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ABSTRACT 

Light Detection and Ranging (LIDAR) is becoming a widely used tool in 

forestry and natural resource fields.  The availability of free and low cost datasets 

gives LIDAR the ability to save time and money over traditional forest inventory 

practices.  In this study, the effectiveness of low density, small footprint LIDAR 

compared to forest field inventory measurements from the Clemson Experimental 

Forest was determined.  LIDAR based estimates were analyzed to determine if 

LIDAR is a viable tool for estimating particular forest inventory features in the 

Southeastern U.S. and whether a transition could be made to a more GIS based 

analysis.  Standard field inventory methods were used to assess forest stand 

measurements throughout the Clemson Experimental Forest.   Processed LIDAR 

data was used in conjunction with Treevaw, a LIDAR software application, to 

extract forest inventory features at the individual tree level.  Statistical correlation 

and regression comparisons were made between the data at the plot level.  

Comparisons were also made between stand types to determine the type of 

effects that leaf-off conditions could have on the LIDAR data analysis.  Overall, 

results of the entire sample comparing tree heights, diameter at breast height, 

and above ground biomass were varied.  Correlations between inventory and 

LIDAR measurements were high, with a minimum value of 0.70.  Dividing the 

plots by stand cover type showed variations in the dataset.  Pine plantation plots 

achieved the best overall results, followed by pine-hardwood plots.  Natural pine, 

upland hardwood, and cove hardwood plots each produced similar results, but 



 iii 

were not as accurate as the stands mentioned previously.  Results show that low 

density, small footprint LIDAR can be used to accurately estimate certain 

features of individual trees in particular forest stand types.  The use of higher 

density LIDAR would most likely provide a more accurate analysis across a 

broader range of forest types. 

 

Keywords:  LIDAR, Low density, Tree height, Treevaw 
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CHAPTER ONE 

INTRODUCTION 

 

Statement of the Problem 

Forestry is a business that requires the continuous up-to-date inventory of 

forest resources.  Timber cruising is the preferred method used by foresters to 

achieve forest inventory estimates (Brooks, Wiant 2004).  Timber cruising costs 

in the southern U.S. were estimated at $3.45 per acre in the year 2000.  Although 

this was a decrease from the 1998 $4.10 per acre, overall, timber cruising costs 

have generally increased since they were first documented in 1952 (Dubois 

2003).  Depending on the acreage of a forested area, timber cruising can be an 

expensive process.  This high cost has caused many foresters to seek out a 

more cost effective alternative to field surveying (Suarez et al. 2005).  As 

technology has advanced, new remote sensing techniques have been developed 

to alleviate these problems.  Aerial photography and satellite imagery allow 

foresters to survey and analyze large areas without having to enter the field.  

Multispectral imagery is able to provide a wealth of information including stand 

delineation, segmentation, and change detection (Warner et al. 2006).  Presently, 

Light Detection and Ranging (LIDAR) is becoming a more common practice for 

forest inventory analysis (Magnusson et al. 2007). 

LIDAR is a collection of points of the earth’s surface.  Each point contains 

three dimensional X, Y and Z values, where they represent latitude, longitude, 
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and elevation respectively.  LIDAR data is collected by a sensor which is 

mounted to the underside of an airplane or other low flying aircraft.  A global 

positioning system (GPS) receiver and inertial measurement unit (IMU) located 

within the aircraft is linked with the sensor which allows it to collect location and 

elevation simultaneously (Fugro Horizons, Inc.).  The sensor emits light pulses 

towards the ground and receives them back as they are reflected by the earth’s 

surface.  The elevation of each pulse is determined by the altitude of the plane 

and the return time of the pulse to the sensor.  Using the laser light equivalent of 

radar, LIDAR accurately estimates such important forest structural characteristics 

as canopy heights, stand volume, basal area, and above ground biomass 

(Dubayah, Drake 2000).   

One of the biggest drawbacks to LIDAR has been cost.  A study by Tilley 

et al. (2005) showed that the cost of collecting and processing high and low 

density LIDAR over a 1,200 acre area was [$16,200] and [$15,000] respectively.  

Even at a contemporary level of 70 to 80 cents per acre for large projects, LIDAR 

can still prove too costly for forestry needs (Carson et al. 2004). However, as with 

most technology, as time has passed cost has begun to decrease.  Presently 

there are efforts in progress to provide free LIDAR datasets for the purposes of 

floodplain mapping, coastal erosion detection, and topographic mapping.   

The State of South Carolina in conjunction with the South Carolina 

Department of Natural Resources (SCDNR), the U.S. Geological Survey 

(USGS), and several other public and private agencies, is currently in the 
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process of collecting leaf-off LIDAR data for the entire state.  Over the next few 

years this project will provide LIDAR datasets for each county.  This data can be 

freely downloaded by the general public from the SCDNR website 

(www.dnr.sc.gov).   

The state of North Carolina, with the help of the Federal Emergency 

Management Agency (FEMA), has recently completed a statewide mapping 

program.  LIDAR data was collected in three phases over the past 7 years for the 

purposes of floodplain mapping.  This data is readily available to the general 

public free of charge (www.fema.gov).   

The USGS currently allows the downloading of a select group of datasets 

in certain areas of the U.S.  There is a possibility that the number of areas 

available by the USGS could increase in the future (www.usgs.gov).  The 

National Oceanic and Atmospheric Association (NOAA), National Aeronautics 

and Space Administration (NASA), and USGS partnered to collect LIDAR data 

along the sandy beaches of the U.S. between 1996 and 2000.  This beach 

change detection is important when monitoring water flow, beach volume 

changes, and shoreline changes (www.noaa.gov).   With the availability of low 

cost or no cost data, LIDAR has the power and ability to change forestry data 

collection techniques for years to come. 

Literature Review 

 The majority of commercial LIDAR systems are low flying, small footprint 

systems.  Small footprint scanners, like the one used to collect data for this 
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project, have high pulse rates (1,000 to 10,000 Hz) and emit beams between 5 

and 30 centimeters in diameter (Dubayah, Drake 2000).  Collected by low flying 

aircraft, small footprint scanners shower the earth with thousands of laser pulses.  

Small diameter beams pick up on tree canopies, but are also able to penetrate 

gaps in the canopy to the understory and forest floor.  LIDAR points in close 

proximity to one another can be used to recreate ground and canopy surfaces 

(Dubayah, Drake 2000).  However, particularly dense tree canopies with fewer 

gaps can cause problems when trying to obtain understory data using a small 

footprint scanner.  The returned data may only show a dense canopy with 

minimal or no understory, even though a dense understory exists (Maltamo et al. 

2005).  In this instance it has been suggested by Hirata et al. (2003) that two 

different analyses should be performed using data from both leaf-on and leaf-off 

conditions.  Leaf-on data provides information about the first and second canopy 

as well as the forest gaps.  Leaf-off data is better for determining understory and 

ground features assuming that the area is primarily deciduous.   

 Deriving outputs directly from raw data is nearly impossible, which is why 

the data must be extracted and separated as a preliminary step.  Before 

canopies or topography can be determined, the raw data must be separated by 

geographic information or returns (Filin 2004).  Returns refer to the time 

difference between when a laser pulse emission and when it is received back by 

the sensor.  First returns, or the first pulses to be received, are generally the 

highest points on the Earth’s surface.  These returns can include tree canopies 
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and roofs of buildings.  As pulses penetrate closer to the ground, they require 

more time to return to the sensor.  The return number increases as pulses 

continually move closer to the ground.  The last return is the lowest point 

recorded by the laser pulse, which is usually the ground or low lying vegetation.  

Once the data has been separated, it is ready for analysis.   

Several spatial interpolation techniques, such as inverse distance 

weighted (IDW), spline, and kriging methods, can be used to model terrain 

(Suarez et al. 2005).  These types of analysis, in conjunction with field 

measurements and other remote sensing tools, are needed for the validation of 

LIDAR results (Lee et al. 2004).  In this way, the major strength of LIDAR is that it 

can directly measure forest structure.  Being able to directly obtain canopy 

height, understory, and surface topography provides a vast amount of data that 

can be used to improve forest management procedures (Dubayah, Drake 2000). 

 Different scanners and sensors have the ability to collect LIDAR data at 

various densities.  To reduce costs over large areas, flight speed or flight altitude 

can be increased, resulting in lower density LIDAR data (Magnusson et al. 2007).  

A general assumption is that higher density LIDAR data would yield greater 

accuracy.  In most cases, this is true, but it also depends on the manner in which 

the data is going to be used.  Lower density LIDAR used in the right situation can 

still yield positive results and has been shown in certain cases to produce better 

results than high density.   
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Parker and Glass (2004) compared high and low density LIDAR in 

identifying tree heights in a sample forest inventory.  Low density LIDAR had a 

posting space of 1 meter, with a footprint diameter of 0.213 meters.  A posting 

density of 1 meter is equivalent to a single laser pulse per square meter.  High 

density LIDAR had a posting space of 0.5 meters, with a footprint diameter of 

0.112 meters.  A posting density of 0.5 meters is equal to 4 laser pulses per 

square meter.  In both cases, pine tree heights were underestimated, while 

hardwood heights were overestimated.  The underestimation of pine tree height 

is due to the fact that the probability of a laser pulse hitting the crown apex is low.  

