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ABSTRACT 

 

 

This dissertation, aimed at developing an improved design methodology for shield 

tunnels that explicitly considers design robustness against longitudinal variation of input 

parameters (such as soil parameters). To this end, a new solution model for shield tunnel 

performance analysis was first developed. In this new model, the random field concept 

was employed to model the longitudinal variation of input parameters. The input 

parameters (in the longitudinal domain) that had been generated with Monte Carlo 

simulation (MCS) were used as inputs for the tunnel longitudinal behavior analysis. Here, 

the finite element method (FEM) based upon Winkler elastic foundation theory was 

employed. The analyzed tunnel longitudinal responses as well as the input parameters 

that had been generated with MCS were then used to study the performance (i.e., 

structure safety and serviceability) of tunnel segment rings. For the latter analysis, the 

force method was used. Finally, the robust design concept was integrated into the design 

of shield tunnels to guard against variation of tunnel performance caused by longitudinal 

variation of input parameters. Within the framework of robust design, a multi-objective 

optimization was performed aiming to optimize the design with respect to design 

robustness against longitudinal variation of input parameters and cost efficiency, while 

satisfying safety and serviceability requirements. Through illustrative examples, the 

effectiveness and significance of improved shield tunnel design methodology was 

demonstrated. 



 iii 

DEDICATION 

 

 

I dedicate this dissertation to my parents for their love and support all these years. 



 iv 

ACKNOWLEDGMENTS 

 

I would first like to express my sincere gratitude to my advisors, Dr. C. Hsein 

Juang and Dr. Sez Atamturktur, for their invaluable advices, supports and 

encouragements. Without their guidance and persistent advices, this dissertation would 

not have been possible. I would also like to thank my committee members, Dr. Yongxi 

Huang and Dr. Qiushi Chen for their advices and support during the course of this 

dissertation study. I would also like to express my sincere appreciation to Dr. James R. 

Martin, Dr. Ronald Andrus, Dr. Nadarajah Ravichandran, Dr. Bryant G. Nielson, Dr. 

Melissa Sternhagen, Dr. Zhe Luo, and Dr. Marcin Ziolkowski for their assistance and 

support during my PhD study at Clemson. I would also like to express my sincere 

appreciation to Dr. Hongwei Huang, Dr. Dongmei Zhang, Dr. Jie Zhang, and Dr. Yadong 

Xue for their advices during my study at Tongji. 

I am grateful to my fellow co-workers and graduate students at Clemson, Zhifeng 

Liu, Lei Wang, Sara Khoshnevisan, Andrew Brownlow, Menfeng Shen, Kaifu Liu, 

Chunxia Huang, Shenghua Qiu, Junhua Xiao,Chaofeng Wang, Xiaoyu Hu, Ariful Haque, 

Mahi Mahinthakumar N, Parish Shad, Xinyu Lu, Li Wang, and Yuheng Du for engaging 

discussion and friendship. I would like to thank my parents. They always understand and 

support me with a lot of patience. They are the power of my study. 

This study has been supported in part by the National Science Foundation through 

Grant CMMI-1200117 and the Glenn Department of Civil Engineering, Clemson 

University. The results and opinions expressed in this dissertation do not necessarily 

reflect the views and policies of the National Science Foundation. Finally, I would like to 



 v 

thank the Shrikhande family and the Glenn Department of Civil Engineering for 

awarding me the Aniket Shrikhande Memorial Annual Graduate Fellowship. 



 vi 

TABLE OF CONTENTS 

 

Page 

 

TITLE PAGE ............................................................................................................... i 

 

ABSTRACT ................................................................................................................ ii 

 

DEDICATION ........................................................................................................... iii 

 

ACKNOWLEDGMENTS .......................................................................................... iv 

 

LIST OF TABLES ................................................................................................... viii 

 

LIST OF FIGURES .................................................................................................... ix 

 

CHAPTER 

 

I. INTRODUCTION ..................................................................................... 1 

 

   Motivation and Background ................................................................. 1 

   Objectives and Dissertation Organization ............................................. 5 

 

II. SIMPLIFIED PROCEDURE FOR FINITE ELEMENT ANALYSIS OF THE 

LONGITUDINAL PERFORMANCE OF SHIELD TUNNELS 

CONSIDERING SPATIAL VARIABILITY IN LONGITUDINAL 

DIRECTION ........................................................................................ 7 

 

   Introduction .......................................................................................... 7 

   Formulations of the Simplified FEM Procedure ...................................10 

   Validation of the Developed FEM Solution .........................................21 

   Random Field Modeling of the Spatial Variation of Soil Properties .....33 

   Hypothetical Example .........................................................................37 

   Summary .............................................................................................46 

 

III.  IMPROVED ANALYTICAL MODEL FOR CIRCUMFERENTIAL 

BEHAVIOR OF JOINTED SHIELD TUNNELS CONSIDERING THE 

LONGITUDINAL DIFFERENTIAL SETTLEMENT .........................47 

 

   Introduction .........................................................................................47 

   Improved Analytical Model for the Segmental Lining .........................50 

   Illustrative Example ............................................................................63 

   Parametric Study .................................................................................76 



 vii 

Table of Contents (Continued) 

 

Page 

 

   Summary .............................................................................................83 

 

IV. ROBUST GEOTECHNICAL DESIGN OF SHIELD-DRIVEN TUNNELS 

 ............................................................................................................84 

 

   Introduction .........................................................................................84 

   Deterministic Model for Shield-Driven Tunnel Performance Analysis .87 

   Analysis of Tunnel Performance with Fuzzy Input Data ......................91 

   Fuzzy Set-Based Robust Geotechnical Design (RGD) Methodology ...98 

   Case Study ........................................................................................ 102 

   Summary ........................................................................................... 111 

 

V. IMPROVED SHIELD TUNNEL DESIGN METHODOLOGY 

INCORPORATING DESIGN ROBUSTNESS .................................. 112 

   Introduction ....................................................................................... 112 

   New Framework for Shield Tunnel Performance Analysis................. 115 

   Robust Design Methodology of Shield Tunnels ................................. 120 

   Case Study ........................................................................................ 123 

   Summary ........................................................................................... 141 

 

VI. CONCLUSIONS AND RECOMMENDATIONS ................................... 143 

 

   Conclusions ....................................................................................... 143 

   Recommendations ............................................................................. 147 

 

REFERENCES......................................................................................................... 149 



 viii 

LIST OF TABLES 

 

 

Table                                                                                                                               Page 

 

 2.1 Design parameters adopted for assessing tunnel longitudinal performance 

    ............................................................................................................25 

 

 2.2 Subgrade reaction coefficients of the ground under the tunnel ...................26 

 

2.3 Statistical parameters assumed for the random field of subgrade reaction  

   coefficient ...........................................................................................37 

 

3.1 Design parameters of the illustrative example ...........................................65 

 

3.2 Parameters for assessing the ultimate bearing capacity envelope of reinforced  

   concrete lining .....................................................................................65 

 

 3.3 Parameters settings in the parametric studies .............................................76 

 

 4.1 Deterministic parameters for assessing tunnel performance ..................... 103 

 

 4.2 Parameters characterizing membership functions of noise factors ............ 103 

 

4.3 Design space of the RGD of shield-driven tunnel .................................... 104 

 

5.1 Statistical characterization of noise factors .............................................. 125 

 

5.2 Deterministic parameters of the example tunnel ...................................... 125 

 

 5.4 Comparison between the knee point in robust design and the real-world design 

    .......................................................................................................... 141 

 

 5.5 Robust design optimization results of the example tunnel with different target  

   factors of safety ................................................................................. 141 



 ix 

LIST OF FIGURES 

 

 

Figure                                                                                                                             Page 

 

 2.1 Formulation of tunnel element for longitudinal performance analysis: (a) 

   Pressure load q(x); (b) Subgrade reaction coefficient k(x); (c) Nodal  

   displacement [a]
e
; (d) Concentrated loads; (e) Load vector [F]

e
 ...........12 

 

 2.2 Schematic diagram of tunnel longitudinal performance problem ...............18 

 

 2.3 Design scenarios of the longitudinal variation of the ground under the tunnel:  

   (a) Scenario 1; (b) Scenario 2 ..............................................................22 

 

 2.4 FEM solution versus analytical solution for Scenario 1: (a) Tunnel settlement;  

   (b)Tunnel longitudinal rotation; (c) Tunnel longitudinal bending moment;  

   (d) Tunnel longitudinal shear force ......................................................26 

 

 2.5 FEM solution versus analytical solution for Scenario 2: (a) Tunnel settlement;  

   (b) Tunnel longitudinal rotation; (c) Tunnel longitudinal bending moment;  

   (d) Tunnel longitudinal shear force ......................................................29 

 

 2.6 Setup for model tests of 1-D tunnel longitudinal structure .........................31 

 

 2.7 FEM solution versus model tests: (a) Scenario 1; (b) Scenario 2................32 

 

 2.8 An example of the subgrade reaction coefficients generated from MCS ....38 

 

 2.9 Tunnel longitudinal performance predicted using the proposed FEM 

   procedure: (a) Tunnel settlement; (b) Tunnel longitudinal rotation; (c)  

   Tunnel longitudinal bending moment; (d) Tunnel longitudinal shear force 

    ............................................................................................................39 

 

 2.10 Distribution of tunnel settlement statistics (20,000 MCS runs): (a) Mean of  

   tunnel settlement; (b) COV of tunnel settlement ..................................41 

 

 2.11 The convergence of tunnel settlement statistics: (a) Mean of tunnel settlement;  

   (b) COV of tunnel settlement...............................................................42 

 

 2.12 Mean of tunnel settlement statistics versus the spatial variation parameters: (a)  

   Mean of w versus ; (b) Mean of w versus ; (c) Mean of w versus ;  

   (d) Mean of w versus ; (e) Mean of w versus r; (f) Mean of w versus r 

    ............................................................................................................44 

 



 x 

List of Figures (Continued) 

 

Figure                                                                                                                             Page 

 

 2.13 Mean of tunnel settlement statistics versus the reduction factor of tunnel  

   longitudinal flexural stiffness: (a) Mean of w versus ; (b) Mean of w  

   versus  ...............................................................................................45 

 

 3.1 Accumulated longitudinal settlement of the Shanghai Metro Line 1 (Note: A   

   Caobao Road; B  Shanghai Indoor Stadium; C  Xujiahui; D  Hengshan  

   Road; E  Changshu Road; F  South Shanxi Road; G  South Huangpi  

   Road; H  People’s Square; I  Xinzha Road; J  Hanzhong Road; K   

   Shanghai Railway Station) ..................................................................48 

 

 3.2 The circumferential loads on the cross section of jointed shield tunnels 

    ............................................................................................................50 

 

 3.3 Additional loads on the tunnel cross section caused by tunnel longitudinal  

   differential settlement: (a) Shearing effect; (b) Flattening effect ..........51 

 

 3.4 Force method derivation of the half tunnel structure: (a) Redundant forces of  

   the half tunnel structure; (b) Virtual forces for calculating the convergence  

   deformation .........................................................................................55 

 

 3.5 Structure safety assessment of the segmental lining using limit state design  

   method ................................................................................................62 

 

 3.6 Tunnel longitudinal behavior with Gaussian longitudinal settlement: (a)  

   Tunnel settlement; (b) Tunnel longitudinal moment; (c) Tunnel  

   longitudinal shear force increment (per unit length) .............................69 

 

 3.7 The longitudinal variation of the internal forces of segmental lining with  

   Gaussian longitudinal settlement: (a) Bending moment at the tunnel crown; 

    (b) Axial force at the tunnel crown; (c) Bending moment at the tunnel  

   spring; (d) Axial force at the tunnel spring; (e) Bending moment at the  

   tunnel invert; (f) Axial force at the tunnel invert ..................................69 

 

 3.8 The longitudinal variation of the convergence deformation of the segmental  

   lining with Gaussian longitudinal settlement: (a) Convergence  

   deformation in the vertical direction; (b) Convergence deformation in the  

   horizontal direction .............................................................................71 

 

 



 xi 

List of Figures (Continued) 

 

Figure                                                                                                                             Page 

 

 3.9 The longitudinal variation of the circumferential behavior of the segmental  

   lining with Gaussian longitudinal settlement: (a) Structure safety of the  

   segmental lining; (b) Serviceability of the segmental lining .................74 

 

 3.10 Validation of the proposed tunnel analytical model: (a) 3-D deformation of a  

   shield tunnel with Gaussian settlement curve (Liao et al. 2008); (b)  

   Convergence deformation along the longitudinal direction (obtained with  

   the proposed tunnel analytical model)..................................................75 

 

 3.11 The circumferential behavior of the segmental lining versus tunnel settlement: 

    (a) Curvature of the tunnel settlement; (b) Fourth derivative of the tunnel  

   settlement ............................................................................................78 

 

 3.12 The circumferential behavior of the segmental lining versus the soil resistance  

   coefficient ...........................................................................................79 

 

 3.13 The circumferential behavior of the segmental lining versus the design  

   parameters of the segmental lining: (a) Segment thickness; (b) Flexural  

   stiffness of the circumferential joints; (c) Flexural stiffness of the  

   longitudinal joints................................................................................81 

 

 4.1 Schematic diagram of loads on a shield-driven tunnel cross-section ..........88 

 

 4.2 Structure safety assessment of tunnel segment using plasticity theory .......90 

 

 4.3 An example of a fuzzy number 32  ..........................................................92 

 

 4.4 -cut (-level) intervals for uncertainty propagation analysis using vertex  

   method: (a) i-cut interval of an input fuzzy number; (b) Fuzzy output  

    (fuzzy factor of safety) at i-cut level .................................................93 

 

 4.5 Resulting fuzzy factor of safety interpreted as a discrete distribution of  

   probability ...........................................................................................96 

 

 4.6 Validation of the proposed fuzzy set-based approach with triangular  

   membership function versus MCS: (a) MCS with equivalent triangular 

   distribution; (b) MCS with equivalent truncated normal distribution ....97 

 

 



 xii 

List of Figures (Continued) 

 

Figure                                                                                                                             Page 

 

 4.7 Optimization algorithms of shield-driven tunnel design: (a) Optimization  

   algorithm for reliability-based design; (b) Optimization algorithm for  

   RGD ................................................................................................. 100 

 

 4.8 Tunnel performance: Safety versus design parameters: (a) 1 versus t; (b) 2  

   versus t; (c) 1 versus ; (d) 2 versus ; (e) 1 versus Dj; (f) 2 versus Dj 

    .......................................................................................................... 106 

 

 4.9 Tunnel performance: Robustness versus design parameters and material cost  

   versus design parameters; (a) SNR1 versus t; (b) SNR2 versus t; (c) C  

   versus t; (d) SNR1 versus (e) SNR2 versus ; (f) C versus ; (g) SNR1  

   versus Dj; (h) SNR2 versus Dj; (i) C versus Dj .................................... 108 

 

 4.10 Pareto front obtained using NSGA-II: (a) All non-dominated solutions (Pareto  

   front) shown in 3-D graph of objectives; (b) Design parameters of all non- 

   dominated optimal solutions; (c) Robustness versus cost of all non- 

   dominated optimal solutions (2-D Pareto front) ................................. 109 

 

 5.1 Framework for shield tunnel performance analysis .................................. 116 

 

 5.2 Multi-objective optimization setting of robust design .............................. 122 

 

 5.3 Illustrative longitudinal variation of noise factors: (a) Vertical ground stiffness;  

   (b) Horizontal ground stiffness; (c) Effective cohesion; (d) Effective  

   friction angle; (e) Ground water table; (f) Ground surcharge.............. 128 

 

 5.4 Computed tunnel longitudinal responses given the noise factors in Figure 5.3:  

   (a) Settlement; (b) Longitudinal rotation; (c) Longitudinal bending  

   moment; (b) Longitudinal shear force ................................................ 128 

 

 5.5 Computed tunnel performance given the noise factors in Figure 5.3 ........ 129 

 

 5.6 Convergence of the overall factors of safety and signal-to-noise ratio with  

   MCS runs: (a) Overall factor of safety for structure safety; (b) Overall  

   factor of safety for serviceability; (c) Signal-to-noise ratio for structure  

   safety; (d) Signal-to-noise ratio for serviceability .............................. 130 

 

 

 

 



 xiii 

List of Figures (Continued) 

 

Figure                                                                                                                             Page 

 

 5.7 Distributions of the overall factors of safety and SNR in 2,000 MCS runs: (a)  

   Distribution of Fs1 ; (b) Distribution of Fs2 ; (c) Distribution of SNR1; (d) 

   Distribution of SNR2 .......................................................................... 131 

 

 5.8 Failure probabilities in 2,000 MCS runs using the advanced solution for shield  

   tunnel performance analysis: (a) Failure probability for structure safety;  

   (b) Failure probability for serviceability ............................................ 132 

 

 5.9 Factors of safety in 100,000 MCS runs using the conventional methods for  

   shield tunnel performance analysis: (a) Factor of safety for structure  

   safety; (b) Factor of safety for serviceability ...................................... 133 

 

 5.10 Easy-to-control design parameters on tunnel performance: (a) Segment  

   thickness; (b) Bolt diameter of the circumferential joints; (c) Bolt diameter  

   of the longitudinal joints; (d) Steel reinforcement ratio of tunnel segment 

    .......................................................................................................... 133 

 

 5.11 Easy-to-control design parameters on tunnel design robustness: (a) Segment  

   thickness; (b) Bolt diameter of the circumferential joints; (c) Bolt diameter  

   of the longitudinal joints; (d) Steel reinforcement ratio of tunnel segment 

    .......................................................................................................... 135 

 

 5.12 Robust design optimization results of the example tunnel ........................ 138 

 



 1 

CHAPTER ONE 

INTRODUCTION 

 

Motivation and Background 

 

Since the first shield tunnel was constructed in London 170 years ago, shield 

tunneling has gained increasing popularity for its flexibility, cost efficiency and minimal 

impact on ground traffic and surface structures (Lee et al. 2001). Today, shield tunneling 

method has become one of the most popular methods used in construction of urban 

tunnels, particularly for tunnels in soft soils. While significant progress has been achieved 

in shield-driven machines and tunneling technologies, the design of the segment lining of 

these shield tunnels, which are constructed with shield-driven machines, is still based 

upon the analysis of only a few cross sections with the assumption of a plane strain 

condition (Wood 1975; ITA 2000; Bobet 2001; Lee et al. 2001; Lee and Ge 2001; 

Koyama 2003).  

In general, the longitudinal length of a shield tunnel may be in thousands of 

meters while the diameter may be less than 10 m; as such, the design of a shield tunnel 

should be a 3-D problem instead of a 2-D plane strain problem. Additionally, the 

longitudinal variation of input parameters (e.g., soil parameters, ground water table and 

overburden) may be of higher consequence than expected. The longitudinal variation of 

input parameters can be attributed to factors such as variation of tunnel alignment, spatial 

variation of soil parameters, and nearby tunneling activities. Note that the determination 

of typical tunnel cross sections could be a significant challenge in a situation where 
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variations of input parameters are not negligible. Indeed, it has long been acknowledged 

that the longitudinal variation of input parameters should be considered in the analysis 

and design of shield tunnels (ATRB 2000; ITA 2000; Koyama 2003); nevertheless, a 

rational solution for shield tunnel performance analysis that can consider the longitudinal 

variation of input parameters could not yet be found.  

It is noted that the longitudinal behavior of a shield tunnel (caused by the 

longitudinal variation of input parameters) and its influence on the circumferential 

performance of the segment lining (referred to herein as the structure safety and 

serviceability of tunnel segment ring) may be investigated with numerical models 

implemented in softwares such as ABAQUS, ANSYS, and PLAXIS. However, the 

analysis and design of a shield tunnel based upon such numerical analysis is often 

computationally prohibitive in practice. A more feasible approach to analyze longitudinal 

behavior is to model the tunnel as a continuous elastic beam (Shiwa et al. 1986; Talmon 

and Bezuijen 2013). In this context, the effect of the longitudinal joints (referred to herein 

as the joints between segment rings) on the flexural stiffness of tunnel longitudinal 

structure is simulated with a reduction factor of tunnel longitudinal flexural stiffness 

(Liao et al. 2008); and the soil-structure interaction between the tunnel structure and 

ground directly below the tunnel may be simulated with Winkler model (Winkler 1867), 

Pasternak model (Pasternak 1954), or Kerr model (Kerr 1965), while the overburden of 

the tunnel is represented with a pressure load and/or concentrated loads. The analytical 

solution of tunnel longitudinal behavior is readily derived based upon these assumptions. 

Furthermore, the effect of tunnel longitudinal behavior on the circumferential 
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performance of the segment lining can be analyzed by a simultaneous consideration of 

the shearing effect (Liao et al. 2008) and the flattening effect (Huang et al. 2012). It is 

expected that the longitudinal variation of input parameters could complicate the 

performance analysis of shield tunnels regardless of whether the numerical methods or 

analytical solutions are adopted). 

In the conventional deterministic design of tunnel segment lining, a conservative 

estimate of input parameters, which are required for the performance analysis of tunnel 

cross sections, is often taken to compensate for the inevitable longitudinal variation. To 

further ensure safety, the computed factor of safety for a feasible design is required to be 

greater than a target factor of safety, a value derived from past experience. Thus, the 

“true” safety level of the resulting design of shield tunnels is generally unknown, as the 

uncertainties of input parameters are not explicitly considered. To overcome the 

shortcomings of the deterministic design approach, probabilistic approaches that consider 

uncertainties explicitly have been sought (Mollon 2009; Li and Low 2010; Lü and Low 

2011; Špačková 2013). Within which, the input parameters associated with longitudinal 

variation are dealt with as random variables and the outcome of the analysis of tunnel 

cross sections of concern is generally expressed as a reliability index or a probability of 

failure. However, in the practice of geotechnical engineering, site-specific data is often 

limited, thus an accurate statistical characterization of these uncertain variables is indeed 

a challenging prerequisite. The results of a probabilistic analysis might be greatly 

undermined if the adopted joint distribution of input parameters could not be reliably 

determined. Recently, robust geotechnical design (RGD) methodology has been 
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developed for analysis and design of geotechnical systems with uncertain input 

parameters (Juang et al. 2013 & 2014; Wang et al. 2013; Gong et al. 2014b & 2014c).  

In the context of robust design, a design is considered robust if the performance of 

the system is robust against, or insensitive to, the variation of uncertain input parameters. 

Within the RGD framework, design robustness is sought along with safety and cost 

efficiency. Cost is primarily a function of design parameters, including those that are 

“easy-to-control” by the designer, such as the geometry and dimensions. Safety and 

robustness are, however, a function of the design parameters as well as the “hard-to-

control” parameters, such as uncertain soil parameters. Here, these hard-to-control input 

parameters are termed “noise factors.” The primary goal of RGD is to derive an optimal 

design (represented by a set of design parameters), in which the system response is robust 

against, or insensitive to, the variation of noise factors while the requirements of safety 

and cost efficiency are satisfied. The RGD provides a new perspective for designing 

geotechnical systems under an uncertain environment.  

In this dissertation, a new solution model for shield tunnel performance analysis is 

proposed which incorporates the longitudinal variation of input parameters in the analysis 

and design of shield tunnels. The longitudinal variation of input parameters is modeled 

with the random field concept. The effect of the longitudinal variation of input 

parameters on the performance of a shield tunnel (referred to herein as the structural 

safety and serviceability of all tunnel segment rings) is studied with a simplified finite 

element method (FEM) procedure as well as a force method-based analytical solution 

model. Furthermore, the robust design concept is integrated into the design of shield 
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tunnels to guard against longitudinal variation of input parameters. In the following 

chapters, the improved design methodology of shield tunnels is formulated in detail, and 

the effectiveness of this method is demonstrated with illustrative examples.  

 

Objectives and Dissertation Organization 

 

The objectives of this research are to (1) develop a simplified FEM procedure to 

analyze the longitudinal behavior of shield tunnels considering the longitudinal variation 

of input parameters, (2) derive a force method-based analytical solution of shield tunnel 

performance that can explicitly consider the effects of tunnel longitudinal behavior, and 

(3) formulate an improved design methodology of shield tunnels that can explicitly 

consider design robustness against longitudinal variation of input parameters. 

