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Particle-Induced Electromagnetic De-Excitation of Nuclei in
Stellar Matter

PETER B. SHAW

7'he Pennsylvania State University, Physics Department, University Park, Pennsylvania

DoNALD D. CLAYTQN*

Department of Space Science, Rece Unioerstty, Houston, Texas

(Received 31 March 1967)

The rate for electromagnetic de-excitation of excited nuclei by inelastic scattering with electrons and
ions in stellar matter is calculated as a function of temperature, density, transition energy, and multipole
type. The results of this paper indicate that for temperatures in the range j.0' 'K (T &10'0 'K and densities
in the range 10' g/cms &p &10"g/cm', particle-induced electromagnetic de-excitations compete favorably
with spontaneous radiative transitions. As an example, a C" nucleus, put in the 7.6S-MeV 0+ excited state
and imbedded in an electron-helium plasma with a density of 10" g/cm, will be de-excited by electro-
magnetic interaction with the plasma 40 times faster at T= 10 'K and 500 times faster at T= 10' 'K than
its natural radiative rate. At the lower temperature the de-excitation is dominated by the electrons, and at
the higher temperature by the helium ions. The conditions for the applicability of the present work to
modern astrophysical problems are discussed.

I. IN'TRODUCTION

"N calculations of nuclear reaction rates in stellar
~ - matter it has traditionally been assumed that radi-
ative transitions in nuclei occur at the rate measured in
the terrestrial laboratory. This assumption has been
reasonable in that the temperatures and densities
required to stimulate characteristic electromagnetic
transitions in nuclei have exceeded those traditionally
discussed in the evolution of stars. But the modern
problems of the implosion-explosion mechanism for
supernovas, the expansion of the universe from a hypo-
thetical initially condensed state, and the unknown
nature of quasars all suggest the possibility of nuclear
reactions at very high temperature, very high density,
or both. One or all of these problems may involve the
fusion of nuclei during the expansion of highly con-
densed matter as the temperature falls from. near
10" 'K, and in turn many of the most important fusion
reactions are accompanied by the emission of p rays.
The subject we consider in this paper is the extent to
which electromagnetic de-excitation of nuclear states
may be accelerated by collisions with constituents of
the environment.

The most extreme densities encountered in stellar
nucleo synthesis are found in the imploded. matter of
supernovas. In this terminal stage of stellar evolution
the stellar core collapses due to an instability triggered
either by inverse P decay or by photodisintegration.
The overlying layers initially follow the implosion,
until a core stiffening leads to subsequent ejection of the
outer portions of the imploded star. The matter near the
mass cut dividing the ultimate collapsed remnant from
the redispersed matter achieves densities in the range
10"—10"g/cm' before the expansion. The constituents,
predominantly neutrons and o. particles, reinitiate
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fusion reactions during the expansion with densities
and temperatures in the gross range of 10s-10's g/cm'
and 109 10lo o~ respectively e will use thjs range of
density and temperature as a guideline for this investi-
gation, although the detailed applicability of this paper
to such an event depends upon other details that have
not yet been delineated with precision.

There appear to be three mechanisms capable of
inducing the electromagnetic de-excitation of nuclear
states in this temperature range. The Grst of these
mechanisms is the interaction between the internal
nuclear electromagnetic current and that of a passing
electron, 1eading to a transition in the nuclear state and
in the state of the continuum electron. This inelastic-
scattering process is analogous to the familiar interna1
conversion process studied in the laboratory except that
the initial state of the electron lies in the continuum —a
free-free internal conversion. ' Because of the high
density required for this process to compete with
spontaneous emission, the electron gas will be de-
generate. Secondly, the more massive ions constitute a
Maxwellian gas and are dominated in their collisions by
the Coulomb repulsion between positive charges.
Nuclear states may de-excite in such collisions, none-
theless, by the electromagnetic process of Coulomb
de-excitation, in which the time-varying electric field
produced at the excited nucleus during the collision
causes an internal transition in the excited nucleus. The
third electromagnetic process is the familiar stimulated
emission, which may play a role in some transitions at
temperatures in this range.