The conical shape of a pine tree crown provides a small area for a LIDAR pulse 

to reflect off its true apex.  The more conical and narrow a crown becomes, the 

greater the chance its height will be underestimated.  The overestimation of 

hardwood heights is less documented, however, Brandtberg et al. (2003) 

describes that it could be related to field measurement errors.  Due to the fact 

that many hardwoods have a large rounded crown, it can be difficult for a ground 

observer to locate a true crown apex.   

The comparison between low and high density LIDAR data showed that, 

in general, the heights produced by low density LIDAR had a stronger 

relationship and less estimation error compared to ground height measurements.  

It is perceived that the smaller footprint size of the high density LIDAR caused 

more pulses to pass though the canopy, while the larger footprint of the low 

density LIDAR increased its likelihood of being intercepted by crown foliage 
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(Parker, Glass 2004).  A similar study, conducted by Magnusson et al. (2007), 

compared LIDAR pulse densities and showed that low density LIDAR could be 

effective for the estimation of forest variables at stand level.  By decreasing the 

density from 25,000 to 40 returns per hectare, an increased error was seen in the 

estimation accuracy of tree heights and stem volume.  However, the estimation 

accuracies were equal or better than estimates commonly obtained using a 

conventional forest inventory practice such as aerial photo interpretation. 

 Leaf-on and leaf-off LIDAR data collection both have distinct advantages 

that cater towards specific collection results.  Leaf-on data provides good canopy 

coverage for deciduous trees, while leaf-off data allows pulses to penetrate 

through limbs to achieve increased ground coverage.  In the past, LIDAR studies 

measuring tree height have almost exclusively concentrated on coniferous 

stands.  This is partly due to lack of detail of past data and the expense of small 

footprint LIDAR datasets (Popescu et al. 2004).  As technology has advanced, 

LIDAR sensor scanning rates have increased.  This produces greater point 

densities and allows aircrafts to fly at higher altitudes to collect the same amount 

of data in a shorter period of time.  The decrease in cost and increase in point 

density are allowing for the detection and analysis of individual trees under leaf-

off conditions.   

Brandtberg et al. (2003) achieved success by analyzing individual tree 

crowns in leaf-off conditions, as well as classifying individual tree species.  The 

common theme shared by both these analyses was the use of high density 
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LIDAR datasets.  Sampling density for both procedures was approximately 12 

returns per square meter (Brandtberg 2007, Brandtberg et al. 2003).  Low density 

LIDAR would most likely be ineffective since there would not be enough 

concentrated returns to reflect the structure of a deciduous tree.     

 Much is known about LIDAR and its capabilities, as extensive analysis 

using elevation is well documented.  Another aspect of LIDAR data that is less 

documented, but can be equally important, is intensity.  Intensity is defined as the 

ratio of the strength of reflected light to that of emitted light (Song et al. 2002).  

Similar to satellite imagery, LIDAR intensity is primarily influenced by the light 

reflectance of an object.  LIDAR elevation values can help predict several forest 

inventory attributes including stand height, crown width, and volume.   

Intensity values are expected to show characteristics of forest composition 

and structure.  This could include species type, moisture content, leaf display, 

arrangement, and density (Langford 2006).  LIDAR intensity values also have the 

unique ability of measuring only the light reflectance from a forest canopy.  

Therefore, intensity can be separated by return number to eliminate understory 

and ground surface features that are often associated with error when trying to 

classify canopy features (Donoghue et al. 2007).  This is a feature that cannot be 

duplicated with airborne or satellite optical sensors, since they lack the ability to 

separate these influences when trying to delineate species using near infrared 

reflectance (Ripple 1986).  In addition to forestry applications, intensity has be 

proven effective in road delineation in urban areas (Yu et al. 2002), as well as 
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glacial surface classification (Lutz et al. 2003).  However, LIDAR intensity data 

tends to incorporate noise and can have low separability depending on the 

wavelength of the laser used.  The variability of intensity values creates fine 

scale speckling in the imagery, which can make interpretation difficult (Langford 

2006).  The main source of noise is due to the angle of reflection.  Some 

materials exhibit different intensity values depending on the angle at which they 

are reflected.  Using a kriging interpolation, as opposed to an IDW, will help 

remove noise and smooth the image (Song et al. 2002).   

 The measurement of forest biomass gives an indication of carbon 

sequestration in trees and also provides an estimate of material that could be a 

potential source of renewable energy (Popescu 2007).  Biomass measurements 

cannot be directly derived from LIDAR data, but can be estimated from other 

information gathered using LIDAR.  Individual tree measurements such as tree 

height and crown diameter can be obtained from LIDAR data and can be placed 

into algorithms to estimate other forest features including above ground biomass 

and diameter at breast height (dbh).   

Popescu (2007) used individual tree height and crown width 

measurements, calculated in Treevaw, to estimate diameter at breast height 

(dbh) and above ground biomass.  Results showed that LIDAR data can be used 

to accurately estimate individual tree parameters like dbh, which is the most 

reliable variable for estimating above ground biomass. Biomass was estimated 
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from previously created equations (Jenkins et al. 2003) developed for individual 

trees in forests in the U.S. 

The backbone of the LIDAR analysis for this project was performed using 

the program called Treevaw (Kini, Popescu 2004).  Treevaw is a LIDAR 

processing software application created by Dr. Sorin Popescu, that supports 

individual tree location, canopy height, and crown width measurements.  

Treevaw uses an interpolated surface of the forest canopy, referred to as a 

canopy height model (CHM), and variable windows, to accomplish this task.  

Variable windows refer to a circular buffer that is applied around a local 

maximum (LM), based off of a specified algorithm.  A LM is the highest point in a 

particular area within the CHM.  The algorithms were calculated from stand 

composition equations (Kini, Popescu 2004):   

Deciduous:  Crown width (m) = 3.09632 + 0.00895 H2  (1) 

Pines:  Crown width (m) = 3.75105 – 0.17919 H + 0.01241 H2    (2) 

Combined:  Crown width (m) = 2.51503 + 0.00901 H2    (3) 

 where H represents of the height of the LM.  The algorithm applied is determined 

by the user.  In essence, the taller the tree, the greater its crown width.  

Deciduous crowns are assumed to be larger than those of coniferous trees and 

mixed stands are a compromise between the two.  Treevaw applies a variable 

window around each LM and then scans each cell within the window to 

determine total tree height.  If the LM is the highest cell within the window, it is 

flagged as a tree top.  If another cell is found to have a greater height value 
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within the window, the original LM is eliminated.  This process continues 

throughout the entire CHM until all possible locations have been identified.   

Treevaw’s procedure for calculating crown width is a slightly more 

complicated.  Once all tree locations and heights have been identified their crown 

widths can be measured.  A 3x3 median filter is applied to the CHM to eliminate 

some of the noise associated with the image.  This filter serves a dual purpose: it 

suppresses noise while maintaining original cell values and acts as an edge 

preserving filter.  Therefore, it is better suited to delineate adjacent tree crowns.  

At each tree location two perpendicular profiles of the CHM are extracted on the 

center of the tree top.  A fourth degree polynomial is fit along each profile which 

aids in finding critical points of the fitted function around tree tops.  Crown width 

is calculated along each profile and is eventually determined by taking the 

average of the two profiles (Kini, Popescu 2004).  Models for location of 

individual trees and calculation of height and crown width are shown in Appendix 

A.   

Regression analysis by Popescu (2007) revealed that Treevaw less 

accurately estimated the average crown width versus the average tree height.  In 

high density stands canopies tend to overlap.  Therefore, crown width cannot 

always be calculated for trees with overlapping canopies.  The algorithm used by 

Treevaw seems appropriate to measure crown width for dominant and co-

dominant trees with individualized canopies within the CHM (Kini, Popescu 

2004).    
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Research Objectives 

  The overall objective of this project was to evaluate the effectiveness of 

low density, small footprint LIDAR, and compare it to field measurements 

collected in a forest inventory.  Tree height, dbh, and above ground biomass 

values derived from LIDAR were compared with values obtained through forest 

inventory.  Estimation accuracy will be assessed to determine the ability of 

LIDAR in predicting forest ground measurements.  In addition, an overall cost 

analysis estimation will be presented comparing the two sampling procedures.   It 

will be determined if there is a great enough economic impact and estimation 

accuracy to begin moving away from field work and more towards a GIS based 

analysis approach.  Also, further recommendations will be made that could 

potentially result in improved accuracy.
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CHAPTER TWO 

MATERIALS AND METHODS 

 

Project Study Area 

The study area chosen for this study was the Clemson University 

Experimental Forest, located in and around the city of Clemson, South Carolina.  

The experimental forest is nearly 18,000 acres in size, with 11,000 acres in the 

south forest and 7,000 in the north forest.  Although centrally located in Pickens 

County, the forest spreads to the surrounding counties of Anderson and Oconee 

(Figure 1).  It is one of the largest un-fragmented plots of Piedmont land 

remaining in South Carolina (CEF 2008).  Its location at the base of the Blue 

Ridge Mountains provides a generally mild climate with four distinct seasons.  

Summers tend to be very warm with temperatures ranging from 80 to 90 degrees 

Fahrenheit and winters are cold with temperatures often reaching freezing.  

Annual rainfall averages approximately 50 inches.  There are typically 226 days 

of sun (IDcide 2008).  The topography of this area is similar to that of the rest of 

the upper piedmont of South Carolina: a landscape characterized primarily by 

gently rolling hills with low to medium slopes, although sections of the north 

forest have steep ridges with greater slopes.  Elevation within the forest ranges 

from 650 feet to just over 1,000 feet above sea level.   

