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ABSTRACT 

 Controlled manipulation of synthetic particles and biological cells from a complex 

mixture is important to a wide range of applications in biology, environmental 

monitoring, and pharmaceutical industry. In the past two decades microfluidics has 

evolved to be a very useful tool for particle and cell manipulations in miniaturized 

devices. A variety of force fields have been demonstrated to control particle and cell 

motions in microfluidic devices, among which electrokinetic techniques are most often 

used. However, to date, studies of electrokinetic transport phenomena have been 

primarily confined within the area of microchannels. Very few works have addressed the 

electrokinetic particle motion at the reservoir-microchannel junction which acts as the 

interface between the macro (i.e., reservoir) and the micro (i.e., microchannel) worlds in 

real microfluidic devices. This dissertation is dedicated to the study of electrokinetic 

transport and manipulation of particles and cells at the reservoir-microchannel junction of 

a microfluidic device using a combined experimental, theoretical, and numerical analysis.  

 First, we performed a fundamental study of particles undergoing electrokinetic 

motion at the reservoir-microchannel junction. The effects of AC electric field, DC 

electric field, and particle size on the electrokinetic motion of particles passing through 

the junction were studied. A two-dimensional numerical model using COMSOL 3.5a was 

developed to investigate and understand the particle motion through the junction. It was 

found that particles can be continuously focused and even trapped at the reservoir-

microchannel junction due to the effect of reservoir-based dielectrophoresis (rDEP). The 
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electrokinetic particle focusing increases with the increase in AC electric field and 

particle size but decreases with the increase in DC electric field. It was also found that 

larger particles can be trapped at lower electric fields compared to smaller counterparts.  

 Next, we utilized rDEP to continuously separate particles with different sizes at 

the reservoir-microchannel junction. The separation process utilized the inherent electric 

field gradients formed at the junction due to the size difference between the reservoir and 

the microchannel. It was observed, that the separation efficiency was reduced by inter-

particle interactions when particles with small size differences were separated. The effect 

of enhanced electrokinetic flow on the separation efficiency was investigated 

experimentally and was observed to have a favorable effect. We also utilized rDEP 

approach to separate particles based on surface charge. Same sized particles with 

difference in surface charge were separated inside the microfluidic reservoir. The 

streaming particles interacted with the trapped particles and reduced the separation 

efficiency. The influences from the undesired particle trapping have been found through 

experiments to decrease with a reduced AC field frequency.  

Then, we demonstrated a continuous microfluidic separation of live yeast cells 

from dead cells using rDEP. Because the membrane of a cell gets distorted when it loses 

its viability, a higher exchange of ions results from such viability loss. The increased 

membrane conductivity of dead cells leads to a different Claussius-Mossoti factor from 

that of live cells, which enables their selective trapping and continuous separation based 

on cell viability. A two-shell numerical model was developed to account for the varying 
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conductivities of different cell layers, the results of which agree reasonably with the 

experimental observations. We also used rDEP to implement a continuous concentration 

and separation of particles/cells in a stacked microfluidics device. This device has 

multiple layers and multiple microchannels on each layer so that the throughput can be 

significantly increased as compared to a single channel/single layer device. 

 Finally, we compared the two-dimensional and three-dimensional particle 

focusing and trapping at the reservoir-microchannel junction using rDEP. We observed 

that the inherent electric field gradients in both the horizontal and vertical planes of the 

junction can be utilized if the reservoir is created right at the reservoir-microchannel 

junction. Three-dimensional rDEP utilizes the additional electric field gradient in the 

depth wise direction and thus can produce three-dimensional focusing. The electric field 

required to trap particles is also considerably lower in three-dimensional rDEP as 

compared to the two-dimensional rDEP, which thus considerably reduces the non-desired 

effects of Joule heating. A three-dimensional numerical model which accounted for the 

entire microfluidic device was also developed to predict particle trajectories.   
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CHAPTER 1: Introduction and overview 

1.1 Background and Motivation 

Advancement in the field of microfluidics has enabled fluidic components to be 

miniaturized and integrated together on Lab-on-a-chip (LOC) microfluidic devices. A 

Lab-on-a-chip microfluidic device is analogous to microelectronic chip and integrates 

several laboratory operations. The LOC device typically consists of arrays of 

microchannels, electrodes, micron sized valves and pumps, sensors etc. The 

microchannels and other miniaturized components tend to consume smaller volumes of 

fluids reducing reagent consumption.  The miniaturization also reduces consumption of 

experimental materials; reducing waste production and thus decreasing the costs. 

Microfluidic devices have small length scales making the diffusive mixing fast and often 

increasing the speed and accuracy of the reactions (DeWitt, S. H. 1999;  Watts, P. 2003). 

A Microfluidic device also reduces measurement times and improves sensitivity, 

selectivity and repeatability of assays. Microfluidic devices have large surface to volume 

ratio which facilitates rapid heat transfer, enabling precise temperature control. Integrated 

microfluidic devices also offers portability feature, permitting mobile applications in 

forensics, drug delivery for point-of-care medicines, chemical and biological analysis etc. 

The manufacturing costs of this miniaturized devices being low, they could be 

disposable, eliminating cross contamination. Occasionally, implementations of 

microfluidic devices have completely transformed the performances of certain types of 
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experiments or have enabled large scale parallelization that could not be attained 

previously.  

Typically, particle and cell manipulation includes focusing, trapping, mixing, 

filtering, separating, sorting, etc. Focusing is termed as concentrating scattered particles 

at the inlet of the microchannel into a narrow stream at the exit which allows for accurate 

detection and sorting. Trapping is termed as locally immobilizing particles and increasing 

the concentration of particles that are otherwise distributed uniformly in the bulk fluid. 

Separation is isolating of one specific kind of particle from a mixture of different 

particles. In literature particles have been separated based on properties such as size, 

charge, shape, density, deformability, magnetic and optical polarizability etc.  

Numerous force fields have been utilized for manipulation of particles and cells 

inside the microfluidic devices. These force fields include but are not limited to magnetic 

(Pamme, N. 2006; Gijs, M. A. 2010), electric (Gascoyne, P. R. 2002; Hughes, M. P. 

2002; Srivastava, S. K. 2011; Regtmeier, J. 2011), acoustic (Laurell, T. 2007; Friend, J.), 

optical (Wang, M. M. 2005; Kim, S. B. 2008), hydrodynamic (Yamada, M. 2005; 

Yamada, M. 2006; Davis, J. A. 2006; Choi, S. 2007), inertial (Di Carlo, D. 2009; 

Kuntaegowdanahalli, S. S. 2009), gravitational (Huh, D. 2007) etc. The studies of particle 

manipulations have been primarily confined within the microchannels. Very few works 

have addressed the electrokinetic particle motion at the reservoir-microchannel junction 

which acts as the interface between the macro (i.e., reservoir) and micro (i.e., 

microchannels) worlds in the microfluidic devices. Therefore, this proposed work is 
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dedicated to the study of electrokinetic manipulation of particles and cells at the 

reservoir-microchannel junction of a microfluidic device. The goal of this work is to 

obtain fundamental knowledge of electrokinetic particle motion at the reservoir-

microchannel junction and to utilize the junction to attain focusing and trapping of 

particles and cells, having differences in physical properties. The key objective of this 

thesis work is to apply reservoir-microchannel junction for continuous particle/cell 

sorting and separation using reservoir-based dielectrophoresis (rDEP).  

1.2 Electrokinetic Phenomena  

 Electrokinetic phenomena can be broadly classified into electroosmosis, 

streaming potential, electrophoresis, dielectrophoresis, and sedimentation potential. 

These electrokinetic phenomena arise due to the interaction of the surface charge and 

ionic aqueous liquids, and are often defined by the presence of an electrical double layer 

(EDL). The brief descriptions of these electrokinetic phenomena are: 1. Electroosmosis 

which refers to the flow of liquid along a charged surface when an electric field is applied 

parallel to the surface. 2. Streaming potential which refers to the inverse of 

electroosmosis, i.e. an electric potential is created when a liquid is forced to move along a 

charged surface. 3. Electrophoresis which refers to the movement of suspended, charged 

particles as a result of an applied electric field. 4. Dielectrophoresis which refers to the 

movement of neutral particles by the application of an electric field and 5. Sedimentation 

potential which refers to the inverse of electrophoresis, i.e. an electrical potential is 

created by the movement of charged particles through a liquid by gravity. The subsequent 
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sections discuss the source of electrokinetic phenomena, the electrical double layer, and a 

brief review of electroosmosis, electrophoresis and dielectrophoresis. In this work the 

focus is on electrokinetic phenomena using an applied electric field to induce motion and 

hence streaming, and sedimentation potential are beyond the scope of this work.  

1.2.1 The Electrical Double Layer 

 Generally, a solid surface when brought in contact with an ionic aqueous solution 

tends to attain surface charge. The surface charge attained by the solid surface originates 

from the adsorption and dissociation of chemical groups within the ionic solution 

(Hunter, J. 2001; 128 Li, D. 2004). In course of electrokinetic studies, presence of surface 

charges is accepted and its origin is paid less attention. However, it is important to 

recognize the origins of these charges. The formation of such electrical surface charge 

could be explained by variety of mechanisms: 1. Ionization of surface groups. 2. 

Differential dissolution of ions from surfaces of sparingly soluble crystals. 3. Isomorphic 

substitution. 4. Charged crystal surfaces. 5. Specific ion adsorption (Masliyah, J. 2005). 

The charged surface and the surrounding ions undergo an electrostatic interaction 

wherein counter-ions are attracted and co-ions are repelled from the charged surface. 

Consequently, a layer consisting of more counter-ions than co-ions is formed close to the 

charged surface, this layer is known as electrical double layer (EDL). The phenomenon 

of the electrokinetic transport of particles in microchannels originates from this electric 

double layer (EDL). The EDL reestablishes ionic electro-neutrality and, consequently, 

causes an electrokinetic potential which is referred to as the surface or zeta potential . 
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The magnitude of the zeta potential is a function of the surface charge and the thickness 

of the electrical double layer. The layer on the ionic aqueous side can be divided into 

stern layer and diffuse layer. Ions within the stern layer are immobilized due to strong 

electrostatic forces and the ions within the diffuse layer are free to move. As a result, 

main focus in electrokinetic studies is on diffuse layer. The zeta potential,  , is defined 

at the interface between the stern layer and diffuse layer. Figure 1 illustrates the 

formation of an EDL within the presence of a positively charged surface and the 

corresponding electric potential distribution. 

 

Figure 1: Schematic of an electric double layer (EDL) formed adjacent to a positively 

charged surface. Stern layer and zeta potential are also illustrated in the image.  

The potential distribution, in the direction away from the shear plane, is 

characterized by the Debye length, 1  , defined as: 
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Where n is the bulk ionic concentration, Bk  is Boltzmann’s constant, T is the fluid 

temperature, vz  is ionic valence, e is the elementary charge, and ε is the dielectric 

constant in the medium. The Debye length depends on the concentration of the ionic 

aqueous solution. Typically, the dimension of the EDL is on the order of several 

nanometers. 

1.2.2 Electroosmosis 

 The introduction of ionic aqueous solution inside a microchannel gives rise to the 

formation of electrical double layer (EDL) in order to neutralize the charged surfaces. On 

application of external electric field parallel to the stationary charge surface, the 

excessive counter-ions within the EDL experience tangential electrical force to the 

electric field lines and migrate towards the oppositely charged electrodes. The ions drag 

the viscous fluid along with them and this induced flow motion arising from the 

electrostatic interaction between the charge within the EDL and the applied electric field 

is called electroosmotic flow. Assuming the electroosmotic flow is incompressible, 

steady state, fully developed and there is no external pressure gradient across the charged 

surface, Navier-Stokes equation, with the addition of an electrical body force term can be 

written as Eq. (1-2): 
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where, u  and xE  are, respectively, the x  component of fluid velocity and electric field 

imposed, μ is the fluid viscosity, and e  is the net charge density within the channel 

which can be expressed through the Poisson equation: 

 

Figure 2: Schematic of electroosmotic flow in a microchannel bearing a uniform negative 

surface charge, reprinted from (Kirby, J. 2004). 
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Substituting Eq. (1-3) into Eq. (1-2) and solving for the electroosmotic flow velocity, eou , 

with boundary conditions set such that: ( ) ( ) wb b      and ( ) ( ) 0u b u b    results in 

Eq. (1-4); 

 x
eo w

E
u


 


                                                       (1-4) 

The electrical double layer thickness being much smaller than the characteristic length of 

the microfluidic device, the electroosmotic flow profile in a microchannel is almost 

uniform and referred to as plug-like flow as shown in figure 2. The electroosmotic flow is 

utilized widely to transport spices in microchannel devices (Linan, J. 2002; Hirvonen, J. 

1997; Pikal, M. J. 2001; Chen, L. 2007) due to its unique plug-like flow profile that 

diminishes the dispersion problem, which is a major concern in pressure driven flow 

(PDF). 

1.2.3 Electrophoresis 

A charged particle suspended in ionic aqueous solution will migrate when 

subjected to an external electric field which is referred as electrophoresis. The charged 

surface in electroosmotic flow being the wall is stationary, while in electrophoresis it is 

the surface of the particle and is mobile. The particle’s steady electrophoretic velocity can 

be obtained by balancing the hydrodynamic force acting on the particle to the 

electrostatic force acting on the particle. Under a thin electrical double layer 
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approximation and application of external electric field, the electrophoretic velocity of 

the particle can be expressed as shown in Eq. (1-5). The difference between 

electroosmotic and electrophoretic velocity is that the zeta potential of the wall, w , is 

replaced by the zeta potential of the particle, p .  

p

ep xu E



                                                             (1-5) 

The particles follow the uniform electric field lines of the applied external electric field. 

The electrophoretic and electroosmotic velocity of the particles and the fluid in 

microchannels are opposite to each other. Typically, the electroosmotic motion of the 

fluid dominates the particle electrophoretic motion and the particles are dragged along 

with the bulk fluid. The electrophoretic and electroosmotic motions in a microchannel are 

combined together and referred as electrokinetic velocity of the particle. Electrophoresis 

is widely used in particle separation, concentration, transportation etc. in microfluidic 

devices (Hunter, J. 2001; Li, D. 2004; Kang,Y. 2008). 

1.2.4 Dielectrophoresis 

The motion of a polarizable particles immersed in an ionic aqueous solution when 

subjected to a non-uniform electric field is known as dielectrophoresis (Pohl, H. A. 

1978). The direction of the DEP force is determined by the ratio of the polarizability of 

the particle to that of the electrolyte solution, as shown in figure 3. The motion of the 

particle towards the region with higher electric field is known as positive DEP (see figure 
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3(b)) and away from the higher electric field region is known as negative DEP (see figure 

3(a)). Dielectrophoresis originates from the electric field gradients resulting in 

translational particle motion across fluid streamlines. The dielectrophoretic force is 

proportional to the square of the electric field and third power of the particle size, 

indicating non-linear electrokinetics. The time averaged DEP force induced on a 

spherical particle is expressed as; 

 31 Re ( )
2DEP f CMd f F E E                                        (1-6) 

where f  is the permittivity of the suspending fluid, d  the particle diameter, E  the 

electric field and  Re CMf  represents the real part of the Clausius–Mossotti (CM) factor, 

which is given by; 
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In the above equation, i


 


   is the complex permittivity, with  and   being the 

corresponding conductivity and angular frequency of the applied electric field 

respectively. 
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Figure 3: Dielectrophoresis of a particle in an externally applied electric field is 

illustrated in the figure 3. Demonstration of the translation of particle towards the low 

electric field region when particle is less polarizable then the medium (a) and the 

translation of particle towards the high electric field region when particle is more 

polarizable then the medium (b) (Medora, G.. 2007).  

 

DEP force is widely used in separation, concentration, trapping etc. of particles as it 

depends to the third power of the particle size. This unique dependence of DEP force on 

particle size can be utilized to generate dissimilar responses which enable easy particle 

manipulation within the microfluidic devices. 

1.3 Dissertation Outline 

This dissertation is organized as follows. Chapter 2 provides the fundamental 

study of particle motion at a reservoir-microchannel junction under the effects of rDEP. 

Particle transport, focusing and trapping at the junction and, the parameters affecting 

them will be demonstrated. The chapter concludes with the discussion of potential 

applications of the reservoir-microchannel junction for particle separation based on the 
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differences in their physical properties. In Chapter 3, we utilize the reservoir-

microchannel junction to attain size based separation of particles under the application of 

DC-biased AC voltages. We further investigate the effects of enhanced electroosmotic 

flow on inter-particle interactions and its effects on the size based separating efficiency of 

the microfluidic device. Chapter 4 further expands the use of reservoir-microchannel 

junction to separating particles by charge. We demonstrate separation of same sized 

particles but having differences of surface charge at the junction. Investigation of effects 

of enhanced electroosmotic flow and frequency on charge based separation is also 

studied. The transport, focusing and selective trapping of live and dead yeast cells at the 

reservoir-microchannel junction under varying DC-biased AC fields and frequency will 

be demonstrated in chapter 5. In Chapter 6, a stacked microfluidic device to continuously 

concentrate and separate particles/cells is investigated with the goal to enhance 

throughput. Chapter 7 presents comparison between two-dimensional and three-

dimensional particle focusing and trapping. The electric field gradients in the vertical 

direction at the reservoir-microchannel junction can be utilized to enhance the 

dielectrophoretic force which can reduce the external electric field required to trap 

particles. A three dimensional focusing and trapping of particles to reduce the applied 

DC-biased AC voltage is proposed. All the experimental results obtained in Chapters 2, 

3, 4, 5, 6, and 7 are verified utilizing a numerical model. 

The fundamentals of reservoir-based dielectrophoresis are repeated in every 

chapter to facilitate easier reading of the thesis. Appropriate explanations and 

modifications are made in accordance to the aim attained in the chapter.  
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CHAPTER 2: Electrokinetic Motion of Particles at 

the Reservoir-microchannel Junction 

2.1 Introduction 

 Controlled manipulation of particles and cells is a key requirement for a 

microfluidic device. With the increased interest in microfluidics several particle 

manipulation techniques have been proposed. Several microchannel designs and force 

fields to control the particle manipulations have also been proposed. Particle 

electrokinetic motion in array of microchannels ranging from straight (Keh, H. J. 1985; 

Keh, Huan J. 1991; Shugai, A. A. 1999; Yariv, E. 2002; Hsu, J. P. 2004; Xuan, X. 2005; 

Davison, S. M. 2006; Liu, H. 2007; Unni, H. N. 2007; Hsu, J. P. 2007; Qian, S. 2008; Li, 

D. 2010; Liang, L. 2010; Liang, L. 2010), curved (Zhu, J. 2009; Church, C. 2009; Ai, Y. 

2010; Zhu, J. 2010), constricted (Ai, Y. 2009; Pysher, M. D. 2007; Hawkins, B. G. 2007; 

Kang, Y. 2008; Jones, P. V. 2011) and methodized (Lapizco-Encinas, B. H. 2004; Xuan, 

X. 2006; Qian, S. 2006; Zhu, J. 2009) has been extensively studied experimentally and 

numerically. The studies of particle motion in the above mentioned microchannels have 

been limited within the microchannel area. Particle motion at the reservoir-microchannel 

junction has not been paid any particular attention. The applied electric field becomes 

inherently non-uniform at the reservoir-microchannel junction due to the significant size 

mismatch between the macro (reservoir) and the micro (microchannel) components of a 

microfluidic device which can be used to focus, trap and separate particles. Electric field 
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has been extensively used as an external force field to control and manipulate particles 

owing to its ease of operation and control. Dielectrophoresis (DEP) is a force generated 

on application of non-uniform electric field and has become an important tool in 

microfluidics. Current DEP-based microfluidic separations of particles and cells have 

been implemented using primarily three approaches. The first approach is electrode-

based dielectrophoresis (eDEP), (Gagnon, Z. R. 2011; Cetin, B. 2011; Jesus-Perez, N. M. 

2011) where the frequency of AC electric fields imposed upon in-channel 

microelectrodes is tuned to obtain distinctive dielectrophoretic responses between live 

and dead cells. The result is a selective retention of one type of particles and cells upon 

the electrodes while the other type is either washed out by the medium flow (Wang, X. B. 

1993; Markx, G. H. 1994; Docoslis, A. 1997; Li, H. 2002; Suehiro, J. 2003; Doh, I. 2005; 

Urdaneta, M. 2007;  Hakoda, M. 2010) or travels itself through a stationary medium in 

response to a travelling electric field (Talary, M. S. 1996). Such eDEP separation has also 

been demonstrated in the form a lateral deflection of particles and cells to differential 

flow paths in the laminar medium stream, which can then be continuously sorted into 

separate reservoirs (Lewpiriyawong, N. 2011). The second approach to dielectrophoretic 

separation of particles and cells is insulator-based dielectrophoresis (iDEP), where an 

array of insulating posts are patterned onto a microchannel wall to periodically vary the 

externally applied electric field (Srivastava, S. K. 2011; Regtmeier, J. 2011). Due to their 

dissimilar dielectrophoretic responses, particles or cells can be trapped to different zones 

(Lapizco-Encinas, B. H. 2004) or only one particle or cell type can be selectively retained 

by the insulators (Jen, C. P. 2011). The third approach to DEP separation by cell viability 
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is contactless dielectrophoresis (cDEP), where electrodes are physically isolated from the 

particle or cell sample and electric field gradients are confined mainly to the smallest 

gaps between the main and side microchannels (Shafiee, H. 2009). Under the AC electric 

field of an appropriate frequency, particles and cells can be selectively trapped by 

positive DEP while other types can pass the trapping zone (Shafiee, H. 2010).  

