2);

n=r/w;

KTheta=5.300185-1.6866*n+0.885356*n^2-0.2094*n^3+0.018385*n^4;

I=(1/12)*D*t^3;

%Stiffness

K=(KTheta*E*I)/(2*l);

M=F*(L+r);

%Angular Displacement

Theta=M/(K);

-%Transform stiffness to Nmm/deg

K=K*pi()/180;

end

Figure 25. The completed Jensen Cross Axis model, as a MATLAB function.

The FEA model must be constructed to represent the inputs used by the

parametric model. The geometric values used to compare the two models are listed in

Table 3.

43

Table 3. Geometric properties of the Jensen Cross Axis compliant joint used for

comparison between the MATLAB model and the FEA model.

Parameter Value

w 10 mm

t 0.74 mm

r 10 mm

l 13.45 mm

L 2 mm

F 1 N

The boundary conditions that the two models use to calculate the displacements

must be the same. The parametric models are has defined boundary conditions, so the

FEA model was created to represent the parametric model. The boundary conditions used

in both model simulations are given in Figure 26.

Figure 26. Boundary conditions used for the Jensen Cross Axis compliant joint

model simulations.

t

r L

w
y

x
F

ix
ed

 E
n

d
s

Applied Force
y

x

44

The FEA model was composed of a mesh of elements approximately 0.5 mm in

length. This was determined to provide a result in line with literature defined responses.

The accuracy of the FEA was determined to be adequate because extreme accuracy is not

required for the calculation, due to the FEA results only being needed verify the

parametric equations. The mesh and deflected FEA model are shown in Figure 27.

Figure 27. Mesh and deformed shape for the Jensen Cross Axis FEA simulation.

The result of this comparison is a deflection of 9.9e-3 mm given by the parametric

model and a 9.6e-3 mm deflection using the FEA model. This has a difference of 2.27e-4

mm, and a percent difference of 2.35%. This result shows that the models are

experiencing a similar deflection amount. It should be noted, however, that many of the

parametric equations lose accuracy as deflection increases.

3.4 Compliant Mechanism Repository Results

A full catalogue of the compliant joints in the repository is listed in Appendix A.

All compliant joints in the repository were validated using this method. Appendix A

45

includes their parametric equations as listed in the original research, diagrams of their

geometric characteristics, and their MATLAB function models. Table 4 lists the names

given to the translational compliant joints that are stored within the repository, the

literature reference where the compliant joint‟s model was sourced, and a 3D computer-

aided design (CAD) solid model representation. These joints have a variety of

characteristics, some being focused on accurate movement, while others focusing on

maximum possible displacement. It should be noted that some linear compliant joints are

created from a set of rotational compliant joints attached to a “table” which moves. This

allows small rotational movements to be transferred into linear movements.

46

Table 4. Translational Compliant Joint Repository List

Compliant Joint Name Solid Model Representation

Smith Rectilinear [25]

Kyusojin Parallel Strip [20]

Kyusojin Linear 6L1 [20]

Trease Translational [5]

Xu Translational [27]

Smith Notch Hinge [25]

Table 5 lists the rotational compliant joints stored in the repository, as well as

their sources, and a 3-D CAD solid model representation. These compliant joints were

designed for many different applications. Some maintain higher precision of movement,

47

others maximize rotational movement (these are typically called large-displacement

compliant joints), and others were developed for the minimization of axial drift.

Table 5. Rotational Compliant Joint Repository List

Compliant Joint Name Solid Model Representation

Lobontiu Symmetric Notch [3]

Lobontiu Corner Filleted [3]

Lobontiu Symmetric Circular [3]

Tian V Shape Flexure [22]

Tang Symmetric Circular [10]

Smith Two Axis [25]

48

Table 5 Cont’d. Rotational Compliant Joint Repository List

Compliant Joint Name Solid Model Representation

Smith Annulus [25]

Smith Cartwheel [25]

Smith Cruciform [25]

Jensen Cross Axis [26]

Smith Rotationally Symmetric Leaf Hinge [25]

Trease Rotational [5]

49

Table 5 Cont’d. Rotational Compliant Joint Repository List

Compliant Joint Name Solid Model Representation

Kyusojin Rotational 6R2 [28]

Goldfarb Conventional Split Tube [23]

All of the compliant joints in these two lists, translational and rotational, were

modeled using the method described previously in this chapter. Each model was

validated through comparison to a matching FEA model. All of the comparisons were

performed using a material of aluminum 2024. The results of the comparisons for the

translational compliant joints are shown in Table 6. The dimensions used for comparison

are related to examples found in the literature of the compliant joint. The locations of the

geometric dimensions used in the models can be found in Appendix A.

50

Table 6. A comparison of FEA models and parametric equations for translational

compliant joints for a unit force of 1 N.

Compliant Joint

Name

Dimensions used

for Comparison

[mm]

Deflection [mm] Difference

[mm]
%

Difference FEA Parametric

Smith Rectilinear t=0.1, b=10, L=10 6.15E-01 6.85E-01 7.04E-02 11.46%

Kyusojin Parallel

Strip
t=0.1, b=10, L=10 6.15E-01 6.85E-01 7.04E-02 11.46%

Kyusojin Linear 6L1 t=1, w=50, l=50 2.74E-02 2.74E-02 1.00E-05 0.04%

Trease Translational t=1, w=10, LB=30 1.19E-02 1.23E-02 3.60E-04 3.02%

Xu Translational
hf=8.75, H=20,

Hp=26.89, t=0.5,

dc=5
1.41E-02 1.10E-02 3.08E-03 28.00%

Smith Notch Hinge
R=0.4, t=.2, b=10,

L=9.2
1.65E-02 1.71E-02 5.70E-04 3.45%

These results suggest that the parametric equations are reasonable estimates of the

deflection of the joint, as they relate to the FEA models. However, the Xu translational

compliant joint has inherent error due to its design. This compliant joint‟s linear motion

is achieved through the deflection of long thin leaf springs, utilizing their motion to

achieve small linear motions. This design can achieve precise movements in the micro-

range. The precision of the joint decreases as the size of the joint increases. Due to open-

ended nature of the design repository, joints that were designed for the purpose of small

precise movements and large deflections were included to offer users a wide variety of

potential selectable joints.

The results of the comparisons of the rotational compliant joint parametric

equations and finite element analysis are shown in Table 7.

51

Table 7. A comparison of FEA models and parametric equations for rotational

compliant joints for a unit force of 1 N.

Compliant Joint

Name

Dimensions used

for Comparison

[mm]

Deflection [mm]
Difference

[mm]
%

Difference FEA Parametric

Lobontiu Symmetric

Notch
t=1, w=10, l=10 5.20E-03 5.50E-03 3.01E-04 5.79%

Lobontiu Corner

Filleted
r=2 ,t=1, w=10,

l=10
3.59E-03 3.80E-03 2.14E-04 5.97%

Lobontiu Symmetric

Circular
r=5, t=1, w=10 9.62E-04 1.10E-03 1.38E-04 14.31%

Tian V Shape

Flexure
R=2.25, t=1, l=5,

c=4, θ=20°, b=10
8.92E-04 8.47E-04 4.55E-05 5.37%

Tang Symmetric

Circular
r=5, t=1, b=10 9.62E-04 1.10E-03 1.38E-04 14.31%

Smith Two Axis r=5, t=1 1.69E-02 1.53E-02 1.55E-03 10.13%

Smith Annulus r1=5, r2=3.25, t=.1 3.44E-01 3.18E-01 2.52E-02 7.92%

Smith Cartwheel r=4, t=0.3, b=10 2.07E-02 1.95E-02 1.17E-03 6.00%

Smith Cruciform t=1, L=10, d=2 2.00E-03 2.40E-03 4.02E-04 20.12%

Jensen Cross Axis
t=0.74, w=10,

r=10, D=5
9.67E-03 9.90E-03 2.27E-04 2.35%

Smith Rotationally

Symmetric Leaf

Hinge
d=1, Ro=5 2.54E-03 2.70E-03 1.64E-04 6.47%

Trease Rotational L=40, t=1, w=10 6.99E-04 7.24E-04 2.45E-05 3.51%

Kyusojin Rotational

6R2
t=1, w=50, l=50 2.71E-01 2.74E-01 3.00E-03 1.11%

Goldfarb

Conventional Split

Tube
t=1, r=5, L=25 2.78E-03 2.10E-03 6.82E-04 32.48%

The results for the rotational compliant joints are similar to the translational

compliant joints, in that most parametric equations represent the actual deflection within

15%. Two joints are outliers within this result, the Smith Cruciform joint and the

Goldfarb Conventional Split Tube joint. These two joints rely on the torsional deflection

52

of the joint around an axis instead of conventional bending. Since the method of

comparison used between the FEA model and the parametric model was a linear

displacement (node to node for the FEA, a geometric relationship for the parametric

models), this may have resulted in additional error. A node to node linear distance on a

cross-section in the FEA will give a smaller estimation of rotational distance than the

parametric model. This could be analyzed and corrected for using an additional

verification of physically produced compliant joint models. This would also add another

layer of robustness to this method, but is beyond the scope of what is covered in this

thesis.

3.5 Conclusions from Compliant Joint Repository

A compliant joint repository of parametric equation based models has been

developed. Each model is an individually packaged MATLAB function, which can be

called through an overall MATLAB selection algorithm. Twenty models have currently

been developed, which include six linear compliant joints and fourteen rotational

compliant joints. The parametric equation function models have shown to produce similar

deflection results when compared with 3-D FEA models. A benefit of this structure is

that additional compliant joints could be added to the repository using this method. This

would increase the number of potentially selected joints, and which would increase the

likelihood a user achieve results of a compliant joint that adequately fulfills their

requirements.

53

CHAPTER 4: THE COMPLIANT JOINT SELECTION METHOD

4.1 Selecting Compliant Joints from the Repository

 The compliant joint selection algorithm detailed can be implemented by a user to

find compliant joints from the repository that fit their requirements. The user must list

their requirements in a format detailed enough to allow selection, but vague enough to

allow the algorithm to select from the largest possible number of compliant joint models,

which gives the algorithm the opportunity of picking the most adequate one. The overall

compliant joint selection algorithm is handled by a MATLAB function that is listed in

full in Appendix B. A flowchart of the selection algorithm‟s process is outlined in Figure

28.

Figure 28. Overview of selection algorithm for determining compliant joints that

fulfill the user’s requirements.

User enters design requirements in GUI

User requirements are processed

Output to user

The selection algorithm determines compliant joints that fulfill

user requirements.

The compliant joint models are evaluated using user input

List of compliant joints that

fulfill requirements

Pareto curves that represent

the range of properties

User performs final selection

54

For a designer to interact with the selection algorithm and find a compliant joint

that fulfills their requirements, a user interface was desired. This Graphical User Interface

(GUI) handles the transfer of information from the user to the algorithm. The user can

specify up to six potential design requirements for the selection algorithm to use. The

MATLAB code that generates the graphical interface is a MATLAB file,

JointMenu.m, which is shown in Appendix C. The graphical interface that was

developed is shown in Figure 29.

Figure 29. Graphical user interface for selection algorithm.

Required

Inputs

Non-required

Inputs

55

To achieve a final result, the three inputs designated by arrows in Figure 29, Type

of joint, Size constraints, and Material, must be filled in by the user. If these are not

defined, the selection algorithm cannot achieve a result. All three have default values that

will be used if a user does not enter any input. This is done so that it is impossible for the

user to not fulfill these requirements. It should be noted again that an assumption the

algorithm uses within the individual models is that a user can manufacture compliant

joints with thicknesses 20% of the smallest size text input. As stated previously, this is

used because the accuracy of the models increases as the ratio of length to thickness of

the leaf springs increase. This also provides a larger range of results for the range of

motion. Without this assumption the displacement ranges are small and difficult to

pinpoint for a user to get satisfactory results. It is recommended to use higher smallest

size values when using ABS or PLA, due to the flexibility of these materials. Small

thicknesses with these materials can cause large ranges of motion that are primarily non-

linear, and will produce less accurate results. A user can also add additional materials to

the GUI through the use of the JointMenu.m file, if so desired. The other available

inputs are Range of motion, Stiffness, and Applied Force. It should be noted that range of

motion should be entered as desired linear range of motion in millimeters for translational

joints, and as desired rotational range of motion in degrees for rotational joints. Stiffness

should be entered in the units N/mm for translational joints and Nmm/degree for

rotational joints. Applied force is the force that is to be applied to the compliant joint,

which can potentially be the force of a piston or motor that is used to actuate the joint.

None of these three values are required for a solution to be displayed, however, and if

56

none are entered, the selection algorithm will return all possible joints, organized by

range of motion, for specified applied force values (0.1 N, 1 N, 10 N). When the applied

force is not specified, the same set of generic values will be used. These are to provide a

sense of possibilities at difference scales of force values. It is possible for a user to

change this set of applied force values by changing the fset variable in the

DecisiontreeFunction.m MATLAB function file.

After a user has filled in the desired requirements in the GUI, the MATLAB

function processes the user information. It ensures that all the data that has been entered

is in numerical values. Then it processes which input data has been filled in and which is

missing, so that it can execute the algorithm accordingly. Based on the user‟s initial

requirements, different results can be given to the user.

The set of compliant joints (rotational or translational) that was selected by the

algorithm have the displacement and stiffness values calculated through the parametric

models. Each parametric model is utilized twice, to determine the minimum and

maximum of both of these values. Then a search is performed between all of the

compliant model‟s properties to determine which compliant joints have the potential to

fulfill the user‟s design requirements. The algorithm saves this set of joints and performs

post-processing.

During the post-processing, Pareto charts of the selected compliant joints are

generated and displayed to the user. This allows the user to view the potential output

parameters of the compliant joints within the constraints they have used. Pareto charts

were determined to be an adequate display of satisfactory compliant joints due to their

57

ability to show a user the potential range of motion and stiffness values, across all

geometric parameters within their size input. An example of this output is shown in

Figure 30.

Figure 30. Example Pareto chart outputs from the algorithm.

The Pareto curves generated by the algorithm can be interpreted by the user in

various ways. For each individual joint, the Pareto curve represents the range of stiffness

and displacement values possible within the geometric constraints the user has chosen

with the size constraints input. The charts are shown in parallel so that a user can see the

comparative stiffness and deflections between the compliant joints that satisfy their

requirements. For example, using the results in Figure 30, a user can determine that the

Trease Concept rotational compliant joint and the Smith Cartwheel rotational compliant

0 2 4 6 8 10
0

1

2

3

4

Displacement (degrees)

S
ti
ff

n
e
s
s
 (

N
m

m
/d

e
g
re

e
)

Pareto Curve for Jensen Cross Axis

0 1 2 3 4
0

2

4

6

Displacement (degrees)

S
ti
ff

n
e
s
s
 (

N
m

m
/d

e
g
re

e
)

Pareto Curve for Lobontiu Symmetric Circular

0 10 20 30 40
0

1

2

3

4

Displacement (degrees)
S

ti
ff

n
e
s
s
 (

N
m

m
/d

e
g
re

e
)

Pareto Curve for Lobontiu Symmetric Notch

0 2 4 6
0

5

10

15

20

Displacement (degrees)

S
ti
ff

n
e
s
s
 (

N
m

m
/d

e
g
re

e
)

Pareto Curve for Smith Cartwheel

0 1 2 3 4
0

2

4

6

Displacement (degrees)

S
ti
ff

n
e
s
s
 (

N
m

m
/d

e
g
re

e
)

Pareto Curve for Tang Symmetric Circular

0 1 2 3 4 5
0

0.5

1

1.5

Displacement (degrees)

S
ti
ff

n
e
s
s
 (

N
m

m
/d

e
g
re

e
)

Pareto Curve for Trease Concept

0 1 2 3
0

2

4

6

8

Displacement (degrees)

S
ti
ff

n
e
s
s
 (

N
m

m
/d

e
g
re

e
)

Pareto Curve for V Shape Flexure

0 2 4 6 8 10
0

5

10

15

Displacement (degrees)

S
ti
ff

n
e
s
s
 (

N
m

m
/d

e
g
re

e
)

Pareto Curve for Conventional Split Tube

58

joint have similar range of motion characteristics. However, the stiffness of the Smith

Cartwheel compliant joint is potentially an order of magnitude higher than the Trease

concept compliant joint. A user viewing these Pareto curves can make a determination of

which compliant joint has better characteristics for their needs between the compliant

joints that fulfill their requirements.

In addition to the Pareto charts, the algorithm displays the non required inputs the

user has used and then lists the compliant joints that fit the user‟s requirements. For

outputs that do not produce Pareto curves, this will also list the potential range of motion

of the selected joints, as well as order them by this metric. An example of this output is

shown in Figure 31.

>> JointMenu

Rotational Joints are selected.

RoM has a value, 1.00 degrees.

k does not have a value (na)

F has a value, 1.00 N.

Possible joints for this user input are:

JensenCrossAxis

LobontiuSymmetricCircular

LobontiuSymmetricNotch

SmithCartwheel

TangSymmetricCircular

TreaseConcept

VShape

ConventionalSplitTube

Figure 31. Example output from the selection algorithm.

The user must now select a compliant joint they determine most adequately fits

the requirements they have used. The user can iterate here to continue the process of

getting a satisfactory compliant joint, or complete the design of any specific compliant

joint. It is relatively trivial at this point to use a parametric model in conjunction with an

59

optimization program to determine the exact geometric parameters that a compliant joint

will require within the range of the selection algorithm.

 Accuracy of the compliant joint models can be reduced when experiencing large

nonlinear deflections. For the purposes of this research, the accuracy is assumed to be

reduced when the compliant joint experiences deflections larger than 30% of the total

length of that compliant joint. A warning was added to all output of the algorithm to

inform users of potential inaccuracies caused by this assumption. This display of the

limitations of the model allows the user to understand the range in which the model is

considered valid, such that the user can gain a quantitative understanding of the context

of the results of the model. It is considered that the publishing of this information will

reduce the likelihood of abuse of the model [29].

4.2 Testing Procedure for the Compliant Joint Selection Algorithm

The selection algorithm methodology was tested through a series of inputs that

were entered into the GUI. The results achieved were checked to test the precision and

recall of the algorithm. The test inputs were selected to test all combinations of inputs

used and unused. Table 8 contains the input conditions of the selection algorithm that

were used in the tests shown within this chapter.

60

Table 8. Inputs for the test cases.

Test

Case
Type of

Joint

Range of

Motion [mm

or degrees]

Stiffness

[N/mm or

Nmm/degree]

Size

Constraints

[mm]

Applied

Force

[N]
Material

1 Translational 5 7 4.1 - 41.5 5 ABS

2 Rotational 10 3 1.2 - 29.2 - Aluminum

3 Translational 2 - 1.7 - 27.5 3 ABS

4 Rotational 4 - 2.5 - 45.9 - ABS

5 Translational - 1 1.3 - 14.3 6 PLA

6 Rotational - 2 3 - 37.9 - Aluminum

7 Translational - - 2.4 - 19.0 2 PLA

8 Rotational - - 1.8 - 28.4 - Aluminum

As shown in Table 8, four of the tests had translational compliant joints selected,

and four of the tests had rotational compliant joints selected. Range of motion, stiffness,

and applied force, when used, were randomly generated integers between 1 and 10 (mm

or degrees, N/mm or Nmm/degree, and N, respectively). This value range was chosen

because it was known to have guaranteed results within the solution space. The input

smallest size was randomly selected between 1 and 5 mm, and the input largest size was

randomly selected between 5 and 50 mm. The reasons for these ranges were that the

largest size must be a larger number than smallest size, and the large range of the largest

size variable allows for more potential differences between compliant joint results. The

smallest size input was limited to values larger than 1 mm because the range of motion

for many of the parametric models becomes incredibly nonlinear with very small

thicknesses, especially when the material is a thermoplastic. The material was randomly

selected using a random integer 1-3, with 1 representing aluminum, 2 representing PLA,

and 3 representing ABS. Test Case 1 and Test Case 2 are presented in the following

61

subsections as examples. Each of the eight test cases‟ inputs, outputs, and explanations

are shown in Appendix E.

4.2.1 Test Case 1

Test Case 1 considers the condition of a user entering all three of the non-required

inputs. The algorithm must select compliant joints that satisfy the stiffness and range of

motion requirements, using the force applied, size constraints, and type of joint inputs.

The GUI showing the input values can be seen in Figure 32.

Figure 32. GUI input for Test Case 1.

62

Since all of the non-required inputs have been used, the output will be a list of

compliant joints satisfying the requirements, and Pareto curves that show the range of

properties the compliant joints can achieve, using the geometric characteristics that were

initialized from the size constraints. Only one compliant joint within the repository

satisfies the requirements that were input, the Smith Notch Hinge compliant joint. The

Pareto output is shown in Figure 33, and the MATLAB text output is shown in Figure 34.

Figure 33. Pareto output for Test Case 1.

>> JointMenu

Translational Joints are selected

RoM has a value, 5.00 mm.

K has a value, 7.00 N/mm.

F has a value, 5.00 N.

Possible joints for this user input are:

SmithNotchHinge

Figure 34. MATLAB text output for Test Case 2.

4.2.2 Test Case 2

Test Case 2 considers the condition of the user entering a value for the non-

required inputs range of motion and stiffness only. The GUI showing the input values is

shown in Figure 35.

0 1 2 3 4 5 6 7 8 9
0

50

100

150

200

Displacement (mm)

S
ti
ff

n
e
s
s
 (

N
/m

m
)

Pareto Curve for Smith Notch Hinge

63

Figure 35. GUI input for Test Case 2.

When the applied force input is left blank, the selection algorithm uses a series of

forces for the calculation of joint potential characteristics. This set of forces includes 0.1

N, 1 N, and 10 N. These values are an order of magnitude apart, and used to show the

characteristics of the potential compliant joints at different scales. These allow a user to

understand how the force applied affects the range of motion for the individual compliant

joints. Due to the geometric characteristics of the compliant joint remaining constant, the

stiffness of each set will remain the same. However, the displacement achieved by the

different forces will change. This leads to Pareto curves that are identical on the y-axis

(stiffness), but different on the x axis (displacement). Depending on the complexity of the

64

model, the displacement is usually a linear increase in relation to the force. This can be

seen as a reasonable estimation until large non-linear displacements are reached.

 In this test case, no results are returned for the first two generic applied forces.

