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Abstract

This dissertation explored the idea of L1 norm in solving two statistical problems including

multiple linear regression and diagnostic checking in time series. In recent years L1 shrinkage meth-

ods have become popular in linear regression as they can achieve simultaneous variable selection

and parameter estimation. Their objective functions containing a least squares term and an L1

penalty term which can produce sparse solutions (Fan and Li, 2001). Least absolute shrinkage and

selection operator (Lasso) was the first L1 penalized method proposed and has been widely used in

practice. But the Lasso estimator has noticeable bias and is inconsistent for variable selection. Zou

(2006) proposed adaptive Lasso and proved its oracle properties under some regularity conditions.

We investigate the performance of adaptive Lasso by applying it to the problem of multiple undoc-

umented change-point detection in climate. Artificial factors such as relocation of weather stations,

recalibration of measurement instruments and city growth can cause abrupt mean shifts in historical

temperature data. These changes do not reflect the true atmospheric evolution and unfortunately

are often undocumented due to various reasons. It is imperative to locate the occurrence of these

abrupt mean shifts so that raw data can be adjusted to only display the true atmosphere evolu-

tion. We have built a special linear model which accounts for long-term temperature change (global

warming) by linear trend and is featured by p = n (the number of variables equals the number of

observations). We apply adaptive Lasso to estimate the underlying sparse model and allow the trend

parameter to be unpenalized in the objective function. Bayesian Information Criterion (BIC) and

the CM criterion (Caussinus and Mestre, 2004) are used to select the finalized model. Multivariate

t simultaneous confidence intervals can post-select the change-points detected by adaptive Lasso to

attenuate overestimation.

Considering that the oracle properties of adaptive Lasso are obtained under the condition of

linear independence between predictor variables, adaptive Lasso should be used with caution since
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it is not uncommon for real data sets to have multicollinearity. Zou and Hastie (2005) proposed

elastic net whose objective function involves both L1 and L2 penalties and claimed its superiority over

Lasso in prediction. This procedure can identify a sparse model due to the L1 penalty and can tackle

multicollinearity due to the L2 penalty. Although Lasso and elastic net are favored over ordinary

least squares and ridge regression because of their functionality of variable selection, in presence

of multicollinearity ridge regression can outperform both Lasso and elastic net in prediction. The

salient point is that no regression method dominates in all cases (Fan and Li, 2001, Zou, 2006, Zou

and Hastie, 2005). One major flaw of both Lasso and elastic net is the unnecessary bias brought

by constraining all parameters to be penalized by the same norm. In this dissertation we propose

a general and flexible framework for variable selection and estimation in linear regression. Our

objective function automatically allows each parameter to be unpenalized, penalized by L1, L2 or

both norms based on parameter significance and variable correlation. The resulting estimator not

only can identify the correct set of significant variables with a large probability but also has smaller

bias for nonzero parameters. Our procedure is a combinatorial optimization problem which can be

solved by exhaustive search or genetic algorithm (as a surrogate to computation time). Aimed at a

descriptive model, BIC is chosen as the model selection criterion.

Another application of the L1 norm considered in this dissertation is portmanteau tests in

time series. The first step in time series regression is to determine if significant serial correlation

is present. If initial investigations indicate significant serial correlation, the second step is to fit an

autoregressive moving average (ARMA) process to parameterize the correlation function. Portman-

teau tests are commonly used to detect serial correlation or assess the goodness-of-fit of the ARMA

model in these two steps. For small samples the commonly employed Ljung-Box portmanteau test

(Ljung and Box, 1978) can have low power. It is beneficial to have a more powerful small sample test

for detecting significant correlation. We develop such a test by considering the Cauchy estimator of

correlation. While the usual sample correlation is estimated through L2 norm, the Cauchy estimator

is based on L1 norm. Asymptotic properties of the test statistic are obtained. The test compares

very favorably with the Box-Pierce/Ljung-Box statistics in detecting autoregressive alternatives.
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Chapter 1

Introduction

1.1 Change-Point Analysis

1.1.1 Background

Retrospective change-point analysis is an active area of statistics. Observations measured in

order may be divided into subsamples while all subsamples are collected from the same distribution

family but with different parameters. Change-points occur at unknown times when the parameters

before and after them differ. They appear under a variety of synonyms across various scientific

fields such as segmentation, structural breaks/changes, regime shifts and detecting disorder, etc.

Change-points analysis can only be performed once all the data are collected and provides insight

into historical data.

A well-credited article introducing the problem of change-points detection is Page (1954).

One motivating example was given in industry quality control, where change-point detection is

used for detecting a deterioration in quality measures during manufacturing process. A detected

deterioration may lead to suspension of production and a machine reset. Change-point analysis also

has various applications in many other areas of scientific research. In speech recognition, automatic

change-point analysis is needed for detecting the change of state from noise to speech or from

speech to noise (Tahmasbi and Rezaei, 2008). In finance, it is important to detect sudden shifts in

volatility of stock market returns (Aggarwal et al., 1999). In computer science, efficient algorithms

of change-point analysis have been applied to detect network intrusion in traffic data to avoid server
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saturation and malicious attacks (Lévy-Leduc and Roueff, 2009). In geophysical sciences, it is of vital

importance to detect sudden shifts in the structure of a seismogram. In biology and medicine the

genomic profiles of a group of cancer patients may share the same sudden changes at precise places

which can point to a direction of cancer treatment (Bleakley and Vert, 2011). In the social sciences,

researchers are interested in whether the enforcement of seat belt legislation indeed reduces the

mean number of monthly deaths and serious injuries as desired (Davis et al., 2006). In climatology,

sudden mean shifts in instrumental climate data may not be due to real atmospheric evolution but

artificial factors such as city growth or station relocation, which need to be isolated by change-point

analysis (Caussinus and Lyazrhi, 1997, Menne and Williams, 2005). Visual detection of those sudden

changes is only tenable in some rare cases and significance of the suspected change-points should

still be checked. Automatic detection can save labor costs and is necessary under many situations

such as quality control and network intrusion.

Change-point analysis can be used to detect shifts in the mean, variance, quantile, etc. The

majority of research efforts have been put into detecting shifts in the mean. The typical questions

to ask in a change-point analysis are: (1) Has there been a sudden shift? (2) How many change-

points are there? (3) Where did they occur? (4) How confident are we about that they are true

change-points?

Change-point detection techniques can vary with the nature of the application. For example,

a network intrusion is detected when a sudden mean shift occurs in the sum of received SYN packets

by all the destination IP addresses which consists of a multi-dimensional times series. Thus the

task of detecting network intrusion requires change-point analysis techniques for multi-dimensional

signals. A similar situation in biological application is to detect sudden changes in genomic profiles

of a group of cancer patients with genomic profiles viewed as multi-dimensional signals). In speech

recognition, a change-point in a noisy speech signal refers to the occurrence of a state change from

speech to noise or noise to speech. A noisy speech signal can be modeled by a GARCH(p,q) process.

Hence change-point analysis for detecting shifts in variance or GARCH processes are needed. If the

task is to detect changes in the number of tropical cyclones, techniques for discrete or categorical

data are needed (Robbins et al., 2011b).

The frequency of change-point analysis being implemented also varies with applications and

depends on the speed of the data generating mechanism. An annual company report might include

change-point analysis to detect improvements in inventory returns. A manager of a customer service
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department may implement change-point analysis to look for changes in customer complaints on

a monthly basis. In product control, the analysis can be implemented once a week to monitor

deteriorations in manufacturing. In contrast, the analysis should be done more frequently in stock

market where very large amount of data are generated in a day.

1.1.2 Change-point Detection in Climate Data

Our work will focus on undocumented change-point detection in historical climate data,

which has been an important and active research area for decades. Many long historical instrument

records of temperature greatly benefit the research on atmospheric evolution. Influences on secular

temperature data mainly fall into three categories: (1) the local-environmental, such as city growth;

(2) the observational, such as station relocation and instrumental recalibration; (3) the large-scale

truly climatic (Mitchell, 1953). Climatologists are devoted to monitor temperature changes corre-

sponding to the third category through instrumental records. Unfortunately, artificial factors from

the first two categories usually cause sudden mean shifts in those records which are definitely no

reflection of real atmospheric changes. Mitchell (1953) showed that United States temperature data

over a century are subjected to an average of six station relocation and instrumentation changes.

City growth is also a well-known cause for local temperature increases, which again is not a reflection

of atmospheric changes. Although some of these change-point times are documented in metadata,

others are unknown for a variety of reasons. Climate research frequently depends on “continuity of

the measurement process”. Direct climatic analysis on the raw data disturbed by artificial factors

can generate misleading conclusions about atmospheric evolution. Thus, it is necessary to detect

and correct the sudden mean shifts before any valid conclusions are made.

Climate data have their own features and require some special techniques for change-point

detection. Concerns include correlation and periodicity. The independent and identically distributed

(IID) assumption may be tenable for yearly temperature data while correlation and periodicity

effects are typical when daily/monthly temperature series are considered. Another concern is that

temperature series can show an increasing long-term trend due to the global warming effect. The

trend is usually modeled as linear in time for simplicity. Unlike in some applications where a piecewise

constant approximation to the data serves the purpose, an annal temperature series may have to

be approximated by a piecewise linear function under the IID assumption. Although the trend has

important meaning in practice as reflection of secular atmospheric changes, it is not directly related
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to change-points detection hence is a nuisance parameter. Additionally linear trend estimates are

trustworthy only when the series is homogeneous in time (in absence of change-points) (Easterling

and Peterson, 1995). However, the trend must be accounted for in the process of change-point

detection. Otherwise, the trend may diminish the significance of some change-points. In summary,

to detect change-point in a temperature series with trend one will assume a homogeneous linear

trend first (Wang, 2003). Trend estimates will be obtained later from the readjusted data which is

change-point free. One more special feature of climate data is that they can have reference series

from neighboring cities which share similar trends and periodicity and fortunately happen to be

change-point free. Researchers can diminish the trend and periodic effects by differencing the target

and reference series and apply change-points analysis to the differences. A good reference series

can enhance the change-point detection. However, good reference series are not available in some

situations; they may have unknown change-points and complicated trends themselves. Hence it is

quite possible to bring in additional change-points by using such inappropriate references series.

Under the at most one change-point (AMOC) setting, hypothesis tests have been proposed

to test the null hypothesis of no changes (Caussinus and Mestre, 2004, Menne and Williams, 2005,

Menne and Williams, 2009). As the change-point community in climate thrives, literature reviews

of available hypothesis tests are also provided for ease of comparison (Lund et al., 2007, Rodionov,

2005). Methods for IID data include CUSUM tests (Macneill, 1974), likelihood ratio tests (Csörgö

and Horváth, 1997), etc. Non-parametric methods include Mann-Whitney U-test (Mauget, 2003),

Mann-Kendall test (Goossens and Berger, 1987) and Pettitt test (Pettitt, 1979). These nonpara-

metric tests can only be used after the trend and periodic effect are diminished by homogeneous

references series. Assuming IID error with linear trend effect Hinkley (1969, 1971) proposed a two-

phrase regression (TPR) method which was recently revised by Lund and Reeves (2002) and Wang

(2003). Another method is the generalized likelihood ratio test (GLRT) proposed by Kim and Sieg-

mund (1989). For correlated data Robbins et al. (2011a) proposed an adjusted CUSUM test. For

data with both correlation and periodicity one can use the test proposed by Lund et al. (2007).

For the problem of multiple change-point detection, hierarchical splitting algorithms and

successive AMOC tests are typically used. The choice of tests is based on the assumptions. This

hierarchical strategy is well-known for introducing too many false alarms (Lavielle and Teyssiere,

2006, Scott and Knott, 1974, Vostrikova, 1981). A refinement of the hierarchical splitting algorithm

is a possible re-merging step after a new change-point is introduced in a splitting step. But the
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refined method still cannot produce the optimal change-points reliably (Hawkins, 2001). Model

selection methods are also employed to solve the multiple change-point problem. For IID and

Gaussian data without trend, a least absolute shrinkage and selection operator (Lasso) method

using a total variation penalty was proposed by Harchaoui and Levy-Leduc (2010). To deal with

autocorrelation Davis et al. (2006) proposed an minimum description length (MDL) approach to

approximate time series by piecewise AR processes. Lu et al. (2010) extended their work to allow

for both autocorrelation and periodicity. They also assume a time-homogeneous linear trend for

simplicity. In Chapter 2 we will use adaptive Lasso Zou (2006) to tackle multiple change-point

detection in annual temperature series with linear trend. Our method is fast and easy to implement.

Although we assume IID data for simplicity, the validity of this assumption will be checked in model

diagnosis.

1.2 Shrinkage Methods in Linear Regression

Statistical modeling describes how predictor variables relate to response variables. It is

usually a good and informative alternative when using a deterministic function to describe the

relationship is impossible or too complicated. Linear regression models are the first type of statistical

models that have been studied rigorously. Our work will focus on where this type of models is

appropriate as the underlying data generating mechanism.

Let y = (y1, . . . , yn)T be the response variable and xi = [xi1, . . . , xin]T , i = 1, . . . , p be

the predictor variables. A linear regression model assumes that the response variable is linear in

the predictor variables, that is, y = x1β1 + · · · + xpβp + ε, where ε ∼ Nn(0, σ2In) is the error

vector and β1, · · · , βp, σ2 are unknown parameters. The unknown parameters will be estimated

from data. The linear assumption has been be criticized for being unrealistic in many settings.

Standard goodness-of-fit tests do not help confirm its validity because they often fail to reject the null

hypothesis of linearity until the non-linearity becomes extreme (Bickel et al., 2006, Breiman, 2001).

Although cautions and critics against their misuse have been around for years, linear regression

models are extensively involved in many fields of practical applications mainly because of their

simple structure, interpretability of the x-y relationship and easily attainable statistical properties

of estimates compared to non-linear models.

Statistical modeling aims at either prediction or interpretability based on applications. In
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practice a large number of predictors usually have to be introduced at the initial stage of modeling for

two reasons: (1) to attenuate possible modeling bias; (2) the number of predictors is still large even

after excluding some evidently useless predictors by domain knowledge. Only the predictors relevant

to y are beneficial in obtaining better interpretability and prediction. Irrelevant and redundant

predictors in the model cannot not contribute useful information but just adding in noise leading to

poor interpretation and prediction. The well-known example is ordinary least squares (OLS) defined

as:

β̂(ols) = argminβ

∥∥∥∥y −∑
i

xiβi

∥∥∥∥2. (1.1)

OLS keeps all the given predictor variables in the model and can cause “overfitting”, that is, providing

good fit to the training data but poor prediction on test data. This is mainly due to the large variance

of parameter estimates when the data have high multicollinearity (some x’s are linearly related).

Ridge regression can provide parameter estimates with small variance for data with multicollinearity,

hence can do a better job in prediction. Ridge regression minimize an objective function containing

a least squares error term and a L2 penalty term. They are defined as:

β̂(ridge) = argminβ

∥∥∥∥y −∑
i

xiβi

∥∥∥∥2 + λ2

p∑
i=1

|βi|2 , (1.2)

where λ2 ≥ 0 is the tuning parameter that controls the amount of shrinkage. The subscript “2”

refers to the L2 norm appearing in the penalty term. With all variables being kept in the model,

interpretability remains an issue for ridge regression. For better interpretability it is desirable to

perform variable selection: select only those significant variables into the finalized model, i.e., a subset

of the given predictor variables. For clarity it is necessary to point out that there are some non-

statistical criteria of variable selection, such as measurement cost, size of memory storage, ease of use,

etc. For instance, measurement costs may be extremely high for some variable but more economical

for another variable and both variables provide similar information for y. Mathematically, it does

not matter which variable is to be selected. The practitioner may prefer or have to use one particular

variable. Our work will not consider those non-statistical criteria, but use model selection criteria

involving interpretability and prediction.

Best-subset selection (Beale et al., 1967, Garside, 1971) is a natural way of selecting a

subset of variables, where all possible subsets of p predictor variables are considered and ideally

the one with the best value of some model selection criterion is chosen as the finalized model.
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If p predictor variables are considered, there are 2p possible regressions. This method becomes

computationally expensive when p gets large. Stepwise selection (Efroymson, 1965), namely, forward

stepwise selection and backward elimination, is proposed as a computational surrogate to best-subset

selection. Take forward stepwise selection for example. It starts with the null model (no variables)

and adds one single variable that best improves the model each time. Variables already in the model

may be dropped if their significance becomes lower than a thresholding value whenever one new

variable enters the model. The procedure continues until no more variables can improve the model.

Backward elimination implements similarly but in the reverse direction, that is, starting with the

full model including all variables and dropping one variable each time until no other variables can

be dropped. Although those subset selection methods provide sparse and interpretable models, they

are criticized for being extremely variable due to the stochastic error in the sense that variables are

either retained or dropped from the model. A little disturbance in the data can result in selecting

a very different model (Fan and Li, 2001, Tibshirani, 1996, Zou, 2006).

In contrary to the discreteness of subset selection, continuous shrinkage/penalized methods

were proposed and became popular rapidly. The first method is Lasso which was proposed by

Tibshirani (1996). To allow all predictor variables to be compared on the same footing, we suppose

that each xi is centered and standardized such that
∑
j xij = 0 and

∑
j x

2
ij = 1 for i = 1, . . . , p. Also

let y be centered such that
∑
j yj = 0. Lasso is the solution that minimizes the following convex

objective function:

β̂(lasso) = argminβ

∥∥∥∥y −∑
i

xiβi

∥∥∥∥2 + λ

p∑
i=1

|βi| , (1.3)

where λ is a nonnegative regularization parameter and the second term is referred to as the L1

penalty. Lasso seems to have started a revolution in statistical modeling by first applying the L1

norm. Lasso can provide a sparse model because it continuously shrinks some parameters to be

exactly zero if λ is sufficiently large, more intrinsically, because the L1 norm is singular at the origin

which causes some βi’s to be 0 when the objective function is minimized. Although Lasso is popular

in many applications, it has been proved to not satisfy the oracle properties of a good procedure (Fan

and Li, 2001). First of all, the lasso shrinkage produces biased estimates for significant coefficients.

