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ABSTRACT

The effects of the subgrid-scale (SGS) turbulence on the resolvable-scale statistics as well

as the effects of SGS models on large-eddy simulation (LES) are studied. It is shown that the

SGS turbulence evolves the resolvable-scale joint probability density function (JPDF) through the

conditional means of the SGS stress, the SGS scalar flux, and their production rate, which must be

reproduced by the SGS model for LES to predict correctly the one-point resolvable-scale statistics, a

primary goal of LES. This necessary condition is used as the basis for studying SGS physics and for

testing SGS models. Theoretical predictions, measurements data, and numerical simulation results

are combined to investigate the effects of filter size, the dependence of the SGS turbulence on the

flow dynamics, and SGS models performance using new a priori and a posteriori tests developed in

this research.

For inertial-range filter scales, LES statistics of the energy- and flux-containing scales are

generally considered to be insensitive to the SGS model employed. To examine this premise, the

effects of the subgrid-scale (SGS) velocity, scalar, and SGS models on the resolvable-scale velocity-

scalar joint probability density function (JPDF) are studied. The mean SGS stress and SGS scalar

flux production rate is predicted using Lumley’s assumption (Lumley 1967), which is consistent

with Kolmogorov’s hypothesis. Analyses of these statistics using data obtained in a slightly heated

turbulent jet show that the mean SGS stress, SGS scalar flux, and their production rates have filter-

scale dependencies consistent with predictions, suggesting that the SGS turbulence has diminishing

influence on the lower-order resolvable-scale statistics for inertial-range filter scales and supporting

the premise of LES at the level of lower-order statistics. The measured conditional SGS stress and

SGS flux as well as the conditional production rates have a strong dependence on the resolvable-

scale velocity and scalar, indicating strong flow history effects, and decrease much slower than the

predicted filter dependencies, indicating that the SGS turbulence has non-trivial effects on the high-

order resolvable-scale statistics even for inertial-range filter scales.

For energy-containing filter scales, previous studies have shown that LES results depend

strongly on the SGS models. To study the effects of the SGS turbulence on the resolvable-scale

velocity statistics for such filter scales, the SGS stress in the atmospheric surface layer is studied

using measurement data (HATS 2000). Analysis of the conditional SGS stress and the conditional

stress production rate conditional on the resolvable-scale velocity show that both buoyancy and
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shear play important roles in the physics of the SGS stress. Strong buoyancy and vertical shear

associated with updrafts and positive streamwise velocity fluctuations cause conditional forward

energy transfer and strong anisotropy in the conditional SGS stress. Downward returning flows

associated with large convective eddies result in much less anisotropic SGS stress and conditional

energy backscatter. Predictions of the conditional SGS stress and the conditional stress production

rate predicted using several SGS models are compared with measurements. None of the models tested

are able to predict correctly the trends of both statistics. The deficiencies of the SGS models that

cause inaccurate LES statistics, such as the over-prediction of the mean shear and under-prediction

of the vertical velocity skewness, are identified.

To study the effects of the SGS turbulence on the resolvable-scale velocity-scalar statistics

for energy-containing filter scales, the SGS scalar flux in the atmospheric surface layer is studied

using field measurements data. The results show that the conditional scalar flux and its production

rate depend on the resolvable-scale velocity and temperature fluctuations, suggesting that these

conditional variables have strong influences on the resolvable-scale statistics. The dependencies are

argued to be due to the effects of buoyancy and flow history. The results show that the conditional

vertical scalar flux affects the conditional horizontal scalar flux production rate. However, the

conditional horizontal scalar flux has no direct effect on the conditional vertical scalar production

rate. Therefore, the correct modeling of the conditional vertical scalar flux components is crucial.

Predictions of the conditional scalar flux and its production rate predicted using several SGS models

are compared with measurements. The current SGS models have varying levels of performance in

predicting different SGS flux components. As a results, the poor prediction of one SGS component

often affects the prediction of the production rate of another SGS component, thereby resulting

in errors in the LES statistics. Therefore, efforts to improve SGS models need to ensure that all

the relevant SGS fluxes related to the LES statistics of interests or of importance to the intended

applications are correct predicted. The present study shows that analysis of the conditional statistics

can serve as an important guide in studying the SGS physics, identifying model deficiencies, and

developing improved SGS models.

To understand the model performance, a new a posteriori test is employed to study SGS

model performance. Unlike traditional a posteriori tests of SGS models, which often compare

LES profiles of various statistics with measurements, the new approach compares the conditional

means of the LES-generated SGS stress and the conditional stress production rate conditional on

the resolvable-scale velocity with measurements. The Smagorinsky model, the split model, and the

Kosović model are tested. The LES results for convective atmospheric boundary layers show that
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the level of the anisotropy of the SGS stress represented in the Lumley triangle is under-predicted

by both the Smagorinsky model and the Kosović model. The magnitudes of the conditional SGS

stress and the conditional SGS stress production rate are generally under-predicted by both models

as well. The trends of the conditional SGS stress and the conditional SGS stress production rate

are generally better predicted by the Kosović model than that of the Smagorinsky model. The

model strengths and deficiencies observed here were also identified in previous statistical a priori

tests analyzing the conditional statistics. The remarkable consistency between the two types of

tests suggests that statistical tests analyzing the conditional SGS stress and its production rate

are capable of identifying specific model deficiencies and for evaluating SGS model performance in

simulations.
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CHAPTER 1

Introduction

Large-eddy simulation (LES) has become a very important approach for computing engi-

neering and environmental turbulent flows [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], for example, atmospheric

boundary layers. Large-eddy simulation(LES) computes the large, or resolvable-scale and models

the effects of the small, or subgrid-scales (SGS). For nonreacting incompressible turbulent flow LES,

models are required for SGS stress and SGS scalar flux. The resolvable-scales contain most of the

energy and fluxes and depend on the flow environments, while the subgrid-scales are less energetic

and are considered to be more universal. When the filter size is sufficiently small to resolve most of

the turbulent energy and fluxes, LES statistics of the energy- and flux-containing scales are gener-

ally expected to be insensitive to the SGS model employed. This premise is based on Kolmogorov’s

hypothesis of statistical independence of distant-scales.

However, in many cases the highest resolution of LES are often at the beginning of the

inertial range or even larger due to the limitation of computer resources or the inherent scale in-

homogeneity, such as the atmospheric surface layer. The LES results employing current SGS mod-

els, such as the Smagorinsky model, the similarity model, and the nonlinear model, have shown

varying degrees of accuracy [13, 7, 14, 11, 15, 16, 17, 18, 19, 12, 20]. There is also evidence that

energy-containing statistics such as mean and variance in the outer-regions of high-Reynolds-number

boundary layers are to some extent insensitive to the details of the SGS model employed [21]. While

these studies provided useful empirical information for evaluating the effects of SGS models on LES

results, it is important to examine more rigorously the dependencies of the resolvable-scale statistics

on the SGS stress and those of LES results on the SGS models.

Traditionally SGS models are studied primarily in two ways: a priori and a posteriori tests

(e.g. [22, 23, 24, 6, 25, 26, 8, 27, 28, 29, 30, 21, 31, 32, 33, 19, 34, 35, 36]). Traditional tests have

contributed greatly to the understanding of the current SGS models. However, they also have their

limitations. For a priori tests, it is difficult to predict the effects of model behaviors on LES results.

For example, the correlation between the modeled and measured SGS stress components provides

little information about model performance in a simulation. For a posteriori tests, it is difficult to
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relate deficiencies of LES results to specific aspects of the model behaviors. This is not only because

the SGS stress evolves LES fields through dynamic equations, but also because the equations are

chaotic with many degrees of freedom, making it difficult to relate the properties of the solutions to

the behaviors of the SGS terms in the equation.

In view of the difficulties in directly assessing the model effects on LES results, it is important

to use a more systematic approach for analyzing SGS models. While SGS models affect the predicted

instantaneous flow fields and structures, their impact on flow statistics is arguably most important

and should first be understood. In fact, Pope (2000) [37] argues that the best LES that can be

achieved is one that statistically corresponds to the true resolvable-scale fields. Although it is not

practical to expect an SGS model to predict all the statistics of the resolvable-scale fields, it should

at least be able to predict those important for specific applications (e.g. mean and r.m.s. profile,

spectra, vertical velocity skewness, etc.). Because flow statistics are often strongly influenced by

large-scale flow structures, their correct prediction will also benefit the predicted flow structures.

Therefore, an important task in improving an SGS stress model is to understand how the SGS

stress influences the resolvable-scale statistics and how the influences vary with the filter scale. The

former is important for understanding SGS model strengths and deficiencies, therefore is essential

to developing improved models. The latter is important for understanding the extent to which LES

depends on the SGS model as the filter scale decreases, i.e., the extent to which the premise of LES

is valid.

To accomplish this task, an analysis method relating the SGS model to LES statistics is

needed. Dynamic equations for the statistics of the resolvable-scale velocity are a very useful choice.