This dissertation consists of five chapters. In Chapter II, a simplified FEM 

procedure to analyze tunnel longitudinal behavior that arises from the longitudinal 

variation of input parameters is developed. Here, the tunnel longitudinal structure is 

simulated with a continuous elastic beam and the soil-structure interaction between the 

tunnel structure and the ground is modeled with the Winkler elastic ground and load 

effects, and the longitudinal variation of input parameters is modeled with the random 

field concept. In Chapter III, a force method-based analytical solution of shield tunnel 

performance is derived. The effect of tunnel longitudinal behavior, which is analyzed 

using the developed FEM procedure in Chapter II, on the structure safety and 

serviceability of tunnel segment ring is explicitly considered through the shearing and 

flattening effect. In Chapter IV, a robust design methodology of one tunnel segment ring 



 6 

is presented. Here, uncertain input parameters are modeled with a fuzzy sets concept, and 

the robust design of the tunnel cross section is set up as a multi-objective optimization 

problem that maximizes design robustness and cost efficiency, while conventional 

performance component is formulated as a compulsory design constraint. In Chapter V, 

the robust design concept is applied to a design of the tunnel longitudinal structure that 

consists of hundreds of segment rings. The FME procedure (developed in Chapter II) and 

the analytical solution (developed in Chapter III) are employed as the solution model of 

shield tunnel performance analysis, and the design robustness measure (formulated in 

Chapter IV) is utilized for the tunnel longitudinal structure analysis. Finally, in Chapter 

VI the main conclusions of this dissertation are presented. 
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CHAPTER TWO 

SIMPLIFIED PROCEDURE FOR FINITE ELEMENT ANALYSIS OF THE 

LONGITUDINAL PERFORMANCE OF SHIELD TUNNELS CONSIDERING 

SPATIAL VARIABILITY IN LONGITUDINAL DIRECTION
*
 

 

Introduction 

 

Since the first shield tunnel was completed in London 170 years ago, shield 

tunneling has gained greater popularity for its flexibility, cost electiveness and minimum 

impact on ground traffic and surface structures (Lee et al. 2001). While the design 

methodology of shield tunnels evolves from empirical models to the mechanics-based 

models, the current practice of the design of the segmental lining is still based upon the 

analysis of critical tunnel cross sections, assuming a plane strain condition (Wood 1975; 

Bobet 2001; Lee et al. 2001; Koyama 2003). Furthermore, the selection of critical 

sections is quite subjective; it may be selected as the section with the deepest overburden, 

the shallowest overburden, or the lowest groundwater table; it may be selected as the 

section with large surcharge, eccentric loads, or unlevelled surface; or it may be selected 

at location where there is an adjacent tunnel at present or in the future (ITA 2000). 

However, for a shield tunnel that is hundreds or thousands of meters in length, the 

longitudinal variation of design parameters, which can be caused by the tunnel alignment,  

______________________ 

* 
A similar form of this chapter has been submitted to a journal at the time of writing: Huang, H., 

Gong, W., Khoshnevisan, S., Juang, C.H., Zhang, D., and Wang, L. (2014). “Simplified 

procedure for finite element analysis of the longitudinal performance of shield tunnels considering 

spatial soil variability in longitudinal direction.” Computer and Geotechnics (under review). 
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spatial variation of soil properties, and nearby underground construction, is quite likely 

and should be considered in the design (ATRB 2000; ITA 2000; Koyama 2003). In 

particular, a more rational design of the shield tunnel should consider the longitudinal 

performance of the tunnel (referred to herein as the tunnel differential settlement, 

longitudinal rotation, longitudinal shear force and longitudinal bending moment) caused 

by the longitudinal variation of design parameters.  

The longitudinal performance of a shield tunnel and its influence on the 

circumferential behavior (referred to herein as the structure safety and serviceability) of 

tunnel segment lining may be investigated using numerical models implemented in 

software such as ABAQUS, ANSYS, and PLAXIS. However, the design of a shield 

tunnel based upon such numerical models is often computationally prohibitive in 

practice. A more feasible approach to analyze the tunnel longitudinal performance is to 

model the longitudinal structure of shield tunnels as a continuous elastic beam (Shiwa et 

al. 1986; Talmon and Bezuijen 2013). Then, the effect of longitudinal joints (referred to 

herein as the joints between segmental rings) on the flexural stiffness of tunnel 

longitudinal structure is modeled through a reduction factor of tunnel longitudinal 

flexural stiffness (Liao et al. 2008; Huang et al. 2012); and the soil-structure interaction 

between the tunnel longitudinal structure and the ground under the tunnel is simulated 

with Winkler model (Winkler 1867), Pasternak model (Pasternak 1954), or Kerr model 

(Kerr 1965), while the overburden of the tunnel is represented with a pressure load and/or 

concentrated loads. Based on these assumptions, the analytical solution of tunnel 

longitudinal performance can readily be derived. Further, the effect of tunnel longitudinal 
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performance on the circumferential behavior of the segment lining may be analyzed by 

considering simultaneously the shearing effect (Liao et al. 2008) and the flattening effect 

(Huang et al. 2012).  

Because of the inevitable length of shield tunnels, the effect of the spatial 

variation of soil properties on the tunnel longitudinal performance is often significant and 

must be explicitly considered. The spatial variation (in the longitudinal domain) of soil 

properties tends to complicate the numerical analysis and analytical solution of tunnel 

longitudinal performance. Therefore, the main goal of this paper is to derive a simplified 

procedure for FEM analysis of tunnel longitudinal performance that considers the 

longitudinal variation of tunnel design parameters such as the soil properties of the 

ground under the tunnel. Note that the spatial variation of the ground under the tunnel 

may refer to either the spatial variation of different types of ground under the tunnel or 

the spatial variation of soil properties within the same ground under the tunnel (Fenton 

1999). In this paper, our focus is placed on the latter, although the former is also analyzed 

to validate the FEM model that is derived in this paper. 

This paper is organized as follows. First, a simplified procedure for FEM analysis 

of the tunnel longitudinal performance is developed. Second, the developed FEM 

procedure is verified with both analytical solutions and model tests. Third, the random 

field concept is introduced to simulate the spatial variation (in the longitudinal domain) 

of soil properties of the ground under the tunnel. Finally, a hypothetical illustrative 

example is presented to demonstrate how the tunnel longitudinal performance is affected 

by the spatial variation of soil properties of the ground under the tunnel. 
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Formulations of the Simplified FEM Procedure 

 

In this section, a simplified procedure for FEM analysis of the tunnel longitudinal 

performance that considers the longitudinal variation of tunnel design parameters is 

derived. In which, the tunnel longitudinal structure is modeled with a continuous beam 

(Shiwa et al. 1986; Talmon and Bezuijen 2013) and the effect of tunnel longitudinal 

joints is simulated with a reduction factor of tunnel longitudinal flexural stiffness (Liao et 

al. 2008); the soil-structure interaction between the tunnel beam and the ground under the 

tunnel is modeled with Winkler elastic ground model (Winkler 1867), and the overburden 

of the tunnel is represented with the pressure load and/or concentrated loads. These are 

the conditions for formulating the FEM procedure herein, although other models (e.g., the 

more comprehensive beam-joint model instead of the continuous beam model) may be 

adopted. It should be noted that while the subject of beam on elastic (or elastoplastic) 

foundation, or the beam-soil spring model, is not new (Hiroshi and Takeshi 1987; Klar et 

al. 2007; Yankelevsky 1988; Zhang and Huang 2014), the FEM solution presented in this 

paper is formulated specifically to consider the longitudinal variation of tunnel design 

parameters, the effect of which has never been studied.  

 

Local stiffness matrix [K]
e
 and local load vector [F]

e
 

For an elastic beam element on the Winkler elastic ground, the stiffness matrix of 

the element, denoted as [K]
e
, can be determined with the stiffness matrices of both the 

elastic beam and the ground under the beam. The load vector of the element, denoted as 

[F]
e
, consists of both the pressure load and the concentrated loads applied on the element. 
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To derive the element stiffness matrix [K]
e
 and load vector [F]

e
 that can consider the 

longitudinal variation of soil properties of the ground under the tunnel and in the 

overburden of the tunnel in the FEM model of the tunnel longitudinal performance, the 

following assumptions are made: (1) both the pressure load (q) and the subgrade reaction 

coefficient (k) within an element, depicted in Figure 2.1(a) & 2.1(b), respectively, can be 

approximated with the nodal values at both ends of the element using linear interpolation; 

and (2) tunnel settlement (w; referred to herein as the vertical deformation of tunnel 

structure) within an element can be modeled with the deformation pattern of a two-node 

Hermite element (Lu et al. 2004). These assumptions are quite valid when the size of the 

element mesh in the FEM solution is relatively small.  

Based upon the first assumption, the pressure load (q) and the subgrade reaction 

coefficient (k) within the element can be expressed as follows, respectively: 

 

   1 2 1q q q q                                                                                          (2.1a) 

 

   1 2 1k k k k                                                                                          (2.1b) 

 

where q1 and q2 = the pressure loads at the left end (referred to Node 1 in Figure 2.1) and 

the right end (referred to Node 2 in Figure 2.1) of the element, respectively; k1 and k2 = 

the subgrade reaction coefficients at the left end and the right end of the element, 

respectively; and,  = a shape factor ranging from 0 to 1.0, which is used herein to 

represent the relative position within the element and estimated as: 
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1
2 1 1 2 ( ,  )

x x
l x x x x x

l



                                                                      (2.1c) 

 

where l = the longitudinal length of the tunnel element of concern; x1 and x2 = the 

longitudinal coordinates of the left end and the right end of the element, respectively.  

 

                               
   (a)                                                                           (b)  
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Figure 2.1: Formulation of tunnel element for longitudinal performance analysis: (a) 

Pressure load q(x); (b) Subgrade reaction coefficient k(x); (c) Nodal displacement [a]
e
; 

(d) Concentrated loads; (e) Load vector [F]
e
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Based upon the second assumption, the settlement (w) within the element can be 

computed as follows: 

 

              
2 2 4

0 1

1 1 1

i i i i i i

i i i

w H w H N a    
  

     
e

N a                          (2.2) 

 

where w1 and w2 = the settlements at the left end and the right end of the element, 

respectively; 1 and 2 = the longitudinal rotations at the left end and the right end of the 

element, respectively; and, [N] and [a]
e
 = the interpolation vector and the nodal 

deformation vector that are adopted within the two-node Hermite element, respectively. 

The terms [N] and [a]
e
 are set up as (Lu et al. 2004): 

 

                 

   

0 1 0 1

1 1 2 2

2 3 2 3 2 3 3 2

[ ]

      [1 3 2 2 + 3 2 ]

H H H H

l l

   

        



     

N
                      (2.3a) 

 

   
T

1 1 2 2 , in which  ( 1 and 2)

i

i

x x

dw
i

dx
    



 
   

 

e
a                      (2.3b) 

 

As depicted in Figure 2.1(c), the following sign conventions are adopted for the 

nodal deformation vector [a]
e
: the settlement (w) is taken as positive when it moves 

downward and the longitudinal rotation () is taken as positive when it yields a clockwise 

rotation. In general, the tunnel longitudinal structure may also be subject to the 

concentrated loads such as vertical load (P) and moment (M), as illustrated in Figure 

2.1(d). The vertical load (P) is regarded as positive when it yields a downward movement 

and the moment (M) is treated as positive when it yields a counterclockwise rotation.  
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Next, the energy concept is employed to derive the element equilibrium equation. 

The potential energy of the tunnel element shown in Figure 2.1, denoted as p , can be 

computed as follows: 

 

       

   
  

           

   
   

2 2 2

1 1 1

2 2 2

1 1 1

2
2

2

p 2

2
2

2

2

1 1

2 2

1 1
      =

2 2

         

x x x

i i j

i j jx x x

x x x

x x x

j

i i j

i j

d w dw
E x I x dx k x Dw dx q x Dwdx Pw M

dx dx

d
E x I x dx k x D dx q x D dx

dx

d x
P x M

dx

   
        

  

 
  

 
 

 
    

   

  

 

e

e e

e

e

N a
N a N a

N a
N a

                                                                                                                                        (2.4) 

 

where E(x) and I(x) = the elastic modulus of the segmental lining and the inertia moment 

of tunnel longitudinal structure at the longitudinal coordinate of x, respectively; and, D = 

the outer diameter of the segmental lining. 

Note that the deformation vector of the tunnel element, [a]
e
, that satisfies the 

element equilibrium equation can be determined by minimizing the potential energy of 

the element, p , and the minimum value of p  is achieved by solving following 

equation: 

 

 
p

0





e
a

                                                                                                           (2.5) 

 

Substituting Eq. (2.4) into Eq. (2.5): 
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Further, Eq. (2.6a) can be simplified as: 

 

     
e e e

K Fa                                                                                                 (2.6b) 

 

where, 
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T

3 2 2

0 0
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l d d
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                                                                                                                                      (2.7a) 
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i j

d NM
q Dl d P N

l d


  



 
    

e
F N                        (2.7b) 

 

As can be seen, [KB]
e
 and [KG]

e
 are the stiffness matrices of the element that 

arise from the elastic beam, 
       

T1 2 2

3 2 2

0

E I d d
d

l d d

 


 

   
   
   


N N

, and the ground, 

     
1

T

0

k Dl d  N N , respectively. 

As mentioned previously, the tunnel longitudinal structure is approximated in this 

paper as a continuous beam, in which the flexural stiffness of the tunnel longitudinal 
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structure, in terms of E(x)I(x) or E()I(), is a constant that does not vary in the 

longitudinal domain; and the effect of longitudinal joints on tunnel longitudinal flexural 

stiffness is modeled through a reduction factor, denoted as  (Liao et al. 2008; Huang et 

al. 2012). Thus, the stiffness matrix of the element that is attributed to the elastic beam, 

[KB]
e
, and to the Winkler elastic ground, [KG]

e
 can be integrated as follows, 

respectively:  
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                                                                                                                                      (2.8b) 

 

where EI is the equivalent flexural stiffness of tunnel longitudinal structure, which can 

be computed as  
44 2

64
EI E D D t


     

 
; and, t is the thickness of segmental 

lining. Here, the derivation of the reduction factor of tunnel longitudinal flexural stiffness 

() can be found in the work of Liao et al. (2008), and the subgrade reaction coefficient 

of the Winkler elastic ground (k) may be estimated from either the plate-load test data 

(Lin et al. 1998) or the elastic modulus and Poisson’s ratio of the soil determined with 
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laboratory tests (Terzaghi 1955; Horvath 1983; Daloglu and Vallabhan 2000; 

Sadrekarimi and Akbarzad 2009; Zhang and Huang 2014). 

The load vector [F]
e
 of the element, defined in Eq. (2.6b), can be integrated as: 
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e

F  

                                                                                                                            (2.9) 

 

where Q1 and Q2 are the equivalent longitudinal shear forces at the left end and the right 

end of the element, respectively; M1 and M2 are the equivalent longitudinal bending 

moment at the left end and the right end of the element, respectively. As illustrated in 

Figure 2.1(e), the following sign conventions are adopted for the nodal force vector [F]
e
: 

the shear force (Q) is positive when it yields a clockwise rotation and the bending 

moment (M) is positive when it yields a counterclockwise rotation.  

 

Global stiffness matrix [K] and load vector [F] of tunnel longitudinal structure 

Based on the developed local stiffness matrix [K]
e
 and local load vector [F]

e
 of 

the tunnel element (see Eq. 2.8 & 2.9, respectively), the global stiffness matrix, denoted 

as [K], and global load vector, denoted as [F], of the whole tunnel longitudinal structure 

can be assembled accordingly. The procedures to assemble the global stiffness matrix [K] 

and global load vector [F] are summarized as follows: 
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Node 1 Node 2 Node 3 Node i Node i+1 Node n Node n+1

Element 1 Element 2 Element i Element n

q(x)
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Pnp
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Figure 2.2: Schematic diagram of tunnel longitudinal performance problem 

 

1) For a given tunnel longitudinal performance problem shown in Figure 2.2, the 

whole tunnel longitudinal structure is first discretized into n elements of the same size; 

and thus, the longitudinal coordinates of the resulting (n+1) nodes are readily identified. 

2) Initialize the global stiffness matrix [K] and global load vector [F] as [K] = 0 

and [F] = 0, respectively. The dimension of [K] is 2(n+1) by 2(n+1) and that of [F] is 

2(n+1) by 1, since there are two degrees of freedom (DOF; herein including the vertical 

deformation w and longitudinal rotation ), for each and every node in the developed 

FEM solution. Note that the term Ki,j within [K] can be interpreted as the nodal force 

required at j
th
 DOF to generate a unit displacement at i

th
 DOF. The term Fi,1 within [F] is 

the equivalent load at i
th
 DOF, which is caused by the pressure load (q) and concentrated 

loads (i.e., vertical load P and moment M) on the tunnel. 
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3) For the discretized element i of the tunnel longitudinal structure, develop the 

local element stiffness matrix [K]
(i)

 and local element load vector [F]
(i)

 following the 

formulations in Eq. (2.8) & (2.9), respectively.  

4) Update the global stiffness matrix [K] and global load vector [F] with the 

element stiffness matrix of [K]
(i)

 and element load vector [F]
(i)

 obtained in Step 3, 

respectively. Here, the term 2( 1) ,2( 1)K i im i in     within [K] is updated with 
( )

,K i

im in  within 

[K]
(i)

 as 2( 1) ,2( 1)K i im i in     = 2( 1) ,2( 1)K i im i in     + 
( )

,K i

im in  (im and in = 1, 2, 3, and 4). Similarly, 

the term 2( 1) ,1F i im   within [F] is updated with 
( )

,1F i

im  within [F]
(i)

 as 2( 1) ,1F i im   = 2( 1) ,1F i im   + 

( )

,1F i

im .  

5) Repeat the procedures in Step 3 and Step 4 for each and every discretized 

element of the whole tunnel longitudinal structure. Thus, the global stiffness matrix [K] 

and global load vector [F] are assembled. 

 

Boundary conditions 

The global equilibrium equation of the whole tunnel longitudinal structure, in the 

context of FEM solution of tunnel longitudinal performance, can be set up as follows:  

 

    K F                                                                                                     (2.10) 

 

where [K] and [F] = the global stiffness matrix and global load vector, respectively, 

which can be determined for a specific tunnel longitudinal performance problem using 

the procedures described above; and, [] = the global deformation vector that is to be 
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solved. The global deformation vector [] is a 2(n+1) by 1 vector and can be expressed as 

follows: 

 

   
T

1 1 1 1i i n n                   (2.11) 

 

where  ( 1, 2, , 1)i

i

dw
i n

dx


 
   
 

. 

While the global deformation vector [] of the tunnel longitudinal structure can 

readily be solved with the global equilibrium equation in Eq. (2.10), the boundary 

conditions must be determined and incorporated into this solution. In general, two kinds 

of boundary conditions may be encountered for each and every degree of freedom (DOF) 

in the FEM solution: free-boundary condition and fixed-boundary condition. As noted in 

Eq. (2.10), all the degrees of freedom within the global deformation vector [] are 

implicitly considered with the free-boundary condition; and hence, the fixed-boundary 

condition should be studied with special attention.  

Although many approaches are available to deal with the fixed-boundary 

condition in an FEM solution (Dhatt et al. 2012), the following procedure is found 

effective. Here, the global stiffness matrix [K] and global load vector [F] in Eq. (2.10) 

are further updated to account for the fixed-boundary condition: if the j
th
 DOF of tunnel 

longitudinal structure is subject to a fixed-boundary condition (e.g., a given 

displacement), the terms within [K] should be updated as ,K j jm  = 0, ,K jm j  = 0 , and ,K j j  

= 1 (jm = 1, 2, , and 2n+2), while the term ,1Fj  within [F] is updated as ,1Fj  = the given 

displacement at j
th
 DOF. 
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Post-processing of FEM solution 

Furthermore, the internal forces of the tunnel longitudinal structure, including 

both the longitudinal bending moment (ML) and the longitudinal shear force (QL), along 

the longitudinal position can be computed with the knowledge of the global deformation 

vector [] and local stiffness matrix of the element [KB]
e
. Note that the following sign 

conventions are adopted for the internal forces of the tunnel longitudinal structure: the 

longitudinal bending moment (ML) is treated as positive when the tunnel invert is subject 

to longitudinal tension and the longitudinal shear force (QL) is taken as positive when it 

yields a clockwise rotation. The procedure to compute the longitudinal shear force and 

longitudinal bending moment at node i and node (i+1) shown in Figure 2.2 can be 

summarized as follows: 

1) Construct the local stiffness matrix of element i that arises from the elastic 

beam [KB]
(i)

 (see Eq. 2.8a). 

2) Extract the nodal deformation of element i, [a]
(i)

, from the solved global 

deformation vector [] as follows: 

[a]
(i)

 = [wi  i  wi+1  i+1]
T
 = [ 2( 1) 1i    2( 1) 2i    2( 1) 3i    2( 1) 4i  ]

T
 

3) Compute the internal forces at node i and node (i+1), in terms of QLi, MLi, 

QL(i+1), and ML(i+1), as follows: 

[QLi  MLi  QL(i+1)  ML(i+1)]
T
 = [KB]

(i)
  [a]

(i) 

 

Validation of the Developed FEM Solution 
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The developed FEM solution of the tunnel longitudinal performance should 

ideally be validated with field data; however, to our knowledge there exists no such 

database that provides the tunnel longitudinal performance data with details of the 

longitudinal variation of design parameters. In this paper, the developed FEM solution is 

verified with both analytical solutions and model tests results, in which the longitudinal 

variation of the ground under the tunnel is explicitly considered. For simplicity and 

demonstration purposes, only two scenarios of the longitudinal variation of the ground 

are investigated, as shown in Figure 2.3. 

 

                      
   (a)                                                                           (b)  

Ground #1 Ground #2

q

Ground #1 Ground #2 Ground #1

q

 
 

Figure 2.3: Design scenarios of the longitudinal variation of the ground under the tunnel: 

(a) Scenario 1; (b) Scenario 2 

 

Validation with analytical solutions 

For a continuous elastic beam on the Winkler elastic ground, the vertical 

deformation or settlement (w) of the beam can be obtained by solving the following 

differential equation: 

 

 
4

4

4

( )
+4 ( ) =

( ) ( )

d w q x D
x w x

dx E x I x



                                                                       (2.12) 
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where 4
( )

( )
4 ( ) ( )

k x D
x

E x I x



 . For simplicity, the pressure q(x) and the subgrade reaction 

coefficient k(x) can be approximated as constants within a small longitudinal length; and 

thus, solving Eq. (2.12) in terms of w results in: 

 

         1 2 3 4e cos sin +e cos sinx xq
w x C x C x C x C x

k

                 (2.13) 

 

where C1, C2, C3 and C4 are constants depending on the boundary conditions of the given 

problem.  

Scenario 1 (Figure 2.3a) 

The subgrade reaction coefficient k(x) in the case of Scenario 1 can be expressed 

as: 

 

 ( 0)
( )

 ( 0)

l

r

k x
k x

k x


 


                                                                                            (2.14) 

 

where kl and kr = the subgrade reaction coefficients at the left side and the right side of 

the longitudinal coordinate of x = 0, respectively. Here, tunnel settlement (w) can be 

presented as: 
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where 4

4

l
l

k D

EI



 , 4

4

r
r

k D

EI



 ; and, C11, C12, C13, C14, C21, C22, C23, and C24 are 

constants that can be solved with following boundary equations: 

 

   
+0 0

lim lim
x x

w x w x
 

                                                                                      (2.16a) 

 

   
+0 0

lim lim
x x

x x 
 

                                                                                       (2.16b) 

 

   
+0 0

lim limL L
x x

M x M x
 

                                                                                (2.16c) 

 

   
+0 0

lim limL L
x x

Q x Q x
 

                                                                                  (2.16d) 
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x x

d w
M x EI
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                                                                       (2.16e) 
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lim lim 0L
x x

d w
Q x EI
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                                                                         (2.16f) 

 

 
2

2
lim lim 0L
x x

d w
M x EI
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                                                                     (2.16g) 

 

 
3

3
lim lim 0L
x x

d w
Q x EI

dx


 
                                                                      (2.16h) 

 

Based upon the above formulations, the closed form solution of the tunnel 

longitudinal performance in the case of Scenario 1 can be derived; in which, the derived 
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values of C11, C12, C13, C14, C21, C22, C23, and C24 in Eq. (2.15) are: C11 = 

2

1l

l r r

q q

k k





    
      

     

, C12 = 

2

1 1 1l l l

l r r r r

q q

k k

  

  

       
          

         

, C13 = 0, C14 = 0, 

C21 = 0, C22 = 0, C23 =

2 2

1l l

l r r r

q q

k k

 

 

     
      

       

, and C24 = 

2 3 2 1

1 1l l l l l

l r r r r r r

q q

k k

    

    

           
               

             

.  