We develop a new dielectrophoretic approach to manipulate particles and cells at 

the reservoir-microchannel junction which can be utilized to manipulate, selectively 

concentrate and, separate particles in a lab-on-a-chip device. The approach uses inherent 

electric field gradients formed at the junction, eliminating the requirement of mechanical 

or electrical components inside the microchannel. In this chapter, we perform an 

experimental and numerical study of electrokinetic particle motion at the reservoir-

microchannel junction. On application of external electric fields (both AC and DC), the 

polystyrene micro-particles are deflected away from the corners at the junction towards 

the centerline of the microchannel under the influence of negative dielectrophoretic force. 

We perform a fundamental study, to understand the effects of AC electric field, DC 

electric field and particle size on the electrokinetic motion of particles passing through 

the reservoir-microchannel junction. We herein also define a trapping number and a 

focusing number which facilitates in identifying the parameters that affects the trapping 

and focusing of particles at the junction. 
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2.2 Experiment  

2.2.1 Microfluidic Device Fabrication 

The microchannel was fabricated with polydimethylsiloxane (PDMS) using the 

standard soft lithography technique. Specifically, photoresist (SU 8-25, MicroChem, 

Newton, MA) was dispensed onto a clean glass slide, which was made to spin at an 

angular velocity of 2000 RPM (WS-400-NPP-Lite, laurel Technologies, North Wales, 

PA). The resulting 25 m  thick photoresist film was soft baked on a digital hotplate 

(HP30A, Torrey Pines Scientific, San Marcos, CA) in two steps at 65 C for 3 min and 

95 C for 7 min. It was then exposed to near UV light (ABM, San Jose, CA) through a 

negative photo mask with the printed microchannel pattern (CAD/Art Services, Bandon, 

OR). Following a two-step hard bake at 65 C for 1 min and 95 C for 3 min, the cured 

photoresist was developed in SU-8 developer solution (MicroChem, Newton, MA) for 4 

min, the result of which was a positive replica of the microchannel on the glass slide. 

After a brief rinse with isopropyl alcohol (Fisher Scientific, Pittsburg, PA) and a final 

hard bake at 150 C for 5 min, the photoresist was ready for use as the mold of the 

microchannel. 

Next, a mixture of 10:1 mass ratio of the pre-polymer and curing agent of PDMS 

(Sylgard 184 Silicon Elastomer) was mixed thoroughly and poured over the channel 

mold. After a 30-min degassing in an iso-temp vacuum oven (13-262-280 A, Fisher 

Scientific, Fair Lawn, NJ), liquid PDMS was cured at 70 C in a gravity convection oven 
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(13-246-506GA, Fisher Scientific) for 2 hours. The microchannel structure was cut using 

a scalpel and peeled off from the mold. Two holes were punched through the PDMS slab 

inside the originally designed circled at the channel ends, which acted as the reservoir in 

the experiments. The channel side of the PDMS was then plasma treated (PDC-32 G, 

Harrick Scientific, Ossining, NY) for 1 min along with a clean glass slide. Finally, the 

two treated surfaces were bonded together to form the microchannel.  

 

Figure 4: Picture of a PDMS-based microfluidic device used in the experiment (green 

food dye used for clarity). The inset displays a schematic view of the reservoir-

microchannel junction with actual dimensions. The block arrow indicates the particle 

moving direction in the experiments.  

The fabricated PDMS-glass microfluidic device is shown in figure 4. It is 

composed of a 1.2 cm long straight microchannel with a 5 mm-diameter reservoir at each 

end. The channel is 400 μm wide and has a constriction section of 40 μm with 1 mm 

length at the reservoir-microchannel junctions (refer to figure 4). The channel is 
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uniformly 25 μm in depth. These constrictions are designed for the purpose of reducing 

the applied electric voltage as the local electric field can be amplified.  

2.2.2 Particle Solution Preparation 

Polystyrene particles of 3, 5, and, 10 μm in diameter (Sigma-Aldrich, St. Louis, 

MO, USA) were re-suspended in 1mM phosphate buffer with a concentration of 10
6
-10

7
 

particles per milliliter to form three different particle solutions. Tween 20 (0.1% v/v, 

Fisher Scientific) was added to the particle solution to suppress particle adhesions to 

channel walls as well as particle aggregations. The particle solutions were mixed in a 

vortex generator prior to their use in the experiment, to ensure uniform distribution of 

particles.  

2.2.3 Particle Manipulation and Visualization 

The microchannel and its reservoirs were primed with the particle-free 1 mM 

phosphate buffer for 10 min. At the beginning of a separation experiment, the buffer 

solution in the inlet reservoir was vacated using a pipette and replaced with the respective 

particle mixture solution. Pressure driven flow was minimized by carefully balancing the 

liquid heights in the two reservoirs prior to each experiment. The reservoirs were made 

large with 5 mm in diameter and 3-4 mm in depth in order to minimize the back flow 

during the course of the experiment. The electrokinetic manipulation of the particles in 

the microfluidic device was attained by imposing DC-biased AC electric fields across the 

length of the microchannel. The electric fields were supplied by a function generator 
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(33220A, Agilent Technologies, Santa Clara, CA, USA) in conjunction with a high 

voltage amplifier (609E-6, Trek, Medina, NY, USA). The frequency of the AC field was 

fixed at 1 kHz in all the experiments. Particle motion was monitored using an inverted 

microscope (Nikon Eclipse TE2000U, Nikon Instruments, Lewisville, TX, USA), 

through which videos and images at the reservoir-microchannel junction were recorded 

using a CCD camera (Nikon DS-Qi1Mc).  

2.3 Theory 

2.3.1 Mechanism 

The electric field becomes inherently non-uniform at the reservoir microchannel 

junction (see figure 5, the darker color, the larger the magnitude) due to the large size 

mismatch between the reservoir and the microchannel. Particles experience a negative 

DEP force, FDEP, which induces a dielectrophoretic motion, UDEP, when moving 

electrokinetically from the reservoir to the microchannel as shown in figure 5. The time 

averaged UDEP of an isolated spherical particle using the dipole moment approximation 

under DC and low-frequency (<100 kHz) AC electric field is given by (Morgan, H. 2002; 

Jones, T. 1995); 
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Where r is the particle diameter, εf is the fluid permittivity; fCM is the Clausius-Mossotti 

factor, nf is the fluid dynamic viscosity, E is the local electric field, σp and σf are the 

electric conductivities of the particle, and the fluid, respectively. Polystyrene particles 

(Ermolina, I. 2005) and biological cells (Voldman,J. 2006) often appear poorly 

conducting in DC and low-frequency AC fields, one can have σp < σf, and thus fCM is 

negative, resulting into negative DEP (Jones, T. 1995),. Therefore, the FDEP and the 

resulting UDEP are directed towards the lower electric field region as indicated by the 

particle velocity in figure 5. 

The resulting particle velocity U, is the vector addition of the DC electrokinetic motion        

(combination of fluid Electroosmosis and particle Electrophoresis), UEK, and the AC/DC 

dielectrophoretic velocity, UDEP: 
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Figure 5: Illustration of rDEP for particles focusing and trapping at the reservoir-

microchannel junction.  The image also illustrates electric field lines and electric field 

contour (background color, the darker the higher electric field).  
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where EK is the particle electrokinetic mobility, EDC is the DC component of the applied 

DC-biased AC electric field, DEP is the particle dielectrophoretic mobility, p is the 

particle zeta potential, and w is the wall zeta potential. The electrokinetic velocity, UEK, 

is parallel to the electric field lines and hence stream-wise as flow field is similar to 

electric field lines in electrokinetics. However, the UDEP, exhibits a component along both 

the stream-wise and cross-stream-wise directions as illustrated in figure 5.  

Polystyrene particles experience negative DEP (i.e., DEP < 0), UDEP,n is directed towards 

the centerline of the microchannel as illustrated in figure 5, which produces a focusing 

effect on the suspended particles at the reservoir-microchannel junction (Zhu, J. 2012). 

UDEP,s, the other component exhibited by rDEP acts against the UEK and slows down the 

particle motion at the reservoir-microchannel junction. Additionally, since UDEP,s is 

proportional to square of the total electric field, while UEK is linearly proportional to only 

the DC field component, EDC, one can expect UDEP,s to counter-balance UEK at large 

electric fields, i.e., 
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where  is the AC to DC field ratio, i.e., E = EDC + EAC = EDC (1 + ). When this happens 

particles can be stagnated and concentrated at the reservoir-microchannel junction (Zhu, 

J. 2012). Such rDEP trapping is dependent on the electrokinetic to dielectrophoretic 

particle mobility ratio, 
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                                                       (2-2) 

which is function of particle size (r) and charge (p). Particles or cells with distinct 

extrinsic or intrinsic properties have different mobility ratios, thus we can potentially 

concentrate one type of particles in the upstream reservoir while the other type can flow 

through the microchannel and be concentrated in the downstream reservoir.  

2.3.2 Trapping and Focusing Number 

As shown in figure 5, trapping occurs when the stream-wise dielectrophoretic 

particle velocity, ,DEP sU ,  balances particle motion due to the stream-wise electrokinetic 

velocity of the particle, EKU ( 1T  ). If particle motion is only considered along the 

streamline (i.e. analogous to the electric field lines illustrated in figure 5), we can define a 

trapping number as the ratio of the two velocities. Therefore, the trapping number, T , 

can be expressed as, 
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In the above equation we know that (1 )DCE E   , where  is the AC to DC electric 

field ratio. Also, for a channel having length L , constriction width W and an external 

applied DC voltage DCV , we can approximate the average DC electric field, DCE , to be

/DCV L . Similarly 2 /E S  in the trapping number expression can be approximated as

2 /E W , the term increases with the increase in electric field and decrease in the 

constriction widthW . Replacing the expressions in Eq. (2-8) and simplifying, the 

expression for trapping number reduces to; 

2 2(1 )

( )
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p w

d f V

L W




 

   


  
                                                  (2-9) 

The trapping of particles at the reservoir-microchannel junction is governed by particle 

size, d , the Clausius-Mossotti factor, CMf , which is a function of particle and buffer 

solution conductivity and, permittivity, the applied average DC electric field, /DCV L , the 

AC to DC electric field ratio,  , the constriction width, W , and the particle and wall 

zeta potential difference, p w  , which governs the electrokinetic motion of particles. 

Based on the trapping number, T , define above, particles attributing differences in size, 

conductivity or zeta potential will generate dissimilar response at the reservoir-

microchannel junction and can be potentially separated from each other. 
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Similarly, we can also define a focusing number, F , as the ratio of the cross-

stream dielectrophoretic particle velocity, ,DEP nU , normal to the streamline and the vector 

addition of the stream-wise dielectrophoretic particle velocity, ,DEP sU ,  and electrokinetic 

particle velocity, EKU . The focusing number can then be defined as, 

2

2

DEP

F

EK DC DEP

E

R

E
E

S




 







                                                   (2-10) 

where, R is the radius of curvature. Using the approximations discussed above and 

simplifying Eq. (2-10), the focusing number can be reduces to, 
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                                         (2-11) 

As seen from Eq. (2-11), the focusing number is a function of radius of curvature, R , the 

constriction width, W , particle size, d , the Clausius-Mossotti factor, CMf , the applied 

DC voltage, DCV , the AC to DC electric field ratio,  , and the particle and wall zeta 

potential difference, p w  .  
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2.4 Numerical Simulation 

We developed a 2D numerical model in COMSOL 3.5a (Burlington, MA) to 

understand and predict the observed particle electrokinetic motion at the reservoir-

microchannel junction in the microchannel. The particle-particle and particle-wall 

interactions are neglected in the model. The local perturbation of the flow and the electric 

field due to presence of particles is also neglected, instead a correction factor, , is 

introduced to account for the effects of particle size on the dielectrophoretic velocity. 

Hence, the particle velocity in Eq. (2-12) is rewritten as 

2 2(1 )p EK DC DEP DC     U E E                                             (2-12) 

Particle trajectory is computed using the particle tracing function (COMSOL 3.5a) which 

utilizes the modified velocity expression in Eq. (2-12). The microchannel along with the 

two reservoirs (refer to figure 5) is used as the computational domain. Circle having a 0.5 

mm diameter is used to simulate electrodes in each reservoir. The external electric 

potential is imposed upon these circles. The electrode at the inlet reservoir is imposed 

with the experimentally applied DC voltage and the outlet reservoir is grounded. The 

electric conductivity of PDMS and glass being low, the channel walls are assumed 

electrically non-conducting. The DC electric field, DCE , is obtained by solving the 

Laplace equation 
2

0   where  is the DC electric potential.  

In numerical simulation, the electrokinetic mobility, EK , is determined by 

experimentally measuring the velocity of individual particles in a straight microchannel 
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where the DEP effects are negligible. The measured electrokinetic mobility was 

8 23.5 10 / ( )m V s   for 3 µm particles and 
8 23.2 10 / ( )m V s  for 5 and 10 μm particles. 

The dielectrophoretic mobility was calculated using Eq. (2-5) with electrical permittivity 

106.9 10 / ( )f C v m    and dynamic viscosity 31.0 10 / ( )f kg m s     for pure water 

at 20 C . The electrical conductivity of polystyrene particles was estimated using 

4 /p sK d  where 1sK nS is the surface conductance. The electrical conductance of 

the buffer solution (1mM phosphate buffer) was measured to be 200 /S cm . Therefore, 

the CM factors i.e., CMf  for 3, 5 and, 10 μm particles were calculated as -0.45, -0.47 and, 

-0.49 respectively. The correction factor, , used for 3, 5 and, 10 μm particles is 0.8, 0.6 

and 0.3 respectively, which is consistent with previous studies (Zhu, J. 2009). 

2.5 Results and Discussion 

2.5.1 AC Electric Field Effects on Particle Focusing 

Experimentally obtained snapshots (top row) and superimposed (middle row) 

images of 5 µm particles moving through the reservoir-microchannel junction under 

various DC-biased AC electric fields are shown in figure 6. The applied DC voltage is 

fixed at 50 V, resulting into an average DC electric field of 50 V/cm and, the AC voltage 

(RMS) is varied to understand particle electrokinetic motion under various AC to DC 

voltage ratios, α. Under the application of pure DC voltage (i.e. α = 0), 5 µm particles 

experience pure DC electrokinetic motion and move through the reservoir-microchannel 
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junction occupying the entire microchannel width as shown in Figure 6(a). The induced 

negative dielectrophoretic force at the reservoir-microchannel junction is weak resulting 

into minimal deflection of the particles. However, on application of AC voltage of 200 V 

(i.e. α = 4), 5 µm particles are deflected towards the centerline of the reservoir-

microchannel junction which is illustrated in figure 6(b). The electrokinetic velocity, EKU , 

of the particles is solely a function of applied DC electric field and does not change with 

the application of AC electric field. On the other hand the dielectrophoretic velocity, DEPU

, of the particle is a function of both DC and AC applied electric fields. Increasing the AC 

voltage induces reservoir-based dielectrophoretic force (rDEP), which deflects the 

particles towards the center of the microchannel reducing the particle stream width. On 

further increasing the applied AC voltage, i.e., α = 8, the induced rDEP force increases 

and the particles are further pushed towards the centerline of the channel as seen in figure 

6(c). Particles form a single file (pearl chain) and are well focused along the centerline as 

they move through the reservoir-microchannel junction. When the AC voltage is 

increased to 550 V (i.e. α = 11), particles get trapped inside the reservoir as seen in figure 

6(d). The AC voltage of 550 V generates sufficient opposing dielectrophoretic velocity,

DEPU , to overcome the electrokinetic velocity, EKU  (refer to figure 5) and gets trapped at 

the reservoir-microchannel junction.  
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Figure 6: Comparison of experimentally obtained (snapshot and superimposed) and 

numerically predicted trajectories of 5 μm particles passing through the reservoir-

microchannel junction under the influence of rDEP at various DC-biased AC voltages. 

The DC voltage applied, is fixed at 50 V and the AC (RMS) voltage at 1 kHz frequency 

is varied from (a) 0 V (α = 0) to (b) 200 V (α = 4), (c) 400 V (α = 8), and (d) 550 V (α = 

11). 

From the results in figure 6, it is apparent that the particle deflection towards the 

centerline of the microchannel increases with the increase in the applied AC electric field 

intensity. Figure 6 also shows the comparison between experimentally obtained (top and 

middle row) and numerically predicted (bottom row) particle trajectories, which agree 

considerably well in all four cases (6(a) to 6(d)). The agreement between the 
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experimentally obtained and numerically predicted results validates the numerical model 

developed. From the focusing number defined in section 2.3.2, we can see that it is a 

function of AC to DC ratio, . With the increase in AC voltage the AC to DC ratio,  

increases. Application of larger AC fields increases the focusing number corresponding 

to increased particle focusing which is evident from the experimental and numerical 

results shown in figure 6 and 7. 

 

Figure 7: Illustration of experimentally measured and numerically predicted stream width 

of 5 μm particles passing through the reservoir-microchannel junction under the influence 
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of rDEP at various DC-biased AC voltages. The DC voltage applied, is fixed at 50 V and 

the AC (RMS) voltage at 1 kHz frequency is varied. 

The 5 μm particle stream width was measured from the experimentally obtained 

superimposed images at various DC-biased AC electric fields. The measured 5 μm 

particle stream width was then compared with the numerically predicted particle width, 

which was extracted from the model.  As seen in figure 7, there is a close agreement 

between the experimentally and numerically obtained widths of the focused particle 

streams at different DC-biased AC electric fields. Initially the particles are uniformly 

distributed throughout the microchannel (i.e. Particle stream width is 40 µm at α = 0) but 

gradually get focused under the increasing influence of rDEP force induced with the 

increase in applied AC voltage.   

2.5.2 DC Electric Field Effects on Particle Focusing 

Figure 8 shows the experimentally (snapshot and superimposed images) obtained 

and numerically (modeling images) predicted 5 µm particle trajectories under various 

DC-biased AC electric fields.  In this study the applied AC voltage was fixed at 200 V 

(RMS) at 1 kHz frequency and the DC voltage was varied from 25 V to 100 V (i.e. α = 8 

to α = 2) to understand particle electrokinetic motion under various DC-biased AC 

electric fields.  
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Figure 8: Comparison of experimentally obtained (snapshot and superimposed) and 

numerically predicted trajectories of 5 μm particles passing through the reservoir-

microchannel junction under the influence of rDEP at various DC-biased AC voltages. 

The AC (RMS) voltage applied at 1 kHz frequency, is fixed at 200 V and the DC voltage 

is varied from (a) 25 V (α = 8) to (b) 50 V (α = 4), (c) 75 V (α = 2.67), and (d) 100 V (α = 

2). 

At DC voltage of 25 V (i.e. α = 8) as seen in figure 8(a) the 5 µm particles move 

away from the corners of the junctions towards the centerline forming a narrower particle 

stream compared to the microchannel width. However, when the magnitude of the 

applied DC voltage is increased the particle stream width also increases as seen in figure 

8(b) to 8(d).  With the increase in the DC electric field the electrokinetic velocity, EKU , of 
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the particles also increases and particles move faster through the reservoir-microchannel 

junction compared to the lower DC electric fields. The duration for which the particles 

experience rDEP force at the reservoir-microchannel junction under the influence of 

applied DC-biased AC voltage reduces with the increase in particle electrokinetic 

velocity. Due to this the focusing width of the particles moving through the reservoir-

microchannel junction increases, decreasing the focusing performance. 

 

Figure 9: Illustration of experimentally measured and numerically predicted stream width 

of 5 μm particles passing through the reservoir-microchannel junction under the influence 

of rDEP at various DC-biased AC voltages. The AC (RMS) voltage applied at 1 kHz 

frequency is fixed at 200 V and the DC voltage is varied. 
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Similar to section 2.5.1, the experimentally measured 5 μm particle stream width 

was compared with the numerically predicted particle width, which was extracted from 

the model.  As seen in figure 9, there is a reasonable agreement between the 

experimentally and numerically obtained widths of the focused particle streams at 

different DC-biased AC electric fields. Initially under the application of 25 V DC and 

200 V AC, the particles are focused towards the centerline of the microchannel but with 

the gradual increase in the magnitude of applied DC voltage the particle stream width 

also increases.   