Chen et al. [38] studied the effects of the SGS turbulence on the resolvable-scale statistics using

the transport equation of the resolvable-scale velocity joint probability density function (JPDF).

They showed that the SGS stress affects the resolvable-scale velocity JPDF directly through the

conditional SGS stress and the conditional stress production rate conditional on the resolvable-scale

velocity and indirectly through the conditional pressure and conditional pressure-strain correlation.

Their study is extended to the velocity-scale JPDF equation and provide theoretical predictions of

the filter-scale dependencies in Chapter 2. These conditional statistics are further studied using data

obtained in the surface layer of the atmospheric boundary layer in Chapters 3 and 4. A new JPDF

based a posteriori test for SGS stress models is given in Chapter 5, followed by conclusions.



CHAPTER 2

Effects of subgrid scales on resolvable-scale

velocity-scalar JPDF and their filter-scale

dependencies

Chen et al. (2003) [38] studied the conditional SGS stress and the conditional SGS stress

production rate using the resolvable-scale velocity JPDF, and gave the necessary conditions for

LES to correctly predict the resolvable-scale velocity JPDF as that the SGS model must reproduce

the conditional SGS stress and conditional SGS stress production. To understand the extent to

which LES premise is valid, Chen et al. [38] also examined the filter-scale dependencies of these

conditional means using experimental data obtained in a turbulent jet. Their results show that while

the conditional SGS stress decreased with the filter scale, the conditional SGS stress production

is nearly independent of the filter scale, suggesting that the SGS turbulence might influence the

resolvable-scale statistics even with inertial-range filter scales. Therefore certain effects of the SGS

model on LES statistics might not diminish with filter scale. In this chapter, The effects of SGS

stress and SGS scalar flux on the resolvable-scale velocity-scalar JPDF are examined using the

JPDF transport equation and the filter-scale dependence of these effects. Correct prediction of the

velocity-scalar JPDF by LES is important because in addition to mean and r.m.s. it also contains all

higher-order single-point statistics, some of which are of practical importance. For example, several

third-order statistics represent turbulent transport while the scalar PDF is key to describe pollutant

dispersion.

The velocity-scalar JPDF equation can be obtained following the method given by Pope

(1985) [39]. Differentiating the definition of the JPDF:

f =

〈

δ[φr − ψ]
3
∏

i=1

δ[uri − vi]

〉

(2.1)
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we obtain

∂f

∂t
= −

∂

∂vi

{〈

∂uri
∂t

∣

∣

∣

∣

ur = v, φr = ψ

〉

f

}

−
∂

∂ψ

{〈

∂φr

∂t

∣

∣

∣

∣

ur = v, φr = ψ

〉

f

}

(2.2)

where v and ψ are the sample-space variables for the resolvable-scale velocity ur and the resolvable-

scale scalar φr, respectively. The Dirac delta function and the filtering operation are denoted by δ

and a superscript r, respectively. Substituting the time derivative term
∂ur

i

∂t and ∂φr

∂t in equation

(2.2) with the right-hand-side (RHS) of the equation for the resolvable-scale velocity:

∂uri
∂t

= −
∂urju

r
i

∂xj
−
∂τij
∂xj
−
∂Lij
∂xj

−
∂pr

∂xi
+ ν

∂2uri
∂xj∂xj

(2.3)

where τij = (uiuj)
r − (uriu

r
j)
r, Lij = (uriu

r
j)
r − uriu

r
j , p

r, and ν are the SGS stress, Leonard stress,

filtered pressure, and molecular viscosity, respectively, and the filtered equation for the resolvable-

scale scalar:

∂φr

∂t
= −

∂φruri
∂xi

−
∂Fi
∂xi
−
∂Gi

∂xi
+ Γ

∂2φr

∂x2i
(2.4)

where Fi = (uiφ)
r − (uriφ

r)r, Gi = (uriφ
r)r − uriφ

r and Γ are the SGS scalar flux, Leonard part of

the SGS scalar flux, and molecular diffusivity, respectively, we obtain the transport equation of the

JPDF of the resolvable-scale velocity and scalar

∂f

∂t
+ vj

∂f

∂xj
=

∂

∂vi

{〈

∂τij
∂xj

∣

∣

∣

∣

ur = v, φr = ψ

〉

f

}

+
∂

∂vi

{〈

∂Lij
∂xj

∣

∣

∣

∣

ur = v, φr = ψ

〉

f

}

+
∂

∂ψ

{〈

∂Fi
∂xi

∣

∣

∣

∣

ur = v, φr = ψ

〉

f

}

+
∂

∂ψ

{〈

∂Gi

∂xi

∣

∣

∣

∣

ur = v, φr = ψ

〉

f

}

+
∂

∂vi

{〈

∂pr

∂xi

∣

∣

∣

∣

ur = v, φr = ψ

〉

f

}

. (2.5)

The two terms on the left-hand-side are the time rate of change and advection in physical space. The

first two terms on the RHS are transport of the JPDF in velocity space by the SGS stress divergence

and the Leonard stress divergence, respectively. The third and forth terms are transport in scalar

space by the SGS scalar flux divergence and the Leonard scalar flux divergence, respectively. The

last term is transport in velocity space by the filtered pressure gradient. The viscous and scalar

diffusion terms are small and are omitted at high Reynolds numbers.

Traditionally, SGS turbulence are studied by analyzing the SGS stress and flux rather than

their divergences. Therefore, an alternative form of the equation similar to that given by Chen et
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al. [38] is derived

∂f

∂t
+ vj

∂f

∂xj
=

∂2

∂vi∂xj
{〈τij |u

r = v, φr = ψ〉 f}+
∂2

∂vi∂xj
{〈Lij |u

r = v, φr = ψ〉 f}

+
∂2

∂vi∂vj
{〈−Pij |u

r = v, φr = ψ〉 f}+
∂2

∂vi∂vj

{〈

Lik
∂urj
∂xk

∣

∣

∣

∣

ur = v, φr = ψ

〉

f

}

+
∂2

∂ψ∂xi
{〈Fi|u

r = v, φr = ψ〉 f}+
∂2

∂ψ∂xi
{〈Gi|u

r = v, φr = ψ〉 f}

+
∂2

∂ψ∂vi
{〈−PFi|u

r = v, φr = ψ〉 f}+
∂2

∂ψ∂vi

{〈

Lik
∂φr

∂xk
+Gk

∂uri
∂xk

∣

∣

∣

∣

ur = v, φr = ψ

〉

f

}

+
∂2

∂ψ∂ψ
{〈−Pφ|u

r = v, φr = ψ〉 f}+
∂2

∂vi∂xi
{〈pr|ur = v, φr = ψ〉 f}

+
∂2

∂vi∂vk

{〈

pr
∂urk
∂xi

∣

∣

∣

∣

ur = v, φr = ψ

〉

f

}

+
∂2

∂vi∂ψ

{〈

pr
∂φr

∂xi

∣

∣

∣

∣

ur = v, φr = ψ

〉

f

}

(2.6)

where Pij = − 12

{

τik
∂ur

j

∂xk
+ τjk

∂ur
i

∂xk

}

, PFi = −
{

τik
∂φr

∂xk
+ Fk

∂ur
i

∂xk

}

, and Pφ = −Fk
∂φr

∂xk
are the SGS

stress production rate, the SGS scalar flux production rate, and the SGS scalar variance production

rate, respectively. Therefore, the SGS stress and the SGS scalar flux evolve the JPDF directly

through their conditional means and their conditional production rates. The terms in equation (2.6)

have familiar physical interpretations: the first two terms on the RHS are mixed transport in both

velocity and physical spaces due to the SGS stress and the Leonard stress, followed by transport in

velocity space due to the SGS stress production rate and the Leonard stress production rate. The

next two terms are mixed transport in both scalar and physical spaces due to the SGS scalar flux

and the Leonard scalar flux. The fifth and the sixth terms are mixed transport in scalar and velocity

spaces due to the SGS scalar flux production rate and the Leonard scalar flux production rate. The

next term is transport in scalar space due to the SGS scalar variance production rate. The last three

terms are mixed transport in velocity and physical spaces, transport in velocity space, and mixed

transport in velocity and scalar spaces due to the resolvable pressure, the pressure-strain correlation,

and the pressure-scalar-gradient correlation, respectively.

From equation (2.6) The necessary conditions for LES to correctly predict the resolvable-

scale velocity-scalar JPDF is obtained as that SGS models reproduce the conditional SGS stress,

the conditional SGS scalar flux, the SGS stress production rate, the conditional SGS scalar flux pro-

duction rate, and the SGS scalar variance production rate. These statistics have physical meanings

similar to those of Reynolds stress and Reynolds stress production rate, therefore can be interpreted

more clearly in the context of the flow dynamics than those in equation (2.5). Compared to the LES

equations which deal with random variables, the JPDF equation contains only statistics; therefore
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it relates the SGS statistics much more closely to the resolvable-scale statistics (Chapter 3). Fur-

thermore, analytical results (Sabelnikov (1998) [40]) can be used to understand the effects of these

conditional statistics (the SGS turbulence) on the JPDF. Correct predictions of these conditional

SGS statistics by SGS models will also be essential for LES predictions of time correlation (Adrian

(1990) [41]), which are important for predicting acoustic radiation [42, 43].