Second, the optimal λ for prediction gives inconsistent variable selection results; in fact, many noise

features are included in the selected predictive model (Meinshausen and Bhlmann, 2006). Despite

the problems Lasso remains a popular procedure in practice for simultaneous variable selection and
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parameter estimation. The question raised for statisticians was whether the L1 penalty could produce

an oracle procedure. Zou (2006) answered this question by proposing adaptive Lasso which was

proved to enjoy oracle properties under some assumptions including linear independence. However,

linear independence is not realistic in many situations because multicollinearity is often encountered

given many predictors. Adaptive Lasso also has to start with some initial estimates from OLS,

marginal regression or Lasso. Zou and Hastie (2005) proposed elastic net which inherits good

properties of both ridge regression and Lasso. Elastic net estimates are defined as below:

β̂((näıve enet)) = argminβ

∥∥∥∥y −∑
i

xiβi

∥∥∥∥2 + λ2

p∑
i=1

|βi|2 + λ

p∑
i=1

|βj | . (1.4)

This procedure can select a sparse model due to the L1 penalty and is claimed to provide better

prediction than Lasso in presence of multicollinearity due to the L2 penalty. While Lasso can only

select one arbitrary variable among a group of highly correlated variables, elastic net can select

the whole group into the finalized model. One potential application is in the setting of microarray

genomic profiles where genes sharing the same pathway are correlated and are expected to be selected

together.

In practice when a practitioner fits a model he may think that a few variables are relevant

and important based on domain knowledge and should always be kept in the model. Those predictors

are then left unpenalized (or called “mandatory variables” in biostatistics), otherwise are at the risk

of being shrank to 0. The objective functions of shrinkage methods can easily be modified to allow

for unpenalized variables, i.e. omit them in the penalty.

The algorithms available for solving the Lasso problem dating back to 1996 (when Lasso was

proposed) include quadratic programming. It is however inefficient in partitioning the L1 penalty

into 2p constraints. An efficient algorithm named least angle regression (LARS) was proposed in

2003 and can be easily modified to solve the Lasso problem. LARS remained the state-of-the-art

until another more efficient algorithm named path-wise coordinate descent was credited (Friedman

et al., 2008a, Wu and Lange, 2008). Both algorithms can also solve elastic net. But they are not the

the only options for solving Lasso. For a detailed description of a variety of algorithms see Schmidt

(2005) and http://www.di.ens.fr/˜mschmidt/Software/lasso.html (the latter includes

15 strategies).

For comparison between the estimators of OLS, ridge regression, Lasso and elastic net, let
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us assume orthogonality of xi’s. Then

β̂i(ridge) =
β̂i(ols)

1 + λ2
,

β̂i(lasso) = sign(β̂i(ols))(β̂i(ols)− λ/2)+,

β̂i(näıve enet) = sign(β̂i(ols))
(β̂i(ols)− λ/2)+

1 + λ2
,

(1.5)

where β̂(ols) = XTy and β̂(lasso) is called a “soft-threshold” estimator with

z+ =

 z if z ≥ 0,

0 if z < 0.

It is easy to see that the ridge estimator is a constant scaled OLS estimator, the Lasso estimator is a

constant translated OLS estimator and elastic net can be viewed as a two-stage procedure: a ridge-

type direct shrinkage followed by a lasso-type thresholding (Tibshirani, 1996, Zou and Hastie, 2005).

It is known that the OLS estimator is unbiased but has large variance in presence of multicollinearity

and the estimators of ridge regression, Lasso or elastic net are all biased and aim at prediction

accuracy by a bias-variance trade-off. The Lasso and elastic net estimators do not have a clear form

as in (1.5) in presence of correlated variables, hence comparison becomes difficult. The salient point

is that no methods dominate others in all settings. In Chapter 3 we propose a flexible and general

procedure which works as least well as OLS, ridge regression, Lasso or elastic net and can often

outperform them.

1.2.1 Other Lasso Extensions

Besides adaptive Lasso and elastic net, Lasso also has some other variants motivated by

problem-specific situations. Yuan and Lin (2006) proposed a group Lasso to solve the problem of

selecting a group of variables for accurate prediction. Once a variable is selected into the model,

the whole group which it belongs to are selected. The multi-factor analysis-of-variance problem is

one important example of its practical applications. As an improvement of group Lasso, Simon

et al. (2013) proposed a sparse group Lasso which involves two penalties and can achieve sparsity

both on a group and within group level. Fused Lasso (Tibshirani et al., 2005) was proposed to

encourage sparsity and smoothness by penalizing the L1-norm of both the parameters and their
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successive differences. Thus it encourages sparsity of the parameters and their differences, i.e. local

constancy of the parameter profile. Friedman et al. (2008b) proposed graphic Lasso to estimate

a sparse graph by a L1 penalty applied to the inverse covariance matrix. Additionally, shrinkage

methods have also been generalized to logistic regression (Meier et al., 2008), multinomial regression,

Poisson regression, Cox model (Simon et al., 2011), penalized linear discrimination analysis (Witten

and Tibshirani, 2011), sparse principle component analysis (Zou et al., 2006), etc.

Variable selection and shrinkage methods have also been extended to high dimensional

problems where the number of variables p is much larger than the number of observations n. For

example, a typical task in gene selection problem is to separate healthy patients from cancer patients

based on their gene expression profiles. The number of predictor variables could range from 6, 000 to

60, 000 while the number of patients available from most public sources is fewer than 100. Lasso and

elastic net still work in high-dimensional situations. But Lasso can only select at most n variables

into the model, which is not adequate for the gene selection problem. Elastic net can select more

than n variables due to its utility of an augmented matrix (Zou and Hastie, 2005).

1.3 Genetic Algorithm

Genetic algorithm (GA) is a stochastic search that can be applied to a variety of combina-

torial optimization problems (COPs). Given a COP, such methods as enumeration and exhaustive

search guarantee to find the best solution but sometimes we can not afford to wait, while GA

search may quickly find a near optimal solution. A near optimal solution may work fairly well for

most applications and may be preferable to a time-consuming optimal solution. So far GA has

been successfully applied in many real world problems, such as antenna design, drug design, chem-

ical classification, electronic circuits, satellite design, cell phone factory tuning, etc. See Goodman

(2009) presented in the 2009 World Summit on Genetic and Evolutionary Computation, Shanghai,

China. One application of GA in variable selection is to solve the best-subset regression problem

(Wasserman and Sudjianto, 1994).

Glover and Kochenberger (2003) gave a good review about GA regarding its history and

methods in detail. The emergence of GA can date back to the 1960s when Rechenberg (1973),

Schwefel (1977) from Germany and Bremermann, Fogel and others from USA implemented the idea

of mutation and selection separately. Then John Holland published his book named Adaptation in
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Natural and Artificial Systems (Holland, 1975), which first introduced crossover to GA in addition

to selection and mutation. Again in 1975, Holland’s graduate student, Ken Dejong (Jong, 1975),

finished his doctoral thesis which was also viewed important in GA development as the first to

provide a thorough treatment of GA in optimization problems. The evolutionary computing of GA

finally took off in 1980s thanks to the advance of computer science.

GA was originally motivated by the “survival of the fittest” concept in biology: off-springs

with good features adaptable to the environment survive. In GA, similar to genetic crossover and

mutation, strings or “chromosomes” with high fitness are preserved in the next generation and are

used to breed off-spring. A good solution is identified as the particular chromosome with highest fit-

ness when GA is finished. Specifically, the main parts of GA algorithm include initialized population,

mutation, crossover, new generation and stopping rule.

Initialized Population: An initial population of chromosomes of size l are randomly selected.

The selected population is a subset of the full combinatorial space. Intuitively, a larger population

size can decelerate the algorithm significantly; a smaller population may not be able to represent

the whole search space and to maintain population diversity. But an optimal population size was

hard to determine (some suggested O(log(l))).

Crossover: Two chromosomes are randomly selected from the population and mate to breed

an off-spring. Crossover methods can be 1-point (1X), 2-point (2X), uniform (UX), nonlinear. In 1X

crossover, only one crossover point is selected, an offspring copies genes from one parent chromosome

up to this point and the other after this point. In 2X crossover, genes between two crossover points

are exchanged between two parent chromosomes and one resulting chromosome is selected as the

off-spring. In UX crossover each pair of alleles on parent chromosomes are swapped with a Bernoulli

probability. Empirical experience has shown that 1X is too inflexible and not optimal hence 2X and

UX are suggested. Adaptive crossover rates rather than a fixed value were also proposed (Booker,

1987).

Mutation: Each gene on a chromosome mutates with a probability from standard uniform

distribution. The gene would mutate if its mutation probability is less than a pre-specified mutation

rate, which is a small thresholding value and typically taken to be 1/l so that on average there

is one mutation per chromosome. This mutation strategy may be inefficient if population size

and chromosome size are large. An alternative is to draw a random number m from a Poisson(λ)

distribution with λ = 1/l, then m genes are selected without replacement to mutate (Bremermann
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et al., 1966) from a chromosome. Other adaptive mutation rates are also seen in some applications

(Fogarty, 1989, Reeves, 1995). If the algorithm is trapped in a local optimum, mutation can help it

get out.

New Generation: Methods of selecting chromosomes for the next generation include Roulette

Wheel selection, tournament and ranking selection. Among them, ranking selection is the most

popular. In each generation, a new population is created using elitism and population overlaps (Jong,

1975). Elitism will preserve a percentage of chromosomes with top fitness in the next generation.

The rest of the new generation consist of off-springs from crossover between elitism chromosomes.

All chromosomes are allowed to mutate. The percentage of elitism chosen can vary and typical

values are 20% and 50%.

Stopping Rule: GA could continue to search forever in principle. Termination criteria include

iteration times, computer clock time, estimate closeness and diversity measures.

Although GA has been successfully applied to many practical applications, the relevant

theory of GA is debatable. Some claim that mutation is only to preserve population diversity and

subordinate to crossover, while others like Holland advocate for crossover. As GA may be trapped

to local optimum, it is advisable to run several times and compare different solutions. In Chapter 3

we will use GA to solve our COP to save computation time.

1.4 Portmanteau Tests in Times Series

In time series autoregressive moving average (ARMA) models (Jenkins and Box, 1970) are

applied to describe the observations ordered by time and forecast future values. They are defined

as

xt − φ1xt−1 · · · − φpxt−p = zt − θ1zt−1 · · · − θqzt−q, t = 1, · · · , n, (1.6)

where xt is the observed IID series, zt is a random process with mean 0 and constant variance σ2

and φ1, · · · , φp, θ1, · · · , θq, σ2 are unknown parameters. ARMA(p, q) models incorporate the natural

idea that observations close together tend to be more related than those further away. This type of

model has been widely applied in climate, economics, finance, social science and signal processing.

Effective fitting of an ARMA model mainly involves the iterative use of three steps: iden-

tification, estimation and diagnostic checking (Box and Pierce, 1970). Specifically, the first step is

to remove trend and seasonality if applicable by differencing xt to identify a stationary time series.
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Diagnostic tests (portmanteau tests) are used to check for autocorrelations in the stationary process

together with sample autocorrelation function (ACF) and partial autocorrelation function (PACF)

plots. They play an important role in determining whether we should use a sophisticated ARMA

model. In presence of autocorrelation, an ARMA(p, q) model will be fit to the stationary time series

and estimated where p and q can be selected based on the ACF and PACF. The model is checked

for adequacy by studying the residuals. If the model fits the data adequately, the residuals should

behave as random noise. Zero autocorrelation is one fundamental feature of random noise. Thus it

is natural to check the ACF of the residuals and diagnostic tests (portmanteau tests) are used again.

Significant nonzero autocorrelation in the residuals leads to careful reexamination of the model fit

and iterative use of the above three steps. One can see that the diagnostic tests can either be applied

to the the original xt sequence for serial correlation or to the residuals to check model adequacy.

Denote ρk = E[ztzt−k]/E[z2t ]. Denote the residuals from the fitted ARMA(p, q) model ẑ1, · · · , ẑn.

An estimator of ρk, the autocorrelations of the residuals, is given by ρ̂k =
∑n
t=k+1 ẑtẑt−k/

∑n
t=1 ẑ

2
t ,

k = 1, · · · ,m. Several portmanteau tests have been proposed based on ρ̂k to help check adequacy

of the model fitting in addition to the ACF and PACF plots. Typically, we are interested in the

hypothesis test

H0 : All ρk’s equal to 0 vs Hα : At least one ρk is not 0, k = 1, · · · ,m. (1.7)

Instead of testing the significance of one single ρk, portmanteau tests access the overall significance

of the first m autocorrelations and are named for this reason. The limiting distribution of ρ =

(ρ1, · · · , ρm) is proved to be a multivariate normal distribution with mean zero and a diagonal

covariance matrix with diagonal elements var(ρk) = (n− k)/(n(n+ 2)) (Anderson, 1942, Anderson

and Walker, 1964). Box and Pierce (1970) noted that the quantity

Q̃(r) = n(n+ 2)

m∑
k=1

ρ2k
n− k

(1.8)

converges to a χ2 distribution with degrees of freedom m for large n. For further simplicity, they

suggested that

Q(r) = n

m∑
k=1

ρ2k (1.9)
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can be approximated by a χ2
m distribution and proposed the following Box-Pierce test statistic

Q(ρ̂) = n

m∑
k=1

ρ̂2k (1.10)

to check goodness-of-fit. They also proved that this test statistic converged to a χ2 distribution with

degrees of freedom m − p − q asymptotically under the null hypothesis. However the Box-Pierce

test performs poorly in application mainly because it is oversimplified in replacing Q̃(ρ) with Q(ρ)

and the Q(ρ̂) values can seriously deviate from a χ2
m−p−q distribution. For better finite-sample

performance Ljung and Box (1978) then proposed the Ljung-Box test statistic given by

Q̃(r̂) = n(n+ 2)
m∑
k=1

ρ̂2k
n− k

, (1.11)

which can be approximated by the χ2
m−p−q distribution under the null hypothesis. It substantially

improves the Box-Pierce test and may be adequate in most applications despite of the fact that the

variance of Q̃(ρ̂) is larger than that of the χ2
m−p−q variable.

As for choosing the value of m, Ljung (1986) claimed large m may impair the performance

of the Ljung-Box test because the finite-sample significance levels of Q̃(ρ̂) for large m tend to exceed

the nominal significance levels of the χ2
m−p−q distribution. A smaller m value can help improve the

performance of the Ljung-Box test. This follows because if the model is inadequately specified, the

problem would be exposed within a few lags, corresponding to a small value for m.

As an analog to portmanteau tests based on ACF, Monti (1994) proposed a portmanteau

test to check lack-of-fit based on PACF. If the model adequately fits the data and the residuals

behave like random noise, the PACF should not be significantly different from 0. Let πk be the

PACF of zt and π̂k be the estimated PACF from the residuals ẑt. Similar to the Ljung-Box test, the

Monti test statistic is given by

Q(π̂) = n(n+ 2)

m∑
k=1

π̂2
k

n− k
, (1.12)

which can be approximated by a χ2 distribution with degrees of freedom m − p − q for large n.

Though Monti (1994) claimed that Monte’s test outperforms Ljung-Box when the fitted model

understates the order of the moving average component, the results in Andy and Wu (1997) showed

that the empirical power of the Monti and the Ljung-Box tests are actually similar if m is properly

chosen (motivated by the discussion about choosing m in Ljung (1986)). Pena and Rodriguez (2002)
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proposed another portmanteau statistic,

Dm = n[1− |R̂m|1/m], (1.13)

where Rm is the residual correlation matrix of order m with the (i, j)th off-diagonal element being

ρ̂i−j . They also showed that |R̂m|1/m =
∏m
k=1(1 − π̂2)(m+1−i)/m, implying |R̂m|1/m is a weighted

function of the first m partial autocorrelation coefficients of the residuals. Under the null hypothesis,

Dm can be approximated by a Gamma(α = b/2, β = 1/2α) distribution where both α and β are

functions of m, p and q. For a better approximation, they suggested replacing R̂m with R̃m which

uses the standardized autocorrelation coefficient (n − 2)/(n − k)ρ̂i−j . This test may outperform

the Ljung-Box and Monti tests because it is highly asymmetric with respect to ρk and puts more

weight on lower-order ρk, while Ljung-Box and Monti treat all ρk equally. Because R̃m may be

ill-conditioned for large m relative to n and may not have a determinant (McLeod and Lin, 2006),

Pena and Rodriguez (2006) proposed a modified test statistic,

D?
m = −n

m∑
k=1

m+ 1− k
m+ 1

log(1− π̂2
k), (1.14)

which has the same asymptotic distribution as Dm and does not require calculating the determinant.

However the logarithm calculation in D?
m may cause computation instability. The portmanteau test

in McLeod and Mahdi (2012) also has the same issue of calculating |R̂m|.