2.5.3 Particle Size Effects on Particle Focusing 

As shown in figure 10, particle deflection from the corners of the junction 

increases with the increase in the particle size under the influence of same applied DC-

biased AC electric field. The increase in particle deflection towards the centerline with 

the increase in particle size can be attributed to the direct dependence of rDEP force on 

the volume of the particle as illustrated in Eq. (2-1).  
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Figure 10: Comparison of experimentally obtained (snapshot and superimposed) and 

numerically predicted trajectories of 3, 5 and, 10 μm particles passing through the 

reservoir-microchannel junction under the influence of rDEP at DC-biased AC voltage of 

50 V DC and 200 V AC (α = 4). 

The rDEP force experienced by the 10 µm particles is much larger compared to 

that of 3 and 5 µm particles due to its large volume, therefore the 10 µm particles observe 

the largest deflection from the corners of the junction towards the centerline of the 

microchannel. The observed stream width of 10 µm particles is the smallest compared to 

the other smaller particle sizes. The deflection of 5 µm particles is also larger compared 

to the 3 µm particles under the influence of same DC-biased AC electric fields and the 
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later show the least deflection and thus the maximum stream width. The above 

demonstrated dissimilar responses of different particle sizes at the reservoir-microchannel 

junction can be utilized to selectively concentrate and separate particles by size inside the 

reservoir.   

 

Figure 11: Illustration of experimentally measured and numerically predicted stream 

width of 3, 5 and, 10 μm particles passing through the reservoir-microchannel junction 

under the influence of rDEP at various DC-biased AC voltages. The DC voltage applied, 

is fixed at 50 V and the AC (RMS) voltage at 1 kHz frequency is varied. 

Figure 11 shows the comparison of experimentally measured and numerically 

predicted particle stream width for 3, 5, and, 10 m particles under the influence of 
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various DC-biased AC voltages and using the method described in section 2.5.1. It is 

eminent from figure 11 and section 2.5.1, that the particle stream width decreases with 

the increase in AC to DC ratio, . However, particles of different sizes experience 

dissimilar deflection and larger particles are deflected more from the corners of the 

junction allowing them to focus at lower DC-biased AC voltages compared to their 

smaller counterparts. 10 m particles are well focused at a lower AC to DC ratio (i.e.  = 

6), whereas 5 and 3 m particles exhibits larger stream width as the magnitude of rDEP 

force experienced by the smaller particle is lower. From the focusing number defined in 

section 2.3.2, we can see that it is a function particle size, d. With the increase in particle 

size the focusing number also increases corresponding to increased particle focusing 

which is evident from the experimental and numerical results shown in figure 10 and 11. 

2.5.4 Particle Trapping and Concentration 

 Figure 12 shows the comparison of experimentally obtained (snapshot and 

superimposed) and numerically predicted trajectories of 3, 5 and 10 μm particles trapped 

at the reservoir-microchannel junction under the influence of rDEP at various DC-biased 

AC voltages. The three different size of particles are trapped at a different DC-biased AC 

fields. When the stream-wise dielectrophoretic velocity counteracts the electrokinetic 

velocity particles are trapped at the reservoir microchannel junction. The 3 μm particles 

as shown in figure 12(a), are trapped at the junction on application of 50 V DC and 975 V 

AC ( = 19.5) whereas the 5 (figure 12(b)) and 10 (Figure 12(c)) μm particles are trapped 

at 50 V DC and 550 V AC ( = 11), and 50 V DC and 400 V AC ( = 8) respectively. 
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The dielectrophoretic force responsible for slowing down of particles and eventually 

trapping them at the junction is a function of size. Consequently, the 3 μm particles 

require a relatively larger AC to DC voltage ratio, , compared to 5 and 10 μm particles. 

With the increase in size of the particles the DEP force experienced by them at the 

junction also increases, evident from the lower AC to DC ratio required for trapping of 

larger particles compared to the smaller counterparts. The numerical modeling results 

also qualitatively agree with the experimental results in Figure 12. The size dependence 

of dielectrophoretic force can be utilized to separate particles from a mixture. Potentially, 

we can apply specific electric field that can trap larger particles in a mixture whereas the 

smaller ones can pass through the junction into the outlet reservoir resulting into 

continuous size based separation and concentration of particles.  
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Figure 12: Comparison of experimentally obtained (snapshot and superimposed) and 

numerically predicted trajectories of 3, 5 and 10 μm particles trapped at the reservoir-

microchannel junction under the influence of rDEP at various DC-biased AC voltages. 

The DC voltage applied is fixed at 50 V and the AC (RMS) voltage applied to trap the 

particles at 1 kHz frequency, is (a)  975 V (α = 19.5) to (b) 550 V (α = 11), and (c) 400 V 

(α = 8). 

The trapping number is the ratio of stream-wise dielectrophoretic velocity 

component to electrophoretic velocity and can be used to understand the parameters that 

affect trapping. The trapping number increases with the increase in particle size. Particles 

that are larger in size have larger trapping number associated with them and can be 

trapped easily. From the experimental and numerical results shown in figure 12, larger 
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particles are trapped at a lower AC to DC voltage ratio, . The electric field magnitude 

required to trap larger particles is smaller compared to the smaller particles which is 

consistent with the trapping number analysis.  

2.6 Summary 

We have, in this chapter demonstrated the electrokinetic particle motion through 

the reservoir-microchannel junction under the effects of rDEP force, induced due to the 

significant size mismatch between the reservoir and the microchannel. A 2D numerical 

model was also developed using COMSOL 3.5a to simulate the particle motion through 

the reservoir-microchannel junction, which closely agreed with the experimental results. 

The experimental and numerical results provides with a potential, to use reservoir-based 

dielectrophoresis (rDEP) for particle focusing, trapping and sorting in microfluidic 

devices. The applied electric field becomes inherently non-uniform at the reservoir-

microchannel junction due to the significant size mismatch between the macro (reservoir) 

and the micro (microchannel) components of a microfluidic device. The non-uniform 

electric field at the reservoir-microchannel junction produces a dielectrophoretic force 

which induces particle dielectrophoretic motion; we term it as reservoir-based 

dielectrophoresis (rDEP). Reservoir-based dielectrophoresis differs from traditional 

methods in that it can be used to manipulate particles completely inside the reservoir, 

which enables the use of the entire microchannel for other purposes. As miniaturization is 

an important parameter for lab-on-a-chip devices, integrating such a device can be 

advantageous. Moreover, the device fabrication and operation is also simple as it does not 



40 
 

require any mechanical or electrical components inside the microchannel. The reservoir-

microchannel junction produces inherent non-uniform electric field eliminating the need 

for fabrication of in-channel microelectrodes. As described in section 2.5.4, the particles 

can be separated based on the differences they attribute in size, charge, conductivity etc. 

In the following chapters, we demonstrate the use of reservoir-based dielectrophoresis for 

continuous particle concentration and separation at the junction.  
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CHAPTER 3: Particle Separation by Size Using 

Reservoir-based Dielectrophoresis (rDEP) 

3.1 Background on Particle Separation 

 In the fields of forensics, chemical and biological analysis, biomedical 

applications etc.; microfluidics has turned out to be a very useful tool and is utilized 

extensively in separating micron sized species from a mixture. The isolation of different 

cells from a mixture is one of the fundamental procedures in cell culture, disease 

diagnostics, and cell therapy or in other clinical areas. In order to reduce power 

consumption and sample volume utilized for particle separation a number of miniaturized 

devices have been developed that take advantage of microfluidics. Microfluidic devices 

generally consume small sample volume and allow for faster operations.  For this 

purpose, electric (Gascoyne, P. R. 2002; Hughes, M. P. 2002; Srivastava, S. K. 2011; 

Regtmeier, J. 2011), acoustic (Laurell, T. 2007; Friend, J.), optical (Wang, M. M. 2005; 

Kim, S. B. 2008), magnetic (Pamme, N. 2006; Gijs, M. A. 2010), hydrodynamic 

(Yamada, M. 2004; Yamada, M. 2005; Yamada, M. 2006; Davis, J. A. 2006; Choi, S. 

2007), and inertial (Di Carlo, D. 2009; Kuntaegowdanahalli, S. S. 2009) forces have been 

widely used to separate particles and these methods can be readily integrated on 

microfluidic devices (Pamme, N. 2007; Kersaudy-Kerhoas, M. 2008; Tsutsui, H. 2009; 

Lenshof, A. 2010; Bhagat, A. A. 2010). These separations methods are well developed 

but require labeling of fluorescent (Fu, A. Y. 1999) or magnetic (Adams, J. D. 2008) 
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labeling of the targeted or non-targeted particles. Additionally, some of the methods 

described above also require integration of mechanical moving parts, optical lattice, 

heaters, micro-pumps etc., which is complex and also difficult to fabricate. Alternate 

approaches to separate particles in microfluidic devices based on their size is obtained by 

filtering particles through sieving structures (Yamada, M. 2005) or by differential 

interaction of particles with local flow profiles (Yamada, M. 2004; Yamada, M. 2004; 

Yamada, M. 2006). The use of micro-fabricated filters or laminar fluid flow in the above 

mentioned methods eliminated the use of externally applied force fields, and permitting 

swift, and efficient particle separation. However, fabrication of micro-filters used in 

sieving separation is difficult and external pumps for controlling flow rates are required 

in laminar fluid flow particle separation. 

 Dielectrophoresis (DEP) is one of the most effective techniques used to separate 

synthetic as well as biological spices. The dependence of DEP force on size and shape of 

the particles, the magnitude and frequency of the non-uniform electric field, the electrical 

properties of fluid and particles has been utilized to demonstrate particle manipulation 

and separation. DEP force in microfluidics has been used to separate micro-particles 

(Lewpiriyawong, N. 2008; Holmes, D. 2005; Kua, C. H. 2007; Rosenthal, A. 2005; Zhu, 

J. 2009), yeast cells (Kadaksham, J. 2005), DNA (Parikesit, G. O. 2008), virus (Grom, F. 

2006; Docoslis, A. 2007), bacteria (Lapizco-Encinas, B. H. 2004; Yang, L. 2008), red 

blood cells (Gordon, J. E. 2007; Park, J. 2005) and cancer cells (Kang, Y. 2008). 

Dielectrophoresis based separation techniques do not require sample modifications, 

allowing for convenient separation and collection of samples compared to fluorescent or 
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magnetic marking techniques which requires agent coating to be removed after separation 

(Wolff, A. 2003; Miltenyi, S. 1990). A number of studies reported in literature utilize 

electrode-based dielectrophoresis (eDEP). In this type of dielectrophoretic separation 

high frequency AC electric voltages are imposed on closely spaces microelectrodes 

arrays to produce non-uniform electric fields (Gagnon, Z. R. 2011; Cetin, B. 2011; Jesus-

Perez, N. M. 2011). However, microelectrode based DEP systems encounter electrode 

surface fouling and fabrication of such microfluidic device is complex. An alternate 

approach to microelectrode based DEP is the Insulator-based dielectrophoresis (iDEP). 

iDEP eliminates the issues with microelectrode based DEP by using insulating hurdles 

and posts to locally amplify the electric field and generate non-uniformity (Srivastava, S. 

K. 2011; Regtmeier, J. 2011). The insulators are made of the microchannel material itself 

which reduces the fabrication complexity and are less prone to fouling compared to 

electrodes. Furthermore, external electrical voltage can be applied to the electrodes 

positioned inside the reservoir at both ends of the channel to create electrokinetic flow 

rendering the usage of external pumping unnecessary. However, the in-channel micron 

sized hurdles and posts may cause Joule heating and particle clogging (Kale, A. 2013; 

Sridharan, S. 2011). 

 All the methods mentioned above attain non-uniform electric fields with in-

channel electrodes or hurdles within the microchannel area. No attention is paid at the 

reservoir-microchannel junction where the electric field becomes inherently non-uniform 

due to large size variation between the reservoir and the microchannel. Additionally, 

separation of particles can be attained inside the reservoir which renders the usage of 



44 
 

microchannel for post analysis. The large volume of fluid inside the reservoir also 

eliminates the negative effects of Joule heating which is a major concern in iDEP and 

eDEP devices. We herein propose a new size based particle separation method in 

microchannels at the reservoir-microchannel junction termed as reservoir-based 

dielectrophoresis (rDEP). We utilize rDEP to separate 3 m particles from 10 m 

polystyrene particles at the reservoir-microchannel junction. We also utilize rDEP to 

separate 3 m particles from 5 m particles wherein we study the inter-particle 

interactions affecting the separation efficiency. The effect of enhanced electrokinetic 

flow on inter-particle interactions during the separation process is studied. The rDEP 

separation of particles is studied using a combined experimental and numerical analysis.  

3.2 Experiment 

 The microchannel was fabricated with polydimethylsiloxane (PDMS) using the 

standard soft lithography technique. The detailed procedure is mentioned in chapter 2. 

The PDMS-glass microfluidic device is composed of a 1 cm-long straight microchannel 

with a 5 mm-diameter reservoirs at each end. The channel is 400 µm wide and has a 

constriction section of 40 µm width and 1 mm length at the reservoir microchannel 

junction. The slab containing the microchannel structure was cut using a scalpel and 

peeled off. Two holes were punched through the PDMS slab inside the originally 

designed circles at the channel ends and the center, which served as the reservoirs in 

experiments. The reservoirs were cut with a diameter of 5 mm and a depth of 3–4 mm, to 

ensure that their sizes are large enough to minimize the back flow during the course of 
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experiment. The channel side of the PDMS was then plasma treated (PDC-32 G, Harrick 

Scientific, Ossining, NY) for 1 min along with a clean glass slide. The two treated 

surfaces were bonded together to form the glass/PDMS microchannel. Polystyrene 

particles of 3, 5 and 10 µm in diameter (Sigma-Aldrich, St. Louis, MO) were used to 

demonstrate the size based separation at the reservoir microchannel junction. The 

particles were suspended in 1 mM phosphate buffer to a final concentration of 10
6
–10

7
 

particles per milliliter. Tween 20 (Fisher Scientific, Waltham, MA, USA) was added to 

the particle solution at 0.1% v/v to suppress the aggregation of particles and their 

adhesion to channel walls.  

3.3 Theory  

Electric field gradients are formed at the reservoir-microchannel junction as the 

electric field becomes inherently non-uniform due to the size difference between the 

reservoir and the microchannel. The electric field gradients induce dielectrophoretic 

force, FDEP at the reservoir-microchannel junction. The FDEP force is encountered by the 

particles when moving electrokinetically from the reservoir to the microchannel as shown 

in figure 13. The time averaged FDEP on an isolated spherical particle at low AC field 

frequency is given by  (Morgan, H. 2002) 

 31

2
DEP f CMd f F E E                                                              (3-1) 
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
                                                                         (3-2) 
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where d is the particle diameter,  is the medium permittivity and CMf is the Clausius-

Mossotti (CM) factor. The Clausius-Mossotti (CM) factor for DC biased low frequency 

AC electric field is given by Eq. (3-2) with p and m being the particle and medium 

conductivities respectively. Particles experience poor conductivity in DC and low-

frequency AC fields, consequently p m  , and thus fCM (Clausius-Mossotti factor) is 

negative, resulting into negative DEP (Jones, T. 1995). Particles experiencing negative 

DEP force, FDEP, induce a dielectrophoretic motion, UDEP, as shown in figure 13. 

The resulting particle and cell velocity U, is the vector addition of the DC 

electrokinetic motion (combination of fluid electroosmosis and particle electrophoresis), 

UEK, and the AC/DC dielectrophoretic velocity, UDEP: 

 



47 
 

 

Figure 13: Illustration of rDEP for particles focusing and trapping at the reservoir-

microchannel junction.  The image also illustrates electric field lines and electric field 

contour (background color, the darker the higher electric field).  
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where EK is the electrokinetic particle mobility, EDC is the DC component of the applied 

DC-biased AC electric field, DEP is the dielectrophoretic particle mobility, p is the 

particle zeta potential, and w is the wall zeta potential.  
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UDEP,n  for particles and cells experiencing negative DEP is directed towards the 

centerline of the microchannel as shown in figure 13, producing a focusing effect on the 

particles or cells moving electrokinetically at the reservoir-microchannel junction (Zhu, J. 

2012). UDEP,s, the stream wise component exhibited by rDEP acts against the UEK and 

slows down the particle motion at the reservoir-microchannel junction. UDEP,s is 

proportional to square of the total electric field, whereas UEK is linearly proportional to 

only the DC field component, EDC. At large electric fields this proportionality difference 

on the electric field can be utilized to counter-balance UEK with UDEP,s, i.e.,  

2
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where  is the AC to DC field ratio, i.e., E = EDC + EAC = EDC (1 + ). When the 

condition in Eq. (3-6) is satisfied particles and cells can be selectively trapped and 

concentrated at the reservoir-microchannel junction (Zhu, J. 2012). Particle trapping at 

the reservoir-microchannel junction is governed by the electrokinetic to dielectrophoretic 

mobility ratio shown in Eq. (3-7) 
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Essentially, the particles with lower electrokinetic mobility and higher dielectrophoretic 

mobility can be trapped at lower AC to DC field ratio, α. The dielectrophoretic mobility 



49 
 

is a function of particle size, d , which indicates that particles with larger size can be 

trapped  at the junction and the smaller sized particles can be swept downstream towards 

the other reservoir.  

3.3.1 Separation Mechanism 

As seen from figure 14(a), two particles different in size are moving from the 

reservoir towards the reservoir-microchannel junction. Both the particles possess almost 

identical electrokinetic mobility and move at uniformly velocity. The particles encounter 

small electric field gradients at the corresponding location away from the reservoir-

microchannel junction and consequently the stream-wise dielectrophoretic velocity 

component acting against the electrokinetic velocity is also weak.  

 

Figure 14: Analysis of electrokinetic and dielectrophoretic velocities of particles 

undergoing separation at the reservoir microchannel junction. The arrows are 

proportional to the magnitude of electrokinetic (blue) and dielectrophoretic (red) 

velocities experienced by particles approaching reservoir-microchannel junction. The 

electric field lines (black lines) and the contour of electric field (darker the larger) are 

also illustrated. 

As the particles approach the reservoir-microchannel junction seen in figure 

14(b), the electrokinetic velocity, which is a linear function of electric field increases. 
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The electrokinetic velocity increases because of the local amplification of electric field 

caused by the sudden variation in cross sectional area from the reservoir to the 

microchannel. Alternately, the stream-wise dielectrophoretic velocity component which 

is a second-order function of electric field increases sharply. The increased stream-wise 

dielectrophoretic velocity component counteracts the electrokinetic velocity, slowing 

down the particles. The dielectrophoretic force inducing the dielectrophoretic velocity is 

a function of size as well. Therefore, larger particle will experience a larger opposing 

dielectrophoretic velocity to counter the electrokinetic velocity. Consequently, larger 

particles at sufficient DC-biased AC voltages will get trapped at the reservoir-

microchannel junction and comparatively smaller particles will pass through the junction 

towards the outlet reservoir. The schematic of particle separation at the reservoir 

microchannel junction can be seen in figure 14(c). Theoretically, any two particle that 

attribute differences in the stream-wise dielectrophoretic velocity to electrokinetic 

velocity ratio can be selectively trapped and separated at the reservoir-microchannel 

junction. 

3.4 Numerical Simulation 

The experimental observations are validated by a model numerically solved using 

commercial finite element package, COMSOL Multiphysics 4.3a (Burlington, MA). 

Neglecting the effects of the particle on the electric field distribution, the DC electric 

field distribution            , on the plane of channel length and width is obtained by 

solving 2D Laplace equation       , for the electric potential with electric insulation 
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boundary condition on the channel wall, and imposed voltages on the surfaces of the 

electrodes.  With the known electric field the particle velocity is calculated by: 

2(1 )( . )EK DC DEP DC DC     U E E E                                        (3-8) 

The value of  varies from 0 to 1 and decreases with the increase in particle size. To 

compute the particle velocity using Eq. (3-8), the electrokinetic mobility, EK, was 

determined by tracking the motion of individual particles in the main body of the 

microchannel where DEP force is negligible under a small DC field. The measured 

electrokinetic mobility was 
8 23.5 10 / ( )m V s   for 3 µm particles and 

8 23.2 10 / ( )m V s  for 5 and 10 μm particles respectively. The dielectrophoretic particle 

mobility, DEP, in Eq. (3-3) was calculated from Eq. (3-4) with the typical dynamic 

viscosity, 31.0 10 / ( )f kg m s     and permittivity 106.9 10 / ( )f C v m     for pure 

water at 20 C. The correction factors for the 3, 5 and 10 µm particles are, respectively, 

0.8, 0.6 and 0.4. Particle tracing function within COMSOL 4.3a was utilized to 

numerically predict the particle separation process. Velocity expression shown in Eq. (3-

8) was calculated for the two particles undergoing the separation. Simultaneously plotting 

the particle trajectories of both the particles at voltage applied during the separation 

process produced the results which were utilized to demonstrate the numerically 

predicted separation. 
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3.5 Results and Discussion 

3.5.1 Size-based separation of 3 and 10 µm polystyrene particles using 

rDEP 

 Experimentally obtained snapshots (figure 15(a)) and superimposed (figure 15(b)) 

images of 3 and 10 µm particle separation at the reservoir-microchannel junction under a 

DC-biased AC electric field of 50 V DC and 400 V AC is shown in figure 15.  

 

Figure 15: Comparison of experimentally obtained snapshot (a) and superimposed (b) 

images with numerically predicted trajectories (c) of 3 and 10 μm particle separation at 

the reservoir-microchannel junction under the influence of rDEP. The DC voltage applied 

is 50 V and the AC (RMS) voltage applied is 400 V at 1 kHz frequency. 

