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Silicon burning at temperatures in the neighborhood of 4 x10~'K has been studied with
the aid of a quasiequilibrium model which describes the abundance of the nuclei in the in-
terval 28-4- 62. It is found that, for a broad range of temperatures and densities, sil-
icon burning leads to nuclear abundance distributions which match important features of
the natural solar-system abundance distributions and that a large nuclear energy re-
lease accompanies silicon burning.

It is generally believed that in the evolution
of the thermonuclear gas which constitutes the
matter of stellar interiors, an epoch is reached
in which the matter is primarily in the form
of Si and, to a lesser extent, of 3 S. This
phase can be reached after the fusion of '60
at temperatures in the neighborhood of 2&& 10 'K.
It follows from general considerations'~' based
on the unusually large nuclear binding energy
of ' Si that little subsequent nuclear activity
occurs until the temperature becomes sufficient-
ly high to cause (y, p) and (y, a) reactions on
"Si. This breakdown of "Si by photodisintegra-
tion is accepted'~2 as being the precursor to
a reassembly of the nucleon gas into the nuclei
which constitute the iron-group natural abun-
dance peak (predominantly isotopes of Fe and
Ni). By a sequence of (y, n) reactions, and
to a lesser degree (y, p) and (y, n) reactions,
"Si nuclei are decomposed into n particles,
protons, and neutrons, which are then captured
by other 2 Si nuclei leading to S and then heav-
ier nuclei. The present paper describes the
results of an analysis which clarifies the de-
tailed nature of this process, termed silicon
burning, which determines the time scales
and energy generation during silicon burning,
and which shows how silicon burning accounts
for many crucial features of the observed na-
tural solar-system abundances of the nuclei
between A = 28 and A = 57. A more complete
discussion of these results and their astrophys-
ical applications is being prepared for publi-
cation elsewhere.

For simplicity in this analysis, it was assumed
that the starting point is a gas of pure "Si and
that the gas remains at constant temperature
and density as the conversion of ' Si to other
nuclei proceeds. The rate of buildup of the
nuclei heavier than "Si is governed by the rate
at which n particles are made available through
the photodisintegration of ' Si.'~2 The crucial
qualitative feature of this rate is that it is slow
compared to the nuclear reaction rates above

Si. The rate is determined by a photodisin-
tegration chain in the nuclei lighter than Si.
In the first instance, 24Mg is formed and its
density rises to a value limited by equilibrium
jn the reactions Mg+ o. Sj+y. By virtue of
the high n-particle binding energy in 'Si, the
24Mg number density is small compared to the

Si density. The further dj.sjntegration of Si
then occurs by way of the photodisintegration of
the much less abundant, and also tightly bound,
"Mg.' It is the slow "Mg photodisintegration
rate which sets a limit on the effective photo-
disintegration rate of Si and allows the reac-
tions in the heavier nuclei to come into the qua-
siequilibrium condition discussed below.

As the e particles are liberated by the pho-
todisintegration of ' Si they are initially con-
sumed by the reaction 28Si(n, y)s2S, resulting
in a buildup of "S. However, because the "S
undergoes (y, o.) reactions with a shorter life-
time than ' Si, the capture of n particles and
the buildup of S is halted by the equilibration
of the inverse reactions Si+ He —'S+y.
[If substantial amounts of S2S are admitted to
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be initially present, the same equilibrium is
established by (y, n) reactions on "S.] In a
similar manner, the reactions involving heav-
ier nuclei subsequently achieve equilibrium,
and the heavier nuclei build up to concentrations
such that they liberate n particles at virtual-
ly the same rate at which they consume e par-
ticles; therefore, the e-particle density assumes
a quasistatic value. Qn a much longer time
scale the ' Si slowly "melts, " thereby inject-
ing more e particles into the bath. The new
n particles are consumed in the formation of
more heavy nuclei, establishing just the abun-
dance required to maintain a new equilibrium
between (n, y) and (y, a) reactions. In an anal-
ogous manner, quasistatic concentrations of
free protons and neutrons are maintained by
equilibration of reactions involving nucleons,
photons, and e particles. We call this situa-
tion nuclear quasiequilibrium, in that the nu-
clei heavier than ' Si are in equilibrium under
the exchange of protons, neutrons, and n par-
ticles. It is not a true nuclear equilibrium be-
cause the Si itself, which is disintegrated
comparatively slowly, does not have sufficient
time to come into equilibrium with the free
concentrations of light particles and because
the quasiequilibrium densities change slowly
with time.