A recent weighted portmanteau test proposed by Pena and Rodriguez (2006) is derived from

the trace of the square of the mth order autocorrelation matrix. A weighted Ljung-Box statistic is

defined as

Q̃W = n(n+ 2)

m∑
k=1

m+ 1− k
m

ρ̂2k
(n− k)

, (1.15)

and similarly a weighted Monti statistic is given by

M̃W = n(n+ 2)

m∑
k=1

m+ 1− k
m

π̂2
k

(n− k)
. (1.16)

It is easy to see that more weight is put on smaller lags. Their asymptotic distributions can be

approximated by a Gamma(α, β) process with α and β being specified through p, q and m. This

weighted portmanteau test can outperform Ljung-Box and Monte tests.
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Portmanteau tests also have application in linear regression models where the residuals

from the fitted model should be checked for serial correlation/autocorrelation. If the residuals do

not behave as random noise, the variance of parameter estimates may be inflated, which renders the

relevant t-test, F-test or chi-squared test invalid and can lead to incorrect decisions in applications.

In the presence of nonzero autocorrelations in the residuals, one can resort to the Cochrane-Orcutt

procedure. Firstly a linear regression model is fit, then an ARMA(p, q) model is fit to the residuals

and parameters are estimated. Next the original regression model is modified to incorporate the

ARMA(p, q) error. Unless the user is confident that the autocorrelation might be described by

an AR(1) model that the Durbin-Watson statistic (Durbin and Watson, 1950, 1951) was specially

designed for, the Ljung-Box test or other portmanteau tests are recommended.

We should also point out that the power of portmanteau tests may be impaired by con-

ditional heteroskedasticity which are usually modeled by GARCH(p, q) processes. In presence of

conditional heteroskedasticity, bootstrapped Box-Pierce test (Horowitz et al., 2006) applied blocks-

of-blocks bootstrap to approximate the distribution of the Box-Pierce statistic under the null hy-

pothesis. The tests in McLeod and Mahdi (2012) and Fisher and Gallagher (2012) can be modified

to test for heteroskedasticity. But these considerations will beyond the scope of the dissertation.

In Chapter 4 we will study goodness-of-fit tests for checking the adequacy of ARMA models from

the L1-norm perspective. Instead of estimating the sample autocorrelation with the usual ρ̂k, we

will use the Cauchy estimator quantified by the L1 norm. A new portmanteau test statistic will be

proposed and its asymptotic distribution derived.
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Chapter 2

Multiple Change-Point Detection

Many long instrumental records of atmospheric temperature greatly benefit climate research.

However these records are often systematically altered by recalibration of an instrument, relocation of

a weather station, etc. These artificial factors can cause abrupt mean shifts in measured temperature.

Failure to find such abrupt shifts in the records could lead to wrong conclusions about temperature

development, while unveiling them helps readjust the raw series to reflect underlying changes in

actual temperatures. The problem of detecting multiple undocumented change-points in temperature

series has been well studied (Caussinus and Mestre, 2004, Lund and Reeves, 2002, Menne and

Williams, 2005, Menne and Williams, 2009). Many of the proposed methods use reference series

(typically from spatially-close measuring stations) to isolate and remove the effect of inhomegenieties.

When only a single long instrumental series is used, a linear model can be used to give an indication

of the long-term change of the temperature series. In this paper we propose a new method of

detecting multiple undocumented change-points in univariate temperature sequences. For ease of

exposition, we follow the recommendation of Wang (2003) and use a model with (one) simple linear

trend to reflect long-term temperature change. Trend-type change-points are suggested to be tested

after the underlying undocumented change-points are detected as suggested in Wang (2003).

As pointed out by Caussinus and Lyazrhi (1997), multiple change-point detection can be

viewed as a model selection problem and tackled by testing multiple hypotheses or by optimizing

some model fit criterion. To detect a single change-point in a sequence with simple linear trend,

various hypothesis test statistics have been proposed, for example, a generalized likelihood ratio test

(GLRT) (Kim and Siegmund, 1989). Basically, a GLRT statistic, Tk, is calculated at each potential
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change-point time k, then the statistic maxk{Tk} and its asymptotic distribution are used to test for

statistical significance. The asymptotic distribution of maxk{Tk} can be expressed as a function of a

Gaussian process. Although no closed-form formulas for the quantiles are available, these quantiles

can be found via numerical integration (Kim and Siegmund, 1989). For a more recent treatment of

GLRT in climate setting see Gallagher et al. (2013).

To tackle the problem of multiple change-point detection, one of the most established meth-

ods is to combine hierarchic binary segmentation of the series and successive hypothesis tests (Scott

and Knott, 1974, Vostrikova, 1981). We firstly test the null hypothesis H0 : No change-point exists

in the sequence against the alternative H1 : At least one change-point is in the sequence. If the calcu-

lated statistic, maxk{Tk}, is statistically significant, the sequence is divided into two subsequences.

The one-change test is then applied to the two subsequences. The same procedure continues until

no statistics calculated for the current subsequences are statistically significant. But this method

is intrinsically problematic. Although one hypothesis test has a type I error rate of α, applying

it to m subsequences would result in an accumulative type I error rate of 1 − (1 − α)m assuming

independence of the tests. Note that 1 − (1 − α)m increases with m. The direct consequence is

that many false change-points are probably detected (Lavielle and Teyssiere, 2006, Scott and Knott,

1974, Vostrikova, 1981).

An alternative to sequential testing is the model selection technique. We begin it by writing a

linear model which includes a dummy variable for each potential change-point and a trend parameter.

Suppose that Yt, t = 1, . . . , n, are independently and normally distributed with finite variance σ2.

The number and positions of change-points in the sequence are unknown. Let µ be the detrended

mean in absence of change-points. Denote the simple linear trend parameter by α1. For parameter

identifiability, we assume that no change-point would occur at the first observation and the last

observation of the sequence. Let βj , j = 2, . . . , n− 1, be the amplitude of the mean shift from time

j − 1 to j. Using matrix notation, let β = (β2, . . . , βn−1)′ with each element corresponding to a

potential change-point. Let I = (1, . . . , 1)′ ∈ Rn, T = (1, . . . , n)
′

and X = [X2, . . . ,Xn−1], where

Xj = (0, . . . , 1)′ with the first j − 1 elements being 0 and thereafter 1 for j = 2, . . . , n − 1. Let

θ = (µ, β2, . . . , βn−1, α1)
′

be the parameter vector and ε = (ε1, . . . , εn)
′

be the error vector. The

linear model is then displayed as

Y = [I,X,T] θ + ε. (2.1)
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Note that the trend parameter α1, though of great interest in application, is not directly related to

the number or positions of change-points. Our goal is to estimate those change-point parameters β

and determine which are statistically nonzero.

Typically one would expect to have a few actual change-points within the set of potential

changes. For example, in the U.S. temperature record we expect between 5 and 7 change-points

per century (Menne et al., 2009). In terms of the full model (2.1) which contains a parameter

for each potential change-point, we expect to have a sparse model with a few significant nonzero

change-point parameters. In recent years there have been several methods proposed for simultaneous

model selection and parameter estimation in sparse models, for example, ordinary Lasso (Tibshirani,

1996), adaptive Lasso (Zou, 2006) and SCAD (Fan and Li, 2001). By adding an `1 penalty to

an objective function, a sparse model can be selected while the parameters are simultaneously

estimated; the `1 penalty forces small magnitude parameter estimates to be shrunk to identically

zero (Tibshirani, 1996). Several variants of Lasso have been used for the purpose of multiple change-

point detection, for example, ordinary Lasso via a total variation penalty (Harchaoui and Levy-

Leduc, 2010), fused Lasso (Tibshirani, 1996) and group fused Lasso (Bleakley and Vert, 2011).

Since they focus on applications such as signal EEG, speech processing, network intrusion detection

and hot spot detection for CGH data, where the piecewise-constant mean approximation is more

appropriate, they do not take trend into account. Detecting multiple change-points in temperature

sequences with simple linear trend is nontrivial because one needs to estimate the sequence with a

piecewise-linear approximation. Hence a procedure that can estimate the trend and change-points

simultaneously is useful.

In this paper we show how adaptive Lasso can estimate the change-point times in temper-

ature series with simple linear trend. The model identified by regular model selection criteria may

overestimate the number of change-points. Assuming normality, we are able to apply multivariate

t simultaneous confidence intervals to the model selected by adaptive Lasso. Confidence intervals

containing zero are associated with non-significant change-points, hence reducing the number of

change-points detected.

The rest of this paper is organized as follows. In Section 2 we describe the adaptive Lasso

procedure together with post-selection. Section 3 shows simulation results. Section 4 applies the

methods to a temperature series. We close the paper with discussion in Section 5.
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2.1 Methods

2.1.1 Adaptive Lasso

Zou (2006) proposed adaptive Lasso as a method of simultaneous estimation and variable

selection. Adaptive Lasso can shrink some parameters to be exactly zero and hence generates a

sparse model. Assuming the number of parameters pn is fixed, under some regularity conditions,

Zou (2006) proved that adaptive Lasso enjoys the oracle properties in the sense of Fan and Li

(2001), that is, consistency for variable selection and asymptotic normality of estimators. Huang

et al. (2008) studied adaptive Lasso for sparse high-dimensional regression models which allow pn

to depend on the sample size and even be larger than the sample size. They proved that under

regularity conditions adaptive Lasso still is consistent for variable selection and that the estimators

of nonzero parameters have the asymptotical normal distribution if the zero parameters were known

in advance. The number of parameters in our model increases with sample size, hence we are involved

in the high-dimensional regression context.

The objective function in Huang et al. (2008) or Zou (2006) penalizes every parameter in

the linear model. In the temperature context, we will not penalize the detrended mean µ. As global

warming is well recognized, we don’t want adaptive Lasso to shrink the trend parameter α1 to be

zero either. Thus θ is estimated as

θ̂ = argminθ

∥∥∥∥Y − µI− n−1∑
j=2

Xjβj − α1T

∥∥∥∥2 + λn

n−1∑
j=2

ŵj |βj | , (2.2)

where (ŵ2, . . . , ŵn−1)
′

is a weight vector for the change-point parameters selected prior to the min-

imization.

2.1.2 Implementation of Adaptive Lasso

For good interpretability we will not standardize our variables. To deal with the unpenalized

parameters, we apply the idea presented in Tibshirani and Taylor (2012a). Let Z = [I,T] and M

be the projection matrix onto Z. Thus M = I− Z(Z
′
Z)−1Z

′
, where I is an n× n identity matrix.

First we estimate

β̂ = argminβ

∥∥∥∥MY −M

n−1∑
j=2

Xjβj

∥∥∥∥2 + λn

n−1∑
j=2

ŵj |βj | . (2.3)
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We then regress Y −
∑n−1
j=2 Xj β̂j on Z to estimate µ and α1.

In order to implement adaptive Lasso, a proper initial set of estimates for β is needed to

construct each weight (the reciprocal of the magnitude of an initial parameter estimate) in the

objective function (2.3). One choice is the ordinary least squares (OLS) estimates proposed in Zou

(2006), but they do not exist for our model since p = n. Another choice is the marginal regression

estimates suggested in Huang et al. (2008), but according to our simulation study (not shown here),

this initial set of estimates prevents adaptive Lasso from returning a sparse model in our situation. A

third choice is the ordinary Lasso estimates. Assuming the number of change-points is known and the

distance between two consecutive change-points is at least O(log(n))2, Harchaoui and Levy-Leduc

(2010) proved that ordinary Lasso can estimate the underlying change-points consistently (though

they did not consider the trend effect). Ordinary Lasso return a sparse model and the weights based

on its estimates do not cause adaptive Lasso to overestimate the number of change-points as much

as the marginal regression weights. Therefore, we choose the ordinary Lasso estimates as the initial

set of estimates for β, which is

β̂(lasso) = argminβ

∥∥∥∥MY −M

n−1∑
j=2

Xjβj

∥∥∥∥2 + λn

n−1∑
j=2

|βj | . (2.4)

Then βj in (2.3) is automatically set to zero if β̂j(lasso) is exactly zero (weights for those βj ’s are

no longer necessary). Each of the remaining βj ’s has weight ŵj = 1/β̂j(lasso).

Both of the optimizations, (2.3) and (2.4), can be implemented via the least angle regression

selection (LARS) algorithm (Efron et al., 2004, Zou, 2006), which provides a sequence of candidate

models. Each model has degrees of freedom given by

df(µ̂I + Xβ̂ + α̂1T) = 2 + E[Rank(MXd)],

where d is the active set and E[Rank(MXd)] is estimated by the number of nonzero parameters

(Tibshirani and Taylor, 2012a). Each model is also associated with some value of the regulation

parameter λn. A model selection criterion is then minimized to determine the optimal model, which

is tantamount to selecting a value for λn. An estimator β̂j shrunk to zero indicates no change-point

at time j, otherwise, a change-point is detected. A false alarm occurs if a change-point is detected

at a position where no underlying change-point exists. As we either detect a true change-point in a
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sequence or not, we call the probability of detecting a true change-point the detection rate. A proper

model selection criterion should not detect many false alarms while maintaining high detection rates

for underlying change-points. The Bayesian information criterion (BIC) is defined as

−2ln(L) + ln(n)K,

where L is Gaussian Likelihood function and K is the number of change-points detected in a can-

didate model. Another selection criterion with a heavier penalty term proposed by Caussinus and

Mestre (2004) in the change-point context is

−2ln(L) + 2
n

n− 1
ln(n)K.

Denote this criterion by CM. Based on our simulation (not shown here), BIC tends to overfit the

model while CM underfit the model. See Hannart and Naveau (2012) for a literature review con-

cerning the criterion choice for multiple change-point detection. Here we use BIC to select the Lasso

weights and CM to determine the final model because BIC avoids loss of potential change-points

while CM prevents overfit.

2.1.3 Post-selection of Change-points

Multiple change-point selection methods of Lasso-type may find a large set of change-points

(Harchaoui and Levy-Leduc, 2010). A post-selection step can be applied to the preselected change-

points by these methods, for instance, a reduced version of dynamic programming (DP) in Harchaoui

and Levy-Leduc (2010) or subjective thresholding as in Tibshirani and Wang (2008). We provide an

example in the simulation section below showing that the reduced version of DP may not diminish

overestimation from ordinary Lasso effectively. Instead of DP, we post-select change-points from

adaptive Lasso using multivariate t simultaneous confidence intervals, which turns out to be effective

in reducing overestimation.

We now construct the simultaneous confidence intervals for change-point parameters based

on a fitted linear model. First adaptive Lasso selects a linear model that includes K nonzero change-

point parameters. Let d = (d1, . . . , dK) be the index set of the selected change-point parameters.

Denote the set of the corresponding change-point parameters by βd = (βd1 , . . . , βdK )
′
. The selected
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model excludes many zero change-point parameters but may still contain a few more parameters

than necessary. Note that µ and α1 stay in the selected model. Let θd = (µ, βd1 , . . . , βdK , α1)
′
.

Under normality, we obtain that

θ̂d ∼ N(θd, σ
2(X′dXd)−1), (2.5)

where Xd is a subset of columns (including I and T) corresponding to θd from the design matrix in

(2.1). We estimate σ2 with

s2 =
||Y −Xdθ̂d||2

n−K − 2
.

It is known that (n−K−2)s2/σ2 follows a chi-square distribution with degrees of freedom n−K−2.

Denote by tν(u,Σ) a multivariate t-distribution with degrees of freedom ν, location vector u and

covariance matrix Σ. It follows that

(θ̂d − θd)

s
∼ tn−K−2

(
0, (X′dXd)−1). (2.6)

Since our goal is to determine the significance of the change-point parameters βd, what we exactly

need is the following distribution:

(β̂d − βd)

s
∼ tn−K−2(0,V), (2.7)

where V is the covariance matrix obtained by deleting the columns and rows corresponding to µ

and α1 from the matrix (X′dXd)−1. Then the simultaneous confidence intervals of βd are given by

P



∣∣∣∣ β̂d1
−βd1

s
√

V[1,1]

∣∣∣∣ ≤ tα/2:n−K−2(0,V),

...∣∣∣∣ β̂dK
−βdK

s
√

V[K,K]

∣∣∣∣ ≤ tα/2:n−K−2(0,V)


= 1− α, (2.8)

where tα/2:n−K−2(0,V) is the 100(1 − α/2)th percentile of multivariate t-distribution. Any confi-

dence interval of βdi containing zero means that no change-point occurs at time di. Otherwise, a

change-point is detected at time di with simultaneous confidence level at least 100(1− α)%.

Note that post-selection by simultaneous confidence intervals may not be effective here if one
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uses the marginal regression weights. Since the marginal regression weights prevent adaptive Lasso

from returning a sparse model in our situation, the resulting simultaneous confidence intervals have

to include bounds for every parameter βdi . Bounding type I error rate by α causes the confidence

interval of each parameter to be wide enough to contain zero. Hence, the probability of detecting

actual change-points becomes quite small. On the contrary, simultaneous 100(1 − α)% confidence

intervals based on the sparse model selected by adaptive Lasso using the ordinary Lasso weights

contain bounds for only a few parameters βdi , thus are narrow enough to test significance of β̂di and

further reduce the dimension of the selected model.

2.2 Simulation Results

This section investigates the performance of adaptive Lasso and its post-selection. We

consider three methods including adaptive Lasso (M1), adaptive Lasso with post-selection by mul-

tivariate t confidence intervals (M2), and successive GLRT (M3). Percentiles of the multivariate

t-distribution used to construct confidence intervals are obtained via the qmvt function in R package

mvtnorm. We simulate random sequences from the true models: Y = h+α1T+ ε, ε ∼ N(0, σ2I).

Example 1: h = 0, α1 = 0.1 and σ = 1.