For this validation analysis, the parameters that define the elastic beam and the 

Winkler ground are listed in Table 2.1 and Table 2.2, respectively. The comparison 

between the FEM solution and the analytical solution is performed and the results are 

plotted in Figure 2.4. For FEM solution, the size of the discretized element is set up as 

0.25 m and the FEM mesh of the tunnel longitudinal structure is shown in Figure 2.2. The 

developed FEM solution yields the identical results as those from the analytical solution 

for the tunnel settlement (see Figure 2.4a), longitudinal rotation (see Figure 2.4b), 

longitudinal bending moment (see Figure 2.4c), and longitudinal shear force (see Figure 

2.4d). 

 

Table 2.1: Design parameters adopted for assessing tunnel longitudinal performance 

 

Parameter Value 

Elastic modulus of segmental lining (E, kN/m
2
) 

a
 35.010

6
 

Tunnel outer diameter (D, m) 
a
 6.2 

Thickness of segmental lining (t, m) 
a
 0.35 

Tunnel flexural stiffness reduction factor ( )
b
 1/7 

Pressure load acting on tunnel (q, kN/m
2
) 

c
 300 

 
a
 Data adopted in Shanghai practice. 
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b
 Data from literature (Liao et al. 2008). 

c
 Data from local experience. 
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Figure 2.4: FEM solution versus analytical solution for Scenario 1: (a) Tunnel settlement; 

(b) Tunnel longitudinal rotation; (c) Tunnel longitudinal bending moment; (d) Tunnel 

longitudinal shear 

 

Table 2.2: Subgrade reaction coefficients of the ground under the tunnel 

 

Design scenario Parameter Value 

Scenario 1 

(see Figure 2.3a) 

 

Subgrade reaction coefficient of ground #1 (or 

silty sand) (kl, kN/m
3
) 

a
 

33,000 

Subgrade reaction coefficient of ground #2 (or 

mucky clay) (kr, kN/m
3
) 

a
 

5,000 

Scenario 2 

(see Figure 2.3b) 

 

Subgrade reaction coefficient of ground #1 (or 

silty sand) (kl, kN/m
3
) 

a
 

33,000 

Subgrade reaction coefficient of ground #2 (or 5,000 
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mucky clay) (km, kN/m
3
) 

a
 

Subgrade reaction coefficient of ground #1 (or 

silty sand) (kr, kN/m
3
) 

a
 

33,000 

Longitudinal length of ground #2 (or mucky 

clay) (Lm, m) 
b
 

20 

 
a
 Data from the site investigation of Shanghai metro line 13. 

b
 Data from assumption. 

 

Scenario 2 (Figure 2.3b) 

The subgrade reaction coefficient k(x) in the case of Scenario 2 can be expressed 

as: 
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                                                                                   (2.17) 

 

where kl and kr = the subgrade reaction coefficients at the left side and the right side of 

the intermediate ground, respectively; and, km and Lm = the subgrade reaction coefficient 

and the longitudinal length of the intermediate ground, respectively. Here, tunnel 

settlement (w) is presented as: 
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where 4

4

l
l

k D

EI



 , 4

4

m
m

k D

EI



 , 4

4

r
r

k D

EI



 ; and, C11, C12, C13, C14, C21, C22, C23, 

C24, C31, C32, C33, and C34 are constants that can be solved with following boundary 

equations: 
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Figure 2.5: FEM solution versus analytical solution for Scenario 2: (a) Tunnel settlement; 

(b) Tunnel longitudinal rotation: (c) Tunnel longitudinal bending moment; (d) Tunnel 

longitudinal shear force 

 



 30 

Next, the closed form solution of the tunnel longitudinal performance in the case 

of Scenario 2 is derived. However, the constants C11, C12, C13, C14, C21, C22, C23, C24, C31, 

C32, C33, and C34 are not listed here to save space (over hundreds of lines). Then the 

comparison between the FEM solution and the analytical solution is performed and the 

results are shown in Figure 2.5. For FEM solution, the size of the discretized element is 

set up as 0.25 m and the FEM mesh of the tunnel longitudinal structure is shown in 

Figure 2.2. Similar to the results for Scenario 1 (see Figure 2.4), the developed FEM 

solution yields the identical results as those from the analytical solution for the tunnel 

settlement (see Figure 2.5a), longitudinal rotation (see Figure 2.5b), longitudinal bending 

moment (see Figure 2.5c), and longitudinal shear force (see Figure 2.5d). 

 

Validation with model tests 

The developed FEM solution of the tunnel longitudinal performance is further 

validated with model tests. In the model tests, the segmental lining is simulated with a 

high density polyethylene (HDPE) pipe, the elastic modulus of which is 1.373 GPa. The 

outer diameter of the model tunnel is 160 mm and the thickness of the segmental lining is 

9 mm. The width of each segmental ring is 25.8 mm. The segmental rings are connected 

with six pieces of 17 mm  7.5 mm  2 mm plastic chips, the elastic modulus of which is 

480 MPa. The longitudinal joints of the model tunnel are located at 0.00, 45.56, 

112.78, 180.00, 247.22, and 314.44 measured from the tunnel crown and along the 

tunnel circumferential direction. A total number of 58 segmental rings, with the 

longitudinal length of 1.4964 m (nearly 10 times of the tunnel diameter), are investigated 
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in the model tests. The longitudinal flexural stiffness of the model tunnel is measured at 

3.03810
2
 N.m

2
, which is obtained by testing the simply supported beam.  

 

 
 

Figure 2.6: Setup for model tests of 1-D tunnel longitudinal structure 

 

As shown in Figure 2.6, a steel reaction frame is customized for the model test. 

Here, the pressure loading is applied to the model tunnel crown longitudinally by 5 small 

jacks while the steel springs are used to simulate the soil-structure interaction between 

the tunnel longitudinal structure and the ground under the tunnel. The maximum pressure 

of 11.94 kPa is applied through 5 loading steps. During the tests, the settlement of the 

model tunnel is measured with the displacement meters. Note that the stiffness of springs 

can be arbitrarily adjusted to simulate the longitudinal variation of the ground under the 

tunnel.  

Scenario 1 (Figure 2.3a) 
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To simulate the subgrade reaction coefficients of silty sand and mucky clay, 

similar principles are employed to determine the stiffness of steel springs and the 

obtained stiffness of these springs are 419.70 kN/m and 63.55 kN/m, respectively. In the 

model test with Scenario 1 (see Figure 2.3a), the left side of the ground under the model 

tunnel longitudinal structure is simulated with the hard spring, while the right side is 

simulated with the soft spring. Figure 2.7(a) depicts the measured settlement of the model 

tunnel under the last loading step. Also plotted Figure 2.7(a) is the computed tunnel 

settlement using the developed FEM procedure. As can be seen, the results obtained from 

two different approaches agree well with each other. 
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Figure 2.7: FEM solution versus model tests: (a) Scenario 1; (b) Scenario 2 

 

Scenario 2 (Figure 2.3b) 

In the model test with Scenario 2, the ground under the intermediate 16 segmental 

rings is simulated with the soft spring (to model the mucky clay), while the ground under 

the left 42 segmental rings is simulated with the hard springs (to model the silty sand). 

Similar to Figure 2.7(a), Figure 2.7(b) shows the measured settlement of the model tunnel 
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under the last loading step along with the computed tunnel settlement using the 

developed FEM procedure. Again, the results obtained from two different approaches 

agree well with each other. As can be seen, the shield tunnel in the model test is 

simulated by discrete segmental rings connected by plastic chips, whereas the shield 

tunnel in the developed FEM solution is modeled by a continuous beam. The good 

agreement between the results obtained from model tests and those from FEM solution 

supports the assumption made in this paper, that is, the shield tunnel can be represented 

with a continuous beam for the analysis of the tunnel longitudinal performance.  

In summary, the developed FEM procedure for the tunnel longitudinal 

performance has been verified with both analytical solutions and model tests. The results 

also indicate that the shield tunnel can be represented with a continuous beam for the 

analysis of the tunnel longitudinal performance and the developed FEM model is a 

satisfactory solution.  

 

Random Field Modeling of the Spatial Variation of Soil Properties 

 

One significant application of the developed FEM procedure is to analyze the 

tunnel longitudinal performance considering the longitudinal variation (i.e., spatial 

variation in the longitudinal domain) of soil properties of the ground under the tunnel. 

Note that the spatial variation of soil properties of the ground under the tunnel may be 

due to the following situations: (1) existence of different types of ground under the tunnel 

in the longitudinal direction (e.g., Figure 2.3), and (2) spatial variation of soil properties 
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within the same ground under the tunnel (Fenton 1999). The first situation was studied in 

the previous section, and the second situation is examined in this section. 

 

Local averaging within the element domain 

In the developed FEM solution of tunnel longitudinal performance, the subgrade 

reaction coefficient (k) within a tunnel element is represented with the values at two 

nodes of the element. Note that the performance of the element is indeed dependent upon 

the averaged subgrade reaction coefficient over the element domain, rather than the 

subgrade reaction coefficient at the element nodes. Thus, the averaged subgrade reaction 

coefficient might be taken as the input in the developed simplified FEM model. In such a 

circumstance, the spatial averaging effect should be considered in the random field 

modeling of the spatial variation (in the longitudinal domain) of soil properties of the 

ground under the tunnel (El-Ramly et al. 2002; Fenton and Griffiths 2002 & 2005; Cho 

2007; Luo et al. 2011; Luo et al. 2012). 

In general, the mean of the averaged subgrade reaction coefficient over the 

element domain (l) is expected to be equal to the mean of the point subgrade reaction at 

element nodes (). The variance of the averaged subgrade reaction coefficient, however, 

is less than the variance of the point property when the local averaging effect is taken into 

account. For simplicity, the variance of the averaged subgrade reaction coefficient within 

the element domain is computed as follows (Li and Lumb 1987; Cho 2007):  

 
2 2( )l l                                                                                                         (2.20) 
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where 2

l  = the variance of the averaged subgrade reaction coefficient within the element 

domain; 2  = the variance of the point subgrade reaction coefficient (k); l = the length of 

the tunnel element of concern; and, (l) = a variance reduction factor bounded by 0 and 

1.0 and computed as (Cho 2007; Luo et al. 2012): 

 
2

1 2 2
( ) 1 exp

2

r l l
l

l r r


    
       

    
                                                                   (2.21) 

 

where r = the scale of fluctuation of the subgrade reaction coefficient along the tunnel 

longitudinal direction, within which the subgrade reaction coefficient shows a strong 

correlation. 

The local averaging effect on the correlations among the averaged subgrade 

reaction coefficients is next considered. Here, the correlation between the averaged 

subgrade reaction coefficients within different elements (represented by the subgrade 

reaction coefficients at different element nodes), in terms of 
ixk  and 

jxk , is computed by 

averaging the correlation between the subgrade reaction coefficients at all points within 

the element lengths (Cho 2007): 
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                                                      (2.22) 

 

where li and lj = the longitudinal lengths of the element i and the element j, respectively; 

and, (x) = the autocorrelation function among the point subgrade reaction coefficients. 

Oftentimes, it is difficult to obtain a closed form solution of Eq. (2.22). Alternatively, a 
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numerical integration scheme such as the three-point Gauss numerical integration may be 

employed. In this study, the anisotropic exponential autocorrelation function is used to 

represent the autocorrelation among the point subgrade reaction coefficients (Cho 2007; 

Wu et al. 2012): 

 

2
( ) exp( )

x
x

r
                                                                                              (2.23)  

 

where |x| = the relative longitudinal distance of any two points of concern. 

 

Generating the random field of subgrade reaction coefficients 

For illustration purpose, the subgrade reaction coefficient (k) within the same 

ground is modeled herein with a stationary lognormal random field. While the normal 

random field might also be used, the lognormal random field is preferred for the non-

negative feature of the subgrade reaction coefficient. Thus, the subgrade reaction 

coefficient at a specific longitudinal coordinate of xi can be generated as (Luo et al. 2012; 

Gong et al. 2014a): 

 

 n n n( ) exp ( )i ik x G x                                                                               (2.24)  

 

where n and n = the mean and standard deviation of log(k), respectively, which can be 

computed from the mean (l) and standard deviation (l) of the averaged subgrade 

reaction coefficient through the following transformations: 
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2

n ln 1 ( )l l                                                                                            (2.25a)  

 

2

n n

1
ln

2
l                                                                                                  (2.25b)  

 

The term Gn in Eq. (2.24) represents a set of standard normal random variables 

with the autocorrelation function of ( , )
i jx xk k  that is formulated in Eq. (2.22). This set of 

standard normal random variables can be easily generated using Monte Carlo simulation 

(MCS). Plotted in Figure 2.8 is an example of the generated subgrade reaction 

coefficients, which are readily used as inputs to the FEM model developed in this paper. 

For illustration purpose, the longitudinal length of the shield tunnel (L) and the element 

size (l) are assumed at 200 m and 0.25 m, respectively, and the statistical parameters of 

the random field of the subgrade reaction coefficient are assumed and listed in Table 2.3.  

 

Table 2.3: Statistical parameters assumed for the random field of subgrade reaction 

coefficient 

 

Parameter Value 

Mean of point subgrade reaction coefficient (, kN/m
3
) 33,000 

Coefficient of variation (COV) of point subgrade reaction coefficient () 0.5 

Scale of fluctuation of log(k) (r, m) 50 

 

Hypothetical Example 

 

A hypothetical illustrative example is presented in this section to demonstrate the 

analysis of the tunnel longitudinal performance using the developed FEM procedure, in 

which the spatial variation (in the longitudinal domain) of the subgrade reaction 

coefficient (k) of the ground under the tunnel is explicitly considered.  
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Figure 2.8: An example of the subgrade reaction coefficients generated from MCS 

 

Tunnel longitudinal performance with known subgrade reaction coefficients 

First, the longitudinal performance of a shield tunnel on the silty sand with known 

subgrade reaction coefficient as shown in Figure 2.8 is analyzed with the developed FEM 

procedure. For this problem, the design parameters of the shield tunnel are listed in Table 

2.1, and the longitudinal length of the shield tunnel (L) and the element size (l) are taken 

as 200 m and 0.25 m, respectively. The FEM mesh of the tunnel longitudinal structure is 

shown in Figure 2.2. The results of the FEM analysis are shown in Figure 2.9.  

As shown in Figure 2.9(a), significant differential settlement of the shield tunnel 

is observed due to the spatial variation of the subgrade reaction coefficient (k) of the 

ground under the tunnel (see Figure 2.8). The pattern of the longitudinal variation of 

tunnel settlement (w) is similar to that of the subgrade reaction coefficient (k) of the 

ground under the tunnel. The longitudinal position with a larger subgrade reaction 

coefficient always exhibits a smaller settlement. Similarly, Figure 2.9(b), 2.9(c) and 
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2.9(d), depict the longitudinal variation of tunnel longitudinal rotation (), longitudinal 

bending moment (ML), and longitudinal shear force (QL) respectively. 
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Figure 2.9: Tunnel longitudinal performance predicted using the proposed FEM 

procedure: (a) Tunnel settlement; (b) Tunnel longitudinal rotation; (c) Tunnel 

longitudinal bending moment; (d) Tunnel longitudinal shear force 

 

Compared to the scenarios of tunnel longitudinal performance variation in Figure 

2.4 and Figure 2.5, the longitudinal variation of tunnel longitudinal performance that is 

attributed to the spatial variation of soil properties shown in Figure 2.9 is more complex 

and cannot be expressed with a closed form solution. As formulated previously, the 

required number of boundary condition equations is already high (i.e., 8 or 12 depending 
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on different scenarios in Figure 2.3). To further incorporate the spatial variation (in the 

longitudinal domain) of soil properties, the number of boundary condition equations will 

be increased by many times, and an analytical solution of the tunnel longitudinal 

performance could not be achievable. The simplified FEM solution developed in this 

paper offers a feasible solution in this case.  

 

Longitudinal variation of tunnel settlement 

Since the longitudinal rotation, longitudinal bending moment, and longitudinal 

shear force can readily be computed from the tunnel settlement, the latter is used herein 

to represent the tunnel longitudinal performance. As such, the longitudinal variation of 

tunnel longitudinal performance can be studied in this paper by examining the 

longitudinal variation of tunnel settlement. 

As illustrated in Figure 2.9(a), the settlement of the shield tunnel (w) is a field that 

can be determined with the knowledge of the random field of the subgrade reaction 

coefficient (k) of the ground under the tunnel. For ease of illustration, the mean, denoted 

as w, and the coefficient of variation (COV), denoted as w, of the tunnel settlement are 

used to represent the overall tunnel settlement and the extent of differential settlement, 

respectively. The mean (w) and COV (w) of the tunnel settlement plotted in Figure 

2.9(a) are calculated as 11.65 mm and 0.23, respectively.  

As formulated previously, the subgrade reaction coefficients of the ground under 

the tunnel in the FEM analysis are generated with MCS; naturally, different subgrade 

reaction coefficient profiles can be generated from different MCS runs, which may result 

in different tunnel settlement curves. For example, the tunnel settlement curve shown in 
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Figure 2.9(a) is obtained for the situation where the input subgrade reaction coefficients 

are shown in Figure 2.8. To derive a converged solution of tunnel settlement statistics, 

including both the mean (w) and COV (w) of tunnel settlement, 20,000 MCS runs are 

carried out herein to simulate the spatial variation of the subgrade reaction coefficients of 

the ground under the tunnel.  
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Figure 2.10: Distribution of tunnel settlement statistics (20,000 MCS runs): (a) Mean of 

tunnel settlement; (b) COV of tunnel settlement 

 

Figure 2.10(a) and 2.10(b) show the distributions of the mean (w) and COV (w) 

of the tunnel settlement, respectively, with the results of the 20,000 MCS runs. Also 

plotted in Figure 2.10 are the fitted lognormal distributions. The results show that the 

tunnel settlement statistics (i.e., w and w) approximately follow the lognormal 

distribution. The mean and standard deviation of tunnel settlement statistics are computed 

with the results of the 20,000 MCS runs. In this example, the mean of w and w are 

11.02 mm and 0.35, respectively; and the standard deviation of w and w are 2.47 mm 

and 0.10, respectively. 



 42 

Figure 2.11(a) depicts the relationship between the computed mean and standard 

deviation of w with the number of MCS runs, and Figure 2.11(b) shows the relationship 

between the computed mean and standard deviation of w with the number of MCS runs. 

Figure 2.11 shows that converged solutions of tunnel settlement statistics can be achieved 

with 5,000 MCS runs. Thus, 5,000 MCS runs are employed in the subsequent parametric 

study. 
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Figure 2.11: The convergence of tunnel settlement statistics: (a) Mean of tunnel 

settlement; (b) COV of tunnel settlement 

 

Parametric study  how the tunnel settlements are affected by the spatial variation of soil 

properties and tunnel longitudinal flexural stiffness 

Parametric study is carried out in this section to investigate how the tunnel 

settlement statistics (i.e., w and w), taken herein as the mean of tunnel settlement 

statistics within 5,000 MCS runs, are affected by the spatial variation of the subgrade 

reaction coefficient of the ground under the tunnel and the tunnel longitudinal flexural 

stiffness. For this parametric study, different combinations of the statistical parameters 
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(i.e., , , and r) of the random field of the subgrade reaction coefficient are employed to 

represent different spatial variations of soil properties, and different reduction factors of 

the tunnel longitudinal flexural stiffness () are used to represent different designs of the 

tunnel longitudinal flexural stiffness. The results of the parametric study are shown in 

Figure 2.12 and Figure 2.13. 

Plotted in Figure 2.12 are the relationships between the tunnel settlement statistics 

and the statistical parameters of the random field of the subgrade reaction coefficient of 

the ground under the tunnel. As expected, the overall tunnel settlement tends to decrease 

with the improvement of the underlying ground stiffness, which is indicated by the 

increase of the mean of the subgrade reaction coefficient  (see Figure 2.12a); whereas, 

the extent of tunnel differential settlement, reflected by the COV of tunnel settlement, is 

hardly influenced by the mean of the subgrade reaction coefficient (see Figure 2.12b). 

The overall tunnel settlement is slightly affected by the COV () and the scale of 

fluctuation (r) of the subgrade reaction coefficient (see Figure 2.12c & 2.12e, 

respectively); whereas, the extent of tunnel differential settlement is significantly affected 

by the COV () and the scale of fluctuation (r) of the subgrade reaction coefficient (see 

Figure 2.12d & 2.12f, respectively). As shown in Figure 2.12(d), the COV of tunnel 

settlement increases with the COV () of the subgrade reaction coefficient. However, the 

relationship between the COV of tunnel settlement and the scale of fluctuation (r) of the 

subgrade reaction coefficient, as depicted in Figure 2.12(f), is not monotonic.  
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Figure 2.12: Mean of tunnel settlement statistics versus the spatial variation parameters: 

(a) Mean of w versus ; (b) Mean of w versus ; (c) Mean of w versus ; (d) Mean of 

w versus ; (e) Mean of w versus r; (f) Mean of w versus r 
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As noted in Figure 2.12(f), when the value of r is not large (i.e., less than 50 m), 

the increase of r can lead to the increase of the extent of tunnel differential settlement; 

otherwise, the increase of r can lead to the inverse effect on the extent of tunnel 

differential settlement. This non-monotonic relationship may be interpreted with the 

following observations. First, as seen in Eq. (2.21), a lower scale of fluctuation of the 

subgrade reaction coefficient implies a lower value of the variance reduction function 

(l); thus, the averaging effect is more evident, which leads to a lower COV of tunnel 

settlement. Second, a larger scale of fluctuation of the subgrade reaction coefficient 

indicates a stronger correlation among the subgrade reaction coefficients of the ground 

under the tunnel, which also leads to a lower COV of tunnel settlement.  
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Figure 2.13: Mean of tunnel settlement statistics versus the reduction factor of tunnel 

longitudinal flexural stiffness: (a) Mean of w versus ; (b) Mean of w versus  

 

Similarly, the relationships between the tunnel settlement statistics and the tunnel 

longitudinal flexural stiffness (indicated by the reduction factor of tunnel longitudinal 

flexural stiffness ) are analyzed. The results shown in Figure 2.13 indicate that the 



 46 

tunnel settlement statistics are slightly affected by the tunnel longitudinal flexural 

stiffness.  