The 3 µm particles are driven through the microchannel by electroosmotic flow, 

while the 10 µm particles are trapped and form pearl chains within the reservoir near the 

entrance of the microchannel on application of 50 V DC biased 400 V AC voltages. The 

two particles have approximately the same electrokinetic mobility, however, 10 µm 

particles possess a smaller mobility ratio, µEK/(-µDEP), than 3 µm particles indicated by 
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Eq. (3-7). Therefore, we are able to selectively concentrate 10 µm particles at the 

reservoir-microchannel junction under the applied DC-biased AC electric field, at which 

3 µm particles are too small to be trapped by rDEP and thus swept to the exit reservoir. 

Since the DEP force is proportional to particle volume, DEP force acting on the 3 µm 

particles is lower than that on the 10 µm particles, and is not enough to overcome the 

hydrodynamic force. Therefore, 3 µm particles cannot be trapped by the DEP force at the 

reservoir-microchannel junction at the applied voltage, and flows through the 

microchannel towards the downstream reservoirs. In contrast, 10 µm particles are trapped 

inside the reservoir near the entrance due to sufficiently generated DEP at the applied 

voltage. Figure 15 clearly shows that we can continuously separate 10 µm particles and 3 

µm particles using rDEP. The theoretical predictions of trajectories of 3 and 10 µm 

particles shown in figure 15(c) shows that the 3 µm particles passes along the centerline 

of the microchannel towards the downstream, while the large 10 µm particles are trapped 

inside the reservoir. The theoretical predictions qualitatively agree very closely with the 

experimental observations. The trapping number associated with 10 µm particles is much 

larger than 3 µm particles owing to its large size difference, which suggests they can be 

easily separated. We can see from the experimental analysis the separation efficiency of 3 

and 10 µm particles is much higher compared to 3 and 5 µm particles. The inter-particle 

interaction between the 3 µm particles being swept from the inlet to outlet reservoirs, and 

10 µm particles trapped at the reservoir-microchannel junction is low which results into 

very high separation purity. The low inter-particle interaction can be attributed to a very 
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large size difference between the 3 and 10 µm particles and, the AC field applied to 

separate the particles being small. 

3.5.2 Size-based separation of 3 and 5 µm polystyrene particles using 

rDEP 

 In order to study the separation of polystyrene particles having size differences we 

studied the separation of 3 and 5 µm size particles at the reservoir-microchannel junction. 

Experimentally obtained snapshots (top row) and superimposed (middle row) images of 3 

and 5 µm particles moving through the reservoir-microchannel junction under various 

DC-biased AC electric fields is shown in figure 16. The applied DC voltage is fixed at 25 

V, resulting into an average DC electric field of 25 V/cm and, the AC voltage (RMS) is 

varied to understand particle electrokinetic motion under various AC to DC voltage 

ratios, α. Under the application of pure DC voltage (i.e. α = 0), 3 and 5 µm particles 

experience pure DC electrokinetic motion and move through the reservoir-microchannel 

junction occupying the entire microchannel width as shown in figure 16(a). The induced 

negative dielectrophoretic force under pure DC field at the reservoir-microchannel 

junction is weak resulting into minimal deflection of the particles. However, on 

application of AC voltage of 450 V (i.e. α = 18), 3 and 5 µm particles are deflected 

towards the centerline of the reservoir-microchannel junction under the effect of negative 

dielectrophoresis which is illustrated in figure 16(b). The electrokinetic velocity, EKU , of 

the particles is solely a function of applied DC electric field and does not change with the 

application of AC electric field.  
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Figure 16: Comparison of experimentally obtained snapshots and superimposed images 

with numerically predicted trajectories of 3 and 5 μm particle separation at the reservoir-

microchannel junction under the influence of rDEP at various DC-biased AC voltages. 

The DC voltage applied, is fixed at 25 V and the AC (RMS) voltage at 1 kHz frequency 

is varied from (a) 0 V (α = 0) to (b) 450 V (α = 18), and (c) 550 V (α = 22). 

On the other hand the dielectrophoretic velocity, DEPU , of the particle is a function 

of both DC and AC applied electric fields. Increasing the AC voltage induces stronger 

dielectrophoretic velocity compared to pure DC voltage without changing the 

electrokinetic velocity. The normal dielectrophoretic velocity component, ,DEP nU , gives 

rise to particle motion normal to the electric field lines, which deflects the particles 
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towards the center of the microchannel reducing the particle stream width. The DEP force 

acting on the particles at the reservoir-microchannel junction is a strong function of 

particle size. A larger particle, which is 5 µm in this particular case, experiences a larger 

magnitude of DEP force acting on it compared to smaller 3 µm particles. Therefore, the 5 

µm particles are deflected more towards the centerline of the microchannel forming a 

narrower stream compared to the 3 µm particles. When the AC voltage is increased to 

550 V (i.e. α = 22), 5 µm particles get trapped inside the reservoir as seen in figure 16(c) 

as the stream-wise component of the dielectrophoretic velocity counteracts to the 

electrokinetic velocity. The two particles have approximately the same electrokinetic 

mobility, however, 5 µm particles possess a smaller mobility ratio, µEK/(-µDEP), than 3 

µm particles indicated by Eq. (3-7). The AC voltage of 550 V generates sufficient 

opposing dielectrophoretic velocity, DEPU , to overcome the electrokinetic velocity, EKU  of 

the larger 5 µm particles and they get trapped at the reservoir-microchannel junction. 

However, for the smaller 3 µm particles dielectrophoretic velocity, DEPU , is not sufficient 

to overcome the electrokinetic velocity, EKU , and they are swept from the inlet reservoir 

into the outlet reservoir resulting into continuous particle separation at the reservoir-

microchannel junction. 

 Based on the trapping number, T , analysis introduced in Chapter 2 section 2.3.2, 

particles that are inherently different by size, charge or conductivity possess a different 

trapping number at the same applied DC-biased AC voltages. Trapping number is 

essentially the ratio of particle dielectrophoretic velocity in the stream-wise direction to 
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that of the electrokinetic velocity. The trapping number can be used to better understand 

the parameters that affect trapping of particles at the reservoir-microchannel junction. 

The trapping number increases with the increase in particle size, Clausius-Mossotti 

factor, DC voltage and AC to DC voltage ratio. Trapping number can also be increased 

by decreasing the particle’s electrokinetic mobility, length of the channel and constriction 

width. Particles in a mixture those are different in size, charge or conductivity properties 

will possess a different trapping number and can be potentially separated. For size based 

separation we can see that trapping number is a function of particle diameter. The particle 

that has a larger diameter tends to attribute a larger trapping number compared to the 

smaller counterpart. As trapping number corresponding to 5 µm particles is larger than 

the 3 µm particles, we can trap the 5 µm particles at the reservoir-microchannel junction. 

Therefore, we are able to selectively concentrate 5 µm particles at the reservoir-

microchannel junction under the applied DC-biased AC electric field, at which 3 µm 

particles are too small to be trapped by rDEP and thus swept to the exit reservoir. The 

numerical predictions of trajectories of 3 and 5 µm particles shown in figure 16(c) shows 

that the 3 µm particles passes along the centerline of the microchannel towards the 

downstream, while the large 5 µm particles are trapped inside the reservoir. The 

numerical predictions qualitatively agree closely with the experimental observations. 

However, our numerical model does not account for the inter-particle interactions and its 

effects on the separation. The model can predict the particle trapping at the reservoir-

microchannel junction but does not simulate the behavior of particles after it gets trapped.  
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 The inter-particle interaction between the 3 µm particles being swept from the 

inlet to outlet reservoirs, and 5 µm particles trapped at the reservoir-microchannel 

junction is considerably high. We observe that when sufficient numbers of 5 µm particles 

are trapped, the 3 µm particles under the effect of inter-particle force start getting trapped 

along with the 5 µm particles. We attribute these interactions to the disturbance in the 

local electric field due to the trapped particles which considerably enhances the rDEP 

force. These interactions greatly influence the separation process efficiency and the time 

for which the separation experiment can function. When the size difference between the 

particles within a mixture that needs to be separated is small, the inter-particle 

interactions can significantly affect the separation process. In order to better understand 

the interactions and improve the size based particle separation efficiency we 

experimentally investigate the effects of enhanced electrokinetic flow on the separation 

process at the junction. The electrokinetic flow is enhanced with the application of larger 

DC voltage in the DC-biased AC voltage. The experimentally obtained results for the 

separation process and particle interactions at larger DC voltages are discussed in section 

3.5.3.  

3.5.3 Effects of electrokinetic flow on particle separation efficiency 

We conducted the size based separation of 3 and 5 µm particles using rDEP at 

three other DC voltages, which are 50, 75 and 100 V respectively. As seen in Eq. (3-6), 

the increase of DC field should cause a drop in the required AC to DC ratio, , for the 

particle trapping. This theoretical prediction is verified by our experimental predictions, 
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which were implemented at 50 V DC/ 725 V AC ( = 14.5), 75 V DC/ 750 V AC ( = 

10), and 100 V DC/ 900 V AC ( = 9), respectively.  

 

Figure 17: Percentage of 3 and 5 µm particles trapped at the reservoir-microchannel 

junction during particle separation at various DC-biased AC voltages under rDEP. 

The videos of the separation experiment at various DC-biased AC fields were 

utilized to quantify the separation purity. The videos were analyzed frame by frame 

counting the number of 3 µm particles entering the reservoir-microchannel junction and 

the number of 3 µm particles passing through the microchannel into the outlet reservoir 

until one minute after the electric field is applied. The difference in the number of 

particles entering the reservoir-microchannel junction and exiting it was undergoing 

inter-particle interactions. Particles experiencing inter-particle interactions were captured 



60 
 

and pulled into the 5 µm particle pearl chain due to the increased rDEP force caused by 

the disturbances of the local electric field from the trapped 5 µm particles. The number of 

5 µm particles entering the reservoir-microchannel junction and getting trapped was also 

counted. The plot in figure 17 shows the percentage of 3 µm particles getting trapped 

along with the 5 µm particles at the reservoir-microchannel junction under the influence 

of inter-particle interactions. It can be seen from the plot that a significant number of 3 

µm particles are trapped along with the 5 µm particles at the 25 V DC case. This 

phenomenon, however, diminishes with the increase of the DC voltage as seen in figure. 

17, and becomes almost negligible at the 100 V DC case. The increase in purity of the 

separation process is attributed to the enhanced electrokinetic flow at a higher DC field, 

which acts to move around the 5 µm particle cluster and drag the 3 µm particles into the 

microchannel quickly. With the increase in the DC field the electrokinetic velocity of the 

particles is enhanced which also enables the particles to move faster towards the 

reservoir-microchannel junction and thus more particles can be trapped in small time 

duration.  

3.6 Summary 

 We applied the rDEP approach to separate particles based upon size inside a 

microfluidic reservoir. This separation has been demonstrated through continuous 

separation of 3 and 5 µm and, 3 and 10 µm particles under various DC-biased AC fields 

at the reservoir-microchannel junction. The experimentally obtained particle images 

agree closely with the numerically predicted particle trajectories. However, the separation 
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efficiency is greatly affected by the inter-particle interactions between the streaming 3 

m particles and the accumulated 5 and 10 m particles trapped inside the reservoir at 

the junction. The 3 m particles also start getting trapped due to the interactions which 

hinders the continuous separation of particles and requires it to be operated in a semi-

continuous manner. The interactions can be attributed to the disturbance in local electric 

caused by the trapped particles and the increased AC voltage in the DC-biased voltages. 

The effect of enhanced electrokinetic flow with increased DC voltage in the DC-biased 

AC voltage on the inter-particle interactions is also studies. The interaction decreases 

with the enhanced electrokinetic flow and improves the separation efficiency 

considerably. Additionally, it can be speculated that particles that attribute differences in 

surface charge and conductivity can also be separated based upon the trapping number 

analysis which will be studied in the coming chapters. 
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CHAPTER 4: Particle Separation by Charge Using 

Reservoir-based Dielectrophoresis (rDEP) 

4.1 Introduction 

 Separating particles (either synthetic or biological) from a complex mixture is 

important to a wide range of applications in industry, biology and medicine etc. In the 

past two decades microfluidics has evolved to be a very useful tool for particle separation 

and manipulation in miniaturized devices (Pamme, N. 2007; Kersaudy-Kerhoas, M. 

2008; Tsutsui, H. 2009; Lenshof, A. 2010; Bhagat, A. A. 2010). A variety of microfluidic 

approaches have so far been developed to separate particles through the use of the force- 

or flow-field induced electric (Srivastava, S. K. 2011; Regtmeier, J. 2011; Cetin, B. 

2011), acoustic (Laurell, T. 2007), optical (Kim, S. B. 2008; 75 Wang, M. M. 2005), 

magnetic (Pamme, N. 2006; Gijs, M. A. 2010), hydrodynamic (Yamada, M. 2004; Davis, 

J. A. 2006; Choi, S. 2007), and inertial (Di Carlo, D. 2009; Kuntaegowdanahalli, S. S. 

2009) particle motions etc. Some of these separations need an extrinsic fluorescent (Fu, 

A. Y. 1999) or magnetic labeling (Adams, J. D. 2008) of the targeted or non-targeted 

particles to establish the specificity, which is usually complex and expensive. The rest of 

the separations, which cover the majority of the demonstrated microfluidic approaches, 

are label free and based upon the intrinsic particle properties such as size, shape, density, 

charge, deformability, polarizability (including electric, magnetic and optical), and 

compressibility etc. (Gossett, D. R. 2010).  
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 Surface charge is an important particle property. It determines the particle’s 

electrophoretic mobility and plays an important role in keeping particle suspension 

dispersed. Charge-based particle separation has been achieved in microfluidic devices 

using several approaches, which can be classified as batch-wise or continuous-flow based 

on the separation process. The former includes capillary-based electrophoresis 

(Rodriguez, M. A. 2004) and electrical field-flow fractionation (EFFF) (Giddings, J. C. 

1993), where particles of dissimilar charges migrate through a separation column at 

different times due to their unequal electrophoretic velocities (Subirats, X. 2011) and 

their residences in stream laminas of unequal velocities (Gale, B. K. 1998), respectively. 

Free-flow electrophoresis (FFE) is a continuous-flow approach (Krivankova, L. 1998), 

where particles of dissimilar charges are split up into different lanes by their transverse 

electrophoretic migrations relative to a pressure-driven carrier electrolyte flow 

(Kohlheyer, D. 2008). Another continuous-flow microfluidic approach for charge-based 

particle separation is curvature-induced dielectrophoresis (C-iDEP) (Zhu, J. 2011), which 

exploits the inherent electric field gradients within turns (Zhu, J. 2009; Zhu, J. 2010), to 

focus and deflect particles to mobility-dependent flow paths in a double-spiral 

microchannel (Zhu, J. 2011). Additionally charge-based particle separation has been 

demonstrated using a bi-directional flow in a converging-diverging microchannel to trap 

particles carrying a specific charge (Jellema, L. C. 2009). As a net flow was observed 

experimentally when the particle trapping occurred (Lettieri, G. L. 2003), this separation 

can be viewed as a continuous-flow approach.  



64 
 

We developed a new microfluidic approach for manipulating particles inside a 

reservoir. It exploits the particle dielectrophoresis that is induced by the inherent electric 

field gradient at the reservoir-microchannel junction to focus, trap and concentrate 

particles (Zhu, J. 2012), which we termed as reservoir-based dielectrophoresis (rDEP). In 

this work we apply such an rDEP approach to continuous-flow particle separation based 

upon surface charge. The factors that may affect the separation are studied. A theoretical 

model is also developed to understand and predict the electrokinetic particle transport 

behaviors at the reservoir-microchannel junction during separation. 

4.2 Materials and Methods 

4.2.1 Microfluidic Device Fabrication 

 The microfluidic device in our experiment was fabricated with 

polydimethylsiloxane (PDMS) using the standard soft lithography technique. The 

detailed procedure is given in chapter 2. As shown in Fig. 18, the device is composed of a 

1.2 cm-long straight microchannel with a 5 mm-diameter reservoir at each end. The 

channel is 500 m wide in the main body and has a constriction section of 50 m in 

width and 1 mm in length at the reservoir-microchannel junction in both ends (see the 

inset in figure 18). These constrictions are designed for the purpose of reducing the 

applied electric voltage as the electric field can be locally amplified. The channel is 

uniformly 25 m deep with a constant radius of 20 m for all corners. 
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Figure 18: Picture of the microfluidic device (filled with green food dye for clarity) used 

in the experiment. The inset displays the dimensions of the reservoir-microchannel 

junction.  

4.2.2 Particulate Solution Preparation 

 To demonstrate the surface charge-based particle separation, we mixed green 

fluorescent (Bangs Laboratories, Fisher, IN) and non-fluorescent (Sigma Aldrich, St 

Louis, MO) polystyrene particles at 1:2 number ratio and re-suspended them in 0.1 mM 

phosphate buffer to a final concentration of 10
7
–10

8
 particles per ml. Both types of 

particles have a diameter of 3 µm while bearing dissimilar surface charges. The latter is 

evidenced by the discrepancy in their electrokinetic mobility values, which can be 

experimentally measured and will be presented in the Theory section below (see section 

3.2). Tween 20 (Fisher Scientific, Waltham, MA) was added to the particle solution at 

0.1% v/v to suppress the aggregation of particles and their adhesion to channel walls. 

Prior to use the particle solution was stirred in a vortex generator to ensure a uniform 

distribution of each type of particles. 

50 µm wide
500 µm

1 mm

Reservoir Reservoir

5 mm
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4.2.3 Particle Manipulation and Visualization 

 The electrokinetic manipulation of the particle mixture in the microfluidic device 

was attained by imposing DC-biased AC electric fields across the length of the 

microchannel. The electric fields were supplied by a function generator (33220A, Agilent 

Technologies, Santa Clara, CA) in conjunction with a high-voltage amplifier (609E-6, 

Trek, Medina, NY). The frequency of AC field was fixed at 1 kHz in most experiments 

and was varied from 0.5 kHz to 5 kHz in examining its influence on particle separation. 

Pressure-driven flow was eliminated by carefully balancing the liquid heights in the two 

reservoirs prior to each experiment. The particle mixture solution was introduced only to 

the inlet reservoir and the outlet reservoir was devoid of particles at the beginning of a 

separation experiment. Visual inspection of the outlet reservoir at the end of the 

experiment could therefore be used to determine the separation purity. Particle motion 

was monitored using an inverted microscope (Nikon Eclipse TE2000U, Nikon 

Instruments, Lewisville, TX), through which videos (at around 12 frames/s) and images 

at the reservoir-microchannel junction were recorded using a CCD camera (Nikon DS-

Qi1Mc). To visualize the fluorescent and non-fluorescent particles simultaneously, we 

used a green fluorescent light along with a relatively weak white light to illuminate the 

reservoir-microchannel junction.  
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4.3 Particle Separation Mechanism 

 As illustrated by its contour (the darker color, the larger magnitude) in figure 19, 

electric field, E, becomes inherently non-uniform at the junction of the reservoir and 

microchannel due to their size mismatch. Therefore, particles experience a 

dielectrophoretic motion, UDEP, when moving electrokinetically through the junction. 

Using the dipole moment approximation, the time averaged UDEP of an isolated spherical 

particle under DC and low frequency (< 100 kHz) AC electric fields is given by (Morgan, 

H. 2002) 
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where d is the particle diameter, f is the fluid permittivity, fCM is the so-called Clausius-

Mossotti (CM) factor and has been assumed approximately identical for DC and low 

frequency (< 100 kHz) AC electric fields, f is the fluid dynamic viscosity, E is the local 

electric field in root-mean-square (RMS) value, p and f are the electric conductivities 

of the particle and the suspending fluid, respectively. As polymer particles (Ermolina, I. 

2005) and biological cells (Voldman,J. 2006) often appear poorly conducting in DC and 

low-frequency AC electric fields, one can have p < f and thus fCM < 0 leading to 

negative DEP (Jones, T. 1995). Therefore, UDEP points towards the lower electric field 

region as indicated by the particle velocity analysis in figure 19. 
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Figure 19: Velocity analysis of a particle at the reservoir-microchannel junction due to 

electrokinetic flow and the induced rDEP. The thin lines represent the electric field lines 

or equivalently fluid streamlines in the absence of the particle. The background color 

shows the electric field contour (the darker color, the larger field magnitude). 

The observed particle velocity, Up, is the vector addition of the DC electrokinetic 

motion (a combination of fluid electroosmosis and particle electrophoresis), UEK, and the 

AC/DC dielectrophoretic velocity, UDEP, 
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where EK is the electrokinetic particle mobility, EDC is the DC component of the applied 

DC-biased AC electric field, DEP is the dielectrophoretic particle mobility, fg is the factor 

UEKUDEP,n

UDEP

UDEP,s
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that accounts for the wall effects on particle motion and is close to 1 for the particles used 

in our experiments (Anderson, J. 1989), p is the particle zeta potential that is controlled 

by the surface charge, and w is the wall zeta potential. Note that the Brownian, inertial, 

and gravitational motions of particles have been neglected in Eq. (4-3), which is 

reasonable for micron-sized particles in electrokinetic microfluidics (Li, D. 2004). The 

electrokinetic velocity, UEK, is parallel to the electric field lines and hence stream-wise 

due to the similarity of electric field and flow field in pure electrokinetics (Cummings, E. 