Example 2: We uses the simulation setup from Caussinus and Mestre (2004), where six change-

points are positioned at 20%, 40%, 50%, 70%, 75% and 85% of the sequence and the jump size

of each change-point is constant. Let

h = (0, . . . , 0︸ ︷︷ ︸
0.2n

, 2, . . . , 2︸ ︷︷ ︸
0.2n

, 4, . . . , 4︸ ︷︷ ︸
0.1n

, 2, . . . , 2︸ ︷︷ ︸
0.2n

, 0, . . . , 0︸ ︷︷ ︸
0.05n

, 2, . . . , 2︸ ︷︷ ︸
0.1n

, 4, . . . , 4︸ ︷︷ ︸
0.15n

).

Then jump size is 2. Set α1 = 0.1 and σ = 1.

Example 3: This is the same with Example 2 except that the jump size is 3.

Example 4: We simulate random sequences with three change-points at 39%, 56% and 87%. Their

jump sizes are −1, 0.75 and 0.5, respectively. Let

h = (0, . . . , 0︸ ︷︷ ︸
0.38n

, −1, . . . ,−1︸ ︷︷ ︸
0.27n

, 0.75, . . . , 0.75︸ ︷︷ ︸
0.31n

, 0.5, . . . , 0.5︸ ︷︷ ︸
0.24n

).
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Set α1 = 0.02 and σ = 0.5.

Note that Example 1 demonstrates performance when no change-points are present, Example

2 and Example 3 are similar to the simulation setting in Caussinus and Mestre (2004), and Example

4 is motivated by our data application.

2.2.1 Type I Error Rate

A good technique of detecting multiple change-points should not give too many false alarms

when there are no change-points in a random sequence. For each sample size n = 100, 200 and 1000

we simulate 1000 sequences from Example 1. For the null hypothesis H0 : No change-points exist

in the sequence against the alternative H1 : At least one change-point exists in the sequence, we are

interested in

type I error rate =
# of sequences in which change-points are detected

# of simulated sequences
.

We use a significance level 0.05 to get the quantiles of GLRT statistic. The simulated type I error

rate of each method is displayed in Table 2.1. In general, we see that adaptive Lasso (M1) is not

likely to detect false alarms compared to successive GLRT (M3). The simulated type I error rate of

adaptive Lasso decreases from 0.046 to 0.007 as sample size increases from 100 to 1000. Post-selection

(M2) does not rule out any false alarms detected by adaptive Lasso (M1) under this no-change-points

scenario, but the type I error rate of adaptive Lasso (M1) alone is already sufficiently low. Successive

GLRT has a simulated type I error rate above 0.3. This is due to the high accumulative type I error of

applying the GLRT successively to subsequences generated by binary segmentation. The simulated

type I error rate also increases with the sample size. As the sample size grows, more subsequences

tend to be generated by segmentation, and more GLRTs are implemented, resulting in an increasing

accumulative type I error rate.

Table 2.1: Type I Error Rate

Method n = 100 n = 200 n = 1000

M1 0.046 0.026 0.007
M2 0.046 0.026 0.007
M3 0.307 0.330 0.391
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2.2.2 Multiple Change-point Detection

We now investigate the performance of adaptive Lasso and multivariate t post-selection in

detecting multiple underlying change-points. To start off we present some results from ordinary Lasso

to convince us of the adaptive Lasso necessity. We implement ordinary Lasso on 1000 simulated

sequences from Example 3 when n = 200. Figure 2.1 includes histograms of detected change-points.

Assuming that we know the maximum number of change-points K = 6 (a): ordinary Lasso can

detect only the middle change-point with a high probability. Assuming that we misspecified the

maximum number of change-points K = 10 (b): DP does not help reduce the number of change-

points detected by Lasso. Assuming that the number of change-points is unknown (c), we use the

CM selection criterion to choose the optimal model. We see that ordinary Lasso detects too many

false alarms and can seriously overestimate the number of change-points. This implies that even for

fairly large sample size, ordinary Lasso does not work well at least for our simulated example.
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Figure 2.1: Histograms of positions of detected change-points by ordinary Lasso. Six change-points
are simulated at 20%, 40%, 50%, 70%, 75% and 85% of each sequence.

Next we will compare adaptive Lasso and post-selection by multivariate t confidence intervals

with the successive GLRT procedure. We simulate 1000 random sequences for each sample size

n = 100, 200 and 1000 from Example 2 and Example 3, respectively.

Table 2.2 shows the percentage of sequences in which K change-points are detected. In

terms of false alarms, adaptive Lasso overestimates the number of simulated change-points (K ≥ 7)

except when jump size = 2 and n = 100. Post-selection by multivariate t confidence intervals (M2)

can lower down the false alarm rate significantly, and can identify the correct number of change-

points with the highest probability among the three methods considered (See the row marked by

“?”). Under both jump size scenarios, successive GLRT (M3) seems to do fairly well in controlling
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false alarm rates when n = 100, but its false alarm rates grow fast with the sample size.

Figures 2.2 and 2.3 provide histograms of positions of change-points detected by each method

and clearly show the detection rate of each underlying change-point. Each row in Figures 2.2 and

2.3 corresponds to a section of the same sample size and jump size in Table 2.2. When jump size

is 2, adaptive Lasso and its post-selection (M1, M2) gain more power in picking up the correct

change-points as sample size gets large. When jump size is 3, they can detect all the change-points

with high probability.
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Figure 2.2: Histograms of positions of detected change-points by the three methods. Jump size = 2.

We also have examined the performance of each method in detecting change-points of differ-

ent jump sizes. We simulate 1000 random sequences of length n = 100 from Example 4. This example

is motivated by the real data set in Section 4 which contains three documented change-points at

39, 56 and 87 and has a rough estimated standard deviation 0.5 and trend 0.02. Simulation results

are presented in Table 2.3 and Figure 2.4. We obtain consistent information as conveyed by the six

change-points study. Both adaptive Lasso (M1) and successive GLRT (M3) tend to overestimate

the number of change-points; Post-selection (M2) can identify the correct number of change-points
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Figure 2.3: Histograms of positions of detected change-points by the three methods. Jump size = 3.

Table 2.2: Percentage of sequences in which K change-points are detected

Jump = 2 n = 100 n = 200 n = 1000

K M1 M2 M3 M1 M2 M3 M1 M2 M3

0 0.004 0.006 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 0.040 0.065 0.000 0.000 0.001 0.000 0.000 0.000 0.000
2 0.170 0.267 0.094 0.025 0.045 0.002 0.000 0.000 0.000
3 0.184 0.273 0.194 0.054 0.102 0.010 0.000 0.002 0.000
4 0.170 0.226 0.249 0.083 0.199 0.034 0.000 0.038 0.000
5 0.146 0.104 0.224 0.118 0.288 0.100 0.001 0.231 0.000
?6 0.113 0.056 0.159 0.237 0.324 0.235 0.410 0.640 0.013
7 0.085 0.003 0.066 0.252 0.038 0.271 0.365 0.086 0.082
8 0.053 0.000 0.012 0.146 0.003 0.230 0.155 0.003 0.121

≥ 9 0.035 0.000 0.002 0.085 0.000 0.118 0.069 0.000 0.784

Jump = 3 n = 100 n = 200 n = 1000

K M1 M2 M3 M1 M2 M3 M1 M2 M3

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.006 0.013 0.002 0.000 0.000 0.000 0.000 0.000 0.000
3 0.009 0.045 0.032 0.000 0.003 0.000 0.000 0.000 0.000
4 0.035 0.130 0.114 0.000 0.032 0.005 0.000 0.014 0.000
5 0.051 0.279 0.182 0.001 0.240 0.007 0.002 0.147 0.000
?6 0.277 0.485 0.348 0.345 0.648 0.140 0.605 0.776 0.015
7 0.298 0.044 0.246 0.377 0.070 0.327 0.259 0.061 0.074
8 0.198 0.003 0.060 0.189 0.007 0.282 0.087 0.002 0.135

≥ 9 0.126 0.001 0.014 0.088 0.000 0.239 0.047 0.000 0.776

?: The number of detected change-points equals that of the simulated change-points.

28



with a higher probability (0.639 as shown in Table 2.3). All the methods considered have similar

detection rates for the three underlying change-points.

Table 2.3: Percentage of
sequences in which K
change-points are detected

n=100

K M1 M2 M3

0 0.000 0.001 0.000
1 0.042 0.056 0.000
2 0.113 0.233 0.021
?3 0.525 0.639 0.586
4 0.224 0.064 0.290

≥ 5 0.096 0.007 0.103

?: The number of detected
change-points equals that of the
simulated change-points.
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Figure 2.4: Histograms of positions of detected change-points by the three methods. Three change-
points are simulated at 39, 56 and 87. Jump size = (−1, 0.75,−0.5). σ = 0.5.

In general, adaptive Lasso with post-selection by confidence intervals is a promising method

of detecting multiple change-points for the following reasons: (1) it provides high detection rates

for change-points; (2) it has relatively low false alarm rates; (3) it identifies the true number of

change-points with high probability.

2.3 Application

Figure 2.5 contains plots of the yearly temperature data from Tuscaloosa, Alabama, which

ranges from year 1902 to 2000 (n = 99). This temperature series is known to have three documented

station changes at year 1939, 1956 and 1987 (Reeves et al., 2007) and hence can serve as a proving

ground for methods of multiple change-points detection.
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Figure 2.5: (a) Change-points detected by adaptive Lasso (M1) and post-selection (M2); (b) Change-
points detected by successive GLRT (M3).

We detect the change-points in the Tuscaloosa sequence by adaptive Lasso (M1), adaptive

Lasso with post-selection (M2) and successive GLRT (M3), respectively. The solid line in Figure

2.5(a) displays the fitted result by adaptive Lasso. The linear trend rate underlying this temperature

series is estimated around 0.027oC/year. It detects three change-points at year 1939, 1958 and 1990.

The change-point at 1939 is an accurate hit. The 1958 and 1990 change-points are two and three years

later than the corresponding documented change-points, respectively. The estimated jump size of

each change-point is −0.867oC, −1.149oC and 0.492oC, respectively. The estimated standard error

is 0.516oC. Post-selection by multivariate t simultaneous confidence intervals (M2), indicated by

the dashed line, identifies all three change-points as statistically significant. For comparison, we also

include the ordinary Lasso result: six change-points are detected at year 1939, 1940, 1955, 1956, 1958

and 1990. The dashed line in Figure 2.5(b) displays the change-points detected by successive GLRT

(M3). Three change-points are found at year 1939, 1958 and 1976. The first two change-points are

exactly the same found by adaptive Lasso. The 1976 change-point is not part of the documented

change-points set and could be a false alarm.

Figure 2.6 shows the standardized residuals (Stand. Res) plots from the adaptive Lasso fit.

There is no evident violation of the normal assumption based on the Q-Q plot. Applying the weighted

Ljung-Box test (Fisher and Gallagher, 2012) to the residuals, we obtain a p-value of 0.2636 at lag

5 indicating no significant autocorrelation. There might be some concern about heterocedasticity

from the first residual plot (Stand.Res vs Time). The standard deviation between 1940 and 1975
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seems to be smaller than that in the remaining observations. Our method can be generalized to

allow for nonconstant variance by replacing the least squares part in the objective function with

weighted least squares. This will be left as future work.

Overall, adaptive Lasso post-selected by multivariate t confidence intervals (M2) detects all

the three documented change-points; successive GLRT (M3) detects two documented change-points,

but also detects one potential false alarm.
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Figure 2.6: Model diagnosis of adaptive Lasso fit.
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2.4 Conclusion and Discussion

In this paper we have explored the idea of using adaptive Lasso to simultaneously estimate

parameters and select change-point times in temperature series with simple linear trend. At least in

the specific examples considered above, adaptive Lasso has high detection rate of the true change-

points but may overestimate the number of change-points. Applying multivariate t simultaneous

confidence intervals to a model selected by adaptive Lasso can significantly reduce overestimation

while still maintaining reasonable detection rates for the underlying change-points. Comparison is

made with successive GLRT. As sample size grows, overestimation of the successive GLRT procedure

gets much worse. Generally adaptive Lasso posted-selected by multivariate t simultaneous confidence

intervals outperforms successive GLRT in terms of both detection rate and overestimation.

The methods in this paper can be extended in several ways. For monthly or even daily

temperature data, the constant variance assumption could be relaxed to allow for periodic variance

which is natural in many regions. The periodic variance can be estimated by the method of moments

or be parameterized by linear combinations of trigonometric functions. The least squares part of the

objective function could then be replaced with a weighted least squares based on the variance. A

second extension would be to allow for autocorrelation in the error terms. In the at-most-one-change-

point context, Robbins et al. (2011a) summarized hypothesis tests for detecting change-points in

correlated data. The methods in Lund et al. (2007) allow for both periodicities and autocorrelation.

These methods could be modified by adding an `1 penalty and use shrinkage methods to detect

multiple change-points. Also, nonparametric regression has been used to allow for flexible trend

rather than linear trend (Bates et al., 2012, Bowman et al., 2006). Under our setting we can apply

kernelized Lasso (Gao et al., 2010, Wang et al., 2007) to incorporate flexible trend.
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Chapter 3

Shrinkage Methods via Genetic

Algorithm

Statistical modeling in linear regression mainly includes ordinary least squares (OLS), ridge

regression, least absolute shrinkage and selection operator (Lasso) (Tibshirani, 1996) and elastic net

(Zou and Hastie, 2005). The OLS estimator has the minimum variance among all the unbiased

linear estimators. In presence of multicollinearity the OLS estimator can have very large variance

due to computational instability of inverting X
′
X, which leads to poor prediction. The ridge regres-

sion estimator, defined as (X
′
X + λ2I)−1X ′y, stabilizes matrix inversion through the nonnegative

regularization parameter λ2. It is often shown to provide better prediction when OLS is hurt by

multicollinearity. But ridge regression retains all predictor variables and does not give a good inter-

pretable model. Best subset selection and stepwise regression are able to perform variable selection

and parameter estimation simultaneously. But they are criticized for ignoring the stochastic error

in the discrete process of variable selection, and a little disturbance in the data may lead to a very

different model.

Another approach, often referred to as L1 shrinkage/regularization/penalized methods, has

become very popular. This technique was proposed by Lasso. Because the resulting estimator is a

thresholding rule, Lasso is able to provide a sparse model (Fan and Li, 2001). It is also credited for

being much stable than subset selection through a continuous shrinkage process. But the bias in

the Lasso estimator is noticeably large (Fan and Li, 2001). Later Zou and Hastie (2005) proposed
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the elastic net which relies on the L1 penalty to achieve model sparsity and the L2 penalty to

address multicollinearity. While Lasso arbitrarily chooses only one variable among a group of highly

correlated variables, elastic net selects the whole group through the “grouping” effect, and is claimed

to improve Lasso in prediction whenever ridge regression improves OLS.

The salient point is that no regression method is shown to absolutely dominate in all cases

(Tibshirani, 1996, Zou, 2006, Zou and Hastie, 2005). If all predictor variables are uncorrelated and

highly significant, OLS can provide good enough parameter estimation and good prediction. In this

setting ridge regression, Lasso and elastic net should reduce to OLS, otherwise, they introduce extra

bias in the parameter estimates. When the true underlying model is sparse, Lasso and elastic net

are favored because of their sparse model representation. However ridge regression has been shown

to outperform Lasso and elastic net in terms of prediction. We presume that this is because that

the heavy impact of extra bias in parameter estimates of Lasso or elastic net discounts the fruits of

a sparse model. Estimators from ridge regression, Lasso and elastic net are all biased. They aim

to trade estimation bias for smaller mean squared error (MSE) resulting better prediction. Since

Lasso and elastic net restrict all parameters to be penalized by the same norm, some parameter

estimates can suffer from unnecessary bias. Assume that x1 is uncorrelated with other independent

variables but correlated with the response. Then penalizing x1 by either the L1 or L2 norm would

cause extra bias. An ideal modeling procedure would leave x1 unpenalized. Further if x2, x3 and x4

are highly correlated and only β2 is significant, one would think that β2 should be subjected to the

L2 penalty for a bias-variance trade-off while β3 and β4 are penalized by the L1 penalty. Having

β2 penalized by the L1 norm would shrink it towards zero. Generally speaking, an ideal modeling

procedure would automatically treat parameters differently, i.e., penalize based on the significance

and correlation of the predictor variables.

In this chapter we propose a new procedure which can simultaneously perform variable

selection and parameter estimation. If some true parameters are zero, our procedure can shrink

them to zero. Nonzero parameters can be estimated as well as if the true sub-model were known in

advance. Our procedure works at least as well as the canonical methods, and often result in better

model fits by allowing flexible penalties for different parameters. The resulting nonzero estimates

have smaller bias and variance. Specifically, in our objective function we allow each variable to be

unpenalized or selectively penalized by L1, L2 or both L1 and L2 norms. The canonical methods

of OLS, ridge regression, Lasso and elastic net simply become special cases of our framework. The
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proposed procedure turns out to be a large combinatorial optimization problem. It can be solved

by an exhaustive search if one can afford the time and the number of independent variables p

is reasonably small. We also describe the genetic algorithm as an efficient alternative in large p

scenarios.

3.1 The Objective Function

Suppose that y = [y1, . . . , yn]′ is the response vector. Let x1,· · · , xp denote the predictor

variables. Suppose that each xi is centered and standardized such that
∑
j xij = 0 and

∑
j x

2
ij = 1 for

i = 1, . . . , p. Also let y be centered such that
∑
j yj = 0. We assume that E[y] = x1β1 + · · ·+xpβp.

Denote

• G1 = {βi unpenalized};

• G2 = {βi penalized by the L2 norm};

• G3 = {βi penalized by the L1 norm};

• G4 = {βi penalized by both L1 and L2 norm}.