In the present work, The above conditional statistics are analyzed using experimental data

obtained in a turbulent axisymmetric jet to investigate the effects of SGS turbulence and SGS models

on the resolvable-scale and LES statistics. The filter-scale dependencies of the conditional statistics

is also predicted using Lumley’s assumption [44], which is consistent with Kolmogorov’s hypothesis of

independence of distant scales. The predictions are compared with measurements and Smagorinsky

model results. It is found that the conditional statistics depend strongly on the dynamics of the

jet and that the dependencies of some SGS production rates decrease slower with filter scale than

predicted using Lumley’s assumption, suggesting non-diminishing effects of SGS models on the

JPDF. Therefore, in applications where the JPDF (or higher-order statistics) is important, the SGS

model needs to be tested against these conditional statistics. The rest of the chapter is organized

as follows. The filter-scale dependencies of the mean SGS stress production rate and SGS flux

production rate are considered in Section 2.1. In Section 2.2 the experimental facility and flow

conditions are described. Section 2.3 examines the conditional statistics, their dependencies on the

filter scale, and the Smagorinsky predictions using data obtained in an axisymmetric turbulent jet.

The conclusions are given in Section 2.4.

2.1 Predictions of inertial-range dependencies

In this section, the filter-scale dependencies of the mean production rates for SGS stress

and the production rate for scalar fluxes is considered. Without loss of generality, a homogenous

shear flow with a crossstream mean scalar gradient is considered because this flow possesses the two

scalar flux production mechanisms found in a more general flow. At off-centerline positions in a jet

it is expected the SGS production rates to be similar to those in a homogenous shear flow except

that turbulent transport may be important in the SGS stress and flux transport equation. the SGS

shear stress production rate 〈P12〉 is first considered. Following Lumley [44], It is assumed that in

the inertial range 〈P12〉 is determined by ε, k, and U ′ = ∂〈u1〉
∂x2

, where ε is the mean energy transfer

rate and k is the wavenumber magnitude. The equation for 〈P12〉 is

∂ 〈P12〉

∂k
=

〈

̂
u1

∂p

∂x2

〉

+

〈

̂
u2

∂p

∂x1

〉

. (2.7)
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Here

〈

̂u1
∂p
∂x2

〉

denote the spherically averaged co-spectrum of u1 and ∂p
∂x2

. It is noted that 〈P12〉

includes both the production rate due to the mean gradient and the spectral transfer rate due to

turbulent fluctuations because the resolvable scales include the mean flow. Therefore, under quasi-

equilibrium conditions, 〈P12〉 varies due to pressure destruction. Because the pressure term must be

odd in U ′, the RHS of (7) has the form

ε2/3k−5/3U ′ψ

[

(

U ′

(εk2)1/3

)2
]

, (2.8)

where the function ψ represents the departure from the inertial-range form as the integral scales

are approached. Following Lumley’s analyses, we let x = (k/k0)
−4/3 and (U ′)2

(εk2

0
)2/3

= 1. Using the

boundary condition 〈P12〉
ε → 0 as x→ 0 (the high wavenumber limit), we obtain

〈P12〉

ε
= x1/2ψ(0) =

(

k

k0

)−2/3

ψ(0), for x¿ 1. (2.9)

Therefore 〈P12〉 falls off as k−2/3 (∆2/3), which is slower than the k−4/3 prediction [44] for the

anisotropy of the energy transfer rate to each velocity component. This is because the latter requires

existing anisotropy whereas 〈P12〉 can result from straining of isotropic turbulence.

The predictions of the SGS flux production will be considered separately for F1 and F2

because they have different production mechanisms: the former is primarily caused by straining

and rotation of scalar flux,
〈

F2
∂ur

1

∂x2

〉

, whereas the latter is due to the scalar gradient production,
〈

τ22
∂φr

∂x2

〉

. Lumley’s assumption is extended to 〈PF2〉 as that it is determined by ε, χ, k and φ′

where χ and φ′ = 〈∂φ〉
∂x2

are the mean scalar variance transfer rate and the mean scalar gradient,

respectively. We then have

∂ 〈PF2〉

∂k
=

〈

̂
φ
∂p

∂x2

〉

, (2.10)

where

〈

̂φ ∂p
∂x2

〉

denotes the spherically averaged co-spectrum of φ and ∂p
∂x2

, which must be odd in φ′

and therefore has the form

ε2/3k−5/3φ′ψ2

(

(φ′)2

χε−1/3k4/3
(U ′)2

(εk2)2/3

)

. (2.11)

Again ψ2 represents the departure from the inertial-range scaling and is even in φ′. We have

〈PF2〉

(χε)1/2
= x1/2ψ2(0) ∼ k

−2/3, for x¿ 1. (2.12)
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Therefore, 〈PF2〉 falls off at the same rate as the mean SGS stress production rate 〈P12〉. The

production rate 〈PF1〉 is different from 〈PF2〉 as it is odd in both U ′ and φ′. Therefore

∂ 〈PF1〉

∂k
=

〈

̂
φ
∂p

∂x1

〉

= ε1/3k−7/3φ′U ′ψ1

(

(φ′)2

χε−1/3
(U ′)2

(εk2)2/3

)

. (2.13)

We then have

〈PF1〉

(χε)1/2
= xψ2(0) ∼ k

−4/3, for x¿ 1 (2.14)

Therefore 〈PF1〉 falls off faster than 〈PF2〉 and 〈P12〉.

These predicted production rates will be compared with experimental results in Section

2.3.2 to examine the filter-scale dependencies of the conditional SGS flux and the conditional SGS

flux production rate. These theoretical predictions are consistent with Kolmogorov’s hypothesis of

statistical independence between large and small scales, therefore agreement between measurements

and predictions would indicate that the SGS turbulence (other than the energy and scalar variance

transfer rates) has diminishing effects on the JPDF for sufficiently small filter scales. On the other

hand, fall-offs slower than the predictions would suggest that the SGS stress and fluxes have last-

ing influences on the resolvable-scale JPDF. The Smagorinsky model predictions of the filter-scale

dependencies will also be compared with the theoretic predictions and the experimental results.

2.2 Experimental apparatus and flow conditions

The jet facility was housed in a large, air conditioned room. The jet flow was produced

with an assembly of a nozzle and a plenum chamber (Figure 2.1) with a section of flow-straightening

honeycomb and three stages of damping screens. The assembly was mounted vertically on a 5×5 ft2

grill portion of the floor to allow the flow of entrainment air. The flow downstream of the nozzle was

surrounded by a circular screen (1/16′′ mesh size) of 6 ft in diameter to reduce the disturbances in

the room. A collection hood connected to an exhaust duct was installed at a downstream distance

of 260 nozzle diameters (3.9 m) to minimize the effects of the ceiling on the jet. Jet air supply

was heated with a pipe heater before entering the plenum chamber, producing an excess (above the

ambient) temperature of 20◦C at the nozzle exit. The jet nozzle had a fifth-order polynomial profile

with a large contraction ratio (≈ 100), producing a nearly top-hat velocity profile at the nozzle exit.

All measurements were made for a jet exit velocity Uj of 40 m/s. The jet Reynolds number

Rej based on the nozzle diameter Dj and the jet exit velocity (UjDj/ν) was 40000 where ν is the



9

y

x

collection hood

grill floor

compressed

       air

    resistance wire and 
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Figure 2.1 A schematic of the experimental set-up including a magnified view of the
velocity and temperature sensor arrays. The arrays are used to perform filtering in
the transverse direction in addition to the streamwise filtering performed by invoking
Taylor’s hypothesis.
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Table 2.1 Flow parameters on the jet centerline at x/Dj = 80

〈U〉
〈

u21
〉1/2 〈

u22
〉1/2

Rλ ε χ η ηφ

3.07 (m/s) 0.73 (m/s) 0.61 (m/s) 233 5.22 (m2/s3) 5.54 (K2/s) 0.16 (mm) 0.22 (mm)

kinematic viscosity. The corresponding Taylor microscale Reynolds number Rλ =
〈

u2
〉1/2

λ/ν was

approximately 233 (Table. 2.1), where
〈

u2
〉1/2

is the r.m.s. streamwise velocity fluctuation and λ is

the Taylor microscale. Data were collected at x/Dj = 80, well into the self-similar (fully developed)

region of the jet. Jet off-centerline measurements is limited to y/x = 0.1 to avoid flow reversal

and to minimize errors associated with employing Taylor’s hypothesis. The mean axial velocity

on the jet centerline Uc at this downstream location was 3.08 m/s and the resulting Uj/Uc value

was comparable to previous results [45, 46, 47]. The Kolmogorov scale η = (ν3/ε)1/4 was 0.16

mm, where ε = 15ν
〈

(∂u1

∂x1

)2
〉

was the energy dissipation rate. The scalar dissipation length scale

ηφ = (γ3/ε)1/4 was 0.22 mm, where γ is the thermal diffusivity. Under these flow conditions the

Kolmogorov frequency of the signals (Uc/(2πη) = 2.5kHz) can be fully resolved by the sensors.