This means that there are no joints that will achieve the stiffness and range of motion

required for those applied force values. The result of this is Pareto curve figures that are

generated as blank. These figures were omitted for this reason. Two compliant joints

satisfy the user requirements using a force applied of 10 N. The two joints are Jensen

Cross Axis and Lobontiu Symmetric Notch. The Pareto curves for these compliant joints

are shown in Figure 36. The MATLAB text output is shown in Figure 37.

Figure 36. Pareto curves for Test Case 2, using an applied force of 10 N.

0 5 10 15 20 25 30
0

50

100

Displacement (degrees)

S
ti
ff

n
e
s
s
 (

N
m

m
/d

e
g
re

e
)

Pareto Curve for Jensen Cross Axis

0 10 20 30 40 50 60 70 80 90
0

20

40

60

Displacement (degrees)

S
ti
ff

n
e
s
s
 (

N
m

m
/d

e
g
re

e
)

Pareto Curve for Lobontiu Symmetric Notch

65

>> JointMenu

Rotational Joints are selected.

RoM has a value, 10.00 degrees.

K has a value, 3.00 N/mm.

F does not have a value (na)

Possible joints for this user input using a force of 0.100000 N are:

Possible joints for this user input using a force of 1.000000 N are:

Possible joints for this user input using a force of 10.000000 N are:

JensenCrossAxis

LobontiuSymmetricNotch

Figure 37. MATLAB text output for Test Case 2.

4.3 Validation of Test Cases

The test cases were validated through an analysis of true positives (TP), true

negatives (TN), false positives (FP), and false negatives (FN). A true positive is identified

by being a correct solution to the design problem. A true negative is identified by being a

non-solution to the problem. False positives and False negatives are solutions provided as

correct when they are not, and solutions provided as incorrect when they are,

respectively.

Test cases that had no applied force value are divided into a, b, and c sub cases,

since the set of forces will be applied, and it will return three sets of results independent

of one another. It should be noted that it is impossible to have a True Positive number of

results of 20 due to translational compliant joints always being true negative for a

rotational compliant joint search, and rotational compliant joints always being a true

negative for a translational compliant joint search. The results for each of the test cases

can be seen in Table 9.

66

Table 9. Test Cases, with the True Positives, True Negatives, False Positives, and

False Negatives determined for each.

Test

Case
True

Positive
True

Negative
False

Positive
False

Negative
Total

1 1 19 0 0 20

2a 0 20 0 0 20

2b 0 20 0 0 20

2c 2 18 0 0 20

3 4 16 0 0 20

4a 3 17 0 0 20

4b 9 11 0 0 20

4c 7 13 0 0 20

5 4 16 0 0 20

6a 1 19 0 0 20

6b 1 19 0 0 20

6c 1 19 0 0 20

7 6 14 0 0 20

8a 14 6 0 0 20

8b 14 6 0 0 20

8c 14 6 0 0 20

The validation shows that no False Positives or False Negatives were determined

by the algorithm. Test Cases 2, 4, 6, and 8 returned three sets of results (a, b, and c) each

because the applied force input was not specified. A default set of forces is used to

showcase the range of motion possibilities of each compliant joint. These Test Cases will

determine potential compliant joints for the user requirements, using the default set of

forces. Results are returned in sets based on which force in the set was applied. Test Case

6 only returns a single compliant joint for each variation because it is a search for a

certain stiffness, which is limited by the geometry. Test case 8 returns all fourteen of the

rotational compliant joints because no non-required inputs have been used. This means

67

the algorithm returns the entire set of compliant joints of the correct type, and orders

them by range of motion to display as a text output. The user must further refine the

search to gain additional information.

4.4 Selection Algorithm Conclusions

A selection algorithm has been developed that selects compliant joint models

from a repository. This selection algorithm can determine applicable compliant joints

from any set of user inputs into a GUI. The models are used to determine the range of

characteristics resulting from different geometric characteristics used by the models. The

results are returned to the user in Pareto curves and a text list, so that the user can make a

final decision on the compliant joint that most satisfactorily fulfills their requirements.

The selection algorithm was determined to perform adequately when given

various test scenarios with random initial inputs. All possible input conditions were tested

to verify that each received satisfactory results. No false positive or false negative results

were displayed from the input conditions given.

68

CHAPTER 5: CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

The research presented has achieved the objective of creating a repository of

compliant joints, which are characterized by parametric equations and geometric

characteristics. The first research question of this thesis was “What parameters can a

compliant joint be characterized by such that it can be objectively compared to other

compliant joints?” The compliant joints within the repository were normalized through a

process which adjusted the parametric equations to utilize the same inputs across all

joints of the same type, and to produce outputs of stiffness and range of motion of the

same units across all models. The second research question asks “How can a user achieve

results that include a compliant joint that most closely fulfills their requirements?” The

repository facilitates selection of compliant joints through a selection algorithm, and

presents results to the user. The results are based upon three required user inputs, and the

option of three non-required user inputs. The selection algorithm will produce results

with any combination of non-required inputs. The final research question poses “How

can the information (results) be presented to the user so that it is possible to differentiate

between multiple satisfactory solutions?” The results include Pareto curves, which relate

the potential range of motion to the stiffness of the compliant joint, over all possible

geometries available from the user input. This allows the user to compare compliant

joints that fulfill their requirements side by side on additional performance metrics, to

determine objectively which compliant joint has the preferred qualities for the given

requirements.

69

All models within the repository were validated through FEA comparisons of

deflection. The FEA models show that the parametric models of each compliant joint

were characterizing the movement of the compliant joints correctly. Ten test cases

composed of input values within a range were applied to the selection algorithm. The

algorithm generated results to all test cases, showing that all solutions sets only contained

true positives, with no false positives or false negatives provided.

5.2 Potential Impact

The research presented has some potential impacts that should be highlighted.

Due to the extensible design of the parametric model repository, it is possible for new

users to follow the procedure outlined, and add additional models of compliant joints to

the repository. This open ended work would increase the versatility of the selection

algorithm by allowing more potential compliant joints to be highlighted.

Another potential impact would be available if the repository and selection

algorithm was integrated with Computer-Aided Design (CAD) software. Since the

selection algorithm determines which compliant joints will fulfill user requirements over

certain geometries, this information could be exported to use within solid-body models.

From this, additional FEA testing could be performed, or the files could be converted into

.STL files for use in additive manufacturing. Fused deposition modeling (or 3D printers)

could be used to immediately print design solutions. Compliant joints are especially

appropriate to be made using 3D printing due to their ability to be made as a singular

piece. In this way, an inexperienced user could go from a design problem requiring a

compliant joint to a functional, physical compliant joint in a matter of hours.

70

5.3 Future Work

A number of additional problems could be addressed to increase the robustness

and applicability of the method outlined in this thesis. First and foremost would be the

addition of more compliant joints of each type, as well as potential combinations of the

flexures listed here. More compliant joints in the repository would lead to a greater

variety of selection, which could lead to a more satisfactory solution for the user.

Combinations of flexures and compliant joints would open up a new solution space, with

unique design combinations. This would give the repository some ability to create new

compliant joints.

The robustness of the current algorithm should be addressed as well. A number of

additional options could be added to the material selection, as well as the types of

compliant joints to select from. Allowing users to interact with the algorithm itself and

change the geometric parameters that are explored over each joint would add a large

amount of customizability, which power users may desire.

The value of the algorithm would also increase if additional characteristics were

explored to further define individual joints. Precision, especially for translational

compliant joints, can be a more desired trait than range of motion or stiffness. The same

could be said for axial drift control on rotational compliant joints. Additionally, mass of

individual compliant joints could be used as a performance characteristic, which would

allow for designs that wish to minimize material or weight for a final design.

Meta-characteristics of the compliant joints, such as manufacturability, would

inform the user about potential downfalls or limitations of the compliant joints within the

71

repository. Since an assumption had to be made for the thickness of the joints to achieve

good ranges of motion, this assumption could be relaxed on a case by case basis based on

the potential manufacturability of the parts. This could accommodate for new design or

manufacture methods that were not developed at the time of this research. A visual

representation of all results (the CAD renderings) would also help the user understand the

context of the compliant joints and additional quantitative information about the

construction and design of the joints.

Additional parallel testing of the current algorithm could lead to further

streamlining. Running parallel with topological optimization methods or pseudo-rigid-

body design of compliant mechanisms would quantify the potential of this research as a

selection method for use in design, and see if all methods return the same final result.

72

CHAPTER 6: REFERENCES

[1] L. L. Howell, Compliant Mechanisms. 2001.

[2] S. Shuib, M. I. Z. Ridzwan, and A. H. Kadarman, “Methodology of Compliant

Mechanisms and its Current Developments in Applications : A Review,” Am. J.

Appl. Sci., vol. 4, no. 3, pp. 160–167, 2007.

[3] N. Lobontiu, Compliant Mechanisms: Design of Flexure Hinges. 2002.

[4] S. Zelenika and F. De Bona, “Design of Microsystems Based on Compliant

Structures and Devices,” in International Design Conference, 2006, pp. 1033–

1040.

[5] B. P. Trease, Y.-M. Moon, and S. Kota, “Design of Large-Displacement

Compliant Joints,” J. Mech. Des., vol. 127, no. July, pp. 788–798, 2005.

[6] L. L. Howell, “A generalized loop-closure theory for the analysis and synthesis of

compliant mechanisms,” 1993.

[7] L. L. Howell and A. Midha, “Parametric Deflection Approximations for End-

Loaded , Large-Deflection Beams in Compliant Mechanisms,” Trans. ASME, vol.

117, no. March, pp. 156–165, 1995.

[8] B. T. Edwards, B. D. Jensen, and L. L. Howell, “A Pseudo-Rigid-Body Model for

Functionally Binary Pinned-Pinned Segments Used in Compliant Mechanisms,” in

Proceedings of the 1999 ASME Design Engineering Technical Conferences, 1999,

pp. 1–12.

[9] D. A. Espinosa, “Moment-dependent pseudo-rigid-body models for beam

deflection and stiffness kinematics and elasticity,” 2009.

[10] X. Tang, I.-M. Chen, and Q. Li, “Design and nonlinear modeling of a large-

displacement XYZ flexure parallel mechanism with decoupled kinematic

structure,” Rev. Sci. Instrum., vol. 77, no. 11, p. 115101, 2006.

[11] M. Frecker, G. K. Ananthasuresh, S. Nishiwaki, S. Kota, and N. Kikuchi,

“Topological Synthesis of Compliant Mechanisms Using Multi-Criteria

Optimization,” J. Mech. Des., vol. 119, no. June, pp. 238–245, 1997.

[12] M. Frecker, N. Kikuchi, and S. Kota, “Topology optimization of compliant

mechanisms with multiple outputs,” Struct. Optim., no. 17, pp. 269–278, 1999.

73

[13] K. Lu and S. Kota, “Design of Compliant Mechanisms for Morphing Structural

Shapes,” J. Intell. Mater. Syst. Struct., vol. 14, no. June, pp. 379–391, 2003.

[14] O. Sigmund, “On the Design of Compliant Mechanisms Using Topology

Optimization,” Mech. Struct. Mach. An Int. J., vol. 25, no. 4, pp. 493–524, Jan.

1997.

[15] C. B. W. Pedersen, T. Buhl, and O. Sigmund, “Topology synthesis of large-

displacement compliant mechanisms,” Int. J. Numer. Methods Eng., vol. 50, no.

January, pp. 2683–2705, 2001.

[16] N. D. Pavlović, D. Petković, and N. T. Pavlović, “Optimal selection of the

compliant mechanism synthesis method,” in The International Conference:

Mechanical Engineering in XXI Century, 2010, pp. 1–4.

[17] P. Bernardoni, P. Bidard, C. Bidard, and F. Gosselin, “A new compliant

mechanism design methodology based on flexible building blocks,” 2004.

[18] N. Jhawar and G. K. Ananthasuresh, “Cataloguing and Selection of Displacement-

Amplifying Compliant Mechanisms,” in Research into Design: Supporting

Multiple Facets of Product Development, 2009, pp. 26–34.

[19] S. Mahler, “Compliant pediatric prosthetic knee,” University of South Florida,

2007.

[20] A. Kyusojin, D. Sagawa, and A. Toyama, “Development of linear and rotary

movement mechanism by using flexible strips,” Bull. Japan Soc. Precis. Eng.,

1988.

[21] X. Pei, J. Yu, G. Zong, and S. Bi, “Design of compliant straight-line mechanisms

using flexural joints,” Chinese J. Mech. Eng., vol. 27, no. 1, pp. 146–153, Feb.

2014.

[22] Y. Tian, B. Shirinzadeh, and D. Zhang, “Closed-form compliance equations of

filleted V-shaped flexure hinges for compliant mechanism design,” Precis. Eng.,

vol. 34, no. 3, pp. 408–418, Jul. 2010.

[23] M. Goldfarb and J. E. Speich, “A well-behaved revolute flexure joint for compliant

mechanism design,” Trans. ASME, vol. 121, no. September, pp. 424–429, 1999.

[24] A. E. Gu rinot, S. P. Magleby, L. L. Howell, and R. H. Todd, “Compliant Joint

Design Principles for High Compressive Load Situations,” J. Mech. Des., vol. 127,

no. 4, pp. 774–781, 2005.

74

[25] S. Smith, Flexures, Elements of Elastic Mechanisms. 2002.

[26] B. D. Jensen and L. L. Howell, “The modeling of cross-axis flexural pivots,”

Mech. Mach. Theory, vol. 37, no. 5, pp. 461–476, May 2002.

[27] Q. Xu and Y. Li, “A novel design of a 3-PRC translational compliant parallel

micromanipulator for nanomanipulation,” Robotica, vol. 24, no. 04, p. 527, Jan.

2006.

[28] A. Kyusojin, D. Sagawa, and A. Toyama, “Development of Linear and Rotary

Movement Mechanisms by Using Leaf Springs,” J. Jpn. Soc Prec. Eng, vol. 4, no.

22, pp. 1092–1096, 1988.

[29] G. Mocko, R. J. Malak, C. J. J. Paredis, and R. Peak, “A Knowledge Repository

for Behaivoral Models in Engineering Design,” in Proceedings of DETC ’04,

2004, pp. 1–10.

75

APPENDICES

76

APPENDIX A. COMPLIANT JOINT REPOSITORY

Located in this appendix are all of the compliant joints that were used in the

compliant joint repository. Each individual compliant joint section will contain the

compliant joint‟s name, its geometric parameters, additional notes, a 3-D CAD solid

model representation, the original equations found in the literature describing its motion,

and the MATLAB function parametric model used in the selection algorithm.

A.1 Translational Compliant Joints

1. Name: Smith Rectilinear

Geometric Parameters: w (thickness), d (depth), L (length), D (distance between

leaf springs)

Additional Notes:

Accuracy increases as L>>w

Same as Kyusojin Parallel Strip – calculated differently

Figure A 1. Solid model representation of the Smith Rectilinear compliant joint.

77

Figure A 2. Geometric characteristics of the Smith Rectilinear compliant joint.

 The linear stiffness of the compliant joint is described by

where E is the Young‟s Modulus of the material, b is the depth of the material, L

is the height of the leaf springs, and t is the thickness of the leaf springs.

function [Disp,K] = SmithRectilinearSpringFun(E,t,b,L,F)

% E = Young's Modulus

%N/mm^2

%%----Joint Dimensional Characteristics----%%

% w = thickness of leaf springs

%mm

% d = Depth of joint

% L = Height of leaf springs

% D = Distance between leaf springs

% F = Force Applied

%%----Solution of Joint----%%

%Stiffness

K=2*E*b*(t/L)^3;

%In plane displacement

Disp=F/K;

end

Figure A 3. MATLAB function model of the Smith Rectilinear compliant joint.

D

Lt

Motion

Force

78

2. Name: Kyusojin Parallel Strip

Geometric Parameters: w (thickness), h (depth), L (length)

Additional Notes:

Accuracy increases as L>>w

Same as Smith Rectilinear – calculated differently

Figure A 4. Solid model representation of the Kyusojin Parallel Strip compliant

joint.

Figure A 5 Geometric characteristics of the Kyusojin Parallel Strip compliant joint.

 The displacement of the upper table in the x-direction can be described by

lw

Motion

Force

79

where F is the applied force, l is the height of the leaf springs, E is the Young‟s

modulus of the material, and I is the moment of inertia of the leaf springs about their

center.

function [Dispx,K] = ParallelStripFun(E,h,w,l,F)

% E = Young's Modulus

%N/mm^2

%%----Joint Dimensional Characteristics----%%

% w = thickness of leaf springs

%mm

% h = Depth of joint

% l = Height of leaf springs

% F = Force Applied

%%----Solution of Joint----%%

w=w/5;

I=h*w^3/12;

%In plane deflection

Dispx=sqrt((5*F^2*l^6)/(3*(240*(E*I)^2)));

K=F/Dispx;

%Only represents one spring, so

Dispx=Dispx/2;

K=K*2;

%Out of plane deflection

Dispy=F^2*l^5/(240*(E*I)^2);

end

Figure A 6. MATLAB function model of the Kyusojin Parallel Strip compliant joint.

80

3. Name: Kyusojin Linear 6L1

Geometric Parameters: t (thickness), w (width of leaf spring), l (length of leaf

spring)

Additional Notes: Center table length is irrelevant

(a) (b)

Figure A 7. Solid model representation of the Kyusojin Linear 6L1 compliant joint,

(a) original position and (b) deflected position.

(a) (b)

Figure A 8. Side view of solid model representation of the Kyusojin Linear 6L1

compliant joint, (a) original position and (b) deflected position.

81

Figure A 9. Geometric characteristics of the Kyusojin Linear 6L1 compliant joint.

 The displacement of the upper table in the x-direction can be described by

where F is the force applied, l is the height of the leaf springs, E is the Young‟s

Modulus of the material, and I is the moment of inertia of the leaf springs about their

center.

l

MotionForce

w

82

function [Disp,K] = KyusojinLinear6L1Fun(E,t,w,l,F)

% E = Young's Modulus

%N/mm^2

%%----Joint Dimensional Characteristics----%%

% w = Width of leaf springs

%mm

% t = Thickness of leaf springs

% l = Height of leaf springs

% F = Force Applied

%Number of spring-pairs

N=4;

%%----Solution of Joint----%%

t=t/5;

I=(t*w^3)/12;

a=sqrt(N/(E*I));

%Out of plane deflection

dely=(F^2*l^5)/(60*(E*I)^2)*(1/(cos(a*l))-1);

%In plane deflection (linear translation)

Disp=sqrt((5*F^2*l^6)/(3*(60*(E*I)^2)));

%Needed to fix scale

Disp=Disp*1000;

K=F/Disp;

end

Figure A 10. MATLAB function model of the Kyusojin Linear 6L1 compliant joint.

83

4. Name: Trease Translational

Geometric Parameters: t (thickness), w (depth), LB (length)

Additional Notes: This is the planar configuration – this joint also has a spatial

configuration with two more sets of leaf springs on the other non translational axis

Figure A 11. Solid model representation of the Trease Translational compliant joint.

Figure A 12. Geometric characteristics of the Trease Translational compliant joint.

LBeam
t

L2

Force
Motion

L4

L3
L
1

width

width

84

 The linear stiffness of the compliant joint can be described by

where E is the Young‟s Modulus of the material, t is the thickness of the leaf

springs, w is the depth of the leaf springs, and LB is the length of the leaf springs.

function [Disp,kaxialp] = TreaseTranslationalFun(E,t,w,LB,F)

% E = Young's Modulus

%N/mm^2

%%----Joint Dimensional Characteristics----%%

% w = Depth of leaf springs

%mm

% t = Thickness of leaf springs

% LB = Length of leaf springs

% F = Force Applied

%%----Solution of Joint----%%

t=t/5;

%Note: Planar is 2 sets of 6 beams, spatial is 4 sets of 6 beams

%%Only planar is used as a joint in the solution

%K for planar (2 sides)

kaxialp = 3*(E*t^3*w)/(LB^3);

%K for spatial (4 sides)

kaxials = 6*(E*t^3*w)/(LB^3);

%Displacement

Disp= F/kaxialp;

end

Figure A 13. MATLAB function model of the Trease Translational compliant joint.

85

5. Name: Xu Translational

Geometric Parameters: t (thickness), φ (angle), Hp (total length), H (length to

fixed ends), hf (length to force applied)

Additional Notes: Very precise for small translational distances

Figure A 14. Solid model representation of the Xu Translational compliant joint.

Figure A 15. Geometric characteristics of the Xu Translational compliant joint.

 The linear displacement of this compliant joint can be described by

Motion

Force

h
f

H
p

H

2φ

t

86

where Hp is the height to the movement point from the origin point, and θ is the

angle of movement of the center bar. This angle can be found from

where H is the height from the origin to the fixed locations, dc is the depth of the

compliant joint, E is the Young‟s Modulus of the material, t is the thickness of the leaf

springs, φ is the angle of the leaf springs, and n is a geometric relation. This relation is

described by

where hf is the height to the platform where the force is applied. Additionally, Hp

can be calculated using

where gamma is a geometric relation described by

87

function [dmax,K] = XuTranslationalFun(E,t,dc,hf,H,F)

% E = Young's Modulus

%N/mm^2

%%----Joint Dimensional Characteristics----%%

% t = Thickness of leaf springs

%mm

% phi = Angle (from vertical) to each fixed point,

%%set to simplify optimization

phi = 30;

% Hf = Point to force application

% H = Height to fixed points

% F = Force Applied

%%----Solution of Joint----%%

t=t/5;

n=H/(H-hf);

gamma =15*n^2/(2-3*n+18*n^2);

Hp=(n-gamma)/(gamma*cosd(phi)^2)*H;

theta = (H*dc)/(E*t*(3*n-1)*n*cosd(phi));

dx=Hp*theta;

%Deflection in x direction

dmax=Hp*sin(theta);

K=F/dmax;

end

Figure A 16. MATLAB function model of the Xu Translational compliant joint.

88

6. Name: Smith Notch Hinge

Geometric Parameters: t (thickness), R (radius of circles), L* (distance between

flexures)

Additional Notes: More accurate when R>>L and t>>L

Figure A 17. Solid model representation of the Smith Notch Hinge compliant joint.

Figure A 18. Geometric characteristics for the Smith Notch Hinge compliant joint.