In the quasiequilibrium, the number densi-
ties n(~Z) of nuclei heavier than '8 Si are de-
termined relative to the concentration of "Si
itself by the number densities of free n parti-
cles, protons, and neutrons and by the temper-
ature. Accordingly, one has the set of equa-
tions

n( Z) = C( Z)n( Si)n ~g Pn ~,A A 28 . 5~
p n

where each nucleus ( Z) is thought of as being
composed of "Siplus 5~ n particles plus 5p
protons plus 5„neutrons. The quantities C( Z)
depend only upon nuclear binding energies, nu-
clear partition functions, and the temperature.
The e particles and nucleons are themselves
in mutual equilibrium via rapid chains of nu-
clear reactions in heavier nuclei. Thus only
two of the densities n~, np, and n„are inde-
pendent. At a given temperature, there is a
unique solution to Zq. (1) for each value of the
amount of residual Si if the density and nucle-
ar charge-to-mass ratio are specified.

We have studied the silicon-burning problem
by finding n(~Z), for nuclei in the interval 28

&A &62, for a succession of quasiequilibrium
configurations, each with a progressively low-
er amount of "Si remaining. The temperature
and density were taken to be constant. The
time to progress from one configuration to the
next is controlled by the effective 'Si photodis-
integration rate. These time intervals deter-
mine both the rate of nuclear energy genera-
tion and the decrease, due to P-decay process-
es, of the nuclear charge-to-mass ratio, which
starts at 2 for the initial "Si. Electron capture
is the principle p-decay process. It was found
that, in the most likely silicon-burning circum-
stances, the conversion is fast enough that P-
decay processes can only slightly alter the ra-
tio. In consequence, the equilibrium solutions
of the present analysis are characterized by
much higher densities of free protons than of
free neutrons, and thus by high densities of
nuclei on the proton-rich side of the valley of
nuclear stability.

Calculations of the evolution of abundances
in silicon burning were carried out for temper-
atures extending from (3.4 to 5.0)x10''K and
for densities extending from 10' to 10' g/cm'.
The quasiequilibrium abundance distributions
found through this analysis have considerably
different properties than the equilibrium solu-
tions which have been studied by other workers'»'
as the source of the iron-group abundance peaks
(commonly called the e process after Ref. 4).
The crucial differences stem from the high
ratio of the free-proton to free-neutron num-
ber densities and the retention of a substantial
fraction of the material in the form of ' Si.
The most striking characteristic of the pres-
ent solutions is the production of ' Ni as the
most abundant iron-group nucleus for a wide

range of temperatures and densities. Howev-
er, in the lower range of temperatures (near
3x 10''K) the conversion is slow enough that
p-decay processes reduce the ratio np/n„caus-
ing ' Fe to replace MNi as the most abundant
iron-group nucleus. Some aspects of these re-
sults have been reported in a study of silicon
burning in which the individual reaction rates
were integrated numerically. ~~6

In Fig. 1 we show as an example the quasi-
equilibrium abundance distribution that obtains
when initially pure 'Si has been disintegrated
to 35 /o of its initial value at a temperature of
4.4x 10~'K and a density of 10' g/cms. (This
point is reached after 0.3 sec of "Si burning. )
A recent compilation of the natural solar-sys-
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tern abundances in this mass range is shown
for comparison. There is a strong similarity
in these abundance patterns for the most abun-
dant nuclei below A = 58, namely the A = 4n nu-
clei and the iron group for 50~3 &57. In this
comparison, account is taken of the P-decay
processes which occur after silicon burning
is completed so that, for example, the natural
abundance of MFe is attributed to the decay of
MNi.

The results shown in Fig. 1 are typical of
the main features of the abundances achieved
in partially burned ' Si over a band of temper-
atures and densities extending from about 3.8
&& 10' K and 10' g/cm' to 5.0 x 10' 'K and some-
what over 109 g/cms. (Note that at high tem-
peratures, high densities are required to main-
tain the abundance of MNi against dissociation
into ~Fe+2p). Because of this broad region
of agreement with observed abundances and
because silicon burning now appears to be a
natural epoch in the history of a thermonucle-
ar gas, we surmise that the natural abundance

FIG. 1. Comparison between quasiequilibrium abun-
dance reached under typical conditions in Si burning
and the natural solar-system abundances. (Cameron's
value for the Fe abundance has been reduced by a fac-
tor of 5, corresponding to a choice of the solar abun-
dance for Fe rather than the meteoritic abundance. )
The vertical lines with arrows represent cases where
the quasiequilibrium abundances fall off scale.

pattern between A = 28 and A = 57 reflects pri-
marily a superposition of silicon quasiequilib-
rium burning sequences, followed by ejection
of the material from the site of the burning,
probably supernovae. If this surmise proves
to be correct, the less common nuclei (primar-
ily the neutron-rich isotopes of these elements)
must be attributed to a secondary process,
most likely the freezing reactions that occur
during the expulsion and cooling of this gas,
or, alternatively, a subsequent s process. 4~'