In Sec. II of this paper we calculate rates for the erst

s W. D. Arnett, Can. J.Phys. 44, 2553 (1966);S.A. Colgate and
R. H. White, Astrophys. J. 143, 626 (1966).' M. A. Preston, Physics of the Nucleus (Addison-Wesley
Publishing Company, Inc. , Reading, Massachusetts, 1962),
Chap. XI.
1193
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two processes and include the third as a matter of
course. The results will largely be displayed in the form
of graphs showing the competition with spontaneous
emission for several multipolarities. In Sec. III we
consider the specific example of the particle-induced
electromagnetic de-excitation of C" imbedded in an
electron-o, particle plasma. Finally, in Sec. IV we discuss
other features of nuclear reactions in astrophysics that
contribute to the determination of the relevence of the
processes studied here.

II. CALCULATION OF PARTICLE-INDUCED
ELECTROMAGNETIC BE-EXCITATION

RATES

A. Be-Excitation by Electrons

The rate for inelastic scattering of electrons by nuclei

e +(Z,A) —+e +(Z,A)' (1)

can be calculated with sufficient accuracy in Born
approximation (one-photon exchange) provided

Zrr/u((1, (2)

where Z is the nuclear atomic number, n= 1/137, and z

is the speed of the incident electron in units of the speed
of light. The value of v for a degenerate electron gas is
effectively the speed at the Fermi surface and is
approximately unity at densities for which the electron-
induced de-excitation competes favorably with radi-
ative de-excitation. The condition in Eq. (2) is then a
restriction to values of Z(&137. From perturbation
theory the amplitude for inelastic electron scattering is

given in Born approximation, with A =c= 1, by

sc"(p')v, m. (p) (J'M'I J„(sk) I JM)F=4m-e
(0 —Q2

(3)

where the initial electron has momentum p, energy E,
and Dirac spinor N, (p) and the final electron has
momentum p', energy E', and Dirac spinor N, (p'). The
electron 3-momentum transfer is denoted by 4= p' —p,
and by conservation of energy the nuclear transition
energy is given by co=E'—K

In Eq. (3) the electromagnetic interaction has been
approximated by using an unperturbed photon propa-
gator. This vacuum propagator is clearly insufficient in
a dense plasma, where dispersion due to the plasma
must, in principle, be taken into account. ' In the
present case, nuclear transitions with frequencies less
than or approximately equal to the plasma frequency
cannot be treated adequately with the vacuum photon
propagator. For transition frequencies somewhat larger
than the plasma frequency, however, the vacuum
approximation should be sufficient. The degree of
accuracy can be estimated crudely by the deviation
from unity of the plasma dielectric constant, which is
adequately given by 1—&c,'/res for both longitudinal and
transverse excitations. ' For relativistic electrons Acro

0.1 p9'~' MeV and p9=10 p with the density p in
g/cm'. In the present work we make no attempt to
include plasma effects for an accurate treatment of the
case ~&a)p.

In Eq. (3) the quantity (J'M'I J„(cL)
I
J3II& is the

Fourier transform of the nuclear current matrix element'

where

and

with

(J'~'I J,(~) Im&= d'x exp( —i~ x) &J'+~'I j„(x)I JM&

(J'3II'Ip(x)
I
JM&=(J'3l'I jo(x) I

J3jj&=g, g d g, lt, ,*(~ ~ x,=x. . .)p (. . .x . . .)7'=1 sQr

(J'~'Ij(x)
I J~&=&1™Ii.(x) I J~&+cu»(J'~'Im(x)

I J~&,

A

(J'~'Ij ()IJ~&=Z ~~'* lt' *(" = " )L—&ii (" = .")j
r=i 2E ezr

and
+L—sVps~sf&( 'x„=x' )j prsr( ' 'x„=x' ' ')

A

(J'M'Im(x)I JM)=P p, g dsx, Pg. sr *( x„=x )rr +~sr( x„=x ).
r j 2S a~r

(7)

In the above expressions e„and p, are the charge and magnetic moment of the nucleon in question, E is the proton
mass, and e is the Pauli spin operator. The charge is expressed in unrationalized units (e =a = 1/137). The initial
and anal nuclear wave functions, it z~ and fs sr. , respectively, are given with all quantum numbers suppressed
except for those pertaining to the total angular momentum of the nucleus.

s V. N. Tsytovich, Zh. ExPerim. i Teor. Fiz. 40, 1775 (1961) /English transl. : Soviet Phys. —IETP 1S, 1249 (1961)g' J. M. Blatt and V. F. Weiskopf, Theore&ica/ Ngcleur Physics Qohn Wiley 8z Sons, Inc., New York, l 956) Chap. XZj.
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The current matrix elements can be decomposed into multipole components by the expansions