Measurements of filtered variables require spatial filtering of scalar fields. Due to the difficul-

ties in obtaining three-dimensional data experimentally, two-dimensional (streamwise and radial di-

rections) filtering as well as one-dimensional (streamwise direction only) were employed in the present

study. Streamwise filtering was performed by invoking Taylor’s hypothesis and the cross-stream fil-

tering was realized with three hot-wire sensors aligned in the cross-stream direction (Figure 2.1).

This filtering technique was studied by Tong et al. [48] and has been used by a number of authors to

study the SGS stress [48, 49, 50, 51, 52, 38] and conditional SGS PDF [53, 54, 55]. Two-dimensional

filtering has been demonstrated to provide a very good approximation of three-dimensional filtering,

with errors of approximately 5% for the r.m.s. of the resolvable-scale variables [48]. In the present

study three filter width: 10, 20, and 40 mm were used, corresponding to ∆/η = 63, 125, and 250,

respectively. Box filters were used here because it allows the resolvable-scale velocity derivatives in

the cross-stream direction to be computed from the sensor array data.

To obtain the Leonard stresses, the SGS stress, the Leonard part of the SGS scalar flux, and

the SGS scalar flux defined in Section 2.1, which are different from the definition τij = (uiuj)
r−uriu

r
j

and Fi = (uiφ)
r−uriφ

r in some literature, one-dimensional filters are also employed. For example, the

SGS stress τij = (uiuj)
r− (uriu

r
j)
r is computed by filtering uiuj and ui with a two-dimensional filter
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and then filtering uriu
r
j with a one-dimensional filter. Meneveau [31] has used one-dimensional filter

to study the SGS stress and argued that the trends obtained should be similar to those using two-

and three-dimensional filters. Wang and Tong [54] have also used one- and two-dimensional filters

to compute statistics of conditionally filtered scalar dissipation and qualitatively comparable results

were obtained. Thus it is argued here that for computations of the statistics of filtered variables, a

one-dimensional filter is expected to yield qualitatively similar results as two- and three-dimensional

filters.

Temperature fluctuations were measured with platinum resistance wires of 0.625µm in di-

ameter with a maximum frequency response approximately 5 kHz. This response was determined by

analyzing the heat transfer to (or from) the wire [56]. The wires were connected to dc bridges with

ultra-low noise amplifiers. The probe current was set at 100µA so that the velocity contamination

of the temperature signal was negligible. Details of the devices are given in Rajagopalan and Tong

[55]. Velocity measurements were made with three X-wire probes operated by TSI IFA 100 hot-wire

anemometers with an overheat ratio of 1.8. The X-wire probes are placed approximately 0.75 mm

from their resistance wires. The probes were calibrated using a method developed by Browne et

al. [57] in which a velocity-voltage relation was obtained at zero yaw angle and a single effective

wire angle for each wire was determined using yaw-angle calibration. The angles were then used

as “geometric” wire angles in computing two velocity components. Due to the high signal-to-noise

ratio of the resistance-wire temperature device, a very low excess temperature (1.25◦C at the mea-

surement location) can be used, rendering the temperature contamination of hot wires negligible.

For the statistics consideration, the differences between the corrected and uncorrected results are

within 2%. Therefore, the uncorrelated results are given. The outputs from the hot-wire and resis-

tance wires anemometers were low-pass filtered at 5 kHz and amplified by Krohn-Hite 3364 filters.

The signals were digitized at 10 k samples/second by a 12-bit National Instrument A/D converter

(PCI-6071E) which has a maximum sampling rate of 1.25 × 106 samples/second so that the inter

channel delay is much shorter than the sample interval.

In the present study most of the statistics computed are conditional statistics with three

conditioning variables. To obtain these conditional statistics at a reasonable level of convergence, a

large amount of data is needed. The precise number of samples to achieve a given confidence level,

however, is difficult to estimate because of the complex statistical characteristics of the conditional

samples. Therefore, an empirical method (see ref. Chapter 3) is used in which a series of computa-

tions are performed with increasing sample sizes until satisfactory convergence for all the statistics

concerned is achieved. It is found that typically 2× 108 data samples are sufficient.
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Figure 2.2 Spectra of the full and resolvable-scale scalar fluctuations on the jet cen-
terline. The wavenumber and the spectra are normalized by scalar dissipation length
scale and scalar scale. The filter wavenumber κ∆ = π/∆ for each filter width is marked
by a dashed vertical line. The lobes at higher wavenumbers are due to the inherent
leakage in spectral space of box filters. The left most dashed vertical line marks the
integral-scale wavenumber.

2.3 Experimental results

In the present study three filter scales, ∆/η = 63, 125, and 250 were used. Figure 2.2 shows

the streamwise spectra of the full and the resolvable-scale scalar spectra normalized by dissipation-

scale scalar and length scales. The lower spectral values for the resolvable-scale velocity at wavenum-

bers below κ∆ = π is due to the removal of cross-streamwise wavenumbers that would be aliased

into the resolvable scales if only streamwise filtering is performed.
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2.3.1 Conditional SGS statistics

Conditional SGS scalar flux and its production rate

The results for conditional SGS scalar flux are normalized by the r.m.s. streamwise velocity

and scalar fluctuations. The normalized conditional SGS scalar flux components 〈F1|u
r, φr〉 and

〈F2|u
r, φr〉 for ∆/η = 125 are shown in Figure 2.3(b) and (e), respectively. For convenience, The

sample-space variables ψ and v are omitted from the conditional means hereafter. In addition,

only the fluctuating parts of φr and ur are plotted. The results for the conditional SGS scalar flux

production rate are normalized by the mean scalar dissipation rate. The normalized conditional

SGS scalar flux components 〈PF1|u
r, φr〉 and 〈PF2|u

r, φr〉 for ∆/η = 125 are shown in Figure 2.4(b)

and 2.4(e), respectively.

The figures show that both 〈F1|u
r, φr〉 and 〈F2|u

r, φr〉 depend on both ur and φr. For

positive φr fluctuations, 〈F1|u
r, φr〉 increases with ur1, and the dependence is stronger for larger ur2

fluctuations. The cross-stream SGS flux, 〈F2|u
r, φr〉, increases with ur2 while the dependence on ur1

is generally weak. For negative φr fluctuations, 〈F1|u
r, φr〉 decreases and becomes negative with

increasing ur1. The magnitude of 〈F2|u
r, φr〉 increases with |ur2|, and the dependence is stronger for

positive ur1. For small φr fluctuations (≈ 0), both 〈F1|u
r, φr〉 and 〈F2|u

r, φr〉 have saddle shapes

with 〈F2|u
r, φr〉 having as the same sign −ur1u

r
2.

The SGS flux production 〈PF1|u
r, φr〉 (Figure 2.4(b)) has saddle-shaped isocontours with

the saddle point moving toward positive ur1 for positive φr and vice versa. Large positive and

negative production values tend to occur for large |ur2| values. The isocontours of 〈PF2|u
r, φr〉 has

a saddle shape for positive φr and has the same sign as −ur1u
r
2. For small φr, both 〈PF1|u

r, φr〉 and

〈PF2|u
r, φr〉 have trends similar to 〈F1|u

r, φr〉 and 〈F2|u
r, φr〉 respectively, suggesting local balance

of conditional SGS scalar flux production and destruction under this condition. Comparing the three

cases of different φr values, the saddle point of the 〈PF1|u
r, φr〉 contours appears to shift toward

positive ur1 for positive φr, and toward negative ur1 for negative φr. The zero point for 〈F1|u
r, φr〉

also appears to shift in the same direction by a larger amount, however, suggesting that the balance

between production and destruction may also have shifted.

The trends of the conditional SGS scalar flux generally can be understood from their produc-

tion rates. For small φr fluctuations, the SGS eddies are more likely to be well mixed. For positive

φr fluctuations, they are likely to have come from upstream positions near the centerline. In both

cases they are in equilibrium with the local conditions. In Chapter 3, it is found that when SGS

turbulence is in local equilibrium, the conditional SGS stress and conditional SGS stress production
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Figure 2.3 Conditional SGS scalar flux, 〈F1|u
r, φr〉 (a)-(c), and 〈F2|u

r, φr〉 (d)-(f) for
∆/η = 63, 125 and 250, respectively. Both 〈F1|u

r, φr〉 and 〈F2|u
r, φr〉 depend on the

resolvable-scale velocity and scalar, and fall-off slower with filter scale than the predic-
tions.
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Figure 2.4 Conditional SGS scalar flux production rate, 〈PF1|u
r, φr〉 (a)-(c), and

〈PF2|u
r, φr〉 (d)-(f) for ∆/η = 63, 125 and 250, respectively. Both 〈PF1|u

r, φr〉 and
〈PF2|u

r, φr〉 depend on the resolvable-scale velocity and scalar and fall-off slower with
filter scale than the predictions.
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have similar trends. Consequently, 〈F1|u
r, φr〉 and 〈F2|u

r, φr〉 have dependencies similar to those of

〈PF1|u
r, φr〉 and 〈PF2|u

r, φr〉 for positive φr.