 

Summary 

 

This chapter develops a simplified FEM procedure for the analysis of tunnel 

longitudinal performance that can explicitly consider the longitudinal variation of tunnel 

design parameters, such as the spatial variation (in the longitudinal domain) of soil 

properties of the ground under the tunnel. The developed FEM procedure or model for 

the tunnel longitudinal performance is verified by both analytical solutions and model 

tests. Further, the random field concept is employed to model the spatial variation (in the 

longitudinal domain) of soil properties, in terms of the subgrade reaction coefficient, of 

the ground under the tunnel. Finally, a parametric study is conducted to investigate how 

the longitudinal variation in the predicted tunnel settlement (referred to herein as tunnel 

settlement statistics) may be affected by different factors such as the spatial variability of 

soil properties and tunnel longitudinal flexural stiffness. 
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CHAPTER THREE 

IMPROVED ANALYTICAL MODEL FOR CIRCUMFERENTIAL BEHAVIOR OF 

JOINTED SHIELD TUNNELS CONSIDERING THE LONGITUDINAL 

DIFFERENTIAL SETTLEMENT
*
 

 

Introduction 

 

The progress in advancing shield-driven machines and construction technologies 

has made shield tunneling one of the most popular methods used in the construction of 

urban tunnels, particularly for tunnels in soft soils. The segmental lining of these shield 

tunnels constructed with shield-driven machines is often designed with the assumption of 

a plane strain condition, a prerequisite that is valid when no variation of the design 

parameters (e.g., soil parameters, ground water level, and embedded depth, surcharge 

load) exists along the longitudinal direction (Wood 1975; ITA 2000; Lee et al. 2001; 

Koyama 2003). However, such a prerequisite may not always be satisfied; many factors 

such as the longitudinal variation of tunnel alignment, the spatial variability of soil 

properties, the differential consolidation of the ground, and the nearby underground 

construction (e.g., tunneling) can cause the longitudinal variation of tunnel design 

parameters. One significant consequence, caused by the longitudinal variation of design 

______________________ 

* 
A similar form of this chapter has been accepted at the time of writing: Gong, W., Juang, C. H., 

Huang, H., Zhang, J., and Luo, Z. (2014). “Improved analytical model for circumferential behavior of 

jointed shield tunnels considering the longitudinal differential settlement.” Tunnelling and 

Underground Space Technology, 45, 153-165. 
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parameters, is the differential settlement of shield tunnels (referred to herein as the 

vertical displacement of the tunnel structure), which is a serious event in soft soils. The 

Metro Line 1 in Shanghai, China is one such example, with the accumulated longitudinal 

settlement occurring over the past 15 years plotted in Figure 3.1, reached a maximum of 

300 mm, and severe differential settlements were noted. In such a circumstance, the 

effect of tunnel longitudinal differential settlement on the circumferential behavior of 

segmental lining cannot be neglected.  
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Figure 3.1: Accumulated longitudinal settlement of the Shanghai Metro Line 1 (Note: A 

 Caobao Road; B  Shanghai Indoor Stadium; C  Xujiahui; D  Hengshan Road; E  

Changshu Road; F  South Shanxi Road; G  South Huangpi Road; H  People’s Square; 

I  Xinzha Road; J  Hanzhong Road; K  Shanghai Railway Station) 

 

Though it is widely acknowledged that the effect of tunnel longitudinal 

differential settlement on the circumferential behavior of segmental lining must be 

considered in the analysis and design of shield tunnels (ATRB 2000; ITA 2000), very 

few studies have been undertaken to elucidate this effect. Among these studies, Liao et al. 

(2005) developed a 1-D analytical model to analyze the effect of the longitudinal shear 
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force increment, arisen from the longitudinal differential settlement, on the tunnel cross 

section through the longitudinal shear transfer (LST) mechanism. This 1-D shearing 

effect model was subsequently extended to account for the 3-D behavior of shield tunnels 

by modeling the segmental lining with cylindrical shells (Liao et al. 2008). Later on, the 

effect of the longitudinal bending moment on the tunnel cross section, known as the 

flattening effect, was studied by Huang et al. (2012). While the shearing effect and the 

flattening effect were analyzed separately in the previous studies, these two effects 

should be modeled simultaneously to investigate how the circumferential behavior of 

segmental lining is affected by the longitudinal differential settlement of the tunnel. 

However, a tunnel analytical model to account for the effect of tunnel longitudinal 

differential settlement on the circumferential behavior of segment lining, including both 

the structure safety and serviceability, has not been developed. Furthermore, a framework 

for evaluating the longitudinal variation of the circumferential behavior of segment lining 

based upon the observed tunnel longitudinal differential settlement is needed.  

Therefore, the objective of this paper is to develop an improved analytical model 

of jointed shield tunnels, which considers explicitly the effect of tunnel longitudinal 

differential settlement on the circumferential behavior of segmental lining. This paper is 

organized as follows. First, we describe an improved tunnel analytical model with 

explicit consideration of the longitudinal differential settlement, primarily through the 

shearing effect model and the flattening effect model. We next present an example to 

illustrate how the circumferential behavior of segmental lining varies along the 

longitudinal direction with a tunnel longitudinal settlement curve. Finally, we conduct 
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parametric analysis to investigate how the circumferential behavior of segmental lining is 

affected by different factors, including the effect of tunnel longitudinal differential 

settlement. 

 

Improved Analytical Model for the Segmental Lining 
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Figure 3.2: The circumferential loads on the cross section of jointed shield tunnels 

 

In the current practice, the segmental lining of jointed shield tunnels is often 

designed based upon the results of analysis of a few typical tunnel cross sections 

assuming a plane strain condition (ITA 2000). For a typical tunnel cross section, as 
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plotted in Figure 3.2 and subjected to the circumferential loads, the internal forces and 

convergence deformation of segmental lining can readily be computed with the existing 

analysis methods such as that proposed by Lee et al. (2001). In this paper, the authors 

describe their simultaneous incorporation of the shearing effect (Liao et al. 2005) and the 

flattening effect (Huang et al. 2012) into the existing analytical model, for purpose of 

improving the model for the designing of jointed shield tunnels.  
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Figure 3.3: Additional loads on the tunnel cross section caused by tunnel longitudinal 

differential settlement: (a) Shearing effect; (b) Flattening effect 
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Shearing effect model and flattening effect model 

In the subsequent analysis of tunnel longitudinal performance, the following sign 

conventions are adopted: the settlement is assumed as positive when it moves downward; 

the longitudinal bending moment is treated as positive when the tunnel invert would be 

subjected to the longitudinal tension; and the longitudinal shear force is regarded as 

positive when it exhibits a clockwise rotation. As mentioned above, the effect of tunnel 

longitudinal differential settlement on the circumferential behavior of segmental lining 

can be modeled by considering the shearing effect and the flattening effect, both of which 

are represented with the additional loads on the tunnel cross section, as shown in Figure 

3.3. According to Liao et al. (2005), the additional load on the tunnel cross section from 

the shearing effect (ps) is expressed as (see Figure 3.3a): 

 
2

s

sin
p L

L

R t
Q

I


                                                                                                (3.1) 

 

where R is the radius of the segmental lining, taken as the average of the outer radius (Ro) 

and inner radius (Ri); t is the thickness of segmental lining;  is the circumferential angle 

measured from the tunnel crown; QL is the longitudinal shear force increment per unit 

length caused by the longitudinal differential settlement; and IL is the inertia moment of 

the tunnel cross section in the longitudinal performance analysis, defined as: 
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The additional load on the tunnel cross section from the flattening effect (pf) is 

expressed as (see Figure 3.3b; Huang et al. 2012): 

 

fp cosL

L

M
Rt

I
                                                                                                 (3.3) 

 

where ML is the longitudinal moment of the shield tunnel caused by the longitudinal 

differential settlement, and  is the curvature of the tunnel longitudinal settlement. 

For simplicity, the longitudinal structure of the jointed shield tunnel is usually 

approximated as a slender elastic beam in the context of tunnel longitudinal performance 

analysis (Shiwa et al. 1986; Talmon and Bezuijen 2013), while the soil-structure 

interaction is modeled with Winkler (1867), Pasternak (1954), or Kerr (1965) model. In 

context of the elastic beam, ML in Eq. (3.3) and QL in Eq. (3.1) are computed 

respectively with the observed tunnel longitudinal settlement (w) as follows: 

 

( )L LM EI                                                                                                      (3.4) 
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L
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EI
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                                                                                 (3.5) 

 

where  is the reduction factor of tunnel longitudinal flexural stiffness, which is often 

used to scale the effect of the longitudinal joints on the tunnel longitudinal flexural 

stiffness (Liao et al. 2008); E is the elastic modulus of segmental lining;  is the 

curvature of the monitored tunnel longitudinal settlement (w); and x is the longitudinal 
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coordinate. Note that the term QL in Eq. (3.1) is easily computed from Eq. (3.5) as: QL 

= 
1

L
dx

dQ
dx

dx
  = LdQ

dx
. 

 

Force-method equations of jointed shield tunnel 

The segmental lining of a jointed shield tunnel is generally a redundant structure 

that is subjected to both the circumferential loads that defined in Lee and Ge (2001) (see 

Figure 3.2) and the additional loads caused by tunnel longitudinal differential settlement 

(see Figure 3.3). Here, the force method is employed to determine the internal forces and 

convergence deformation of the segmental lining. The following sign conventions are 

adopted in the subsequent derivation of the circumferential behavior of the segmental 

lining: the bending moment is taken as positive when the lining’s inside surface is 

subjected to tension; the axial force is taken as positive when the segmental lining is 

subjected to compression; and the shear force is treated as positive when it yields a 

clockwise rotation. 

As illustrated in Figure 3.4(a), the force method equations of the half tunnel 

structure can be established by considering zero rotation and zero horizontal 

displacement at the tunnel crown and the tunnel invert, as follows (Lee et al. 2001): 

 

11 1 12 2 1p 0x x                                                                                             (3.6a)  

 

21 1 22 2 2p 0x x                                                                                             (3.6b)  
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where x1 and x2 are the bending moment and axial force (per unit length) acting at the 

tunnel crown, respectively, which are redundant forces; ij is the displacement developed 

at the location of redundant force xi and along the direction of xi due to the action of unit 

force xj = 1 (i = 1, 2 and j = 1, 2); and, ip is the displacement developed at the location of 

redundant force xi and along the direction of xi due to the circumferential loads plotted in 

Figure 3.2 and the additional loads caused by tunnel longitudinal differential settlement 

(see Figure 3.3) 
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Figure 3.4: Force method derivation of the half tunnel structure: (a) Redundant forces of 

the half tunnel structure; (b) Virtual forces for calculating the convergence deformation 

 

Solving Eq. (3.6) in terms of x1 and x2 results in: 
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                                                                                           (3.7b) 

 

Since the effects of the axial force and the shear force on the displacement 

calculation are relatively small, only the bending moment is considered herein (Lee et al. 

2001). Based upon the force method equations of Lee et al. (2001), 11, 12 (21), and 22 

are presented as: 
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where 
( )iK is the flexural stiffness of i

th
 circumferential joint; i is the circumferential 

angle of i
th

 circumferential joint measured from the tunnel crown; n is the number of 

joints of the half tunnel structure; and I is the inertia moment of segmental lining in the 

circumferential behavior analysis, which is calculated as: I = t
3
 / 12 (per unit length). The 

terms 1p and 2p in Eq. (3.6) & (3.7) can be computed as follows, respectively: 
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6
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1

j
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                                                                                      (3.9b) 

 

where the displacements due to the circumferential loads plotted in Figure 3.2, in terms of 

1pj and 2pj (j = 1, 2, 3, 4, 5, 6), are readily available from Lee et al. (2001); and the 

displacements due to the additional loads caused by tunnel longitudinal differential 

settlement (see Figure 3.3), in terms of 1ps, 1pf, 2ps, and 2pf, are derived in this paper 

with virtual work theory, the results are presented as follows: 
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                                         (3.10d) 

 

Based upon the computed coefficients of 11, 12 (21), 22, 1p, and 2p, the 

redundant forces x1 and x2 can be solved with Eq. (3.7). The corresponding internal forces, 

including the bending moment M, and shear force Q, and axial force N, of the segmental 

lining (per unit length) can then be computed with the following equations: 
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where iM , iQ , and iN  (i =1, 2) are the bending moment, shear force, and axial force of 

the segmental lining due to the virtual unit force of xi = 1 acting at the tunnel crown (see 

Figure 3.4a), respectively; Mpj, Qpj and Npj (j =1, 2, 3, 4, 5, 6) are the bending moment, 

shear force, and axial force of the segmental lining due to the circumferential loads 

plotted in Figure 3.2, respectively; Ms, Qs, and Ns are the bending moment, shear force, 

and axial force of segmental lining due to the additional load on the tunnel cross section 

caused by the shearing effect, respectively; and, Mf, Qf, and Nf are the bending moment, 

shear force, and axial force of the segmental lining due to the additional load on the 

tunnel cross section caused by the flattening effect, respectively. Note that iM , iN , iQ , 

Mpj, Npj and Qpj (i =1, 2 and j =1, 2, 3, 4, 5, 6) are readily available with the solution of 

Lee et al. (2001), while Ms, Ns, Qs, Mf, Nf, and Qf are derived in this paper as follows: 

 
4

s (1 cos sin )
2

L

L

Q R t
M

I

 
                                                                       (3.12a)  

 



 59 

3

s sin
2

L

L

Q R t
N

I

 
                                                                                        (3.12b)  

 
3

s

sin
( cos )

2 2

L

L

Q R t
Q

I

  
                                                                         (3.12c)  

 
3 2

f

1 sin

2

L

L

M R t
M

I

 
                                                                                   (3.13a)  

 
2 2

f

sinL

L

M R t
N

I

 
                                                                                         (3.13b)  

 
2

f

sin cosL

L

M R t
Q

I

  
                                                                                  (3.13c)  

 

Furthermore, the convergence deformation of the segmental lining, such as the 

vertical deformation at the tunnel crown (v) and the horizontal deformation at the tunnel 

springline (h), can be calculated with virtual work theory (see Figure 3.4b) as follows: 
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where vi and hi (i = 1, 2) are the vertical displacement at the tunnel crown and the 

horizontal displacement at the tunnel springline, respectively, due to the redundant force 
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xi acting at the tunnel crown; vpj and hpj (j =1, 2, 3, 4, 5, 6) are the vertical displacement 

at the tunnel crown and the horizontal displacement at the tunnel springline, respectively, 

due to the circumferential loads plotted in Figure 3.2; vs and hs are the vertical 

displacement at the tunnel crown and the horizontal displacement at the tunnel springline, 

respectively, due to the additional load on the tunnel cross section caused by the shearing 

effect; vf and hf are the vertical displacement at the tunnel crown and the horizontal 

displacement at the tunnel springline, respectively, due to the additional load on the 

tunnel cross section caused by the flattening effect. Note that vi, hi, vpj, and hpj (i =1, 

2 and j =1, 2, 3, 4, 5, 6) are readily available with the solution of Lee et al. (2001), while 

vs, hs, vf, and hf are derived in this paper and presented as follows: 
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where n1 and n2 are the number of circumferential joints within the region of 0   < 45 

and 45   < 90, respectively. 

Compared to the existing analytical models, the proposed analytical model of 

jointed shield tunnels, formulated in this section, is a more comprehensive examination of 

the effect of tunnel longitudinal differential settlement on the circumferential behavior of 

segmental lining. The resulting internal forces and convergence of the tunnel cross 

section of concern are readily applicable for assessing the circumferential behavior of 

tunnel segmental lining, including both the structure safety and serviceability. For 

simplicity, the authors did not consider the bearing capacity of segmental joints 

(Teachavorasinskun and Chub-uppakarn 2010) and the contact deficiency of the 

segmental lining (Cavalaro et al. 2011) in this assessment of the circumferential behavior 

of the segmental lining. 

 

Assessment of the circumferential behavior of segmental linings 

Structure safety of the segmental lining 

To account for the plastic behavior of the reinforced segmental lining, the limit 

state design method is used to assess the structure safety of the segmental lining (ITA 

2000; Gong et al. 2014b). Here, the structural failure of the segmental lining is 

hypothesized to occur only when the combined internal forces of the bending moment 

and the axial force, in terms of (M, N), exceeds the corresponding limit state, in terms of 

(Mult, Nult), on the ultimate bearing capacity envelope of the reinforced segmental lining, 

as demonstrated in Figure 3.5. Note that the ultimate bearing capacity envelope of the 

reinforced segmental lining can be derived using the plasticity theory of reinforced 
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concrete. For simplicity, an assumption is made here that the eccentricity of tunnel 

internal forces, in terms of (M  N), is a constant. As such, in a deterministic approach, the 

factor of safety with respect to the structure safety of the segmental lining, denoted as Fs1, 

can be computed as: 
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Figure 3.5: Structure safety assessment of the segmental lining using limit state design 

method 

 

As the value of Fs1 can vary with the circumferential position within the 

segmental ring of concern, the structure safety of the segmental lining would only be 

governed by the position with the minimum value of Fs1, rather than the section of either 

the maximum bending moment or the maximum axial force that is adopted in ITA (2000). 

However, such a critical position might change with the input parameters; in such a 

circumstance, the minimum value of Fs1 is sought along the circumferential direction 

each time as the input parameters vary in the subsequent analysis.  
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Even though the structure safety of the segmental lining is also affected by the 

computed shear force (Q), the effect of that force on the structure safety is relatively 

small and thus its effect is negligible (ITA 2000; Gong et al. 2014b). If desired, the 

structure safety of the segmental lining can be analyzed using the stress theory, in which 

all the internal forces resulting from the circumferential behavior analysis (i.e., axial 

force N, shear force Q, bending moment M) and that obtained from the longitudinal 

behavior analysis (i.e., longitudinal axial forces NL, longitudinal shear force QL, and 

longitudinal bending moment ML) are considered simultaneously. Such a study, however, 

is beyond the scope of this paper.  

Serviceability of the segmental lining 

The computed tunnel convergence deformation is used to evaluate the 

serviceability of the segmental lining, since the tunnel performance problems such as 

leakage and concrete cracking are always associated with the excessive convergence 

deformation. As specified in the Chinese metro code (MCPRC 2003), the maximum 

convergence deformation of shield tunnels must be controlled below 0.4%D to 0.6%D (D 

denotes the outer diameter of segmental lining). For ease of illustration, in a deterministic 

approach, the factor of safety against the serviceability problem of the segmental lining, 

denoted as Fs2, is formulated as: 
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                                                                                         (3.18)  

 

Illustrative Example 
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The performance of an existing tunnel is often significantly affected by the nearby 

tunneling; field data in Shanghai show that such disturbances may result in a Gaussian 

longitudinal settlement curve of the existing tunnel (Liao 2002; Liao et al. 2008; Huang 

2012). Indeed, the Gaussian settlement curve is often used to model the ground 

deformation caused by the nearby tunneling (Verruijt and Booker 1996; Loganathan and 

Poulos 1998; Gonzalez and Sagaseta 2001; Park 2005; Toraño et al. 2006). In general, 

because the tunnel and the surrounding ground would deform consistently, the settlement 

of the exiting tunnel is also represented with a Gaussian settlement curve. The main 

objective of the present study is to analyze the longitudinal variation of the 

circumferential behavior of segmental lining given a tunnel settlement curve. Here, the 

authors investigate how the circumferential behavior of the segmental lining, including 

both the structure safety and serviceability, varies along the longitudinal direction, given 

a Gaussian longitudinal settlement curve.  

 

Parameters settings 

Basic design parameters of this illustrative example are listed in Table 3.1. From 

these data, the circumferential loads plotted in Figure 3.2 can readily be evaluated, which 

are then used to compute the internal forces (i.e., M, N, and Q) and the convergence 

deformation (i.e., v and 2h) of the segmental lining using the existing tunnel analysis 

methods such as that proposed by Lee at al. (2001). Further, the ultimate bearing capacity 

envelope of the reinforced concrete lining shown in Figure 3.5 is obtained with the 

material parameters that are listed in Table 3.2.  
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Table 3.1: Design parameters of the illustrative example 

 

Parameter Value 

Tunnel outer radius Ro (m) 5.5 

Segment thickness t (m) 0.55 

Segment width b (m) 1.0 

Embedded depth H (m) 18.7 

Ground water table HGWT (m) 0.0 

Unit weight of soil  (kN/m
3
) 18.0 

Unit weight of water w (kN/m
3
) 9.8 

Soil cohesion c (kPa) 17.0 

Soil friction angle  () 18.5 

Soil resistance coefficient Ks (kN/m
3
) 15,000 

Joint number of each tunnel ring 8 

Joint position of half structure i () 22.5, 67.5, 112.5, 157.5 

Circumferential joint stiffness ratio k
a
 0.14 

Surcharge load p0 (kPa) 0.0 

Elastic modulus of concrete E (kN/m
2
) 34.510

6
 

Unit weight of concrete c (kN/m
3
) 25.0 

 

a
The Circumferential joint stiffness ratio is defined as 

K
k

EI


  , where K is the flexural 

stiffness of the circumferential joint and EI is the flexural stiffness of the tunnel segment 

in tunnel circumferential analysis. 

 

Table 3.2: Parameters for assessing the ultimate bearing capacity envelope of reinforced 

concrete lining 

 

Parameter Value 

Compression strength of concrete fc (kN/m
2
) 39.010

3
 

Tension strength of concrete ft (kN/m
2
) 3.8710

3
 

Elastic modulus of steel bar Es (kN/m
2
) 21010

6
 

Yielding strength of steel bar fy (kN/m
2
) 34510

3
 

Thickness of concrete cover for steel bar a (m) 0.05 

Steel reinforcement ratio at one side of segment lining s (%) 1.0 

 

In this example, the following Gaussian curve is employed to represent the tunnel 

longitudinal settlement: 

 
2

22
max( )

x

iw x S e


                                                                                                  (3.19) 
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where Smax is the maximum settlement of the tunnel; i is the distance measured from the 

inflection point to the point with maximum settlement; and, x is the longitudinal 

coordinate measured from the position with the maximum settlement. For the given 

Gaussian settlement curve in Eq. (3.19), the curvature () and fourth derivative (w
(4)

) of 

the tunnel longitudinal settlement are readily derived as follows: 

 

2 2

2 2

3 2
2 2 2

max max max2
2 4 4

( ) 1

x x

i i
S x S x S

e e
i i i


    

     
     

                                        (3.20a)  

 
2

2 2 42
(4) max

4 2 4

6
(3 )

x

iS e x x
w

i i i



                                                                           (3.20b)  

 

For the purpose of illustration, the maximum settlement (Smax) and the distance 

measured from the inflection point to the point with maximum settlement (i) in this 

example are taken as 300 mm and 50 m, respectively. Note that the reduction factor of 

tunnel longitudinal flexural stiffness () is taken here as 1/7 to consider the reduction 

effect of the longitudinal joints on the tunnel longitudinal flexural stiffness (Liao et al. 

2008). 

While it is acknowledged that both the stress field and stain field of the ground 

can be changed due to any nearby tunneling, for simplicity, such potential changes in the 

circumferential loads are not considered in our analysis. Further, the potential 

longitudinal variation of these circumferential loads is not considered in the subsequent 
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analysis of the longitudinal variation of the circumferential behavior of the segmental 

lining using the proposed tunnel analytical model presented herein.  

 

Internal forces and convergence deformation of segmental lining 

For the given tunnel longitudinal settlement shown in Figure 3.6(a), the 

longitudinal moment (ML) and the longitudinal shear force increment per unit length 

(QL) can readily be computed using the aforementioned formulations, and the results of 

which are plotted in Figure 3.6(b) and 3.6(c), respectively. As expected, both the 

longitudinal moment and the longitudinal shear force increment (per unit length) vary 

along the longitudinal direction; the longitudinal position with the maximum settlement 

(i.e., x = 0 m) exhibits the largest longitudinal moment and the lowest longitudinal shear 

force increment. Consequently, the effect of tunnel longitudinal settlement on the 

circumferential behavior of the segmental lining, primarily through the flattening effect 

and shearing effect, varies longitudinally.  

According to the computed longitudinal moment (ML) and the longitudinal shear 

force increment per unit length (QL) shown in Figure 3.6(b) and 3.6(c), respectively, the 

additional loads caused by tunnel longitudinal differential settlement (see Figure 3.3) can 

be evaluated. These additional loads together with the circumferential loads plotted in 

Figure 3.2 are readily used to analyze the internal forces (i.e., M, N, and Q) and the 

convergence deformation (i.e., v and 2h) of the segmental lining using the proposed 

tunnel analytical model. Figure 3.7 shows the computed internal forces of segment lining  
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Figure 3.6: Tunnel longitudinal behavior with Gaussian longitudinal settlement: (a) 

Tunnel settlement; (b) Tunnel longitudinal moment; (c) Tunnel longitudinal shear force 

increment (per unit length) 
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Figure 3.7: The longitudinal variation of the internal forces of segmental lining with 

Gaussian longitudinal settlement: (a) Bending moment at the tunnel crown; (b) Axial 
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force at the tunnel crown; (c) Bending moment at the tunnel spring; (d) Axial force at the 

tunnel spring; (e) Bending moment at the tunnel invert; (f) Axial force at the tunnel invert 

 

at the tunnel crown, tunnel spring, and tunnel invert along the longitudinal direction. Also 

plotted in Figure 3.7 are the internal forces of segmental lining without considering the 

additional loads caused by the tunnel longitudinal differential settlement. The value of the 

shear force (Q) at the tunnel crown, tunnel spring, and tunnel invert of the segmental 

lining is relatively small however, and is not considered. 