(J'M'I Jp(ck) I
JM&=Q (J'M'I Jp(h; ») I JM&Yi„(h)

and

(J'M'IJ(4)
I JM)=P 6 (J'M—'I Jp(A;») I JM&Yg„Q)

+(J'M'I J@(h;») I JM&EXXON/(h)+ (J'M'I Jpl(h; ») I JM&Xi/(B), (10)

where rK= ck/6, Y&,„(A) is a spherical harmonic, and Xq„(A) is a vector spherical harmonic defined by

Xg„(b,) =LYg„(B,)/X (X+1),
with L= —iA Xgrad where the gradient is with respect to cL. In Eq. (10) we have used current conservation in the
form

z.(J M IJ(~) I
JM&=~(J'M

I
Jp(~) I

JM& (12)

to eliminate the longitudinal component of the current. Using orthonormality properties of the spherical harmonics,
the current multipole matrix elements are found to be

(J'M'
I Jp(h; ») I

JM&=4pr( —i)" d'x jz(hr) Yz„*(x)(J'M'
I p(x) I JM),

4pr( —i)" 1
(J'M'

I
Js (6;») I

JM &
= — d'x j& (hr) Y&„*(i)div(x Xcurl(J'M'

I j (x) I JM&),
x(x+1) a

4~( i)"—
(J'M'I J~(~;7p) I

JM)= d'x j&, (hr) Y&,„*(x)div(xX (J'M'
I j (x) I JM&),

X(&+1)

(13)

where r= lxl, 1=x/r, and jz(Ar) is the regular spherical Bessel function of order X. By means of the Wigner-
Eckart theorem these multipole matrix elements can be written in reduced form

(JMlb p I
Ju'M'&

(J'M'I Jp(~;») I JM)=, (J'IIJp(~ ~)IIJ)2J'+1 (14)

where (JM»l JXJ'M'& is a Clebsch-Gordan coeKcient. Similar expressions exist for the electric and magnetic
current multipole matrix elements.

The reaction rate is formed in the standard manner by integrating the transition probability per unit time over
the electron Fermi distribution f(E). For complete degeneracy (which is adequate for the temperatures and
densities considered in this paper) the Fermi function is given by a step function

where Ep is the Fermi energy and
f(~)=0(~.-~),

8(x)=1 for x)0
=0 for @&0.

(15)

(16)

Furthermore, because of the exclusion principle an electron cannot be scattered into a state that is already occupied.
Sufhcient energy must be transferred to the scattered electron in the nuclear de-excitation to lift the electron above
the Fermi surface. This possible reduction in the final electron phase space is taken into account by inclusion of
the factor 1—f(E'). The resulting reaction rate is then given by

where

dp dp
E,= 2g ,f(&)C1—f(&')7~(&'—&—~) 2 II" I'/2J+1,

(2pr)'2E (2pr)'2E' spins
(17)

(2E+a))'—d,'
l(J'IIJp(~; ~)ll»l'

spins 'A&0 2'
E—m' ——'(2(oE+s&' —6')'/LV —-'(oP —LV)

(l(J'IIJ~(~ »IIJ) I'+ l(J'IIJ~(~ ~)IIJ& I') (»)
(~p g2)2
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It is now convenient to introduce multipole transition moments of order X and to de6ne form factors through the
prescription

(4~)2+2k

1(J'llJo(~ l ) III)I'= l(J'IIQ~II J)I'IP~(&) I',
I (27i+1)!!7'

(4m)'5'" (co ) '
l%,+1

I(J'll»(~ li) III)I'=
I

—
I I(J'IIQ~IIJ) I'IP»(~) I',

I (2k+1)!!7'khI
(4n.)'4'" X+1

1(J'IIJ~(~ ~)IIJ) I'= I(J'll~~ll»l'IP~(&) I',
L(2K+1)!!7' X

(19)

241

R,(MA)/Rv'(3') =— dE f(E)l 1—f(E+oi)7
(J'u'IQ, „lm)= r F,„*(g)(J'X'Ip(x)lm)d x,

where the reduced electric multipole transition moment and for the magnetic transitions
(J'IIQillJ) and the magnetic multipole transition mo-
ment (J'II%~IIJ) can be obtained from the expressions

(J~ Isx,„lm) (20)

r +i' (5)'"+'G(E,oi,h) IP~(g) I2

(~'—a')'
(24)

r"Fi,„*(X)div(xX (J'M'I1(x) I
JcV))d'x

G= E' 1 4(2oiE—+c—o' d2)'/LV— (25)

by use of the signer-Eckart theorem. The functions

F~(h), F»(h), and F~(h) are the charge, electric,
and magnetic form factors, respectively, and are
normalized to unity at 6=0.