For negative φr, the dependence of 〈F1|u
r, φr〉 on ur2 is stronger for negative u

r
1. Because the

SGS eddies experienced strong shear and rotation, therefore may contain strong non-local (history)

effects compared to those with small or positive φr values. The dominant term in its production rate,

〈PF1|u
r, φr〉, is

〈

−F2
∂ur

1

∂x2

∣

∣

∣
ur, φr

〉

, which is due to the dominant resolvable-scale velocity gradient

∂ur1/∂x2. It can be rewritten as:

〈

−F2
∂ur1
∂x2

∣

∣

∣

∣

ur, φr
〉

= 〈−F2S12|u
r, φr〉+ 〈−F2Ω12|u

r, φr〉 (2.15)

where S12 and Ω12 are components of the resolvable-scale strain rate tensor and the rotation rate

tensor, respectively. The terms on the RHS of equation (2.15) are the production of 〈F1|u
r, φr〉

due to straining and rotation of the SGS turbulence, respectively. Figures 2.5(a) and (b) show that

the SGS eddies experience stronger shear and rotation when they enter the centerline (large |ur2|)

with large negative ur1 than those with large positive ur1, thereby resulting in larger magnitudes

of the conditional 〈F1|u
r, φr〉 for negative ur1. The dependence of the conditional 〈F2|u

r, φr〉 on

ur2 is stronger for positive ur1. The dominant term in 〈PF2|u
r, φr〉 is

〈

−τ22
∂φr

∂x2

∣

∣

∣
ur, φr

〉

, due to

the dominant resolvable-scale scalar gradient ∂φr/∂x2. (The production rates of F2 due to the

straining S12 and rotation Ω12 approximately cancel each other.) Because the SGS eddies entering

the jet centerline with positive ur1 generally have a larger SGS stress τ22 (Figure 2.7(b)). Therefore,

〈F2|u
r, φr〉 is larger for positive ur1.

Conditional SGS scalar variance production rate

The conditional SGS scalar variance production rate, 〈Pφ|u
r, φr〉, for ∆/η = 125, normalized

by the mean scalar dissipation rate, is shown in Figure 2.6. The isocontours generally have saddle

shapes, and the dependence on the resolvable-scale velocity is stronger for negative φr. For negative

φr, 〈Pφ|u
r, φr〉 generally has stronger dependence on ur2 for small magnitude of the ur1, indicating

that the eddies from the edge of the jet carry a larger SGS scalar variance transfer rate when entering

the centerline with large crossstream velocity and average streamwise velocity. For positive φr, the

dependence of 〈Pφ|u
r, φr〉 on the resolvable-scale velocity is weaker, and the magnitude is smaller,

suggesting that the eddies from upstream positions near the centerline, which are likely already

well-mixed, have smaller SGS scalar variance transfer rate.
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Figure 2.5 Conditional strain rate S12 (a) and rotation Ω12 (b) for ∆/η = 125 on the
jet centerline.
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Figure 2.6 Conditional scalar variance production rate, 〈Pφ|u
r, φr〉 for ∆/η = 125 on

the jet centerline.
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Conditional SGS stress and its production rate

The results for the conditional SGS stress and its production rate shown in Figures (2.7)

and (2.8) are normalized by the variance of the streamwise velocity and the total energy dissipation

rate, respectively. The dependencies of the SGS stress and its production rate on the resolvable-scale

velocity are generally less influenced by φr than those of SGS scalar flux and SGS scalar flux variance

transfer rate. The results are generally similar to those in Chen et al. [38] and have slightly stronger

dependencies on the resolvable-scale velocity for small and positive φr fluctuations, indicating that

well-mixed eddies have stronger dependence on the resolvable-scale velocity.

The results in this section show that the conditional SGS stress, scalar flux, and their pro-

duction rates are closely related to the dynamics of the jet. Specifically, for eddies in equilibrium

(small and positive φr on the jet centerline) the conditional SGS flux and stress have similar depen-

dencies on ur1 and u
r
2 to those of the conditional SGS production rates. For eddies in non-equilibrium

(negative φr from the edge of the jet) the similarity is much less evident. The different dependencies

on the resolvable-scale velocity for positive and negative φr fluctuations reflect the different histories

of the SGS turbulence since eddies at a given location with the same velocity but different scalar

values must have experienced different histories (e.g. came from different locations). Therefore,

inclusion of φr can provide some information on the flow history to SGS models that are based on

single-point modeling approach.

As equation (2.6) shows, the conditional SGS production rates affect the JPDF. Previous

analytical results (e.g. ref. Sabelnikov [40]) on scalar PDF have shown that concave and convex

shapes for conditional scalar dissipation, which plays a similar role as the SGS scalar variance

production, correspond to super- and sub-Gaussian PDFs, respectively. While there have been no

analytical results on the conditional SGS production rates, they will likely influence the JPDF in

similar ways. For example, higher magnitudes for larger ur or φr fluctuations would result in higher

JPDF values compared to a joint-Gaussian JPDF and vice versa. Therefore, the conditional SGS

production rates can be used to test SGS model predictions. Furthermore, it is important to know

whether the dependencies of the conditional production rates diminish according to the theoretical

predictions (or Kolmogorov’s hypothesis), which is examined below. It is noted that while the results

here are obtained in a turbulent jet, some of the behaviors of the conditional statistics for equilibrium

eddies are similar to those observed in the atmospheric boundary layer (Chapter 3). Specifically, the

conditional SGS stress and flux have functional forms similar to their production rates, suggesting

that the similarity might be a universal behavior regardless of the large-scale geometry. This provides
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Figure 2.7 Normal components of the conditional SGS stress, 〈τ11|u
r, φr〉 and
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r, φr〉, and their production rates for ∆/η = 125 on the jet centerline.
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Figure 2.8 Shear component of the conditional SGS stress 〈τ12|u
r, φr〉 and its produc-

tion rate for ∆/η = 125 on the jet centerline.
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further support in using the production rates as models for SGS stress and flux for quasi-equilibrium

eddies [58].

2.3.2 Filter-scale dependence

The mean SGS flux, SGS flux production rate, and SGS shear stress for the centerline and

off-centerline positions is first considered, which are given in Figure 2.9 for the three filter scales.

The SGS statistics generally decrease with the filter scale, except the scalar variance transfer rate

(not shown), which should be constant for all filter scales in the inertial range. The cross-stream

SGS scalar 〈F2〉 (at the off-centerline position) is close to the ∆4/3 dependence, consistent with

Lumley’s k−7/3 prediction for the scalar-flux co-spectrum. The mean streamwise SGS flux, 〈F1〉, is

close to ∆2 on the jet centerline and is between ∆4/3 and ∆2 at the off-centerline position. Wyn-

gaard [59] predicted the k−3 dependence for the streamwise scalar-flux co-spectrum in a horizontally

homogenous atmospheric boundary layer. The prediction also holds for a homogenous shear flow

with a cross-stream mean scalar gradient. The observed approximate ∆2 dependence of 〈F1〉 is not

inconsistent with this prediction but suggests that inhomogeneity and turbulent transport might

play important roles in any deviation from the ∆2 dependence.

The mean SGS flux production rate 〈PF2〉 (Figure 2.9(b)) is close to the ∆
2/3 scaling given in

Section 2.1, indicating that it is consistent with Lumley’s assumption and Kolmogorov’s hypothesis.

The mean production rate 〈PF1〉 is close to the predicted ∆4/3 scaling at the off centerline position,

again indicating consistency with the hypothesis. The measured dependence on the jet centerline is

close to ∆2/3, a slower fall-off with filter scales. This is perhaps because the production mechanism on

the jet centerline is different from that off the centerline: the former is primarily due to the streamwise

stretching of F1 whereas the latter is dominated by straining and rotation of F2. Because the mean

SGS flux and SGS flux production rates evolve the mean scalar and scalar flux, the consistency of

measurements with predictions suggests that they are likely to have diminishing influences on the

lower-order resolvable-scale statistics (mean profiles, mean stress and fluxes) for inertial-range filter

scales because the assumption used in the predictions are consistent with Kolmogorov’s hypothesis

of statistical independence of distinct scales.