 The Clemson University Experimental Forest is divided into 15 divisions, 

which are sub-divided by compartment and then broken down to stand level.  In 
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total, the forest has more than 2,000 stands.  The data for our study area was 

limited to Oconee County, with some overlap into Pickens and Anderson 

Counties.  Particular attention was paid to stands that are natural pine or planted 

pine.  These stands were more recognizable because of the leaf-off conditions of 

the aerial photos and LIDAR data. 

Sampling Procedures 

Grid networks of points were generated using ArcGIS 9.2 (ESRI) software 

which provided field sampling locations throughout the school forest.  Each point 

was approximately 85 meters in distance from each of its surrounding points and 

incorporated over one hundred randomly selected stands (Figure 2).  The 

sampling process involved navigating to each plot location using a Trimble Geo 

XT GPS unit and recording a variety of data including:  plot number, cover type, 

topography, regeneration growth, tree species, dbh, merchantable height, and 

total height.   

Using the GPS unit, the plot center was determined by navigating as close 

as possible to the pre-selected point target.  Once the plot center had been 

determined sampling could begin.  The first step was determining cover type and 

topography.  Visually assessing the terrain for species composition and slope 

allowed for the selection of cover types and topography on the sampling 

collection sheet (Appendix B).   

Next, the amount of regeneration growth was determined.  Beginning from 

the plot center and working outward in a 4 foot radius, the amount of pine, oak, 
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yellow poplar, and other species regeneration growth was recorded.  The next 

step was to determine which trees would be included in the sample plot.  Since 

this was a variable radius plot, a 10-factor wedge prism was used to determine 

which trees were “in” and which were “out.”  A wedge prism is a small piece of 

glass that has been ground at a particular angle to refract light and create an 

optical illusion.  The 10-factor, most commonly used in eastern forests, refers to 

the amount of basal area the prism represents.  This means that a tree that is 

tallied is approximately equal to 10 square feet of basal area.  The optical illusion 

the wedge prism creates appears to offset a portion of a tree’s trunk.  If the offset 

portion is connected to the trunk, the tree is countable or is “in.”  If the offset 

portion is completely separated from the trunk, it is “out” or not countable 

(FOREST 2008).  Trees that are border-line require extra steps to determine their 

status.  A Haglöf DME 201 Cruiser (LandMark Systems) measuring instrument 

placed at the plot center allowed dbh to be calculated digitally.  This reading was 

compared with an actual measurement to determine the tree’s status.  If the 

measured dbh is greater than the digital reading, the tree can be counted.  If it is 

less, it cannot.   

Once all trees in the plot were determined and marked, they were 

measured.  Beginning by facing north and working clockwise, each tree is 

numbered and identified by species and measured for dbh, merchantable height, 

and total height.  Diameter at breast height was obtained using a measuring 

tape.  Both height measurements were calculated using a clinometer.  
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Laboratory Analysis 

LIDAR data from Oconee County, South Carolina provided the basis for 

the laboratory analysis.  The county was flown by Kucera International Inc. on 

April 17th and 18th of 2005.  A Leica ALS50 Phase I+ laser altimeter attached to a 

Piper Navajo Chieftan aircraft was used for data collection.  The aircraft 

maintained a flight speed of 140 knots and its altitude varied between 9,900 and 

10,200 feet.  The sensor employed a field of view of 55 degrees, a scan rate of 

17 Hz, and a pulse rate of 36 KHz (Kucera International, Inc.).  Average raw post 

spacing was approximately 3 meters, but sometimes slightly less.  Vertical 

accuracy met National Map Accuracy Standards of 4 foot contour requirements, 

which was Oconee County’s intended purpose for the data.  However, a point 

density this low is generally less than optimal for forest analysis.   

The raw data was obtained in LAS file format and was classified before 

analysis.  Using the program LASEdit, developed by Cloud Peak Software (Fugro 

Horizons, Inc.), the raw data was classified by returns.  These return 

classifications separated the raw data into sets of ground and non-ground data.  

The newly classified data was exported to an ESRI shapefile format for further 

analysis in ArcGIS 9.2 (ESRI).  The new shapefiles were in the NAD 1983 

StatePlane South Carolina (feet) coordinate system.  Steps further along in the 

analysis required the data be in meters, so each shapefile was re-projected to 

NAD 1983 UTM 17N.   
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Varying interpolation methods allow a surface to be created from a set of 

points.  In the case of the LIDAR data, it is the ability to generate high resolution 

digital elevation models (DEM) and digital surface models (DSM).  The inverse 

distance weighted (IDW) interpolation was chosen for this analysis, but there are 

other interpolation methods for creating a surface.  Spline and Kriging tools can 

also be used to accomplish the same task with slightly different results.  Spline 

estimates values, while minimizing surface curvature.  It produces a smooth 

surface that passes directly through the input points.  Sometimes referred to as 

rubber sheeting, the Spline interpolation is useful in predicting peaks and valleys 

and best represents smoothly varying surfaces, such as temperature (Childs 

2004).   

Inverse distance weighted (IDW) determines cell values using a linear-

weighted approach.  Unmeasured areas are assigned values based off the 

measured points that surround that area.  The weighting that is assigned is a 

function of distance: whereas the further a point is from an unmeasured cell, the 

less input it has on the output value (Childs 2004).  Kriging is a set of linear 

regression routines which minimize estimation variance from a predefined 

covariance model (Song et al. 2002).  Kriging is similar to IDW in the fact that it 

uses measured values to create a prediction for unmeasured areas.  The main 

difference is the Kriging tool’s use of semivariograms, which can be described as 

the statistical relationship among the measured points.  Instead of using only the 

surrounding points to predict unmeasured areas, it incorporates a network of 
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points to create an accurate detailed surface (McCoy, Johnston 2001).  However, 

the added intricacies in this procedure can cause an increase in processing 

times, especially when dealing with large numbers of points.  Results by 

Anderson et al. (2005) indicated that simple interpolation techniques like IDW 

maintained accuracy for elevation predictions and were sufficient for interpolating 

irregularly spaced LIDAR datasets.   

A model was created using ArcGIS ModelBuilder to perform the IDW 

interpolations for the point shapefiles.  For each input feature, the Z value field 

was set to the elevation column and the output cell size was specified as 0.3048 

meters (1 foot).  The model was run with both ground and non-ground LIDAR 

shapefiles and produced high resolution DEM and DSM for the study area 

portion of the Clemson Experimental Forest.   

At this point, the newly created rasters contained elevation values that 

represented height above sea level.  By utilizing the raster calculator under the 

spatial analyst toolbar, the ground values could be subtracted from the non-

ground values yielding a new raster containing heights above the earth’s surface.  

Referred to as CHM, these rasters have the ability to differentiate features within 

a forest such as stand type, cuttings, disturbance, and forest gaps.  After each 

CHM was created, it was converted back to points by using the raster to point 

tool in ArcToolbox.  This procedure assigned a point to each cell center 

accompanied by a height value.  The dense collection of points generated would 

have been too great to process together, so they were separated by forest 
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stands.  Stand boundary shapefiles for the randomly selected field sampling 

stands were used to select plots that were located within each stand.  Using the 

“select by location” option under the selection dropdown menu, the criteria was 

set to select points that “are completely within” the selected stand boundary.  

This process highlighted the proper points to be exported to new shapefiles for 

each selected forest stand.  Using LASEdit, the new point shapefiles were 

imported back into LAS files to be used in Environment for Visualizing Images 

(ENVI).   

ENVI is an image analysis software product created by ITT Visual 

Information Solutions and is required to create an input that can be used in 

Treevaw; the next step in this process.  The newly created LAS files were 

converted to ENVI format using specified parameters.  The output format was an 

ENVI raster file with a model type that included the full feature.  The output image 

was created based on elevation values using a linear interpolation.  Each pixel 

was set to a size of 0.3048 meters and used a floating point output data type.  

The resulting output yields a CHM with two files, a flat binary file which contains 

the image itself and a header text file which contains the image’s metadata.   

Treevaw is a LIDAR processing software application that uses variable 

windows to locate individual trees and measure their heights and crown widths 

(Kini, Popescu 2004).    It is dependent on ENVI raster images as input files and 

does not support any other file type.  The resulting output produced by Treevaw 

is a numbered text list of X and Y coordinates (height and crown width 
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measurements) for each tree.  In order to display these locations visually, each 

text file was to be converted to a dbf file using Microsoft Excel.  Column cells 

were formatted according to type (number with two decimal places) and were 

saved to a DBF 4 table (dBASE IV).  The newly created dbf files were then 

added into ArcMap and displayed using the “display X Y data” option.  This 

provided point shapefiles that showed tree locations accompanied by height and 

crown with measurements in the attribute table.  Some stands contained outlying 

points that extended past stand boundaries.  Using the editor tool these points 

were selected and removed from all affected shapefiles.   