B. 2000). In contrast, the rDEP velocity, UDEP, can have a component in both the stream-

wise and the cross-stream directions. Therefore, we rewrite Eq. (4-3) in streamline 

coordinates as follows, 

 
2 2

, ,
垐 垐 2p EK DEP s DEP n EK DC DEP DEP

E E
U U U E

s
  
   

        
    

U s n s n           

(4-6) 

where UEK is the magnitude of the electrokinetic velocity, UDEP,s is the magnitude of the 

stream-wise dielectrophoretic particle velocity, ŝ  is the unit vector of the coordinate s 

along the streamlines, UDEP,n is the magnitude of the cross-stream dielectrophoretic 

particle velocity, n̂  is the unit vector of the coordinate n normal to the streamlines, and  

is the local radius of curvature of the streamline.  

For particles experiencing negative DEP (i.e., DEP < 0), UDEP,n is directed 

towards the centerline of the microchannel (see the velocity analysis in figure 19), which 

produces a focusing effect on the suspended particles at the reservoir-microchannel 

junction (Patel, S. 2012; Zhu, J. 2012). Meanwhile, UDEP,s is against UEK and hence slows 
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down the particle motion at the reservoir-microchannel junction. Moreover, since UDEP,s 

is a second-order function of the total electric field, E, while UEK is linearly proportional 

to only the DC field component, EDC, one can expect UDEP,s to counter-balance UEK at 

large electric fields, i.e., 

2
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where  is the AC to DC field ratio, i.e., E = EDC + EAC = EDC (1 + ). When this happens 

particles can be stagnated and concentrated at the reservoir-microchannel junction (Patel, 

S. 2012; Zhu, J. 2012). Such rDEP trapping is dependent on the electrokinetic to 

dielectrophoretic particle mobility ratio, 
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which is an explicit function of particle size (d) and charge (p). The larger the mobility 

ratio is, the more difficult (e.g., a higher AC to DC field ratio, , is required if the DC 

field is fixed) it is to trap the particle. This indicates that we can potentially trap and 

concentrate one type of particles in the upstream reservoir while sweeping the other type 

to the downstream reservoir based upon one of these properties. We have recently 

reported the microfluidic separation of particles by size using rDEP (Zhu, J. 2012). In this 

work we aim to demonstrate the application of rDEP to continuous-flow charge-based 

separation of particles with a similar size. 
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4.4 Numerical Model and Validation  

 The simulation of electrokinetic particle motion from reservoir to microchannel 

was conducted in COMSOL 3.5a (Burlington, MA) using a 2D model we developed 

earlier (Zhu, J. 2009; Church, C. 2009). This model neglects the perturbations of finite-

sized particles to the flow and electric fields, which in turn causes errors in the 

computation of particle velocity. To account for such particle size effects (and other 

effects as well if any), a correction factor, c, was introduced to Eq. (4-3) to correct the 

dielectrophoretic particle velocity, i.e.,  

 2 21p EK DC c DEP DC      U E E
                    

(4-9)  

This corrected particle velocity was used as an input to the particle tracing function in 

COMSOL, where the involving parameters were obtained as follows. The DC electric 

field, EDC = DC, was calculated by solving for the DC electric potential, DC, from 

Laplace equation 
2DC = 0. To do so, the electrode in each reservoir was simulated as a 

0.5 mm-diameter concentric circle, upon which an electric potential was imposed. 

Specifically the experimentally applied DC voltage was imposed to the electrode in the 

entry reservoir. The electrode in the exit reservoir was grounded. All microchannel walls 

were assumed to be electrically insulated.  

The dielectrophoretic particle mobility, DEP, in Eq. (4-9) was calculated from Eq. 

(4-5) with the typical dynamic viscosity, f = 1.010
3

 kg/(ms) and permittivity f = 

6.910
10

 C/(vm) for pure water at 20 C. To obtain the CM factor, fCM, the electric 
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conductivity of polystyrene particles was computed from p = 4Ks/d with Ks = 1 nS being 

the recommended value for surface conductance (Ermolina, I. 2005), which gave p = 

13.3 S/cm for d = 3 m particles. Considering the measured electric conductivity of 0.1 

mM phosphate buffer, f = 25 S/cm, we obtained fCM = 0.19 for both the fluorescent 

and non-fluorescent particles used in our experiment. The electrokinetic particle mobility, 

EK, was determined by tracking the motion of individual particles in the main body of 

microchannel (where DEP is negligible) under a small pure DC electric field. Specifically 

we imposed a 25 V DC voltage across the 1.2 cm long microchannel, which produced an 

average electric field of about 20 V/cm. At this electric field, Joule heating effects were 

estimated to be negligible (Xuan,X. 2008; Sridharan,Sriram 2011). The resultant 

electrokinetic velocity of particles in the working buffer was measured in the middle of 

the channel length, which was then divided by the numerically computed local electric 

field to give the electrokinetic mobility. Using this method we obtained EK = 5.9×10
8

 

(m
2
/Vs) and 2.8×10

8
 (m

2
/Vs) for the non-fluorescent and fluorescent particles, 

respectively. In other words, these two types of particles indeed carry different amounts 

of surface charges, which may be due to the incorporation of dyes into the polymer of the 

fluorescent particles. 

 

 To select the correction factor, c, in Eq. (4-9), we compared the simulated 

trajectories of the two types of particles at the reservoir-microchannel junction with the 

experimentally obtained particle streak images. Figure 20 shows this comparison for the 

motion of the particle mixture in two circumstances: one is under 25 V DC and the other 



73 
 

is under 25 V DC plus 400 V AC (RMS value, 1 kHz frequency). Note that the streak 

images of the fluorescent and non-fluorescent particles were each obtained by 

superimposing the same sequence of over 600 images with respect to the bright and dark 

bases, respectively. The correction factor was set to 0.8 for both particles, which is 

consistent with the values for particles and cells of comparable sizes used in our previous 

studies (Zhu, J. 2009; Zhu, Junjie 2011; Zhu, J. 2012; Patel, S. 2012; Zhu, J. 2009; 

Church, C. 2009; Xuan, X. 2006). On the application of a small pure DC field, 

fluorescent (top row) and non-fluorescent (bottom row) particles both enter into the 

microchannel in a uniformly distributed manner because the influence from rDEP is very 

weak [see figure 20(a)]. However, when the AC electric field is added, fluorescent 

particles (top row, the right image) are focused to a tight stream along the centerline of 

the microchannel. In contrast, non-fluorescent particles (bottom row, the right image) still 

cover more than one half of the channel as seen in figure 20(b). This discrepancy is 

attributed to the larger electrokinetic mobility of non-fluorescent particles as presented 

above. Therefore, fluorescent particles are exposed to rDEP focusing (which is identical 

for the two types of similar-sized particles) for a longer time. The simulated trajectories 

[right columns in figure 20(a) and figure 20(b)] agree closely with the experimental 

images (left columns) for both particles in both circumstances, which validates the 

numerical model and verifies the correction factor value as well.   
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Figure 20: Comparison of the experimentally obtained streak images (left column in each 

panel) and numerically predicted trajectories (right column in each panel) of fluorescent 

(top row) and non-fluorescent (bottom row) 3 µm particles at the reservoir-microchannel 

junction under the influence of rDEP. The applied DC voltage was fixed at 25 V and the 

1-kHz AC voltage (RMS value) was varied from 0 V (a) to 400 V (b). The block arrow in 

(a) indicates the particle moving direction. 

4.5 Results and Discussion 

4.5.1 Charge-based Particle Separation using rDEP 

 Figure 21 demonstrates the continuous-flow separation of 3 µm fluorescent and 

non-fluorescent particles by charge at the reservoir-microchannel junction using rDEP. It 

was implemented by applying a 50 V DC-biased 800 V AC voltage across the 

microchannel. The frequency of the AC voltage was maintained at 1 kHz. Figure 21(a) 

shows a snapshot image of the particle behaviors at the junction 45 s after the electric 

100 µm

(a) (b)
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field was turned on. One can see that the fluorescent particles are concentrated inside the 

reservoir while the non-fluorescent particles can migrate through the junction in a 

focused stream along the centerline of the microchannel. This continuous separation 

happens because the fluorescent particles possess a smaller electrokinetic to 

dielectrophoretic mobility ratio [see the definition in Eq. (4-8)] than the non-fluorescent 

ones and hence can be trapped more easily [see Eq. (4-7)]. It is simply a result of the 

fluorescent particles’ lower electrokinetic mobility as measured experimentally (see 

section 4.4 and also figure 20) considering that the two types of particles possess a 

similar value for dielectrophoretic mobility. The streak images of the fluorescent and 

non-fluorescent particles are illustrated in the top row of figure 21(b) and figure 21(c), 

respectively. Numerically predicted trajectories of these two particles are displayed in the 

bottom row, and agree with the experimental results.  
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Figure 21: Demonstration of selective concentration and continuous sorting of 3 µm 

fluorescent particles from 3 µm non-fluorescent particles at the reservoir-microchannel 

junction by rDEP. (a) shows a snapshot image of the particle behaviors 45 s after the 50 

V DC-biased 800 V AC (RMS value, 1 kHz) voltage was applied. (b) and (c) show the 

comparison of the experimentally obtained streak images (top row) and the numerically 

predicted trajectories (bottom row) of the fluorescent and non-fluorescent particles, 

respectively. The block arrow in (a) indicates the particle moving direction. 

 The estimated flow rate of this continuous charge-based particle separation is 0.25 

l/min, which is more than 5 times larger than the approach we reported in an earlier 

work through the use of curvature-induced dielectrophoresis (C-iDEP). It can be easily 

enhanced by increasing the DC voltage (see section 4.5.2 below) and/or employing a 

parallel operation (e.g., design multiple microchannels in the radial direction to form a 

circle about the inlet reservoir). The purity of this separation was examined by visually 

inspecting both the reservoir-microchannel junction during the experiment and the outlet 

reservoir after the experiment. We found that fluorescent particles first formed chains and 

then clusters inside the inlet reservoir and none of them could escape from the trapping 

Fluor 

particles

Non-fluor

particles

(a) (b) (c)

100 µm



77 
 

zone. This is also confirmed by the nearly absence of fluorescent particles in the outlet 

reservoir except for the few that were already in the microchannel before the electric field 

was applied. However, once many fluorescent particles were concentrated some of the 

non-fluorescent particles could also get captured and pulled into the chains of fluorescent 

particles. This is mainly caused by the increase of rDEP force due to the disturbances of 

the local electric field from the trapped non-conducting fluorescent particles. It is 

speculated that the dipole interactions between the two types of particles and those 

among the non-fluorescent particles themselves (Morgan, H. 2002; Jones, T. 1995) may 

also play a role in this process. Unfortunately, neither of these factors was taken into 

consideration in our numerical model. To better understand this phenomenon, we 

experimentally investigated the effects of electrokinetic flow and AC field frequency on 

the separation, which are presented in the sections below. 

4.5.2 Electrokinetic Flow Effects on Particle Separation 

 We conducted the charge-based separation of 3 µm fluorescent and non-

fluorescent particles using rDEP at three other DC voltages, which are 25 V, 75 V and 

100 V, respectively. As seen from Eq. (4-7), the increase of DC field should cause a drop 

in the required AC to DC field ratio, α, for particle trapping. This theoretical prediction is 

verified by our experiments, which were implemented at 25 V DC/625 V AC (α = 25), 50 

V DC/800 V AC (α = 16), 75 V DC/875 V AC (α = 11.7), and 100 V DC/950 V AC (α = 

9.5), respectively. The AC voltages are all in RMS value and at 1 kHz frequency. Figure 

22 compare the snapshot particle images at the reservoir-microchannel junction in these 
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circumstances (except for the 75 V DC case, which will be presented in figure 21), which 

were all taken at least 2 minutes after the electric field was applied. As highlighted by the 

dashed lines in the images, there are a significant number of non-fluorescent particles 

trapped along with fluorescent ones at the 25 V DC case in figure 22(a). This 

phenomenon, however, diminishes with the increase of the DC voltage as seen in figure 

22(b), and becomes almost invisible at the 100 V DC case in figure 22(c). It is attributed 

to the enhanced electrokinetic flow at a higher DC field, which acts to move around the 

fluorescent particle cluster and drag the non-fluorescent particles into the microchannel in 

a quicker matter.  

 

 

Figure 22: Electrokinetic flow effects on charge-based rDEP separation of 3 µm 

fluorescent and non-fluorescent particles at the reservoir-microchannel junction. 

Illustrated are the snapshot images taken 2 minutes after the electric voltage at (a) 25 V 

DC/625 V AC (α = 25), (b) 50 V DC/800 V AC (α = 16), and (c) 100 V DC/950 V AC (α 

= 9.5) was imposed to the microchannel. The AC voltages are all in RMS value and at 1 

kHz frequency. The dashed lines highlight the regions where non-fluorescent particles are 

trapped due to the influences from the concentrated fluorescent particles. The block 

arrow in (a) indicates the particle moving direction. 

 

(a) (b) (c)

100 µm
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4.5.3 AC Field Frequency Effects on Particle Separation 

 We also performed the charge-based separation of 3 µm fluorescent and non-

fluorescent particles using rDEP under a fixed 75 V DC/875 V AC voltage while at 

various AC voltage frequencies. Figure 23 compares the snapshot particle images at the 

reservoir-microchannel junction when the frequency is varied from 0.5 kHz (a) to 1 kHz 

(b) and 5 kHz (c). All three images were once again taken at least 2 minutes after the 

application of the electric field. It is evident that the non-selective trapping of non-

fluorescent particles becomes more significant with the increase of the AC voltage 

frequency. Moreover, the particle trapping zone is greatly expanded at larger frequencies. 

We don’t expect that the variation of AC voltage frequency can affect the rDEP motion 

of particles to such a considerable extent because the frequency we used in experiments is 

well below the 100 kHz low-frequency limit (Ermolina, I. 2005; Voldman,J. 2006). It is 

speculated that the increasing AC voltage frequency greatly enhances the particle-particle 

interactions (Morgan, H. 2002; Jones, T. 1995) and hence strengths the trapping of non-

fluorescent particles. Additionally as the particles are concentrated near the bottom wall 

of the microchannel, we speculate that the particle-wall interactions may also contribute 

to the observed phenomenon in figure 23.  
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Figure 23: AC field frequency effects on charge-based rDEP separation of 3 µm 

fluorescent and non-fluorescent particles at the reservoir-microchannel junction. 

Illustrated are the snapshot images taken 2 minutes after the application of a 75 V DC-

biased 875 V AC voltage (RMS). The AC voltage frequency was varied from 0.5 kHz (a) 

to 1 kHz (b) and 5 kHz (c). The dashed lines highlight the regions where non-fluorescent 

particles get trapped due to the influences from the concentrated fluorescent particles. 

The block arrow in (a) indicates the particle moving direction. 

4.6 Summary 

 We have applied a recently developed rDEP approach to continuously separate 

particles based upon surface charge inside a microfluidic reservoir. This separation has 

been demonstrated through a selective concentration and continuous sorting of 3 m 

fluorescent particles from 3 m non-fluorescent particles under DC-biased AC electric 

fields. The obtained particle images agree closely with the predicted particle trajectories 

from a 2D numerical model. It is, however, found that the streaming non-fluorescent 

particles may also get trapped in the reservoir due to the influences from the accumulated 

fluorescent particles, which can significantly lower the separation purity. These 

influences have been found through experiments to decrease with the enhanced 

electrokinetic flow (by increasing the applied DC electric field) and the lowered AC field 

(a) (b)

100 µm

(c)

0.5 kHz 1 kHz 5 kHz
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frequency. We speculate that besides the tested electric field effects (i.e., DC and AC 

field magnitudes and AC field frequency) the channel and solution properties (e.g., 

channel width and depth, corner radius, and solution ionic concentration etc.) can also 

impact the charge-based particle separation. These factors will be studied in future works. 

Since it takes place inside the reservoir and no in-channel mechanical or electrical parts 

are needed, the demonstrated rDEP particle sorter can be conveniently integrated with 

other functional components (e.g., pretreatment and post-analysis of particles) into lab-

on-a-chip devices for numerous applications. 
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CHAPTER 5 - Microfluidic Separation of Live and 

Dead Yeast Cells Using Reservoir-based 

Dielectrophoresis (rDEP) 

5.1 Introduction  

Cell separation is an essential step in biological research, and has important 

applications in many areas such as environmental monitoring, food production, and 

pharmaceutical industry. Microfluidic devices have been increasingly used to separate 

cells due to their advantages in cost, accuracy, and efficiency etc. as compared to their 

macroscopic counterparts (Pamme, N. 2007; Kersaudy-Kerhoas, M. 2008; Tsutsui, H. 

2009; Lenshof, A. 2010; Bhagat, A. A. 2010). A variety of force fields have been 

demonstrated to implement microfluidic cell separations, ranging from the ubiquitous 

gravity(Huh, D. 2007) to hydrodynamic (Yamada, M. 2004; 89 Yamada, M. 2004), 

electric (Gascoyne, P. R. 2002; Hughes, M. P. 2002; Srivastava, S. K. 2011; Regtmeier, 

J. 2011), acoustic (Laurell, T. 2007; Friend, J. 2008), optical (Wang, M. M. 2005; Kim, 

S. B. 2008), magnetic (Pamme, N. 2006; Gijs, M. A. 2010), and inertial (Di Carlo, D. 

2009; Kuntaegowdanahalli, S. S. 2009) forces etc. These separations can take place either 

with or without the use of biochemical labels to identify cells. Fluorescence (Fu, A. Y. 

1999) and magnetic-activated (Adams, J. D. 2008) cell sorters are the two examples that 

use external labeling (through fluorescent or magnetic bonding) of the targeted or non-
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targeted cells to establish the specificity. For label-free cell separations, numerous 

intrinsic biomarkers have been exploited to sort cells including size, shape, density, 

charge, and deformability etc (Gossett, D. R. 2010).  

Cell viability is another intrinsic property that has been explored for label-free cell 

separations. The sorting of live and dead cells is critical to the diagnosis of early-stage 

diseases and to the efficacy test of drug screening etc (Del Bene, F. 2009; Tatosian, D. A. 

2009). Previous studies on this separation are primarily based on dielectrophoresis 

(DEP), which is the translation of cells either towards (called positive dielectrophoresis) 

or away from (called negative dielectrophoresis) the high electric field region if the cell is 

more or less polarizable than the suspending medium (Cheng, I. F. 2007; Pethig, Ronald 

2010). The polarizability of a cell is dependent on its electrical (i.e., conductivity and 

permittivity) and mechanical (i.e., size and shape) properties as well as the electric field 

frequency (Gagnon, Z. R. 2011; Lei, U. 2011). This enables the label-free separation of 

cells by one or more of their intrinsic properties via DEP (Cetin, B. 2011;  Zhu, J. 2011). 

It has been reported that cells have a decreased conductivity in the nucleus and an 

increased conductivity in the membrane when losing viability (Huang, Y. 1992; Pethig, 

R. 1997; Suehiro, J. 2003). Therefore, the dielectrophoretic responses of live and dead 

cells to electric fields can become different, especially significant under high-frequency 

(larger than 100 kHz) AC electric fields.  

We develop herein a new microfluidic approach to dielectrophoretic separation of 

cells by viability. We make use of the reservoir-based dielectrophoresis (rDEP), which is 
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induced by the inherent electric field gradient at the reservoir-microchannel junction, to 

selectively trap dead yeast cells and continuously separate them from live ones inside the 

reservoir. As compared to the existing dielectrophoretic approaches, our approach does 

not rely on any mechanical or electrical parts inside a microchannel. This not only 

simplifies the device fabrication and control, but also eliminates the negative issues 

caused by electrochemical reactions on the in-channel microelectrode surfaces and Joule 

heating effects around the in-channel micro-insulators. We demonstrate and examine the 

rDEP trapping and separation of live and dead yeast cells using a combined experimental 

and numerical method.  

5.2 Experiment 

5.2.1 Microchannel Fabrication 

The microchannel was fabricated with PDMS using the soft lithography 

technique. Briefly, photoresist (SU 8-25, MicroChem, Newton, MA) was dispensed onto 

a clean glass slide, which was made to spin at an angular velocity of 2000 RPM (WS-

400E-NPP-Lite, Laurell Technologies, North Wales, PA). The resulting 25 µm thick 

photoresist film was soft baked on a digital hotplate (HP30A, Torrey Pines Scientific, 

San Marcos, CA) in two steps at 65ºC for 3 minutes and 95ºC for 7 minutes. It was then 

exposed to near UV light (ABM, San Jose, CA) through a negative photo mask with the 

printed microchannel pattern (CAD/Art Services, Bandon, OR). Following a two-step 

hard-bake at 65ºC for 1 minute and 95ºC for 3 minutes, the cured photoresist was 
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developed in SU-8 developer solution (MicroChem, Newton, MA) for 4 minutes, the 

result of which was a positive replica of the microchannel on the glass slide. After a brief 

rinse with isopropyl alcohol (Fisher Scientific, Pittsburg, PA) and a final hard bake at 150 

ºC for 5 minutes, the photoresist was ready for use as the mold of the microchannel.  

 

 

Figure 24: Picture of the microfluidic device (filled with green food dye for clarity) used 

in the experiment. The inset displays the dimensions of the reservoir-microchannel 

junction. The block arrow indicates the cell moving direction in experiments. 