The mean SGS shear stress production rate 〈P12〉 (Figure 2.10) decreases somewhat faster

(∆) than the predicted ∆2/3 dependence. However, the filter-scale dependence appear to be changing

and is weaker between ∆ = 20 and 40 mm (≈ ∆2/3). Therefore, the results are not inconsistent

with Kolmogorov’s hypothesis.
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While the lower-order resolvable-scale statistics depend on the mean SGS flux and SGS

flux production rate, the shape of the JPDF depends primarily on the conditional SGS flux and

conditional SGS flux production rate. Furthermore, consistency of their dependencies on the filter

scale with Kolmogorov’s hypothesis would indicate that the JPDF will be invariant to the SGS

turbulence as the filter scale becomes small. Figure 2.3 shows the conditional SGS scalar fluxes

for the three filter scales. While 〈F1〉 decreases by a factor of more than 10 from ∆ = 40mm to

∆ = 10mm, the largest values of 〈F1|u
r, φr〉 only fall by a factor of two. The largest values of the

cross-stream flux 〈F2|u
r, φr〉 decrease by only 20%, much slower than the mean flux 〈F2〉 (for the

off-centerline position). The slower fall-off of the conditional SGS fluxes shows that while the mean

SGS fluxes follow the theoretical predictions, the large fluctuations (conditional averages) do not.

This suggests that the relatively rare events that contribute to large conditional SGS fluxes have

“anomalous” behaviors.

The conditional production rates (Figure 2.4) also fall off much slower than the mean pro-

duction rates: the reductions are approximately 10% − 20% from ∆ = 40mm to ∆ = 10mm for

〈PF1|u
r, φr〉 and 〈PF2|u

r, φr〉, respectively, while the mean SGS flux production rates, 〈PF1〉 and

〈PF2〉, (Figure 2.9(b)) follow the predictions using Lumley’s assumption. The results again suggest

that large deviations from the mean production rates also have “anomalous” behaviors.

The slower fall-offs of the conditional SGS flux, the conditional SGS stress, and the con-

ditional production rates compared to the predictions suggest that the SGS stress and fluxes have

non-diminishing influences on the resolvable-scale JPDF (especially its shape). Consequently, while

it is expected that lower-order LES statistics (mean, variance, covariance), which depend primarily

on the mean SGS flux and the mean SGS flux production rate, to become insensitive to the SGS

models employed as the filter scale decreases, these models can potentially have a strong impact on

LES predictions of the JPDF even for inertial-range filter scales. Therefore, in applications where

higher-order statistics are important (e.g. turbulent transport or scalar PDF), SGS models need

to correctly predict the conditional SGS statistics. It is emphasized that these understandings are

based on the dynamic terms in the JPDF equation, therefore are on more solid physical grounds

than the previous arguments supporting the LES premise (see the introduction).

2.3.3 Smagorinsky model predictions

To examine the effects of SGS models on LES statistics and their filter-scale dependencies,

the Smagorinsky model is used to the predict conditional SGS scalar flux and its production rate.

Other models such as the Bardina model require a test filter, which can only be achieved in one
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dimension in the present measurements, therefore tests of these models are not attempted here. To

predict the conditional SGS scalar flux production rate, the modeled SGS stress is needed. The

method given in Chen et al. [38] is used to compute the SGS stress. The Smagorinsky model [60, 1]

for SGS scalar flux is given by

F ∗
i = −Pr−1T (CS∆)2(2SijSij)

1/2 ∂φ
r

∂xi
(2.16)

where Cs = 0.154 is the Smagorinsky model constant for a box filter, and a value of 0.5 for the tur-

bulent Prandtl number, PrT , was suggested by Lilly [1]. Here SijSij is computed with the available

components of the resolvable-scale strain rate tensor as S211+S
2
22+S

2
33+2S212 (the incompressibility

condition is used to obtain S33), thus a factor of (15/7)1/2 obtained for isotropic turbulence is used

in computing Fi.

The mean streamwise scalar flux 〈F1〉 (Figure 2.10) is under-predicted. This is perhaps

because the Smagorinsky model uses only the resolvable-scale scalar gradient to predict F1 whereas

the true flux production is primarily due to straining and rotation of the SGS scalar fluxes. The

filter-scale dependence of 〈F1〉 (∆
2) at the off-centerline position is well predicted but not on the

centerline. The scale dependence of the mean flux production 〈PF1〉 off the centerline (∆4/3) is

also quite well predicted, although its magnitude is not because not all the components of 〈PF1〉

are measured. The scale dependence on the centerline is consistent with measurements (less than

∆4/3). The mean cross-stream flux 〈F2〉 is over-predicted by the model, but its scale dependence

of ∆4/3 is very well predicted. The flux production rate 〈PF2〉 is also well predicted, showing a

∆2/3 dependence. The more accurate predictions for 〈F2〉 and 〈PF2〉 are because the cross-stream

resolvable-scale scalar gradient plays an important role in the production of 〈F2〉, which is also used in

the Smagorinsky model. The Smagorinsky model prediction of 〈P12〉 has a similar scale dependence

to measurements, indicating that model the behavior, at the level of the mean SGS shear stress

production rate, is consistent with Kolmogorov’s hypothesis and that of the SGS turbulence.

The predicted conditional SGS scalar fluxes 〈F ∗
1 |u

r, φr〉 (Figure 2.11(a)-(c)) and 〈F ∗
2 |u

r, φr〉

(Figure 2.11(d)-(f)) have smaller magnitudes compared with the measured 〈F1|u
r, φr〉 (Figure 2.3(a)-

(c)) and 〈F2|u
r, φr〉 (Figure 2.3(d)-(f)). The trends are better predicted for small φr fluctuations

than those for large fluctuations. The conditional means 〈F ∗
1 |u

r, φr〉 and 〈F ∗
2 |u

r, φr〉 decrease faster

with the filter scale than measurements but slower than the predictions; therefore the dependencies

are not consistent with Kolmogorov’s hypothesis. Chen et al. (2003) also observed slower fall-off of

the conditional SGS shear stress production rate 〈P12|u
r, φr〉.
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Figure 2.11 Conditional SGS scalar flux, 〈F ∗
1 |u

r, φr〉 (a)-(c), and 〈F ∗
2 |u

r, φr〉 (d)-(f) for
∆/η = 63, 125 and 250 predicted using the Smagorinsky models. Both predicted con-
ditional SGS scalar fluxes fall off with the filter scale slower than the unconditional
means.
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Figure 2.12 Conditional SGS scalar flux production rate, 〈P ∗
F1|u

r, φr〉 (a)-(c), and
〈P ∗

F2|u
r, φr〉 (d)-(f) for ∆/η = 63, 125 and 250 predicted using the Smagorinsky mod-

els. While 〈P ∗
F1|u

r, φr〉 fall off with the filter scale, 〈P ∗
F2|u

r, φr〉 appear to increase with
the filter scale.
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The isocontours of 〈P ∗
F1|u

r, φr〉 (Figure 2.12(a)-(c)) and 〈P ∗
F2|u

r, φr〉 (Figure 2.12(d)-(f)) are

also better predicted for small φr fluctuations than those for large |φr| suggesting that the SGS flux

and its production rate associated with the well-mixed eddies, which are in better local equilibrium

than the un-mixed eddies, can be better predicted. The predicted magnitudes of 〈P ∗
F1|u

r, φr〉 and

〈P ∗
F2|u

r, φr〉 are in closer agreement with the measurements than the predicted SGS scalar fluxes.

In addition, the largest values of 〈P ∗
F2|u

r, φr〉 appear to increase with decreasing filter scale. The

cause for this model behavior is unclear at this point.

The predicted conditional SGS scalar variance transfer rate,
〈

P ∗
φ

∣

∣

∣
ur, φr

〉

, is shown in Fig-

ure 2.13. Similar to the results for the flux production rate, the trend of
〈

P ∗
φ

∣

∣

∣
ur, φr

〉

for small φr

fluctuations is better predicted than those for large |φr|. The model over-predicts the magnitude

besides not capable of predicting the conditional backscatter observed (Figure 2.6). In addition,
〈

P ∗
φ

∣

∣

∣
ur, φr

〉

also appears to increase with decreasing filter scale, inconsistent with the measure-

ments.

The model results show that in general the Smagorinsky models correctly predicts the scale

dependencies of the mean SGS fluxes and its production rates and the predictions are consistent with

the theoretical predictions using Lumley’s assumption, which is based on Kolmogorov’s hypothesis.

Therefore, the modeled mean fluxes and production rates are expected to have diminishing influ-

ences on LES results as the filter scale becomes smaller, consistent with Kolmogorov’s hypothesis

of statistical independence of distance scales. On the other hand, the model predictions of the con-

ditional production rates are at variance with Kolmogorov’s hypothesis, therefore may have lasting

influences on these statistics. However, they will influence the resolvable-scales in ways different

from that of the SGS turbulence because the conditional SGS scalar flux and the conditional SGS

scalar flux production rates obtained from the model have different filter-scale dependencies than

measurements.

It is noted in the introduction that simulations have suggested that lower-order LES statistics

are somewhat insensitive to the model details when the energy-containing scales are well resolved.