The linear stiffness of this compliant joint can be described by

Force

Motion

t

R

L*

89

where E is the Young‟s Modulus of the material, b is the depth of the compliant

joint, t is the thickness of the circular flexures, R is the radius of the circular flexures, and

L* is the distance between the two circular flexures‟ centers.

function [Disp,K] = SmithNotchHingeFun(E,R,t,b,L,F)

% E = Young's Modulus

%N/mm^2

%%----Joint Dimensional Characteristics----%%

% R = Radius of circular notches

%mm

% t = Thickness between circular notches

% b = Depth of Flexures

% L = Length between circular notches

% F = Force Applied

%%----Solution of Joint----%%

R=R/2;

t=t/5;

Lstar=L+2*R;

%Stiffness calculation

K=(8*E*b*t^(5/2))/(9*pi()*R^.5*Lstar^2);

%Deflection

Disp=F/K;

end

Figure A 19. MATLAB function model of the Smith Notch Hinge compliant joint.

90

A.2 Rotational Compliant Joints

1. Name: Lobontiu Symmetric Notch

 Geometric Parameters: t (thickness), w (depth), l (length)

Additional Notes:

Figure A 20. Solid model representation of the Lobontiu Symmetric Notch

compliant joint.

Figure A 21. Geometric characteristics of the Lobontiu Symmetric Notch compliant

joint.

The linear compliance of this compliant joint is defined as

l

t

91

where E is the Young‟s modulus of the material, l is the length of the flexure, w is

the depth of the flexure, and t is thickness of the flexure.

function [Disp,K] =

LobontiuSymmetricNotchFun(E,t,l,w,F)

% E = Young's Modulus

%N/mm^2

%%----Joint Dimensional

Characteristics----

% t = Thickness of flexure

% w = Depth of flexure

% l = Length of flexure

% F = Force applied

%%----Solution of Joint----%%

t=t/5;

%Compliance

C = (4*l^3)/(E*w*t^3);

%Stiffness

K=1/C;

%Linear Displacement

Disp = F/K;

%Angular Displacement

Disp = asin(Disp/l)*180/pi();

%Rotational Stiffness

K=(F*l/2)/Disp;

end

Figure A 22. MATLAB function model of the Lobontiu Symmetric Notch compliant

joint.

92

2. Name: Lobontiu Corner Filleted

 Geometric Parameters: r (radius of fillets), t (thickness), w (depth), l

(length)

Additional Notes:

Figure A 23. Solid model representation of the Lobontiu Corner Filleted compliant

joint.

Figure A 24. Geometric characteristics of the Lobontiu Corner Filleted compliant

joint.

The linear compliance of the flexure is defined as

r

t

l

93

where E is the Young‟s modulus of the material, w is the depth of the flexure, l is

the length of the flexure, r is the radius of the fillets, and t is the thickness of the flexure.

94

function [Disp,K] = LobontiuCornerFilletedFun(E,t,r,l,w,F)

% E = Young's Modulus

%N/mm^2

%%----Joint Dimensional Characteristics----

% r = Radius of filets

%%mm

% w = Depth of flexure

% l = Length of flexure

% t = Thickness of flexure

% F = Force applied

%%----Solution of Joint----%%

r=r/2;

t=t/5;

%Compliance

C=(3/(E*w))*(((4*(l-2*r)*(l^2-l*r+r^2))/(3*t^3))...

 +(sqrt(t*(4*r+t))*(-

80*r^4+24*r^3*t+8*(3+2*pi())*r^2*t^2+4*(1+2*pi())*r*t^3+pi()*t^4))/(4*s

qrt(t^5*(4*r+t)^5))...

 +((2*r+t)^3*(6*r^2-4*r*t-

t^2)*atan(sqrt(1+4*r/t)))/sqrt(t^5*(4*r+t)^5)...

 +(-40*r^4+8*l*r^2*(2*r-

t)+12*r^3*t+4*(3+2*pi())*r^2*t^2+2*(1+2*pi())*r*t^3+(pi()*t^4)/2)/(2*t^

2*(4*r+t)^2)...

 +(4*l^2*r*(6*r^2+4*r*t+t^2))/(t^2*(2*r+t)*(4*r+t)^2)...

 -((2*r+t)*(-24*(l-r)^2*r^2-

8*r^3*t+14*r^2*t^2+8*r*t^3+t^4)/(t^5*(4*r+t)^5)^0.5)*atan(1+4*r/t));

%Stiffness

K=1/C;

%Displacement

Disp=C*F;

%Angular Displacement

Disp = asin(Disp/l)*180/pi();

%Rotational Stiffness

K=(F*l/2)/Disp;

end

Figure A 25. MATLAB function model of the Lobontiu Corner Filleted compliant

joint.

95

3. Name: Lobontiu Symmetric Circular

 Geometric Parameters: r (radius of circles), t (thickness), w (depth), l

(length)

Additional Notes: Same as Tang Symmetric Circle, but calculated differently

Figure A 26. Solid model representation of the Lobontiu Symmetric Circle

compliant joint.

Figure A 27. Geometric characteristics of the Lobontiu Symmetric Circle compliant

joint.

The compliance of the flexure is given by

r

t

l

96

where E is the Young‟s modulus of the material, r is the radius of the flexure, l is

the length of the flexure, and t is the thickness of the flexure.

97

function [Disp,K] = LobontiuSymmetricCircularFun(E,t,r,w,F)

% E = Young's Modulus

%N/mm^2

%%----Joint Dimensional Characteristics----

% r = Radius of circles

r=r/2;

%%mm

% t = Distance between circles

t=t/5;

% w = Depth of Flexure

% F = Force applied

%%----Solution of Joint----%%

%Compliance

C = (3/(4*E*w*(2*r+t)))*...

(2*(2+pi())*r+pi()*t+(8*r^3*(44*r^2+28*r*t+5*t^2))/(t^2*(4*r+t)^2)...

 +((2*r+t)*sqrt(t*(4*r+t))*(-

80*r^4+24*r^3*t+8*(3+2*pi())*r^2*t^2+4*(1+2*pi())*r*t^3+pi()*t^4))/sqrt

(t^5*(4*r+t)^5)...

 -((8*(2*r+t)^4*(-

6*r^2+4*r*t+t^2))/sqrt(t^5*(4*r+t)^5))*atan((1+(4*r)/t)^0.5));

% C=24*r^2/(E*w*t^3*(2*r+t)*(4*r+t)^3)*...

% (t*(4*r+t)*(6*r^2+4*r*t+t^2)...

% +6*r*(2*r+t)^2*sqrt(t*(4*r+t))*atan(sqrt(1+4*r/t)));

%Stiffness

K=1/C;

%Linear Displacement

Disp = F/K;

%Angular Displacement

Disp = asin(Disp/(r))*180/pi();

%Rotational Stiffness

K=(F*r)/Disp;

end

Figure A 28. MATLAB function model of the Lobontiu Symmetric Circle compliant

joint.

98

4. Name: Tian V Shape Flexure

 Geometric Parameters: R (radius of circles), t (thickness), b (depth), 2l

(length), c (height of slope), h (height of flexure), (angle of flexure)

Additional Notes:

Figure A 29. Solid model representation of the Tian V Shape Flexure compliant

joint.

Figure A 30. Geometric characteristics of the Tian V Shape Flexure compliant joint.

The deflection of the flexure around its center, , for a given moment, ,

θ

t

l

h

c
R

99

where E is the Young‟s modulus, b is the depth of the flexure, R is the radius of

the center circles, θ is the angle of the slopes, and β and γ are geometric relations. Β can

be described by

where t is the thickness of the flexure at the center, and R is the radius of the

center circles. γ can be described by

where t is the thickness of the flexure at the center, and c is the height of the

sloped sections.

function [alpha,K] = VShapeFun(E,t,h,l,R,b,F)

% E = Young's Modulus

%N/mm^2

%%----Joint Dimensional Characteristics----

% t = Thickness of flexure at smallest point

t=t/5;

%%mm

% R = Circles at middle of flexure

%This ensures radius is not larger than half of height of flexure

R=(R/2-t/2)/2;

% l = Half length of flexure

%Since l is half length,

l=l/2;

100

% h = Total height of flexure

%theta = Slope of flexure sides

theta = 20;%maintained

theta=theta*2*pi()/360;

% c = Height of sloped portion

%This logic ensures flexure has solution

if h==b

 %min def

 c=h/2-t;

else

 c=0.1;

end

% F = Force applied

%%----Solution of Joint----%%

B=t/(2*R);

y=t/(2*c);

M=F*(l);

%Compliance

C=(3/(2*E*b*R^2))*((1/(2*B+B^2))*(((1+B)*sin(theta)/(1+B-

cos(theta))^2)...

 +((3+2*B+B^2)*sin(theta)/((2*B+B^2)*(1+B-cos(theta))))...

+(6*(1+B)/((2*B+B^2)^(3/2))*atan(sqrt((2+B)/B)*tan(theta/2))))...

 -y^2*cot(theta)/(B^2*(1+y)^2)...

 +cot(theta)/(1+B-cos(theta))^2);

%Alternative compliance, for force applied rather than moment

% C=(3*y+3*(B-y)*cos(theta))/(2*E*b*R*y*sin(theta))*...

% ((1/(2*B+B^2))*(((1+B)*sin(theta))/((1+B-cos(theta))^2)...

% +((3+2*B+B^2)*sin(theta))/((2*B+B^2)*(1+B-cos(theta)))...

%

+(6*(1+B))/((2*B+B^2)^(3/2))*atan(sqrt((2+B)/B)*tan(theta/2)))...

% -(y^2*cot(theta))/(B^2*(1+y)^2)...

% +cot(theta)/(1+B-cos(theta))^2);

%Stiffness

K=1/C;

%Angular Displacement

alpha=M*C*180/pi();

%Linear Displacement

Disp=sin(alpha)*(l);

%Transform stiffness to Nm/deg

K=K*pi()/180;

end

Figure A 31. MATLAB function model of the Tian V Shape Flexure compliant joint.

101

5. Name: Tang Symmetric Circular

Geometric Parameters: t (thickness), b (depth), R (radius)

Additional Notes: Same as Lobontiu Symmetric Circle, but with a simplified

calculation for stiffness.

Figure A 32. Solid model representation of the Tang Symmetric Circular compliant

joint.

Figure A 33. Geometric characteristics of the Tang Symmetric Circular compliant

joint.

 The angular stiffness about the center of the flexure is described as

R

t

102

where E is the Young‟s modulus of the material, b is the depth of the flexure, t is

the thickness of the flexure at the center, and R is the radius of the circles.

function [Disp,K] = TangSymmetricCircularFun(E,R,t,b,F)

% E = Young's Modulus

%N/mm^2

%%----Joint Dimensional Characteristics----

% t = Thickness of flexure at smallest point

t=t/5;

%%mm

% R = Radius of circles

R=R/2;

% b = Depth of Flexure

% F = Force applied

%%----Solution of Joint----%%

M= F*R;

%Stiffness

K=(2*E*b*t^(5/2))/(9*pi()*R^.5);

%Angular Displacement

Disp = M/K*180/pi();

%Linear Displacement

% Disp=sind(Disp)*R;

%Transform stiffness to Nm/deg

K=K*pi()/180;

end

Figure A 34. MATLAB function model of the Tang Symmetric Circular compliant

joint.

103

6. Name: Smith Two Axis

 Geometric Parameters: r (radius of circles), t (thickness)

Additional Notes:

Figure A 35. Solid model representation of the Smith Two Axis compliant joint.

Figure A 36. Geometric characteristics of the Smith Two Axis compliant joint.

 The angular stiffness of the flexure can be described by

where E is the Young‟s Modulus of the material, t is the thickness at the center of

the flexure, and R is the radius of the circles.

r

t

104

function [Disp,K] = SmithTwoAxisFun(E,R,t,F)

% E = Young's Modulus

%N/mm^2

%%----Joint Dimensional Characteristics----

% t = Thickness of flexure at smallest point

t=t/5;

%%mm

% R = Radius of circles

R=R/2;

% F = Applied force

%%----Solution of Joint----%%

%Stiffness

K=(E*t^(7/2))/(20*R^(3/2));

%Angular Displacement for a force applied at the end

Disp=F/K*180/pi();

%Linear Displacement

% Disp=sin(Disptheta)*(R);

%Angular Stiffness

K=F*R/Disp;

end

Figure A 37. MATLAB function model of the Smith Two Axis compliant joint.

105

7. Name: Smith Annulus

 Geometric Parameters: t (thickness), r2 (inner radius), r1 (outer radius)

Additional Notes:

Figure A 38. Solid model representation of the Smith Annulus compliant joint.

Figure A 39. Geometric characteristics of the Smith Annulus compliant joint.

 This compliant joint‟s angular stiffness can be described by

r2
r1

106

where E is the Young‟s modulus of the material, I is the moment of inertia of the

annulus, r1 is the outer radius of the annulus, and fm is a geometric relation. This relation

can be described by

where λ is an additional geometric relation. This is described by

where E is the Young‟s modulus of the material, G is the shear modulus of the

material, I is the moment of inertia of the annulus, and J is the polar moment of inertia of

the annulus.

107

function [Disp,K] = SmithAnnulusFun(E,G,r1,t,F)

% E = Young's Modulus

%N/mm^2

%%----Joint Dimensional Characteristics----

% t = Thickness of central disk

t=t/5;

%%mm

% r1 = Radius of outer circle

% r2 = Radius of inner circle

r1=r1/2;

r2=r1-(r1*.2);

% F = Applied force

%%----Solution of Joint----%%

M=F*r1;

b=r1-r2;

J=(b*t^3)/3;

I=pi()/4*(r1^4-r2^4);

lamda=E*I/(G*J);

fm1=((pi()+4)+lamda*(8-pi()));

fm2=((2*pi()^2-4*pi()-4)+lamda*(8*pi()^2-18*pi()-16)+lamda^2*(6*pi()^2-

14*pi()-12));

fm=fm1/fm2;

%Stiffness

K=((16*E*I)/r1)*fm;

%Angular displacement

Disp=M/K *180/pi();

%Transform stiffness to Nm/deg

K=K*pi()/180;

end

Figure A 40. MATLAB function model of the Smith Annulus compliant joint.

108

8. Name: Smith Cartwheel

Geometric Parameters: t (thickness), R (radius), b (depth)

Additional Notes:

Figure A 41. Solid model representation of the Smith Cartwheel compliant joint.

Figure A 42. Geometric characteristics of the Smith Cartwheel compliant joint.

 The angular stiffness of the compliant joint can be described by

R

t

109

where E is the Young‟s Modulus of the material, I is the moment of inertia of the

beams, and R is the radius of the circle that contains the flexure.

function [thetadeg,K] = SmithCartwheelFun(E,t,R,b,F)

% E = Young's Modulus

%N/mm^2

%%----Joint Dimensional Characteristics----

% t = Thickness of flexure beams

t=t/5;

%%mm

% R = Radius of circle

R=R/2;

% b = Depth of flexure

% F = Applied force

%%----Solution of Joint----%%

I=(b*t^3)/12;

%Stiffness

K=4*E*I/R;

M=F*(R);

theta=M/K;

%Angular Displacement

thetadeg=theta*180/pi();

%Linear Displacement

Disp=sin(theta)*(2*R);

%Transform stiffness to Nm/deg

K=K*pi()/180;

end

Figure A 43. MATLAB function model of the Smith Cartwheel compliant joint.

110

9. Name: Smith Cruciform

Geometric Parameters: t (thickness), w (width), l (depth)

Additional Notes:

Figure A 44. Solid model representation of the Smith Cruciform compliant joint.

Figure A 45. Geometric characteristics of the Smith Cruciform compliant joint.

 The angular stiffness of the compliant joint can be described by

d

t

l

111

where d is the height of the cruciform arms, t is the thickness of the cruciform

arms, G is the shear modulus of the material, and L is the length of the cruciform.

function [theta,K] = SmithCruciformFun(G,t,L,d,F)

% G = Shear Modulus

%N/mm^2

%%----Joint Dimensional Characteristics----

% t = Thickness of cruciform

t=t/5;

%%mm

% l = length of cruciform

% d = height of cruciform arms

d=d/2-t/2;

% F = Applied force

%%----Solution of Joint----%%

M=F*(d);

%Stiffness

K=(d/t-0.373)*(2*G*t^4)/(3*L);

%Angular Displacement

theta=M/K*180/pi();

%Linear Displacement

Disp=sind(theta)*(d);

%Transform stiffness to Nm/deg

K=K*pi()/180;

end

Figure A 46. MATLAB function model of the Smith Cruciform compliant joint.

112

10. Name: Jensen Cross Axis

Geometric Parameters: t (thickness), r (length), L (Length of lever), l (length of

cross springs), w (height of flexure), D (depth)

Additional Notes:

Figure A 47. Solid model representation of the Jensen Cross Axis compliant joint.

Figure A 48. Geometric characteristics of the Jensen Cross Axis compliant joint.

 The angular stiffness of the compliant joint can be described by

t

r L

w

113

where E is the Young‟s Modulus, I is the moment of inertia of the leaf springs, l is

the length of the leaf springs, and Kθ is a polynomial curve fit. This curve fit can be

described by

where n is the geometric relation

which is defined by the height of the joint, w and the length of the joint, r.

function [Disp,K] = JensenCrossAxisFun(E,t,w,r,D,F)

% E = Young's Modulus

%N/mm^2

%%----Joint Dimensional Characteristics----%%

% r = Total length of gap

%mm

% l = Length of cross spring

% w = Height of joint

% t = Thickness of Leaf Spring

% L = Lever arm

% D = Depth of joint

% F = Force Applied

%%----Solution of Joint----%%

L=0.1; %

t=t/5;

x = 1.404*t; %estimation, can be determined geometrically

l=sqrt((w-x)^2+r^2);

n=r/w;

KTheta=5.300185-1.6866*n+0.885356*n^2-0.2094*n^3+0.018385*n^4;

I=(1/12)*D*t^3;

%Stiffness

K=(KTheta*E*I)/(2*l);

M=F*(L+r);

%Angular Displacement

Theta=M/(K);

%Linear Displacement

Disp=sin(Theta)*(L+r);

%Transform stiffness to Nm/deg

K=K*pi()/180;

end

Figure A 49. MATLAB function model of the Jensen Cross Axis compliant joint.

114

11. Name: Smith Rotationally Symmetric Leaf Hinge

Geometric Parameters: d (thickness of cut), Ri (inner radius), Ro (outer radius)

Additional Notes:

Figure A 50. Solid model representation of the Smith Rotationally Symmetric Leaf

Hinge compliant joint.

Figure A 51. Geometric characteristics of the Smith Rotationally Symmetric Leaf

Hinge compliant joint.

 The angular stiffness of this compliant joint can be described by

Ri
Ro

115

where E is the Young‟s Modulus of the material, d is the thickness of the material

between the cuts, θ is the deflection of the center beams, and ε and γ are geometric

relations. These relations are described by

where Ri is the inner radius and Ro is the outer radius, and

116

function [Theta,K] = RotationallySymmetricLeafHingeFun(E,d,Ro,F)

% E = Young's Modulus

%N/mm^2

%%----Joint Dimensional Characteristics----

% d = Thickness of flexure at smallest point

d=d/5;

%%mm

% Ro = Outer radius of circle

Ro=Ro/2;

% Ri = Inner radius of circle

Ri=Ro-Ro/5;

% F = Applied force

%%----Solution of Joint----%%

theta=75;%Simplification - deflection of

%thin member when force is applied

thetar=theta*pi()/180;

epsilon=d/Ro;

gamma=Ri/Ro;

%Stiffness

K=E*d/(2*thetar^3)*(epsilon/gamma)^2*(1-gamma^2);

%Linear Displacement

Disp=F/K;

%Angular Displacement

Theta=asin(Disp/Ro)*180/pi();

%Rotational Stiffness

K=(F*Ro)/Theta;

end

Figure A 52. MATLAB function model of the Smith Rotationally Symmetric Leaf

Hinge compliant joint.

117

12. Name: Trease Rotational

Geometric Parameters: t (thickness), w (width), l (cruciform length)

Additional Notes: Uses two Smith Cruciform flexures to achieve movement, but

calculated from different geometric characteristics

Figure A 53. Solid model representation of the Trease Rotational compliant joint.

Figure A 54. Geometric characteristics of the Trease Rotational compliant joint.

The angular stiffness of the compliant joint is described by

w

t

L

118

where w is the width of the cruciform, t is the thickness of the cruciform, G is the

shear modulus of the material, and L is the length of the cruciforms.

function [Disptheta,KTheta] = TreaseConceptFun(G,t,L,w,F)

% G = Shear Modulus

%N/mm^2

%%----Joint Dimensional Characteristics----

% t = Thickness of flexure at smallest point

t=t/5;

%%mm

% L = Length of cruciforms

L=L/2; %B/C equations are both sides

% w = Total width of cruciform

% F = Applied force

%%----Solution of Joint----%%

T=F*(w/2);

Q=(w^2*t^2)/(3*w+1.8*t);

Tmax=T/Q;

%Stiffness

KTheta=(w/t-0.373)*(4*G*t^4)/(3*L);

%Angular Displacement

Disptheta=T/KTheta*180/pi();

%Linear Displacement

Disp=sind(Disptheta)*(w/2);

%Transform stiffness to Nm/deg

KTheta=KTheta*pi()/180;

end

Figure A 55. MATLAB function model of the Trease Rotational compliant joint.

119

13. Name: Kyusojin Rotational 6R2

Geometric Parameters: t (thickness of leaf spring), w (leaf spring width), l (leaf

spring length), r (radius of circle)

Additional Notes: The two spring leaf points are at a 90 degree angle

Figure A 56. Solid model representation of the Kyusojin Rotational 6R2 compliant

joint.

Figure A 57. Geometric characteristics of the Kyusojin Rotational 6R2 compliant

joint.

The linear displacement of the upper table of this compliant joint can be defined

by

l

MotionForce

w

120

where P is the applied force, l is the length of the leaf springs, E is the Young‟s

Modulus, and I is the moment of inertia of the leaf springs about their center. A simple

trigonometric relation,

where i is the linear displacement, and r is the radius of the circle that makes up

the table, can be used to determine the angular rotation of the center point of the table.