As can be seen in Figure 3.7, the internal forces of the segmental lining vary 

significantly with the longitudinal domain. The longitudinal position with the maximum 

settlement (i.e., x = 0 m) exhibits the lowest bending moment of the segmental lining at 

both tunnel crown (see Figure 3.7a) and tunnel invert (see Figure 3.7e). However, such a 

position with the maximum settlement exhibits the largest bending moment of the 

segmental lining at the tunnel spring (see Figure 3.7c). Similarly, the largest axial force at 

the tunnel crown is observed at the position with the maximum settlement (i.e., x = 0 m) 

(see Figure 3.7b), while the lowest axial forces at both the tunnel spring and the tunnel 

invert are detected with a position of the maximum settlement (see Figure 3.7d and 3.7f). 

However, this vital feature, referred to herein as the longitudinal variation of the internal 

forces of the segmental lining, cannot be reflected with the exiting tunnel analysis models 

that do not consider the effect of the tunnel longitudinal settlement. For example, the 

bending moment (M) at the tunnel invert varies from the lowest value of 161.3 kN.m to 

the largest value of 634.9 kN.m (along the longitudinal direction) with an explicit 

consideration of the tunnel longitudinal settlement. On the contrary, the value is kept as a 
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constant value of 452.7 kN.m when the effect of the tunnel longitudinal settlement is not 

considered. 
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Figure 3.8: The longitudinal variation of the convergence deformation of the segmental 

lining with Gaussian longitudinal settlement: (a) Convergence deformation in the vertical 

direction; (b) Convergence deformation in the horizontal direction 

 

The obtained longitudinal variation of the convergence deformation of segmental 

lining is plotted in Figure 3.8. As noted, the convergence deformation of the segmental 

lining in the vertical direction (v) varies from the lowest value of 4.0 mm to the largest 
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value of 53.9 mm (along the longitudinal direction) when the tunnel longitudinal 

settlement is considered; the convergence deformation is a constant (34.8 mm) when the 

tunnel longitudinal settlement is not considered. This longitudinal variation of the 

convergence deformation of the segmental lining in the horizontal direction (2h) is, 

however, not distinct, as shown in Figure 3.8(b). The inconsistency in the longitudinal 

variation of the convergence deformation of segmental lining may be attributed to the 

fact that the convergence deformation of the lining in the horizontal direction is restricted 

by the surrounding ground, while in the vertical direction, it is not restricted and can 

deform freely. 

 

Structure safety and serviceability of segmental lining 

Furthermore, the longitudinal variation of both the structure safety and 

serviceability of the segmental lining is assessed with the proposed tunnel analytical 

model. Plotted in Figure 3.9(a) and 3.9(b) are the resulted longitudinal variations of the 

factor of safety with respect to the structure safety (Fs1, see Eq. 3.17) and serviceability 

(Fs2, see Eq. 3.18) of the segmental lining, respectively. The structure safety and 

serviceability of the segmental lining obtained with the existing tunnel analysis methods, 

in which the effect of the tunnel longitudinal settlement is not considered, are also plotted 

in Figure 3.9(a) and 3.9(b), respectively. As expected, no longitudinal variation of either 

the structure safety or serviceability are obtained with the existing analysis methods. 

When the tunnel longitudinal settlement is considered, the structure safety of the 

segmental lining is slightly enhanced within the region between x = -0.7i (or -35 m) and x 

= 0.7i (or 35 m), for example, Fs1 is increased from 3.56 to 3.65; however, the structure 
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safety is significantly reduced in the regions that range from  x = -1.8i (or -90 m) to x = -

0.7i (or -35 m) and from x = 0.7i (or 35 m) to x = 1.8i (or 90 m) (see Figure 3.9a). Also, 

the serviceability of the segmental lining is slightly enhanced in the region between x = -

0.7i (or -35 m) and x = 0.7i (or 35 m), for example, Fs2 is increased from 1.90 to 2.04; 

whereas, the serviceability is significantly reduced in the regions that range from x = -2.2i 

(or -110 m) to x = -0.7i (or -35 m) and from x = 0.7i (or 35 m) to x = 2.2i (or 110 m) ) 

(see Figure 3.9b).  
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Figure 3.9: The longitudinal variation of the circumferential behavior of the segmental 

lining with Gaussian longitudinal settlement: (a) Structure safety of the segmental lining; 

(b) Serviceability of the segmental lining 

 

Therefore, for a given shield tunnel with a Gaussian settlement curve, the most 

dangerous section of the circumferential behavior of the segmental lining is not located at 

the position with the maximum settlement, but rather in the regions that range from x = -

2.2i to x = -0.7i and from x = 0.7i to x = 2.2i. Therefore, the dangerous sections of a 

shield tunnel can readily be identified with the monitored tunnel longitudinal settlement 

curve using the proposed tunnel analytical model. This finding is significant, as more 

monitoring efforts could be assigned to these sections. 

 

Validation of the proposed model 

In this section, the proposed analytical model of jointed shield tunnels is validated 

using the 3-D FEM analysis by Liao et al. (2008). As depicted in Figure 3.10(a), the 3-D 

FEM analysis results of a shield tunnel with a Gaussian settlement curve showed that the 

convergence deformation of the segmental lining reached the maximum, indicated by the 

maximum vertical convergence deformation, near the inflection point (i.e., x = i); the 

convergence deformation of the segmental lining reached the minimum, indicated by the 

minimum vertical convergence deformation, near the point with the maximum settlement 

(i.e., x = 0). For convenience of comparison, the longitudinal variation of the convergence 

deformation of this illustrative tunnel is analyzed with the proposed tunnel analytical 

model and plotted in Figure 3.10(b). While the magnitude of the convergence 

deformation in Figure 3.10(a) differs with that in Figure 3.10(b), the longitudinal 
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variations of the convergence deformation shown in Figure 3.10(a) and 3.10(b) are 

identical. The comparison between Figure 3.10(a) and 3.10(b) demonstrates that the 

proposed tunnel analytical model achieves comparable results of the convergence 

deformation of the segmental lining with the more complex 3-D FEM analysis, thus 

validating this proposed tunnel analytical model. 

 

 
                  (a)  

 

 
     (b).  

 

 

 

 
 

O O O

Inflection pointMaximum settlementInflection point

 
 

Figure 3.10: Validation of the proposed tunnel analytical model: (a) 3-D deformation of a 

shield tunnel with Gaussian settlement curve (Liao et al. 2008); (b). Convergence 

deformation along the longitudinal direction (obtained with the proposed tunnel 

analytical model) 
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Parametric Study 

 

The circumferential behavior of the segmental lining, including both the structure 

safety and serviceability, is affected by factors such as the tunnel longitudinal settlement 

(e.g., curvature  and fourth derivative w
(4)

), the property of the surrounding ground (e.g., 

soil resistance coefficient Ks), and the design parameters of the segmental lining (e.g., 

segment thickness t, flexural stiffness of the circumferential joints K, and the flexural 

stiffness of the longitudinal joints). Here, six series of parametric studies (S-1 through S-

6) are conducted to investigate how the circumferential behavior of the segmental lining 

is affected by these factors. For these parametric analyses, the parameter settings are 

listed in Table 3.3. 

 

Table 3.3: Parameters settings in the parametric studies 

 

Parameter 
Parameters setting for different parametric study series 

S-1 S-2 S-3 S-4 S-5 S-6 

Curvature of tunnel settlement    210
-4
 210

-4
 210

-4
 210

-4
 210

-4
 

Fourth derivative of tunnel 

settlement w
(4)

 
810

-8
  810

-8
 810

-8
 810

-8
 810

-8
 

Soil resistance coefficient Ks 

(kN/m
3
) 

1510
3
 1510

3
  1510

3
 1510

3
 1510

3
 

Segment thickness t (m) 0.55 0.55 0.55  0.55 0.55 

Circumferential joint stiffness 

ratio k 
0.14 0.14 0.14 0.14  0.14 

Reduction factor of tunnel 

longitudinal flexural stiffness  
1/7 1/7 1/7 1/7 1/7  

 

Effect of the longitudinal settlement 

As seen in Eq. (3.1) & (3.3), the tunnel longitudinal differential settlement is the 

causative factor of both the shearing effect and flattening effect. Therefore, the additional 
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loads on the tunnel cross section from the shearing effect and flattening effect can be 

determined with the curvature () and fourth derivative (w
(4)

) of the tunnel settlement 

curve, respectively. Hence, parametric studies S-1 and S-2 are conducted to determine 

how the circumferential behavior of the segmental lining could be affected by the tunnel 

longitudinal settlement, and the results of which are plotted in Figure 3.11(a) and 3.11(b), 

respectively. 
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Figure 3.11: The circumferential behavior of the segmental lining versus tunnel 

settlement: (a) Curvature of the tunnel settlement; (b) Fourth derivative of the tunnel 

settlement 

 

The plots in Figure 3.11(a) illustrate that both the structure safety and 

serviceability of the segmental lining tend to degrade with the increase of the curvature of 

tunnel longitudinal settlement. Similarly, the plots in Figure 3.11(b) show that both the 

structure safety and serviceability of segmental lining degrade with the fourth derivative 

of tunnel longitudinal settlement. The mechanisms of these observations in Figure 3.11 

are easily interpreted: the additional loads on the tunnel cross section from both the 

shearing effect and the flattening effect increase with the curvature and the fourth 

derivative of the tunnel settlement, respectively, which further results in an increase of 

both the internal forces and convergence deformation of segmental lining. Thus the 

structure safety and the serviceability are degraded. As such, the tunnel sections with 

larger curvature and fourth derivative of tunnel settlement generally exhibit poorer 

circumferential behaviors. 

 

Effect of the property of surrounding soil 

The convergence deformation of the segmental lining in the horizontal direction is 

restricted by the surrounding ground, and the key soil parameter capturing this effect is 

the soil resistance coefficient (Ks). Thus, the parametric study S-3 is conducted to 

analyze how the circumferential behavior of the segmental lining is affected by the 

variation of the property of the surrounding ground, in which the ground condition varies 

from very soft (i.e., Ks = 3,000 kN/m
3
) to very hard (i.e., Ks = 30,000 kN/m

3
). Although 

the soil cohesion (c) and soil friction angle () may also exhibit an influence on the 
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circumferential behavior of the segmental lining, such an analysis is reserved for future 

study. 
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Figure 3.12: The circumferential behavior of the segmental lining versus the soil 

resistance coefficient 

 

The parametric analysis results of S-3 are presented in Figure 3.12. As expected, 

both the structure safety and serviceability of the segmental lining enhance with the soil 

resistance coefficient. Such an improvement of the circumferential behavior of the 

segmental lining may be interpreted as follows: the soil resistance, induced by the 

horizontal convergence deformation of the segmental lining, increases with the ground 

conditions, and the increase of the soil resistance in turn leads to the decrease of both the 

tunnel internal forces and the convergence deformations, which results in an increase in 

both the structure safety and serviceability.  

 

Effect of design parameters of the segmental lining 

Since the inner radius of a given shield tunnel is often designed to meet the space 

that is determined by the tunnel functions, the tunnel inner radius (Ri) cannot be adjusted 
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Figure 3.13: The circumferential behavior of the segmental lining versus the design 

parameters of the segmental lining: (a) Segment thickness; (b) Flexural stiffness of the 

circumferential joints; (c) Flexural stiffness of the longitudinal joints 

 

arbitrarily by the designer. The parameters of the segment thickness (t), the flexural 

stiffness of the circumferential joints (K), and the flexural stiffness of the longitudinal 

joints (which is represented with the reduction factor of the tunnel longitudinal flexural 

stiffness ) however, can be easily adjusted in this manner. The authors conduct 

parametric studies S-4, S-5, and S-6 to analyze how the circumferential behavior of the 

segmental lining could be affected by these easy-to-control design parameters, the results 

of which are illustrated in Figure 3.13(a), 3.13(b), and 3.13(c), respectively. 

Figure 3.13(a) depicts the relationship between the circumferential behavior of the 

segmental lining and the segment thickness. As noted, the serviceability of the segmental 

lining always increases with the segment thickness; however, the structure safety tends to 

increase with the segment thickness when the segment thickness is small (for example, 

less than 0.4 m in this parametric study). When the segment thickness is already large 

enough, a further increase in the segment thickness may not enhance the structure safety 

of the segmental lining.  

In general, the flexural stiffness of the segmental lining increases as the segment 

thickness is increased, which causes an increase of the internal forces and a decrease of 

the convergence deformation of the segmental lining. Therefore, the serviceability always 

increases with the segment thickness because of the decrease of the convergence 

deformation. On the other hand, even though the increase of the segment thickness can 

lead to an increase of the ultimate bearing capacity of the segmental lining, the structure 
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safety of the lining may not be enhanced. For example, the structure safety of the lining 

could be degraded if the effect of the increase of the internal forces due to the increased 

flexural stiffness is greater than that of the increase of the ultimate bearing capacity of the 

segmental lining.  

Figure 3.13(b) illustrates that the increase of the flexural stiffness of the 

circumferential joints (indicated by the increase of the circumferential joint stiffness ratio 

k) can effectively enhance the serviceability of the segmental lining, but not the structure 

safety (indeed, the effect is negative). These inconsistencies in the flexural stiffness of the 

circumferential joints on the circumferential behavior of the segmental lining shown in 

Figure 3.13(b) may be due to the fact that the increase in the flexural stiffness of the 

circumferential joints can lead to an increase of the internal forces and a decrease of the 

convergence deformation of the segmental lining, which enhances the serviceability 

while degrading the structure safety. 

Figure 3.13(c) indicates that the increase of the flexural stiffness of the 

longitudinal joins (indicated by the increase of the reduction factor of the tunnel 

longitudinal flexural stiffness ) degrades both the structure safety and serviceability of 

the segmental lining. This negative effect of the flexural stiffness of the longitudinal 

joints on the circumferential behavior of the segmental lining can be easily understood 

with Eq. (3.1) & (3.3). For a given tunnel longitudinal settlement, the additional loads on 

the tunnel cross section from both the shearing effect and flattening effect increase with 

the flexural stiffness of the longitudinal structure of the segmental lining, which in turn 

causes an increase of both the internal forces and the convergence deformation of the 
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segmental lining. Thus both the structure safety and the serviceability of the segmental 

lining are degraded as a result.  

 

Summary 

 

This chapter presents an improved analytical model of jointed shield tunnels that 

explicitly considers the effect of the tunnel longitudinal differential settlement on the 

circumferential behavior of the segmental lining. In the proposed analytical model, the 

force method is used to incorporate both the shearing effect and the flattening effect into 

the existing tunnel analytical model of Lee et al. (2001). The derived analytical solution 

of jointed shield tunnels is verified by the published 3-D FEM analysis results. Further, 

an illustrative example is carried out to demonstrate the effectiveness of the derived 

analytical solution. Finally, parametric study is conducted to investigate how the structure 

safety and serviceability of tunnel segment ring is affected by different factors. 
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CHAPTER FOUR 

ROBUST GEOTECHNICAL DESIGN OF SHIELD-DRIVEN TUNNELS
*
 

 

Introduction 

 

Benefiting from the advances of shield-driven machines and tunneling 

technologies, shield-driven tunneling has gained a world-wide popularity in the 

construction of tunnels in urban areas (Mair 2008; Beard 2010). Because of the inherent 

variability, testing error and transformation error, geotechnical parameters for design of 

shield tunnels are often hard to characterize with certainty (Phoon and Kulhawy 1999). 

To compensate for such uncertainties, a conservative estimate of geotechnical parameters 

is generally taken in the design. To further ensure safety, the computed factor of safety 

(Fs) for a feasible design is required to be greater than the allowable Fs, a value derived 

from past experience. Thus, the “true” safety level of a design is generally unknown, as 

the uncertainties are only implicitly considered.  

To overcome the shortcoming of the above deterministic design method, 

probabilistic approaches that consider uncertainties explicitly have also been sought 

(Mollon 2009; Li and Low 2010; Lü and Low 2011; Špačková 2013). The uncertain 

geotechnical parameters are generally treated as random variables, and the outcome of 

the analysis of a design, referred to herein as the system response, is generally expressed  

______________________ 

* 
A similar form of this chapter has been published at the time of writing: Gong, W., Wang, L., Juang, 

C. H., Zhang, J., and Huang, H. (2014). “Robust geotechnical design of shield-driven tunnels.” 

Computers and Geotechnics, 56, 191-201. 
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as a reliability index or a probability of failure. In the practice of geotechnical 

engineering, the site-specific data is often limited, thus an accurate statistical 

characterization of the uncertain variables is indeed a challenging prerequisite for 

adopting probabilistic approaches. The value of a probabilistic analysis could be greatly 

undermined if the adopted joint distribution of input geotechnical parameters cannot be 

reliably determined. 

Recently, the robust geotechnical design (RGD) methodology has been developed 

for analysis and design of geotechnical systems with uncertain input parameters (Juang et 

al. 2013 & 2014; Wang et al. 2013). In the context of robust design, a design is 

considered robust if the performance of the system is insensitive to the variation of 

uncertain geotechnical parameters. Within the RGD framework, the design robustness is 

sought along with safety and cost efficiency. The cost is primarily a function of design 

parameters, those that are “easy-to-control” by the designer, such as the geometry and 

dimensions of the system. Safety and robustness are, however, a function of the design 

parameters as well as the “hard-to-control” parameters, such as uncertain geotechnical 

parameters. In the context of the RGD, these hard-to-control parameters are termed 

“noise factors.” The primary goal of RGD is to derive an optimal design (represented by 

a set of design parameters), in which the system response is robust against, or insensitive 

to, the variation of noise factors, while the requirements of safety and cost efficiency are 

also satisfied. The RGD provides a new perspective for designing geotechnical systems 

under an uncertain environment. Although applications of the RGD methodology in 

various geotechnical problems have been explored (Juang and Wang 2013; Juang et al. 
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2013 & 2014; Wang et al. 2013), it is based on probability theory which requires the 

probability density function of the uncertain variables. Moreover, it is based on repetitive 

reliability analysis and could be computationally intensive within the RGD framework. 

When a fully statistical characterization of geotechnical parameter is difficult, the 

uncertain parameter can be alternatively modeled using the fuzzy set theory (Zadeh 

1965). In the fuzzy set theory, an uncertain variable can be modeled with only knowledge 

of its highest conceivable value (HCV) and lowest conceivable value (LCV), which are 

generally easy to determine even with limited data (Duncan 2000). The application of 

fuzzy sets theory indeed has a track record in geotechnical engineering particularly when 

the site-specific data is limited (Juang et al. 1992; Juang et al. 1998; Sonmez et al. 2003; 

Luo et al. 2011). As will be seen later in this paper, the response of a system with fuzzy 

input data can be evaluated accurately and efficiently through the vertex method. Thus, 

the fuzzy set theory appears to be an effective and efficient means for representing and 

processing uncertain information in geotechnical engineering, and suitable for inclusion 

in the intended RGD framework for design of geotechnical systems.  

The objective of this paper is thus to create and demonstrate a fuzzy set-based 

RGD methodology for design of complex geotechnical systems such as shield-driven 

tunnels. This paper is organized as follows. First, a deterministic model for design of 

shield-driven tunnels is introduced. Then, the vertex method to process fuzzy input data 

in this deterministic model for tunnel performance analysis is presented, followed by a 

probabilistic procedure to interpret the results of fuzzy set-based analysis. Thereafter, the 

fuzzy set-based RGD methodology is introduced and explained. Finally, a shield-driven 
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tunnel design example is studied to illustrate the effectiveness and significance of the 

proposed design methodology.  

 

Deterministic Model for Shield-Driven Tunnel Performance Analysis 

 

As a slender structure embedded underground, the performance of tunnel cross 

section with respect to the limit states of segment strength (ULS) and serviceability (SLS) 

is the major concern in the design of a shield-driven tunnel (ITA 2000; BTS 2004; 

MTPRC 2004; JSCE 2007), although the effect of tunnel longitudinal differential 

settlement should also be considered in cases (Liao et al. 2008; Huang et al. 2012). The 

focus of this paper is on the performance of non-staggering shield-driven tunnels. Before 

presenting the fuzzy set-based RGD, the adopted deterministic model for assessing the 

performance of shield-driven tunnels is first introduced. 

 

Analytical solution of jointed tunnel internal forces and deformation 

Among various existing approaches to analyze the internal forces and 

convergence deformation of jointed shield-driven tunnels (Wood 1975; Lee et al. 2001; 

Koyama 2003), the model by Lee et al. (2001) is adopted herein for its simplicity and 

wide acceptance. Figure 4.1 depicts the possible loads acting on a shield tunnel, including 

the earth pressure, water pressure, dead load, ground surface surcharge, and subgrade 

reaction.  

As will be shown later, the segment thickness (t), segment steel reinforcement 

ratio () and diameter of joint bolt (Dj) are the key design parameters that affect the 

tunnel performance. The stiffness of segment is determined by the segment thickness and 
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reinforcement ratio, while the stiffness of the joint is dependent on the diameter of joint 

bolt and segment thickness. The stiffness of tunnel segment, EcIe, is calculated as:  
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Figure 4.1: Schematic diagram of loads on a shield-driven tunnel cross-section 

 

where Ec = the elastic modulus of concrete, Es = the elastic modulus of steel bar, b = the 

width of tunnel ring, t = the thickness of tunnel segment, and, a = the concrete thickness 
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of protective cover for steel bar. With the assumptions that a) all the tension is beard by 

the bolts at joints; b) no pre-stress is applied to the bolts; and c) the adjacent tunnel 

segments are initially contacted, the joint stiffness, Kj, when subjected to the positive 

bending moment (i.e., the inside surface of tunnel segment is subjected to tension), can be 

estimated as: 
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                                                                                     (4.2) 

 

where lb = the length of joint bolt, Bs = the cross sectional area of the bolts at concerned 

joint, h = the position of the bolts center measured from the inside surface of the tunnel 

segment, and, x is defined as: 
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                                                                  (4.3) 

 

For simplicity, the joint stiffness that subjected to negative bending moment is 

assumed to be equal to that subjected to positive bending moment.  

With the computed load and stiffness of the tunnel lining, the internal forces and 

convergence deformation of tunnel cross section are readily calculated through the 

existing model (Lee et al. 2001). The resulting internal forces and deformation can be 

used to assess the segment structure safety (based on ULS) and serviceability (based on 

SLS) of tunnel cross section. 

 

Assessment of the performance of tunnel cross section 
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Plasticity theory is adopted here to assess tunnel segment structure safety based 

on the ultimate limit state (ULS) that utilizes the strength of both steel reinforcement and 

concrete (ITA 2000). In reference to Figure 4.2, the structure failure of tunnel segment is 

only said to occur when the internal forces combination (M, N) exceeds the 

corresponding limit state (MLm, NLm) on the ultimate bearing envelope of tunnel segment, 

derived from the plasticity theory. As depicted in Figure 4.2, the factor of safety, Fs1, for 

the tunnel segment safety (ULS) in a deterministic approach is calculated as: 
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Figure 4.2: Structure safety assessment of tunnel segment using plasticity theory 

 

Note that the value of Fs1 varies with the circumferential position within the 

tunnel ring of concern. Thus, the ULS is governed by the cross section with minimum 

value of FS1. As the critical position may change with the input parameters, the minimum 
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value of FS1 is searched along the circumferential direction each time as the input 

parameters vary during the subsequent fuzzy set analysis.   

Meanwhile, the maximum tunnel convergence deformation is adopted herein to 

assess the tunnel serviceability (SLS). As specified in the Chinese metro code (MCPRC 

2003), the maximum convergence deformation of a shield-driven tunnel must be 

controlled under 0.4%D to 0.6%D (D denotes the outer diameter of the tunnel) to prevent 

the operational distress. Thus, in a deterministic approach, the factor of safety against the 

tunnel serviceability distress, Fs2, can be conservatively defined as: 
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                                                                                           (4.5) 

 

where v and 2h are the calculated tunnel convergence deformation in the vertical 

direction and horizontal direction, respectively. 