 Each field inventory site utilized a variable radius plot as a way of 

characterizing and quantifying trees in the forest.  This type of inventory, often 

associated with timber cruising, is effective, but yields no standard or uniform plot 

size.  However, for the purposes of statistical analysis, a plot radius was 

determined for each site.  Radius was determined by averaging the dbh for all 

trees within the plot and multiplying that number by 33.  Dividing by 12 yields plot 

radius in feet, since dbh is measured in inches.  A 10-factor wedge prism has a 

1:33 ratio.  Therefore, any tree located 33 times farther than their diameter 

cannot be tallied in a variable radius plot.  This concept was used as the basis for 

creating plot buffers.  Using the buffer tool in ArcGIS a unique radius was created 

for each plot based on its average dbh.  Treevaw generated trees that fell within 

each buffer.  These trees were selected and exported as a basis for comparison 

to the field measured plots (Figure 3).   
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Datasets were created using Microsoft Excel for both forest field inventory 

and Treevaw derived inventory.  Diameter at breast height cannot be directly 

derived from LIDAR, so values were only present in the field inventory 

measurements.  Diameter at breast height was estimated from the Treevaw data 

using an equation created by Popescu (2007):   

dbh = -0.16 + CD + 1.22H              (4) 

where dbh is calculated in centimeters (cm); CD represents crown diameter and 

H represents the LIDAR derived height.  Once dbh was calculated, above ground 

biomass could be estimated, because dbh is the most reliable variable for 

estimating biomass (Popescu 2007).  The equation used for this calculation 

came from Jenkins et al. (2003):   

BM = Exp (β0 + β1 ln dbh)    (5) 

 where BM is the total aboveground biomass in kilometers (km), dbh is again in 

cm, exp is the exponential function, ln is the log base e, and β0 and β1 (Table 1) 

are parameters for tree species groups (Jenkins et al. 2003).  Each of these 

spreadsheets were imported into SAS 9.1 (SAS Institute, Inc.) and was used to 

compare different forest features.  Total tree height, dbh, and above ground 

biomass were averaged for each plot in both datasets.  Correlation and linear 

regression analyses were conducted to analyze mean tree height, dbh, and 

above ground biomass for the inventory and Treevaw derived plots.  Paired t-

tests were used to test for differences in the means of measurements using the 

two techniques.  The data was then evaluated by stand cover type to determine 
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how leaf-off conditions may have affected the analysis.  All hypothesis tests were 

performed using a significance level of 0.05. 
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CHAPTER THREE 

RESULTS AND DISCUSSION 

 

Trees Identified per Plot 

The greatest weakness encountered using low density LIDAR was found 

to be its inability to accurately and consistently identify the correct number of 

trees within a sample plot.  Looking at an average of the entire sample (Table 2), 

we find that the number of forest inventory trees and LIDAR derived trees share 

similar means and total trees identified.  However, looking at the same values 

separated by cover type shows the error associated with tree identification.  

Figure 4 shows the relationship between inventory measured trees and LIDAR 

derived trees.  All cover types had a low or negative correlation, with p-values 

greater than 0.05.   

Data was collected for 269 forest inventory plots, but only 259 LIDAR 

derived plots because Treevaw failed to identify trees in 10 of the sample plots.  

All unidentified plots shared three common themes; a small plot radius, low 

average field tree height, and dbh measurements.  Plot radius ranged from a 

high of 4.7 m down to a low of 2.5 m in the smallest plots.  In some cases, this 

was smaller than the average posting density of the LIDAR.  A small plot radius 

combined with low density LIDAR only produced a few points per plot.  When 

interpolated, there was not enough point coverage to accurately identify a 

canopy.  Tree heights and dbh also had an effect on identification.  The highest 
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mean height for the 10 plots was 5.6 m and the largest mean dbh was 14.4 cm.  

The small stature of trees in these plots had a greater chance of being missed 

because of their size (in Appendix C). 

Tree Heights 

 Total tree heights are measurements that can be made directly from 

LIDAR data (Dubayah, Drake 2000).  Although low density LIDAR struggled in 

locating individual trees, it proved to have good vertical accuracy in estimating 

tree heights.  Figure 5 investigates the relationship between mean inventory 

measured tree height per plot and mean LIDAR derived tree height per plot.   

Mean tree heights and standard deviation for all plots (Table 3) between 

inventory and LIDAR data were similar.  LIDAR derived mean height was slightly 

higher due to the overestimation of hardwood species.  The two height 

measurements had a moderate correlation coefficient, root mean squared error 

(RMSE), and R2 (Table 4).  It could be possible to estimate inventory height 

measurements from LIDAR if some of the outlying data were removed.   

Diameter at Breast Height 

 Diameter at breast height is the most common tree measurement made by 

foresters.  Although it cannot be directly derived from LIDAR, it correlates well 

with LIDAR derived measurements (Popescu 2007).  Diameter at breast height 

was calculated using the heights and crown widths generated by Treevaw.  

Means and standard deviations (Table 3) were again similar over the entire 

sample.  Diameter at breast height comparisons showed a moderate correlation 
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coefficient, RMSE, and R2 (Table 4).  Comparisons in the data can be seen in 

figure 6.  Much like estimating tree heights, dbh could possibly be estimated by 

the elimination of outlying data.     

Above Ground Biomass 

Above ground biomass is a forest feature that is not directly identifiable 

from LIDAR.  Equations put in place by Jenkins et al. (2003) allow biomass to be 

estimated for different stand types in both inventories.  Biomass was not actually 

measured in the field.  Both inventory and LIDAR measurements were estimated 

from dbh.  Above ground biomass means and standard deviations (Table 3) were 

nearly identical among both sampling procedures.  A strong correlation 

coefficient and low RMSE (Table 4) make LIDAR derived biomass a good 

indicator of forest ground biomass.  Figure 7 shows the strong correlation 

between inventory measured and LIDAR derived above ground biomass.    

Variation in Stand Types 

 The LIDAR data for this project was collected in mid-April of 2005; when 

deciduous trees are just starting to bloom, but have not fully developed their 

leaves.  This causes many pulses to pass through the canopy and reflect off of 

lower limbs or the ground resulting in incorrect heights or missing the tree 

completely.  Data was grouped into the five most common forest cover types in 

the Clemson Experimental Forest (cove hardwood, natural pine, pine-hardwood, 

pine plantation, and upland hardwood) to determine the affects of leaf-off 

analysis between groups.  The lack of fully emergent leaves in hardwood species 
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creates a sparse area for LIDAR pulses to reflect off of.  For this reason it can be 

assumed that there could be more error associated with LIDAR data from 

hardwood and mixed stands.  The best results were achieved in the pine 

plantation and pine-hardwood stands, with the other groups producing moderate 

results.     

 Cove hardwood stands represent the majority of hardwood stands on the 

Clemson Experimental Forest.  They are dominated by various species of oak 

(Quercus spp.), hickory (Carya spp.), and yellow poplar (Liriodendron tulipifera).  

Nineteen cove hardwood plots were analyzed by comparing average tree height, 

dbh, and above ground biomass.  Mean height plot values varied between 

inventory and LIDAR derived plots for cove hardwoods.  However, dbh and 

biomass values were very similar (Table 5).  The overestimation of hardwood 

heights has been documented by Brandtberg et al. (2003), however with differing 

mean heights and similar dbh it could be assumed that the equation used to 

calculate dbh (Popescu 2007) slightly underestimates dbh in hardwood species.   

Cove hardwood plots had the greatest height correlation of any other 

cover type, but had low dbh and biomass correlations (Table 6).  R2 height 

values were high enough to be able to estimate inventory height from LIDAR 

derived height.  Figure 8 shows the LIDAR derived height vs. the inventory 

measured height, which contains the prediction equation.  Figures 9 and 10 show 

comparisons for dbh and biomass respectively.  They were not useful in 

predicting forest ground measurements, however, due to their low R2.   
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 Natural pine stands are those that are allowed to grow and regenerate 

naturally after some type of disturbance.  The stands are composed primarily of 

Virginia pine (Pinus virginiana) and some shortleaf pine (Pinus echinata).  In 

some of the older natural pine stands, traces of hardwoods have begun to 

emerge.  Thirty-four inventory and LIDAR plots were compared in this category.  

This cover type produced the worst and most unexpected results of all cover 

types.  Mean height, dbh, and biomass comparisons (Table 5) were similar, with 

LIDAR derived dbh being slightly underestimated.  However, correlation 

coefficients and RMSE (Table 6) were among the worst in natural pine stands.  

R2 values for all variables were too low to accurately estimate forest inventory as 

shown in figures 11, 12, and 13.     

 Pine-hardwood stands are mixtures of several species of coniferous and 

deciduous trees.  These plots unexpectedly produced good results with the 

greatest consistency.  Table 5 show that means and standard deviations are 

similar in nature to cove hardwood plots.  Mean heights are slightly 

overestimated, mean dbh is slightly underestimated, and biomass values are 

similar.  Correlation values were good and nearly identical for all variables (Table 

6).  RMSE and R2 values are good enough to estimate forest ground 

measurements for tree height, dbh, and biomass in pine-hardwood stands.  

Figures 14, 15, and 16 show plot distributions and equations for estimating 

inventory measurements.         
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 Pine plantation stands are even-aged planted areas dominated primarily 

by loblolly pine (Pinus taeda) and some shortleaf pine (Pinus echinata).  These 

stands represent the majority on the Clemson Experimental Forest and achieved 

the greatest results.  Mean tree height, dbh, and biomass were compared for 20 

pine plantation plots.  Inventory measured mean height, dbh, and biomass were 

very similar to values derived through LIDAR (Table 5).  Pine plantation plots had 

the second highest height correlations behind cove hardwoods and had the 

highest dbh and biomass correlation coefficients (Table 6).  Low RMSE and good 

R2 values allow forest inventory measurements to be estimated using LIDAR 

derived data in pine plantation stands.    Figures 17, 18, and 19 show 

comparisons of tree heights, dbh, and biomass; as well as linear regression 

equations for predicting forest ground measurements.   