However, such an observation is entirely empirical and generally cannot point to the specific model

behaviors that are responsible for this insensitivity. By contrast, the present study analyzes the

behaviors of the statistics that evolve the JPDF through the JPDF equation, therefore can establish

a much closer link between SGS model behaviors and LES results. Specifically, the results show that

the mean SGS stress, the mean SGS flux, and their production rates predicted by the Smagorinsky

model, which evolve the lower-order LES statistics, are consistent with the Kolmogorov’s hypothesis.

Consequently, the model will have diminishing effects on the LES statistics for inertial-range filter
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Figure 2.13 Conditional SGS scalar variance production rate,
〈
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(a)-(c) for

∆/η = 63, 125 and 250 predicted using the Smagorinsky model. It appears to increase
with the filter scale.
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scales. Therefore, the previously observed insensitivity of the LES results to model details is largely

due to the consistency of the model predictions of the mean SGS stress, the mean SGS flux, and

their production rates with Kolmogorov’s hypothesis. The results also suggest that SGS models

should be evaluated based on the applications. The requirements on SGS models are more stringent

where higher-order statistics, such as turbulent transport and PDF, are needed.

2.4 Summary

In the present work the issue of the influences of the SGS stress and SGS scalar flux on the

resolvable-scale velocity-scalar JPDF is examined. The necessary conditions for LES to correctly

predict the JPDF are given as that the SGS models reproduce the conditional means of the SGS

stress and fluxes and their production rates conditional on the resolvable-scale velocity and scalar.

The filter-scale dependencies of the mean production rates are predicted using Lumley’s assumption.

Experimental data obtained in a slightly heated turbulent jet are used to analyze the conditional

SGS stress and scalar flux, their filter-scale dependencies, and the SGS model predictions.

The conditional SGS flux and the conditional SGS flux production rates are found to strongly

depend on the resolvable-scale velocity and scalar and have similar functional forms for eddies that

are likely in quasi-equilibrium. This is also observed in the atmospheric surface layer (Chapter 3),

suggesting that the similarity exists whenever SGS eddies are in quasi-equilibrium regardless of the

larger-scale flow geometry. It is also found that the dependencies on the resolvable-scale velocity have

qualitatively different forms for positive and negative resolvable-scale scalar fluctuations, indicating

strong flow history effects. This suggests that it might be beneficial to include a passive scalar in

LES even when only velocity statistics are interested.

The predicted mean streamwise and crossstream SGS scalar flux production rates vary with

filter scale as ∆4/3 and ∆2/3, respectively. The predicted mean SGS shear stress components 〈P12〉

vary as ∆2/3. The measured mean SGS scalar flux, the mean SGS scalar flux production rate, and

the mean SGS shear stress production rate are generally consistent with the predictions based on

Lumley’s assumption, which is consistent with Kolmogorov’s hypothesis of statistical independence of

distant scales, suggesting that the SGS flux, its production rate and the SGS shear stress production

have diminishing effects on the lower-order resolvable-scale velocity-scalar statistics. However, It is

found that the conditional SGS scalar flux and SGS scalar flux production rate fall-off much slower

with the filter scale than the mean SGS scalar flux and SGS scalar flux production rate, a behavior

similar to the conditional SGS shear stress production rate Chen et al. [38]. The slower fall-offs
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of these conditional statistics suggest that they have non-diminishing influences on the JPDF and

the high-order statistics of the resolvable-scale velocity and scalar, such as turbulent transport and

scalar PDF.

The Smagorinsky model predictions of the filter-scale dependencies of the mean SGS fluxes

and the mean SGS flux production rate are consistent with predictions and experimental results;

therefore, the models are likely to have diminishing effects on lower-order LES statistics (e.g. mean

and r.m.s.). The model predictions of the conditional SGS flux decrease faster with the filter scale

than measurements whereas those of the conditional SGS flux production do not decrease. Therefore,

the model is likely to have effects on the high-order LES statistics even for inertial-range filter

scales. It is emphasized that the results here are based on the dynamics terms in the JPDF equation

(Chapter 3) and provide an understanding of the specific model behaviors that cause the previously

observed insensitivities of LES lower-order statistics to model details.

The present study shows that even for inertial-range filter scales the SGS stress and flux have

strong influences on the higher-order resolvable-scale velocity-scalar statistics, which are important

for many practical applications. A SGS model needs to correctly predict the modeled conditional

SGS stress, conditional SGS scalar flux, and the conditional production rates to reproduce the

higher-order resolvable-scale statistics. Therefore, in applications where higher-order statistics (e.g.

turbulent transport and scalar PDF) are important, SGS predictions of these conditional statistics

should be an essential part of model tests. On the other hand, the mean SGS stress and flux as

well as their production rates have diminishing effects on the lower-order resolvable-scale statistics

for inertial-range filter scales. Therefore, a SGS model that satisfies the inertial-range scaling of the

mean SGS flux and SGS flux production rate is likely to be able to correctly predict the lower-order

statistics with an inertial-range filter scale, thereby supporting the premise of LES at the level of

lower-order statistics.



CHAPTER 3

On the subgrid-scale stress and its produc-

tion rate in a convective atmospheric bound-

ary layer

In this chapter, the subgrid-scale (SGS) stress and its production rate are studied using field

measurements data in the unstable atmospheric surface-layer. When the filter scale is in the inertial

range, as is often the case in the interior of a turbulent boundary layer or in the fully developed

region of a free shear flow, the energy-containing scales are well resolved and most of the turbulent

stress is carried by the resolvable scales. Under such conditions, the LES result is to some extent

insensitive to the subgrid-scale model employed ([6, 21]). The role of the subgrid scales is considered

to be limited to extracting energy from the resolvable scales at the correct rate ([1, 27, 61]).

However, in LES of high-Reynolds-number turbulent boundary layers, such as the atmo-

spheric boundary layer (ABL), the filter scale in the near-wall region is inevitably in the energy-

containing scales because the latter scale with the distance from the surface ([62, 21, 32, 48, 49]).

Consequently, a significant portion of the turbulent stress in LES must be carried by the SGS model,

thereby causing strong dependence of the results on the SGS model ([49]). The deficiencies in the

SGS model are therefore more likely to lead to errors in LES results in the near-wall region. For ex-

ample, LES of the unstable ABL using the Smagorinsky model over-predicts the mean shear and the

streamwise velocity variance ([6, 21, 10, 63]) in the surface layer, and at the same time under-predicts

the vertical velocity skewness. On the other hand, the standard dynamic Smagorinsky model, which

generally performs better than the Smagorinsky model, under-predicts the mean shear ([64]). The

under resolution and the strong dependence of the LES results on SGS models are an inherent

problem in high-Reynolds-number boundary layers and cannot be solved by reducing the filter size

([21, 32, 48, 49]).

These deficiencies in LES results have been argued to be related to the Smagorinsky model’s

being too dissipative ([21, 10]) and the dynamic model’s being not dissipative enough ([64]). Various
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methods for improving LES results have been developed, including stochastic backscatter ([65, 66,

8]), the split model of Schumann ([65, 10]), a nonlinear model ([67]), and the scale-dependent dynamic

Smagorinsky model ([64]). Mason et al. (1992) [8] argued that the problem could be addressed by

simply changing the length scale in the Smagorinsky model. They included a stochastic forcing

term in the LES equation to represent the energy backscatter process, which was absent in the

Smagorinsky model. Significant improvements in the mean velocity profile and the streamwise

velocity variance profiles were achieved. Sullivan (1994) et al. [10] modified the split model of

Schumann ([65]), which consisted of an isotropic part and an anisotropic part for the model SGS

stress. The latter is produced only by the mean shear strain rate. Such a formulation reduced

the impact of the Smagorinsky model on the fluctuating fields and the energy dissipation, making

the smallest resolved scales more energetic. Improvements similar to those obtained by Mason et

al. (1992) [8] were achieved. Kosović (1997) [67] constructed a nonlinear model that includes both

the strain rate and the rotation tensors based on the argument that the SGS stress is not frame

indifferent. The model yielded an improved mean velocity profile, but also resulted in redistribution

of the energy among the normal SGS stress components. Porté-Agel (2000) et al. [64] argued that

in the surface layer the coefficients in the dynamic Smagorinsky model were not equal at the LES

and test filters. They used a second test filter and an assumption of power-law variations to account

for this scale dependence. The results for the mean velocity profile, velocity variance profiles, and

the velocity spectra showed improvements over the standard dynamic model. The improvements

achieved by these methods demonstrated the importance of incorporating surface-layer SGS physics

into SGS models and of systematically understanding the effects of model behaviors on LES results.