 

Analysis of Tunnel Performance with Fuzzy Input Data 

 

Modeling soil parameters with fuzzy sets (or fuzzy numbers) 

A fuzzy set is a set of ordered pairs, [x, (x)], where a member x belongs to the set 

with a certain level of confidence, called membership grade, (x). This set of ordered 

pairs collectively defines a membership function that specifies a membership grade for 

each member (Zadeh 1965). A fuzzy set with a membership function that is convex in 

shape, and with its highest membership grade equal to 1, is a special fuzzy set called 

fuzzy number. As an example, the drained friction angle () of a sand described as 

“about 32” based on a very limited test data indicates an uncertainty about the statement 
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of  = 32. Though this friction angle may be characterized as a random variable with an 

assumed probability distribution, the available limited data do not allow for such precise 

statistical characterization. Alternatively, the assertion of “about 32” can be intuitively 

represented as a fuzzy number of 32 , where the highest membership grade (support) is 

equal to 1.0 for  = 32. If the highest conceivable value (HCV) and lowest conceivable 

value (LCV) of  can be estimated based on engineering judgment, say HCV = 36 and 

LCV = 28, then a fuzzy number 32  will be completely defined. The implication is that 

the membership grade for HCV and LCV are both equal to 0, as shown in Figure 4.3. 

 

(x)

x (degree)

1.0

0.0
32

0.5

28 36  
 

Figure 4.3: An example of a fuzzy number 32  

 

In this study, the uncertain geotechnical parameters are all modeled with 

triangular fuzzy numbers (i.e., fuzzy numbers with a triangular shape membership 

function, as shown in Figure 4.3). Of course, other membership function, such as 

trapezoidal shape, can be used. The triangular fuzzy number is used in this paper for its 

simplicity and efficiency within the RGD framework. Interested readers are referred to 

the literature of the modeling and application of fuzzy data in geotechnical engineering 

(Juang et al. 1992; Juang et al. 1998; Sonmez et al. 2003; Luo et al. 2011).  
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Vertex method for the uncertainty propagation 

With the uncertain input geotechnical parameters represented with triangular 

fuzzy numbers, the system responses (i.e., Fs1 based on ULS and Fs2 based on SLS, as 

per Eq. 4.4 & 4.5, respectively) for a given shield-driven tunnel can be analyzed using the 

vertex method (Dong and Wong 1987). This method is based on -cut concept. In 

reference to Figure 4.4(a), an interval with a lower bound of 
iax  and an upper bound of 

iax  can be formed at a given membership grade of i. Theoretically, a fuzzy number can 

be fully represented by a set of -cut intervals with  ranging from 0.0 to 1.0.  
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Figure 4.4: -cut (-level) intervals for uncertainty propagation analysis using vertex 

method: (a) i-cut interval of an input fuzzy number; (b) Fuzzy output (fuzzy safety 

factor) at i-cut level 

 

Through the vertex method, the system response can be analyzed with the 

following steps (Dong and Wong 1987; Juang et al. 1998; Luo et al. 2011):  

1) The input fuzzy data are first discretized into a set of -cut intervals. For 

example, taking  = 0.2 yields 6 different -cut levels (i.e.,  = 0, 0.2, 0.4, 0.6, 0.8, and 
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1.0). The step size of  = 0.2 is found adequate in this paper to achieve a converged 

result.  

2) At each -cut level, the intervals of all input fuzzy numbers are obtained and 

the combinations of vertexes can be formed. The number of vertex combinations is 2
n
 for 

a system with n input fuzzy numbers.  

3) At each -cut level, different vertex combination represents different set of 

input data to the solution model, and with which, the system response (Fs) is computed. 

This process is repeated for all 2
n
 vertex combinations, yielding 2

n
 Fs values. Taking only 

the minimum and maximum values of which, an interval (i.e., Fs
ia

 and Fs
ia

 ) of Fs can be 

formed, which represents the system response at this specified -level, as shown in 

Figure 4.4(b). 

4) Once the intervals of Fs for all -cut levels are obtained, the final fuzzy factor 

of safety that represents the system response with fuzzy input data is established.  

In the design of shield-driven tunnels, the system response of concern is the state 

of safety in the tunnel cross section, consisting of factors of safety Fs1 (Eq. 4.4) and Fs2 

(Eq. 4.5). With fuzzy input data, the resulting factors of safety are fuzzy numbers. 

Although a fuzzy factor of safety such as the one shown in Figure 4.4(b) provides much 

information about the state of safety, including lower bound, upper bound, and mode of 

factor of safety, and the likelihood (or support) of these values and any other value in the 

range defined by the lower bound and upper bound, it is desirable to have a single value 

representation of the state of safety so that it can be readily incorporated into the RGD 

framework for the design of the shield-driven tunnel. To this end, an index of the safety 
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state, such as a reliability index or failure probability, is desirable. Such index is 

interpreted from the resulting fuzzy factor of safety.   

 

Probabilistic interpretation of the resulting fuzzy factor of safety 

Various methods have been suggested to estimate the failure probability (Pf) of a 

geotechnical system with fuzzy system response (Shrestha and Duckstein 1998; Giasi et 

al. 2003; Park et al. 2012). Most of such methods are based on normalization of the 

membership function of the fuzzy factor of safety into a probability density function, 

assuming that the probability density function is proportional to the membership function. 

As will be seen in the following, while convenient, such a procedure may not be rigorous 

from a probabilistic point of view. For each point [Fs, (Fs)] on the membership function 

as shown in Figure 4.4(b), the term (Fs) measures the membership grade or the degrees 

of belief for this Fs value; it is not a probability. From the probabilistic point of view, the 

chance of occurrence of a possible outcome of Fs, for example, Fs
ia

  (or Fs
ia

 ), as shown 

in Figure 4.4(b), depends on the membership grades of the n input fuzzy numbers. Since 

each of the n input fuzzy numbers has the same membership grade of i, the chance of 

occurrence of Fs
ia

  (or Fs
ia

 ) can be approximated as (i)
n
, which is inspired by an analogy 

of finding the joint probability of occurrence of a series of n independent events each 

with a chance of i.    

To satisfy the axiom of probability, the chance of occurrence for Fs = Fs
i

  (or 

Fs
ia

 ), which is (i)
n
, must be transformed into a probability pi so that the discrete fuzzy 
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membership function can be converted into a discrete probability mass function, as 

shown in Figure 4.5. To this end, the following equation for pi at Fs = Fs
i

  (or Fs
i

 ) is 

proposed:   
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Figure 4.5: Resulting fuzzy factor of safety interpreted as a discrete distribution of 

probability 

 

where i is a given membership grade, and n is the number of input fuzzy parameters. 

According to the axiom of probability, the following condition must be satisfied: 2 (p1 + 

p2 + p3 + p5 + p5) + p6 = 1. 

To validate this suggested probabilistic interpretation of the resulting fuzzy factor 

of safety, Monte Carlo simulations (MCS) are employed here. A shield-driven tunnel 

subjected to loading as shown in Figure 4.1 and with input parameters described in the 

case study presented later in Section 5, is analyzed for its safety performance. The 

analysis of the tunnel performance is first carried out using the vertex method and the 
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probabilistic interpretation procedure with uncertain parameters represented as triangular 

fuzzy numbers (see Table 4.2 and Figure 4.4a). The results (in terms of Fs1 and Fs2) are 

presented in Figure 4.6 as discrete data points (i.e., discrete distribution of Fs). Then, 

MCS runs are carried out with uncertain parameters (see Table 4.2) represented as 

equivalent triangular distribution and truncated normal distribution (truncated at the mean 

plus and minus 3 standard deviations), respectively. These distribution functions have the 

same mean and the lower and upper bounds as their triangular fuzzy number 

counterparts. The outcome of the MCS runs is a continuous distribution of Fs, also shown 

in Figure 4.6.  
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Figure 4.6: Validation of the proposed fuzzy set-based approach with triangular 

membership function versus MCS: (a) MCS with equivalent triangular distribution; (b) 

MCS with equivalent truncated normal distribution 

 

Based on the comparisons made in Figure 4.6, the fuzzy set-based approach as 

described previously is shown to produce a close approximation to the MCS results. 

Because the fuzzy set-based approach is computationally more efficient than the MCS 

approach, and because it is easier and more efficient to be implemented within the RGD 
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framework, it is adopted in the modified RGD methodology in this study. The advantage 

of using the fuzzy set-based approach for uncertainty propagation analysis is amplified in 

the RGD that involves a multi-objective optimization process.  

According to the discrete probability mass function defined in Eq. (4.6), the mean 

(E[Fs]) and standard deviation ([Fs]) of the resulting factor of safety can be readily 

calculated: 

 

 
5

6 6

1

[Fs] Fs Fs Fs
i i

i

i

i

E p p  


 



                                                                        (4.7) 

 

     
5 2 2 22

6 6

1

[Fs] Fs [Fs] Fs [Fs] Fs [Fs]
i i

i

i

i

p E E p E  


 



      
  

               (4.8) 

 

If the discrete random variable is approximated with a continuous lognormal 

variable (since Fs cannot assume a negative value), then the reliability index () of the 

performance of tunnel cross section with respect to ULS or SLS can be evaluated using 

the knowledge of E[Fs] and [Fs] as follows: 
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Fuzzy Set-Based Robust Geotechnical Design (RGD) Methodology 

 

In the previously developed reliability-based robust geotechnical design (RGD) 

methodology (Juang et al. 2013 & 2014; Wang et al. 2013), the failure probability (Pf) of 
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the geotechnical system was considered as the system response, while the variation of 

failure probability was used to measure the design robustness. Although this reliability-

based RGD methodology is fundamentally sound and has been demonstrated as an 

effective design tool, there is room for improvement. First, it is computationally 

demanding especially for geotechnical problems that require complex solution models 

(e.g., finite element models). Second, it requires an evaluation of the mean and standard 

deviation of the coefficient of variation (COV) of key soil parameters, which can be 

challenging for the practicing engineers who are not well versed in the reliability theory. 

Therefore, the fuzzy set-based RGD methodology is proposed herein for design of shield-

driven tunnels. 

 

Optimization setting for fuzzy set-based robust geotechnical design 

Unlike that in the reliability-based RGD methodology, the noise factors in the 

proposed fuzzy set-based RGD are the uncertain geotechnical parameters themselves, not 

the statistics of these parameters. Thus, there is no need to estimate the variation of COV 

of these parameters. In this paper, the noise factors (i.e., the uncertain geotechnical 

parameters) are represented as fuzzy numbers. The design parameters are the segment 

thickness (t), steel reinforcement ratio of segment () and diameter of joint bolt (Dj). The 

system responses of concern are the factors of safety (i.e., Fs1 based on ULS and Fs2 

based on SLS). Within the context of RGD, the variation of the system response is 

minimized (i.e., the robustness is maximized) by adjusting design parameters while the 

traditional requirements of safety and cost efficiency are satisfied. After a preliminary 

assessment, the “signal-to-noise ratio” SNR (Phadke 1989; Schmidl and Cox 1997; Wu 



 100 

and Wu 2000; Braslavsky et al. 2007) is adopted herein as a measure of design 

robustness, which is defined as: 
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where E[Fs] and [Fs] are directly computed from the output  fuzzy factor of safety (per 

Eq. 4.7 & 4.8). Accordingly, a higher SNR means less variation of the system response 

(in terms of Fs), and thus higher design robustness is acquired. 
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Figure 4.7: Optimization algorithms of shield-driven tunnel design: (a) Optimization 

algorithm for reliability-based design; (b) Optimization algorithm for RGD 

 

Figure 4.7(a) shows a typical optimization setting of a traditional reliability-based 

design where the safety requirements are set as constraints, the design parameters are 
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searched in some ranges (also set as constraints), while those designs that satisfy the 

constraints are optimized for cost. Figure 4.7(b) shows the optimization setting for RGD, 

in which the safety requirements (i.e., reliability index 1 based on ULS and 2 based on 

SLS) are also set as constraints, while the design robustness (i.e., SNR1 based on ULS and 

SNR2 based on SLS) and the cost, C(t, , Dj), are optimized. The main difference between 

Figure 4.7(a) and Figure 4.7(b) is the addition of the design robustness as an additional 

objective. As in a reliability-based design, the safety requirement of a design in the RGD 

is guaranteed through following settings: 1  T1 and 2  T2, where T1 and T2 are the 

target reliability indexes based on ULS and SLS, respectively. This safety constraint 

assures that the resulting optimal designs are compulsorily brought to the specified target 

level while the robustness and cost efficiency are optimized.  

Within the context of RGD of shield-driven tunnels, the design parameters (i.e., t, 

, and Dj) are to be optimized in a continuous design space of [tl, tu], [l, u] and [Djl, 

Dju], which is pre-assigned based on local experience and judgment. Obviously, the final 

optimal design parameters should be rounded to the nearest discrete values for 

construction convenience.  

 

Multi-objective optimization of RGD 

Generally speaking, in a multi-objective optimization problem (in reference to 

Figure 4.7b), a “utopia” solution that is optimal with respect to all objectives 

simultaneously is not attainable. Nevertheless, a set of non-dominated optimal solutions 

might exist that are superior to all others in the design space; but within this set, none of 
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them are superior or inferior to others. This set of non-dominated optimal solutions forms 

a Pareto front. In this study, the Non-dominated Sorting Genetic Algorithm version II 

(NSGA-II) (Deb et al. 2002), is employed to identify the Pareto front in the pre-assigned 

continuous design space. With an established Pareto front, which typically shows a trade-

off relationship between the conflicting objectives, an informed decision might be made. 

For example, based on a desired level of cost, the design that yields the highest 

robustness is the most preferred design. Alternative, at a desired level of robustness, the 

least cost design can be selected as the most preferred design. 

 

Case Study 

 

Parameters setting 

In reference to Figure 4.1, an illustrative example is adopted herein to 

demonstrate the proposed fuzzy set-based RGD methodology for the design of shield-

driven tunnels. Basic parameters to assess the tunnel performance with respect to ULS 

and SLS are listed in Table 4.1. For this illustrative example, the unit weight of soil () 

and water (w) are both treated as fixed parameters due to their negligible variation 

comparing with other geotechnical parameters, such as soil resistance coefficient (Ks), 

soil cohesion strength (c), soil friction angle () and ground water table (HGWT). In 

addition to the geotechnical parameters (i.e., Ks, c, , and HGWT), the surcharge (q0) on 

the ground surface also involves significant variability, and its effect on the tunnel 

performance cannot be ignored. Collectively, these five parameters are dealt as noise 

factors in this example. The uncertainties in these noise factors are represented using 
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fuzzy numbers, and detailed parameters to characterize the membership functions of 

these fuzzy numbers are listed in Table 4.2 (Foundation Design Code 1999). The upper 

and lower bounds (HCV and LCV) of noise factors listed in Table 4.2 are determined 

based on local experience, literature reports, and engineering judgment. The design 

parameters in the RGD of a shield-driven tunnel, including the segment thickness (t), 

steel reinforcement ratio () and diameter of joint bolt (Dj), are to be optimized in a pre-

assigned continuous design space. For example, based on local practice in Shanghai, 

China, the design space can be determined, as shown in Table 4.3. The optimization 

algorithm shown in Figure 4.7(b) is then adopted for RGD of the shield driven tunnel in 

this example.  

 

Table 4.1: Deterministic parameters for assessing tunnel performance 

 

Category Parameter Value 

Tunnel 

Embedded depth (H: m) 15.0 

Tunnel inner radius (Rin: m) 2.75 

With of tunnel ring (b: m) 1.0 

Joint position of half structure (i: ) 8, 73, 138 

Concrete 

segment 

Unit weight of concrete (c: kN/m
3
) 25.0 

Elastic modulus of concrete (Ec: kN/m
2
) 3510

6
 

Compression strength of concrete (fc: kN/m
2
) 3910

3
 

Ultimate plastic strain of concrete (p) 0.0033 

Steel 

reinforcement 

Elastic modulus of steel (Es: kN/m
2
) 21010

6
 

Yielding strength of steel bar (fy: kN/m
2
) 34510

3
 

Thickness of protective cover (a: m) 0.05 

Joint bolt 

Bolt length (lb: m) 0.4 

Number of bolts at each joint 2 

Distance from bolts center to tunnel inside surface (h) t/3 

 

Table 4.2: Parameters characterizing membership functions of noise factors 

 

Noise factors Lower Mode Upper 
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bound (a) [m = (a + b)/2] bound (b) 

Soil resistance coefficient (Ks: kN/m
3
)

a
 3500 9250 15000 

Soil cohesion strength (c: kN/m
2
)

a
 0 7.5 15 

Soil friction angle (: )
a
 30 32.65 35.3 

Ground water table (HGWT: m)
b
 0.5 1.25 2 

Ground surcharge (q0: kN/m
2
)

c
 0 10 20 

 
a
 Data from Shanghai code DGJ08-11-1999 (Foundation Design Code 1999); 

b
 Data from site investigation in Shanghai metro line 13;  

c 
Data from engineering experience 

 

Table 4.3: Design space of the RGD of shield-driven tunnel 

 

Design parameter Assigned ranges Value 

Segment 

thickness (t) 

Lower limit (tl: m) 0.200 

Upper limit (tu: m) 0.500 

Steel  

reinforcement ratio () 

Lower limit (l: %) 0.50 

Upper limit (u: %) 4.00 

Diameter  

of joint bolt (Dj) 

Lower limit (Djl: mm) 10.0 

Upper limit (Dju: mm) 50.0 

 

For illustration purpose, the target reliability indexes (i.e., T1 and T2) with 

respect to ULS and SLS are set as 4.2 and 2.7, respectively, while the target failure 

probabilities (i.e., PfT1 and PfT2) are 1.3310
5

 and 0.3510
3

 (MCPRC 2001), 

respectively. Also for illustration purpose, only the material cost of one tunnel ring 

(tunnel cross section) is investigated for simplicity, which consists of segment concrete 

cost, steel reinforcement cost and joint bolts cost. Based on the market survey in 

Shanghai, the unit prices of segment concrete, reinforcement steel, and joint bolts are cc = 

600 RMB/m
3
 (97.77 USD/m

3
), cs = 4000 RMB/10

3
kg (645.16 USD/10

3
kg), and cb = 10 

RMB/kg (1.61 USD/kg), respectively. Thus, the cost function C(t, , Dj) in the RGD of a 

shield-driven tunnel is computed as: 
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( , , )j c c s s b bC t D c Q c Q c Q                                                                           (4.11) 

 

where Qc, Qs, and Qb = the quantity of concrete (m
3
), steel bar (10

3
kg), and joint bolts 

(kg) of the shield-driven tunnel per ring, respectively.  

 

Design parameters on the safety, robustness, and cost of shield-driven tunnel 
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Figure 4.8: Tunnel performance: Safety versus design parameters: (a) 1 versus t; (b) 2 

versus t; (c) 1 versus ; (d) 2 versus ; (e) 1 versus Dj; (f) 2 versus Dj 

 

Before the implementation of the robust design of the shield-driven tunnel, a 

series of parametric analyses are carried out here to investigate how the design 

parameters (i.e., t, , and Dj) affect the safety, robustness, and cost of the shied-driven 

tunnel, which provides a background and sensitivity study for the robust design of the 

shield-driven tunnel. Within the pre-defined design space of design parameters listed in 

Table 4.3, the effect of each design parameter on the safety performance of tunnel cross 

section, in terms of 1 and 2, is first studied, and the results are plotted in Figure 4.8. 

Figure 4.8(a) & 4.8(b) show the effect of segment thickness on the reliability of tunnel 

with respect to ULS and SLS, respectively. As the segment thickness increases, both the 

tunnel stiffness and bearing capacity of the tunnel segment increase. As the stiffness of 

the tunnel lining increases, tunnel structure tends to bear more internal forces but deforms 

less (Lee et al. 2001). In Figure 4.8(a), the reliability with respect to ULS decreases first 

with the segment thickness slightly, and then increases with the lining thickness, 

indicating that at the beginning the effect of increase in internal forces caused by the 

increase in stiffness is slightly more pronounced, but it was later overwhelmed by the 

effect of increase in bearing capacity. In Figure 4.8(b), the reliability with respect to SLS 

increases with the lining thickness as a thicker lining implies more stiffness and hence 

less deformation. Figure 4.8(c) & 4.8(d) show the effect of reinforcement ratio on the 

reliability with respect to ULS and SLS, respectively. The reinforcement ratio can 

enhance the bearing capacity, but has minor effect on the stiffness of the tunnel systems. 
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Thus, it is reasonable to observe an increase of reliability of ULS with the reinforcement 

ratio, but the reliability of SLS is relatively insensitive to the reinforcement ratio. Figure 

4.8(e) & 4.8(f) show the effect of diameter of the joint bolt on the reliability with respect 

to ULS and SLS, respectively. The increase in the diameter of joint bolt improves the 

lining stiffness, which enlarges the internal forces and reduces the tunnel deformation. As 

such, the reliability of the tunnel with respect to ULS decreases with the diameter of the 

joint bolt, and the reliability of the tunnel with respect to SLS increases with the diameter 

of the joint bolt.  
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Figure 4.9: Tunnel performance: Robustness versus design parameters and material cost 

versus design parameters: (a) SNR1 versus t; (b) SNR2 versus t;  (c) C versus t; (d) SNR1 

versus ; (e) SNR2 versus ; (f) C versus ; (g) SNR1 versus Dj; (h) SNR2 versus Dj; (i) C 

versus Dj 

 

Similarly, the effects of the design parameters on the robustness and cost of 

shield-driven tunnel are investigated, and the results are illustrated in Figure 4.9. As the 

design robustness is always positively correlated with the safety in this example, 

following findings are found, as expected: the increase of segment thickness can 

significantly improve the robustness in case of ULS (SNR1 in Figure 4.9a) and the 

robustness in case of SLS (SNR2 in Figure 4.9b); the increase of the reinforcement ratio 

can greatly enhance the robustness in case of ULS (SNR1 in Figure 4.9d), while its effect 

on the robustness in case of SLS is not evident (SNR2 in Figure 4.9e); the increase of the 

diameter of joint bolt can raise the robustness in case of SLS (SNR2 in Figure 4.9h), while 

its effect on the robustness in case of ULS is negative when Dj < 20 mm and slightly 

positive when Dj > 20 mm (SNR1 in Figure 4.9g). The effects of the design parameters on 

the cost of shield-driven tunnel design are depicted in Figure 4.9(c), 4.9(f), and 4.9(i), 

respectively. It is observed that the material cost increases with the increase in each of the 

three design parameters, although the effect of the diameter of joint bolt is not as 

significant as the other two parameters. 

The results of these sensitivity analyses offer an insight on the design parameters 

and their effects on the safety, robustness, and cost of a shield-driven tunnel. This forms 

the basis for the RGD of shield-driven tunnels.  

 

Robust geotechnical design (RGD) of shield-driven tunnel 
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Figure 4.10: Pareto front obtained using NSGA-II: (a) All non-dominated solutions 

(Pareto front) shown in 3-D graph of objectives; (b) Design parameters of all non-
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dominated optimal solutions; (c) Robustness versus cost of all non-dominated optimal 

solutions (2-D Pareto front) 

 

As discussed previously, the RGD of a shield-driven tunnel may be set up as a 

multi-objective optimization problem. With the aid of the Non-dominated Sorting 

Genetic Algorithm version II (NSGA-II) (Deb et al. 2002), the RGD of a shield-driven 

tunnel can be carried out using the algorithm shown in Figure 4.7(b). In NSGA-II, the 

population size is set at 50 and the generation number is set at 100, which yields a 

converged Pareto front.  