For simplicity we use i ∈ G1 to indicate that xi belongs to category G1 and the same for other

categories. All variables could possibly be classified into any of the four categories G1, G2, G3, G4.

We refer to the vector of their categories as “grouping”. That is, a grouping is a p-dimensional

vector which takes values from G1, G2, G3 and G4. Given a grouping, our objective function is

written as

β̂ = argminβ

∥∥∥∥y − p∑
i=1

xiβi

∥∥∥∥2 + λ2
∑

i∈G2 or G4

|βi|2 + λ
∑

i∈G3 or G4

|βi|, (3.1)

where λ2 and λ are nonnegative regularization parameters, the second term on the right provides

the L2 penalty and the third the L1 penalty. Each grouping determines a distinct way of fitting the

model and generates a set of parameter estimates. It is easy to see that the canonical methods of

OLS, ridge regression, elastic net and Lasso correspond to special groupings. If a grouping happens

to consist of G1 for each variable, the objective function (3.1) reduces to OLS. If a grouping happens

to consist of G2 for all variables, it reduces to ridge regression. Similarly, Lasso and elastic net

also correspond to special groupings and are covered by our objective function (3.1). A regular

grouping is also easy to comprehend. Assume that x1 is known to be an irrelevant variable in
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predicting y beforehand, we might assign it to G3 to be shrunk to zero by the L1 norm. But it is

typically unknown what variables are irrelevant to y and what variables are correlated in practice.

A predetermined grouping is usually difficult to pursue. It is not uncommon for real data sets to

have irrelevant variables, correlation or independence simultaneously. Our conjecture is that the

optimal grouping for an real data set should often be a mixture of G1, G2, G3 and G4 rather than

a vector of a single category. Therefore, the objective function in (3.1) has created a more practical

framework, which is also very general and flexible and makes it possible to explore the universe of

methods of fitting linear models.

Since each grouping determines a set of model estimates, the problem of finding the best

model fit amounts to finding an optimal grouping. For a multiple linear model with p variables,

the total number of possible grouping is 4p. This number grows exponentially as p increases. For a

model with eight variables, the total number of grouping is 48 = 65, 536. Searching for an optimal

grouping among 4p possibilities is a nontrivial task especially for large p. To solve this problem we

will introduce Bayesian information criterion (BIC) as our model selection criteria and illustrate how

to calculate the degrees of freedom for a model fit under its grouping. This allows us to compare all

the 4p fitted models on the same footing. The model fit ranking first by BIC is considered to be an

optimal model with its corresponding grouping being an optimal grouping. For simplicity we will

denote a grouping just by its subscripts (1, 2, 3, 4) of the categories and ignore the capital letter

“G” henceforth.

3.2 Degrees of Freedom

In statistical modeling the researchers often need to select a model among a family of

candidate models. Some model selection criteria have been proposed to help accomplish this task.

The most common criteria include Akaike Information Criterion (AIC), BIC or Schwarz criterion

(SBC, SBIC), Mallow’s Cp, minimum description length (MDL), cross-validation (CV), etc. In

determining which criteria to use for scoring the candidate models, first one should be clear about

the objective of the analysis: whether to obtain a model with best prediction or to identify the true

model among the candidates. AIC is asymptotically efficient in the sense of selecting the candidate

model which minimizes prediction mean squared error (Shibata, 1999). BIC has been proven to

be asymptotically consistent for model selection, i.e., assuming that the true model belongs to a
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family of candidate models, the probability that BIC will select the true model approaches one as

the sample size gets large (Nishii, 1984). But AIC is not asymptotically consistent and BIC is not

asymptotically efficient. Therefore, if prediction is the objective, one should choose AIC or CV as

the model selection criterion; if identifying the true model is the main concern, BIC should be used.

In this chapter we will consider identifying the true model as the primary concern and hence BIC is

the favored selection criterion.

A linear model of p variables would be fitted 4p times based on all the possible groupings.

Next the BIC score is calculated for each model fit. All the groupings (or the model fits) are ranked

by BIC. The grouping with the lowest BIC score is considered as the optimal grouping. Two distinct

groupings probably share the same lowest BIC score. For example, a parameter can be shrunk to

exactly zero whether the associated variable is classified into G3 or G4. In such case both groupings

share the same model fit.

Obtaining the BIC score amounts to finding the effective degrees of freedom for each model

fit. It is unfair to compare two models ignoring their model complexity: one using three variables

and another using ten variables. Degrees of freedom allows one to compare models on the same

footing. We now determine the degrees of freedom under different groupings. Let ŷ = g(y) be a

procedure of estimating y. Then

(ŷj − µj)2 = (ŷj − µj)2 − (yj − µj)2 + 2(ŷj − µj)(y − µj). (3.2)

Summing over j yields

E

{
||ŷ − µ||2

σ2

}
= E

{
||y − µ||2

σ2
− n

}
+ 2

n∑
j=1

cov(ŷj , yj)/σ
2 (3.3)

Effective degrees of freedom (Efron et al., 2004) is defined as

df =

m∑
i=1

cov(ŷj , yj)/σ
2. (3.4)

Denote a linear smoother ŷ = Hy. Then

df(Hy) = trace(H). (3.5)
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For example, the OLS estimator is ŷ = X(X′X)−1X′y. Then the degrees of freedom in OLS is

df(ols) = trace(X(X′X)−1X′) = rank(X). (3.6)

The second equality is due to a fact in linear algebra: the trace of a projection matrix is equal to the

rank of X. This expression implies that X is of full rank. Otherwise, (X′X)−1X′ can be replaced

with the generalized matrix inverse X+. The ridge regression estimates are ŷ = X(X′X+λ2I)
−1X′y.

Then the degrees of freedom in ridge regression is

df(ridge) = trace(X(X′X + λ2I))
−1X′). (3.7)

The degrees of freedom for Lasso and elastic net do not have an analytical form because they are

not linear smoothers. Bootstrap can be used to estimate df lasso(λ) (Efron et al., 2004) by using

definition (3.4), but it is computationally expensive. Zou et al. (2007) provided an unbiased estimator

for df lasso(λ) . Given any λ, they showed that

df lasso(λ) = E[trace(XA(X
′

AXA)−1XA)] = E|A|, (3.8)

where A = {xi : βi 6= 0} and |A| is the number of variables in A. Then |A| is an unbiased estimator

for df lasso(λ). As the entire solution of Lasso can be calculated by the least angle regression (LARS)

algorithm, |A| is attainable without extra effort. Another result showed by Zou et al. (2007) for BIC

is that

λ(optimal) = argminλ
||y − ŷ||2

nσ2
+
log(n)

n
d̂f(λ) (3.9)

and

k? = argmink
||y − ŷ||2

nσ2
+
log(n)

n
d̂f(λk) (3.10)

coincide such that λ(optimal) = λk? , where k is the step number in the LARS algorithm. The

degrees of freedom of elastic net does not have an analytic expression either, but using a similar

argument to Lasso an unbiased estimator (Tibshirani and Taylor, 2012b) can also be obtained from

dfenet(λ2) = E[trace(XA(X
′

AXA + λ2I)−1X
′

A)], (3.11)
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Next we will illustrate how to calculate the degrees of freedom for a model fit with a grouping

consisting of at least two categories from G1, G2, G3, and G4. All scenarios can fall into one of the

following cases:

Case 1: Have G1 and G2 variables. Then the estimates are defined as

β̂ = argminβ

∥∥∥∥y −∑
i∈G1

xiβi −
∑
i∈G2

xiβi

∥∥∥∥2 + λ2
∑
i∈G2

β2
i . (3.12)

For example, y = x1β1 + · · · + x4β4 + ε. One possible grouping might be (1, 1, 2, 2). Then

(3.12) becomes

β̂ = argminβ

∥∥∥∥y? −X?β

∥∥∥∥2, (3.13)

where y? =


y

0

0

 and X? =


x1 x2 x3 x4

0 0
√
λ2 0

0 0 0
√
λ2

. Since ŷ? = X?(X
′

?X?)
−1X

′

?y?,

one can easily show ŷ = Hy = X(X′X + λ2J)−1X′y, where J = diag(0, 0, 1, 1). This shows

that

df(λ2) = trace(X(X′X + λ2J)−1X′). (3.14)

Case 2: Have G1 and G3 variables. Then the estimates are defined as

β̂ = argminβ

∥∥∥∥y −∑
i∈G1

xiβi −
∑
i∈G3

xiβi

∥∥∥∥2 + λ
∑
i∈G3

|βi|. (3.15)

Revisit the example under Case 1. Consider the grouping (1, 1, 3, 3) instead. Let Xs =

[x1,x2] and Xt = [x3,x4]. Let βs and βt be the corresponding parameters. Let M =

I−Xs(X
′

sXs)
−1X

′

s. Note that y −Xsβ̂s −Xtβ̂t = My −MXtβt. Then (3.15) becomes

β̂t = argminβt

∥∥∥∥My −MXtβt

∥∥∥∥2 + λ|βt|. (3.16)

Then

df(Xsβ̂s + Xtβ̂t) = 2 + E[rank(MXtA)], (3.17)

where 2 is the dimensionality of Xs and tA indicates the current active variables from Xt.
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Case 3: Have G3 and G4 variables but no G1 and G2 variables. Then the estimates are defined

as

β̂ = argminβ

∥∥∥∥y −∑
i∈G3

xiβi −
∑
i∈G4

xiβi

∥∥∥∥2 + λ2
∑
i∈G4

β2
i + λ

∑
i∈(G3,G4)

|βi|. (3.18)

Now consider the grouping (4, 4, 3, 3). Similarly to elastic net (Zou and Hastie, 2005), the

above can also be rewritten as a Lasso problem:

β̂ = argminβ

∥∥∥∥y? −X?β

∥∥∥∥2 + λ|β|, (3.19)

where y? =


y

0

0

 and X? =


1

1+
√
λ2
x1

1
1+
√
λ2
x2 x3 x4

1
1+
√
λ2

√
λ2 0 0 0

0 1
1+
√
λ2

√
λ2 0 0

 with 1
1+
√
λ2

being the

normalizer. Using the similar argument for the degrees of freedom of elastic net, one can show

that

df(Xβ̂) = E
[
trace

(
XA(X′X + λ2J)−1X

′

A

)]
, (3.20)

where J =

 1 0 0 0

0 1 0 0

.

Case 4: Have variables from (G1 or G2), (G2 or G3) and (G3 or G4). The estimates are

defined as

β̂(λ2, λ) = argminβ

∥∥∥∥y − ∑
i∈(G1,G2,G3,G4)

xiβi

∥∥∥∥2 + λ2
∑

i∈(G2,G4)

β2
i + λ

∑
i∈(G3,G4)

|βi|. (3.21)

Consider the example y = x1β1 + . . . + x8β8 + ε, where ε ∼ N(0, σ2I) and the grouping

(1, 2, 3, 3, 2, 3, 4, 4). Then the objective function in (3.21) becomes

β̂(λ2, λ) = argminβ

∥∥∥∥y− 8∑
i=1

xiβi

∥∥∥∥2+λ2(|β2|2+|β5|2+|β7|2+|β8|2)+λ(|β3|+|β4|+|β6|). (3.22)

Rewrite (3.22) as

β̂(λ2, λ) = argminβ

∥∥∥∥y? −X?β

∥∥∥∥2 + λ(|β3|+ |β4|+ |β6|), (3.23)
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where y? =



y

0

0

0

0


and X? =



x1 x2 x3 x4 x5 x6 x7 x8

0
√
λ2 0 0 0 0 0 0

0 0 0 0
√
λ2 0 0 0

0 0 0 0 0 0
√
λ2 0

0 0 0 0 0 0 0
√
λ2


. Denote xi?

each column of X?. Let Xs? = [x1?, x2?, x5?, x7?, x8?] and Xt? = [x3?, x4?, x6?]. Also let

M = I−Xs?(X
′

s?Xs?)
−1X

′

s?. Since

y? −Xs?βs −Xt?βt = My? −MXt?βt, (3.24)

we have

β̂t = argminβt
||My? −MXt?βt||2 + λ|βt|. (3.25)

After obtaining β̂t, one can solve for βs by applying OLS to

y? −Xt?β̂t = Xs?βs + ε. (3.26)

Then, using (3.24), (3.25) and (3.26), the degrees of freedom in (3.23) becomes

d̂f(λ2, λ) = trace(Xs(X
′

s?Xs?)
−1X

′

s) + E
[
trace

(
(Q(Q′Q)−1Q′)[1:n, 1:n]

)]
, (3.27)

where Q = MXt?A.

3.3 Genetic Algorithm

Obviously one can carry out an exhaustive search over all the possible groupings. The fitted

model with the smallest BIC is chosen as the optimal model. But this strategy quickly becomes

infeasible to implement for even a small number of variables. Take a toy example of an eight-

variable model. It can take over five hours to implement the exhaustive search over 48 groupings.

The computation time increases exponentially fast with p. To resolve this intractable question we

now introduce genetic algorithm (GA), which is a popular heuristic approach of finding a promising

solution to a large combinatorial optimization problem. Generally speaking, GA mimics the process

of species evolution in nature: chromosomes with good adaptability to the environment are preserved
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in the population by natural selection, and have a higher chance of breeding off-springs who will

carry on good features of their parents’ chromosomes.

Chromosome Representation. Each model fitting is identified by its corresponding group-

ing, which in turns serves as the chromosome in GA. For example, if p = 8, an example of a regular

chromosome might be represented as (1, 1, 3, 3, 2, 2, 3, 4). The chromosome of the OLS fit is eight

straight 1’s and the ridge fit is eight straight 2’s. The chromosome representation of a model fitting

is identical to its grouping.

Population Initialization. The total number of possible groupings is 4p. The initialized

population in a GA search is a subset of the 4p groupings. In our simulation and data analysis we take

the subset to be of size 200. We also supply the initialized population with the chromosomes of the

four canonical methods. The rest chromosomes are randomly selected from the possible groupings.

Each bit on a chromosome is randomly selected from 1, 2, 3, and 4 with equal probability 1/4 and

with replacement.

Selection. The BIC score is evaluated for each model fit in the current generation. The

models are then sorted by the BIC score in increasing order. We retain the top 20% fitted models

in the next generation. The other 80% groupings are discarded and are refilled with off-spring who

are created by crossover between chromosomes in the current population.

Crossover. Two parent chromosomes in the current generation are randomly chosen to

generate an off-spring for the next generation. The probability of being chosen as the parent chro-

mosomes to crossover is proportional to their rank. The new off-spring is generated through uniform

crossover. Specifically, the off-spring chromosome can inherit each gene from either the parent chro-

mosome or the father chromosome with equal chance. Although no satisfactory theories have been

developed for uniform crossover, it is said to have good empirical performance.

Mutation. Each gene in a chromosome has a chance of mutation. For example, if a

gene on a chromosome is 3 it can be mutated to 1, 2 or 4. A relatively high mutation rate helps

maintain the diversity of the population. But a high mutation rate incurs a lot of variation to the

population and the genetic algorithm would reduce to pure random search. So a small mutation

rate is recommended, but not too small to lose diversity. In our study it is set to be 1/p so that one

mutation per chromosome is expected on average.

Stopping Rule. The algorithm terminates after a fixed number of iterations. In our

simulation we stop the algorithm after 20 iterations which can return a fitted model close to that
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obtained from the exhaustive search.

GA takes much longer than a single Lasso or elastic net fit, but it is worthwhile to run if one

aims at a sparse model representation with less biased estimates than those from Lasso or elastic

net fits. The model chosen by GA works at least as well as a lasso or elastic net fit in terms of BIC

score or any other preferred model selection criteria.

3.4 Simulation Study

In this section we investigate the performance of OLS, ridge regression, elastic net, Lasso,

exhaustive search and genetic algorithm. For each of the five examples considered below we simulate

150 data sets each consisting 100 observations. Models identified by groupings are estimated from

the data. To save computation time, we only consider a few λ2 values: 0, 0.01, 0.1, 0.5, 1, 5, 10,

100, 1000 (the same as in Zou and Hastie (2005)). We select the tuning parameters k and λ2 using

BIC. All the methods considered are compared based on the mean squared error
∑p
i=1 |β̂i − βi|2

and variable selection. The number of significant variables selected by each method is reported as

frequencies. We generate data from the following model

y = x1β1 + · · ·+ xpβp + ε, ε ∼ N(0, σ2I),

where p = 8 and σ = 1. We pick examples that we expect the canonical methods to do well and

compare how we do in comparison. The five examples simulated are listed as follows:

1. Let β = (20, 20, 20, 20, 20, 20, 20, 20) . Any pair of xi and xj (i 6= j) are uncorrelated.

2. Let β = (2, 2, 3, 2, 2.5, 2, 3, 2). The pairwise correlation is set to be corr(i, j)= 0.5|i−j|.

3. Let β = (3, 5, 0, 0, 5, 3, 0, 0). The pairwise correlation is set to be corr(i, j)= 0.9.

4. Let β = (3, 5, 0, 0, 5, 3, 0, 0). The pairwise correlation is set to be corr(i, j)= 0.

5. Let β = (4, 6, 0, 0, 3, 3, 0, 0). The pairwise correlation is set to be corr(i, j)= 0.85 for i, j =

3, . . . , 7, i 6= j and 0 for other pairwise correlation.

Example 1 is created to have all variables uncorrelated with each other and all parameters

extremely significant compared to the noise. Under this scenario OLS can be expected to fit the data
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sets well enough. There may be not much room left for improvement in the model fit so that ridge

regression, Lasso and elastic net almost reduce to OLS by setting the regularization parameters to

be close to zero. We want to show that our procedure can pick the OLS grouping as the optimal

grouping most frequently. In Example 2 all predictors are correlated and coefficients are significant.