The above electron-induced transition rate is to be
compared with the ~acglm spontaneous radiative
transition rate, ' which is given in terms of the multipole
transition moments and form factors by

Ev'—
2J+1 &,&o X I (2K+1)!!7'

xl I J'IIQ~IIJ)I'I p»(~) I'

+ I (J'll~~ll J)I'IP~(~) I'7

and

I'I= —,
'

L (2E+cv)' —LP7. (26)

R,/R7'= —LIg(oi,Ei )—8(Ei —1—oi)Ii, (oi, Ep —oi)7, (27)

In the above expressions all energies and masses are
expressed in units of the electron rest energy and mass,
p= (E'—1)'" and p'=

I (E+co)'—17'~'.
For values of momentum transfer for which M~&1

(where Rv is the nuclear radius) the form factors in
Eqs. (23) and (24) can also be replaced by unity. With
this approximation, which is reasonably well satished
for the average momentum transfer at densities con-
sidered in this paper, we have

Under the assumption that only one multipole con-
tributes to the current matrix element and with the
appro

'
xlmation where e(EF 1—oi) is defined in E—q. (16) and Iz(oi,E+)
P»(oi) P»(O) = 1 PiLo, (oi) Piiri, (O) = 1, , (22) is of the form

we obtain for the electric transitions

20!
R, (El%)/Rr'(EX) =— dE f(E)L1—f(E+oi)7

Ii,(co~Ep) = L), (or,E)dE. (28)

'+~ p~q»-'-G(E, ~,~) IP»(~) l~

dal —
I

(o~2—LP)'

a(E,~,a) I
F (a) I

2-

(23)
X+1 oi'5'

'To a good approximation the actual radiative rate in the
plasma will vanish for co&coo and will be reduced by a factor
(1—cup'/ca')"+i for (u&coo.

For electric transitions the first few Li, (s&,E) are given
by

oi'Li(~, E)=~'(1/g. —1/g )+Lh((u, E)+17ln (g+/g )
—

(g+ —g-)/4, (29)

2(& ~E) =~ (1/g+ —1/g-)+~'h(~, E)»(g~/g )
+ f &'/4+4~&(~ E)+1 l ~'7/3) (g+ g

—)—-
—(g+*—g-')/6,
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de-excitation of C" as will be discussed in Sec. III. The transition probability for inelastic Coulomb scattering
monopole current matrix element is given by is given by

&mIJ„„(~)lm&

where

&J~lp(x) I J~&=Z e. II ~'~.

= (4n)'" dsx&JMl p(x')
I JM) sin(&«)/(&«), (35) where o is the de-excitation cross section, M„ is the

reduced mass of the system, lV' and 8' are the final and
initial relative kinetic energy, respectively, with
W'=W+co, and F is the amplitude for de-excitation

sQr given by

Xfg sr (' ' 'x =x' ' ')if'gsr (' ' x =x '). (36)

We have included additional state labels o, and o,
' to

distinguish between the initial and 6nal nuclear states
(nAtr'). Upon expanding the function sin(D«)/(6«) in
a power series the first term does not contribute to the
integral in Eq. (35) because the initial and final nuclear
states are orthogonal. The leading term in the monopole
current matrix element is thus

(4m)'"
d g « (Jgflp(x)IJ3II)

which resembles the electric quadrupole current matrix
element. Defining

with

1
Z 14"I'

2J+1 jr&'

6f z

(42)

(43)

where

&flHli&= d'x f c (x,f) &J'3I'I p(x) I JM&

(44)—A(x, t) &J'M'lj(x)
I J3E)].