Upland hardwood stands are characterized by various hardwood species, 

including white oak (Quercus alba) and southern red oak (Quercus falcata), 

hickory (Carya spp.), and yellow poplar (Liriodendron tulipifera).  This cover type 

represented the majority of plots in the study site at 133 plots.  Upland hardwood 

plots showed moderate correlations for all measured forest features.  Table 5 

shows that upland hardwood plot means followed the same pattern as other 

hardwood stands.  Tree heights were overestimated, dbh was underestimated, 

and biomass means were similar.  Upland hardwood plots achieved moderate 

results (Table 6).  Low R2 values did not allow inventory to be estimated from the 
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upland hardwood plots.  A comparison of plot height, dbh, and biomass values 

are shown in figures 20, 21, and 22 respectively.   
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CHAPTER FOUR 

CONCLUSIONS 

 

The main objective of this research was to explore the feasibility of using 

low density, small footprint LIDAR for the purposes of estimating forest inventory 

measurements.  Results show that this type of LIDAR can be used to accurately 

estimate certain features of individual trees in particular forest stand types.  

Individual tree height and crown width measurements derived using Treevaw 

proved important in the estimation of dbh and biomass.   As expected, the best 

results were achieved in the pine plantation stands.  Their year round leaf-on 

conditions of even age, height, and spacing make them easily identifiable with 

this type of data. 

The overall cost of LIDAR analysis was low.  However, this assumes that 

the software needed to process the data is already available to the user and in 

situations where data can be acquired free of charge, like in this study.  

Therefore, it provides the advantage of analyzing an area quickly and cost 

effectively.  Traditional forest inventories can be expensive and time consuming.  

Inventory costs for this study were $23 per plot.  Overall, there were nearly 2,000 

sample plots to be measured, which totaled roughly $46,000 to collect the entire 

forest inventory.  In addition to cost, traditional forest inventory can also require 

several months to complete.  With the steadily increasing quality of LIDAR data it 

has the ability to be a cost effective alternative to traditional forest inventory.      
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The quality of results achieved are only going to be as good as the input 

data used for the analysis.  Although this study produced encouraging results, 

the accuracy was not high enough to estimate forest inventory in most cases.  An 

average posting density of 3 meters is satisfactory for DEM creation, but not ideal 

for estimating forest inventory.  Higher density LIDAR data with a posting space 

of 1 meter or less would be better suited for this task.  Higher density data would 

allow more pulses to be reflected from the canopy, creating a more accurate 

interpolated canopy surface.  It also allows analysis to be taken down to the 

individual tree level.      

In recent years, the increasing knowledge and advances in technology 

have allowed LIDAR to become a more integral part of forestry practices.  With 

an increase in LIDAR collection systems capabilities and a decrease in data 

acquisition costs, the potential for cost effective and accurate GIS based analysis 

is possible.  The results of this study demonstrate the usefulness of LIDAR, even 

at low densities, for forest inventory practices. 
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Table 1.  Parameters for estimating total aboveground biomass for hardwood and 
softwood species in the U.S. 

Species Group Β0 β1 

Mixed (Pine-Hardwood) -2.4800 2.4835 

Hardwood -2.0127 2.4342 

Pine -2.5356 2.4349 
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Table 2.  Forest inventory vs. LIDAR derived inventory:  Mean number of trees identified 
per plot, standard deviation, and summed total. 

 Inventory  n=269 LIDAR  n=259 

 Mean Std. Dev. Sum Mean Std. Dev. Sum 

Entire Sample   9.96 3.53 2679   9.73 5.94 2520 

Cove Hardwood 10.37 3.34 197   7.89 4.38 150 

Natural Pine   8.26 3.60 289 13.94 8.28 474 

Pine-Hardwood 10.22 3.62 562 12.32 6.04 653 

Pine Plantation 12.95 3.44 259 10.70 4.84 214 

Upland Hardwood   9.80 3.26 1372   7.74 4.42 1029 
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Table 3.  Forest inventory vs. LIDAR derived inventory:  Average plot means and standard 
deviations for the entire sample. 

 Inventory  n=269 LIDAR  n=259 

 Mean Std. Dev. Mean Std. Dev. 

Height (m) 18.64 4.67 21.91 5.16 

Dbh (cm) 32.73 9.43 31.94 7.99 

Biomass (kg)   4.34 1.17   4.44 1.18 
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Table 4.  Forest inventory vs. LIDAR derived inventory:  Correlation coefficients, RMSE, 
and R

2
 for the entire sample.  

 Correlation RMSE R2 

Height (m) 0.70 2.72 0.49 

Dbh (cm) 0.70 6.13 0.48 

Biomass (kg) 0.97 0.30 0.93 
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Table 5.  Forest inventory vs. LIDAR derived inventory:  Average plot means and standard 
deviations separated by cover type. 

  Inventory LIDAR  

  Mean Std. Dev. Mean Std. Dev. P-Value 

Height (m)   21.00* 3.66  25.77* 3.77 <0.0001 
dbh (cm) 38.41 5.99 37.82 5.30 0.69 

Cove Hardwood 
ni=19 
nl=19 Biomass (kg)   5.37 0.29   5.50 0.22 0.05 

Height (m) 15.49 4.44 15.79 3.64 0.91 
dbh (cm)   25.99* 8.37  22.17* 4.99 0.001 

Natural Pine 
ni=35 
nl=34 Biomass (kg)   2.79 0.31   2.76 0.21 0.21 

Height (m)  18.54* 4.79  21.58* 4.05 <0.0001 
dbh (cm)  33.01* 9.53  31.30* 6.19 0.004 

Pine-Hardwood 
ni=55 
nl=53 Biomass (kg)   3.34 0.39   3.42 0.22 0.18 

Height (m) 17.52 3.63 18.03 5.31 0.52 
dbh (cm) 24.69 7.42 25.47 7.86 0.31 

Pine Plantation 
ni=20 
nl=20 Biomass (kg)     2.80* 0.26    2.88* 0.27 0.03 

Height (m)  19.30* 4.60  23.64* 4.38 <0.0001 
dbh (cm) 34.68 8.83 34.82 6.80 0.05 

Upland Hardwood 
ni=140 
ni=133 Biomass (kg)    5.20* 0.54    5.36* 0.35 0.02 

ni indicates the number of plots in the sample forest inventory and nl represents the number of 
plots in the LIDAR derived inventory and * represents means that are significantly different from 
paired t-tests. 
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Table 6.  Forest inventory vs. LIDAR derived inventory:  Correlation coefficients, RMSE, 
and R

2
 by cover type. 

  Correlation RMSE R2 

Height (m) 0.79 2.29 0.63 

dbh (cm) 0.40 5.65 0.16 

Cove 

Hardwood 

Biomass (kg) 0.48 0.26 0.23 

Height (m) 0.64 3.06 0.41 

dbh (cm) 0.44 7.30 0.20 

Natural  

Pine 

Biomass (kg) 0.47 0.26 0.22 

Height (m) 0.71 2.63 0.50 

dbh (cm) 0.70 6.22 0.49 

Pine-

Hardwood 

Biomass (kg) 0.73 0.23 0.52 

Height (m) 0.76 2.41 0.58 

dbh (cm) 0.91 3.23 0.82 

Pine 

Plantation 

Biomass (kg) 0.85 0.14 0.72 

Height (m) 0.55 2.72 0.30 

dbh (cm) 0.55 5.88 0.30 

Upland 

Hardwood 

Biomass (kg) 0.53 0.31 0.28 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 

 

Trees per Plot Comparison: Entire Sample
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Figure 5 

 

Tree Height Comparison: Entire Sample
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Figure 6 

 

DBH Comparison: Entire Sample
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Figure 7 

 

Biomass Comparison: Entire Sample

1.00

2.00

3.00

4.00

5.00

6.00

7.00

2.00 3.00 4.00 5.00 6.00 7.00

LIDAR Biomass (kg)

In
v
e
n

to
ry

 B
io

m
a
s
s
 (

k
g

)

upland hardwood

pine plantation

pine-hardwood

natural pine

cove hardwood

y = 0.949x + 0.1738

R2 = 0.9346

 



 45 

Figure 8 

Tree Height Comparison: Cove Hardwood
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Figure 9 

DBH Comparison: Cove Hardwood
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Figure 10 

Biomass Comparison: Cove Hardwood
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Figure 11 

Tree Height Comparison: Natural Pine
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Figure 12 

DBH Comparison: Natural Pine
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Figure 13 

Biomass Comparison: Natural Pine
y = 0.6166x + 1.1174
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 = 0.2195

2.00

2.50

3.00

3.50

4.00

2.00 2.50 3.00 3.50

LIDAR Biomass (kg)

In
v
e
n

to
ry

 B
io

m
a
s
s
 (

k
g

)

 



 51 

Figure 14 

Tree Height Comparison: Pine-Hardwood
y = 0.6429x + 5.2638

R
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Figure 15 

DBH Comparison: Pine-Hardwood
y = 0.9752x + 3.3247

R
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Figure 16 

Biomass Comparison: Pine-Hardwood
y = 1.1248x - 0.4713

R
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Figure 17 

Tree Height Comparison: Pine Plantation
y = 0.5216x + 8.1151

R
2
 = 0.5818
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Figure 18 

DBH Comparison: Pine Plantation
y = 0.855x + 2.9165

R
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Figure 19 

Biomass Comparison: Pine Plantation
y = 0.8288x + 0.416

R
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Figure 20 

Tree Height Comparison: Upland Hardwood
y = 0.4088x + 10.4

R
2
 = 0.3039
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Figure 21 

DBH Comparison: Upland Hardwood
y = 0.5693x + 16.123

R
2
 = 0.3039
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Figure 22 

Biomass Comparison: Upland Hardwood
y = 0.538x + 2.4064

R
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 = 0.2816
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Appendix A 