121

function [phi,K] = KyusojinRotational6R2Fun(E,t,l,w,P)

% E = Young's Modulus

%N/mm^2

%%----Joint Dimensional Characteristics----

% t = Thickness of leaf spring

t=t/5;

%%mm

% l = Length of leaf spring

% w = width of leaf spring

% P = Applied force

N=4; %# of springs (constant for this geometry)

r= w*2; %radius of circle (center platform)

%Note - the size of the center platform

% (that moves) does not matter

%%----Solution of Joint----%%

I=t*w^3/12;

a=sqrt(N/(E*I));

%Out of plane deflection

dell=(P^2*l^5)/(60*(E*I)^2)*(1/(cos(a*l))-1);

% i=sqrt((5*P^2*l^6)/(3*(60*(E*I)^2)));

%Linear displacement

i=sqrt((5*l^6)/(3*(60*(E*I)^2)));

%Stiffness

K=P/i;

P=kx

%Angular Displacement

phi=asin(i/r)*180/pi();

%Rotational Stiffness

K=(P*r)/phi;

end

Figure A 58. MATLAB function model of the Kyusojin Rotational 6R2 compliant

joint.

122

14. Name: Goldfarb Conventional Split Tube

Geometric Parameters: t (thickness), w (leaf spring width), l (leaf spring

length), r (radius of circle)

Additional Notes:

Figure A 59. Solid model representation of the Goldfarb Conventional Split Tube

compliant joint.

123

Figure A 60. Geometric characteristics of the Goldfarb Conventional Split Tube

compliant joint.

 The angular stiffness of the compliant joint can be described by

where G is the shear modulus, R is the outer radius of the tube, t is the thickness

of the tube, and L is the length of the tube.

l
r

t

124

function [Disptheta,K] = ConventionalSplitTubeFun(G,t,L,R,F)

% G = Shear Modulus

%N/mm^2

%%----Joint Dimensional Characteristics----

% t = Thickness of tube

t=t/5;

%%mm

% R = Outer radius of tube

R=R/2;

% L = Tube length

% F = Applied force

%%----Solution of Joint----%%

%Stiffness

K=(2*pi()*G*R*t^3)/(3*L);

%Angular Displacement

Disptheta=(F*R)/K*180/pi();

%Linear Displacement

Disp=sind(Disptheta)*R;

%Rotational Stiffness

K=(F*R)/Disptheta;

end

Figure A 61. MATLAB function model of the Goldfarb Conventional Split Tube

compliant joint.

125

APPENDIX B. COMPLETE SELECTION ALGORITHM MATLAB CODE

function [a] = DecisiontreeFunction(ty,rom,k,s1,s2,F,E,G)

 %type,range of motion,stiffness,sizevalue1,sizevalue2,E,G,load

 %Used if no F value is specified - can be changed by user

 Fset=[.1,1,10];

 %a is used as a counter

 a=0;

 nfig=1;

 %%---%%

 %%Conversion of strings (user input from gui) to type double

 s1 = str2double(s1);

 s2 = str2double(s2);

 romc=isequal('na',rom);

 if romc==0

 rom = str2double(rom);

 end

 kc=isequal('na',k);

 if kc==0

 k = str2double(k);

 end

 fc=isequal('na',F);

 if fc==0

 F=str2double(F);

 end

 %%---%%

 %%Logic Tree%%

 %%---%%

 if ty==1

 fprintf('Translational Joints are selected\n')

 if romc==0

 fprintf('RoM has a value, %2.2f mm.\n',rom)

 if kc==0

 fprintf('K has a value, %2.2f N/mm.\n',k)

 if fc==0

 fprintf('F has a value, %2.2f N.\n',F)

 %This tree - Y,Y,Y -> Search using Load as F

applied,

 %find geometry that results in rom and k.

 %--

---%

 %n=# of joints in function

 n=6;

 Disp=zeros(n,5);

 for i=1:n

126

 Disp(i,5)=i;

 end

 %Find the minimum and maximum displacement for each

joint - leave thickness

 %constant, vary the depth of the joint from each

iteration

[Disp(1,1),Disp(1,3)]=SmithRectilinearSpringFun(E,s1,s1,s2,F);%max disp

[Disp(1,2),Disp(1,4)]=SmithRectilinearSpringFun(E,s1,s2,s2,F);%min disp

[Disp(2,1),Disp(2,3)]=ParallelStripFun(E,s1,s1,s2,F);

[Disp(2,2),Disp(2,4)]=ParallelStripFun(E,s2,s1,s2,F);

 [Disp(3,1),Disp(3,3)]=KyusojinLinear6L1Fun(

E,s1,s1,s2,F);

 [Disp(3,2),Disp(3,4)]=KyusojinLinear6L1Fun(

E,s1,s2,s2,F);

 [Disp(4,1),Disp(4,3)]=TreaseTranslationalFun(

E,s1,s2,s2,F);

 [Disp(4,2),Disp(4,4)]=TreaseTranslationalFun(

E,s1,s2,s1,F);

 [Disp(5,1),Disp(5,3)]=XuTranslationalFun(

E,s1,s2,s1,s2,F);

 [Disp(5,2),Disp(5,4)]=XuTranslationalFun(

E,s1,s1,s1,s2,F);

 [Disp(6,1),Disp(6,3)]=SmithNotchHingeFun(

E,s2,s1,s2,s2,F);

 [Disp(6,2),Disp(6,4)]=SmithNotchHingeFun(

E,s1,s1,s2,s1,F);

 Check=zeros(n,2);

 for i=1:n

Check(i,1)=CheckRangeFun(Disp(i,2),Disp(i,1),rom);%min max value

Check(i,2)=CheckRangeFun(Disp(i,3),Disp(i,4),k);

 end

names=char('SmithRectilinear','ParallelStrip','KyusojinLinear6L1',...

'TreaseTranslational','XuTranslational','SmithNotchHinge');

 b=1;

127

 for i=1:n

 if (Check(i,1)==0 || Check(i,2)==0)

 a(b,1)=i;

 b=b+1;

 end

 end

 %--

 % Inverse of above for pareto curve production %

 d=1;

 e=0;

 for i=1:n

 if (Check(i,1)==1 && Check(i,2)==1)

 e(d,1)=i;

 d=d+1;

 end

 end

 z = ParetoFunT_YYY(e,E,s1,s2,F,nfig);

 %--------------------

 sa=size(a);

 c=sa(1);

 for i=1:sa(1)

 names(a(c),:)=[];

 c=c-1;

 end

 fprintf('WARNING! Displacements larger than 30%% of

\n the total length of the compliant joint may \n be be inaccurate.')

 fprintf('\nPossible joints for this user input

are:\n')

 disp(names)

 %--

---%

 %%END OF Y,Y,Y TREE

 %--

---%

 else

 fprintf('F does not have a value (na)\n')

 %This tree - Y,Y,N -> Search using generic F set

applied,

 %find geometry that results in rom and k.

 %--

---%

 %n=# of joints in function

 n=6;

 Disp=zeros(n,5);

 for i=1:n

 Disp(i,5)=i;

 end

128

 %Find the minimum and maximum displacement for each

joint - leave thickness

 %constant, vary the depth of the joint from each

iteration

 sizefset=size(Fset);

 nfset=sizefset(2);

 %This is a loop over the user defined forces, Fset

(current 3

 %forces a factor of 10 apart, starting with .1)

 for j=1:nfset

 F=Fset(j);

[Disp(1,1),Disp(1,3)]=SmithRectilinearSpringFun(E,s1,s1,s2,F);%max disp

[Disp(1,2),Disp(1,4)]=SmithRectilinearSpringFun(E,s1,s2,s2,F);%min disp

[Disp(2,1),Disp(2,3)]=ParallelStripFun(E,s1,s1,s2,F);

[Disp(2,2),Disp(2,4)]=ParallelStripFun(E,s2,s1,s2,F);

 [Disp(3,1),Disp(3,3)]=KyusojinLinear6L1Fun(

E,s1,s1,s2,F);

 [Disp(3,2),Disp(3,4)]=KyusojinLinear6L1Fun(

E,s1,s2,s2,F);

 [Disp(4,1),Disp(4,3)]=TreaseTranslationalFun(

E,s1,s2,s2,F);

 [Disp(4,2),Disp(4,4)]=TreaseTranslationalFun(

E,s1,s2,s1,F);

 [Disp(5,1),Disp(5,3)]=XuTranslationalFun(

E,s1,s2,s1,s2,F);

 [Disp(5,2),Disp(5,4)]=XuTranslationalFun(

E,s1,s1,s1,s2,F);

 [Disp(6,1),Disp(6,3)]=SmithNotchHingeFun(

E,s2,s1,s2,s2,F);

 [Disp(6,2),Disp(6,4)]=SmithNotchHingeFun(

E,s1,s1,s2,s1,F);

 Check=zeros(n,2);

 for i=1:n

Check(i,1)=CheckRangeFun(Disp(i,2),Disp(i,1),rom);

Check(i,2)=CheckRangeFun(Disp(i,3),Disp(i,4),k);

 end

129

names=char('SmithRectilinear','ParallelStrip','KyusojinLinear6L1',...

'TreaseTranslational','XuTranslational','SmithNotchHinge');

 b=1;

 for i=1:n

 if (Check(i,1)==0 || Check(i,2)==0)

 a(b,1)=i;

 b=b+1;

 end

 end

 %--

 % Inverse of above for pareto curve production

%

 d=1;

 e=0;

 for i=1:n

 if (Check(i,1)==1 && Check(i,2)==1)

 e(d,1)=i;

 d=d+1;

 end

 end

 z = ParetoFunT_YYY(e,E,s1,s2,F,nfig);

 %--------------------

 sa=size(a);

 c=sa(1);

 for i=1:sa(1)

 names(a(c),:)=[];

 c=c-1;

 end

 fprintf('WARNING! Displacements larger than

30%% of \n the total length of the compliant joint may \n be be

inaccurate.')

 fprintf('\nPossible joints for this user input

using a force of %f are:\n',Fset(j))

 disp(names)

 a=0;

 end

 %--

---%

 %%END OF Y,Y,N TREE

 %--

---%

 end

 else

 fprintf('K does not have a value (na)\n')

 if fc==0

 fprintf('F has a value, %2.2f N.\n',F)

 %This tree - Y,N,Y -> Set F as load applied, check

for

130

 %any joints that can result in rom.

 %--

---%

 %n=# of joints in function

 n=6;

 Disp=zeros(n,5);

 for i=1:n

 Disp(i,5)=i;

 end

 %Find the minimum and maximum displacement for each

joint - leave thickness

 %constant, vary the depth of the joint from each

iteration

[Disp(1,1),Disp(1,3)]=SmithRectilinearSpringFun(E,s1,s1,s2,F);%max disp

[Disp(1,2),Disp(1,4)]=SmithRectilinearSpringFun(E,s1,s2,s2,F);%min disp

[Disp(2,1),Disp(2,3)]=ParallelStripFun(E,s1,s1,s2,F);

[Disp(2,2),Disp(2,4)]=ParallelStripFun(E,s2,s1,s2,F);

 [Disp(3,1),Disp(3,3)]=KyusojinLinear6L1Fun(

E,s1,s1,s2,F);

 [Disp(3,2),Disp(3,4)]=KyusojinLinear6L1Fun(

E,s1,s2,s2,F);

 [Disp(4,1),Disp(4,3)]=TreaseTranslationalFun(

E,s1,s2,s2,F);

 [Disp(4,2),Disp(4,4)]=TreaseTranslationalFun(

E,s1,s2,s1,F);

 [Disp(5,1),Disp(5,3)]=XuTranslationalFun(

E,s1,s2,s1,s2,F);

 [Disp(5,2),Disp(5,4)]=XuTranslationalFun(

E,s1,s1,s1,s2,F);

 [Disp(6,1),Disp(6,3)]=SmithNotchHingeFun(

E,s2,s1,s2,s2,F);

 [Disp(6,2),Disp(6,4)]=SmithNotchHingeFun(

E,s1,s1,s2,s1,F);

 Check=zeros(n,1);

 for i=1:n

Check(i)=CheckRangeFun(Disp(i,2),Disp(i,1),rom);

 end

131

names=char('SmithRectilinear','ParallelStrip','KyusojinLinear6L1',...

'TreaseTranslational','XuTranslational','SmithNotchHinge');

 b=1;

 for i=1:n

 if Check(i)==0

 a(b,1)=i;

 b=b+1;

 end

 end

 %--

 % Inverse of above for pareto curve production %

 d=1;

 e=0;

 for i=1:n

 if Check(i,1)==1

 e(d,1)=i;

 d=d+1;

 end

 end

 z = ParetoFunT_YYY(e,E,s1,s2,F,nfig);

 %--------------------

 sa=size(a);

 c=sa(1);

 for i=1:sa(1)

 names(a(c),:)=[];

 c=c-1;

 end

 fprintf('WARNING! Displacements larger than 30%% of

\n the total length of the compliant joint may \n be be inaccurate.')

 fprintf('\nPossible joints for this user input

are:\n')

 disp(names)

 %--

---%

 %%END OF Y,N,Y TREE

 %--

---%

 else

 fprintf('F does not have a value (na)\n')

 %This tree - Y,N,N -> Search using generic F set

applied,

 %find joints that can result in rom.

 %--

---%

 %n=# of joints in function

 n=6;

132

 Disp=zeros(n,5);

 for i=1:n

 Disp(i,5)=i;

 end

 %Find the minimum and maximum displacement for each

joint - leave thickness

 %constant, vary the depth of the joint from each

iteration

 sizefset=size(Fset);

 nfset=sizefset(2);

 %This is a loop over the user defined forces, Fset

(current 3

 %forces a factor of 10 apart, starting with .1)

 for j=1:nfset

 F=Fset(j);

[Disp(1,1),Disp(1,3)]=SmithRectilinearSpringFun(E,s1,s1,s2,F);%max disp

[Disp(1,2),Disp(1,4)]=SmithRectilinearSpringFun(E,s1,s2,s2,F);%min disp

[Disp(2,1),Disp(2,3)]=ParallelStripFun(E,s1,s1,s2,F);

[Disp(2,2),Disp(2,4)]=ParallelStripFun(E,s2,s1,s2,F);

 [Disp(3,1),Disp(3,3)]=KyusojinLinear6L1Fun(

E,s1,s1,s2,F);

 [Disp(3,2),Disp(3,4)]=KyusojinLinear6L1Fun(

E,s1,s2,s2,F);

 [Disp(4,1),Disp(4,3)]=TreaseTranslationalFun(

E,s1,s2,s2,F);

 [Disp(4,2),Disp(4,4)]=TreaseTranslationalFun(

E,s1,s2,s1,F);

 [Disp(5,1),Disp(5,3)]=XuTranslationalFun(

E,s1,s2,s1,s2,F);

 [Disp(5,2),Disp(5,4)]=XuTranslationalFun(

E,s1,s1,s1,s2,F);

 [Disp(6,1),Disp(6,3)]=SmithNotchHingeFun(

E,s2,s1,s2,s2,F);

 [Disp(6,2),Disp(6,4)]=SmithNotchHingeFun(

E,s1,s1,s2,s1,F);

 Check=zeros(n,1);

 for i=1:n

Check(i)=CheckRangeFun(Disp(i,2),Disp(i,1),rom);

 end

133

names=char('SmithRectilinear','ParallelStrip','KyusojinLinear6L1',...

'TreaseTranslational','XuTranslational','SmithNotchHinge');

 b=1;

 for i=1:n

 if Check(i)==0

 a(b,1)=i;

 b=b+1;

 end

 end

 %--

 % Inverse of above for pareto curve production

%

 d=1;

 e=0;

 for i=1:n

 if Check(i,1)==1

 e(d,1)=i;

 d=d+1;

 end

 end

 z = ParetoFunT_YYY(e,E,s1,s2,F,nfig);

 %--------------------

 sa=size(a);

 c=sa(1);

 for i=1:sa(1)

 names(a(c),:)=[];

 c=c-1;

 end

 fprintf('WARNING! Displacements larger than

30%% of \n the total length of the compliant joint may \n be be

inaccurate.')

 fprintf('\nPossible joints for this user input

using a force of %f are:\n',Fset(j))

 disp(names)

 a=0;

 nfig=nfig+1;

 end

 %--

---%

 %%END OF Y,N,N TREE

 %--

---%

 end

 end

 else

 fprintf('RoM does not have a value (na)\n')

134

 if kc==0

 fprintf('K has a value, %2.2f N/mm.\n',k)

 if fc==0

 fprintf('F has a value, %2.2f N.\n',F)

 %This tree - N,Y,Y -> Search using Load as F

applied,

 %find geometry that results in k.

 %--

---%

 %n=# of joints in function

 n=6;

 Disp=zeros(n,5);

 for i=1:n

 Disp(i,5)=i;

 end

 %Find the minimum and maximum displacement for each

joint - leave thickness

 %constant, vary the depth of the joint from each

iteration

[Disp(1,1),Disp(1,3)]=SmithRectilinearSpringFun(E,s1,s1,s2,F);%max disp

[Disp(1,2),Disp(1,4)]=SmithRectilinearSpringFun(E,s1,s2,s2,F);%min disp

[Disp(2,1),Disp(2,3)]=ParallelStripFun(E,s1,s1,s2,F);

[Disp(2,2),Disp(2,4)]=ParallelStripFun(E,s2,s1,s2,F);

 [Disp(3,1),Disp(3,3)]=KyusojinLinear6L1Fun(

E,s1,s1,s2,F);

 [Disp(3,2),Disp(3,4)]=KyusojinLinear6L1Fun(

E,s1,s2,s2,F);

 [Disp(4,1),Disp(4,3)]=TreaseTranslationalFun(

E,s1,s2,s2,F);

 [Disp(4,2),Disp(4,4)]=TreaseTranslationalFun(

E,s1,s2,s1,F);

 [Disp(5,1),Disp(5,3)]=XuTranslationalFun(

E,s1,s2,s1,s2,F);

 [Disp(5,2),Disp(5,4)]=XuTranslationalFun(

E,s1,s1,s1,s2,F);

 [Disp(6,1),Disp(6,3)]=SmithNotchHingeFun(

E,s2,s1,s2,s2,F);

 [Disp(6,2),Disp(6,4)]=SmithNotchHingeFun(

E,s1,s1,s2,s1,F);

 Check=zeros(n,1);

135

 for i=1:n

 Check(i)=CheckRangeFun(Disp(i,3),Disp(i,4),k);

 end

names=char('SmithRectilinear','ParallelStrip','KyusojinLinear6L1',...

'TreaseTranslational','XuTranslational','SmithNotchHinge');

 b=1;

 for i=1:n

 if Check(i)==0

 a(b,1)=i;

 b=b+1;

 end

 end

 %--

 % Inverse of above for pareto curve production %

 d=1;

 e=0;

 for i=1:n

 if Check(i,1)==1

 e(d,1)=i;

 d=d+1;

 end

 end

 z = ParetoFunT_YYY(e,E,s1,s2,F,nfig);

 %--------------------

 sa=size(a);

 c=sa(1);

 for i=1:sa(1)

 names(a(c),:)=[];

 c=c-1;

 end

 fprintf('WARNING! Displacements larger than 30%% of

\n the total length of the compliant joint may \n be be inaccurate.')

 fprintf('\nPossible joints for this user input

are:\n')

 disp(names)

 %--

---%

 %%END OF N,Y,Y TREE

 %--

---%

 else

 fprintf('F does not have a value (na)\n')

 %This tree - N,Y,N -> Search using generic F set

applied,

 %find geometry that results in k.

 %--

136

---%

 %n=# of joints in function

 n=6;

 Disp=zeros(n,5);

 for i=1:n

 Disp(i,5)=i;

 end

 %Find the minimum and maximum displacement for each

joint - leave thickness

 %constant, vary the depth of the joint from each

iteration

 sizefset=size(Fset);

 nfset=sizefset(2);

 %This is a loop over the user defined forces, Fset

(current 3

 %forces a factor of 10 apart, starting with .1)

 for j=1:nfset

 F=Fset(j);

[Disp(1,1),Disp(1,3)]=SmithRectilinearSpringFun(E,s1,s1,s2,F);%max disp

[Disp(1,2),Disp(1,4)]=SmithRectilinearSpringFun(E,s1,s2,s2,F);%min disp

[Disp(2,1),Disp(2,3)]=ParallelStripFun(E,s1,s1,s2,F);

[Disp(2,2),Disp(2,4)]=ParallelStripFun(E,s2,s1,s2,F);

 [Disp(3,1),Disp(3,3)]=KyusojinLinear6L1Fun(

E,s1,s1,s2,F);

 [Disp(3,2),Disp(3,4)]=KyusojinLinear6L1Fun(

E,s1,s2,s2,F);

 [Disp(4,1),Disp(4,3)]=TreaseTranslationalFun(

E,s1,s2,s2,F);

 [Disp(4,2),Disp(4,4)]=TreaseTranslationalFun(

E,s1,s2,s1,F);

 [Disp(5,1),Disp(5,3)]=XuTranslationalFun(

E,s1,s2,s1,s2,F);

 [Disp(5,2),Disp(5,4)]=XuTranslationalFun(

E,s1,s1,s1,s2,F);

 [Disp(6,1),Disp(6,3)]=SmithNotchHingeFun(

E,s2,s1,s2,s2,F);

 [Disp(6,2),Disp(6,4)]=SmithNotchHingeFun(

E,s1,s1,s2,s1,F);

 Check=zeros(n,1);

 for i=1:n

137

Check(i)=CheckRangeFun(Disp(i,3),Disp(i,4),k);

 end

names=char('SmithRectilinear','ParallelStrip','KyusojinLinear6L1',...

'TreaseTranslational','XuTranslational','SmithNotchHinge');

 b=1;

 for i=1:n

 if Check(i)==0

 a(b,1)=i;

 b=b+1;

 end

 end

 %--

 % Inverse of above for pareto curve production

%

 d=1;

 e=0;

 for i=1:n

 if Check(i,1)==1

 e(d,1)=i;

 d=d+1;

 end

 end

 z = ParetoFunT_YYY(e,E,s1,s2,F,nfig);

 %--------------------

 sa=size(a);

 c=sa(1);

 for i=1:sa(1)

 names(a(c),:)=[];

 c=c-1;

 end

 fprintf('WARNING! Displacements larger than

30%% of \n the total length of the compliant joint may \n be be

inaccurate.')

 fprintf('\nPossible joints for this user input

using a force of %f are:\n',Fset(j))

 disp(names)

 a=0;

 nfig=nfig+1;

 end

 %--

---%

 %%END OF N,Y,N TREE

 %--

---%

 end

138

 else

 fprintf('K does not have a value (na)\n')

 if fc==0

 fprintf('F has a value, %2.2f N.\n',F)

 %This tree - N,N,Y -> Set F as load applied,

present user

 %all joints, organize by rom.