Figure 4.10(a) shows the obtained Pareto front (a set of non-dominated optimal 

designs) with the three objectives, robustness SNR1, robustness SNR2 and material cost 

(C). The design parameters, segment thickness (t), steel reinforcement ratio () and 

diameter of joint bolt (Dj) of these non-dominated optimal designs on the Pareto front are 

shown in Figure 4.10(b). Furthermore, Figure 4.10(c) depicts the 2-D Pareto fronts that 

are the projections of the 3-D Pareto front, showing the trade-off relationships between 

robustness (both SNR1 and SNR2) and cost (C) in 2-D graphs. Both SNR1 and SNR2 tend 

to increase as the cost increases, indicating the robustness of the design can be enhanced 

through more investment. The trade-off relationship (trend line) between SNR1 and C 

appears more pronounced than the trade-off relationship between SNR2 and C. In Figure 

4.10(c), the values of SNR1 and SNR2 are in the range of 13-30 and 22-27, respectively, 

which are consistent with those observed in Figure 4.9. Such range values represent the 

possible values of SNR1 and SNR2 within the design space. Thus, the observed more 

obvious trade-off effect between SNR1 and cost is most likely due to the fact that there is 

larger variation of SNR1 in the design space. While the less pronounced trade-off 
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relationship between SNR2 and cost suggests that the SNR2 involves less variability in the 

design space, this does not necessarily imply that the SNR2 does not affect the optimal 

design. Indeed, the Pareto front is a surface which is a function of SNR1, SNR2, and cost 

simultaneously, as shown in Figure 4.10(a).  However, the phenomenon observed in 

Figure 4.10 could be problem specific. In other problems, the SNR2 may play a more 

important role in the design optimization.  

As all points on the Pareto front are non-dominated optimal designs, the most 

preferred design can be selected by the designer based on the desired level of cost or 

robustness. For example, if the desired level of robustness is set at SNR = 15, then the 

least cost design is taken as the most preferred design, which is defined in this case by the 

following set of design parameters: t = 274.0 mm,  = 0.72 %, and Dj = 45.7 mm. 

 

Summary 

 

This chapter presents a fuzzy set-based robust geotechnical design (RGD) of 

tunnel segment rings (or tunnel cross sections). Unlike the traditional geotechnical design 

methodologies, robustness is explicitly considered in the design, in addition to safety and 

cost efficiency. Within the RGD framework, multi-objective optimization is carried out, 

in which the level of safety is compulsorily brought to the target level serving as 

constraints, while the design robustness is maximized and the cost is minimized.  
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CHAPTER FIVE 

IMPROVED SHIELD TUNNEL DESIGN METHODOLOGY 

INCORPORATING DESIGN ROBUSTNESS
*
 

 

Introduction 

 

Benefiting from the advances of shield-driven machines and tunneling 

technologies, shield tunneling has gained world-wide popularity in the construction of 

tunnels in urban areas (Gong et al. 2014b); however, the methodologies for the design of 

the lining of shield tunnels have not been improved much during the past decades. The 

current practice in the design of the lining of shield tunnels is still based upon the analysis 

of critical cross sections adopting a plane strain assumption, although the analysis 

methods have evolved from empirical models to mechanics-based models (Wood 1975; 

ITA 2000; Bobet 2001; Lee et al. 2001; Lee and Ge 2001; Koyama 2003). The 

longitudinal length of a shield tunnel is generally in the hundreds (or thousands) of 

meters while the diameter is usually less than 10 m; as such, the analysis and design of 

the shield tunnel should be a three-dimensional (3-D) problem instead of a 2-D plane 

strain problem. Furthermore, the effect of the longitudinal variation of input parameters 

(e.g., soil parameters, ground water table and overburden) may not be inconsequential. 

The longitudinal variation of input parameters may be attributed to many factors such as  

______________________ 

*
A similar form of this chapter has been submitted to a journal at the time of writing: Gong, W., Huang, 

H., Juang, C., Atamturktur, S., and Brownlow, A. (2014). “Improved shield tunnel design 

methodology incorporating design robustness”. Canadian Geotechnical Journal (under review). 
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the longitudinal variation of tunnel alignment, spatial variation of soil parameters, and 

nearby tunneling activities. 

Because of the effect of the longitudinal variation, the performance of a shield 

tunnel, referred to herein as the structure safety and serviceability of each and every 

segment ring, may not be correctly reflected in the results of the analysis of a few 

“representative” segment rings (or cross sections). Moreover, the selection of these 

representative tunnel cross sections can be quite subjective; different designers may have 

different selections. Therefore, a more rational model for analysis and design of shield 

tunnels that can consider the longitudinal variation of input parameters is needed.  

For a shield tunnel with input parameters that are subjected to longitudinal 

variation, its performance cannot be evaluated with certainty. Even if the longitudinal 

variation of input parameters can be accurately characterized, which is rarely the case, 

different segment rings may exhibit different factors of safety, with respect to either 

structure safety or serviceability. Thus, an improved design methodology for shield 

tunnels is proposed in this paper to account for the longitudinal variation of input 

parameters. 

In the proposed design methodology, the longitudinal variation of input 

parameters is simulated with random field theory, in which the input parameters for 

tunnel design are generated with Monte Carlo simulation (MCS). The generated input 

parameters are then used to analyze the tunnel longitudinal behavior, including tunnel 

settlement, longitudinal rotation, longitudinal bending moment, and longitudinal shear 

force. In this paper, such analysis is performed using finite element method (FEM) based 
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upon the Winkler elastic foundation theory (Huang et al. 2014). The obtained tunnel 

longitudinal responses, as well as the simulated input parameters for tunnel design, are 

then used to investigate the structure safety and serviceability of each and every segment 

ring. For the analysis of the structure safety and serviceability, the simplified method 

developed in Gong et al. (2014d) is adopted, which explicitly considers both shearing 

effect (Liao et al. 2005) and flattening effect (Huang et al. 2012).  

Furthermore, to reduce the effect of input parameters uncertainty in the tunnel 

design, a recently developed robust geotechnical design methodology (Juang et al. 2013 

& 2014; Wang et al. 2013; Gong et al. 2014b & 2014c) is adapted herein for the design of 

shield tunnels. Although the robust design of shield tunnels was reported previously 

(Gong et al. 2014b), it was limited to the design of one segment ring. In the present study, 

the focus is on the design of the tunnel longitudinal structure that consists of a number of 

segment rings, and the variation of the input parameters in the longitudinal direction is 

explicitly considered. 

In the context of robust design, the input parameters are classified into two 

categories: the input parameters that can be easily adjusted or controlled by the designer, 

and the input parameters that are associated with the longitudinal variation and are hard-

to-control. The former is termed design parameters while the latter is termed noise factors 

herein. The robust design of a shield tunnel is usually implemented as a multi-objective 

optimization problem, as the objectives of the design are to satisfy the tunnel 

performance requirements (i.e., structure safety and serviceability), and to increases the 

cost efficiency and design robustness of the design simultaneously. Note that the design 
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robustness is herein referred to the insensitivity of the design against the unforeseen 

longitudinal variation of noise factors. As an improvement to the previously reported 

robust geotechnical design methodology (Gong et al. 2014b), a new design robustness 

measure is developed, which enables an efficient treatment of the longitudinal variation 

of noise factors within the robust design framework. 

In the rest of this paper, a new framework for the shield tunnel performance 

analysis that considers the longitudinal variation of input parameters is presented, 

followed by the formulation of the new design robustness measure and robust design 

methodology for shield tunnels. Thereafter, a hypothetical example of the improved 

robust design of a shield tunnel is presented to demonstrate its effectiveness.  

 

New Framework for Shield Tunnel Performance Analysis 

 

While it has long been acknowledged that the longitudinal variation of input 

parameters must be explicitly considered in the analysis and design of shield tunnels 

(ITA 2000; ATRB 2000; Koyama 2003), a convincing solution model for shield tunnel 

performance analysis that considers the longitudinal variation of input parameters is not 

available. In this paper, we develop a simple framework for such shield tunnel 

performance analysis. In reference to Figure 5.1, this framework can be outlined in the 

following steps: 

 

Step 1: Generating input parameters with Monte Carlo simulation 

Random field theory is employed herein to model the longitudinal variation, or 

the spatial variation in the longitudinal domain, of input parameters for tunnel design 
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(e.g., soil parameters, ground water table, and overburden). The use of random field 

theory to simulate the spatial variation (in the longitudinal domain) of tunnel input 

parameters is inspired by the fact that the spatial variation of soil parameters is often 

simulated with random field in geotechnical engineering (Baker 1984; Phoon and 

Kulhawy 1999; Fenton and Griffiths 2002; Fenton and Griffiths 2003; Cho 2007; Luo et 

al. 2012). In this paper, the design parameters of a shield tunnel along the longitudinal 

direction are generated using Monte Carlo simulation (MCS). 

 

Generate tunnel design parameters

 with MCS that considers the longitudinal variation 

Start

Winkler elastic foundation theory-based

FEM analysis of tunnel longitudinal performance 

(i.e., settlement, rotation, moment, and shear force)

Force method-based analytical analysis

of the performance of tunnel segmental ring 

(i.e., structure safety and serviceability)

All segment

rings are completed? 

Required MCS

runs are completed? 

End

Yes

Yes

No

(Inner loop)

No

(Outer loop)

 
 

Figure 5.1: Framework for shield tunnel performance analysis 

 

Note that a prerequisite for the generation of tunnel input parameters with MCS is 

the availability of the statistical information (i.e., mean , coefficient of variation , scale 
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of fluctuation r, and distribution type) of these input parameters. The statistical 

information of the input parameters should be carefully characterized using data from site 

exploration, published literature, and local experience. For illustration purpose, only the 

longitudinal variation of the following input parameters are studied in this paper: vertical 

ground stiffness (kv), horizontal ground stiffness (kh), effective cohesion (c), effective 

friction angle (), ground water table (HW) and ground surcharge (q0).  

 

Step 2: Analyzing tunnel longitudinal response with Winkler elastic foundation theory 

Based upon the input parameters, including the vertical ground stiffness of the 

ground under the tunnel (kv), ground water table (HW) and ground surcharge (q0), along 

the tunnel longitudinal direction that are generated in Step 1, the longitudinal response of 

the shield tunnel, including settlement (w), longitudinal rotation (L), longitudinal 

bending moment (ML) and longitudinal shear force (QL), is readily analyzed in this step 

using the simplified finite element method (FEM) that is based upon Winkler elastic 

foundation theory (Huang et al. 2014). Here, the longitudinal structure of the shield 

tunnel is modeled as an elastic and continuous beam, and the effect of the longitudinal 

joints, which are the joints between segment rings, is simulated by a reduction factor of 

tunnel longitudinal flexural stiffness, denoted as  (Liao et al. 2008). The soil-structure 

interaction between the tunnel beam and the ground under the tunnel is modeled with the 

Winkler elastic foundation model, in which the vertical ground stiffness (kv) of the 

ground under the tunnel is depicted with the coefficient of the vertical subgrade reaction 

(Winkler 1867; Horvath 1983; Lin et al. 1998; Sadrekarimi and Akbarzad 2009). 
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Step 3: Analyzing the performance of segment ring with force method 

Based upon the tunnel input parameters, including the horizontal ground stiffness 

(kh), effective cohesion (c), effective friction angle (), ground water table (HW) and 

ground surcharge (q0) along the longitudinal direction that are generated in Step 1 and the 

tunnel longitudinal response that is analyzed in Step 2, the performance (i.e., structure 

safety and serviceability) of a tunnel segment ring of concern is evaluated in this step 

using the force method (Lee et al. 2001; Gong et al. 2014d). Here, the effect of tunnel 

longitudinal behavior on the performance of tunnel segment ring is studied considering 

the shearing effect (Liao et al. 2005) and the flattening effect (Huang et al. 2012). The 

effective earth pressure concept is used in this paper to compute the earth pressure and 

the pore water pressure on the shield tunnel. 

The results of the force method are the internal forces (i.e., axial force N, bending 

moment M, and shear force Q) and the convergence deformations (i.e., vertical 

convergence deformation v and horizontal convergence deformation h) of the tunnel 

lining, which are then used to assess the performance of the tunnel segment ring. Here, 

the internal forces are used to calculate the factor of safety with respect to the structure 

safety, denoted as Fs1, using the limit state design method (ITA 2000; Gong et al. 2014b); 

and the convergence deformations are used to compute the factor of safety with respect to 

the serviceability, denoted as Fs2, using the procedure proposed by Gong et al. (2014b) 

based on a limiting convergence deformation of the tunnel lining of 0.6%D (D denotes 

the outer diameter of the tunnel lining). 
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Step 4: Repeating the performance analysis in Step 3 for all tunnel segment rings 

In this step, the performance analysis of the tunnel segment ring presented in Step 

3 is repeated for each and every segment ring of the shield tunnel, as shown with the 

inner loop in Figure 5.1. This will yield a series of factors of safety (with respect to either 

structure safety or serviceability), as different segment rings can exhibit different factors 

of safety due to the existence of the longitudinal variation of input parameters. Thus, the 

mean values of the factors of safety, denoted as 
Fs1  and Fs2 , are obtained to represent 

the overall performance of the shield tunnel with respect to the structure safety and 

serviceability, respectively; whereas, the standard deviations of the factors of safety, 

denoted as Fs1  and Fs2 , are computed to reflect the variation (or degree of uncertainty) 

of the tunnel performance with respect to the structure safety and serviceability, 

respectively. 

 

Step 5: Repeating MCS runs to yield a converged solution of tunnel performance 

In this step, the performance analysis procedures of the shield tunnel presented in 

Step 1, Step 2, Step 3, and Step 4 are repeated for a specified number of MCS runs such 

that a converged solution of tunnel performance can be achieved, as shown with the outer 

loop in Figure 5.1. Note that different overall factors of safety (i.e., Fs1  and Fs2 ) and 

variations of factors of safety (i.e., Fs1  and Fs2 ) can be obtained with different MCS 

runs. Therefore, a certain number of MCS runs, which is determined through a trial-and-

error analysis, should be carried out to derive a converged solution of tunnel 

performance. 
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Robust Design Methodology of Shield Tunnels 

 

A new design robustness measure is proposed in this paper for the robust design 

of shield tunnels that considers the longitudinal variation of input parameters. The 

formulation of the new design robustness measure and the complete multi-objective 

optimization-based robust design methodology are presented in the following.  

 

New design robustness measure for shield tunnels 

One key element in the robust design of shield tunnels is the measure of design 

robustness. Although the exiting design robustness measures, such as the variation of the 

failure probability of the designed system (Juang et al. 2013; Wang et al. 2013), the 

standard deviation of the system performance (Juang et al. 2014), the signal-to-noise ratio 

(SNR) of the system performance (Gong et al. 2014b) and the gradient-based sensitivity 

index of the system performance (Gong et al. 2014c), were shown effective in many 

geotechnical problems, they are not suitable for the robust design of shield tunnels that 

involve the longitudinal variation of input parameters. In this paper, the signal-to-noise 

ratio (SNR) of the factor of safety (Fs), defined below (Gong et al. 2014b), is adapted for 

the robust design of shield tunnels such that it can consider the longitudinal variation of 

input parameters. 

 
2

Fs
10 2

Fs

10logSNR




 
  

 
                                                                                        (5.1) 
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where 
Fs  and 

Fs  are the mean and standard deviation of the factor of safety (with 

respect to the tunnel performance), respectively, which are readily computed using the 

procedure described in Step 4 in the previous section. Intuitively, a higher SNR signals a 

lower variability of the tunnel performance (in terms of the factor of safety) and, thusly, a 

higher design robustness. 

As mentioned previously, different MCS runs can result in different values of 
Fs  

and Fs . The variation in Fs  and Fs  further leads to the uncertainty in the computed 

SNR. In such a circumstance, a new design robustness measure (R), which is based upon 

the statistics of the SNR, is defined as follows and used to measure the design robustness 

of shield tunnels: 

 

SNR SNR2R                                                                                                   (5.2) 

 

where SNR  and SNR  are the mean and standard deviation of the SNR with respect to the 

tunnel performance, respectively, which are readily computed using the procedure 

described in Step 5 in the previous section. 

It is noted that the robustness measure R defined here is basically the same as 

SNR; thus, higher R value indicate higher design robustness. The rationale to adopt the 

mean minus two standard deviations is to be able to consider the variation of SNR among 

those obtained with different MCS runs. Approximately, the robustness measure R may 

be thought of as the lower end of the SNR in face of the longitudinal variation of input 

parameters (noise factors).  
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Multi-objective optimization: design robustness versus cost efficiency 

The goal of the robust design is to find an optimal design from the design space 

(DS), which is represented by a set of easy-to-control design parameters (d), such that the 

system response (or performance) is robust against the longitudinal variation of hard-to-

control noise factors (). The desire to maximize the design robustness (R), however, 

must be balanced with the desire to minimize the cost (C), while satisfying the 

performance requirements, in terms of g(d,  (Juang et al. 2013 & 2014; Wang et al. 

2013; Gong et al. 2014b & 2014c). In other words, the robust design of shield tunnels can 

be effectively formulated as a multi-objective optimization problem, as shown in Figure 

5.2. 

 
 

 

Find:            d (d denotes a set of easy-to-control design parameters) 

Subject to:   d  DS (DS denotes the design pool) 

                    g(d, ) > 0 (g > 0 denotes the performance requirement) 

Objectives:  minimize C(d) (C denotes the cost) 

                    maximize R(d, ) (R denotes the design robustness) 

  
 

Figure 5.2: Multi-objective optimization setting of robust design 

 

The optimization setting illustrated in Figure 5.2 indicates that the performance 

requirement (g) and design robustness (R) can be expressed as a function of the easy-to-

control design parameters (dand hard-to-control noise factors (, while the cost (C) is 

determined with only the design parameters (d). Thus, the multi-objective optimization-

based robust design can be effectively realized by adjusting the design parameters (d).  
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In general, the desire to maximize the design robustness and the desire to 

minimize the cost are two conflicting objectives. As such, the multi-objective 

optimization, as illustrated in Figure 5.2, in unlikely to yield a single best design; rather, 

it usually yields a set of non-dominated optimal designs. These non-dominated optimal 

designs collectively form a Pareto front that shows a tradeoff relationship between design 

robustness and cost efficiency. The Pareto front can usually be obtained through some 

optimization algorithms, such as the non-dominated sorting genetic algorithm version II 

(NSGA-II) (Deb et al. 2002).  

As a tradeoff relationship between design robustness and cost efficiency, the 

Pareto front can aid in making an informed design decision. For example, either the least 

cost design that is above a pre-specified level of design robustness (RT) or the most robust 

design that falls within a pre-specified cost level (CT) could be identified as the most 

preferred design in the given design space. The selection of an optimal level of design 

robustness or cost, however, may be problem specific and involves many factors. 

Alternatively, when no design preference is specified by the owner, the knee point on the 

Pareto front, which represents the best compromise between design robustness and cost 

efficiency, may be taken as the most preferred design (Juang et al. 2014; Gong et al. 

2014c).  

 

Case Study 

 

To demonstrate the new framework for shield tunnel performance analysis and 

the proposed robust design methodology for shield tunnels, a hypothetical illustrative 
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example of the robust design of a shield tunnel with a longitudinal length of 300 m is 

presented herein. 

 

Parameters setting in the illustrative example 

In the robust design of shield tunnels, the input parameters are first classified into 

two categories: easy-to-control design parameters (d) and hard-to-control noise factors 

(). Note that the design parameters are the input parameters that can be easily adjusted 

by the designer, such as the segment thickness (t), diameter of steel bolts (i.e., Dc and Dl 

for the circumferential bolts and longitudinal bolts, respectively) and reinforcement ratio 

of tunnel segment (); the noise factors () are the input parameters that cannot be 

adjusted by the designer or characterized with certainty, such as the vertical ground 

stiffness (kv), horizontal ground stiffness (kh), effective cohesion (c), effective friction 

angle (), ground water table (HW) and ground surcharge (q0). For simplicity, the 

stationary random field theory is used herein to model the longitudinal variation of noise 

factors (). Detailed statistics of the noise factors are assumed and listed in Table 5.1. 

The statistics are assumed for illustration purpose; for real-world application, these 

statistics should be carefully characterized based on site exploration, published literature, 

and local experience.  

For ease of illustration, the unit weight of soil (s), material parameters of the 

precast tunnel segment and steel (i.e., reinforcement of tunnel segment and bolts), and the 

geometries of the precast tunnel segment are assumed as constants, since the variability 

of each of these parameters is relatively low and negligible. The embedded depth (H), a 
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vertical distance that is measured from the tunnel crown to the ground surface, is also 

assumed as a constant and not varying along the longitudinal direction. Detailed 

parameters settings of these deterministic parameters are listed in Table 5.2.  

 

Table 5.1: Statistical characterization of noise factors 

 

Noise factors Mean () 
Coefficient of 

variation () 

Scale of 

fluctuation (r) 
Distribution 

Vertical ground stiffness of the 

ground under the tunnel (kv, kN/m
3
) 

33000 0.500 50 Lognormal 

Effective cohesion of soil (c, kN/m
2
) 7.5 0.333 50 Lognormal 

Effective friction angle of soil (, ) 32.65 0.027 50 Lognormal 

Horizontal ground stiffness of soil 

(kh, kN/m
3
) 

9250 0.207 50 Lognormal 

Ground water table (HW, m) 1.25 0.200 50 Lognormal 

Ground surcharge (q0, kN/m
2
) 10 0.333 50 Lognormal 

 

Table 5.2: Deterministic parameters of the example tunnel 

 

Category Parameter Value 

Soil Unit weight (s, kN/m
3
) 18.0 

Tunnel 

geometries 

Longitudinal length (L, m) 300.0 

Embedded depth (H, m) 14.0 

Tunnel inner radius (Rin, m) 2.75 

With of segment ring (b, m) 1.0 

Position of circumferential joints of half structure (i, ) 8, 73, 138 

Tunnel 

segment 

Unit weight of concrete (c, kN/m
3
) 25.0 

Elastic modulus of concrete (Ec, kN/m
2
) 34.510

6
 

Compression strength of concrete (fc, kN/m
2
) 3910

3
 

Ultimate plastic strain of concrete (p) 0.0033 

Steel 

reinforcement 

Elastic modulus of steel (Es, kN/m
2
) 21010

6
 

Yielding strength of steel (fy, kN/m
2
) 34510

3
 

Thickness of protective concrete cover (a, m) 0.05 

Steel bolt 

Length of steel bolts (lb, m) 0.4 

Number of bolts at each circumferential joint 2 

Distance from bolts center to tunnel inside surface (h) t/3 

Number of steel bolts between adjacent segment rings 

(or of each longitudinal joint) 
17 
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Effectiveness of the new framework for shield tunnel performance analysis 

With the statistics of the noise factors listed in Table 5.1, the performance of the 

example shield tunnel can be readily analyzed using the new framework for shield tunnel 

performance analysis presented previously. Shown in Figure 5.3 are the input parameters 

(noise factors) along the longitudinal direction that are generated from one MCS run. It is 

noted that the noise factors vary distinctly in the longitudinal domain, and thus the 

determination of the critical tunnel cross sections of this shield tunnel can be a great 

challenge. In this paper, the longitudinal response of this shield tunnel is analyzed using a 

simplified FEM method that is founded on Winkler elastic foundation theory (Huang et 

al. 2014). The results of the analysis, including tunnel settlement (w), longitudinal 

rotation (L), longitudinal bending moment (ML) and longitudinal shear force (QL), are 

plotted in Figure 5.4.  

Significant longitudinal variation of tunnel longitudinal responses is observed, as 

shown in Figure 5.4. Further, the longitudinal variation of the tunnel performance (in 

terms of the structure safety and serviceability of segment ring) could be resulted in. 

Shown in Figure 5.5 is the longitudinal variation of the tunnel performance, in terms of 

Fs1 (with respect to the structure safety of segment ring) and Fs2 (with respect to the 

serviceability of segment ring), given the longitudinal variation of noise factors in Figure 

5.3. Figure 5.5 indicates that different segment rings of this shield tunnel exhibit different 

tunnel performances, which is reflected in the longitudinal variation of the factors of 

safety (i.e., Fs1 and Fs2). Thus, the performance of this shield tunnel cannot be assessed 

with the results of the analysis of a few segment rings. Note that the design parameters of  
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Figure 5.3: Illustrative longitudinal variation of noise factors: (a) Vertical ground 

stiffness; (b) Horizontal ground stiffness; (c) Effective cohesion; (d) Effective friction 

angle; (e) Ground water table; (f) Ground surcharge 
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Figure 5.4: Computed tunnel longitudinal responses given the noise factors in Figure 5.3: 

(a) Settlement; (b) Longitudinal rotation; (c) Longitudinal bending moment; (d) 

Longitudinal shear force 

 

the shield tunnel are t = 0.35 m,  = 0.5%, Dc = 30 mm, and Dl = 30 mm; indeed, this set 

of tunnel design parameters is used in the metro tunnels in Shanghai, China. 