TreeVaW Selection Process Model 

 

 

 

Process for location of individual trees and their total heights. 
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Process for determining crown width of located trees. 
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Appendix B 

Inventory Measurement Tally Sheet 

 

Plot #    Covertype Bottom      Cove      Old Field      Pine       Pine-Hdwd      Pine Plt.     Swamp     Upland-Hdwd 

           

Date    Lat    Topo: Bottom Cove Lower middle  

           

Cruiser    Long     Upper  Ridge   

           

Reg. Pine    Reg. Oak    Regen YP   Reg. Other    

           

Tree # Species dbh (1") Product Mht TotHgt % Defect Comments     
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Appendix C 

Measurement Comparisons for Each Plot 

 

  LIDAR     Inventory   

Plot # 
Trees per 

Plot 
Mean 

Height (m) 
Mean dbh 

(cm) 
Mean 

Biomass (kg) Cover Type 
Trees per 

Plot 
Mean 

Height (m) 
Mean dbh 

(cm) 
Mean 

Biomass (kg) 

90 19 20.60 30.21 5.18 Upland HW 8 24.12 36.20 5.33 

190 11 25.13 38.11 5.54 Upland HW 16 20.84 35.72 5.27 

191 8 22.65 33.15 5.30 Upland HW 13 16.86 34.58 5.13 

192 20 18.31 26.97 4.98 Upland HW 8 21.41 41.91 5.58 

193 13 23.10 33.24 5.33 Upland HW 9 20.52 36.12 5.41 

194 3 26.23 40.58 5.64 Upland HW 13 20.49 32.24 5.08 

195 16 20.77 31.17 5.22 Upland HW 8 21.45 36.83 5.45 

196 15 23.34 32.65 5.30 Upland HW 9 22.28 40.92 5.63 

197 12 22.29 31.01 5.20 Upland HW 10 24.32 35.31 5.39 

198 10 22.54 33.14 5.30 Upland HW 9 23.16 30.76 5.12 

199 9 25.19 36.70 5.48 Upland HW 10 22.80 33.78 5.24 

200 8 25.59 36.36 5.47 Upland HW 9 22.86 38.10 5.48 

 201 6 26.73 39.59 5.60 Upland HW 14 19.68 31.02 5.02 

202 11 24.68 36.01 5.45 Upland HW 13 22.70 32.43 5.16 

203 11 22.36 33.19 5.31 Upland HW 6 21.64 37.25 5.39 

204 7 22.49 32.81 5.28 Upland HW 11 18.29 29.33 5.04 

205 6 24.32 33.17 5.33 Upland HW 7 24.21 46.45 5.80 

206 6 24.01 35.48 5.42 Upland HW 9 23.20 34.15 5.35 

207 7 25.64 38.20 5.54 Upland HW 13 23.26 35.36 5.32 

208 11 21.96 32.08 5.25 Upland HW 10 22.95 36.58 5.36 

209 6 21.11 30.70 5.20 Upland HW 14 14.76 28.67 4.81 

210 8 25.40 37.25 5.51 Upland HW 14 20.51 30.30 4.99 

211 8 20.34 29.74 5.13 Upland HW 10 19.08 29.46 5.07 

212 4 25.00 36.82 5.49 Upland HW 12 20.02 29.85 4.90 
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  LIDAR     Inventory   

Plot # 
Trees per 

Plot 
Mean 

Height (m) 
Mean dbh 

(cm) 
Mean 

Biomass (kg) Cover Type 
Trees per 

Plot 
Mean 

Height (m) 
Mean dbh 

(cm)  
Mean 

Biomass (kg) 

213 8 27.93 42.32 5.70 Upland HW 11 21.61 39.72 5.38 

214 10 18.63 27.14 5.02 Upland HW 11 17.07 27.02 4.87 

215 7 27.41 40.06 5.62 Upland HW 10 19.23 36.07 5.33 

216 10 25.73 38.73 5.55 Upland HW 10 24.75 44.70 5.77 

217 6 27.91 42.57 5.70 Upland HW 11 20.98 39.72 5.43 

218 10 17.91 25.64 4.88 Upland HW 3 16.56 40.64 5.53 

219 3 28.43 43.87 5.76 Upland HW 12 20.14 39.58 5.44 

220 4 28.05 42.60 5.72 Upland HW 16 20.08 40.96 5.48 

221 8 22.16 33.43 5.31 Upland HW 2 21.64 45.72 5.77 

222 4 24.47 35.60 5.44 Upland HW 16 22.27 35.08 5.32 

223 6 31.54 47.00 5.87 Upland HW 8 20.12 39.05 5.38 

224 4 31.70 48.60 5.92 Upland HW 11 21.89 46.87 5.75 

225 3 27.63 41.17 5.66 Upland HW 12 22.61 32.17 5.15 

226 4 28.28 42.99 5.73 Upland HW 8 23.01 42.55 5.69 

227 9 27.00 39.77 5.60 Upland HW 7 23.12 48.26 5.89 

228 8 27.56 38.51 5.56 Upland HW 8 21.76 46.36 5.82 

229 1 33.68 51.75 6.02 Upland HW 11 23.08 39.49 5.42 

230 4 23.59 34.04 5.38 Upland HW 15 17.43 26.25 4.84 

231 5 26.67 39.75 5.61 Upland HW 16 20.75 40.80 5.59 

232 4 27.89 39.47 5.59 Upland HW 17 21.71 36.46 5.34 

233 3 24.41 36.42 5.48 Upland HW 6 20.47 33.44 5.26 

241 9 23.03 33.49 5.33 Upland HW 13 19.11 32.43 4.96 

242 11 23.62 33.03 5.32 Upland HW 11 21.61 39.49 5.48 

243 6 23.03 32.91 5.31 Upland HW 12 21.23 33.66 5.19 

244 9 26.44 38.40 5.55 Upland HW 11 20.31 34.64 5.09 

245 14 23.25 34.70 5.37 Upland HW 10 22.80 42.93 5.56 

246 7 22.33 32.31 5.27 Upland HW 11 22.03 38.10 5.45 

247 17 23.26 33.78 5.35 Upland HW 9 21.71 39.23 5.51 

248 18 23.71 34.69 5.40 Upland HW 13 22.72 44.74 5.69 

249 9 26.32 36.83 5.47 Upland HW 10 25.30 41.15 5.61 

250 8 21.46 32.24 5.28 Upland HW 14 17.68 30.12 5.03 
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  LIDAR     Inventory   

Plot # 
Trees per 

Plot 
Mean 

Height (m) 
Mean dbh 

(cm) 
Mean 

Biomass (kg) Cover Type 
Trees per 

Plot 
Mean 

Height (m) 
Mean dbh 

(cm) 
Mean 

Biomass (kg) 

251 16 20.39 29.83 5.16 Upland HW 11 18.32 33.94 5.19 

252 9 23.77 34.07 5.36 Upland HW 10 24.66 37.85 5.44 

253 6 18.33 25.97 4.95 Upland HW 12 16.41 24.34 4.71 

255 6 24.73 35.37 5.43 Upland HW 11 21.14 32.10 5.14 

256 13 21.73 32.15 5.27 Upland HW 5 24.87 48.26 5.85 

257 6 22.04 33.23 5.32 Upland HW 9 18.59 33.58 5.13 

258 5 23.36 34.98 5.41 Upland HW 11 19.23 31.63 5.17 

259 4 23.94 35.41 5.43 Upland HW 9 20.83 32.17 5.04 

260 6 26.64 39.16 5.58 Upland HW 6 24.94 40.64 5.62 

261 9 22.21 32.82 5.31 Upland HW 7 16.85 34.11 5.11 

262 7 21.85 32.35 5.29 Upland HW 8 22.59 38.10 5.50 

263 5 20.41 29.77 5.17 Upland HW 10 18.59 26.16 4.88 

264 4 20.04 29.02 5.13 Upland HW 9 22.62 28.79 5.08 

265 4 25.92 38.24 5.55 Upland HW 13 21.57 32.63 5.17 

266 2 21.01 30.57 5.21 Upland HW 9 20.25 28.22 5.01 

267 3 20.35 30.06 5.19 Upland HW 8 13.64 21.59 4.35 

268 2 21.31 32.01 5.28 Upland HW 9 17.03 27.09 4.81 

269 4 24.07 33.01 5.31 Upland HW 12 16.94 28.79 4.76 

270 5 17.95 26.52 4.94 Upland HW 9 18.12 30.20 5.08 

271 3 20.43 29.54 5.14 Upland HW 13 16.58 32.24 5.17 

272 1 19.48 28.63 5.11 Upland HW 8 14.33 25.08 4.64 

273 4 23.14 34.08 5.38 Upland HW 11 20.28 30.94 5.08 

274 7 20.90 30.74 5.20 Upland HW 6 21.69 37.68 5.35 

275 1 25.55 37.57 5.53 Upland HW 7 20.77 32.66 5.21 

278 5 20.39 29.43 5.15 Upland HW 9 14.29 31.04 5.00 

280 7 28.63 44.57 5.78 Upland HW 16 19.53 37.31 5.32 

281 3 34.14 51.50 6.01 Upland HW 8 20.65 41.59 5.57 

282 5 28.73 44.43 5.77 Upland HW 13 22.48 40.44 5.48 

284 4 26.24 37.87 5.53 Upland HW 14 21.44 43.91 5.59 

285 7 31.38 45.92 5.81 Upland HW 9 20.12 48.82 5.63 

286 5 31.08 47.66 5.89 Upland HW 7 20.94 39.55 5.50 
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  LIDAR     Inventory   