Next, a mixture of 10:1 mass ratio of the pre-polymer and curing agent of PDMS 

(Sylgrad 184 Silicon Elastomer) was mixed thoroughly and poured over the channel 

mold. After a 30-minute degassing in an iso-temp vacuum oven (13-262-280A, Fisher 

Scientific, Fair Lawn, NJ), liquid PDMS was cured at 70 ºC in a gravity convection oven 

(13-246-506GA, Fisher Scientific) for 2 hours. The microchannel structure was cut using 

a scalpel and peeled off from the mold. Two holes were punched through the PDMS slab 
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inside the originally designed circles at the channel ends, which acted as the reservoirs in 

experiments. The channel side of the PDMS was then plasma treated (PDC-32G, Harrick 

Scientific, Ossining, NY) for 1 minute along with a clean glass slide. Finally, the two 

treated surfaces were bonded together to form the microchannel.  

Figure 24 shows a picture of the fabricated PDMS-glass microfluidic device. It is 

composed of a 3.3 mm-long straight microchannel with a 5 mm-diameter reservoir at 

each end. The channel is 500 m wide and has a constriction section of 35 m width and 

180 m length at the entrance, i.e., the reservoir-microchannel junction (see the inset in 

figure 24). The constriction is designed for the purpose of reducing the applied electric 

voltage as the local electric field can be amplified. The channel is uniformly 25 m deep 

with a constant radius of 20 m for all corners.  

5.2.2 Cell Preparation 

Yeast cells (Saccharomyces Cerevisiae) were cultured in Sabouraud Dextrose 

Broth in a shake incubator at 30 ºC. After about 24 hours, 25 ml of the culture was 

concentrated by centrifugation at 10,000×g for 10 minutes. The supernatant was removed 

and the cells were re-suspended in 2 ml 0.85% NaCl. Then, one ml each of this 

suspension was added to two 30–40 ml centrifuge tubes that originally contained 20 ml 

0.85% NaCl (for live yeast) and 20 ml 70% isopropyl alcohol (for dead yeast), 

respectively. Both cell samples were incubated at room temperature for 1 hour, which 

were stirred every 15 minutes. After that, they were each pelleted by centrifugation at 

10,000×g for 10 minutes, which were subsequently re-suspended in separate tubes 
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containing 10 ml 0.85% NaCl. Prior to experiment, the live and dead yeasts were each 

rinsed at least three times with DI water using a mini centrifuge (Fisher Scientific, 

Pittsburg, PA). Both cells were then re-suspended in 1 mM phosphate buffer solution 

(electric conductivity was measured as 210 s/cm) to a final concentration of 10
6
 cells 

per ml. In the separation experiment live yeast cells were stained with SYTO 9 green 

fluorescent before being mixed with dead ones. The average diameter was measured as 6 

µm for both types of cells. 

5.2.3 Experimental Technique 

The dielectrophoretic separation of cells at the reservoir-microchannel junction 

was attained by imposing DC-biased AC electric fields across the channel. The electric 

field was supplied by a function generator (33220A, Agilent Technologies, Santa Clara, 

CA) in conjunction with a high frequency power amplifier (2100HF, Trek Inc., Medina, 

NY). The AC field frequency was varied from 1 kHz to a few hundred kHz that is 

dictated by the function generator when the output voltage is over 100 V in root-mean-

square (RMS). Pressure-driven flow was eliminated by carefully balancing the liquid 

heights in the two reservoirs prior to experiment. The reservoirs were made large with 

more than 5 mm in diameter and 3-4 mm in depth in order to minimize the back flow 

during the course of measurement. Cell motion was monitored using an inverted 

microscope (Nikon Eclipse TE2000U, Nikon Instruments, Lewisville, TX), through 

which videos and images at the reservoir-microchannel junction were recorded using a 

CCD camera (Nikon DS-Qi1Mc).  
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5.3. Theory 

5.3.1 Principle of Reservoir-based Dielectrophoresis (rDEP) 

Due to the significant size-mismatch between the reservoir (5 mm in diameter) 

and the microchannel (35 m wide in the constriction region, see the inset in figure 24), 

electric field becomes inherently non-uniform at the reservoir-microchannel junction. 

This is illustrated by the electric field contour (the darker color, the larger field 

magnitude) in figure 25. The consequence is an induced dielectrophoretic motion, UDEP, 

when cells move electrokinetically through the macro-micro interface as seen from the 

cell velocity analysis in figure 25. This motion is thus named reservoir-based 

dielectrophoresis (rDEP). Under the point-dipole moment approximation, the time 

averaged UDEP of a spherical rigid cell is given by (Jones, T. 1995; Church, C. 2009) 
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Figure 25: Illustration of cell velocity at the reservoir-microchannel junction due to the 

combined effects of electrokinetic flow, UEK, and negative rDEP, UDEP. The thin lines 

represent the electric field lines or equivalently fluid streamlines. The background shows 

the electric field contour (the darker color, the larger field magnitude). 

In the above, DEP is the dielectrophoretic mobility of cells, ERMS is the local 

electric field in RMS value, r is the cell radius, f is the permittivity of the suspending 

fluid, f is the fluid dynamic viscosity, Re{fCM} represents the real part of the complex 

Clausius-Mossotti (CM) factor, fCM, and *
 =   i/ is the complex permittivity with i 

being the imaginary number,  the electric conductivity, and  the field frequency. The 

subscripts c and f in Eq. (5-3) denote the cell and suspending fluid, respectively. 
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Figure 26: Comparison of the model predicted CM factors of live (solid line) and dead 

(dashed line) yeast cells suspended in 1 mM phosphate buffer as a function of the electric 

field frequency. The dash-dot line divides the diagram to positive DEP (top half, Re{fCM} 

> 0) and negative DEP (bottom half, Re{fCM} < 0) regions. 

The complex permittivities of live and dead yeast cells can be calculated using the 

so-called multi-shell model (Huang, Y. 1992), where cells are assumed to possess three 

concentric layers of different electric and dielectric properties in this work. The details of 

this model and the involving parameters are presented in the section 5.4.1. Figure 26 

compares the model predicted CM factors of the two types of cells suspended in 1 mM 

phosphate buffer as a function of the AC field frequency. Due mainly to their 

discrepancies in the electric conductivities of cell membrane and cytoplasm (see the 

5.4.1), live and dead yeast cells respond dissimilarly to AC electric fields, especially 

significant when the frequency is over 100 kHz. In the range from DC field (i.e., 
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frequency is zero) to 500 kHz AC field, both types of cells possess a negative CM factor 

while that of dead yeast have a larger magnitude. Therefore, live yeast cells experience a 

weaker negative rDEP than the dead ones as long as the AC field frequency is less than 

500 kHz.  

The observed cell velocity, Uc, at the reservoir-microchannel junction is the 

vector addition of the DC electrokinetic cell velocity (a combination of fluid 

electroosmosis and cell electrophoresis), UEK, and the AC/DC dielectrophoretic velocity, 

UDEP  

2 2

_ _c EK DEP EK DC DEP DC DC DEP AC AC        U U U E E E    (5-4) 

where EK is the electrokinetic cell mobility that can be measured experimentally by 

tracking individual cells at pure DC electric fields, and the dielectrophoretic cell velocity 

has been split into the DC (zero frequency, i.e.,  = 0) and AC field (RMS value) 

components. Note that cell inertial, Brownian, and gravity motions are all neglected in 

Eq. (5-4), which is reasonable for micron-sized cells in microfluidics. Similar to what we 

have done previously (Zhu, J. 2012; Cummings, E. B. 2000), the cell velocity, Uc, can be 

rewritten as follows with respect to the streamline coordinates (see the velocity analysis 

in figure 24), 
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where UEK is the magnitude of the stream-wise electrokinetic velocity, UDEP,s is the 

magnitude of the stream-wise dielectrophoretic cell velocity, ŝ  is the unit vector of the 

coordinate s along the streamline (equivalent to the electric field lines illustrated in figure 

24) (Cummings, E. B. 2000), UDEP,n is the magnitude of the cross-stream 

dielectrophoretic cell velocity, n̂  is the unit vector of the coordinate normal to the 

streamline, and  is the local radius of curvature of the streamline.  

In our experiments the frequency of AC electric fields was kept smaller than 500 

kHz to ensure negative rDEP for both live and dead yeast cells at the reservoir-

microchannel junction (refer to figure 26). Therefore, UDEP,n is directed towards the 

centerline of the microchannel (see the velocity analysis in figure 24), which produces a 

focusing effect on the suspended cells at the reservoir-microchannel junction. Meanwhile, 

UDEP,s is against UEK and thus slows down the entering cells at the junction (figure 24). 

Moreover, since UDEP,s is a second-order function of both the AC and DC electric fields 

while UEK is only linearly proportional to the DC field [see, for example, Eq. (5-5), it is 

certain that UDEP,s can counter-balance UEK when either EDC or EAC increases. At that 

point and beyond, the stream-wise cell velocity vanishes and cells can be stagnated in 

front of the reservoir-microchannel junction by rDEP, i.e., 

2 2

_ _ 0DC AC
EK DC DEP DC DEP AC

E E
E

s s
  

 
  

   
 or 

_ 2

_ _

2 1
DEP ACEK DC

DEP DC DEP DC

E

s




 

  
     

    

(5-6) 



93 
 

where  = EAC/EDC is the RMS AC to DC field ratio. Note that DEPDC < 0 for negative 

cell DEP and so EK/(DEPDC) > 0. The required value of  for trapping cells is a 

function of two cell mobility ratios: one is the DC electrokinetic to DC dielectrophoretic 

cell mobility ratio, EK/(DEPDC), which is dimensional, and the other is the AC to DC 

dielectrophoretic cell mobility ratio, i.e., DEPAC/DEPDC, which is non-dimensional. 

Therefore, we can potentially trap and concentrate one type of cells (e.g., with a smaller 

EK/(DEPDC) or larger DEPAC/DEPDC) in the upstream reservoir while sweeping the 

other type (e.g., with a larger EK/(DEPDC) or smaller DEPAC/DEPDC) to the 

downstream reservoir. This is likely to happen for the separation of live and dead yeast 

cells because their CM factors or equivalently the dielectrophoretic mobilities, DEP, are 

different as demonstrated in figure 26.  

5.4 Numerical Modeling 

The simulation of electrokinetic cell motion from reservoir to microchannel was 

performed in COMSOL 3.5a (Burlington, MA) using a 2D model developed in our group 

(Zhu, J. 2009; Church, C. 2009). This model neglects the perturbations on the fluid flow 

and the electric field caused by the presence of cells. Instead a correction factor, c, is 

used to account for the effects of cell size (and others if any) on the dielectrophoretic cell 

velocity. As such, the cell velocity in Eq. (5-4) is rewritten as 
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The DC electric field distribution, EDC = DC, was obtained by solving the Laplace 

equation 
2DC = 0 where the DC electric potential, DC, was experimentally applied. The 

electrode in each reservoir was simulated by a 0.5 mm-diameter concentric circle, upon 

which an electric potential is imposed. Specifically the experimentally applied DC 

voltage was imposed to the electrode in the entry reservoir. The electrode in the exit 

reservoir was grounded. All microchannel walls are assumed to be electrically insulated.  

The cell velocity in Eq. (5-7) was used as an input for the particle tracing function 

in COMSOL 3.5a. The electrokinetic mobility, EK, was determined by tracking the 

motion of individual cells in the main body of microchannel (where DEP is negligible) 

under a small DC electric field. They were measured at 2.0×10
8

 (m
2
/Vs) and 1.0×10

8
 

(m
2
/Vs) for the live and dead yeast cells, respectively. The dielectrophoretic mobility 

was determined using Eq. (5-2) with the typical dynamic viscosity, μ = 1.010
3

 kg/(ms) 

and permittivity f = 6.910
10

 C/(vm) for pure water at 20 C. A MATLAB code was 

developed to calculate the CM factors at different electric field frequencies for the live 

and dead yeast cells using multi-shell model (see the Appendix). The correction factor, 

c, for both types of yeast (with a diameter of 6 m) was set to 0.5, which is consistent 

with our previous studies (Zhu, J. 2011).  
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5.4.1 Calculation of Complex Permittivities of Live and Dead Yeast 

Cells 

The dielectrophoretic responses of live and dead yeast cells to electric field, i.e., 

the CM factor fCM in Eq. (5-2), were both calculated using a two-shell model (Huang, Y. 

1992; Suehiro, J. 2003). As shown schematically in figure 27, a cell in this model is 

treated as a dielectric sphere (layer 3, nucleus) covered by two concentric layers (layer 2 

for cytoplasmic membrane and layer 1 for cell wall). The complex permittivity of such a 

cell, i.e., c
*
 in Eq. (5-8), is computed from (Lewpiriyawong, N. 2011) 
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                         (5-9)  

In the above 1
*
, 2

*
, and 3

*
 are, respectively, the complex permittivities of the 

cell wall, membrane, and nucleus, and are all defined as *
 =   i/. The values of the 

radius r, electric conductivity, and permittivity  for each of the three layers are listed in 

the table in figure 27. 
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Figure 27: Two-shell model of a yeast cell (not to scale, left panel). The values of the 

radius, r, electric conductivity, , and permittivity, , for each layer of the cell are listed 

in the table (right panel).  

5.5 Results and Discussion 

5.5.1 Focusing and Trapping of Live Yeast Cells with rDEP 

The streak images (top row, obtained by superimposing a sequence of snapshot 

images) in figure 28 illustrate the typical behaviors of electrokinetic cell motion through 

the reservoir-microchannel junction under DC-biased AC electric fields. Live yeast cells 

are used for this demonstration. The applied DC voltage was maintained at 2 V, 

producing an average DC electric field of 6 V/cm across the microchannel length. The 

applied AC voltage (RMS value) was fixed at 1 kHz frequency while its magnitude was 

varied from (a) 0 V (i.e., the AC to DC field ration is  = 0) to (b) 30 V (i.e.,  = 15) and 

(c) 50 V (i.e.,  = 25). Under a pure DC electric field, cells migrate through the reservoir-

microchannel junction in a nearly uniform distribution over the entire channel width as 

3, 3

2, 2

1, 1

r2

r1

r3

Wall

Membrane

Nucleus

Symbol 
Values 

Live cells Dead cells 

r1 (µm) 3  3 

1 (µS/cm) 140 15  

1 60 60 

r2 (µm) 2.78 2.75 

2 (µS/cm) 2.510
3

 1.6 

2 6 6 

r3 (µm) 2.772 2.742 

3 (µS/cm) 2000 70 

3 50 50 

 1 
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seen in figure 28(a). This is attributed to the negligible rDEP induced at the junction 

under a small DC field.  

 

Figure 28: Comparison between experimentally obtained superimposed images (top row) 

and numerically predicted trajectories (bottom row) of live yeast cells at the reservoir-

microchannel junction under the influence of rDEP. In the experiment the applied DC 

voltage was fixed at 2 V while the AC voltage (RMS) at 1 kHz frequency was varied 

from (a) 0 V ( = 0) to (b) 30 V ( = 15) and (c) 50 V ( = 25). The block arrow in (a) 

indicates the cell moving direction. 

However, with the inclusion of a 30 V AC voltage, cells get focused due to rDEP 

and move exclusively along the centerline of the microchannel. This observation in figure 

28(b) is consistent with our previous study of polymer bead motions at the reservoir-

microchannel junction (Cummings, E. B. 2000). When the AC voltage is further 

(a) (b) (c)

100 µm
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increased to 50 V, cells, as analyzed in the Theory section, become trapped and 

concentrated in the reservoir before entering the microchannel [see figure 28(c) The 

numerically predicted cell trajectories at the corresponding experimental conditions are 

shown in figure 28 (bottom row). A close agreement is obtained for all the three cases 

discussed above. During the experiment Joule heating effects were found insignificant 

even at the largest applied electric field [i.e., 156 V/cm on average in case (c)]. This was 

verified by monitoring the electric current in each test.  

5.5.2. Comparison of rDEP Trapping of Live and Dead Yeast Cells 

We tested the rDEP trapping of live yeast cells under DC-biased AC electric 

fields with frequency in the range of 1 kHz to 500 kHz. The DC voltage was fixed at 2 V 

throughout the measurement. The minimum AC to DC field ratio, , for a stable cell 

trapping to occur at the reservoir-microchannel junction is presented in figure 29(a) as a 

function of the AC field frequency. Due to the decrease in magnitude of the CM factor 

with increasing frequency (Figure 26), cells should experience a weakened rDEP as the 

frequency increases, especially significant when the frequency is over 100 kHz. This 

explains why the experimentally measured (symbols) AC to DC field ratio rises along 

with frequency figure 29(a). Such a trend is consistent with the numerical prediction 

(solid line) in figure 29(a). We also tested the rDEP trapping of dead yeast cells using 

exactly the same approach as for the live ones. The experimental data (symbols) and the 

corresponding numerical predictions (solid line) are shown in figure 29(b). A similar 

trend is obtained in between the live and dead yeast cells. 
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Figure 29: Experimentally recorded (symbols) and numerically predicted (lines) AC to 

DC electric field ratios, α, for trapping live (a) and dead (b) yeast cells at different AC 

field frequencies at the reservoir-microchannel junction by rDEP. The DC voltage was 

maintained at 2 V in both experiments.  

However, the AC to DC field ratio for trapping live yeast is larger than that for 

trapping dead cells in the entire range of the tested AC field frequency. This can be better 

viewed in figure 30, where the experimentally measured ratios for both types of cells are 

combined into one plot. As illustrated in figure 26, live yeast cells experience a smaller 

magnitude of rDEP than do dead cells and so the former possess a smaller AC to DC 

dielectrophoretic cell mobility ratio, DEPAC/DEPDC between the two. Moreover, as 

they undergo a faster electrokinetic motion, live yeast cells should have a larger DC 

electrokinetic to DC dielectrophoretic cell mobility ratio, EK/(DEPDC), than dead yeast 

cells. The discrepancies in these two ratios mutually explain why the dead yeast cells can 

be more easily trapped, i.e., at a smaller AC to DC field ratio [refer to Eq. (5-6)].  
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Figure 30: Phase diagram of the experimentally recorded AC to DC field ratios, , for 

rDEP trapping of live (triangular symbols) and dead (square symbols) yeast cells at the 

reservoir-microchannel junction with respect to the AC field frequency. The DC voltage 

was fixed at 2 V in all measurements. The highlighted area (i.e., Zone 2) indicates the 

region in which the dead yeast cells can be selectively trapped the continuously separated 

from live yeast cells by rDEP. 

Figure 30 can be used as a phase diagram to guide the electrical manipulation of 

live and dead yeast cells at the reservoir-microchannel junction using rDEP. The 

experimentally obtained AC to DC field ratio curves for the two types of cells divide the 

map into three regions, i.e., Zones 1 to 3 as labeled in figure 30. In Zone 1, the AC to DC 

field ratio is larger than that for trapping live yeast cells and hence both live and dead 

cells can get trapped [see figure 28(c)]. In contrast, Zone 3 is the region where the AC to 

DC field ratio is smaller than that for trapping dead yeast cells. Hence, the induced rDEP 

is only able to focus both types of cells to the center plane of the microchannel [see figure 
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28(b)]. In Zone 2, i.e., the highlighted region in figure 30, the AC to DC field ratio is in 

between the two values required for trapping live and dead yeast cells, respectively. 

Therefore, dead yeast cells are trapped and concentrated inside the reservoir while live 

yeast can still travel through the microchannel and be separated from the dead ones. The 

transition from Zone 1 to Zone 2 and Zone 3, or vice versa, can be easily implemented in 

two ways. One is to vary the AC to DC field ratio at a fixed AC field frequency, and the 

other is to adjust the AC field frequency while keeping the AC to DC field ratio constant.  

5.5.3 Continuous Separation of Live and Dead Yeast Cells with rDEP 

Technically the rDEP separation of live and dead yeast cells at the reservoir-

microchannel junction can be realized using a DC-biased AC electric field at any 

frequency as long as the AC to DC field ratio is within Zone 2 of figure 30. Practically, 

however, we need to consider a couple of factors in experiments. One factor is that the 

gap between the AC to DC field ratios for trapping live and dead cells should be the 

larger the better, which will make the device design and control relatively easy. Figure 30 

indicates that we can use the frequency in the range of either 1-100 kHz or 300-400 kHz. 

The second factor is that the AC field frequency should be the lower the better. It is 

because a larger AC field needs to be used at a higher frequency (suppose the DC field is 

fixed), which has two consequences: (1) Joule heating and electrothermal effects may 

become significant causing adverse influences on the sample and device (Xuan, X. 2008; 

Sridharan, S. 2011), and (2) the choices of commercially available voltage amplifiers are 
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significantly limited as the voltage amplification is compromised by the AC field 

frequency.  