In general, different MCS runs can generate different longitudinal variations of 

noise factors, and as such, different longitudinal curves of tunnel performance are 
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expected. The longitudinal curve of tunnel performance in Figure 5.5 is obtained for the 

variation of noise factors shown in Figure 5.3. Therefore, a series of MCS runs should be 

carried out to derive a converged solution of tunnel performance, in terms of the overall 

factors of safety (i.e., 
Fs1  and 

Fs2 ), as per Step 5 of the new analysis framework 

presented previously. Figure 5.6(a) & 5.6(b) show the computed values of the mean and 

standard deviation of the overall factors of safety with different MCS runs. It is noted that 

the converged solution of tunnel performance can be achieved with 500 MCS runs. 

Figure 5.6(c) & 5.6(d) further show the computed values of the mean and standard 

deviation of the signal-to-noise ratios (SNR) with different MCS runs. Similarly, the 

converged solution of the mean and standard deviation of the SNR can be achieved with 

500 MCS runs. Therefore, the number of MCS runs is set at 500 for sampling the 

longitudinal variation of noise factors.  
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Figure 5.5: Computed tunnel performance given the noise factors in Figure 5.3 
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Figure 5.6: Convergence of the overall factors of safety and signal-to-noise ratio with 

MCS runs: (a) Overall factor of safety for structure safety; (b) Overall factor of safety for 

serviceability; (c) Signal-to-noise ratio for structure safety; (d) Signal-to-noise ratio for 

serviceability 

 

As demonstrated in Figure 5.6(a) & 5.6(b), the variations of the overall factors of 

safety are relatively small and may be neglected. For example, the means of Fs1  and 

Fs2  are 1.39 and 2.49, respectively, while the standard variations of Fs1  and Fs2  are 

0.07 and 0.11, respectively. Whereas, the variations of the computed SNR, as shown in 

Figure 5.6(c) and 5.6(d), are significantly high and cannot be ignored. For example, the 

means of SNR1 and SNR2 are 10.33 and 4.63, respectively, while the standard variations 
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of SNR1 and SNR2 are 0.77 and 1.12, respectively. As noted, the overall factors of safety 

(in terms 
Fs1  and 

Fs2 ) and SNR (in terms of SNR1 and SNR2) of the shield tunnel can be 

fitted well with normal distributions, as shown in Figure 5.7. Therefore, the means of 
Fs1  

and 
Fs2 are adopted herein to assess the performance requirements of the candidate 

design of the shield tunnel; and the design robustness of the candidate design is measured 

with Eq. (5.2). Figure 5.7(c) & 5.7(d) show the computed design robustness, in terms of 

R1 and R2, of the shield tunnel. 
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Figure 5.7: Distributions of the overall factors of safety and SNR in 2,000 MCS runs: (a) 

Distribution of Fs1 ; (b) Distribution of Fs2 ; (c) Distribution of SNR1; (d) Distribution of 

SNR2 

 

Finally, the failure probabilities with respect to both structure safety and 

serviceability of the segment ring of this longitudinal shield tunnel are computed using 

the new analysis framework presented previously. For the example tunnel, the failure 
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probabilities for structure safety and serviceability are 2.1410
-1

 and 2.9810
-2

, 

respectively, based on 2,000 MCS runs (see Figure 5.8a & 5.8b). The large failure 

probabilities indicate that the exiting shield tunnels in Shanghai may experience 

significant performance problems, which is quite consistent with the years of structure 

health monitoring data. However, the failure probabilities of the shield tunnel computed 

with the conventional tunnel analysis method (Lee et al. 2001) are 4.010
-5

 and 0, 

respectively (see Figure 5.9a & 5.9b). The latter results obtained with the conventional 

tunnel analysis method are not consistent with the long term observations. Thus, it may 

be concluded that by considering the longitudinal variation of input parameters, the new 

analysis framework yields a more accurate prediction of the tunnel performance. 
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Figure 5.8: Failure probabilities in 2,000 MCS runs using the advanced solution for 

shield tunnel performance analysis: (a) Failure probability for structure safety; (b) Failure 

probability for serviceability 
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Figure 5.9: Factors of safety in 100,000 MCS runs using the conventional methods for 

shield tunnel performance analysis: (a) Factor of safety for structure safety; (b) Factor of 

safety for serviceability 
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Figure 5.10: Easy-to-control design parameters on tunnel performance: (a) Segment 

thickness; (b) Bolt diameter of the circumferential joints; (c) Bolt diameter of the 

longitudinal joints; (d) Steel reinforcement ratio of tunnel segment 

 

In reference to the robust design optimization setting shown in Figure 5.2, the 

tunnel performance and the design robustness can be expressed as a function of the easy-
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to-control design parameters (dand hard-to-control noise factors (. Thus, a series of 

parametric analyses are carried out herein to investigate how the tunnel performance, in 

terms of the mean of 
Fs1  and Fs2 , and the design robustness, in terms of R1 and R2, are 

affected by the adjustment of the design parameters (d). This series of parametric studies 

provides a basis for the robust design of the shield tunnel. The results of the parametric 

studies are shown in Figure 5.10 & 5.11. 

As shown in Figure 5.10(a), the tunnel performance with respect to both structure 

safety and serviceability (in terms of the mean of Fs1  and Fs2 , respectively) increases 

with the increase of the segment thickness. The shield tunnel structure with a larger 

segment thickness can, naturally, bear more internal forces and yield less convergence 

deformation. In Figure 5.10(b), as the bolt diameter of the circumferential joints 

increases, the tunnel performance with respect to the structure safety decreases 

significantly, whereas the tunnel performance with respect to the serviceability increases 

linearly. The plots in Figure 5.10(b) also show that the shield tunnel structure with a 

larger bolt diameter of the circumferential joints yields a larger internal forces and less 

convergence deformation. In Figure 5.10(c), as the bolt diameter of the longitudinal joints 

increases, the tunnel performance with respect to the structure safety improves, while the 

tunnel performance with respect to the serviceability improves initially and then begins to 

degrade. However, the variation of tunnel performance due to the adjustment of the 

diameter of the longitudinal joints is not distinct. The steel reinforcement ratio of tunnel 

segment can enhance the bearing capacity of tunnel segment rings, but has a minor effect 

on the circumferential stiffness of tunnel segment rings. Thus, the tunnel performance 
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with respect to the structure safety improves significantly with the increase of the 

reinforcement ratio of tunnel segment, while the tunnel performance with respect to the 

serviceability is hardly affected by the adjustment of the reinforcement ratio of tunnel 

segment, as depicted in Figure 5.10(d). 
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Figure 5.11: Easy-to-control design parameters on tunnel design robustness: (a) Segment 

thickness; (b) Bolt diameter of the circumferential joints; (c) Bolt diameter of the 

longitudinal joints; (d) Steel reinforcement ratio of tunnel segment 

 

Figure 5.11 shows the effect of design parameters on the design robustness of the 

shield tunnel. Figure 5.11(a) illustrates that the increase of the segment thickness 
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enhances the design robustness of the shield tunnel with respect to the structure safety 

(indicated by the increase of R1), but degrades the tunnel design robustness with respect 

to the serviceability (indicated by the decrease of R2). The effect of the increase of the 

segment thickness on the tunnel design robustness becomes less significant as the 

segment thickness becomes large. As shown in Figure 5.11(b), the increase of the bolt 

diameter of the circumferential joints always leads to the decrease of tunnel design 

robustness with respect to the serviceability; whereas the tunnel design robustness with 

respect to the structure safety increases initially and then begins to decrease. Similarly, 

the increase of the bolt diameter of the longitudinal joints enhances the tunnel design 

robustness with respect to the serviceability; whereas the tunnel design robustness with 

respect to the structure safety increases first and then begins to decrease, as depicted in 

Figure 5.11(c). Finally, in Figure 5.11(d), the increase of the steel reinforcement ratio of 

tunnel segment enhances the tunnel design robustness with respect to the structure safety, 

but the tunnel design robustness with respect to serviceability is hardly affected.  

The results of these parametric analyses, shown in Figure 5.10 & 5.11, offer an 

insight on the effects of the easy-to-control design parameters on the performance and 

design robustness of shield tunnels. They provide a basis for the robust design of shield 

tunnels: the robust design of shield tunnels is indeed achieved by a careful adjustment of 

the design parameters. 

 

Robust design optimization 

For illustration purpose, a discrete design space (DS) is adopted in this paper. 

With the ranges of design parameters shown in Table 5.3, this design space has 500 
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discrete candidate designs. Of course, a continuous design space may be adopted if so 

desired based on local experience in a real-world application. For the performance 

requirements (i.e., structure safety and serviceability) of the shield tunnel, the target 

factors of safety with respect to both structure safety and serviceability are set at 1.5. In 

other words, the tunnel performance requirements consist of two conditions: the mean of 

Fs1  > 1.5 and the mean of 
Fs2  > 1.5. As shown in Figure 5.2, the cost of the shield 

tunnel is also a design objective to be optimized in the robust design optimization. Also 

for illustration purpose, only the material cost of the shield tunnel is considered herein: 

the material cost consists of the segment concrete cost, steel reinforcement cost, and joint 

bolts cost. According to Gong et al. (2014b), the unit prices of the segment concrete, 

reinforcement steel, and joint bolts in a typical Shanghai metro tunnel are cc = 600 

RMB/m
3
 (97.77 USD/m

3
), cs = 4000 RMB/10

3
kg (645.16 USD/10

3
kg), and cb = 10 

RMB/kg (1.61 USD/kg), respectively. Thus, the cost function in the robust design of the 

shield tunnel, denoted as C(d) in Figure 5.2, is computed as follows: 

 

( ) c c s s b bC c Q c Q c Q  d                                                                                   (5.3) 

 

Table 5.3: Design space of the robust design of the example tunnel 

 

Easy-to-control design parameter Possible value 

Segment thickness (t: m) {0.25, 0.30, 0.35, 0.40, 0.45} 

Steel reinforcement ratio of tunnel 

segment (: %) 
{0.5, 1.0, 1.5, 2.0} 

Bolt diameter of the 

circumferential joints (Dc: mm) 
{20, 25, 30, 35, 40} 

Bolt diameter of the longitudinal 

joints (Dl: mm) 
{20, 25, 30, 35, 40} 
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Figure 5.12: Robust design optimization results of the example tunnel 

 

Once the performance (safety) requirements, the cost, and the design robustness 

of each candidate design in the design space are assessed, the robust design optimization 

of this shield tunnel is readily carried out according to the robust design optimization 

setting shown in Figure 5.2. As expected, the robust design optimization yields a series of 

non-dominated optimal designs, as shown in Figure 5.12, rather than a single best design. 

It is easily observed that the desire to maximize the design robustness and the desire to 

minimize the cost are two conflicting objectives. The non-dominated optimal designs 

collectively form a 3-D Pareto front, since there are three objectives involved in the 

optimization (i.e., design robustness with respect to the structure safety R1, design 

robustness with respect to the serviceability R2, and cost C.  

Oftentimes, a decision can be made based on the Pareto front. Generally, either 

the least cost design that is above a pre-specified level of design robustness (RT) or the 

most robust design that falls within a pre-specified cost level (CT) may be selected as the 

most preferred design in the design space. Nevertheless, the determination of an 
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appropriate level of design robustness or cost could be problem specific. If no design 

preference is specified by the designer or owner, the knee point on the Pareto front may 

be taken as the most preferred design (Juang et al. 2014; Gong et al. 2014c). Here, the 

marginal utility function-based approach (Branke et al. 2004; Gong et al. 2014c) is 

employed to locate the knee point on the Pareto front, and the identified knee point is 

plotted in Figure 5.12. Note that on the upper side of the knee point, a slight improvement 

in the design robustness would significantly increase the cost; whereas, on the other side 

of the knee point, a slight reduction in cost would require a huge sacrifice in the design 

robustness. 

Also plotted in Figure 5.12 is the actual design adopted by Shanghai metro. It is 

noted that higher design robustness (indicated by a larger R) and higher cost efficiency 

(indicated by a lower C) can be achieved with the knee point obtained from the robust 

design optimization, compared to the actual design in Shanghai. Detailed comparison of 

these two designs is listed in Table 5.4. In Table 5.4, the feasibility, denoted as f, 

represents the likelihood that the shield tunnel will not fail with respect to the tunnel 

performance (i.e., structure safety or serviceability), which is defined as follows: 

 

 1 1Pr Fs 1.0f                                                                                                (5.4a) 

 

 2 2Pr Fs 1.0f                                                                                               (5.4b) 

 

where f1 and f2 are the feasibilities with respect to the structure safety and serviceability 

of the shield tunnel, respectively; and Pr[Fs > 1.0] represents the conditional probability 
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that the factor of safety (Fs) is greater than 1.0 in face of the unforeseen longitudinal 

variation of noise factors. 

Compared to the actual design in Shanghai, the bolt diameter of the 

circumferential joints (Dc) of the knee point, obtained with the robust design 

optimization, is reduced from 30 mm to 20 mm. As a result, the design feasibility with 

respect to the structure safety (f1), tunnel performance with respect to the structure safety 

(the mean of 
Fs1 ), cost efficiency (C), and the design robustness with respect to both 

structure safety (R1) and serviceability (R2) are significantly improved. For example, the 

feasibility with respect to the structure safety is increased from 0.7846 to 0.9607 and the 

design robustness with respect to the serviceability is increased from 2.31 to 4.89. 

However, the design feasibility and tunnel performance with respect to the serviceability 

(i.e., f2 and the mean of Fs2 ) are degraded somewhat, although the tunnel performance 

requirements are still satisfied.  

It should be noted that the most preferred design (i.e., knee point) may vary with 

the robust design optimization setting (e.g., design space and target factors of safety). 

Here, the robust design optimization of the example shield tunnel is reanalyzed and 

redesigned with different target factors of safety with respect to the tunnel performance, 

and the results are listed in Table 5.5. The results show that different robust design 

optimization settings can produce different final designs of the shield tunnel. As the 

target factors of safety (with respect to the tunnel performance) increase, the design 

feasibility (i.e., f1 and f2), tunnel performance (i.e., the mean of Fs1  and the mean of 

Fs2 ), and cost (C) of the most preferred designs tend to increase.  
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Table 5.4: Comparison between the knee point in robust design and the real-world design 

 

Designs 

Easy-to-control design 

parameters (d) 

Design 

feasibility 

Tunnel 

performance 
Design objectives 

t 

(m) 
 

(%) 

Dc 

(mm) 

Dl 

(mm) 
f1 f2 

Mean 

of 
Fs1  

Mean of 

Fs2  
C 

(1000 USD) 
R1 R2 

Knee point 0.35 0.5 20 30 0.9607 0.9033 1.90 1.80 309.57 9.59 4.89 

Real-world 

design 
0.35 0.5 30 30 0.7846 0.9695 1.39 2.50 316.67 8.78 2.31 

 

Table 5.5: Robust design optimization results of the example tunnel with different target 

factors of safety 

 

Target 

factors of 

safety 

Easy-to-control design 

parameters (d) 

Design 

feasibility 

Tunnel 

performance 
Design objectives 

t 

(m) 
 

(%) 

Dc 

(mm) 

Dl 

(mm) 
f1 f2 

Mean of 

Fs2  

Mean of 

Fs2  
C 

(1000 USD) 
R1 R2 

1.5 0.35 0.50 20 30 0.9607 0.9033 1.90 1.80 309.57 9.59 4.89 

2 0.40 0.50 20 30 0.9931 0.9643 2.12 2.10 353.18 11.09 4.61 

2.5 0.40 1.00 25 35 0.9999 0.9963 3.39 2.53 474.85 10.76 4.59 

3 0.45 1.00 25 35 1.0000 0.9997 3.94 3.04 534.22 11.74 4.34 

 

Summary 

 

This chapter presents an improved design methodology for shield tunnels with 

robust design concept, which is indeed a combination of the robust design methodology 

and an advanced framework for shield tunnel performance analysis. In the context of the 

proposed design methodology, the input parameters that are associated with the 

longitudinal variation are classified as noise factors, while the input parameters that can 

be adjusted by the designer are classified as design parameters. The objective of the 

improved design methodology is to identify an optimal design in the design space, 

represented by a set of design parameters, such that the design robustness (against the 

longitudinal variation of noise factors) is maximized; naturally, the desire to maximize 
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the design robustness must be balanced with the desire to optimize the cost and to satisfy 

the conventional performance requirements of shield tunnels. 
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CHAPTER SIX 

CONCLUSIONS AND RECOMMENDATIONS 

 

Conclusions 

 

The following conclusions are drawn from the results presented in Chapter II:  

(1) A Winker elastic foundation theory-based FEM procedure is developed in this 

chapter to analyze the tunnel longitudinal behavior in light of the longitudinal 

variation of tunnel design parameters, the effectiveness and capability of 

which is verified by both analytical solutions and model tests. 

(2) Within the context of the developed FEM procedure, the random field concept 

can be employed to model spatial variation (in the longitudinal domain) of 

design parameters. A random field concept is easily coupled with the 

proposed FEM procedure for tunnel longitudinal performance analysis 

considering spatial variability of tunnel design parameters. The coupling 

between the proposed FEM solution with random field modeling of the 

longitudinal variation of soil properties is demonstrated through an illustrative 

example 

(3) Based on the results of the parametric study, the mean of tunnel settlement is 

found to be suitable to gauge the overall tunnel settlement while the 

coefficient of variation (COV) of tunnel settlement is suitable to gauge the 

extent of tunnel differential settlement. The results also show the overall 

tunnel settlement is mainly affected by the mean of soil properties, while the 
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extent of tunnel differential settlement is mainly affected by the COV and the 

scale of fluctuation of soil properties. 

 

The following conclusions are drawn from the results presented in Chapter III: 

(1) Compared to existing tunnel analysis methods, the proposed tunnel analytical 

model can effectively consider the tunnel longitudinal differential settlement 

in the analysis of the circumferential behavior of tunnel segment lining, 

primarily through the consideration of the shearing effect and the flattening 

effect.  

(2) The proposed tunnel analytical model is meaningful in analyzing the variation 

of the circumferential behavior of the segment lining along the longitudinal 

direction. As demonstrated in the example, for a given tunnel with a collected 

tunnel longitudinal settlement curve, the longitudinal variation of the 

circumferential behavior is readily obtained.  

(3) Parametric studies reveal the circumferential behavior of the segment lining, 

including both the structure safety and the serviceability, always degrades 

with the curvature and fourth derivative of the tunnel settlement; the increase 

in the flexural stiffness of the longitudinal joints might degrade the 

circumferential behavior of the segmental lining. Though the increase in the 

flexural stiffness of the circumferential joints can degrade the structural 

safety, it can enhance the serviceability of the segmental lining. While the 

increase in the segment thickness always enhances the serviceability, there 

might be no such enhancement to the structure safety. 
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The following conclusions are drawn from the results presented in in Chapter IV:  

(1) The proposed fuzzy set-based robust geotechnical design (RGD) methodology 

is demonstrated to be effective and capable of producing a final design of the 

shield tunnel (segment ring) that is robust against the variation in noise factors 

(i.e., uncertain geotechnical parameters and surcharge load). 

(2) The Pareto front obtained through multi-objective optimization reveals the 

trade-off relationships between robustness and cost. All the points on the 

Pareto front are non-dominated optimal designs. The most preferred design 

can be directly selected based on the desired level of cost or robustness. 

(3) The proposed procedure (Eq. 4.6) to interpret the results of fuzzy set-based 

uncertainty propagation analysis is shown to achieve comparable results with 

those obtained with Monte Carlo simulations (MCSs) with various 

distribution assumptions. The fuzzy set-based approach is computationally 

advantageous over the MCS approach, especially within a robust design 

framework; as such, the new fuzzy set-based RGD methodology is 

computationally more attractive than the reliability-based RGD methodology.   

(4) Parametric analyses show that the segment thickness and diameter of joint 

bolt are the key parameters that control the safety and robustness with respect 

to SLS in the design of a shield tunnel, while the safety and robustness with 

respect to ULS are mainly dominated by the segment steel reinforcement ratio. 

Although an increase in any of the three design parameters (i.e., segment 

thickness, reinforcement ratio, and diameter of joint bolt) can lead to an 
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increase in cost, the effect of the reinforcement ratio on the cost is the most 

profound. 

 

The following conclusions are drawn from the results presented in in Chapter V:  

(1) The advanced framework for shield tunnel performance analysis is shown to 

be capable of analyzing the longitudinal variation of input parameters (e.g., 

soil parameters). The new solution framework yields results (in terms of 

probabilities of unsatisfactory performance of the shield tunnel) that are more 

consistent with data from the structure health monitoring in Shanghai metro, 

compared to the conventional method that is not equipped to consider the 

longitudinal variation of input parameters.  

(2) The modified robust design methodology for shield tunnels is demonstrated to 

be capable of producing a final design of the shield tunnel that is robust 

against longitudinal variation of noise factors and is simultaneously cost 

efficient, in addition to meeting the conventional tunnel performance 

requirement (i.e., structure safety and serviceability). Compared to the actual 

design, the most preferred design (i.e., knee point) obtained with the robust 

design optimization yielded higher design robustness, higher cost efficiency 

and higher feasibility of tunnel performance. 

(3) Unlike current design practices, the proposed robust design methodology 

considers design robustness, cost efficiency, and tunnel performance 

requirements explicitly and simultaneously. Utilizing multi-objective 

optimization, the proposed robust design methodology yields a Pareto front 
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that shows a trade-off relationship between design robustness and cost 

efficiency. The Pareto front with or without the identified knee point can aid 

in selecting the most preferred design.  

(4) Apart from multi-objective optimization, a new design robustness measure, 

which is based upon the signal-to-noise ratio, is proposed for the shield tunnel 

performance analysis. The new robustness measure is adapted specifically for 

considering the longitudinal variation of input parameters and is demonstrated 

effective for use with the proposed robust design of shield tunnels. 

(5) Parametric analyses show that the segment thickness, bolt diameter of the 

circumferential joints, and bolt diameter of the longitudinal joints are key 

design parameters that affect tunnel performance and design robustness with 

respect to both structure safety and serviceability. While tunnel performance 

and design robustness with respect to the structure safety are significantly 

affected by the steel reinforcement ratio of tunnel segment, the tunnel 

performance and design robustness with respect to the serviceability are 

barely affected by the steel reinforcement ratio of tunnel segment. 

 

Recommendations 

 

To further expand the work presented in this dissertation, a number of research 

topics may be undertaken, which include the following: 

(1) Further investigation of a more complex solution model for shield tunnel 

performance analysis is suggested, such that the joints of shield tunnels and 
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the soil-structure interaction between the ground and the tunnel structure can 

be more accurately included. It should be noted that the proposed solution 

model for shield tunnel performance has not been validated with field data, 

further examination that is based upon field data is recommended for future 

work. 

(2) The design robustness in this dissertation study is measured with the signal-to-

noise ratio of shield tunnel performance. Other measures such as feasibility-

based robustness, gradient-based robustness and variation-based robustness 

may be investigated for their suitability for use in the developed geotechnical 

robust design framework. 

(3) MCS is a built-in element of the developed solution model for shield tunnel 

performance analysis, as the random field concept is used to simulate the 

longitudinal variation of input parameters. Further development of a simpler 

solution model for shield tunnel performance analysis, in which the 

computational demanding MCS might not be required, is of interest. 

(4) A further development of the robust design framework of shield tunnels into a 

robust maintenance framework for shield tunnels is of importance. The 

integration of life-cycle performance assessment within the robust 

maintenance optimization framework may also be explored. 
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