 %--

---%

 n=6;

 Disp=zeros(n,5);

 for i=1:n

 Disp(i,5)=i;

 end

[Disp(1,1),Disp(1,3)]=SmithRectilinearSpringFun(E,s1,s1,s2,F);%max disp

[Disp(1,2),Disp(1,4)]=SmithRectilinearSpringFun(E,s1,s2,s2,F);%min disp

[Disp(2,1),Disp(2,3)]=ParallelStripFun(E,s1,s1,s2,F);

[Disp(2,2),Disp(2,4)]=ParallelStripFun(E,s2,s1,s2,F);

 [Disp(3,1),Disp(3,3)]=KyusojinLinear6L1Fun(

E,s1,s1,s2,F);

 [Disp(3,2),Disp(3,4)]=KyusojinLinear6L1Fun(

E,s1,s2,s2,F);

 [Disp(4,1),Disp(4,3)]=TreaseTranslationalFun(

E,s1,s2,s2,F);

 [Disp(4,2),Disp(4,4)]=TreaseTranslationalFun(

E,s1,s2,s1,F);

 [Disp(5,1),Disp(5,3)]=XuTranslationalFun(

E,s1,s2,s1,s2,F);

 [Disp(5,2),Disp(5,4)]=XuTranslationalFun(

E,s1,s1,s1,s2,F);

 [Disp(6,1),Disp(6,3)]=SmithNotchHingeFun(

E,s2,s1,s2,s2,F);

 [Disp(6,2),Disp(6,4)]=SmithNotchHingeFun(

E,s1,s1,s2,s1,F);

 Check=zeros(n,1);

 Disp=sortrows(Disp,2);

 fprintf('\nThe following joints are organized by

RoM,\nLargest to smallest, for the given force, %f N :\n',F)

namest=char('SmithRectilinear','ParallelStrip','KyusojinLinear6L1',...

139

'TreaseTranslational','XuTranslational','SmithNotchHinge');

 names=cellstr(namest);

 for i=n:-1:1

 name=names{Disp(i,5)};

 fprintf('%s with %2.4f mm displacement.

\n',name,Disp(i,2))

 end

 %--

 % Inverse of above for creating pareto curves

%

 d=1;

 e=[1; 2; 3; 4; 5; 6];

 z = ParetoFunT_YYY(e,E,s1,s2,F,nfig);

 %--------------------

 %--

---%

 %%END OF N,N,Y TREE

 %--

---%

 else

 fprintf('F does not have a value (na)\n')

 %This tree - N,N,N -> Will result in all results

being

 %returned, cannot specify with no information

 %--

---%

 n=6;

 Disp=zeros(n,5);

 for i=1:n

 Disp(i,5)=i;

 end

 sizefset=size(Fset);

 nfset=sizefset(2);

 %This is a loop over the user defined forces, Fset

 for j=1:nfset

 F=Fset(j);

[Disp(1,1),Disp(1,3)]=SmithRectilinearSpringFun(E,s1,s1,s2,F);%max disp

[Disp(1,2),Disp(1,4)]=SmithRectilinearSpringFun(E,s1,s2,s2,F);%min disp

[Disp(2,1),Disp(2,3)]=ParallelStripFun(E,s1,s1,s2,F);

[Disp(2,2),Disp(2,4)]=ParallelStripFun(E,s2,s1,s2,F);

140

 [Disp(3,1),Disp(3,3)]=KyusojinLinear6L1Fun(

E,s1,s1,s2,F);

 [Disp(3,2),Disp(3,4)]=KyusojinLinear6L1Fun(

E,s1,s2,s2,F);

 [Disp(4,1),Disp(4,3)]=TreaseTranslationalFun(

E,s1,s2,s2,F);

 [Disp(4,2),Disp(4,4)]=TreaseTranslationalFun(

E,s1,s2,s1,F);

 [Disp(5,1),Disp(5,3)]=XuTranslationalFun(

E,s1,s1,s1,s2,F);

 [Disp(5,2),Disp(5,4)]=XuTranslationalFun(

E,s1,s2,s1,s2,F);

 [Disp(6,1),Disp(6,3)]=SmithNotchHingeFun(

E,s2,s1,s2,s2,F);

 [Disp(6,2),Disp(6,4)]=SmithNotchHingeFun(

E,s1,s1,s2,s1,F);

 Check=zeros(n,1);

 Disp=sortrows(Disp,2);

namest=char('SmithRectilinear','ParallelStrip','KyusojinLinear6L1',...

'TreaseTranslational','XuTranslational','SmithNotchHinge');

 names=cellstr(namest);

 fprintf('WARNING! Displacements larger than

30%% of \n the total length of the compliant joint may \n be be

inaccurate.')

 fprintf('\nPossible joints for this user input

using a force of %f N,\n organized by RoM are:\n',Fset(j))

 for i=n:-1:1

 name=names{Disp(i,5)};

 fprintf('%s with %2.4f mm displacement.

\n',name,Disp(i,2))

 end

 a=0;

 Disp=zeros(n,5);

 for i=1:n

 Disp(i,5)=i;

 end

 end

 %--

---%

 %%END OF N,N,N TREE

 %--

---%

 end

 end

141

 end

 else

 fprintf('Rotational Joints are selected.\n')

 %ty,rom,k,s1,s2,E,p,G,maxf,fos

 %ty,rom,k,sizevalue1,sizevalue2,E,ro,G,maxload,fos

namest=char('SmithRectilinear','ParallelStrip','KyusojinLinear6L1',...

'TreaseTranslational','XuTranslational','SmithNotchHinge');

namesr=char('JensenCrossAxis','LobontiuCornerFilleted','LobontiuSymmetr

icCircular',...

'LobontiuSymmetricNotch','RotationallySymmetric','SmithAnnulus','SmithC

artwheel',...

'SmithCruciform','SmithTwoAxis','TangSymmetricCircular','TreaseConcept'

,...

 'VShape','Kyusojin6R2','ConventionalSplitTube');

 %n=# of joints in function

 n=14;

 Disp=zeros(n,5);

 for i=1:n

 Disp(i,5)=i;

 end

 if romc==0

 fprintf('RoM has a value, %2.2f degrees.\n',rom)

 if kc==0

 fprintf('K has a value, %2.2f Nmm/degree.\n',k)

 if fc==0

 fprintf('F has a value, %2.2f N.\n',F)

 %This tree - Y,Y,Y -> Search using Load as F

applied,

 %find geometry that results in rom and k.

 %--

---%

 %Find the minimum and maximum displacement for each

joint - leave thickness

 %constant, vary the depth of the joint from each

iteration

 %Joint 1

 [Disp(1,1),Disp(1,3)] =

JensenCrossAxisFun(E,s1,s1,s1,s2,F);%maxK

 [Disp(1,2),Disp(1,4)] =

JensenCrossAxisFun(E,s1,s2,s2,s2,F);%max disp

 %Joint 2

 [Disp(2,1),Disp(2,3)] =

LobontiuCornerFilletedFun(E,s1,s1,s1,s2,F);%maxK

 [Disp(2,2),Disp(2,4)] =

142

LobontiuCornerFilletedFun(E,s2,s2,s2,s2,F);%max disp

 %Joint 3

 [Disp(3,1),Disp(3,3)] =

LobontiuSymmetricCircularFun(E,s1,s1,s2,F);%maxK

 [Disp(3,2),Disp(3,4)] =

LobontiuSymmetricCircularFun(E,s1,s2,s2,F);%max disp

 %Joint 4

 [Disp(4,1),Disp(4,3)] =

LobontiuSymmetricNotchFun(E,s1,s1,s2,F);%maxK

 [Disp(4,2),Disp(4,4)] =

LobontiuSymmetricNotchFun(E,s1,s2,s2,F);%max disp

 %Joint 5

 [Disp(5,1),Disp(5,3)] =

RotationallySymmetricLeafHingeFun(E,s1,s1,F);%maxK

 [Disp(5,2),Disp(5,4)] =

RotationallySymmetricLeafHingeFun(E,s1,s2,F);%max disp

 %Joint 6

 [Disp(6,1),Disp(6,3)] =

SmithAnnulusFun(E,G,s2,s2,F);%maxK

 [Disp(6,2),Disp(6,4)] =

SmithAnnulusFun(E,G,s1,s1,F);%max disp

 %Joint 7

 [Disp(7,1),Disp(7,3)] =

SmithCartwheelFun(E,s1,s1,s2,F);%maxK

 [Disp(7,2),Disp(7,4)] =

SmithCartwheelFun(E,s1,s2,s2,F);%max disp

 %Joint 8

 [Disp(8,1),Disp(8,3)] =

SmithCruciformFun(G,s1,s1,s1,F);%maxK

 [Disp(8,2),Disp(8,4)] =

SmithCruciformFun(G,s1,s2,s1,F);%max disp

 %Joint 9

 [Disp(9,1),Disp(9,3)] =

SmithTwoAxisFun(E,s1,s1,F);%maxK

 [Disp(9,2),Disp(9,4)] =

SmithTwoAxisFun(E,s2,s1,F);%max disp

 %Joint 10

 [Disp(10,1),Disp(10,3)] =

TangSymmetricCircularFun(E,s1,s1,s2,F);%maxK

 [Disp(10,2),Disp(10,4)] =

TangSymmetricCircularFun(E,s2,s1,s2,F);%max disp

 %Joint 11

 [Disp(11,1),Disp(11,3)] =

TreaseConceptFun(G,s1,s1,s1,F);%maxK

 [Disp(11,2),Disp(11,4)] =

TreaseConceptFun(G,s1,s2,s1,F);%max disp

 %Joint 12

 [Disp(12,1),Disp(12,3)] =

VShapeFun(E,s1,s1,s1,s1,s2,F);%maxK

 [Disp(12,2),Disp(12,4)] =

VShapeFun(E,s1,s2,s2,s2,s2,F);%max disp

 %Joint 13

 [Disp(13,1),Disp(13,3)] =

143

KyusojinRotational6R2Fun(E,s1,s1,s2,F);%maxK

 [Disp(13,2),Disp(13,4)] =

KyusojinRotational6R2Fun(E,s1,s2,s2,F);%max disp

 %Joint 14

 [Disp(14,1),Disp(14,3)] =

ConventionalSplitTubeFun(G,s1,s1,s2,F);%maxK

 [Disp(14,2),Disp(14,4)] =

ConventionalSplitTubeFun(G,s1,s2,s2,F);%max disp

 Check=zeros(n,2);

 for i=1:n

Check(i,1)=CheckRangeFun(Disp(i,1),Disp(i,2),rom);

Check(i,2)=CheckRangeFun(Disp(i,4),Disp(i,3),k);

 end

 b=1;

 for i=1:n

 if (Check(i,1)==0 || Check(i,2)==0)

 a(b,1)=i;

 b=b+1;

 end

 end

 %--

 % Inverse of above for pareto curve production %

 d=1;

 e=0;

 for i=1:n

 if (Check(i,1)==1 && Check(i,2)==1)

 e(d,1)=i;

 d=d+1;

 end

 end

 z = ParetoFunR_YYY(e,E,G,s1,s2,F,nfig);

 %--------------------

 sa=size(a);

 c=sa(1);

 for i=1:sa(1)

 namesr(a(c),:)=[];

 c=c-1;

 end

 fprintf('WARNING! Displacements larger than 30%% of

\n the total length of the compliant joint may \n be be inaccurate.')

 fprintf('\nPossible joints for this user input

are:\n')

 disp(namesr)

144

 %--

---%

 %%END OF Y,Y,Y TREE

 %--

---%

 else

 fprintf('F does not have a value (na)\n')

 %This tree - Y,Y,N -> Search using generic F set

applied,

 %find geometry that results in rom and k.

 %--

---%

 %Find the minimum and maximum displacement for each

joint - leave thickness

 %constant, vary the depth of the joint from each

iteration

 sizefset=size(Fset);

 nfset=sizefset(2);

 %This is a loop over the user defined forces, Fset

(current 3

 %forces a factor of 10 apart, starting with .1)

 for j=1:nfset

 F=Fset(j);

 %Joint 1

 [Disp(1,1),Disp(1,3)] =

JensenCrossAxisFun(E,s1,s1,s1,s2,F);%maxK

 [Disp(1,2),Disp(1,4)] =

JensenCrossAxisFun(E,s1,s2,s2,s2,F);%max disp

 %Joint 2

 [Disp(2,1),Disp(2,3)] =

LobontiuCornerFilletedFun(E,s1,s1,s1,s2,F);%maxK

 [Disp(2,2),Disp(2,4)] =

LobontiuCornerFilletedFun(E,s2,s2,s2,s2,F);%max disp

 %Joint 3

 [Disp(3,1),Disp(3,3)] =

LobontiuSymmetricCircularFun(E,s1,s1,s2,F);%maxK

 [Disp(3,2),Disp(3,4)] =

LobontiuSymmetricCircularFun(E,s1,s2,s2,F);%max disp

 %Joint 4

 [Disp(4,1),Disp(4,3)] =

LobontiuSymmetricNotchFun(E,s1,s1,s2,F);%maxK

 [Disp(4,2),Disp(4,4)] =

LobontiuSymmetricNotchFun(E,s1,s2,s2,F);%max disp

 %Joint 5

 [Disp(5,1),Disp(5,3)] =

RotationallySymmetricLeafHingeFun(E,s1,s1,F);%maxK

 [Disp(5,2),Disp(5,4)] =

RotationallySymmetricLeafHingeFun(E,s1,s2,F);%max disp

 %Joint 6

 [Disp(6,1),Disp(6,3)] =

SmithAnnulusFun(E,G,s2,s2,F);%maxK

145

 [Disp(6,2),Disp(6,4)] =

SmithAnnulusFun(E,G,s1,s1,F);%max disp

 %Joint 7

 [Disp(7,1),Disp(7,3)] =

SmithCartwheelFun(E,s1,s1,s2,F);%maxK

 [Disp(7,2),Disp(7,4)] =

SmithCartwheelFun(E,s1,s2,s2,F);%max disp

 %Joint 8

 [Disp(8,1),Disp(8,3)] =

SmithCruciformFun(G,s1,s1,s1,F);%maxK

 [Disp(8,2),Disp(8,4)] =

SmithCruciformFun(G,s1,s2,s1,F);%max disp

 %Joint 9

 [Disp(9,1),Disp(9,3)] =

SmithTwoAxisFun(E,s1,s1,F);%maxK

 [Disp(9,2),Disp(9,4)] =

SmithTwoAxisFun(E,s2,s1,F);%max disp

 %Joint 10

 [Disp(10,1),Disp(10,3)] =

TangSymmetricCircularFun(E,s1,s1,s2,F);%maxK

 [Disp(10,2),Disp(10,4)] =

TangSymmetricCircularFun(E,s2,s1,s2,F);%max disp

 %Joint 11

 [Disp(11,1),Disp(11,3)] =

TreaseConceptFun(G,s1,s1,s1,F);%maxK

 [Disp(11,2),Disp(11,4)] =

TreaseConceptFun(G,s1,s2,s1,F);%max disp

 %Joint 12

 [Disp(12,1),Disp(12,3)] =

VShapeFun(E,s1,s1,s1,s1,s2,F);%maxK

 [Disp(12,2),Disp(12,4)] =

VShapeFun(E,s1,s2,s2,s2,s2,F);%max disp

 %Joint 13

 [Disp(13,1),Disp(13,3)] =

KyusojinRotational6R2Fun(E,s1,s1,s2,F);%maxK

 [Disp(13,2),Disp(13,4)] =

KyusojinRotational6R2Fun(E,s1,s2,s2,F);%max disp

 %Joint 14

 [Disp(14,1),Disp(14,3)] =

ConventionalSplitTubeFun(G,s1,s1,s2,F);%maxK

 [Disp(14,2),Disp(14,4)] =

ConventionalSplitTubeFun(G,s1,s2,s2,F);%max disp

 Check=zeros(n,2);

namesr=char('JensenCrossAxis','LobontiuCornerFilleted','LobontiuSymmetr

icCircular',...

'LobontiuSymmetricNotch','RotationallySymmetric','SmithAnnulus','SmithC

artwheel',...

'SmithCruciform','SmithTwoAxis','TangSymmetricCircular','TreaseConcept'

,...

146

'VShape','Kyusojin6R2','ConventionalSplitTube');

 for i=1:n

Check(i,1)=CheckRangeFun(Disp(i,1),Disp(i,2),rom);

Check(i,2)=CheckRangeFun(Disp(i,4),Disp(i,3),k);

 end

 b=1;

 for i=1:n

 if (Check(i,1)==0 || Check(i,2)==0)

 a(b,1)=i;

 b=b+1;

 end

 end

 %--

 % Inverse of above for pareto curve production

%

 d=1;

 e=0;

 for i=1:n

 if (Check(i,1)==1 && Check(i,2)==1)

 e(d,1)=i;

 d=d+1;

 end

 end

 z = ParetoFunR_YYY(e,E,G,s1,s2,F,nfig);

 %--------------------

 sa=size(a);

 c=sa(1);

 for i=1:sa(1)

 namesr(a(c),:)=[];

 c=c-1;

 end

 fprintf('WARNING! Displacements larger than

30%% of \n the total length of the compliant joint may \n be be

inaccurate.')

 fprintf('\nPossible joints for this user input

using a force of %f N are:\n',Fset(j))

 disp(namesr)

 a=0;

 nfig=nfig+1;

 end

 %--

---%

 %%END OF Y,Y,N TREE

 %--

147

---%

 end

 else

 fprintf('K does not have a value (na)\n')

 if fc==0

 fprintf('F has a value, %2.2f N.\n',F)

 %This tree - Y,N,Y -> Set F as load applied, check

for

 %any joints that can result in rom.

 %--

---%

 %Find the minimum and maximum displacement for each

joint - leave thickness

 %constant, vary the depth of the joint from each

iteration

 %Joint 1

 [Disp(1,1),Disp(1,3)] =

JensenCrossAxisFun(E,s1,s1,s1,s2,F);%maxK

 [Disp(1,2),Disp(1,4)] =

JensenCrossAxisFun(E,s1,s2,s2,s2,F);%max disp

 %Joint 2

 [Disp(2,1),Disp(2,3)] =

LobontiuCornerFilletedFun(E,s1,s1,s1,s2,F);%maxK

 [Disp(2,2),Disp(2,4)] =

LobontiuCornerFilletedFun(E,s2,s2,s2,s2,F);%max disp

 %Joint 3

 [Disp(3,1),Disp(3,3)] =

LobontiuSymmetricCircularFun(E,s1,s1,s2,F);%maxK

 [Disp(3,2),Disp(3,4)] =

LobontiuSymmetricCircularFun(E,s1,s2,s2,F);%max disp

 %Joint 4

 [Disp(4,1),Disp(4,3)] =

LobontiuSymmetricNotchFun(E,s1,s1,s2,F);%maxK

 [Disp(4,2),Disp(4,4)] =

LobontiuSymmetricNotchFun(E,s1,s2,s2,F);%max disp

 %Joint 5

 [Disp(5,1),Disp(5,3)] =

RotationallySymmetricLeafHingeFun(E,s1,s1,F);%maxK

 [Disp(5,2),Disp(5,4)] =

RotationallySymmetricLeafHingeFun(E,s1,s2,F);%max disp

 %Joint 6

 [Disp(6,1),Disp(6,3)] =

SmithAnnulusFun(E,G,s2,s2,F);%maxK

 [Disp(6,2),Disp(6,4)] =

SmithAnnulusFun(E,G,s1,s1,F);%max disp

 %Joint 7

 [Disp(7,1),Disp(7,3)] =

SmithCartwheelFun(E,s1,s1,s2,F);%maxK

 [Disp(7,2),Disp(7,4)] =

SmithCartwheelFun(E,s1,s2,s2,F);%max disp

 %Joint 8

148

 [Disp(8,1),Disp(8,3)] =

SmithCruciformFun(G,s1,s1,s1,F);%maxK

 [Disp(8,2),Disp(8,4)] =

SmithCruciformFun(G,s1,s2,s1,F);%max disp

 %Joint 9

 [Disp(9,1),Disp(9,3)] =

SmithTwoAxisFun(E,s1,s1,F);%maxK

 [Disp(9,2),Disp(9,4)] =

SmithTwoAxisFun(E,s2,s1,F);%max disp

 %Joint 10

 [Disp(10,1),Disp(10,3)] =

TangSymmetricCircularFun(E,s1,s1,s2,F);%maxK

 [Disp(10,2),Disp(10,4)] =

TangSymmetricCircularFun(E,s2,s1,s2,F);%max disp

 %Joint 11

 [Disp(11,1),Disp(11,3)] =

TreaseConceptFun(G,s1,s1,s1,F);%maxK

 [Disp(11,2),Disp(11,4)] =

TreaseConceptFun(G,s1,s2,s1,F);%max disp

 %Joint 12

 [Disp(12,1),Disp(12,3)] =

VShapeFun(E,s1,s1,s1,s1,s2,F);%maxK

 [Disp(12,2),Disp(12,4)] =

VShapeFun(E,s1,s2,s2,s2,s2,F);%max disp

 %Joint 13

 [Disp(13,1),Disp(13,3)] =

KyusojinRotational6R2Fun(E,s1,s1,s2,F);%maxK

 [Disp(13,2),Disp(13,4)] =

KyusojinRotational6R2Fun(E,s1,s2,s2,F);%max disp

 %Joint 14

 [Disp(14,1),Disp(14,3)] =

ConventionalSplitTubeFun(G,s1,s1,s2,F);%maxK

 [Disp(14,2),Disp(14,4)] =

ConventionalSplitTubeFun(G,s1,s2,s2,F);%max disp

 Check=zeros(n,1);

 for i=1:n

Check(i)=CheckRangeFun(Disp(i,1),Disp(i,2),rom);

 end

 b=1;

 for i=1:n

 if Check(i)==0

 a(b,1)=i;

 b=b+1;

 end

 end

 %--

149

 % Inverse of above for pareto curve production %

 d=1;

 e=0;

 for i=1:n

 if Check(i,1)==1

 e(d,1)=i;

 d=d+1;

 end

 end

 z = ParetoFunR_YYY(e,E,G,s1,s2,F,nfig);

 %--------------------

 sa=size(a);

 c=sa(1);

 for i=1:sa(1)

 namesr(a(c),:)=[];

 c=c-1;

 end

 fprintf('WARNING! Displacements larger than 30%% of

\n the total length of the compliant joint may \n be be inaccurate.')

 fprintf('\nPossible joints for this user input

are:\n')

 disp(namesr)

 %--

---%

 %%END OF Y,N,Y TREE

 %--

---%

 else

 fprintf('F does not have a value (na)\n')

 %This tree - Y,N,N -> Search using generic F set

applied,

 %find joints that can result in rom.