IPI'=I fol'P. (41)

Here fc is the elastic Coulomb scattering amplitude for
s, mean energy W= (WW')'~', and P is the probability
that the target nucleus undergoes a transition:

d'* «'&J lip(x) IIJ&,

we have

(37)
Here the target nucleus current matrix elements are the
same as those given in Eqs. (5) and (6), and the electro-

g4 magnetic potentials due to the (classical) motion of the
I &JIIJ~~(~)IIJ&l'=4s 1&JIIQ~rIIJ&l'lp~r (~) I'~ (3@ projectile nucleus are givenby

36

where F ~(h) is the monopole form factor with
P „(0)= 1.For electron-induced monopole and quadru-

pole transitions of the same energy it then follows that

225 1&JIIQ-.IIJ)I'
R,(EO)/E, (E2)=

144-
I &JIIQ.II»l

(39)

where we assume that J&1 (so that both transitions
can take place), and where the transverse part of the
current in the quadrupole transition has been neglected
and the form factors have been set equal to unity. We
return to a discussion of the monopole transition in
Sec. III.

' K. Alder, A. Bohr, T. Huus, B. Mottelson, and A. Winther,
Rev. Mod. Phys. 28, 432 (1956), henceforth referred to as
ABHMW; G. Breit and R. L. Gluckstern, in Hgndbuch der.

Physik, edited by S. Fliigge (Springer Verlag, Berlin, 1959),
Vol. XLI/1, p. 496.

B. De-Excitation by Xons

In this section we calculate the rate for inelastic
Coulomb scattering by ions in the semiclassical theory,
which has been thoroughly discussed in several reviews. ~

According to this theory, which is valid for small

relative ion velocity e and small transition energy co, the
where

1 f'2W') '"f 4WW')"

2J+1 &m i &Z i
x

I
(J'II~.IIJ) lsf~(g, (47)

/3E)'~'p 1

k2) ~Wtis W'«s&

+=1/137, and Z is the target atomic number. The

Z~e Z~e Z,ev(f)
C (x,t) = —,A(x, t) = . (45)

IX—x(f) I «y(f) IX—x(t) I

In these expressions Z„e is the projectile charge, x(t)
traces out the classical hyperbolic trajectory with
«(t) =

I x(t) I, and v(t) =dx(t)/dt. In calculating the
classical orbit for the relative motion, the kinetic energy
loss is neglected and we again use the mean kinetic
energy W. In ABHMW the electric and magnetic
multipole transition probabilities are given by

1 )M„y 'I'
p 4WW'q l-'

a~v= Z~'e
2J+1 E2W) EZ 'Z'tr'l

x I &J'IIQ.IIJ&lsf~(g) (46)
and
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Coulomb de-excitation functions f~q(P) and. f~($) have
been tabulated by ASHMW, and the multipole transi-
tion moments have been defined previously in Eq.
(20). It should be pointed. out that the parameter $
introduced above is actually the negative of the cor-
responding parameter introduced by ABHMW, but
that the positive argument in the Coulomb de-excitation
function above is correct because of the symmetry
relations

P'~'Z„'pto(P) (1—e
—e")

&m„
(Z 2Z2~2/4)X —1 ~2K+1

XL (2K+1)!!g2

R;(M!I)/R~(MP) = 1ASX10 '
1

(50)

pA+A„~'~' p2~'Z p22(p) (1—e e")
Xi( AA 2 ) (Z 2Z2~2/4)x —i „2~+i

where R, is the appropriate ion Coulomb de-excitation
rate, and,

To obtain the thermonuclear de-excitation rate per
target nucleus we multiply the transition probabilities
in Eqs. (46) and (47) by the Boltzmann factor
22rÃ (p/2r)2~ W'~2 exp( —pW) (where E~ is the pro-
jectile number density, p= 1/kT, k is the Boltzmann
constant, and T is the absolute temperature), and
integrate over the initial relative kinetic energy. As in
the case of inelastic electron scattering, we compare the
resulting de-excitation rates by dividing the Coulomb
de-excitation rate by the radiative rate (neglecting
dispersion effects)