This example is designed for ridge regression to stand out since the true model is not sparse so that

no L1 shrinkage is necessary while L2 shrinkage can help handle correlation. The data generating

mechanism in Examples 3 and 4 is a sparse model with all predictor variables being correlated and

uncorrelated, respectively. Both examples are where either Lasso or elastic net is expected to work

the best since L1 shrinkage is needed to identify the underlying sparse model. Example 5 is designed

to have xi, i = 3, . . . , 7 correlated with each other and each of x1, x2 and x8 uncorrelated with the

other seven predictor variables. Also because βi, i = 1, 2, 5, 6 are nonzero, the optimal grouping

under this example may not come from any of the canonical methods but a mixture of different

categories.

Tables 3.1 - 3.5 summarize the simulation results of these examples. We compute the BIC

score and
∑p
i=1 |β̂i − βi|2 for each of the 150 simulated data sets. The means of those statistics

are reported together with the standard deviations (shown in the parenthesis immediately after

mean). In Table 3.1, since each coefficient is 20 times as large as the noise and all predictor variables

are uncorrelated under Example 1, OLS works fairly well as expected and the fitted models from

penalized methods perform almost the same as OLS in terms of BIC and parameter estimates.

The exhaustive search and genetic algorithm select the OLS grouping in 150 out of the 150 runs.

Similarly, Table 3.2 shows that ridge regression has the smallest BIC score among the four canonical

methods. Meanwhile, the ridge estimates have small mean squared error compared to other canonical

methods. Full search and GA successfully select the ridge regression grouping in 140 out of the 150

runs. It is expected that L1 shrinkage methods should do well in Examples 3 and 4. As shown in

Table 3.3, elastic net has the smallest BIC among the canonical methods followed closely by Lasso

and far lower than those of OLS and ridge regression. Note that elastic net has a slightly high mean

squared error compared to Lasso. This is probably due to the double shrinkage of elastic net though

attenuated by rescaling (Zou and Hastie, 2005). Apart from the canonical methods, the good news

for us is that the full search finds the same optimal grouping (2, 2, 3, 3, 2, 2, 3, 3) in 104 out of the

150 runs. The BIC corresponding to this optimal grouping is much lower than that of elastic net or

Lasso, and the absolute bias and mean squared error are consistently lower as well. This optimal
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grouping shrinks the zero coefficients (β3, β4, β7, β8) to zero by assigning the corresponding variables

to category G3 to be penalized by the L1 norm. Because of correlation among all predictor variables,

the nonzero coefficients are assigned to category G2 and be penalized by the L2 norm. Similarly to

Example 3, elastic net also performs the best in terms of BIC in Example 4. This time an optimal

grouping (1, 1, 3, 3, 1, 1, 3, 3) is selected in 78 out of the 150 runs. Because all predictor variables are

uncorrelated, the zero coefficients are assigned to category G1 and unpenalized to avoid unnecessary

bias. The results shown in Table 3.5 identifies (1, 1, 3, 3, 2, 2, 3, 3) as the optimal grouping in 106 out

of the 150 runs, which further support our claim about grouping. Because x1 and x2 are uncorrelated

with any other variables and have nonzero coefficients, they are assigned to category G1. The other

variables are dealt in the same way as in Examples 3 and 4. Thus the resulting optimal grouping

consists variables from three categories. One can also notice that the full search can identify the

correct number of significant variables with a large probability.

Table 3.1: Example 1 – methods comparison

Methods BIC

p∑
i=1

|β̂i − βi|2 Time (mins) # of Vars Selected (freq.) FavoredGrouping

OLS 30.08 (14.34) 0.07 (0.04) 0 8(150)
Ridge 30.08 (14.34) 0.07 (0.04) 0 8(150)
Lasso 30.08 (14.34) 0.07 (0.04) 0 8(150)

ElasticNet 30.08 (14.34) 0.07 (0.04) 0 8(150)
FullSearch 30.08 (14.34) 0.07 (0.04) 227 8(150) (1,1,1,1,1,1,1,1)-150

GA 30.08 (14.34) 0.07 (0.04) 10 8(150) (1,1,1,1,1,1,1,1)-150

Table 3.2: Example 2 – methods comparison

Methods BIC

p∑
i=1

|β̂i − βi|2 Time (mins) # of Vars Selected (freq.) FavoredGrouping

OLS 29.49 (16.67) 0.12 (0.09) 0.0 8(150)
Ridge 29.06 (16.64) 0.12 (0.08) 0.0 8(150)
Lasso 29.49 (16.67) 0.12 (0.09) 0.0 8(150)

ElasticNet 29.48 (16.60) 0.12 (0.09) 0.0 8(150)
FullSearch 29.06 (16.64) 0.12 (0.09) 218 8(150) (2,2,2,2,2,2,2,2)-140

GA 29.06 (16.64) 0.12 (0.09) 9 8(150) (2,2,2,2,2,2,2,2)-140

Since all methods almost perform the same with OLS, no further exploration is needed.

For Examples 2 - 5 we also display the boxplots of parameter estimates from the canonical method

with the smallest BIC and the GA method in Table 3.6. The estimates for each parameter are put

side by side for ease of comparison. Because ridge regression performs the best among all canonical
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Table 3.3: Example 3 – methods comparison

Methods BIC

p∑
i=1

|β̂i − βi|2 Time (mins) # of Vars Selected (freq.) FavoredGrouping

OLS 32.66 (13.74) 0.79 (0.44) 0 8(150)
Ridge 32.49 (13.62) 0.97 (0.62) 0 8(150)
Lasso 23.82 (14.28) 0.56 (0.42) 0 4(23) 5(48) 6(58) 7(17) 8(4)

ElasticNet 23.81 (14.27) 0.58 (0.43) 0 4(23) 5(48) 6(58) 7(17) 8(4)
FullSearch 17.46 (13.59) 0.43 (0.39) 255 4(115) 5(25) 6(10) (2,2,3,3,2,2,3,3)–109

GA 17.54 (13.59) 0.40 (0.34) 13 4(111) 5(29) 6(10)

Table 3.4: Example 4 – methods comparison

Methods BIC

p∑
i=1

|β̂i − βi|2 Time (mins) # of Vars Selected (freq.) FavoredGrouping

OLS 31.70 (13.65) 0.08 (0.04) 0 8(150)
Ridge 31.70 (13.65) 0.08 (0.04) 0 8(150)
Lasso 21.57 (13.81) 0.07 (0.04) 0 4(63) 5(45) 6(30) 7(10) 8(2)

ElasticNet 20.98 (13.92) 0.08 (0.05) 0 4(60) 5(47) 6(30) 7(11) 8(2)
FullSearch 16.98 (13.56) 0.05 (0.03) 287 4(91) 5(56) 6(3) (1,1,3,3,1,1,3,3)-78

GA 16.98 (13.55) 0.05 (0.03) 12 4(93) 5(53) 6(4)

Table 3.5: Example 5 – methods comparison

Methods BIC

p∑
i=1

|β̂i − βi|2 Time (mins) # of Vars Selected (freq.) FavoredGrouping

OLS 27.57 (15.32) 0.24 (0.18) 0 8(150)
Ridge 27.36 (15.22) 0.28 (0.19) 0 8(150)
Lasso 19.18 (15.35) 0.15 (0.15) 0 4(33) 5(55) 6(47) 7(15)

ElasticNet 18.56 (15.30) 0.17 (0.20) 0 4(33) 5(54) 6(47) 7(14) 8(2)
FullSearch 12.74 (15.06) 0.06 (0.10) 270 4(109) 5(30) 6(10) 7(1) (1,1,3,3,2,2,3,3)-106

GA 12.76 (15.06) 0.06 (0.10) 12 4(113) 5(27) 6(9) 7(1)

methods in Example 2, we compare ridge estimates and GA estimates. The two types of estimates

are similar as GA selects the ridge grouping most frequently in the 150 runs. For Examples 3-5

comparison is made between elastic net and GA. In Example 3 we see that β̂3, β̂4, β̂7, and β̂8 by

our procedure are exactly equal to zero in most runs while those of elastic net have more variability.

Our mean estimates of the remaining nonzero coefficients are closer to the true values than those of

elastic net in general (except that the β1 is estimated better by elastic net). In Example 4, although

elastic net performs as well as our procedure in identifying the zero coefficients, our procedure gives

almost unbiased estimates for the nonzero coefficients compared to biased estimates from elastic net.

In Example 5, our procedure obviously outperforms elastic net in terms of both zero and nonzero

parameter estimates.

46



In summary, if a canonical method does the best among all possible groupings both full

search and GA can find this canonical grouping successfully with a large chance, as shown in Exam-

ples 1 and 2. On the other hand, if one grouping can give a better fitted model than the canonical

methods, our procedure can find this particular grouping with a large chance. As verified by Exam-

ples 3, 4 and 5 where elastic net has the smallest BIC among all the canonical methods and Lasso

has smaller bias than elastic net, the optimal grouping selected by full search gives an even better

fitted model than either elastic net or Lasso in terms of BIC, bias and mean squared error. All the

simulation results convey a message that it is worthwhile to run the full search or GA for a sparse

model which captures the salient predictor variables related to a response variable.
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Table 3.6: Model estimates from the best canonical method and full search
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Model 5: Elastic net and full search

ela GA

3.
7

3.
8

3.
9

4.
0

4.
1

4.
2

4.
3

b1=4

ela GA

5.
6

5.
7

5.
8

5.
9

6.
0

6.
1

6.
2

b2=6

ela GA

−0
.2

0.
0

0.
2

0.
4

b3=0

ela GA

−0
.4

−0
.2

0.
0

0.
2

0.
4

b4=0

ela GA

2.
4

2.
6

2.
8

3.
0

3.
2

3.
4

b5=3

ela GA

2.
2

2.
4

2.
6

2.
8

3.
0

3.
2

3.
4

b6=3

ela GA

−0
.2

0.
0

0.
2

0.
4

b7=0

ela GA

−0
.2

−0
.1

0.
0

0.
1

0.
2

0.
3

b8=0

48



3.5 Data Analysis

We demonstrate our methods on two data sets. The prostate cancer data set in Section 3.5.1

was previously analyzed in Zou and Hastie (2005) and has eight predictor variables. We provide the

model fits from both the exhaustive search and GA. The diabetes data set in Section 3.5.2 has been

analyzed by Efron et al. (2004). This data set has ten variables. The exhaustive search becomes

time-consuming, thus we only provide the model fit from GA.

3.5.1 Prostate cancer data

Prostate cancer is one of the top five cancers causing death in men. The data set analyzed

in this section comes from a study of prostate cancer in Stamey et al. (1989). It is accessible

from http://rss.acs.unt.edu/Rdoc/library/ElemStatLearn/html/prostate.html.

Table 3.7 shows a small part of the data. Preoperative serum prostate specific antigen (PSA) was

measured for 102 men before radical prostatectomy and reported as nanograms of PSA per milliliter

(ng/mL) of blood. PSA usually exists in small quantities in the serum if a man lives with a healthy

prostate, but can be elevated due to the occurrence of prostate cancer or other prostate abnormality.

The PSA test has been a widely applied method of screening men for prostate cancer for years. The

problem is, even though a man with a higher PSA level has a larger chance of having prostate

cancer, prostate cancer is not the only factor causing the PSA level to rise. Thus some people are

against the use of PSA test for screening considering misdiagnose as prostate cancer causes panic in

patients.

Table 3.7: Prostate cancer data

ID
lcavol
x1

lweight
x2

age
x3

lbph
x4

svi
x5

lcp
x6

gleason
x7

pgg45
x8

lpsa
y

1 -0.5798 2.7695 50 -1.3863 0 -1.3863 6 0 -0.4308
2 -0.9943 3.3196 58 -1.3863 0 -1.3863 6 0 -0.1625
3 -0.5108 2.6912 74 -1.3863 0 -1.3863 7 20 -0.1625
...

...
...

...
...

...
...

...
...

...
95 2.9074 3.3962 52 -1.3863 1 2.4639 7 10 5.1431
96 2.8826 3.7739 68 1.5581 1 1.5581 7 80 5.4775
97 3.4720 3.9750 68 0.4383 1 2.9042 7 20 5.5829

The goal here is to examine which variables could possibly elevate serum PSA in addition

to prostate cancer. The response is the logarithm of preoperative serum PSA (y). The predic-
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tor variables are log(cancer volume) (x1), log(prostate weight) (x2), age(x3), the logarithm of the

amount of benign prostatic hyperplasia (x4), seminal vesicle invasion (x5), log(capsular penetra-

tion) (x6), gleason score (x7) and percentage gleason score 4 or 5 (x8). Prostate cancer volume

is a primary determinant of serum prostate specific antigen levels as indicated in the analysis of

Stamey et al. (1989). Prostate weight is another risk factor of a high preoperative serum PSA level

clinically. Seminal vesicle invasion by prostate cancer has been considered a sign of a poor prognosis

and is an indicator variable with 1 indicating being invaded by prostate cancer and 0 indicating

not invaded. Capsular penetration is an even more aggressive sign than seminal vesicle penetration.

Benign prostatic hyperplasia may cause the PSA level to rise but the increment could be too slight

to be significant. The gleason score takes value from 2 to 10, with 10 having the worst prognosis.

Percentage gleason score 4 or 5 measures the proportion of tumors ranking 4 or 5 on the gleason

score scale in a prostate specimen. These predictor variables are viewed as major determinants of

prostate cancer progression. We want to explore whether they can elevate serum PSA.

Because prostate weight is missing for five patients, the regression analysis was done on 97

patients. Simply by looking at the correlation matrix, prostate cancer volume is most correlated

with the PSA level (correlation r = 0.734), followed by seminal vesicle invasion (r = 0.566), capsular

penetration (r = 0.549), weight (r = 0.433), percentage Gleason score 4 or 5 (r = 0.422) and gleason

score (r = 0.369). These predictor variables are also correlated among themselves with the highest

correlation being 0.75. The correlations between PSA level and age, the amount of benign prostatic

hyperplasia are low (0.170 and 0.180, respectively). We compare the model fits from OLS, ridge

regression, Lasso, elastic net, full search and GA on this data set. Table 3.8 displays the fitted

results.

Table 3.8: Prostate cancer data – methods comparison

Methods BIC Score Parameters Variables Selected

OLS -37.61 Null All
Ridge -41.61 λ2 = 0.1 All
Lasso -45.51 k = 3 (1, 2, 5)

ElasticNet -51.12 k = 5, λ2 = 1.0 (1, 2, 5, 6, 8)
FullSearch -53.78 k = 0, λ2 = 0.1 (1, 2, 5)

GA -53.78 k = 0, λ2 = 1.0 (1, 2, 5)

?: The groupings chosen by full search and GA are (2, 2, 3, 3, 2, 3, 3, 3)
and (2, 2, 4, 3, 2, 4, 4, 4), respectively.

From Table 3.8 OLS has the largest BIC score. Ridge regression dominates OLS by a lower
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BIC score. From Table 3.9 both OLS and ridge regression have a negative parameter estimate for age,

which can generate a misleading conclusion that PSA levels decreases with age. Such unreasonable

estimates should result from multicollinearity. Lasso benefits from a sparse model including x1, x2,

x5 and outperforms ridge regression in terms of BIC. The model estimated by elastic net has the

smallest BIC among the four canonical methods. It also includes the predictor x6 and x8 in addition

to those selected by Lasso. This may be due to the “grouping” fact that elastic net tends to select

highly correlated variables into the model together. The model chosen by full search and GA have

the same BIC which is smaller than any of the four canonical methods. The corresponds optimal

groupings are (2, 2, 3, 3, 2, 3, 3, 3) and (2, 2, 4, 3, 2, 4, 4, 4), respectively. Although the two groupings

differ, the model fits are exactly the same. See Table 3.9. The parameters of predictor variables

in category 3 or 4 are shrunk to exactly zero. Assigning an insignificant variable into category G3

or G4 does not change the model fit for this data set since its coefficient is shrunk to exactly zero

anyway.

Table 3.9: Prostate cancer data – model estimates

Methods β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8
OLS 0.5643 0.6220 -0.0212 0.0967 0.7617 -0.1061 0.0492 0.0045

Ridge 0.4725 0.5964 -0.0155 0.0829 0.6658 -0.0238 0.0666 0.0032
Lasso 0.4730 0.4010 0.0000 0.0000 0.4419 0.0000 0.0000 0.0000

ElasticNet 0.4057 0.4103 0.0000 0.0000 0.5476 0.0995 0.0000 0.0019
FullSearch 0.4792 0.6331 0.0000 0.0000 0.6744 0.0000 0.0000 0.0000

GA 0.4792 0.6331 0.0000 0.0000 0.6744 0.0000 0.0000 0.0000

?: The groupings chosen by full search and GA are (2, 2, 3, 3, 2, 3, 3, 3) and (2, 2, 4, 3, 2, 4, 4, 4),
respectively.

3.5.2 Diabetes Data

This diabetes data set was first introduced in Efron et al. (2004) and is accessible from

http://www4.stat.ncsu.edu/˜boos/var.select/diabetes.tab.txt. One objective of

the statistical analysis was to find a descriptive model explaining which predictor variables are

important in disease progression. Ten baseline measurements (p = 10), age (x1), sex (x2), body

mass index (x3), average blood pressure (x4), and six blood serum measurements (x5, x6, x7, x8,

x9, x10) were obtained from 442 diabetes patients (n = 442) in addition to the response variable,

a measure of disease progression one year after baseline. The correlation matrix of the predictor

variables displays some medium correlation with the highest magnitude of correlation being 0.738.
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Since p = 10, it becomes time-consuming to run the full search and we only provide the results of

GA in addition to those of the four canonical methods.