Taking these factors into consideration, we conducted the rDEP separation 

experiment with DC-biased AC electric fields at 1 kHz frequency. It was observed that 

the application of a 4 V DC-biased 47.5 V AC voltage (i.e.,  = 11.875) could achieve a 

selective concentration and continuous separation of live and dead yeast cells at the 

reservoir-microchannel junction. The experimental and numerical results are displayed in 

figure 31. Figure 31(a) shows a snapshot image of the cell behaviors at the junction, 

where the non-fluorescent dead yeast (appearing as dark hollow circles due to optical 

reflections) are trapped inside the reservoir while the fluorescent live yeast (appearing 

bright green) enter into the microchannel. The streak images of the live and dead cells are 

shown in the top row of figure 31(b) and figure 31(c), respectively. Also shown are the 

numerically predicted cell trajectories in the bottom row, which both agree reasonably 

well with the experimental results.  
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Figure 31: Demonstration of selective concentration and continuous separation of live 

and dead yeast cells at the reservoir-microchannel junction by rDEP. (a) is a snapshot 

image, and (b) and (c) compare the experimentally obtained superimposed images (top 

row) of live (b) and dead (c) yeast cells with the numerically predicted cell trajectories 

(bottom row). The cell separation was driven by a 4 V DC-biased 47.5 V AC (i.e.,  = 

11.875) at 1 kHz frequency. The block arrow in (a) indicates the cell moving direction.   

We admit this is just a preliminary demonstration of the continuous separation of 

live and dead yeast cells via rDEP. There are several issues that require further studies 

and may eventually be addressed. One issue is the relatively low cell throughput as the 

applied voltage is limited by the high-frequency voltage amplifier. This issue may be 

resolved by using a high-voltage amplifier (then the frequency is limited to a few kHz) or 

by using a very short microchannel (such as an orifice) to connect the reservoirs. Another 

issue is the observed dynamic movement of the trapped dead cells at the entrance of the 

microchannel, which also impacts the motion of the non-trapped live cells. This can be 

Live yeast

Dead yeast

(a) (b) (c)

100 µm
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viewed from the streak images in figure 31(b) and figure 31(c), where a circular region is 

formed at the reservoir-microchannel junction for each type of cells. We speculate it may 

be attributed to the cell-cell interactions and perhaps the cell-fluid interactions as well. 

Such a behavior is not captured in our numerical model as these interactions are either 

neglected (cell-cell interactions) or not fully considered (cell-fluid interactions). 

5.6 Summary 

We have developed a new method for continuous microfluidic separation of cells 

by viability using rDEP. The transporting, focusing, and trapping of live and dead yeast 

cells at the reservoir-microchannel junction have been demonstrated by simply varying 

the AC component (either the amplitude or the frequency) of DC-biased AC electric 

fields. These phenomena can all be reasonably predicted by a simple 2D numerical 

model. We have also carried out a fundamental study to obtain the AC to DC field ratios 

for trapping live and dead yeast cells separately in a range of AC field frequencies, both 

of which agree with the corresponding numerical prediction with a good accuracy. 

Within the tested frequency range, the AC to DC field ratio for live yeast trapping is 

higher than that for dead cells as the former experiences a weaker rDEP while having a 

larger electrokinetic mobility. The difference in this ratio has been utilized to implement 

a selective concentration and continuous separation of live yeast cells from dead ones at 

the reservoir-microchannel junction. Since the demonstrated cell separation takes place 

inside the reservoir, the clogging issue due to the trapped cells can be largely, if not 

entirely, removed. Moreover, the entire microchannel can be spared for post-analysis, 
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which makes the developed rDEP manipulation perfectly positioned for lab-on-a-chip 

devices towards numerous other applications. 
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CHAPTER 6: Enhanced Throughput for Electrical 

Manipulation of Particles and Cells in a Stacked 

Microfluidic Device Using Reservoir-based 

Dielectrophoresis (rDEP) 

6.1 Introduction  

High throughput in microfluidic devices required by commercial applications is 

often a challenge. To attain high throughput in microfluidic devices for cell (Wei Hou, H. 

2012; Di Carlo, D. 2007; Mach, A. J. 2010) or particle (Hur, S. C. 2011; Hansson, J. 

2012) manipulation and also in rapid droplet (Kim, S. H. 2013; Romanowsky, M. B. 

2012) formation parallelization of microchannels is used. The method of using 

multilayered microchannels (i.e. stacking of PDMS layers consisting of a single 

microchannel on each layer) to enhance the throughput have also been utilized (Didar, T. 

F. 2013; Choi, S. 2011). However, the fabrication methods used in parallelization are 

complex and multilayered microchannels require stacking of several PDMS layers (each 

layer containing single microchannel) aligned on top of each other making it complicated 

for integration on miniaturized microfluidic devices. We propose a novel stacked 

microfluidic device consisting of multiple stacked polydimethylsiloxane (PDMS) layers 

with multiple microchannels on each layer. The microchannels in different PDMS layers 

are also vertically aligned so that they can be visualized in the same view field by 
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adjusting the vertical focus. The stacked microfluidic device proposed herein can operate 

in parallel on each stacked PDMS layers requiring fewer layers. Thus stacked device 

allows parallel operations on multiple layers which increase the throughput and reduces 

the complexity of fabrication. The stacked microfluidic device has the advantage of 

simple fabrication, is inexpensive and can attain high throughput. 

6.2 Experiment 

6.2.1 Stacked Microfluidic Device 

To achieve high throughput we propose a stacked microfluidic device consisting 

of multiple layers of PDMS slabs and each layer has multiple microchannels. The 

microchannels in each PDMS layer were fabricated with PDMS using the standard soft 

lithography technique. As seen in figure 32, the stacked PDMS-glass microfluidic device 

has two PDMA layers bonded on top of a glass slide. Each PDMS layer has four straight 

microchannels of 0.5 mm in length with a 5 mm-diameter reservoir at each end. The 

channel is 500 µm wide and consists of a constriction with 50 µm-width and 500 µm-

length at central the reservoir microchannel junction. The microchannel structure was cut 

and five holes were punched through the PDMS slab which served as the reservoirs in 

experiments. The channel side of the PDMS was then plasma treated (PDC-32 G, Harrick 

Scientific, Ossining, NY) for 1 min along with a clean glass slide. The two treated 

surfaces were bonded together to form the glass/PDMS microchannel. After plasma 

treatment, the top PDMS surface of the glass/PDMS microchannel was bonded to the 
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channel side of another identical PDMS microchannel with the five reservoirs in two 

PDMS layers are aligned. 

 

Figure 32: Illustration of a stacked PDMS-glass microfluidic device with two PDMS 

layers, each of which is composed of four a 0.5 mm-long straight microchannels with a 5 

mm-diameter reservoir at each end. The channel is 500 µm wide and has a constriction 

section of 50 µm in width and 500 µm in length at the central reservoir microchannel 

junction (see the inset of figure. 32). The arrow in the inset indicates flow direction. 

6.2.2 Particle and Cell Solution 

Polystyrene particles of 5 µm and 3 µm in diameter (Sigma-Aldrich, St. Louis, 

MO) were used to demonstrate the size based separation. The particles were suspended in 

1 mM phosphate buffer to a final concentration of 10
6
–10

7
 particles per milliliter. Tween 
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20 (Fisher Scientific, Waltham, MA, USA) was added to the particle solution at 0.1% v/v 

to suppress the aggregation of particles and their adhesion to channel walls.  

Yeast cells (Saccharomyces Cerevisiae) were cultured using the standard 

procedure as detailed in section 5.2.2. Escherichia coli ORN178 were cultured in Tryptic 

Soy Broth containing Ampicillin (100µg/ml) overnight at 37°C. The bacterial cells were 

then washed and re-suspended in 1PBS to a concentration of 2  10
5
 cells/ml. Both the 

cells were then cleaned and re-suspended again in a 1mM phosphate buffer solution to a 

final concentration of 10
6
 cells per ml.   

6.2.3 Experimental Technique 

The electrokinetic flow of the particle and cell solutions through the stacked 

microchannel was attained by imposing DC-biased AC electric fields across the channels. 

The DC-biased AC voltage was applied to the electrode in the central reservoir and the 

electrodes in the outer four reservoirs were grounded. The DC-biased AC electric field 

was supplied by a function generator (33220 A, Agilent Technologies, Santa Clara, CA) 

in conjunction with a high frequency power amplifier (2100HF, Trek, Inc., Medina, NY). 

Motion of particles and cells were monitored using an inverted microscope (Nikon 

Eclipse TE2000U, Nikon Instruments, Lewisville, TX), and the microchannels in the two 

PDMS layers were visualized by adjusting the vertical focus. The motion of particles and 

cells were recorded using a CCD camera (Nikon DS-Qi1Mc) connected to the 

microscope. 



110 
 

6.3 Theory 

Time averaged DEP force for a spherical particle is given by (Jones, T. 1995) 

 3 22 Re ( )DEP m CMr f   F E                                            (6-1) 

where r is the particle or cell radius, m is the permittivity of the medium,  Re ( )CMf  is 

the real part of the effective Clausius-Mossotti factor with  being the angular field 

frequency and E  is the total electric field applied. The ( )CMf  is given by 

( )
2

p m

CM

p m

f
 


 

 

 





                                                                     (6-2) 

where   is the complex permittivity and defined as shown in Eq. (6-3). The complex 

permittivity is a function of permittivity , conductivity  and angular frequency . The 

subscript p and m in Eq. (6-2) stands for particle and medium, respectively.  

i


 


  
   

 
                                                                         (6-3)  

Based on the sign of ( )CMf  particle or cell experiences positive DEP; which means 

translation motion towards higher electric field region, or negative DEP; which means 

translation motion towards lower electric field regions. The dielectrophoretic motion, 

UDEP, is induced by the inherently non-uniform electric field at the reservoir-

microchannel junction. 
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Figure 33: Velocity analysis of a particle at the reservoir-microchannel junction due to 

electrokinetic flow and the induced rDEP. The thin lines represent the electric field lines 

or equivalently fluid streamlines in the absence of the particle. The background color 

shows the electric field contour. 

 

The dielectrophoretic velocity, UDEP can be obtained by equating FDEP with 

Stokes drag on a spherical particle. The superimposition of electrokinetic velocity and 

dielectrophoretic velocity results into actual particle velocity, UP at the reservoir-

microchannel junction given by  

( )p EK DEP EK DC DEP     U U U E E E                                    (6-3) 

where EK is the electrokinetic mobility and DEP is the dielectrophoretic mobility which 

is similar to ones described in earlier chapters. Particles and cells experience negative 

DEP at low electric field frequencies. The dielectrophoretic velocity acts counter to the 

electrokinetic velocity of a particle or cell as shown in figure 33. With the increase in AC 

electric field the DEP force increases considerably as it is function of both the DC and 

AC electric fields consequently increasing the DEP velocity. At sufficient AC voltages 

dielectrophoretic velocity counteracts the electrokinetic velocity of the particles and thus 
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trapping them at the reservoir-microchannel junction. The rDEP trapping can be utilized 

to separate particles based on size in the stacked microfluidic device as the DEP force 

responsible for trapping is a function of particle size. Particles attributing variation in size 

can be selectively separated and concentrated at the reservoir-microchannel junction in a 

stacked microfluidic device. 

6.4 Numerical Simulation 

Under thin electrical double layer approximation the DC electric field 

distribution,            , is governed by 2D Laplace equation  

                                                                                
2 0DC  ,                                                                                              (6-4) 

Electric insulation boundary condition is specified on the channel wall, and imposed 

voltages on the surfaces of the electrodes. The potential, DC , is numerically solved using 

commercial finite element package, COMSOL Multiphysics 4.2a (Burlington, MA). With 

the known DC electric field the particle velocity is calculated by: 

2(1 ) ( . )EK DC c DEP DC DC      U E E E                                      (6-5) 

Where, the value of λc accounts for the errors in the computation of particle and cell 

velocity caused by the perturbation of the local flow and electric fields by the presence of 

finite sized particle and cell.  Its value varies from 0 to 1 and decreases with the increase 

in particle or cell size. The zeta potentials of the channel wall and particle are 

respectively taken to be -50 mV and -35 mV. The dielectrophoretic particle mobility, 

DEP, in Eq. (6-3) was calculated using the typical dynamic viscosity, ɳf = 1.0 × 10
-3
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kg/m•s and permittivity εf = 6.9 × 10
-10

 C/v•m for pure water at 20 ºC. The correction 

factors for the 5µm and 3µm particles are, respectively, 0.6 and 0.8, which is consistent 

with our previous work (Zhu, J. 2012; Patel, S. 2012). In the numerical modeling the 

average yeast cell diameter used is 5 µm. The CM factor for the yeast cells was 

calculated using multi-shell model (Patel, S. 2012). 

6.5 Results and Discussion 

6.5.1 5 µm Particles Concentration and Separation from 3 µm Particles 

Figure 34(a)-34(c) demonstrates the electrokinetic trapping of 5 µm particles at 

different reservoir-microchannel junctions of the stacked device at 50 V DC and 500 V 

AC. A DC-biased AC voltage was applied to attain particle trapping. The DC field was 

fixed at 50 V DC and the AC field was varied from low to high until trapping was 

realized. The frequency of the AC voltage was fixed at 1 kHz, which is well below the 

charge relaxation frequency of the electrolyte (~ 5 MHz).  
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Figure 34: Comparison of experimentally obtained snapshot and superimposed images 

and, numerically predicted trajectories for 5 µm particles at the reservoir-microchannel 

junction. Where, 34(a) and 34(c) are reservoir-microchannel junctions from layer A (see 

figure 32) representing trapping (50V DC and 500V AC) of particles in the images. 

Image 34(b) represents the superimposed image of particle trapping form layer B. 34(e), 

34(f) and 34(g) are experimentally obtained snapshot images demonstrating the 

separation of 5 µm and 3 µm particles by the rDEP. 34(d) and 34(h) represents the 

numerically predicted trajectories for trapping and separation respectively.  

 When the DEP force at the reservoir-microchannel junction is equal to or larger 

than the hydrodynamic forces acting on the particles they are tapped. DEP force increases 

as the ratio of the AC to DC field, α, increases. For AC Voltage of 500 V (α = 10), the 
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DEP force becomes strong enough to overcome the hydrodynamic force acting on the 

particles, and the particles are thereby trapped inside the central reservoir near the central 

reservoir-microchannel junctions, as shown in figure 34(b) (superimposed image). The 

experimentally obtained results in image 34(a)-34(c) qualitatively agree with the 

numerically predicted particle trajectories shown in 34(d). 

In figure 33 we also demonstrate the use of rDEP to separate micro-particles of 

different sizes at the central reservoir-microchannel junctions. Figure 34(e)-34(g) shows 

the experimentally observed electrokinetic separation of a mixture of 5 and 3 µm 

particles. The 3 µm particles are driven through the microchannel by electroosmotic flow, 

while the 5 µm particles are trapped and form pearl chains within the central reservoir 

near the entrance of the microchannels on application of 50 V DC biased 500 V AC 

voltages. The DEP force is also proportional to particle or cell volume. DEP force acting 

on the 3 µm particles is lower than that on the 5 µm particles, and is not enough to 

overcome the hydrodynamic force. Therefore, 3 µm particles cannot be trapped by the 

DEP force at the reservoir-microchannel junctions at the applied voltage, and flows 

through the microchannels towards the downstream reservoirs. In contrast, 5 µm particles 

are trapped inside the reservoir near the entrance as the DEP force generated at the 

applied voltage is sufficiently high to overcome hydrodynamic forces. Figure 34(e)-34(g) 

clearly shows that we can continuously separate 5 µm particles from 3 µm particles by 

rDEP. The theoretical predictions of trajectories of 3 and 5 µm particles in figure 34(h) 

shows that the 3 µm particles are focused and pass along the centerline of the 
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microchannel, while the large 5 µm particles are trapped inside the reservoir. The 

theoretical predictions qualitatively agree with the experimental observations.  

 Selective concentration and continuous separation of 5 µm from 3 µm polystyrene 

particles at the reservoir microchannel junction using reservoir-based dielectrophoresis 

(rDEP) is demonstrated in the stacked microfluidic device. The observed experimental 

results qualitatively agree with the predictions of a mathematical model for electrokinetic 

transport of the fluid and particles. Selective concentration and continuous separation of 

Saccharomyces Cerevisiae (yeast) from Escherichia coli (E. coli) at the reservoir-

microchannel junction using reservoir-based dielectrophoresis (rDEP) has also been 

studied experimentally and is presented in the next section. 

6.5.2 Yeast Cells Concentration and Separation form E. coli 

Figure 35(a)-35(c) depicts the experimentally observed trapping of yeast cells by 

rDEP at the central reservoir-microchannel junctions, under the action of a DC-biased 

AC voltage. In the experiment, we use a lower DC voltage of 25 V to achieve the 

trapping at a lower AC Voltage for minimizing the Joule heating effect, which affects 

cells’ viability. Under 25 V DC and 200 V AC voltage the yeast cells experience DEP 

force capable to overcome the hydrodynamic forces and are trapped at the junction. The 

experimental observations are in qualitative agreement with the theoretical predictions of 

the particle trajectories, as shown in figure 35(d). As the ratio of the AC to DC field 

increases, the resulting DEP force increases, leading to more yeast cells trapped at the 

central reservoir-microchannel junctions. 
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The concentration of the yeast cells trapped at the junction in the bottom 

microchannels is higher than that in the upper ones due to the gravitational effect. 

Suspended yeast cells tend to settle at the bottom of the central reservoir resulting in 

higher cell concentration in the bottom of the reservoir, leading to more cells trapped at 

the bottom junctions.  

 

Figure 35: Experimentally obtained snapshot images of yeast cell trapping and, yeast cell 

and E. coli separation at the reservoir-microchannel junction. Images 35(a), 35(b) and 

35(c) demonstrate the trapping of yeast cells (25V dc and 200V ac) at the reservoir 
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microchannel junction. Image 35(d) represents the numerically predicted cell trajectories. 

Images 35(e)-35(h) are experimentally obtained snapshot images of yeast and E. coli cell 

separation at the junction. 

Figure 35(e)-35(h) shows the separation of yeast cells and E. coli at four different 

reservoir-microchannel junctions. Pressure driven flow was used utilized to achieve the 

cell separation shown in figure 35. The flow rate of the cell solution through the 

microchannels can be increased easily if pressure driven flow is utilized thus increasing 

the throughput considerably. Pressure driven flow is also independent of the cell surface 

properties (i.e. surface charge) enabling the cells to have uniform velocities. The AC DEP 

force generated on the application of AC electric field across each microchannel depends 

on the cell size which can be exploited to selectively separate and concentrate cells using 

rDEP. In the cell separation experiment the mixture of yeast and E. coli cell solution is 

continuously pumped from the central reservoir towards the downstream reservoirs by a 

pressure driven flow induced by higher liquid height in the central reservoir compared to 

the outer reservoir. In addition, an external AC field was applied across each 

microchannel to create AC DEP force at the central reservoir-microchannel junctions and 

the outer four reservoirs were grounded. The AC field generated DEP force is against the 

hydrodynamic force stemming from the pressure driven flow. Since yeast cells are much 

larger (~5 µm in diameter) than E. coli cells (~1 µm in diameter), the DEP force 

experienced by the yeast cells is significantly higher than that on E. coli cells. Therefore, 

yeast cells can be concentrated in the central reservoir, while E. coli cells are driven by 

the pressure-driven flow from the central reservoir through the microchannels towards 

the downstream reservoirs. Figure 35(e)-35(h) shows that yeast cells are trapped at the 
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central reservoir-microchannel junction while the E. coli cells can still pass through the 

microchannel. The E. coli cells being translucent and very small in size are difficult to be 

visualized in the images.  

6.6 Summary 

This work successfully demonstrates continuous separation of particles and cells 

by size based on rDEP occurring at the reservoir-microchannel junction. Stacked multiple 

microchannels are proposed and fabricated to increase the throughput. The proposed 

stacked microfluidic device can operate in parallel and is simple to fabricate. The device 

is tested by separating particles of different size and separation of yeast cells and E. coli 

bacteria. The throughput is proportional to the number of stacked PDMS layers and 

microchannels in each PDMS layer. One potential problem in the stacked device is the 

increase in the volumetric Joule heating effects which is proportional to the number of 

microchannels stacked in the device. Joule heating can be avoided by using 3D rDEP 

which can considerably reduce the electric field required for trapping and separating 

particles at the reservoir-microchannel junction. 3D rDEP utilizes the electric field 

gradients in the vertical plane along with the ones in horizontal plane. The working 

principle for particle manipulation using 3D rDEP is proposed in the next chapter.  
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CHAPTER 7: Three Dimensional Characterization of 

Electrokinetic Particle Entry Through Reservoir-

microchannel Junction 

7.1 Introduction 

In Chapters 2, 3, 4, 5 and 6 micron-sized particles and cells were trapped and 

separated at the reservoir-microchannel junction using reservoir-based dielectrophoretic 

method (rDEP). For sub-micron sized particle and cell trapping at the reservoir-

microchannel junction relatively larger electric fields is necessary. Application of large 

electric fields results into Joule heating which gives rise to electrothermal flow 

circulations reducing or distorting the particle trapping at the junction (Patel, S. 2013; 

Kale, A. 2013). In order to overcome this negative effect, we propose a three dimensional 

electric field gradient utilization to attain trapping of sub-micron particles at the junction. 

In the rDEP focusing and trapping demonstrated for the micron-sized particles the 

inherent electric field gradients formed in the horizontal plane of the device were used. 