RV=R~oL1 —exp( —P(v)j ' (49)

where R~' is given by Eq. (21). The factor

I:1—em( —P~)j '

is inserted to take stimulated emission into account. We
thus obtain

XL(2K+1)!!g'( A

7I.+1 A~(A+A~) J

The quantity A;=log~a LR;/R~j has been calculated
by numerical integration of Eq. (51) and the results
have been plotted against nuclear transition energy for
a density of 10"g/cm' and for various values of multi-
polarity, temperature, and Z with Z=A/2. The pro-
jectile nuclei were chosen to be n particles since signi-
ficantly larger values of Z„ lead to values of R;/R~ that,
at temperatures considered in this paper (T(10"'K),
are small in comparison with the corresponding quantity
for electron de-excitation. Furthermore, a plasma with
a large density of helium at high temperature is of
astrophysical interest. While a proton projectile would
lead intrinsicly to a larger de-excitation rate (because
of the smaller Coulomb barrier), the large proton
density needed to achieve significant values of R„/R„
seems of little astrophysical interest at such high
temperatures. For this reason the case of projectile
protons has not been included in the graphs. For the
sake of comparison we have included the appropriate
electron de-excitation curves in each of Figs. 2(a)—2(c).
It is evident that for magnetic transitions, electron
de-excitation always dominates ion de-excitation for
temperatures considered in this paper. This is to be
expected since the ion velocities are much smaller than
the electron velocities. In the case of electric multipole
transitions, the relative importance of electron and ion
de-excitation depends upon the temperature. In
general, for a given density there is a critical tempera-
ture T, (p) such that for T)T. ion de-excitation is
dominant, while for T&T, electron de-excitation is
dominant. This delineation is shown explicitly in Sec.
III in which the de-excitation of C" is considered.

Finally, it should also be pointed out that the
accuracy of the semiclassical theory decreases with
increasing transition energy. However, for values of co

considered in Figs. 2(a)-2(c), the error is at most
10-15% in the ratio R,/R~ and is considerably better
over most of the range.

III DE-EXCITATION OF Cu

A particular reaction of astrophysical interest in-

volving a radiative transition is the helium burning
process

He +Be -+ C"*(0+)-+ C' *(2+)+y (52)

dWe e~f~(g(W) j(W(W+co))" ',

dWe e~f2o, ($(W)]/W(W+~) j" '12.

(51)

Again, all energies and masses are measured in units of
the electron rest energy and mass, pro(P) =10 " p(P),
where p(p) is the projectile density in g/cm, and A, A ~
are the atomic weights of the target and projectile
nuclei, respectively.

in which a small fraction of the C'2 produced in the
7.65-Mev 0+ state by the resonant He'-Be' interaction
decays to the 4.43-MeV 2+ state by an electric quadru-

pole 7-ray emission. The extent to which the He
plasma enhances the radiative transition rate by the
Coulomb de-excitation of C"~(0+) has been discussed

previously by the authors. ' The result of that work is
contained in the numerical fit to the calculated de-

' D. D. Clayton and P. B.Shaw, Astrophys. J.148, 301 (1967).
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excitation rate

R (E2)/R, (E2)= 2.22 &(10sps (He) exp (—19.32/Ts),
(53)

where Ts 10 'T('K) wi——th Ts in the range 1&Ts&10
and in which stimulated emission has been included. In
obtaining Eq. (53) the quantum-mechanical theory of
Coulomb de-excitation was employed rather than the
simpler semiclassical theory discussed. in the previous
section, although the difference in the two theories is at
most 10—15% over the indicated temperature range. In
this section we determine the extent to which a de-
generate electron plasma can de-excite the C"*(0+)
state at high density. To obtain significant results, we
restrict the density to the range 10' g/cms& p (He) & 10"
g/crn', where we assume that essentially all electrons
come from the ionization of helium.

There are two ways in which the de-excitation can
proceed, either by the electric quadrupole transition as
in the helium de-excitation or by a monopole transition
from the 0+ 1'.65-MeV level to the 0+ ground state. The
inverse laboratory process of monopole excitation of the
7.65-MeV level has been discussed by a number of
authors. '' Neglecting the transverse part of the E2

' J. H. Fregeau, Phys. Rev. 104, 225 (1954).

current matrix element we have from Eq. (23)

11
E,(E2)/2„'(E2) =—— (1—f(E+ts)j

3 co

&& dig L(2E+a&)s—jV])F@s(h)~s (54)
2(n'-n)

where co is the transition energy between the 0+*and the
2+* levels. The charge form factor is determined from

elastic electron-carbon scattering data by following a
theory due to Helm. " For the values of momentum

transfer at densities under consideration the form

factor can be represented to good approximation by

(55)

where R is an effective charge radius and is numerically

equal to 8.95)&10 ' in the dimensionless units used. here.
From Eqs. (18) and (38) the monopole de-excitation

rate relative to the E2 radiative transition rate is

"1~. D. Helm, Phys. Rev. 104, 1466 (1956).
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given by
mes ns IME