Table 3.10: Diabetes data

ID
age
x1

sex
x2

bmi
x3

bp
x4

s1
x5

s2
x6

s3
x7

s4
x8

s5
x9

s6
x10

response
y

1 59 2 32.1 101 157 93.2 38 4 4.8598 87 151
2 48 1 21.6 87 183 103.2 70 3 3.8918 69 75
3 72 2 30.5 93 156 93.6 41 4 4.6728 85 141
4 24 1 25.3 84 198 131.4 40 5 4.8903 89 206
5 50 1 23 101 192 125.4 52 4 4.2905 80 135
...

...
...

...
...

...
...

...
...

...
...

...
441 36 1 30.0 95 201 125.2 42 5 5.1299 85 220
442 36 1 19.6 71 250 133.2 97 3 4.5915 92 57

Table 3.11 displays the BIC scores, tuning parameters and the selected variables of the

methods considered. For the BIC score, OLS > ridge regression > Lasso > elastic net. The

model chosen by GA is not from any of those four canonical methods but one with the grouping

(3, 2, 2, 2, 4, 4, 2, 3, 2, 4). This is the grouping that GA finds the best in 40 minutes (the initialized

population size is 200 and the algorithm is stopped after 20 iterations). The selected variables are

x2, x3, x4, x7, x9 which are all classified into category G2 because of correlation. The rest variables

are either classified into category G3 or G4 and are shrunk to exactly zero. Lasso selects six variables

compared to seven by elastic net. GA seems to like selecting a more parsimonious model (with five

variables). Both Lasso and elastic net agree on the demographic variables of sex, body mass index,

average blood pressure (x2, x3, x4) as important risk factors of disease progression. They also agree

on three blood measurements x7, x9 and x10 but disagree on the blood measure x5. The model

selected by GA only keeps x7 and x9 among the six blood measurements in addition to the common

demographic variables selected by both Lasso and elastic net. We also have provided the model

estimates in Table 3.12. Note that variables selection among the six blood measurements not only

helps obtain better interpretability through a parsimonious model but also can save the costs of

collecting irrelevant measurements from patients.
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Table 3.11: Diabetes data – methods comparison

Methods BIC Parameters Variables Selected

OLS 3585 Null All
Ridge 3575 λ2 = 0.1 All
Lasso 3570 k = 7 (2, 3, 4, 5, 7, 9, 10)

ElasticNet 3568 k = 6, λ2 = 0.1 (2, 3, 4, 7, 9, 10)
GA 3560 k = 0, λ2 = 0.1 (2, 3, 4, 7, 9)

?: The grouping chosen by GA is (3, 2, 2, 2, 4, 4, 2, 3, 2, 4).

Table 3.12: Diabetes data – model estimates

Methods β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8 β̂9 β̂10
OLS -0.04 -22.86 5.60 1.12 -1.09 0.75 0.37 6.53 68.48 0.28

Ridge 0.0048 -19.75 5.28 1.04 -0.11 -0.11 -0.69 4.27 40.46 0.36
Lasso 0.00 -18.85 5.63 1.02 -0.14 0.00 -0.82 0.00 46.92 0.23

ElasticNet 0.00 -11.69 5.62 0.95 0.00 0.00 -0.82 0.00 42.02 0.21
GA 0.00 -18.98 5.33 1.07 0.00 0.00 -1.00 0.00 41.03 0.00

?: The grouping chosen by GA is (3, 2, 2, 2, 4, 4, 2, 3, 2, 4).

3.6 Conclusion

In this chapter we have proposed a new procedure of model selection and parameter es-

timation. The objective function of Lasso or elastic net constrains all predictor variables to be

regularized by the same penalty and the estimates can suffer from unnecessary bias. To resolve

this problem, our objective function allows each independent variable to be either unpenalized or

penalized; if penalized, it allows the variable to be selectively penalized by L1, L2 or both L1 and

L2 norms. Such flexibility is the significant reason for the success of our method. We introduce the

grouping definition which makes it fairly convenient to identify all the possible model fits. The re-

sulted estimates from our procedure have smaller bias and variance than those from Lasso or elastic

net. Since none of the canonical methods dominate under all circumstances, our procedure naturally

becomes superior by providing a general and flexible framework covering the universe of all linear

models. The comprehensive simulation study further supports the necessity of searching among the

possible linear models. Our procedure is a combinatorial optimization problem and becomes time-

consuming for even moderate p. As an efficient alternative, genetic algorithm can save computation

time tremendously and is able to return an nearly optimal solution within a reasonably amount

of time. Given any model selection criteria our procedure can provide an optimal model allowing

sparsity and low bias. The chosen model fit is as least good as those provided by the canonical

methods and most often can outperform them greatly in accuracy.
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Chapter 4

Cauchy Test

In many applications of time series analysis, we model correlation to improve prediction

accuracy and to avoid erroneous inferences regarding regression parameters. However, if no correla-

tion is present we add unnecessary model complication and add error to the model fitting process.

It is therefore an important step to first determine if significant serial correlation is present in the

process under study. For small samples, say only a few years of monthly data, the commonly em-

ployed Ljung-Box portmanteau test (Ljung and Box, 1978) for autocorrelation can have low power.

It might be helpful to have a more powerful small sample test for detecting significant correlation.

In this paper we develop such a test by considering the Cauchy estimator of correlation, rather than

the usual sample autocorrelation estimator. The Cauchy estimator has been considered previously

in the literature for parameter estimation (Gallagher, 2001), model identification (Gallagher, 2002)

and to create confidence intervals for autoregressive parameters (Gallagher and Tunno, 2008, So

and Shin, 1999). The proposed test compares favorably with the Box-Pierce/Ljung-Box statistics in

detecting autoregressive alternatives.

If initial investigations indicate significant serial correlation, an autoregressive moving av-

erage (ARMA) process is typically used to parameterize the correlation function. It is common

practice to assess the goodness-of-fit of the ARMA model via a portmanteau test for significant

correlation in the ARMA residuals. A plethora of portmanteau tests for correlation and associated

ARMA goodness-of-fit tests have been proposed. A brief review of some of the most relevant litera-

ture is provided. The sample correlation function of the observed residuals is used in the commonly

employed tests due to Box and Pierce (1970) and Ljung and Box (1978). Monti (1994) proposed
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a test based on the sample partial correlation function, which performs well in detecting missing

moving average components. Recently, other authors have proposed asymmetric tests based on the

determinant (McLeod and Mahdi, 2012, Pena and Rodriguez, 2002, 2006) or the trace (Fisher and

Gallagher, 2012) of the sample autocorrelation matrix. In this paper we modify the Cauchy test for

serial correlation and develop an ARMA goodness-of-fit test. The asymptotic behavior of the test

statistic is quantified.

The remainder of the paper is organized as follows. In the next section, we introduce the

Cauchy estimator, derive the proposed statistic and give its asymptotic distribution under the null

hypothesis of independent identically distributed (iid) data. In Section 4.2 we consider the ARMA

goodness-of-fit problem and describe a Cauchy test based on sample residuals. We use simulation

to investigate the small sample behavior of the proposed methodology in Section 4.3. Section 4.4

applies our test to monthly asset returns for Facebook, Incorporated. We close the paper with some

remarks in Section 4.5.

4.1 Testing for correlation

Let {Xt} be a weakly stationary time series observed at times t = 1, 2, . . . , n. Since we

can always subtract off the sample mean, without loss of generality we will assume that E(Xt) = 0.

Consider the equation

Xt = ρ(k)Xt−k + Z
(k)
t k = 1, 2, . . . ,m,

where ρ(k) is the lag k correlation, and Z
(k)
t has mean 0 and variance σ2 = E(Xt− ρ(k)Xt−k)2. For

example if {Xt} follows a first order autoregressive difference equation:

Xt = φXt−1 + εt,

with {εt} an iid N(0, σ2) sequence, then Z
(k)
t = Xt − φkXt−k. If on the other hand {Xt} is an iid

sequence then for each k, Z
(k)
t = Zt = Xt.

Notice that by construction Z
(k)
t and Xt−k are uncorrelated and ρ(k)Xt−k is the best linear

predictor of Xt based on Xt−k. If {Xt} is Gaussian, then

E(Xt|Xt−k) = ρ(k)Xt−k. (4.1)
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Notice from (4.1), that for any measurable function g,

E (Xtg(Xt−k)) = ρ(k)E (Xt−kg(Xt−k)) .

In particular, let g(Xt−k) = |Xt−k|rSt−k, where r ≥ 0 and St = sign(Xt). Note

E (Xt|Xt−k|rSt−k) = ρ(k)E|Xt−k|r+1,

or

ρ(k) =
E (Xt|Xt−k|rSt−k)

E|Xt−k|r+1
. (4.2)

Taking r = 1 corresponds to the usual lag k autocorrelation and other values give correlation between

Xt and the signed power, |Xt−k|rSt−k. For any independent sequence, ρ(k) = 0 for every non-zero

k.

In this paper we consider the special case of r = 0 which corresponds to the correlation

between {Xt} and the sequence of signs {St}. For non-Gaussian processes (and for the remainder

of this paper) we take ρ(k) to be given by (4.2) with r = 1. For any time reversible ARMA process

with iid innovations, the function ρ(k) given by (4.2) will satisfy the same set of recursions–and

thus takes the same values–as the autocorrelation function. For ARMA processes which are not

reversible, we consider correlation between present values of the process and past values of the sign

process. To test for significant correlation in any of the first m lags, the set of statistical hypotheses

we test is

H0 : ρ(k) = 0 k = 1, 2, . . . ,m H1 : ρ2(k) > 0 for some 1 ≤ k ≤ m.

Equivalently we can test if the Euclidean norm of the vector ρ = (ρ(1), . . . , ρ(m))
t

is zero. Below

we derive a new test statistic for the above set of hypotheses and give its asymptotic distribution

under the iid null hypothesis.
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To estimate ρ(k) from data we can use moment estimators

ρ̂r(k) =

n∑
t=k+1

Xt|Xt−k|rSt−k

n∑
t=k+1

|Xt−k|r+1

,

where r = 1 corresponds to the usual sample autocorrelation function and r = 0 gives the Cauchy

estimator of lag k autocorrelation. Unlike the usual covariance the Cauchy version is not symmetric

in its arguments. For the correlation test described here we use only positive values of k, but

for ARMA goodness-of-fit test of Section 4.2 we use both positive and negative values of k. Our

simulations not included in this paper indicate that using negative values of k does not significantly

improve the correlation test, but can provide improvement for the test described in the next section.

Now consider ∑
Z

(k)
t St−k =

∑
|Xt−k| (ρ̂0(k)− ρ(k)) .

For iid data (null hypothesis), the summands on the left hand side form a k-dependent sequence so

that

(n− k)−1/2
∑

ZtSt−k ⇒ N(0, σ2
k),

where ⇒ denotes weak convergence and σ2
k = σ2 for k = 1, 2, . . . ,m. For symmetric iid sequences,

the convergence rate is quite fast as the joint distribution of (Zk+1S1, . . . , ZnSn−k) is the same as the

distribution of (Zk+1, . . . , Zn) (see Theorem 3.1 from Gallagher and Tunno (2008)). Furthermore

for Gaussian data the distribution of the sum is exactly normal for every n. It is easy to see that

under the null hypothesis of iid data, that for each k

∑
ZtSt−k = ρ̂0(k)

∑
|Xt−k| =

∑
XtSt−k,

and since for any t, s,

Cov(ZtSt−k, ZsSs−l) =

 Var(Zt) t = s; k = l

0 otherwise,

the Cramér-Wold device provides the following result.
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Theorem 4.1.1. If {Xt} is an iid sequence, H0 holds and

(∑
XtSt−1√
n− 1

, . . . ,

∑
XtSt−m√
n−m

)
⇒ Nm(0,D),

where D is a diagonal matrix with kth element

σ2
k = σ2.

We note here that if the data is iid and Gaussian, then each component of the vector is

marginally normally distributed and the components are uncorrelated. However, the components

are not independent and the joint normality only holds in the limit even in that case. To test our

set of hypothesis we can use the Euclidean norm of the vector of the standardized sample Cauchy

correlations,

λ(k) =
∑

XtSt−k/
√

(n− k)σ̂2
k,

where σ̂k is any consistent estimator of σk. Using standard Slutsky and mapping arguments, we

have the following result.

Corollary 4.1.2. If {Xt} is iid, H0 holds and

m∑
k=1

(λ(k))
2 ⇒ χ2

m,

where χ2
m denotes a chi-square random variable with m degrees of freedom.

The variance σ2
k could be estimated under the null hypothesis by using the observed values

of {Xt}, but to gain power in our simulations below we estimate σk under the alternative hypothesis

using

σ̂2
k =

n∑
k+1

(Xt − ρ̂1(k)Xt−k)2/(n− k). (4.3)

Here we use the sample correlation to estimate ρ as it has smaller mean squared error than the

Cauchy estimator. We propose using the test statistic from Corollary 4.1.2 to test an iid null

hypothesis against a general portmanteau alternative of serial correlation.

To investigate the theoretical power of the proposed test consider a stationary linear process
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satisfying

Xt =

∞∑
j=0

ψjεt−j ; {εt} ∼ iid(0, σ2);
∑
|ψj | <∞. (4.4)

Recall that all causal invertible ARMA processes satisfy (4.4).

Theorem 4.1.3. Let {Xt} satisfy (4.4). For each fixed positive integer m, as n→∞,

n−1/2

(
n∑
t=2

XtSt−1 − nρ(1)E|X0|, . . . ,
n∑

t=m

XtSt−m − nρ(m)E|X0|

)t
⇒ Nm(0,V),

where Nm denotes a multivariate normal on m dimensions and the matrix V has elements

Vi,j = E(X2
i S0Si−j − ρ(i)ρ(j)) (E|X0|)2 .

Proof. For arbitrary vector a = (a1, . . . , am)t, let εt =
∑m
j=1 aj (XtSt−j − ρ(j)E|X0|) . Also, let

Ft denote the sigma field generated by past values of the innovations {εt, εt−1, . . .}. The sequence

{εt} is a (stationary and ergodic) square integrable martingale-difference sequence with respect to

filtration {Ft}, with

η2 = E(ε2) =
∑
i,j≤m

aiajE ((XtSt−i − ρ(i)E|X0|)(XtSt−j − ρ(j)E|X0|)) = atVa.

Using Theorem 18.3 in Billingsley (1999) we conclude that

n−1/2
n∑
t=1

εt/η ⇒ N(0, 1).

Our result now follows from the Cramér-Wold device.

From the above theorem, we see that under ARMA alternatives, the summands in the

proposed test behave like

n− k
n

σ̂2λ2k = n−1
(∑

XtSt−k − nρ(k)µ+ nρ(k)µ
)2

= W 2 + 2W
√
nρ(k)µ+ nρ2(k)µ2,

where µ = E|Xt|, and W converges weakly to a mean zero normal random variable. It follows that

for ρn(k) = cnγ with c 6= 0, the proposed test statistic will diverge for any γ > −1/2, i.e., the

proposed test has non-trivial asymptotic power in detecting local alternatives converging to the null
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at the n−1/2 rate.

4.2 Detecting ARMA underfit

The test described in the previous section can be modified to detect the goodness-of-fit of a

causal and invertible ARMA model:

xt = φ1xt−1 + · · ·+ φpxt−p + zt + θ1zt−1 + · · ·+ θqzt−q, (4.5)

where {zt} is an iid sequence with zero mean and variance σ2 with P (zt = 0) = 0. Toward this end,

consider fitting model (4.5) using Gaussian maximum likelihood or any estimation procedure with

the same asymptotic behavior as the least squares estimation. Now let {ẑt} be the residuals from a

fitted ARMA model and ŝt = sign(ẑt). For k > 0, consider

λ̂(k) =

∑n
t=k+1 ẑtŝt−k

σ̂
√
n− k

and λ̂(−k) =

∑n
t=k+1 ŝtẑt−k

σ̂
√
n− k

,

where σ̂ is a consistent estimator of σ.

Theorem 4.2.1. If {Xt} follows model (4.5), then as n→∞,

(
λ̂(−1), . . . , λ̂(−m), λ̂(1), . . . , λ̂(m)

)′
⇒ Nm(0,W).

Here

W =

 I δ(I−H)

δ(I−H) I− δH

 ,

where I denotes the m×m identity matrix, H is a rank p+q projection matrix, and δ = (E|zt|)2/E(z2t ).

Proof. The result follows from arguments similar to those in McLeod (1978). To demonstrate the

idea, we give the proof for causal autoregressive models. The proof for general ARMA models is

similar but requires additional notation as in McLeod (1978). Let φ and φ̂ denote vectors of the

true and estimated parameters, respectively. Below we use the causal representation

xt =

∞∑
j=0

ψjzt−j .
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For st = sign(zt) and k > 0, consider

λ(k) =

∑n
t=k+1 ztst−k

σ
√
n− k

and λ(−k) =

∑n
t=k+1 stzt−k

σ
√
n− k

.

The idea of the proof is to approximate λ̂ with λ. Simple Taylor expansion arguments and the

assumption that P (zt = 0) = 0, indicate that as n→∞, ŝt can be replaced with st. The consistency

of σ̂ and Slutsky arguments justify replacing σ̂ with σ. Combining these approximations with algebra

results in

λ̂(k) ≈ λ(k)− σ−1
√
n(φ̂− φ)′γ̂, (4.6)

where the p × 1 vector γ̂ has ith component γ̂i =
∑
xt−ist−k/

√
n(n− k), which converges in the

almost sure sense to γi = E(xt−ist−k) = ψk−iE|zt|. We note here that for ` < 0, ψ`−i = 0, so that


λ̂(−1)

...