However, if the reservoir is formed by punching a hole right at the starting of the 

microchannel a height difference between the reservoir and the microchannel can be 

created. As a result, the height difference gives rise to electric field gradients in the 

vertical direction as well. The increased electric field gradients at the reservoir-
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microchannel junction can enhance the DEP force and reduce the overall external electric 

field required to trap the particles. 

7.2 Experiment 

  The straight microchannel with constrictions at both ends was fabricated with 

PDMS using the standard soft lithography method, and the fabrication process is detailed 

in Chapter 2. The microchannel used for the experiments consists of 1 cm long straight 

section with 0.1 cm constrictions at both the ends. The channel is 500 µm wide in the 

main body and has a constriction section of 50 µm in width at both the ends. The channel 

has a uniform depth of 40 µm throughout. The microchannels utilized to obtain (a) two-

dimensional and (b) three-dimensional characterization of particles are shown in figure 

36. In the microchannel utilized for two-dimensional characterization the reservoirs are 

punched at an offset from the reservoir-microchannel junction. The inset in figure 36(a) is 

used to display the reservoir location. The reservoir when punched at an offset, created a 

section of reservoir that has the same depth as that of the microchannel. The 

microchannel in figure 36(b) is the one used to obtain three-dimensional characterization. 

As seen from the inset, the reservoir in this microchannel is punched right at the 

reservoir-microchannel interface. The resulting geometry allows for a sharp transition in 

the depth of the microchannel device at the reservoir-microchannel junction.  
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.

Figure 36: Schematic view of microfluidic devices used to obtain (a) two-dimensional, 

and (b) three-dimensional particle focusing and trapping. The inset illustrates the 

difference in location of the reservoirs in the devices used for two-dimensional and three-

dimensional characterization of particles.  

In the experiment, polystyrene particles of 5 µm diameter (Sigma-Aldrich, USA) 

were re-suspended in a solution made by mixing 1mM phosphate buffer and glycerol at a 

volume ration of 78:22 (Chang, N. 2008). The concentration of particles in the solution is 

maintained to be about 10
6
 – 10

7
 particles per mL. The addition of glycerol to the buffer 

solution at the above mentioned ratio allows for the mass density of the particles and the 

resulting solution to be equal. The particle transport was obtained by electric fields 

supplied using a function generator (33220A, Agilent Technologies, Santa Clara, CA) in 

conjunction with a high-voltage amplifier (609E-6, Trek, Medina, NY). The particles are 

visualized with a CCD camera (Nikon DS-Qi 1 Mc) through an inverted microscope 

(Nikon TE2000U, Nikon Instruments, Lewisville, TX). 
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7.3 Theory 

 The electric field E, becomes inherently non-uniform at the reservoir-

microchannel junction due the significant mismatch between size of the reservoir and 

microchannel. Figure 37(a) shows the contour of electric field magnitude, E, in the 

microchannel from the top view and the side view at the junction. Particles experience a 

dielectrophoretic force, FDEP, when they move electrokinetically through the reservoir-

microchannel junction. Figure 37(a) shows the dielectrophoretic force, FDEP, generated 

due to the electric field gradients at the reservoir-microchannel junction. The time 

averaged dipole moment approximation of FDEP on an isolated spherical particle is given 

by (Jones, T. 1995) 

31
( )

2
DEP f CMd f F E E                                                       (7-1) 

where εf is the fluid permittivity, d the particle diameter, fCM the Clausius-Mossotti factor 

which is a function of particle and fluid conductivities.  
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Figure 37: Illustration of (a) electric field E and (b) dielectrophoretic force, FDEP 

distribution at the reservoir-microchannel junction. The top and bottom image on the left 

represents the top view and the side view of electric field distribution at the reservoir-

microchannel junction. The images on the right represent the dielectrophoretic force 

(FDEP) distribution at the junction.  

 The polystyrene particles typically are poor conductors in DC and low-frequency 

AC electric fields, leading to negative dielectrophoresis. Thus, FDEP on these particles is 

directed towards the lower electric field regions as indicated by the arrows in figure 

37(b). The underlying physics for two-dimensional focusing and trapping is extensively 

explained in the previous chapters. As seen in figure 37(c), FDEP is directed towards the 

centerline and the also towards the bottom wall of the microchannel in the horizontal and 

vertical planes respectively. As discussed earlier, if the height difference between the 

microchannel and the reservoir is large, particles should experience three-dimensional 

focusing at the reservoir-microchannel junction. In contrast to two-dimensional, three-

dimensional focusing utilizes electric field gradients in both the horizontal and vertical 



125 
 

directions. Therefore, we may be able to focus and trap particles at a lower voltage ratios 

in three-dimensional compared to two-dimensional. Also, we may be able to trap 

particles of sub-micron range by simply reducing the microchannel depth.  

7.4 Numerical Simulation 

 The computational domain considers full scale three-dimensional microfluidic 

device used in the experiments (refer to figure 36). It considers the fluid in the 

microchannel and the inlet/outlet reservoirs. The simulation of the electrokinetic particle 

motion from reservoir to the microchannel was conducted in COMSOL 4.3b (Burlington, 

MA) using particle tracing function. The model utilized accounts for the effect of electric 

and flow fields on the particles. However, the perturbation of electric and flow field due 

to the presence of the particle is neglected. To account for the effects of the particle size 

on the dielectrophoretic velocity, a correction factor, c, is introduced. The particle 

velocity is written as 

( . )p EK DEPc   U E E E                                                        (7-2) 

where µEK denotes the electrokinetic mobility, a combination of electroosmotic and 

electrophoretic mobility. µDEP is the dielectrophoretic mobility of the particle obtained 

from substituting values of material properties used during the experiments. All the 

particles are assumed to be massless and uniformly distributed when entering the 

microchannel. The DC electric field, E   , is obtained by solving the Laplace 
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equation 
2 0  in COMSOL. The electric voltage was imposed on the electrode in the 

inlet reservoir and the electrode in the outlet reservoir was grounded. All the 

microchannel walls were imposed with an electrical insulation condition. The 

electrokinetic mobility, µEK was obtained by tracing individual particles in a straight 

channel where DEP is negligible. The measured electrokinetic mobility for the 5 µm 

particles were 3.2 x 10
-8 

(m
2
/V•s). The value of -0.5 was used for the Clausius-Mossotti 

factor. The numerical value for the correction factor, c, that accounts for the perturbation 

of fields due to finite particle size was taken as 0.5. The value was determined by fitting 

the predicted particle trajectories to the observed particle streak lines at the reservoir-

microchannel junction. 

7.5 Results and Discussion 

 7.5.1 Comparison Between Two-dimensional and Three-

dimensional Particle Focusing 

Figure 38 demonstrates 5 µm particle focusing in the two-dimensional (refer 

figure 36(a)) microchannel under various DC-biased AC voltages. Under pure DC field 

of 25 V as seen in figure 38(a), the 5 µm particles occupy the full channel width. The 

DEP force experiences by the particles in the absence of AC field at the reservoir-

microchannel junction is low and hence the particles are not deflected towards the center 

of the microchannel. From the snapshot images on the left, the particles can be seen in 

different plane. Some particles are optically well focused compared to others suggesting 
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that the particles occupy the channel in depth-wise direction as well. The figure 38(a) on 

the right is of experimentally obtained superimposed and numerically predicted 

trajectories of the 5 µm particles. There is a close agreement between the experimentally 

obtained and numerically predicted trajectories. On application of AC field of 150 V 

along with the DC field of 25 V, the particles experience a DEP force and are pushed 

towards the center of the microchannel. As seen in figure 38(b), the particle stream is 

narrow and does not occupy the full channel width. The narrow particle stream width 

suggests that they are undergoing two-dimensional focusing. In the experimentally 

obtained snapshot images in figure 38(b), it can be seen that all the particles are not very 

well optically focused. This suggests that particles occupy the channel depth in different 

plane and are not focused well in the depth-wise direction. Finally, on application of 300 

V AC along with 25 V DC, the particles pass through the center of the channel in a single 

file suggesting a very good two-dimensional focusing. However, on observing the 

snapshot image of the same in figure 38(c), we can still see particles optically not 

focused. The snapshot images suggest that even on application of high DC-biased AC 

voltages the particles are only focused in the horizontal plane (two-dimensional) and the 

focusing in the vertical plane is absent. The experimentally obtained snapshot and 

superimposed images agree closely with the numerically predicted trajectories of the 

particles. 
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Figure 38: Comparison between experimentally obtained (snapshot and superimposed) 

and numerically predicted trajectories of 5 m particles subjected to two-dimensional 

focusing at the reservoir-microchannel junction under the influence of rDEP at various 

DC-biased AC voltages.  The DC voltage applied, is fixed at 25 V and the AC (RMS) 

voltage at 1 kHz frequency is varied from (a) 0 V (=0) to (b) 150 V (=6), and (c) 300 

V (=12). 

Figure 39 demonstrates 5 µm particle focusing in the 2-dimesional (refer figure 

36(b)) microchannel under various DC-biased AC voltages. Under pure DC field of 25 V 

as seen in figure 38(a), the 5 µm particles occupy the full channel width. The DEP force 

experiences by the particles in the absence of AC field at the reservoir-microchannel 

junction is low and hence the particles are not deflected towards the center of the 
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microchannel. From the snapshot images on the left, the particles can be seen in different 

plane. Some particles are optically well focused compared to others suggesting that the 

particles occupy the channel in depth-wise direction as well. On application of AC field 

of 150 V along with the DC field of 25 V, the particles experience a DEP force and are 

pushed towards the center of the microchannel. As seen in figure 39(b), the particle 

stream is narrow and does not occupy the full channel width. The narrow particle stream 

width suggests that they are undergoing focusing in the horizontal plane. In the 

experimentally obtained snapshot images in figure 39(b), it can be seen that all the 

particles are not very well optically focused. This suggests that particles occupy the 

channel depth in different plane and are not focused well in the depth-wise direction. 

However, the particles have a better resolution compared to the 25 V pure DC case. This 

suggests that the particles are gradually undergoing focusing in vertical plane as well. 

Finally, on application of 300 V AC along with 25 V DC, the particles pass through the 

center of the channel in a single file suggesting a very good horizontal plane focusing. On 

observing the snapshot image of the same in figure 39(c), we can observe that all the 

particles are optically focused. The snapshot images suggest that on application of high 

DC-biased AC voltages the particles are not only focused in the horizontal plane but also 

in the vertical plane. The particles occupy the center of the channel and are also optically 

focused, suggesting a good 3-dimesional focusing. The experimentally obtained snapshot 

and superimposed images agree closely with the numerically predicted trajectories of the 

particles. 
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Figure 39: Comparison between experimentally obtained (snapshot and superimposed) 

and numerically predicted trajectories of 5 m particles subjected to three-dimensional 

focusing at the reservoir-microchannel junction under the influence of rDEP at various 

DC-biased AC voltages.  The DC voltage applied, is fixed at 25 V and the AC (RMS) 

voltage at 1 kHz frequency is varied from (a) 0 V (=0) to (b) 150 V (=6), and (c) 300 

V (=12). 

7.5.2 Comparison Between Two-dimensional and Three-dimensional 

Particle Trapping 

 Experimentally obtained snapshots and superimposed images of 5 µm particle 

trapping using two-dimensional and three-dimensional method is shown in figure 40. 
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When the stream-wise dielectrophoretic velocity counteracts the electrokinetic velocity 

particles are trapped at the reservoir-microchannel junction. The 5 µm particles as shown 

in figure 40(a), are trapped at the junction in the two-dimensional channel on application 

of 25 V DC and 425 V AC whereas in the three-dimensional channel the particles are 

trapped on application of 25 V DC and 375 V AC. We can observe that the voltage 

required for trapping of 5 µm particles in three-dimensional channel is lower compared to 

two-dimensional channel. The sharp transition between the depth of the reservoir and the 

microchannel produces an electric field gradient in the depth direction which is absent in 

the two-dimensional channel. The additional gradients in three-dimensional channel 

produce a larger opposing DEP force compared to two-dimensional channel, trapping the 

particles at a lower DC-biased AC voltage. The experimentally obtained snapshot and 

superimposed images are also compared with that of the numerically predicted 

trajectories for both the channel geometries and they agree closely well with each other.  
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Figure 40: Comparison of experimentally obtained snapshots and superimposed images 

with numerically predicted trajectories of 5 m particles subjected to (a) two-dimensional 

and (d) three-dimensional trapping at the reservoir-microchannel junction under the 

influence of rDEP. The DC voltage applied is 25 V and the AC (RMS) voltage at 1 kHz 

frequency is 375 V (=15) for two-dimensional, and 425 (=17) for three-dimensional 

trapping. 

 Particles trapping in both, two-dimensional and three-dimensional channel was 

performed using rDEP at different DC-biased AC voltages. Figure 41 shows the 

experimentally obtained and numerically predicted trapping voltages at different DC-

biased AC voltages in both the two-dimensional and three-dimensional channels. With 

the increase in DC field the electrokinetic velocity of the particles increases and a larger 

opposing DEP force is required to trap the particles. From the plot in figure 41, we can 

see that with larger DC field, the AC field required to produce an opposing DEP force is 

also larger.  
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Figure 41: Comparison between two-dimensional and thre-dimensional particle trapping 

under various DC-biased AC voltages under the influence of rDEP at the reservoir-

microchannel junction.  

 On comparison between the voltages required to trap 5 µm particles in two-

dimensional and three-dimensional channel, we can observe that the AC voltages 

required for trapping particles at the same DC voltages are different. The DC-biased AC 

voltage required to trap particles in three-dimensional channel is lower in all the four 

cases compared to two-dimensional channel studied above. The lower voltage 

requirements can be attributed to the additional electric field gradient present in the depth 

direction in the three-dimensional channel. The additional electric field gradient produces 

a larger DEP force at the same applied voltage in a three-dimensional channel compared 
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to two-dimensional channel. This unique feature in the three-dimensional channel can be 

utilized to trap particles at lower voltages, reducing the side effects of Joule heating. 

While trapping of sub-micron particles in a two-dimensional channel can be difficult, 

three-dimensional channels can be potentially used to trap sub-micron particles by 

altering the depth of the channel compared to the reservoir.  

7.6 Summary 

 This work demonstrates continuous particle focusing and trapping based on rDEP 

occurring at the reservoir-microchannel junction in two-dimensional and three-

dimensional channel geometries. Three-dimensional focusing and trapping is proposed to 

reduce the applied voltages required to trap particles and also to focus particles in 

horizontal and vertical planes. Joule heating can be avoided by using 3D rDEP which can 

considerably reduce the electric field required for trapping and separating particles at the 

reservoir-microchannel junction. 3D rDEP utilizes the electric field gradients in the 

vertical plane along with the ones in horizontal plane. 3D rDEP can be potentially 

utilized to manipulate and concentrate sub-micron size particles without producing Joule 

heating owing to low voltage requirements compared to traditional two-dimensional 

trapping.  
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CHAPTER 8: Conclusion and Future Work 

8.1 Conclusions 

 In this thesis, electrokinetic and dielectrophoretic motions of particles and, cells at 

the reservoir-microchannel junction is extensively studied using both experimental and 

numerical approach. Initially, particle electrokinetic motion at the reservoir-microchannel 

junction undergoing reservoir-based dielectrophoresis is studied. The factors that affect 

the electrokinetic and dielectrophoretic motion of the particles are studied in detail. Size 

based particle separation was attained utilizing the size dependence of the 

dielectrophoretic force acting at the reservoir-microchannel junction. Surface charge 

differences for monodisperse particles were utilized to attain charge based separation. 

Particles with varied surface charge possess different electrokinetic velocity which was 

exploited to attain charge based separation. Membrane of a cell that loses its viability gets 

distorted resulting into higher inflow and outflow of ions; increasing its conductivity 

compared to viable cells. The conductivity difference results into different Clausius-

Mossotti factor for viable and non-viable cells which was utilized to continuously 

separate live yeast cells from the dead ones. Furthermore, we used a stacked microfluidic 

device that has multiple levels with multiple microchannels at each level to continuously 

concentrate and, selectively separate particles and cells. A stacked microfluidic device 

was utilized to considerably increase the microfluidic throughput. At last, we utilize the 

rDEP method to attain three dimensional reservoir-based dielectrophoretic focusing and 
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trapping of particles. The detailed conclusion of major contributions of this thesis work is 

listed below. 

 1. In Chapter 2, the electrokinetic particle motion at the reservoir-microchannel 

junction under the effect of rDEP was studied. The effect of AC electric fields, DC 

electric fields and particle size on focusing at reservoir-microchannel junction was 

extensively studied. Trapping of different sized particles at various DC-biased AC fields 

was investigated. Validation of the experimentally obtained result was done using a 2D 

numerical model developed in COMSOL 3.5a (Birmingham, MA). The numerically 

obtained results agreed qualitatively with the experimentally obtained results. Particle 

focusing was found to increase with the magnitude of the in AC electric field and with 

the particle size but decrease with the DC electric field. From the investigation, it was 

also found that larger particles can be trapped at lower electric fields compared to smaller 

counterparts. Therefore, reservoir-based dielectrophoresis can be utilized to trap and 

separate particles/cells. 

 2. In Chapter 3, we demonstrated size based particle separation at the reservoir-

microchannel junction using reservoir-based dielectrophoresis. Continuous separation of 

particles with different size was obtained at the reservoir-microchannel junction. The 

separation process utilized inherent electric field gradients formed at the reservoir-

microchannel junction due to the size difference between the two micro-device 

components. The particles were trapped inside the reservoir during the separation process 

aiding in the utilization of the microchannel for post processing. Inter-particle 
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interactions however tend to reduce the separation efficiency at the junction. The effect of 

enhanced electrokinetic flow on the separation process was investigated experimentally. 

The separation efficiency was observed to be increasing with enhanced electrokinetic 

flow. 

 3. In Chapter 4, reservoir-based dielectrophoretic approach was applied to 

separate particle based upon surface charge. Same sized particles with difference in 

surface charge were separated inside the microfluidic reservoir. It was found that the 

streaming particles interacted with the trapped particles and reduced the separation 

efficiency. However, the influences from the undesired particle trapping have been found 

through experiments to decrease with the enhanced electrokinetic flow and the lowered 

AC electric field frequency. It was concluded that the channel width and depth along with 

solution ionic concentration can also impact the charge based particle separation. 

 4. In Chapter 5, continuous microfluidic separation of cells by viability using 

reservoir-based dielectrophoresis was attained. Live and dead yeast cells were trapped 

separately at different AC field frequencies under various DC-biased AC fields. The 

experimental results agreed closely with the corresponding numerical results. Within the 

tested field frequencies, the AC to DC ratio for live yeast trapping was higher than that 

for the dead cells as the former experiences a weaker rDEP while having a larger 

electrokinetic mobility. The difference in the AC to DC ratio required for trapping was 

utilized to selective concentrate and continuously separate dead yeast cells from live ones 
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at the reservoir-microchannel junction. The rDEP sorter can be perfectly positioned 

inside a lab-on-a-chip device as it spares the entire microchannel for post analysis.  

 5. In Chapter 6, we implemented a stacked microfluidic device for continuous 

concentration and separation of particles/cells at the reservoir-microchannel junction. A 

stacked microfluidic device consists of multiple levels with multiple microchannels at 

each level. Stacked device was utilized to manipulate polystyrene particles and cells at 

the reservoir-microchannel junction. Using a stacked device considerably increased the 

throughput compared to a single channel device. Low throughput is a major concern in 

microfluidics, implementing such a device can significantly increase the experimental 

throughput. 

 6. In Chapter 7, a comparison between two-dimensional and three-dimensional 

particle focusing and trapping is presented. A microchannel which utilizes electric field 

gradients in all the three directions was fabricated by punching the reservoir right at the 

reservoir–microchannel junction thus utilizing the depth-wise gradient to focus and trap 

particles. Three-dimensional particle focusing was observed in above mentioned 

microchannel configuration contrary to two-dimensional configuration used in previous 

chapters. A comparison of trapping voltages between three-dimensional and two-

dimensional configuration was studied. The experimental and numerical results showed 

that the three-dimensional configuration required lower AC voltages to trap particles at 

all the different base DC voltages compared to two-dimensional configuration. As three-

dimensional configuration utilizes the electric field gradients in both vertical and 
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horizontal plane, thus the voltage required to trap particles is lowered considerably, 

reducing the effects of Joule heating. 

8.2 Future Work 

 The microfluidic method of reservoir-based dielectrophoresis can be effectively 

utilized to manipulate micron sized particles. However, manipulation of sub-micron sized 

particles using this method would require application of a larger electric field which can 

in turn result into Joule heating. Joule heating at the reservoir-microchannel junction can 

greatly disturb the particle focusing and trapping. Future work would include detailed 

investigation of Joule heating effects on particle manipulation at the reservoir-

microchannel junction. In all our current work we utilize negative dielectrophoresis for 

separation of particles and cells. Particle or cell separation can also be attained by 

positive dielectrophoresis. Specifically, if separation is attained by forcing particular kind 

of particles to undergo positive dielectrophoresis and other kind to undergo negative 

dielectrophoresis, the inter-particle interactions at the junction can be greatly reduced. 

This would enable us to obtain very high separation efficiency and can be investigated as 

a part of future work. Moreover, the effects of channel length, constriction width, and 

buffer solution conductivity on particle and cell separation process can also be 

investigated. 
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