R, (EO)/R»'(E2) =
F(0+*—+ 2+*) 2s. ) .' )plR

I I I I I

X dE L1—f(E+re)g

XL(2E+~')s—aspic„,(a) Is (56)

where co' is the transition energy between the 0+* and
ground levels. The monopole form factor was tak.en
from the experiment of Gudden and Strehl" as was the
matrix element

I ME I.Again the form factor is of the
form

2-
CP

p-

-2
I

Io"

)plo

ip

4 5 6 7 8 9 IO

T(lp"K)

IF„„(a)I
1—PR a',

where in dimensionless units E=9.56' 10 '. The values
of the other parameters in Eq. (56) are

F(0+*-+2+*) 2.4X10 ' eV,
m~2=5. 11X105 eV,

X,=3.86)&10 "cm,

IMEI =55.7X10 "cm',

where F(0+*~2+*) is taken from Seeger and Kava-
naugh. " The quadrupole and monopole rates were
evaluated numerically, and can be expressed as a
function of helium density by

Re(E2)/R„'(E2) 1.66X10 '
p 'I'(He),

Re(EO)/R»'(E2) —6.96X10-' p '~'(He) (59)

over the range 1&ps(He) &10s with good accuracy. It
is interesting to note that the monopole de-excitation is
more important than the quadrupole de-excitation by
a factor of 4.2.

In Fig. 3 we--'have plotted logrsI (R,(EO)+R,(E2)
+R, (E2))/R»(E2) j as a function of temperature for
various values of helium density. For helium densities
above 10' g/cm' particle-induced de-excitation is more
important than spontaneous radiative de-excitation.
The competition between the electron and ion modes of
de-excitation is also indicated in Fig. 3 with the elec-
trons dominating at the lower temperatures and the
ions at the higher temperatures. Finally, we point out
that plasma dispersion effects are relatively unim-
portant for the C" problem (except perhaps for p 10"
g/cm') since the transition energies are rather large. As
an example, oro is about 1 MeV at a density of 10"
g/cm', while ar for the dominant monopole transition
is 7.65 MeV.

IV. DISCUSSION

An overwhelming majority of the nuclear reactions
in astrophysics occur by way of resonances in the

"F.Gudden and P. Strehl, Z. Physik 185, 111 (1965).
'2 P. A. Seeger and R. W. Kavanaugh, Astrophys J. 137, 704.

(1962).

FIG. 3. A (Cn) =logroll(R, (EO)+R, (E2)+~(E2))/R»(E2)g as
a function of temperature for different values of helium density.
The electrons are assumed to come solely from the ionization of
helium. R, (E2), RN(E2), and R„(E2) are the electron-induced,
helium-induced, and radiative (spontaneous plus stimulated)
electric quadrupole transition rates, respectively, for the 7.65-
MeV (0+) ~4.43—MeV (2+) transition in C". R, (EO) is the
electron-induced electric-monopole transition rate for the 7.65-
MeV (0+) -+ ground-state (0+) transition in Cn. Curves are labeled
with helium density in g/cm'.

compound nucleus. In most cases the cross section is
adequately represented by a sum over resonances of the
single-level Breit-Wigner formula, whereupon the
average of the transition probability ou over a Max-
wellian distribution of velocities becomes for radiative
capture"

/2sls 'l ( FtF»)
I em( —E,/&&), (60)

kiV/r ) 4 aF i„
where the sum is over resonances designated by r. The
resonance energy relative to the mass of the resonating
particles is E„and the resonance width F is assumed to
be smaller than kT. Many reactions of astrophysical
interest, especially at moderate temperatures, are so
dominated by the Coulomb barrier in the charged-
particle channel that the incident-particle width is
much smaller than the radiative width, in which case
F&F»/F ~Fr. For such reactions we see that any
enhancement of I'~ by particle de-excitation leads to no
increase in reaction rate; in this limit the compound
nucleus always de-excites so that the reaction rate
depends only upon the rate of formation of the com-
pound nucleus.