λ̂(−m)

 =


λ(−1)

...

λ(−m)

+ op(1). (4.7)

We now turn our attention to λ̂(k) for k > 0. It is well known (?) that

√
n(φ̂− φ) = σ−2V

−1
v +Op(1/

√
n), (4.8)

where V−1/n is the asymptotic covariance matrix of φ̂ and vector v has jth component

vj = n−1/2
∑

ztxt−j .

Combining (4.6) and (4.8) we have


λ̂(1)

...

λ̂(m)

 =


λ(1)

...

λ(m)

−
√
δ

σ2
XV−1v + op(1), (4.9)

where the matrix Xm×p is as in Box and Pierce (1970) and McLeod (1978) and only depends on the

sequence {ψj}. Thus ignoring terms that are op(1), any linear combination of λ̂(−m), . . . , λ̂(m) can
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be shown to converge to a normal distribution using martingale difference central limit theory. It

follows that the vector in Theorem 4.2.1 converges in distribution to a multivariate normal random

variable. It remains to determine the asymptotic covariance matrix. An easy calculation shows that

for |k| 6= |l|, cov(λ(k), λ(l)) = 0, and cov(λ(−k), λ(k)) = δ. From (4.7) it follows that

var
(

(λ̂(−m), . . . , λ̂(−1))′
)
→ I.

Using (4.9) and calculations very similar to McLeod (1978),

cov
(

(λ(1), . . . , λ(m))′,
√
n(φ̂− φ)

)
→
√
δXV−1.

The term δ arises in the equation because

cov(
∑

ztst−k,
∑

ztxt−i) = nσ2ψk−iE|zt|.

For λ+ = (λ(1), . . . , λ(m))′, we have

var(λ̂+) = var(λ+)− cov(λ+,
√
δσ−2XV−1v)

−cov(
√
δσ−2XV−1v,λ+) + δvar(X

√
n(φ̂− φ)

= I− 2δXV−1X′ + δXV−1X′

= I− δXV−1X′.

As pointed out in Box and Pierce (1970) and McLeod (1978), for large m the matrix XV−1X′ can

be approximated by projection matrix H = X (X′X)
−1

X′, which has rank p+ q. Thus

var
(

(λ̂(1), . . . , λ̂(m))′
)

= I− δH.

Finally, for λ− = (λ(−m), . . . , λ(−1))′ arguments similar to those above yield

cov
(
λ̂−, λ̂+

)
≈ cov

(
λ−,λ+ −

√
δXV−1v/σ2

)
→ δ(I−H).
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The following corollary can be used to develop a goodness-of-fit test using λ̂(k).

Corollary 4.2.2. If {Xt} follows model (4.5), then as n→∞,

−1∑
k=−m

λ̂(k)2 +

m∑
k=1

λ̂(k)2 ⇒ Y1 + (1 + δ)Y2 + (1− δ)Y3,

where Y1, Y2, and Y3 are independent chi-square distributed random variables with p+ q, m− p− q,

and m− p− q degrees of freedom, respectively.

Proof. Using Theorem 4.2.1 and Box (1954), the quadratic form
∑−1
k=−m λ̂(k)2 +

∑m
k=1 λ̂(k)2 has

asymptotic distributional representation
∑2m
i=1 ciχ

2
i , where {χ2

i } are iid chi-square distributed ran-

dom variables and c1, . . . , c2m are eigenvalues of W. The projection matrix H has p+ q eigenvalues

which are 1 and m − p − q eigenvalues of 0. Let u and e denote eigenvectors with Hu = 0 and

He = e. For each choice of u and e, we can create the following orthonormal eigenvectors for W:

(0, e)′; (e,0)′; (u/
√

2,−u/
√

2)′; (u/
√

2,−u/
√

2)′.

The first two eigenvectors have eigenvalues of 1, the third eigenvector has an associated value of 1−δ

and the fourth vector has an eigenvalue of 1 + δ. Note that using the Cauchy-Schwarz inequality it

is easy to see that 1− δ > 0, so that all eigenvalues are positive.

4.3 Simulation Study

In this section we summarize simulation results which give an idea of the small sample

behavior of the proposed Cauchy portmanteau test. We present simulation results demonstrating

situations for which the Cauchy test can provide some improvement over other methods. Typically

in statistical software, decision rules for a test are based on quantiles of the relevant asymptotic

distribution. Here we study our statistic using both the the asymptotic distribution and Monte

Carlo methods (see McLeod and Lin (2006)). Our simulations were executed in a parallel framework

utilizing the snow package within the R-project.

We compare the proposed method to the commonly used Ljung-Box and Monti statistics.

Ljung Box is chosen over Box Pierce since it is known to have better small sample performance and

is typically utilized by practitioners. Monti is chosen since it is based on the partial autocorrelation
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function, is known to be more powerful in detecting underfit moving-average process, and provides

another comparison. Recently, several asymmetric portmanteau test (weighted variants) have been

introduced to the the statistics literature. In theory, an asymmetric version of the Cauchy estimator

test can be developed as ultimately the statistic is a quadratic form. The asymptotic distribution

would be similar to that of McLeod and Mahdi (2012) and Fisher and Gallagher (2012). As dis-

cussed in the literature, the results of Pena and Rodriguez (2002) and McLeod and Mahdi (2012)

are essentially asymmetric Monti tests and the results of Fisher and Gallagher (2012) are an asym-

metric Ljung Box; for brevity we exclude comparisons with the asymmetric tests. The main theme

is that for small samples the proposed statistic can more easily detect autocorrelation than port-

manteau methods based on sample autocorrelation. Also, the Cauchy-based test statistic performs

comparably well as the sample size increases.

4.3.1 Empirical Size

We begin by studying the empirical size of the various statistics in finite samples. One

crucial aspect of testing for correlation in a time series is the selection of the lag m at which to test.

No optimal lag is known and many suggestions have been made in the literature. In these studies, we

utilize m =
√
n and m = n/3 based on some rules of thumb in the literature. As discussed around

Corollary 4.1.2, any consistent estimator for the standard deviation can be used in our Cauchy test

statistic. For white noise, the sample mean squared error (MSE) on the series works well, but we

can gain power using the estimator given in (4.3). Table 4.1 provides the empirical size for the

statistics under study when the data follows an iid N(0, 1) process of different sample sizes ranging

from one-year of monthly data to eight-years. We see that when the variance term is measured

Table 4.1: Empirical size, based on 10,000 simulated series, of tests when data follows a white noise
process and p-values are calculated using the asymptotic distribution

n = 12 n = 24 n = 36 n = 48 n = 96
m=3 m=4 m=5 m=8 m=6 m=12 m=7 m=16 m=10 m=32

Cauchy Test (MSE) .0418 .0476 .0503 .0573 .0553 .0636 .0549 .0676 .0577 .0775
Cauchy Test (4.3) .1145 .1299 .0817 .1000 .0789 .0979 .0754 .0969 .0678 .0954

Ljung Box .0513 .0602 .0547 .0660 .0579 .0762 .0574 .0835 .0618 .0910
Monti .0616 .0678 .0533 .0528 .0583 .0556 .0523 .0491 .0530 .0447

with (4.3), the statistic has fairly liberal Type I error performance. When the variance is estimated

using the sample MSE, the empirical size is more satisfactory. Overall the size of the Cauchy testing
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utilizing (4.3) improves as the sample size increases. The simulation results for Ljung Box follow its

well known behavior, slightly liberal both for small samples and as m increases. The Monti statistic

appears to have a more consistent size but is slightly liberal at smaller sample sizes.

In the case of a fitted ARMA model, it makes sense to utilize (4.3) to estimate the variance so

we do so here. Table 4.2 provides the empirical size for properly fit AR(1) models under a variety of

sample sizes. The statistics from Ljung Box and Monti are liberal for small sample sizes but generally

Table 4.2: Empirical size, based on 10,000 simulated series, of tests under properly fit AR(1) models
utilizing the respective asymptotic distributions

n = 12 n = 24 n = 36 n = 48 n = 96
AR(1) Models m=3 m=4 m=5 m=8 m=6 m=12 m=7 m=16 m=10 m=32

φ = .3
Cauchy Test (CT) .0784 .0996 .0575 .0798 .0527 .0779 .0534 .0765 .0509 .0834

Ljung Box (LB) .0599 .0561 .0494 .0542 .0478 .0604 .0512 .0661 .0508 .0739
Monti (MT) .0784 .0826 .0614 .0606 .0614 .0553 .0603 .0502 .0544 .0423

φ = .6
Cauchy Test (CT) .0735 .0916 .0627 .0810 .0537 .0813 .0517 .0781 .0484 .0841

Ljung Box (LB) .0644 .0598 .0582 .0631 .0544 .0622 .0552 .0646 .0534 .0774
Monti (MT) .0780 .0862 .0672 .0599 .0571 .0522 .0556 .0480 .0561 .0419

φ = .9
Cauchy Test (CT) .0849 .0959 .0751 .0905 .0593 .0882 .0540 .0881 .0554 .0867

Ljung Box (LB) .0655 .0623 .0636 .0696 .0584 .0681 .0576 .0721 .0600 .0775
Monti (MT) .0822 .0913 .0661 .0611 .0652 .0512 .0601 .0472 .0538 .0387

improve. The proposed Cauchy test appears to be a little more liberal in some cases but overall

seems comparable. The performance of all the tests improve as the sample size increases, however

all the statistics exhibit some sensitivity for larger values of m. Fortunately, modern computing

techniques makes this issue nearly moot as critical points and p-values can be determined from the

true distribution via Monte Carlo methods. Furthermore, by utilizing the Monte Carlo distribution

a practitioner does not have to be concerned with deciding whether to use (4.3) or the MSE in the

white noise null hypothesis test. To improve power performance, we recommend (4.3) be used in

the Cauchy estimator test.

As aforementioned, computer power has continued to grow at an exponential rate over the

years. If a practitioner is not satisfied with the Type I performance based on the asymptotic null

distribution, Monte Carlo methods can be utilized using the algorithm in McLeod and Lin (2006).

Here we study the performance of the statistics when the p-values are determined using the Monte

Carlo algorithm. For the sake of practicality in our simulations, we perform 1000 replicates where

each p-value is calculated using T = 1000 iterations in the Monte Carlo algorithm. As expected, we

see in Table 4.3 that all the statistics have satisfactory Type I error when p-values are determined
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Table 4.3: Empirical size, based on 1,000 simulated series, of tests under study for White Noise and
properly fit AR(1) models when the Monte Carlo distribution is utilized for p-values

n = 12 n = 24 n = 36 n = 48 n = 96
m=3 m=4 m=5 m=8 m=6 m=12 m=7 m=16 m=10 m=32

CT .048 .055 .045 .046 .046 .040 .050 .051 .056 .049
WN LB .053 .064 .050 .041 .047 .039 .054 .053 .059 .054

MT .056 .065 .049 .046 .041 .045 .062 .049 .047 .047
AR(1) CT .042 .048 .049 .049 .043 .045 .060 .050 .045 .036
φ = .3 LB .046 .042 .039 .050 .049 .052 .060 .053 .048 .041

MT .039 .050 .037 .044 .049 .055 .057 .050 .054 .040
AR(1) CT .043 .043 .053 .055 .050 .040 .049 .061 .053 .059
φ = .6 LB .055 .044 .052 .056 .054 .049 .049 .050 .052 .054

MT .044 .039 .048 .061 .054 .051 .048 .046 .046 .051
AR(1) CT .050 .053 .056 .054 .058 .061 .061 .061 .046 .051
φ = .9 LB .046 .061 .055 .059 .057 .049 .059 .055 .059 .052

MT .046 .046 .045 .043 .055 .057 .056 .048 .067 .039

through Monte Carlo methods. Since when utilizing the asymptotic distribution, all the statistics

under study have Type I error concerns in small samples, we will utilize the Monte Carlo algorithm

throughout the remainder of this article and recommend it in practice.

4.3.2 Empirical Power

In general our simulations show the proposed Cauchy test is comparable to the Ljung-Box

test and can be more powerful in some cases. In our first study we attempt to detect a generated

AR(1) with φ = 0.9. We let the sample size n grow from 6 to 36 and calculate the test statistics

at lag m = n/3. The p-value of each statistic is calculated using the algorithm of McLeod and Lin

(2006) and the empirical power is determined as the proportion of rejections at α = 0.05. Figure

4.1 provides a plot of relative power in detecting correlation in first-order autoregressive data as a

function of the sample size. We see that the proposed test provides more power at small samples than

the other portmanteau procedures and that they are comparable at larger sample sizes. We note here

that this example is not selected as all encompassing or even typical, but rather is an example for

which the proposed test performs well. For example, for underfit moving average models, tests based

on the partial correlations (such as Monti’s test) generally will outperform the proposed Cauchy-

based test. However, a partial Cauchy correlation test might compete in this case although we do

not pursue this here.

A similar study is displayed in Figure 4.2. Here, an AR(2) with φ1 = 0.1 and φ2 = 0.8 is

inadequately fit with an AR(1). The power of the three statistics is studied as a function of n with

lag m = n/3. We see that the Cauchy test is comparable to the Ljung Box statistic with slight
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Figure 4.1: Empirical power at α = 0.05 for detecting AR(1) with φ = 0.9

improvement in a few cases. Both statistics appear to dominate the Monti test which is generally

better at detecting underfit moving average components.

Lastly, we explore the power performance on a larger order ARMA model. Data is generated

from an ARMA(2,1) with parameters φ1 = 0.2, φ2 = 0.7 and θ = −0.5 and underfit with an AR(1).

The statistics are calculated using the Monte Carlo algorithm at m =
√
n and the sample size

increases from n = 12 to n = 48 in increments of 3. Figure 4.3 displays the empirical power of the

statistics under study. As demonstrated in the figure, the proposed Cauchy estimator test provides

the most powerful method for some small n values, is comparable to Ljung Box for moderate sample

sizes and is eventually surpassed by the Ljung Box statistic as n-grows.

The small sample behavior of the proposed test is exemplified in Table 4.4. Here a series

of size n = 18 from an AR(2) with φ1 = 0.3 and φ2 = 0.6 is generated. For each simulated sample

three 0.05-level tests are performed. First, we test for correlation in the simulated process; these

power results are in the first column of the table. Second, we improperly fit an AR(1) model to
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Figure 4.2: Empirical power at α = 0.05 for AR(2) underfit as AR(1), φ1 = 0.1, φ2 = 0.8

the data; these power results appear in the second column of the table. Third, we fit the correct

order AR(2) model; these Type I error results appear in the last column of the table. We see

Table 4.4: Empirical power and size at α = 0.05 in fitting an AR(2) model, n = 18, m = 6

Method No fit AR(1) fit Correct fit

Cauchy Test .300 .118 .054
Ljung Box .276 .121 .054

Monti .201 .103 .057

that the Cauchy-based test provides the highest power in detecting the correlation in the simulated

autoregressive process. The proposed test also compares favorably to the other methods when the

model is underfit with an AR(1).
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Figure 4.3: Empirical power at α = 0.05 for ARMA(2,1) underfit with AR(1), φ1 = 0.2, φ2 = 0.7,
θ = −0.5

4.4 Data Analysis

The simulation results indicate the proposed Cauchy test can be more powerful in detecting

autocorrelation in small sample time series. Here we utilize the statistics to check for serial correlation

in the log monthly returns of Facebook, Inc. (FB) stock. Facebook is a very popular social media

website that had a highly publicized Initial Public Offering (IPO) on May 18, 2012. We consider the

IPO to be the start of the series and look at the first trading day of each month since to comprise

our monthly series. The log monthly returns comprise only n = 11 observations at the time of the

authoring of this article. Table 4.5 provides the p-values (based on the Monte Carlo distribution)

for the proposed statistic, Ljung-Box and Monti statistics at lags 3 (roughly
√
n) and 4 (roughly

n/3). We see all the statistics are insignificant at α = 0.05 and both lags. Given the results from the

simulation study, this suggests that the Facebook monthly data does not contain serial correlation.

69



Table 4.5: Detecting serial correlation in Facebook, Inc. monthly returns, p-values via Monte Carlo
methods

m=3 m=4

Cauchy Test 0.3906 0.5624
Ljung Box 0.8317 0.7303

Monti 0.8703 0.7033

4.5 Summary

This paper introduces a new portmanteau test for correlation and a new ARMA goodness-of-

fit test. Both tests are based on the Cauchy estimator of correlation. The asymptotic behavior of the

tests are quantified and studied via simulation. Our simulations indicate, like that of the statistics in

the literature, the asymptotic distribution can lead to inflated Type I error rates for smaller sample

sizes. As such, we recommend Monte Carlo methods like those described in McLeod and Lin (2006)

be utilized to determine critical points and p-values. To improve the power performance, we suggest

the variance term of our proposed method be estimated with equation (4.3).

Like tests based on the residual sample autocorrelation, the proposed test is better at picking

up underfit autoregressive processes than detecting underfit moving average components. Perhaps

a version with Cauchy partial correlations, similar to Monti (1994), would provide more power in

detecting missing moving average components. It is possible that an asymmetric test could be

constructed based on the matrix of Cauchy correlations similar to McLeod and Mahdi (2012), Pena

and Rodriguez (2002, 2006) or Fisher and Gallagher (2012). A test of this type might provide higher

power than the tests proposed in this paper.
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