The silicon burning process is strongly ex-
oergic under those conditions of temperature
and density which lead to agreement with the
observed natural abundances, largely because
the dominant product, MNi, is tightly bound.
Typical energy releases, calculated from the
change in total rest mass, are in the neighbor-
hood of 100 keg per nucleon of disintegrated
"Si, which is equivalent to 10" erg/g. The
time rate of energy release is governed by the
effective rate of the silicon photodisintegration
and increases rapidly with increasing temper-
atures. Over the temperature interval from
(3.6 to 5.0) && 10' 'K, the rate of energy release
when the "Si has been half consumed ranges
roughly from 10" to 10"erg/g sec. This pow-
er can provide for a short epoch of thermonu-
clear stability in the core of a presupernova
star. The detailed implementation of these
results should aid in the understanding of the
energy balance in supernova events.

In summary, the distinctive conclusions of
the present analysis are the following: (1) The
synthesis of the n-particle nuclei above A = 28
and of the iron-group nuclei occur simultaneous-
ly during silicon burning (specifically, the n
process and the e process of Ref. 4 occur si-
multaneously). (2) The chief quasiequilibrium
product in the iron group is generally ~Ni, and
its decay after the expulsion of the matter from
the star probably accounts for the high natural
abundance of MFe. (3) Under the most likely
conditions, the production of the iron-group
nuclei in silicon burning is accompanied by
a large release of nuclear energy. (4) The nat-
ural abundance of Ni cannot be understood un-
til the secondary processes responsible for
the heavy isotopes of Si, S, A, and Ca are un-
derstood in detail, but equilibrium explanations
for the abundances of "Ni and Ni now appear
to be unpromising.
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EVIDENCE FOR THE I= z N~(1400) RESONANCE PRODUCTION IN w P INTERACTIONS AT 6 GeV/c*
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Results from a number of high-energy miss-
ing-mass spectrometer experiments have in-
dicated the presence of a peak in the strange-
ness-zero and baryon-number-one system
at a mass of about 1.4 GeV. ' Because its pro-
duction is peripheral and the width is large
(approximately 200 MeV), kinematic interpre-
tations of this peak are possible. a However,
an extensive pion-nucleon phase-shift analy-
sis suggests that an amplitude, with the same
quantum numbers as the nucleon (1=-, and Jp
=-,'+), exhibits resonant properties near this
mass region with a large width and inelastic-
ity (vinel/crtot I=-,'). In order to associate
this Nz*( 1400) deduced from the pion-nucle-
on phase-shift analysis with the peak observed
from production experiments, it is essential
to determine its quantum numbers from its
decay products. To date, the only relevant
bubble-chamber data with adequate statistics
have come from a study of the reaction pp
—PP~+m at 6.6 GeV/c, ~ where a kinematic in-
terpretation of this enhancement is favored.
In this Letter, we report our observation of
well-defined m+n and w p enhancements cen-
tered at 1.42 GeV with a width of the order of
100 MeV, from the reactions ~+p-w+n+n and

m p-w'v p at 6 GeV/c. The resonance inter-
pretation of this enhancement is clearly favored
in our data. We have determined its isospin
to be —,', and we associate it with the N„s~(1400)
suggested by the phase-shift analysis.

Reaction
Number
of events

Events/Cross
section equivalent

(events jpb)

(1) ~ P- ~ x n.

(2) x+p- x'w+p

(2)w p wm n

(4) ~-p- ~'~-p

1195
265

5334
3376

1.5
0.3
4.8
4.8

In these four reactions, there are two ma-

jor sources contributing to the background ob-
served in the low (mN)lz ~1 mass region.Z
They are (a) the reflection of strong mw res-
onances, ' which contribute to reactions (2),
(3), and (4) but not to (1), and (b) proton dis-
sociation into (mN)l -+,' at the nucleon ver-
tex without N, ~* formation, which contributes
to all (vN)lz +~ combinations but not to (m p)
in reaction (4). It should be emphasized that
the (w+n) and (m p) mass spectra from reac-
tions (1) and (4), respectively, are the only

The samples of events for this study come
from a 6-GeV/c m+p experiment in the Brook
naven National Laboratory (BNL) 80-in. liquid-

hydrogen bubble chamber. About 30000 two-

prong events in the v+p exposure and 60000
two-prong events in the ~ p exposure were
analyzed. About one-half of the events were
measured by conventional measuring machines
and the other half by the BNL flying-spot dig-
itizer. The size of the event samples and cross-
section equivalents of the four reactions stud-
ied' are shown below:
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