 %--

---%

 %Find the minimum and maximum displacement for each

joint - leave thickness

 %constant, vary the depth of the joint from each

iteration

 sizefset=size(Fset);

 nfset=sizefset(2);

 %This is a loop over the user defined forces, Fset

(current 3

 %forces a factor of 10 apart, starting with .1)

 for j=1:nfset

 F=Fset(j);

 %Joint 1

 [Disp(1,1),Disp(1,3)] =

JensenCrossAxisFun(E,s1,s1,s1,s2,F);%maxK

 [Disp(1,2),Disp(1,4)] =

150

JensenCrossAxisFun(E,s1,s2,s2,s2,F);%max disp

 %Joint 2

 [Disp(2,1),Disp(2,3)] =

LobontiuCornerFilletedFun(E,s1,s1,s1,s2,F);%maxK

 [Disp(2,2),Disp(2,4)] =

LobontiuCornerFilletedFun(E,s2,s2,s2,s2,F);%max disp

 %Joint 3

 [Disp(3,1),Disp(3,3)] =

LobontiuSymmetricCircularFun(E,s1,s1,s2,F);%maxK

 [Disp(3,2),Disp(3,4)] =

LobontiuSymmetricCircularFun(E,s1,s2,s2,F);%max disp

 %Joint 4

 [Disp(4,1),Disp(4,3)] =

LobontiuSymmetricNotchFun(E,s1,s1,s2,F);%maxK

 [Disp(4,2),Disp(4,4)] =

LobontiuSymmetricNotchFun(E,s1,s2,s2,F);%max disp

 %Joint 5

 [Disp(5,1),Disp(5,3)] =

RotationallySymmetricLeafHingeFun(E,s1,s1,F);%maxK

 [Disp(5,2),Disp(5,4)] =

RotationallySymmetricLeafHingeFun(E,s1,s2,F);%max disp

 %Joint 6

 [Disp(6,1),Disp(6,3)] =

SmithAnnulusFun(E,G,s2,s2,F);%maxK

 [Disp(6,2),Disp(6,4)] =

SmithAnnulusFun(E,G,s1,s1,F);%max disp

 %Joint 7

 [Disp(7,1),Disp(7,3)] =

SmithCartwheelFun(E,s1,s1,s2,F);%maxK

 [Disp(7,2),Disp(7,4)] =

SmithCartwheelFun(E,s1,s2,s2,F);%max disp

 %Joint 8

 [Disp(8,1),Disp(8,3)] =

SmithCruciformFun(G,s1,s1,s1,F);%maxK

 [Disp(8,2),Disp(8,4)] =

SmithCruciformFun(G,s1,s2,s1,F);%max disp

 %Joint 9

 [Disp(9,1),Disp(9,3)] =

SmithTwoAxisFun(E,s1,s1,F);%maxK

 [Disp(9,2),Disp(9,4)] =

SmithTwoAxisFun(E,s2,s1,F);%max disp

 %Joint 10

 [Disp(10,1),Disp(10,3)] =

TangSymmetricCircularFun(E,s1,s1,s2,F);%maxK

 [Disp(10,2),Disp(10,4)] =

TangSymmetricCircularFun(E,s2,s1,s2,F);%max disp

 %Joint 11

 [Disp(11,1),Disp(11,3)] =

TreaseConceptFun(G,s1,s1,s1,F);%maxK

 [Disp(11,2),Disp(11,4)] =

TreaseConceptFun(G,s1,s2,s1,F);%max disp

 %Joint 12

 [Disp(12,1),Disp(12,3)] =

151

VShapeFun(E,s1,s1,s1,s1,s2,F);%maxK

 [Disp(12,2),Disp(12,4)] =

VShapeFun(E,s1,s2,s2,s2,s2,F);%max disp

 %Joint 13

 [Disp(13,1),Disp(13,3)] =

KyusojinRotational6R2Fun(E,s1,s1,s2,F);%maxK

 [Disp(13,2),Disp(13,4)] =

KyusojinRotational6R2Fun(E,s1,s2,s2,F);%max disp

 %Joint 14

 [Disp(14,1),Disp(14,3)] =

ConventionalSplitTubeFun(G,s1,s1,s2,F);%maxK

 [Disp(14,2),Disp(14,4)] =

ConventionalSplitTubeFun(G,s1,s2,s2,F);%max disp

 Check=zeros(n,1);

namesr=char('JensenCrossAxis','LobontiuCornerFilleted','LobontiuSymmetr

icCircular',...

'LobontiuSymmetricNotch','RotationallySymmetric','SmithAnnulus','SmithC

artwheel',...

'SmithCruciform','SmithTwoAxis','TangSymmetricCircular','TreaseConcept'

,...

'VShape','Kyusojin6R2','ConventionalSplitTube');

 for i=1:n

Check(i)=CheckRangeFun(Disp(i,1),Disp(i,2),rom);

 end

 b=1;

 for i=1:n

 if Check(i)==0

 a(b,1)=i;

 b=b+1;

 end

 end

 %--

 % Inverse of above for pareto curve production

%

 d=1;

 e=0;

 for i=1:n

 if Check(i,1)==1

 e(d,1)=i;

 d=d+1;

 end

152

 end

 z = ParetoFunR_YYY(e,E,G,s1,s2,F,nfig);

 %--------------------

 sa=size(a);

 c=sa(1);

 for i=1:sa(1)

 namesr(a(c),:)=[];

 c=c-1;

 end

 fprintf('WARNING! Displacements larger than

30%% of \n the total length of the compliant joint may \n be be

inaccurate.')

 fprintf('\nPossible joints for this user input

using a force of %f N are:\n',Fset(j))

 disp(namesr)

 a=0;

 nfig=nfig+1;

 end

 %--

---%

 %%END OF Y,N,N TREE

 %--

---%

 end

 end

 else

 fprintf('RoM does not have a value (na)\n')

 if kc==0

 fprintf('K has a value, %2.2f Nmm/degree.\n',k)

 if fc==0

 fprintf('F has a value, %2.2f N.\n',F)

 %This tree - N,Y,Y -> Search using Load as F

applied,

 %find geometry that results in k.

 %--

---%

 %Find the minimum and maximum displacement for each

joint - leave thickness

 %constant, vary the depth of the joint from each

iteration

 %Joint 1

 [Disp(1,1),Disp(1,3)] =

JensenCrossAxisFun(E,s1,s1,s1,s2,F);%maxK

 [Disp(1,2),Disp(1,4)] =

JensenCrossAxisFun(E,s1,s2,s2,s2,F);%max disp

 %Joint 2

 [Disp(2,1),Disp(2,3)] =

LobontiuCornerFilletedFun(E,s1,s1,s1,s2,F);%maxK

 [Disp(2,2),Disp(2,4)] =

LobontiuCornerFilletedFun(E,s2,s2,s2,s2,F);%max disp

153

 %Joint 3

 [Disp(3,1),Disp(3,3)] =

LobontiuSymmetricCircularFun(E,s1,s1,s2,F);%maxK

 [Disp(3,2),Disp(3,4)] =

LobontiuSymmetricCircularFun(E,s1,s2,s2,F);%max disp

 %Joint 4

 [Disp(4,1),Disp(4,3)] =

LobontiuSymmetricNotchFun(E,s1,s1,s2,F);%maxK

 [Disp(4,2),Disp(4,4)] =

LobontiuSymmetricNotchFun(E,s1,s2,s2,F);%max disp

 %Joint 5

 [Disp(5,1),Disp(5,3)] =

RotationallySymmetricLeafHingeFun(E,s1,s1,F);%maxK

 [Disp(5,2),Disp(5,4)] =

RotationallySymmetricLeafHingeFun(E,s1,s2,F);%max disp

 %Joint 6

 [Disp(6,1),Disp(6,3)] =

SmithAnnulusFun(E,G,s2,s2,F);%maxK

 [Disp(6,2),Disp(6,4)] =

SmithAnnulusFun(E,G,s1,s1,F);%max disp

 %Joint 7

 [Disp(7,1),Disp(7,3)] =

SmithCartwheelFun(E,s1,s1,s2,F);%maxK

 [Disp(7,2),Disp(7,4)] =

SmithCartwheelFun(E,s1,s2,s2,F);%max disp

 %Joint 8

 [Disp(8,1),Disp(8,3)] =

SmithCruciformFun(G,s1,s1,s1,F);%maxK

 [Disp(8,2),Disp(8,4)] =

SmithCruciformFun(G,s1,s2,s1,F);%max disp

 %Joint 9

 [Disp(9,1),Disp(9,3)] =

SmithTwoAxisFun(E,s1,s1,F);%maxK

 [Disp(9,2),Disp(9,4)] =

SmithTwoAxisFun(E,s2,s1,F);%max disp

 %Joint 10

 [Disp(10,1),Disp(10,3)] =

TangSymmetricCircularFun(E,s1,s1,s2,F);%maxK

 [Disp(10,2),Disp(10,4)] =

TangSymmetricCircularFun(E,s2,s1,s2,F);%max disp

 %Joint 11

 [Disp(11,1),Disp(11,3)] =

TreaseConceptFun(G,s1,s1,s1,F);%maxK

 [Disp(11,2),Disp(11,4)] =

TreaseConceptFun(G,s1,s2,s1,F);%max disp

 %Joint 12

 [Disp(12,1),Disp(12,3)] =

VShapeFun(E,s1,s1,s1,s1,s2,F);%maxK

 [Disp(12,2),Disp(12,4)] =

VShapeFun(E,s1,s2,s2,s2,s2,F);%max disp

 %Joint 13

 [Disp(13,1),Disp(13,3)] =

KyusojinRotational6R2Fun(E,s1,s1,s2,F);%maxK

154

 [Disp(13,2),Disp(13,4)] =

KyusojinRotational6R2Fun(E,s1,s2,s2,F);%max disp

 %Joint 14

 [Disp(14,1),Disp(14,3)] =

ConventionalSplitTubeFun(G,s1,s1,s2,F);%maxK

 [Disp(14,2),Disp(14,4)] =

ConventionalSplitTubeFun(G,s1,s2,s2,F);%max disp

 Check=zeros(n,1);

 for i=1:n

 Check(i)=CheckRangeFun(Disp(i,4),Disp(i,3),k);

 end

 b=1;

 for i=1:n

 if Check(i)==0

 a(b,1)=i;

 b=b+1;

 end

 end

 %--

 % Inverse of above for pareto curve production %

 d=1;

 e=0;

 for i=1:n

 if Check(i,1)==1

 e(d,1)=i;

 d=d+1;

 end

 end

 z = ParetoFunR_YYY(e,E,G,s1,s2,F,nfig);

 %--------------------

 sa=size(a);

 c=sa(1);

 for i=1:sa(1)

 namesr(a(c),:)=[];

 c=c-1;

 end

 fprintf('WARNING! Displacements larger than 30%% of

\n the total length of the compliant joint may \n be be inaccurate.')

 fprintf('\nPossible joints for this user input

are:\n')

 disp(namesr)

 %--

---%

 %%END OF N,Y,Y TREE

 %--

155

---%

 else

 fprintf('F does not have a value (na)\n')

 %This tree - N,Y,N -> Search using generic F set

applied,

 %find geometry that results in k.

 %--

---%

 %Find the minimum and maximum displacement for each

joint - leave thickness

 %constant, vary the depth of the joint from each

iteration

 sizefset=size(Fset);

 nfset=sizefset(2);

 %This is a loop over the user defined forces, Fset

(current 3

 %forces a factor of 10 apart, starting with .1)

 for j=1:nfset

 F=Fset(j);

 %Joint 1

 [Disp(1,1),Disp(1,3)] =

JensenCrossAxisFun(E,s1,s1,s1,s2,F);%maxK

 [Disp(1,2),Disp(1,4)] =

JensenCrossAxisFun(E,s1,s2,s2,s2,F);%max disp

 %Joint 2

 [Disp(2,1),Disp(2,3)] =

LobontiuCornerFilletedFun(E,s1,s1,s1,s2,F);%maxK

 [Disp(2,2),Disp(2,4)] =

LobontiuCornerFilletedFun(E,s2,s2,s2,s2,F);%max disp

 %Joint 3

 [Disp(3,1),Disp(3,3)] =

LobontiuSymmetricCircularFun(E,s1,s1,s2,F);%maxK

 [Disp(3,2),Disp(3,4)] =

LobontiuSymmetricCircularFun(E,s1,s2,s2,F);%max disp

 %Joint 4

 [Disp(4,1),Disp(4,3)] =

LobontiuSymmetricNotchFun(E,s1,s1,s2,F);%maxK

 [Disp(4,2),Disp(4,4)] =

LobontiuSymmetricNotchFun(E,s1,s2,s2,F);%max disp

 %Joint 5

 [Disp(5,1),Disp(5,3)] =

RotationallySymmetricLeafHingeFun(E,s1,s1,F);%maxK

 [Disp(5,2),Disp(5,4)] =

RotationallySymmetricLeafHingeFun(E,s1,s2,F);%max disp

 %Joint 6

 [Disp(6,1),Disp(6,3)] =

SmithAnnulusFun(E,G,s2,s2,F);%maxK

 [Disp(6,2),Disp(6,4)] =

SmithAnnulusFun(E,G,s1,s1,F);%max disp

 %Joint 7

156

 [Disp(7,1),Disp(7,3)] =

SmithCartwheelFun(E,s1,s1,s2,F);%maxK

 [Disp(7,2),Disp(7,4)] =

SmithCartwheelFun(E,s1,s2,s2,F);%max disp

 %Joint 8

 [Disp(8,1),Disp(8,3)] =

SmithCruciformFun(G,s1,s1,s1,F);%maxK

 [Disp(8,2),Disp(8,4)] =

SmithCruciformFun(G,s1,s2,s1,F);%max disp

 %Joint 9

 [Disp(9,1),Disp(9,3)] =

SmithTwoAxisFun(E,s1,s1,F);%maxK

 [Disp(9,2),Disp(9,4)] =

SmithTwoAxisFun(E,s2,s1,F);%max disp

 %Joint 10

 [Disp(10,1),Disp(10,3)] =

TangSymmetricCircularFun(E,s1,s1,s2,F);%maxK

 [Disp(10,2),Disp(10,4)] =

TangSymmetricCircularFun(E,s2,s1,s2,F);%max disp

 %Joint 11

 [Disp(11,1),Disp(11,3)] =

TreaseConceptFun(G,s1,s1,s1,F);%maxK

 [Disp(11,2),Disp(11,4)] =

TreaseConceptFun(G,s1,s2,s1,F);%max disp

 %Joint 12

 [Disp(12,1),Disp(12,3)] =

VShapeFun(E,s1,s1,s1,s1,s2,F);%maxK

 [Disp(12,2),Disp(12,4)] =

VShapeFun(E,s1,s2,s2,s2,s2,F);%max disp

 %Joint 13

 [Disp(13,1),Disp(13,3)] =

KyusojinRotational6R2Fun(E,s1,s1,s2,F);%maxK

 [Disp(13,2),Disp(13,4)] =

KyusojinRotational6R2Fun(E,s1,s2,s2,F);%max disp

 %Joint 14

 [Disp(14,1),Disp(14,3)] =

ConventionalSplitTubeFun(G,s1,s1,s2,F);%maxK

 [Disp(14,2),Disp(14,4)] =

ConventionalSplitTubeFun(G,s1,s2,s2,F);%max disp

 Check=zeros(n,1);

namesr=char('JensenCrossAxis','LobontiuCornerFilleted','LobontiuSymmetr

icCircular',...

'LobontiuSymmetricNotch','RotationallySymmetric','SmithAnnulus','SmithC

artwheel',...

'SmithCruciform','SmithTwoAxis','TangSymmetricCircular','TreaseConcept'

,...

'VShape','Kyusojin6R2','ConventionalSplitTube');

157

 for i=1:n

Check(i)=CheckRangeFun(Disp(i,4),Disp(i,3),k);

 end

 b=1;

 for i=1:n

 if Check(i)==0

 a(b,1)=i;

 b=b+1;

 end

 end

 %--

 % Inverse of above for pareto curve production

%

 d=1;

 e=0;

 for i=1:n

 if Check(i,1)==1

 e(d,1)=i;

 d=d+1;

 end

 end

 z = ParetoFunR_YYY(e,E,G,s1,s2,F,nfig);

 %--------------------

 sa=size(a);

 c=sa(1);

 for i=1:sa(1)

 namesr(a(c),:)=[];

 c=c-1;

 end

 fprintf('WARNING! Displacements larger than

30%% of \n the total length of the compliant joint may \n be be

inaccurate.')

 fprintf('\nPossible joints for this user input

using a force of %f N are:\n',Fset(j))

 disp(namesr)

 a=0;

 nfig=nfig+1;

 end

 %--

---%

 %%END OF N,Y,N TREE

 %--

---%

 end

 else

 fprintf('K does not have a value (na)\n')

158

 if fc==0

 fprintf('F has a value, %2.2f N.\n',F)

 %This tree - N,N,Y -> Set F as load applied,

present user

 %all joints, organize by rom.

 %--

---%

 %Joint 1

 [Disp(1,1),Disp(1,3)] =

JensenCrossAxisFun(E,s1,s1,s1,s2,F);%maxK

 [Disp(1,2),Disp(1,4)] =

JensenCrossAxisFun(E,s1,s2,s2,s2,F);%max disp

 %Joint 2

 [Disp(2,1),Disp(2,3)] =

LobontiuCornerFilletedFun(E,s1,s1,s1,s2,F);%maxK

 [Disp(2,2),Disp(2,4)] =

LobontiuCornerFilletedFun(E,s2,s2,s2,s2,F);%max disp

 %Joint 3

 [Disp(3,1),Disp(3,3)] =

LobontiuSymmetricCircularFun(E,s1,s1,s2,F);%maxK

 [Disp(3,2),Disp(3,4)] =

LobontiuSymmetricCircularFun(E,s1,s2,s2,F);%max disp

 %Joint 4

 [Disp(4,1),Disp(4,3)] =

LobontiuSymmetricNotchFun(E,s1,s1,s2,F);%maxK

 [Disp(4,2),Disp(4,4)] =

LobontiuSymmetricNotchFun(E,s1,s2,s2,F);%max disp

 %Joint 5

 [Disp(5,1),Disp(5,3)] =

RotationallySymmetricLeafHingeFun(E,s1,s1,F);%maxK

 [Disp(5,2),Disp(5,4)] =

RotationallySymmetricLeafHingeFun(E,s1,s2,F);%max disp

 %Joint 6

 [Disp(6,1),Disp(6,3)] =

SmithAnnulusFun(E,G,s2,s2,F);%maxK

 [Disp(6,2),Disp(6,4)] =

SmithAnnulusFun(E,G,s1,s1,F);%max disp

 %Joint 7

 [Disp(7,1),Disp(7,3)] =

SmithCartwheelFun(E,s1,s1,s2,F);%maxK

 [Disp(7,2),Disp(7,4)] =

SmithCartwheelFun(E,s1,s2,s2,F);%max disp

 %Joint 8

 [Disp(8,1),Disp(8,3)] =

SmithCruciformFun(G,s1,s1,s1,F);%maxK

 [Disp(8,2),Disp(8,4)] =

SmithCruciformFun(G,s1,s2,s1,F);%max disp

 %Joint 9

 [Disp(9,1),Disp(9,3)] =

SmithTwoAxisFun(E,s1,s1,F);%maxK

 [Disp(9,2),Disp(9,4)] =

SmithTwoAxisFun(E,s2,s1,F);%max disp

159

 %Joint 10

 [Disp(10,1),Disp(10,3)] =

TangSymmetricCircularFun(E,s1,s1,s2,F);%maxK

 [Disp(10,2),Disp(10,4)] =

TangSymmetricCircularFun(E,s2,s1,s2,F);%max disp

 %Joint 11

 [Disp(11,1),Disp(11,3)] =

TreaseConceptFun(G,s1,s1,s1,F);%maxK

 [Disp(11,2),Disp(11,4)] =

TreaseConceptFun(G,s1,s2,s1,F);%max disp

 %Joint 12

 [Disp(12,1),Disp(12,3)] =

VShapeFun(E,s1,s1,s1,s1,s2,F);%maxK

 [Disp(12,2),Disp(12,4)] =

VShapeFun(E,s1,s2,s2,s2,s2,F);%max disp

 %Joint 13

 [Disp(13,1),Disp(13,3)] =

KyusojinRotational6R2Fun(E,s1,s1,s2,F);%maxK

 [Disp(13,2),Disp(13,4)] =

KyusojinRotational6R2Fun(E,s1,s2,s2,F);%max disp

 %Joint 14

 [Disp(14,1),Disp(14,3)] =

ConventionalSplitTubeFun(G,s1,s1,s2,F);%maxK

 [Disp(14,2),Disp(14,4)] =

ConventionalSplitTubeFun(G,s1,s2,s2,F);%max disp

 Check=zeros(n,1);

 Disp=sortrows(Disp,2);

 fprintf('WARNING! Displacements larger than 30%% of

\n the total length of the compliant joint may \n be be inaccurate.')

 fprintf('\nThe following joints are organized by

RoM,\nLargest to smallest, for the given force, %f N :\n',F)

 names=cellstr(namesr);

 for i=n:-1:1

 name=names{Disp(i,5)};

 fprintf('%s with %2.4f mm displacement.