Plot # 
Trees per 

Plot 
Mean 

Height (m) 
Mean dbh 

(cm) 
Mean 

Biomass (kg) Cover Type 
Trees per 

Plot 
Mean 

Height (m) 
Mean dbh 

(cm)   
Mean 

Biomass (kg) 

288 5 33.40 50.25 5.97 Upland HW 6 23.16 43.60 5.60 

289 6 22.97 33.32 5.34 Upland HW 8 18.75 35.88 5.37 

290 6 24.54 37.19 5.51 Upland HW 10 21.34 31.50 5.19 

291 2 27.17 41.05 5.65 Upland HW 7 20.73 39.55 5.53 

292 6 23.43 34.92 5.41 Upland HW 8 18.97 36.20 5.24 

293 6 26.04 40.05 5.61 Upland HW 15 21.42 36.58 5.36 

294 9 26.24 38.18 5.55 Upland HW 9 23.13 45.44 5.80 

295 5 29.18 44.24 5.77 Upland HW 13 19.65 39.86 5.46 

296 6 24.61 37.61 5.52 Upland HW 7 16.72 41.73 5.61 

297 5 22.77 33.69 5.35 Upland HW 14 12.95 38.83 5.41 

298 3 28.03 41.71 5.68 Upland HW 9 20.96 43.18 5.64 

299 5 26.36 40.28 5.62 Upland HW 9 19.44 36.41 5.39 

300 3 34.61 52.53 6.03 Upland HW 14 19.16 38.10 5.25 

301 3 25.29 37.40 5.52 Upland HW 7 17.07 30.84 5.16 

302 11 20.49 30.86 5.20 Upland HW 11 17.01 32.10 5.18 

303 5 23.37 34.32 5.38 Upland HW 10 14.87 24.64 4.53 

304 13 26.63 39.63 5.60 Upland HW 7 21.16 52.98 6.00 

307 1 18.81 27.21 5.04 Upland HW 2 13.56 43.18 5.60 

308 9 28.05 42.18 5.68 Upland HW 13 20.45 46.50 5.75 

371 4 20.32 29.40 5.15 Upland HW 13 15.17 18.95 4.15 

372 10 18.41 27.07 5.02 Upland HW 12 21.11 22.44 4.65 

382 24 27.06 40.04 5.60 Upland HW 8 29.26 60.33 6.21 

383 8 24.33 36.57 5.46 Upland HW 12 23.70 40.01 5.52 

384 10 20.65 30.76 5.18 Upland HW 16 21.68 38.58 5.39 

385 10 25.17 36.11 5.39 Upland HW 12 22.63 39.16 5.34 

386 6 29.10 40.85 5.65 Upland HW 12 22.78 45.09 5.68 

387 10 22.53 33.56 5.33 Upland HW 14 20.47 31.57 5.16 

396 13 19.41 28.88 5.06 Upland HW 11 14.30 37.64 5.38 

400 2 5.80 9.36 3.36 Upland HW 5 10.49 20.83 4.58 

402 1 8.97 13.38 3.95 Upland HW 7 7.14 13.79 3.82 

413 13 21.19 31.22 5.24 Upland HW 10 22.34 35.56 5.36 
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  LIDAR     Inventory   

Plot # 
Trees per 

Plot 
Mean 

Height (m) 
Mean dbh 

(cm) 
Mean 

Biomass (kg) Cover Type 
Trees per 

Plot 
Mean 

Height (m) 
Mean dbh 

(cm) 
Mean 

Biomass (kg) 

414 6 20.82 27.49 5.04 Upland HW 12 16.46 32.39 5.18 

415 14 21.12 31.23 5.23 Upland HW 7 19.99 39.91 5.46 

416 12 15.03 21.76 4.66 Upland HW 8 18.17 37.78 5.32 

417 10 21.54 31.06 5.20 Upland HW 10 18.59 35.81 5.31 

418 9 27.62 40.17 5.60 Upland HW 13 20.75 37.32 5.33 

419 15 19.14 27.37 5.02 Upland HW 7 19.77 35.56 5.42 

420 17 21.79 31.31 5.23 Upland HW 6 21.95 43.18 5.70 

421 9 17.82 25.73 4.90 Upland HW 14 17.22 28.30 4.98 

422 12 24.52 34.91 5.40 Upland HW 10 23.01 40.89 5.59 

423 15 19.15 27.63 5.04 Upland HW 5 15.67 33.53 5.19 

424 18 22.95 33.25 5.33 Upland HW 9 19.61 38.38 5.47 

425 9 21.01 31.23 5.23 Upland HW 7 21.47 36.65 5.40 

426 10 14.94 22.02 4.58 Upland HW 5 20.18 30.99 5.17 

427 8 22.39 33.47 5.34 Upland HW 11 20.14 35.33 5.36 

428 10 23.19 33.82 5.34 Upland HW 12 17.96 34.93 5.26 

429 3 10.96 16.56 4.15 Upland HW 5 9.51 16.76 4.20 

778 13 22.07 30.34 3.08 Pine Plant 15 20.38 28.11 2.93 

780 9 15.18 20.98 2.75 Pine Plant 20 12.97 17.15 2.47 

781 9 13.68 18.96 2.66 Pine Plant 17 12.25 17.48 2.56 

782 7 14.17 20.13 2.70 Pine Plant 7 13.59 20.68 2.69 

783 2 13.78 19.54 2.69 Pine Plant 13 13.97 16.22 2.46 

784 12 15.47 21.81 2.78 Pine Plant 10 17.68 23.37 2.84 

785 12 14.79 20.48 2.73 Pine Plant 10 17.43 21.84 2.77 

786 11 13.92 19.38 2.68 Pine Plant 15 17.19 19.81 2.67 

787 15 14.50 20.04 2.70 Pine Plant 14 18.09 23.40 2.83 

788 12 14.53 20.44 2.72 Pine Plant 13 17.61 19.54 2.63 

789 4 13.14 18.65 2.64 Pine Plant 18 14.36 18.77 2.60 

790 6 11.55 16.01 2.50 Pine Plant 9 15.31 19.19 2.63 

791 4 12.89 17.47 2.56 Pine Plant 10 14.60 17.02 2.45 

972 19 27.79 39.75 3.32 Pine Plant 11 25.69 40.64 3.29 

973 12 25.53 36.70 3.25 Pine Plant 16 19.41 31.27 3.04 
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  LIDAR     Inventory   

Plot # 
Trees per 

Plot 
Mean 

Height (m) 
Mean dbh 

(cm) 
Mean 

Biomass (kg) Cover Type 
Trees per 

Plot 
Mean 

Height (m) 
Mean dbh 

(cm) 
Mean 

Biomass (kg) 

974 9 25.77 37.60 3.26 Pine Plant 15 17.68 30.14 2.97 

975 19 23.12 32.76 3.14 Pine Plant 9 22.83 38.66 3.29 

977 18 23.37 33.73 3.18 Pine Plant 10 24.14 35.05 3.21 

978 13 22.93 32.84 3.15 Pine Plant 12 17.78 28.79 2.89 

979 8 22.44 31.82 3.12 Pine Plant 15 17.45 26.75 2.85 

1141 11 24.59 35.07 3.56 Pine HW 15 20.71 33.70 3.33 

1142 15 21.85 31.85 3.46 Pine HW 12 19.81 35.77 3.52 

1143 17 22.00 32.51 3.49 Pine HW 14 19.66 32.66 3.44 

1144 13 25.39 36.14 3.59 Pine HW 11 22.22 35.79 3.51 

1145 7 15.28 21.05 3.05 Pine HW 12 15.34 20.32 2.90 

1146 8 22.56 32.29 3.48 Pine HW 16 18.54 27.62 3.17 

1147 5 20.20 29.82 3.39 Pine HW 15 18.63 26.59 3.17 

1148 8 20.87 29.34 3.39 Pine HW 11 17.40 28.17 3.26 

1149 9 23.91 33.94 3.51 Pine HW 10 18.96 31.24 3.35 

1150 7 25.16 34.41 3.53 Pine HW 13 22.18 33.22 3.42 

1151 16 22.14 31.78 3.46 Pine HW 9 23.03 40.08 3.59 

1152 11 16.02 23.03 3.12 Pine HW 9 16.02 23.71 3.13 

1252 20 26.48 39.35 3.66 Pine HW 12 26.77 53.98 3.95 

1253 9 14.81 20.60 3.02 Pine HW 7 18.64 21.77 2.90 

1254 15 23.94 34.97 3.55 Pine HW 12 24.61 37.89 3.58 

1255 14 18.48 26.17 3.25 Pine HW 11 20.28 27.02 3.23 

1256 10 19.01 27.27 3.27 Pine HW 11 20.20 29.79 3.34 

1257 16 20.55 29.44 3.38 Pine HW 11 17.57 34.17 3.36 

1258 7 22.29 33.30 3.51 Pine HW 11 19.01 32.79 3.42 

1259 14 21.38 31.35 3.45 Pine HW 8 21.41 44.13 3.78 

1260 17 23.86 33.91 3.52 Pine HW 10 23.68 42.67 3.68 

1261 3 13.42 19.11 2.96 Pine HW 17 10.26 15.24 2.68 

1262 10 15.33 21.76 3.08 Pine HW 16 14.78 24.29 3.08 

1263 11 18.14 26.16 3.26 Pine HW 13 17.09 28.92 3.09 

1264 12 17.49 25.27 3.23 Pine HW 8 15.58 27.62 3.19 

1265 10 23.07 33.74 3.53 Pine HW 14 22.08 31.02 3.35 
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  LIDAR     Inventory   