But in several special reactions such as C" formation,
radiative neutron capture, or charged-particle capture
at high temperature, the particle widths dominate the
widths of the relevant resonant states. In this case,
FtF»/F ~ F» and any enhancement of F» by particle
de-excitation enters linearly into the reaction rate. The
astrophysical applications of this paper are thus
restricted to reactions of the second type.

rs W. A. Fowler and F. Hoyle, Astrophys. J., Suppl. IX 201,
(1964), Appendix C.
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At high temperature and density it frequently
happens that the values of the rates come to be un-

important. This situation occurs when the environment
exists for a suflicient length of time for radiative
reactions to equilibrate with the inverse photodis-
integration reactions, in which case nuclear abundance
ratios depend only upon binding energies but not upon
individual rates. The astrophysical problem, therefore,
is to compare the time scale for an event, say the
shocked compression following a supernova implosion,
with the relevant nuclear lifetimes for equilibration.
Interest in the processes described in this paper are
restricted to the nonequilibrium conditions. The out-
standing example is the rapid Row to heavy nuclei that
can occur following the fusion of C" from n particles in
a dense gas.

If the density is great enough that radiative capture
is enhanced by collisional de-excitation, then the
inverse photodisintegration rate is also enhanced. The
average photodisintegration rate with respect to a
Planck spectrum of photons is, in direct correspondence
with Eq. (60),

exp (—Q/kT) (2J„+1)I'i,F,
2J+1

expl — I, (61)
uTi

where the statistical weight of each nuclear particle as
obtained by the sum over its states has been approxi-
mated, as is reasonable in practical cases, by the
statistical weight of the ground state. In this equation
J is the ground-state spin of the compound nucleus, J,
is the spin of the compound nuclear resonances having
center-of-mass energy E, for the resonating particles as
in Eq. (60), and Q is the binding energy of the photo-
ejected particle in the ground-state of the compound
nucleus. The point to be noticed is that if the dis-
integration occurs through excited states of the com-
pound nucleus whose widths are dominated by the
particle widths, then excitation of that state by in-
elastic particle collisions may enhance the photo-
disintegration rate. This point should not be overlooked
inasmuch as photodisintegration rates play key roles in
several nonequilibrium applications in high-temperature
astrophysics. If, for example, the environment is such
that the de-excitation of the 7.65-MeV level of C" is
predominantly by Coulomb de-excitation to the 4.43-
MeV level, it follows that the photodisintegration of C"
in the same environment proceeds by the Coulomb
excitation of the 4.43-MeV level to the 7.65-MeV level,
which then disintegrates into three n particles.

We have intentionally limited ourselves to the
question of the de-excitation of nuclear states by

electronzagnekic interactions with passing particles, but
it must be noted that. at extreme conditions of tem. -

perature and density the d.e-excitation by nuclear
interactions may also occur. That is, a compound
nuclear state, once formed, may be destroyed. by nuclear
interactions more rapidly than by electromagnetic
de-excitation. Because of the Coulomb barrier, the most
likely interactions of this type will be with neutrons,
protons, or n particles. For the example of C" discussed
earlier a rough calculation shows that the nuclear
interaction of the 7.65-MeV level with n particles fails

by only about one order of magnitude to compete with
the Coulomb de-excitation by n particles. Neutrons are
even more efficient because of the complete absence of
a Coulomb barrier. Another rough calculation shows
that a neutron density of order 10 ' of the o. particle
density at T9——5 is sufficient to render inelastic neutron
scattering as efficient as Coulomb de-excitation. Thus
it appears that for thermal environments sufficiently
extreme for application of the principles of this paper,
one must also compute the rates of the available
nuclear interactions with excited states.

It does not appear to be possible to say at the present
time whether de-excitations of the type mentioned in
this paper will be important in astrophysical problems.
By all odds the most likely application seems to be in
fusion reactions in supernovas, but the details of the
history of the various mass zones in the supernova
event are not yet known with sufficient accuracy to
determine the applicability of the present work. When
the center implodes to nuclear densities, the overlying
layers tend to follow. The maximum temperature and.
density encountered during the shock when the im-
plosion is reversed decreases as one moves outward in
mass. What one requires is the time profile of the
temperature and density in each mass zone. The current
results' indicate that temperatures and densities in the
range considered in this paper are encountered in the
expansion following the implosion, and if the expansion
is fast enough that nuclear equilibrium is not main-
taint:d, our results will be necessary for a complete
analysis of the problem.
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