\n',name,Disp(i,2))

 end

 %--

 % Inverse of above for pareto curve production %

 d=1;

 e=0;

 e=[1;2;3;4;5;6;7;8;9;10;11;12;13;14];

 z = ParetoFunR_YYY(e,E,G,s1,s2,F,nfig);

 %--------------------

160

 %--

---%

 %%END OF N,N,Y TREE

 %--

---%

 else

 fprintf('F does not have a value (na)\n')

 %This tree - N,N,N -> Will result in all results

being

 %returned, cannot specify with no information

 %--

---%

 %Find the minimum and maximum displacement for each

joint - leave thickness

 %constant, vary the depth of the joint from each

iteration

 sizefset=size(Fset);

 nfset=sizefset(2);

 %This is a loop over the user defined forces, Fset

(current 3

 %forces a factor of 10 apart, starting with .1)

 for j=1:nfset

 F=Fset(j);

 %Joint 1

 [Disp(1,1),Disp(1,3)] =

JensenCrossAxisFun(E,s1,s1,s1,s2,F);%maxK

 [Disp(1,2),Disp(1,4)] =

JensenCrossAxisFun(E,s1,s2,s2,s2,F);%max disp

 %Joint 2

 [Disp(2,1),Disp(2,3)] =

LobontiuCornerFilletedFun(E,s1,s1,s1,s2,F);%maxK

 [Disp(2,2),Disp(2,4)] =

LobontiuCornerFilletedFun(E,s2,s2,s2,s2,F);%max disp

 %Joint 3

 [Disp(3,1),Disp(3,3)] =

LobontiuSymmetricCircularFun(E,s1,s1,s2,F);%maxK

 [Disp(3,2),Disp(3,4)] =

LobontiuSymmetricCircularFun(E,s1,s2,s2,F);%max disp

 %Joint 4

 [Disp(4,1),Disp(4,3)] =

LobontiuSymmetricNotchFun(E,s1,s1,s2,F);%maxK

 [Disp(4,2),Disp(4,4)] =

LobontiuSymmetricNotchFun(E,s1,s2,s2,F);%max disp

 %Joint 5

 [Disp(5,1),Disp(5,3)] =

RotationallySymmetricLeafHingeFun(E,s1,s1,F);%maxK

 [Disp(5,2),Disp(5,4)] =

RotationallySymmetricLeafHingeFun(E,s1,s2,F);%max disp

 %Joint 6

 [Disp(6,1),Disp(6,3)] =

SmithAnnulusFun(E,G,s2,s2,F);%maxK

161

 [Disp(6,2),Disp(6,4)] =

SmithAnnulusFun(E,G,s1,s1,F);%max disp

 %Joint 7

 [Disp(7,1),Disp(7,3)] =

SmithCartwheelFun(E,s1,s1,s2,F);%maxK

 [Disp(7,2),Disp(7,4)] =

SmithCartwheelFun(E,s1,s2,s2,F);%max disp

 %Joint 8

 [Disp(8,1),Disp(8,3)] =

SmithCruciformFun(G,s1,s1,s1,F);%maxK

 [Disp(8,2),Disp(8,4)] =

SmithCruciformFun(G,s1,s2,s1,F);%max disp

 %Joint 9

 [Disp(9,1),Disp(9,3)] =

SmithTwoAxisFun(E,s1,s1,F);%maxK

 [Disp(9,2),Disp(9,4)] =

SmithTwoAxisFun(E,s2,s1,F);%max disp

 %Joint 10

 [Disp(10,1),Disp(10,3)] =

TangSymmetricCircularFun(E,s1,s1,s2,F);%maxK

 [Disp(10,2),Disp(10,4)] =

TangSymmetricCircularFun(E,s2,s1,s2,F);%max disp

 %Joint 11

 [Disp(11,1),Disp(11,3)] =

TreaseConceptFun(G,s1,s1,s1,F);%maxK

 [Disp(11,2),Disp(11,4)] =

TreaseConceptFun(G,s1,s2,s1,F);%max disp

 %Joint 12

 [Disp(12,1),Disp(12,3)] =

VShapeFun(E,s1,s1,s1,s1,s2,F);%maxK

 [Disp(12,2),Disp(12,4)] =

VShapeFun(E,s1,s2,s2,s2,s2,F);%max disp

 %Joint 13

 [Disp(13,1),Disp(13,3)] =

KyusojinRotational6R2Fun(E,s1,s1,s2,F);%maxK

 [Disp(13,2),Disp(13,4)] =

KyusojinRotational6R2Fun(E,s1,s2,s2,F);%max disp

 %Joint 14

 [Disp(14,1),Disp(14,3)] =

ConventionalSplitTubeFun(G,s1,s1,s2,F);%maxK

 [Disp(14,2),Disp(14,4)] =

ConventionalSplitTubeFun(G,s1,s2,s2,F);%max disp

 Check=zeros(n,1);

 Disp=sortrows(Disp,2);

 fprintf('WARNING! Displacements larger than

30%% of \n the total length of the compliant joint may \n be be

inaccurate.')

 fprintf('\nPossible joints for this user input

using a force of %2.3f N,\n organized by RoM are:\n',Fset(j))

162

 names=cellstr(namesr);

 for i=n:-1:1

 name=names{Disp(i,5)};

 fprintf('%s with %2.4f degrees

displacement. \n',name,Disp(i,2))

 end

 end

 %--

---%

 %%END OF N,N,N TREE

 %--

---%

 end

 end

 end

 end

end

Figure A 62. Complete MATLAB function selection algorithm.

163

APPENDIX C. MATLAB GUI CODE

function varargout = JointMenu(varargin)

% JOINTMENU MATLAB code for JointMenu.fig

% JOINTMENU, by itself, creates a new JOINTMENU or raises the

existing

% singleton*.

%

% H = JOINTMENU returns the handle to a new JOINTMENU or the

handle to

% the existing singleton*.

%

% JOINTMENU('CALLBACK',hObject,eventData,handles,...) calls the

local

% function named CALLBACK in JOINTMENU.M with the given input

arguments.

%

% JOINTMENU('Property','Value',...) creates a new JOINTMENU or

raises the

% existing singleton*. Starting from the left, property value

pairs are

% applied to the GUI before JointMenu_OpeningFcn gets called. An

% unrecognized property name or invalid value makes property

application

% stop. All inputs are passed to JointMenu_OpeningFcn via

varargin.

%

% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only

one

% instance to run (singleton)".

%

% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help JointMenu

% Last Modified by GUIDE v2.5 12-Feb-2015 16:04:50

% Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

gui_State = struct('gui_Name', mfilename, ...

 'gui_Singleton', gui_Singleton, ...

 'gui_OpeningFcn', @JointMenu_OpeningFcn, ...

 'gui_OutputFcn', @JointMenu_OutputFcn, ...

 'gui_LayoutFcn', [] , ...

 'gui_Callback', []);

if nargin && ischar(varargin{1})

 gui_State.gui_Callback = str2func(varargin{1});

end

if nargout

 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else

164

 gui_mainfcn(gui_State, varargin{:});

end

% End initialization code - DO NOT EDIT

% --- Executes just before JointMenu is made visible.

function JointMenu_OpeningFcn(hObject, eventdata, handles, varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to JointMenu (see VARARGIN)

% Create the values that will populate all pre-set fields

handles.Translational=1;

handles.Rotational=0;

handles.rom='na';

handles.k='na';

handles.s1='0.5';

handles.s2='10';

handles.f='na';

handles.AlE=73000;

handles.PLAE=2800;

handles.ABSE=2587.5;

handles.AlG=28000;

handles.PLAG=875;

handles.ABSG=875;

%Set initial data value for drop down box values

handles.type = handles.Translational;

handles.matE = handles.AlE;

handles.matG = handles.AlG;

% Choose default command line output for JointMenu

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

% UIWAIT makes JointMenu wait for user response (see UIRESUME)

% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.

function varargout = JointMenu_OutputFcn(hObject, eventdata, handles)

% varargout cell array for returning output args (see VARARGOUT);

165

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure

varargout{1} = handles.output;

% --- Executes on selection change in type_popup.

function type_popup_Callback(hObject, eventdata, handles)

% hObject handle to type_popup (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Determine the selected data set.

str = get(hObject, 'String');

val = get(hObject,'Value');

% Set current data to the selected data set.

switch str{val};

case 'Translational' % User selects Translational.

 handles.type = handles.Translational;

case 'Rotational' % User selects Rotational.

 handles.type = handles.Rotational;

end

% Save the handles structure.

guidata(hObject,handles)

% Hints: contents = cellstr(get(hObject,'String')) returns type_popup

contents as cell array

% contents{get(hObject,'Value')} returns selected item from

type_popup

% --- Executes during object creation, after setting all properties.

function type_popup_CreateFcn(hObject, eventdata, handles)

% hObject handle to type_popup (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns

called

% Hint: popupmenu controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

function rom_edit_Callback(hObject, eventdata, handles)

% hObject handle to rom_edit (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

166

rom = get(hObject,'string');

handles.rom = rom;

guidata(gcbo,handles);

% --- Executes during object creation, after setting all properties.

function rom_edit_CreateFcn(hObject, ~, handles)

% hObject handle to rom_edit (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

function k_edit_Callback(hObject, eventdata, handles)

% hObject handle to k_edit (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

k = get(hObject,'string');

handles.k = k;

guidata(gcbo,handles);

% Hints: get(hObject,'String') returns contents of k_edit as text

% str2double(get(hObject,'String')) returns contents of k_edit

as a double

% --- Executes during object creation, after setting all properties.

function k_edit_CreateFcn(hObject, eventdata, handles)

% hObject handle to k_edit (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

function s1_edit_Callback(hObject, eventdata, handles)

% hObject handle to s1_edit (see GCBO)

167

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

s1 = get(hObject,'string');

handles.s1 = s1;

guidata(gcbo,handles);

% Hints: get(hObject,'String') returns contents of s1_edit as text

% str2double(get(hObject,'String')) returns contents of s1_edit

as a double

% --- Executes during object creation, after setting all properties.

function s1_edit_CreateFcn(hObject, eventdata, handles)

% hObject handle to s1_edit (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

function s2_edit_Callback(hObject, eventdata, handles)

% hObject handle to s2_edit (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

s2 = get(hObject,'string');

handles.s2 = s2;

guidata(gcbo,handles);

% Hints: get(hObject,'String') returns contents of s2_edit as text

% str2double(get(hObject,'String')) returns contents of s2_edit

as a double

% --- Executes during object creation, after setting all properties.

function s2_edit_CreateFcn(hObject, eventdata, handles)

% hObject handle to s2_edit (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

168

% --- Executes on selection change in mat_popupmenu.

function mat_popupmenu_Callback(hObject, eventdata, handles)

% hObject handle to mat_popupmenu (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Determine the selected data set.

str = get(hObject, 'String');

val = get(hObject,'Value');

% Set current data to the selected data set.

switch str{val};

case 'Aluminum' % User selects Aluminum.

 handles.matE = handles.AlE;

 handles.matG = handles.AlG;

case 'PLA' % User selects PLA.

 handles.matE = handles.PLAE;

 handles.matG = handles.PLAG;

case 'ABS' % User selects PLA.

 handles.matE = handles.ABSE;

 handles.matG = handles.ABSG;

end

% Save the handles structure.

guidata(hObject,handles)

% Hints: contents = cellstr(get(hObject,'String')) returns

mat_popupmenu contents as cell array

% contents{get(hObject,'Value')} returns selected item from

mat_popupmenu

% --- Executes during object creation, after setting all properties.

function mat_popupmenu_CreateFcn(hObject, eventdata, handles)

% hObject handle to mat_popupmenu (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns

called

% Hint: popupmenu controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

function f_edit_Callback(hObject, eventdata, handles)

% hObject handle to f_edit (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

f = get(hObject,'string');

handles.f = f;

guidata(gcbo,handles);

169

% Hints: get(hObject,'String') returns contents of f_edit as text

% str2double(get(hObject,'String')) returns contents of f_edit

as a double

% --- Executes during object creation, after setting all properties.

function f_edit_CreateFcn(hObject, eventdata, handles)

% hObject handle to f_edit (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

% --- Executes on button press in done_pushbutton1.

function done_pushbutton1_Callback(hObject, eventdata, handles)

% hObject handle to done_pushbutton1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Get user input from GUI

% disp(handles.type);

% disp(handles.rom);

% disp(handles.k);

% disp(handles.s1);

% disp(handles.s2);

% disp(handles.f);

% disp(handles.matE);

% disp(handles.matG);

[z] =

DecisiontreeFunction(handles.type,handles.rom,handles.k,handles.s1,hand

les.s2,handles.f,handles.matE,handles.matG);

Figure A 63.The MATLAB function that controls the GUI.

170

APPENDIX D. MATLAB PARETO CURVE GENERATING CODE

function [fig] = ParetoFunT_YYY(array,E,s1,s2,F,nfig)

 s1c=s1;

 s2c=s2;

 scount=(s2-s1)/10;

 Disp=[0];

 k=[0];

 sizea=size(array);

 nsubplot=sizea(1);

 width=ceil(nsubplot/2);

 height=2;

 num=1;

 fig=figure(nfig);

 b=1;

 a=ismember(1,array);

 if a == 1

 %pareto for joint 1

 for i=s1:scount:s2

 [Disp(b),k(b)]=SmithRectilinearSpringFun(E,s1c,i,s2c,F);

 b=b+1;

 end

 subplot(height,width,num)

 plot(Disp,k)

 xlabel('Displacement (mm)')

 ylabel('Stiffness (N/mm)')

 title('Pareto Curve for Smith Rectilinear Spring')

 num=num+1;

 end

 b=1;

 a=ismember(2,array);

 if a == 1

 %pareto for joint 2

 for i=s1:scount:s2

 [Disp(b),k(b)]=ParallelStripFun(E,i,s1c,s2c,F);

 b=b+1;

 end

 subplot(height,width,num)

 plot(Disp,k)

 xlabel('Displacement (mm)')

 ylabel('Stiffness (N/mm)')

 title('Pareto Curve for Parallel Strip')

 num=num+1;

 end

 b=1;

 a=ismember(3,array);

 if a == 1

171

 %pareto for joint 3

 for i=s1:scount:s2

 [Disp(b),k(b)]=KyusojinLinear6L1Fun(E,s1c,i,s2c,F);

 b=b+1;

 end

 subplot(height,width,num)

 plot(Disp,k)

 xlabel('Displacement (mm)')

 ylabel('Stiffness (N/mm)')

 title('Pareto Curve for Kyusojin Linear 6L1')

 num=num+1;

 end

 b=1;

 a=ismember(4,array);

 if a == 1

 %pareto for joint 4

 j=s2;

 for i=s1:scount:s2

 [Disp(b),k(b)]=TreaseTranslationalFun(E,s1c,s2c,j,F);

 b=b+1;

 j=j-scount;

 end

 subplot(height,width,num)

 plot(Disp,k)

 xlabel('Displacement (mm)')

 ylabel('Stiffness (N/mm)')

 title('Pareto Curve for Trease Translational')

 num=num+1;

 end

 b=1;

 a=ismember(5,array);

 if a == 1

 %pareto for joint 5

 j=s2;

 for i=s1:scount:s2

 [Disp(b),k(b)]=XuTranslationalFun(E,s1c,j,s1c,s2c,F);

 b=b+1;

 j=j-scount;

 end

 subplot(height,width,num)

 plot(Disp,k)

 xlabel('Displacement (mm)')

 ylabel('Stiffness (N/mm)')

 title('Pareto Curve for Xu Translational')

 num=num+1;

 end

 b=1;

 a=ismember(6,array);

 if a == 1

 %pareto for joint 6

172

 j=s2;

 for i=s1:scount:s2

 [Disp(b),k(b)]=SmithNotchHingeFun(E,j,s1c,s2c,j,F);

 b=b+1;

 j=j-scount;

 end

 subplot(height,width,num)

 plot(Disp,k)

 xlabel('Displacement (mm)')

 ylabel('Stiffness (N/mm)')

 title('Pareto Curve for Smith Notch Hinge')

 end

end

Figure A 64. Complete MATLAB function used to build Pareto curves for a

translational joint set.

function [fig] = ParetoFunR_YYY(array,E,G,s1,s2,F,nfig)

 s1c=s1;

 s2c=s2;

 scount=abs(s2-s1)/10;

 Disp=[0];

 k=[0];

 sizea=size(array);

 nsubplot=sizea(1);

 width=ceil(nsubplot/2);

 height=3;

 num=1;

 fig=figure(nfig);

 b=1;

 a=ismember(1,array);

 if a == 1

 %pareto for joint 1

 for i=s1:scount:s2

 [Disp(b),k(b)]=JensenCrossAxisFun(E,s1c,i,i,s2c,F);

 b=b+1;

 end

 subplot(height,width,num)

 plot(Disp,k)

 xlabel('Displacement (degrees)')

 ylabel('Stiffness (Nmm/degree)')

 title('Pareto Curve for Jensen Cross Axis')

 num=num+1;

 end

 b=1;

 a=ismember(2,array);

 if a == 1

 %pareto for joint 2

173

 j=s2;

 for i=s1:scount:s2

 [Disp(b),k(b)]=LobontiuCornerFilletedFun(E,i,i,i,s2c,F);

 b=b+1;

 j=j-scount;

 end

 subplot(height,width,num)

 plot(Disp,k)

 xlabel('Displacement (degrees)')

 ylabel('Stiffness (Nmm/degree)')

 title('Pareto Curve for Lobontiu Corner Filleted')

 num=num+1;

 end

 b=1;

 a=ismember(3,array);

 if a == 1

 %pareto for joint 3

 j=s2;

 for i=s1:scount:s2

 [Disp(b),k(b)]=LobontiuSymmetricCircularFun(E,s1c,i,s2c,F);

 b=b+1;

 j=j-scount;

 end

 subplot(height,width,num)

 plot(Disp,k)

 xlabel('Displacement (degrees)')

 ylabel('Stiffness (Nmm/degree)')

 title('Pareto Curve for Lobontiu Symmetric Circular')

 num=num+1;

 end

 b=1;

 a=ismember(4,array);

 if a == 1

 %pareto for joint 4

 j=s2;

 for i=s1:scount:s2

 [Disp(b),k(b)]=LobontiuSymmetricNotchFun(E,s1c,i,s2c,F);

 b=b+1;

 j=j-scount;

 end

 subplot(height,width,num)

 plot(Disp,k)

 xlabel('Displacement (degrees)')

 ylabel('Stiffness (Nmm/degree)')

 title('Pareto Curve for Lobontiu Symmetric Notch')

 num=num+1;

 end

 b=1;

 a=ismember(5,array);

 if a == 1

174

 %pareto for joint 5

 j=s2;

 for i=s1:scount:s2

[Disp(b),k(b)]=RotationallySymmetricLeafHingeFun(E,s1c,i,F);

 b=b+1;

 j=j-scount;

 end

 subplot(height,width,num)

 plot(Disp,k)

 xlabel('Displacement (degrees)')

 ylabel('Stiffness (Nmm/degree)')

 title('Pareto Curve for Rotationally Symmetric Leaf Hinge')

 num=num+1;

 end

 b=1;

 a=ismember(6,array);

 if a == 1

 %pareto for joint 6

 for i=s1:scount:s2

 [Disp(b),k(b)]=SmithAnnulusFun(E,G,i,i,F);

 b=b+1;

 end

 subplot(height,width,num)

 plot(Disp,k)

 xlabel('Displacement (degrees)')

 ylabel('Stiffness (Nmm/degree)')

 title('Pareto Curve for Smith Annulus')

 num=num+1;

 end

 b=1;

 a=ismember(7,array);

 if a == 1

 %pareto for joint 7

 for i=s1:scount:s2

 [Disp(b),k(b)]=SmithCartwheelFun(E,s1c,i,s2c,F);

 b=b+1;

 end

 subplot(height,width,num)

 plot(Disp,k)

 xlabel('Displacement (degrees)')

 ylabel('Stiffness (Nmm/degree)')

 title('Pareto Curve for Smith Cartwheel')

 num=num+1;

 end

 b=1;

 a=ismember(8,array);

 if a == 1

 %pareto for joint 8

 j=s2;

175

 for i=s1:scount:s2

 [Disp(b),k(b)]=SmithCruciformFun(G,s1c,j,s1c,F);

 b=b+1;

 j=j-scount;

 end

 subplot(height,width,num)

 plot(Disp,k)

 xlabel('Displacement (degrees)')

 ylabel('Stiffness (Nmm/degree)')

 title('Pareto Curve for Smith Cruciform')

 num=num+1;

 end

 b=1;

 a=ismember(9,array);

 if a == 1

 %pareto for joint 9

 for i=s1:scount:s2

 [Disp(b),k(b)]=SmithTwoAxisFun(E,i,s1c,F);

 b=b+1;

 end

 subplot(height,width,num)

 plot(Disp,k)

 xlabel('Displacement (degrees)')

 ylabel('Stiffness (Nmm/degree)')

 title('Pareto Curve for Smith Two Axis')

 num=num+1;

 end

 b=1;

 a=ismember(10,array);

 if a == 1

 %pareto for joint 10

 for i=s1:scount:s2

 [Disp(b),k(b)]=TangSymmetricCircularFun(E,i,s1c,s2c,F);

 b=b+1;

 end

 subplot(height,width,num)

 plot(Disp,k)

 xlabel('Displacement (degrees)')

 ylabel('Stiffness (Nmm/degree)')

 title('Pareto Curve for Tang Symmetric Circular')

 num=num+1;

 end

 b=1;

 a=ismember(11,array);

 if a == 1

 %pareto for joint 11

 for i=s1:scount:s2

 [Disp(b),k(b)]=TreaseConceptFun(G,s1c,i,s1c,F);

 b=b+1;

176

 end

 subplot(height,width,num)

 plot(Disp,k)

 xlabel('Displacement (degrees)')

 ylabel('Stiffness (Nmm/degree)')

 title('Pareto Curve for Trease Concept')

 num=num+1;

 end

 b=1;

 a=ismember(12,array);

 if a == 1

 %pareto for joint 12

 j=s2;

 for i=s1:scount:s2

 [Disp(b),k(b)]=VShapeFun(E,s1c,i,i,i,s2c,F);

 b=b+1;

 j=j-scount;

 end

 subplot(height,width,num)

 plot(Disp,k)

 xlabel('Displacement (degrees)')

 ylabel('Stiffness (Nmm/degree)')

 title('Pareto Curve for V Shape Flexure')

 num=num+1;

 end

 b=1;

 a=ismember(13,array);

 if a == 1

 %pareto for joint 13

 j=s2;

 for i=s1:scount:s2

 [Disp(b),k(b)]=KyusojinRotational6R2Fun(E,s1c,i,s2c,F);

 b=b+1;

 j=j-scount;

 end

 subplot(height,width,num)

 plot(Disp,k)

 xlabel('Displacement (degrees)')

 ylabel('Stiffness (Nmm/degree)')

 title('Pareto Curve for Kyusojin Rotational 6R2')

 num=num+1;

 end

 b=1;

 a=ismember(14,array);

 if a == 1

 %pareto for joint 14

 for i=s1:scount:s2

 [Disp(b),k(b)]=ConventionalSplitTubeFun(G,s1c,i,s2c,F);

 b=b+1;

 end

177

 subplot(height,width,num)

 plot(Disp,k)

 xlabel('Displacement (degrees)')

 ylabel('Stiffness (Nmm/degree)')

 title('Pareto Curve for Conventional Split Tube')

 end

end

Figure A 65. Complete MATLAB function used to build Pareto curves for a

rotational joint set.