Plot # 
Trees per 

Plot 
Mean 

Height (m) 
Mean dbh 

(cm) 
Mean 

Biomass (kg) Cover Type 
Trees per 

Plot 
Mean 

Height (m) 
Mean dbh 

(cm) 
Mean 

Biomass (kg) 

1266 23 20.98 30.22 3.39 Pine HW 9 19.95 40.92 3.58 

1267 13 22.90 32.80 3.50 Pine HW 16 16.23 31.91 3.22 

1268 8 20.63 29.75 3.40 Pine HW 12 18.16 33.66 3.39 

1272 9 26.86 39.06 3.65 Pine HW 11 19.01 41.33 3.58 

1273 22 24.06 35.38 3.57 Pine HW 11 17.98 39.72 3.64 

1274 17 19.62 28.31 3.29 Pine HW 4 21.18 45.72 3.82 

1275 9 22.43 32.58 3.48 Pine HW 9 19.37 30.20 3.36 

1276 12 17.19 24.54 3.19 Pine HW 10 16.83 28.96 3.10 

1277 10 27.30 40.25 3.70 Pine HW 16 17.70 33.66 3.42 

1278 6 26.10 38.96 3.67 Pine HW 11 18.90 35.79 3.47 

1279 5 29.39 45.11 3.81 Pine HW 14 21.29 38.64 3.60 

1281 7 22.89 34.24 3.54 Pine HW 9 20.15 34.43 3.21 

1282 25 23.47 34.17 3.53 Pine HW 9 21.78 47.41 3.81 

1283 1 22.18 32.70 3.50 Pine HW 10 16.83 25.15 3.07 

1285 20 17.63 25.15 3.22 Pine HW 3 18.69 36.41 3.49 

1286 31 21.15 30.75 3.41 Pine HW 8 24.00 47.63 3.86 

1287 5 13.36 19.22 2.95 Pine HW 4 13.18 27.94 3.22 

1288 18 24.19 35.07 3.56 Pine HW 7 23.03 40.64 3.70 

1289 2 9.76 14.56 2.69 Pine HW 2 4.72 6.35 1.83 

1291 13 27.08 40.71 3.70 Pine HW 10 18.59 39.88 3.54 

1292 18 21.96 31.28 3.45 Pine HW 8 16.76 30.48 3.18 

1293 16 21.28 30.85 3.42 Pine HW 10 16.03 33.78 3.29 

1294 13 21.78 31.03 3.44 Pine HW 11 18.76 33.71 3.42 

1295 10 25.88 38.50 3.65 Pine HW 8 23.13 43.18 3.70 

1296 17 23.99 35.06 3.55 Pine HW 8 23.16 41.91 3.68 

1297 8 25.73 38.47 3.65 Pine HW 13 20.30 35.17 3.35 

1298 20 25.93 36.62 3.60 Pine HW 5 24.20 49.28 3.88 

1509 35 12.58 17.89 2.54 Nat Pine 1 23.47 50.80 3.55 

1510 12 12.56 17.99 2.54 Nat Pine 4 13.41 30.48 2.74 

1511 2 8.18 12.02 2.21 Nat Pine 5 9.51 20.32 2.42 

1512 22 8.98 12.70 2.26 Nat Pine 6 13.97 30.48 2.95 
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  LIDAR     Inventory   

Plot # 
Trees per 

Plot 
Mean 

Height (m) 
Mean dbh 

(cm) 
Mean 

Biomass (kg) Cover Type 
Trees per 

Plot 
Mean 

Height (m) 
Mean dbh 

(cm) 
Mean 

Biomass (kg) 

1518 6 11.28 16.02 2.50 Nat Pine 10 11.89 19.05 2.55 

1519 15 13.34 18.89 2.65 Nat Pine 12 16.18 20.74 2.70 

1520 20 14.94 20.77 2.73 Nat Pine 10 18.44 28.45 3.00 

1521 3 10.57 15.02 2.44 Nat Pine 1 10.97 15.24 2.46 

1522 11 14.76 20.27 2.71 Nat Pine 13 17.61 21.30 2.68 

1523 11 15.51 21.66 2.76 Nat Pine 8 20.04 26.67 2.96 

1586 23 22.94 31.14 3.10 Nat Pine 12 23.93 36.20 3.21 

1587 15 18.05 25.27 2.91 Nat Pine 9 15.24 24.27 2.80 

1588 12 18.05 25.38 2.92 Nat Pine 11 18.59 22.86 2.76 

1589 4 16.01 22.87 2.79 Nat Pine 7 10.19 18.51 2.50 

1590 13 19.02 26.49 2.96 Nat Pine 9 19.51 25.96 2.90 

1591 14 16.01 22.54 2.81 Nat Pine 6 16.36 29.21 2.98 

1592 12 19.04 27.26 2.94 Nat Pine 11 19.95 30.02 2.97 

1593 16 17.04 23.89 2.87 Nat Pine 6 15.44 27.52 2.90 

1594 13 17.42 24.24 2.88 Nat Pine 10 16.28 26.42 2.89 

1595 29 22.83 32.67 3.14 Nat Pine 9 19.95 41.77 3.22 

1596 12 14.76 20.59 2.73 Nat Pine 10 13.62 24.38 2.81 

1597 17 16.95 23.70 2.85 Nat Pine 12 15.54 23.50 2.75 

1598 12 14.74 20.63 2.73 Nat Pine 11 14.27 24.48 2.82 

1599 2 15.84 22.05 2.79 Nat Pine 6 11.84 16.51 2.46 

1600 22 23.41 32.44 3.13 Nat Pine 13 20.82 40.44 3.31 

1601 4 11.15 15.84 2.49 Nat Pine 7 9.45 17.42 2.33 

1602 9 15.65 21.58 2.77 Nat Pine 10 12.74 24.38 2.69 

1603 9 14.31 20.11 2.68 Nat Pine 6 12.85 19.47 2.44 

1604 5 15.11 21.20 2.75 Nat Pine 11 11.72 18.93 2.56 

1612 30 18.30 25.87 2.89 Nat Pine 9 22.52 41.77 3.26 

1613 16 20.82 29.10 3.04 Nat Pine 16 17.24 25.56 2.86 

1617 15 16.57 23.51 2.84 Nat Pine 3 15.75 26.25 2.94 

1618 6 14.36 20.13 2.71 Nat Pine 3 12.40 20.32 2.43 

1619 27 15.84 22.28 2.80 Nat Pine 9 17.37 29.92 3.05 

1888 6 26.85 39.43 5.60 Cove HW 10 23.07 38.61 5.43 

7
1
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  LIDAR     Inventory   

Plot # 
Trees per 

Plot 
Mean 

Height (m) 
Mean dbh 

(cm) 
Mean 

Biomass (kg) Cover Type 
Trees per 

Plot 
Mean 

Height (m) 
Mean dbh 

(cm)  
Mean 

Biomass (kg) 

1889 3 25.33 38.62 5.56 Cove HW 12 17.98 30.69 5.01 

1890 6 27.82 40.23 5.63 Cove HW 10 24.38 34.80 5.34 

1891 4 24.02 35.70 5.39 Cove HW 15 20.93 34.04 5.19 

1892 9 25.62 37.45 5.50 Cove HW 11 19.04 37.87 5.31 

1893 8 26.43 39.43 5.59 Cove HW 7 21.12 39.91 5.55 

1894 7 27.64 38.87 5.56 Cove HW 16 18.14 34.29 5.23 

1895 15 20.79 31.06 5.20 Cove HW 10 16.61 36.83 5.17 

1896 11 24.11 35.59 5.43 Cove HW 7 19.81 39.91 5.46 

1897 19 22.13 31.04 5.21 Cove HW 7 13.80 37.74 5.34 

1908 6 24.14 36.17 5.43 Cove HW 15 17.84 37.59 5.28 

1909 3 32.67 47.62 5.88 Cove HW 9 25.77 42.33 5.57 

1910 3 22.57 34.79 5.35 Cove HW 6 21.49 35.14 5.05 

1911 4 29.98 43.20 5.72 Cove HW 15 24.16 32.17 5.14 

1913 10 24.21 36.21 5.37 Cove HW 5 23.23 44.20 5.74 

1914 14 21.73 31.48 5.24 Cove HW 8 19.85 43.18 5.56 

1915 7 20.03 29.53 5.15 Cove HW 9 17.85 29.92 4.87 

1916 9 30.91 44.34 5.77 Cove HW 13 26.24 55.49 6.07 

1917 6 32.59 47.90 5.89 Cove HW 12 27.69 45.09 5.72 7
2
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