178

APPENDIX E. TEST CASES USED TO VALIDATE SELECTION ALGORITHM

E.1 Test Case 1

 The values used for Test Case 1 can be seen in Table A 1. The GUI

showing the input values, output Pareto curves, and MATLAB text output are shown in

Figure A 66, Figure A 67, and Figure A 68, respectively.

Table A 1. Input values for Test Case 1.

Test

Case

Type of

Joint

Range of

Motion

[mm or

degrees]

Stiffness

[N/mm or

Nmm/degree]

Size

Constraints

[mm]

Applied

Force

[N]

Material

1 Translational 5 7 4.1 - 41.5 5 ABS

179

Figure A 66. GUI inputs used for Test Case 1.

180

Figure A 67. Pareto curve outputs for Test Case 1.

>> JointMenu

Translational Joints are selected

RoM has a value, 5.00 mm.

K has a value, 7.00 N/mm.

F has a value, 5.00 N.

Possible joints for this user input are:

SmithNotchHinge

Figure A 68. MATLAB text output for Test Case 1.

0 1 2 3 4 5 6 7 8 9
0

50

100

150

200

Displacement (mm)

S
ti
ff

n
e
s
s
 (

N
/m

m
)

Pareto Curve for Smith Notch Hinge

181

E.2 Test Case 2

 The values used for Test Case 2 can be seen in Table A 2. The GUI

showing the input values is shown in Figure A 69. Since this input does not have a force

applied, a generic force set of 0.1 N, 1 N, and 10 N are used to show range of motion

possibilities. In this test case, no results are returned for the first two applied forces, and

as such, the Pareto curve figures that would be generated are blank. They are omitted for

this reason. The Pareto curves for a force applied of 10 N are shown in Figure A 70. The

MATLAB text output is shown in Figure A 71.

Table A 2. Input values for Test Case 2.

Test

Case

Type of

Joint

Range of

Motion

[mm or

degrees]

Stiffness

[N/mm or

Nmm/degree]

Size

Constraints

[mm]

Applied

Force

[N]

Material

2 Rotational 10 3 1.2 - 29.2 - Aluminum

182

Figure A 69. GUI inputs used for Test Case 2.

183

Figure A 70. Pareto curve outputs for Test Case 2.

>> JointMenu

Rotational Joints are selected.

RoM has a value, 10.00 degrees.

K has a value, 3.00 N/mm.

F does not have a value (na)

Possible joints for this user input using a force of 0.100000 N are:

Possible joints for this user input using a force of 1.000000 N are:

Possible joints for this user input using a force of 10.000000 N are:

JensenCrossAxis

LobontiuSymmetricNotch

Figure A 71. MATLAB text output for Test Case 2.

0 5 10 15 20 25 30
0

50

100

Displacement (degrees)

S
ti
ff

n
e
s
s
 (

N
m

m
/d

e
g
re

e
)

Pareto Curve for Jensen Cross Axis

0 10 20 30 40 50 60 70 80 90
0

20

40

60

Displacement (degrees)

S
ti
ff

n
e
s
s
 (

N
m

m
/d

e
g
re

e
)

Pareto Curve for Lobontiu Symmetric Notch

184

E.3 Test Case 3

 The values used for Test Case 3 can be seen in Table A 3. The GUI

showing the input values, output Pareto curves, and MATLAB text output are shown in

Figure A 72, Figure A 73, and Figure A 74, respectively.

Table A 3. Input values for Test Case 3.

Test

Case

Type of

Joint

Range of

Motion

[mm or

degrees]

Stiffness

[N/mm or

Nmm/degree]

Size

Constraints

[mm]

Applied

Force

[N]

Material

3 Translational 2 - 1.7 - 27.5 3 ABS

185

Figure A 72. GUI inputs used for Test Case 3.

186

Figure A 73. Pareto curve outputs for Test Case 3.

>> JointMenu

Translational Joints are selected

RoM has a value, 2.00 mm.

k does not have a value (na)

F has a value, 3.00 N.

Possible joints for this user input are:

KyusojinLinear6L1

TreaseTranslational

XuTranslational

SmithNotchHinge

Figure A 74. MATLAB text output for Test Case 3.

0 5 10 15 20 25 30
0

200

400

600

Displacement (mm)

S
ti
ff

n
e
s
s
 (

N
/m

m
)

Pareto Curve for Kyusojin Linear 6L1

0 2 4 6 8
0

500

1000

1500

2000

Displacement (mm)

S
ti
ff

n
e
s
s
 (

N
/m

m
)

Pareto Curve for Trease Translational

0 1 2 3 4
0

5

10

15

20

Displacement (mm)

S
ti
ff

n
e
s
s
 (

N
/m

m
)

Pareto Curve for Xu Translational

0 5 10 15 20 25
0

50

100

150

Displacement (mm)
S

ti
ff

n
e
s
s
 (

N
/m

m
)

Pareto Curve for Smith Notch Hinge

187

E.4 Test Case 4

 The values used for Test Case 4 can be seen in Table A 4. The GUI

showing the input values is shown in Figure A 75. Since this input does not have a force

applied, a generic force set of 0.1 N, 1 N, and 10 N are used to show range of motion

possibilities. The Pareto curves for a force applied of 0.1N, 1 N, and 10 N are shown in

Figure A 76, Figure A 77, and Figure A 78, respectively. The MATLAB text output is

shown in Figure A 79.

Table A 4. Input values for Test Case 4.

Test

Case

Type of

Joint

Range of

Motion

[mm or

degrees]

Stiffness

[N/mm or

Nmm/degree]

Size

Constraints

[mm]

Applied

Force

[N]

Material

4 Rotational 4 - 2.5 - 45.9 - ABS

188

Figure A 75. GUI inputs used for Test Case 4.

189

Figure A 76. Pareto curve outputs for Test Case 4, using an applied force of 0.1 N.

Figure A 77. Pareto curve outputs for Test Case 4, using an applied force of 1 N.

0 2 4 6
0

5

10

15

20

Displacement (degrees)

S
ti
ff

n
e
s
s
 (

N
m

m
/d

e
g
re

e
) Pareto Curve for Jensen Cross Axis

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

Displacement (degrees)

S
ti
ff

n
e
s
s
 (

N
m

m
/d

e
g
re

e
) Pareto Curve for Smith Cruciform

0 20 40 60
0

0.05

0.1

0.15

0.2

Displacement (degrees)

S
ti
ff

n
e
s
s
 (

N
m

m
/d

e
g
re

e
) Pareto Curve for Smith Two Axis

0 20 40 60
0

5

10

15

20

Displacement (degrees)

S
ti
ff

n
e
s
s
 (

N
m

m
/d

e
g
re

e
)

Pareto Curve for Jensen Cross Axis

0 2 4 6
5

10

15

20

25

Displacement (degrees)

S
ti
ff

n
e
s
s
 (

N
m

m
/d

e
g
re

e
)

Pareto Curve for Lobontiu Symmetric Circular

0 20 40
0

5

10

15

Displacement (degrees)

S
ti
ff

n
e
s
s
 (

N
m

m
/d

e
g
re

e
)

Pareto Curve for Lobontiu Symmetric Notch

0 20 40
0.66

0.68

0.7

0.72

Displacement (degrees)

S
ti
ff

n
e
s
s
 (

N
m

m
/d

e
g
re

e
)

Pareto Curve for Rotationally Symmetric Leaf Hinge

0 5 10
0

20

40

60

80

Displacement (degrees)

S
ti
ff

n
e
s
s
 (

N
m

m
/d

e
g
re

e
)

Pareto Curve for Smith Cartwheel

0 20 40 60
0

0.2

0.4

0.6

0.8

Displacement (degrees)

S
ti
ff

n
e
s
s
 (

N
m

m
/d

e
g
re

e
)

Pareto Curve for Smith Cruciform

0 2 4 6
5

10

15

20

25

Displacement (degrees)

S
ti
ff

n
e
s
s
 (

N
m

m
/d

e
g
re

e
)

Pareto Curve for Tang Symmetric Circular

0 2 4 6
0

2

4

6

Displacement (degrees)

S
ti
ff

n
e
s
s
 (

N
m

m
/d

e
g
re

e
)

Pareto Curve for Trease Concept

0 5 10 15
0

10

20

30

40

Displacement (degrees)

S
ti
ff

n
e
s
s
 (

N
m

m
/d

e
g
re

e
)

Pareto Curve for Conventional Split Tube

190

Figure A 78. Pareto curve outputs for Test Case 4, using an applied force of 10 N.

0 10 20 30 40 50
0

10

20

30

Displacement (degrees)

S
ti
ff

n
e
s
s
 (

N
m

m
/d

e
g
re

e
)

Pareto Curve for Lobontiu Symmetric Circular

0 20 40 60 80 100
0

5

10

15

Displacement (degrees)

S
ti
ff

n
e
s
s
 (

N
m

m
/d

e
g
re

e
)

Pareto Curve for Lobontiu Symmetric Notch

0 1 2 3 4 5
0

0.5

1

1.5

2
x 10

4

Displacement (degrees)

S
ti
ff

n
e
s
s
 (

N
m

m
/d

e
g
re

e
)

Pareto Curve for Smith Annulus

0 20 40 60 80
0

20

40

60

80

Displacement (degrees)

S
ti
ff

n
e
s
s
 (

N
m

m
/d

e
g
re

e
)

Pareto Curve for Smith Cartwheel

0 10 20 30 40 50
5

10

15

20

25

Displacement (degrees)

S
ti
ff

n
e
s
s
 (

N
m

m
/d

e
g
re

e
)

Pareto Curve for Tang Symmetric Circular

0 10 20 30 40 50
0

2

4

6

Displacement (degrees)

S
ti
ff

n
e
s
s
 (

N
m

m
/d

e
g
re

e
)

Pareto Curve for Trease Concept

0 10 20 30
0

20

40

60

Displacement (degrees)

S
ti
ff

n
e
s
s
 (

N
m

m
/d

e
g
re

e
)

Pareto Curve for V Shape Flexure

191

>> JointMenu

JointMenu

Rotational Joints are

selected.

RoM has a value, 4.00

degrees.

K does not have a value

(na)

F does not have a value

(na)

Possible joints for this

user input using a force

of 0.100000 N are:

JensenCrossAxis

SmithCruciform

SmithTwoAxis

Possible joints for this

user input using a force

of 1.000000 N are:

JensenCrossAxis

LobontiuSymmetricCircular

LobontiuSymmetricNotch

RotationallySymmetric

SmithCartwheel

SmithCruciform

TangSymmetricCircular

TreaseConcept

ConventionalSplitTube

Possible joints for this

user input using a force

of 10.000000 N are:

LobontiuSymmetricCircular

LobontiuSymmetricNotch

SmithAnnulus

SmithCartwheel

TangSymmetricCircular

TreaseConcept

VShape

Figure A 79. MATLAB text output for Test Case 4.

192

E.5 Test Case 5

 The values used for Test Case 5 can be seen in Table A 5. The GUI

showing the input values, output Pareto curves, and MATLAB text output are shown in

Figure A 80, Figure A 81, and Figure A 82, respectively.

Table A 5. Input values for Test Case 5.

Test

Case

Type of

Joint

Range of

Motion

[mm or

degrees]

Stiffness

[N/mm or

Nmm/degree]

Size

Constraints

[mm]

Applied

Force

[N]

Material

5 Translational - 1 1.3 - 14.3 6 PLA

193

Figure A 80. GUI inputs used for Test Case 5.

194

Figure A 81. Pareto curve outputs for Test Case 5.

>> JointMenu

Translational Joints are selected

RoM does not have a value (na)

K has a value, 1.00 N/mm.

F has a value, 6.00 N.

Possible joints for this user input are:

KyusojinLinear6L1

TreaseTranslational

SmithNotchHinge

Figure A 82. MATLAB text output for Test Case 5.

0 5 10 15 20 25
0

100

200

300

400

Displacement (mm)

S
ti
ff

n
e
s
s
 (

N
/m

m
)

Pareto Curve for Kyusojin Linear 6L1

0 2 4 6 8 10
0

200

400

600

800

1000

Displacement (mm)

S
ti
ff

n
e
s
s
 (

N
/m

m
)

Pareto Curve for Trease Translational

0 10 20 30 40
0

20

40

60

80

Displacement (mm)

S
ti
ff

n
e
s
s
 (

N
/m

m
)

Pareto Curve for Smith Notch Hinge

195

E.6 Test Case 6

 The values used for Test Case 6 can be seen in Table A 6. The GUI

showing the input values is shown in Figure A 83. Since this input does not have a force

applied, a generic force set of 0.1 N, 1 N, and 10 N are used to show range of motion

possibilities. The Pareto curves for a force applied of 0.1N, 1 N, and 10 N are shown in

Figure A 84, Figure A 85, and Figure A 86, respectively. The MATLAB text output is

shown in Figure A 87.

Table A 6. Input values for Test Case 6.

Test

Case

Type of

Joint

Range of

Motion

[mm or

degrees]

Stiffness

[N/mm or

Nmm/degree]

Size

Constraints

[mm]

Applied

Force

[N]

Material

6 Rotational - 2 3 - 37.9 - Aluminum

196

Figure A 83. GUI inputs used for Test Case 6.

Figure A 84. Pareto curve outputs for Test Case 6, using an applied force of 0.1 N.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

20

40

Displacement (degrees)S
ti
ff

n
e
s
s
 (

N
m

m
/d

e
g
re

e
)

Pareto Curve for Smith Cruciform

197

Figure A 85. Pareto curve outputs for Test Case 6, using an applied force of 1 N.

Figure A 86. Pareto curve outputs for Test Case 6, using an applied force of 10 N.

>> JointMenu

Rotational Joints are selected.

RoM does not have a value (na)

K has a value, 2.00 Nmm/degree.

F does not have a value (na)

Possible joints for this user input using a force of 0.100000 N are:

SmithCruciform

Possible joints for this user input using a force of 1.000000 N are:

SmithCruciform

Possible joints for this user input using a force of 10.000000 N are:

SmithCruciform

Figure A 87. MATLAB text output for Test Case 6.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

20

40

Displacement (degrees)S
ti
ff

n
e
s
s
 (

N
m

m
/d

e
g
re

e
)

Pareto Curve for Smith Cruciform

0 1 2 3 4 5 6 7
0

20

40

Displacement (degrees)S
ti
ff

n
e
s
s
 (

N
m

m
/d

e
g
re

e
)

Pareto Curve for Smith Cruciform

198

E.7 Test Case 7

 The values used for Test Case 7 can be seen in Table A 7. The GUI

showing the input values, output Pareto curves, and MATLAB text output are shown in

Figure A 88, Figure A 89, and Figure A 90, respectively.

Table A 7. Input values for Test Case 7.

Test

Case

Type of

Joint

Range of

Motion

[mm or

degrees]

Stiffness

[N/mm or

Nmm/degree]

Size

Constraints

[mm]

Applied

Force

[N]

Material

7 Translational - - 2.4 - 19.0 2 PLA

199

Figure A 88. GUI inputs used for Test Case 7.

200

Figure A 89. Pareto curve outputs for Test Case 7.

>> JointMenu

Translational Joints are selected

RoM does not have a value (na)

K does not have a value (na)

F has a value, 2.00 N.

The following joints are organized by RoM,

Largest to smallest, for the given force, 2.000000 N :

ParallelStrip with 1.1658 mm displacement.

SmithRectilinear with 1.1658 mm displacement.

XuTranslational with 0.1033 mm displacement.

SmithNotchHinge with 0.0210 mm displacement.

KyusojinLinear6L1 with 0.0030 mm displacement.

TreaseTranslational with 0.0016 mm displacement.

Figure A 90. MATLAB text output for Test Case 7.

0 5 10
0

0.5

1

1.5

2

Displacement (mm)

S
ti
ff

n
e
s
s
 (

N
/m

m
)

Pareto Curve for Smith Rectilinear Spring

0 5 10
0

0.5

1

1.5

2

Displacement (mm)

S
ti
ff

n
e
s
s
 (

N
/m

m
)

Pareto Curve for Parallel Strip

0 0.5 1 1.5
0

200

400

600

800

Displacement (mm)

S
ti
ff

n
e
s
s
 (

N
/m

m
)

Pareto Curve for Kyusojin Linear 6L1

0 0.5 1
0

500

1000

1500

Displacement (mm)

S
ti
ff

n
e
s
s
 (

N
/m

m
)

Pareto Curve for Trease Translational

0 0.5 1
0

5

10

15

20

Displacement (mm)

S
ti
ff

n
e
s
s
 (

N
/m

m
)

Pareto Curve for Xu Translational

0 2 4
0

50

100

Displacement (mm)

S
ti
ff

n
e
s
s
 (

N
/m

m
)

Pareto Curve for Smith Notch Hinge

201

E.8 Test Case 8

 The values used for Test Case 3 can be seen in Table A 8. The GUI

showing the input values and MATLAB text output are shown in Figure A 91 and Figure

A 92, respectively. It should be noted that there is no Pareto curve output for this

selection of inputs. This is because with no initial values, a large amount of output is

shown to the user. To prevent the data from being displayed misleadingly, it is

recommended the user add some additional requirements and use the selection algorithm

again.

Table A 8. Input values for Test Case 8.

Test

Case

Type of

Joint

Range of

Motion

[mm or

degrees]

Stiffness

[N/mm or

Nmm/degree]

Size

Constraints

[mm]

Applied

Force

[N]

Material

8 Rotational - - 1.8 - 28.4 - Aluminum

202

Figure A 91. GUI inputs used for Test Case 8.

>> JointMenu

Rotational Joints are selected.

RoM does not have a value (na)

K does not have a value (na)

F does not have a value (na)

Possible joints for this user input using a force of 0.100 N,

 organized by RoM are:

SmithTwoAxis with 3.0006 degrees displacement.

SmithCruciform with 0.2297 degrees displacement.

LobontiuSymmetricNotch with 0.1911 degrees displacement.

RotationallySymmetric with 0.1905 degrees displacement.

JensenCrossAxis with 0.1862 degrees displacement.

ConventionalSplitTube with 0.0595 degrees displacement.

SmithCartwheel with 0.0358 degrees displacement.

203

LobontiuSymmetricCircular with 0.0270 degrees displacement.

TangSymmetricCircular with 0.0269 degrees displacement.

TreaseConcept with 0.0252 degrees displacement.

VShape with 0.0189 degrees displacement.

SmithAnnulus with 0.0025 degrees displacement.

Kyusojin6R2 with 0.0001 degrees displacement.

LobontiuCornerFilleted with 0.0000 degrees displacement.

Possible joints for this user input using a force of 1.000 N,

 organized by RoM are:

ConventionalSplitTube with 30.0057 degrees displacement.

SmithCartwheel with 2.2967 degrees displacement.

VShape with 1.9114 degrees displacement.

TreaseConcept with 1.9054 degrees displacement.

LobontiuCornerFilleted with 1.8610 degrees displacement.

SmithTwoAxis with 0.5947 degrees displacement.

LobontiuSymmetricCircular with 0.3583 degrees displacement.

SmithAnnulus with 0.2702 degrees displacement.

JensenCrossAxis with 0.2689 degrees displacement.

RotationallySymmetric with 0.2524 degrees displacement.

LobontiuSymmetricNotch with 0.1889 degrees displacement.

TangSymmetricCircular with 0.0247 degrees displacement.

Kyusojin6R2 with 0.0001 degrees displacement.

SmithCruciform with 0.0001 degrees displacement.

Possible joints for this user input using a force of 10.000 N,

 organized by RoM are:

SmithTwoAxis with 300.0568 degrees displacement.

LobontiuSymmetricCircular with 22.9673 degrees displacement.

LobontiuSymmetricNotch with 19.4838 degrees displacement.

RotationallySymmetric with 19.4201 degrees displacement.

SmithCruciform with 17.3258 degrees displacement.

ConventionalSplitTube with 5.9473 degrees displacement.

SmithAnnulus with 3.5832 degrees displacement.

TangSymmetricCircular with 2.7028 degrees displacement.

LobontiuCornerFilleted with 2.6886 degrees displacement.

TreaseConcept with 2.5238 degrees displacement.

VShape with 1.8890 degrees displacement.

JensenCrossAxis with 0.2469 degrees displacement.

Kyusojin6R2 with 0.0015 degrees displacement.

SmithCartwheel with 0.0001 degrees displacement.

Figure A 92. MATLAB text outputs for Test Case 8.

204

APPENDIX F. ADDITIONAL APPROACHES CONSIDERED

During the development of this research, multiple approaches were considered

that did not provide results towards the development of the compliant joint repository and

selection method. Two techniques of representing the models of compliant joints were

partially implemented.

One technique was the development of models within Modelica, an acausal

modeling language, where models could be solved iteratively based on user requirements.

This method of modeling allowed all inputs to be non-required, but the solution space

provided was difficult to manage due to size. Models developed within Modelica were

also difficult to relate to one another, since no normalization had been implemented at the

time.

Another technique was the development of models within Phoenix Integration‟s

ModelCenter. ModelCenter had a few advantages over the current methodology,

foremost was integrated optimization of compliant joints. Each individual model could be

optimized to achieve precisely the requirements the user input. However, since each

model would have to be optimized to determine if it was a potential solution, this

technique was incredibly slow. ModelCenter also had difficulties processing complex

logic to determine between different potential outcomes. Each model‟s optimization had

to be pre-set for every combination of potential inputs, which led to a large library of

potential optimizations that would be performed each time the selection algorithm was

used.

	Clemson University
	TigerPrints
	5-2015

	A Method for the Characterization and Selection of Compliant Joints
	Ronald George Saleeby
	Recommended Citation

	tmp.1434390359.pdf.jxFzL