Recent studies ([37] and [68]) have provided the necessary and sufficient conditions for

LES to predict correctly all one-time multi-point joint probability density function (JPDF) of the

resolvable-scale velocity: the conditional mean of the SGS stress conditional on the entire resolvable-

scale velocity field must be reproduced by the modeled SGS stress. A model that satisfies this

condition will yield the optimal LES. This condition is an extension of that given by Adrian (1990)

[41]. However, in practice, it is not feasible to obtain this conditional SGS stress as it requires a

large number of resolvable-scale velocity fields to cover the functional space. In the present work, the

influence of the SGS motions on the resolvable-scale statistics is studied by analysing the transport

equation of the one-time, one-point JPDF of the resolvable-scale velocity components.
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The JPDF equation can be derived following the method given by Pope ([39, 31]) using the

equation for the resolvable-scale velocity

∂uri
∂t

= −
∂urju

r
i

∂xj
−
∂τij
∂xj
−
∂pr

∂xi
+
g

Θ
θrδi3 + ν

∂2uri
∂xj∂xj

(3.1)

where

τij = (uiuj)
r − uriu

r
j

is the SGS stress (the Leonard stress Lij = (uriu
r
j)
r −uriu

r
j has been included in τij), a superscript r

denotes a resolvable-scale variable, and Θ and θ are the mean and fluctuation potential temperatures,

respectively. Taking the time derivative of the JPDF, f = 〈f ′〉 =
〈

∏3
i=1 δ(u

r
i − vi)

〉

, where f ′ is the

fine-grained JPDF and the angle brackets denote an ensemble mean, we obtain

∂f

∂t
=

〈

∂f ′

∂uri

∂uri
∂t

〉

= −
∂

∂vi

〈

∂uri
∂t

f ′
〉

(3.2)

Substituting
∂ur

i

∂t in the right-hand side of (3.2) leads to the JPDF equation
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The left-hand side of the equation is the time derivative and the advection in physical space.

The right-hand side is transport in velocity space of the JPDF by the SGS stress divergence, the

resolvable-scale pressure gradient, and the buoyancy force. Transport due to viscous force is gener-

ally small at high Reynolds numbers and is omitted from the equation. Galilean invariance of the

velocity JPDF equation has been proven by Tong ([69]).

An alternative form of the equation was given by Chen et al. [38]
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−
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The right-hand side now represents mixed transport in physical and velocity spaces by the conditional

SGS stress and the resolvable-scale pressure and transport in velocity space by the conditional SGS

stress production rate,
〈

− 12Pij |u
r = v

〉

, the conditional resolvable-scale pressure-strain correlation,
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and the conditional buoyancy force, where

Pij = −

{

τik
∂urj
∂xk

+ τjk
∂uri
∂xk

}

. (3.5)

Equation (3.4) shows that the SGS stress directly affects the resolvable-scale velocity JPDF through

the conditional SGS stress and the conditional SGS stress production and indirectly through the

pressure terms. Therefore, the necessary conditions for LES to correctly predict the velocity JPDF

are that the conditional means of SGS stress and SGS stress production rate must be reproduced

by the SGS model ([38]). The conditions show that the modeled and true SGS stress should be

compared statistically, not instantaneously, because a modeled SGS stress field can satisfy these

conditions but does not correlate well with the true SGS stress. It is noted that although in LES

equation (3.1) is solved, the SGS model evolves the JPDF according to equation (3.3) or (3.4).

Equation (3.4) provides a link between the SGS stress and the resolvable-scale velocity

JPDF and can be used to study the effects of the SGS stress on the JPDF. It also reveals two

important effects of the SGS turbulence on the resolvable scales. First, the trace of 〈Pij |u
r = v〉 is

the conditional energy transfer rate from the resolvable to the subgrid scales. Therefore, equation

(3.4) provides an analytical proof that the (conditional) energy transfer is essential for the evolution

of the JPDF ([38]), while previous studies have only argued its importance based on its role in the

inertial-range turbulence. In addition, conditional forward transfer and conditional backscatter have

qualitatively different effects on the evolution of the JPDF because the conditional energy transfer in

equation (3.4) plays a role similar to the diffusion coefficient in a diffusion equation. Second, previous

studies focused primarily on the SGS stress whereas equation (3.4) also points to the importance of

the SGS stress production rate. Because the SGS stress and the SGS stress production are important

for the SGS dynamics and have clear physical meanings; their results can be interpreted better than

those for the SGS stress divergence in equation (3.3).

In the present study, the necessary conditions for LES to reproduce the JPDF and the

dependencies of the terms in the JPDF equation on the surface layer dynamics are investigated to

gain an understanding of the SGS physics that are important for SGS modeling and to examine SGS

models. Although analyses of the terms in the JPDF equation using experimental data are still a

priori in nature, they differ qualitatively from previous a priori analyses in several aspects. First, the

JPDF-based analyses deal with the conditional averages of the SGS stress and its production rate,

which evolve the JPDF. Consequently, there exists a close link between the conditional statistics and

the JPDF in the present analyses. On the other hand, the traditional model tests often compute the

correlation coefficient between the modeled and true SGS stress, which generally cannot be related to
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LES statistics because the correlation in general cannot be used to measure the model performance

for predicting the conditional SGS stress (and more so for the conditional SGS stress production

rate). Second, the system described by the JPDF equation is not chaotic. The solution of the JPDF

equation is a statistic (a deterministic field) and is generally stable to small perturbations in initial

and boundary conditions as well as the modeled terms. Therefore, an SGS model that provides close

approximations of the conditional SGS stress and the conditional SGS stress production is consistent

with the above mentioned necessary conditions, thereby having the potential to predict the JPDF

well and vice versa. Such a priori analyses are in contrast with the traditional tests: because

the LES equation (3.1) is chaotic, i.e. its solution exhibits stochastic behaviors, any imperfection

in the correlation between the modeled and true SGS stress will cause the LES field to diverge

exponentially from the true resolvable-scale field, making it practically impossible to relate the

modeled instantaneous SGS stress to LES results. Third, for the analyses based on the JPDF

equation there are analytical results (e.g., [70]; [40]) that can be used as a basis to investigate the

relationship between the SGS terms and the JPDF whereas no such analyses can be performed for

the LES equation. Therefore, a priori tests based on the JPDF equation are fundamentally different

from the traditional a priori tests and JPDF equations of the resolvable-scale velocity provide a more

rational approach for studying the effects of the SGS stress and SGS models on the resolvable-scale

statistics.

In LES employing certain SGS models, such as the Smagorinsky model, only the deviatoric

part of the SGS stress, τdij = τij −
1
3τkkδij , is modeled. Therefore, it is also useful to examine the

corresponding production term P d
ij defined as

P d
ij = −

{

τdik
∂urj
∂xk

+ τdjk
∂uri
∂xk

}

. (3.6)

Thus, Pij can be written as

Pij = P d
ij −

2

3
τkkSij , (3.7)

where Sij is the resolvable-scale strain rate tensor. Equation (3.6) shows that P d
ij is the produc-

tion rate due to the interaction between the deviatoric (anisotropic) part of the SGS stress and

the resolvable-scale velocity gradient, and − 23τkkSij is the production rate due to straining of the

isotropic part of the SGS stress by the resolvable-scale strain rate. Therefore, the normal components

of Pij contain the energy transfer from the resolvable to the subgrid scales, P d
αα (α = 1, 2, 3), and

the redistribution among three normal components of the SGS stress (inter-component exchange),

− 23τkkSαα, respectively. Note that the summation of inter-component exchange − 23τkkSll is zero,
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indicating that this term redistributes energy among the three normal components of the SGS stress.

Therefore, the anisotropy of the normal SGS stress components is important for the evolution of

the JPDF. The shear components of P d
ij represent the production of SGS shear stress in anisotropic

turbulence owing to both straining and rotation by the resolvable-scale velocity field. The shear

components − 23τkkSij , (i 6= j), represent the production of shear stress due to straining of isotropic

SGS turbulence. Therefore the decomposition in (3.7) is useful for further understanding the physics

of Pij .

The dynamics of the SGS stress can also be examined using the SGS stress transport equa-

tion

∂τij
∂t

+ urk
∂τij
∂xk

=
∂

∂xk

{

urk(uiuj)
r − (uiujuk)

r + (τiku
r
j + τjku

r
i )
}

+ Pij + PBij

−

(

uj
∂p

∂xi

)r

−

(

ui
∂p

∂xj

)r

+ uri
∂pr

∂xj
+ urj

∂pr

∂xi
− εij . (3.8)

The left-hand side is the time rate of change and advection. The right-hand side is the turbulent

transport, turbulent production, buoyancy production and pressure transport and destruction and

molecular dissipation (2ν(∂ui/∂xk)(∂uj/∂xk)). The buoyancy production rate

PBij =
g

Θ

{

δi3[(θuj)
r − θrurj ] + δj3[(θui)

r − θruri ]
}

(3.9)

has only three non-zero components PBi3; therefore, it affects only the τi3 components. Wyngaard

et al. [71] showed that the shear production of the Reynolds shear stress exceeds that of energy

under all stability conditions, whereas the buoyancy production of shear stress is larger than that of

energy under neutral and stable conditions, but falls off as the surface layer becomes more unstable.

These results suggest that the magnitude of shear to buoyancy production of the SGS stress is also

important for the behavior of the SGS stress.

Pope (2004) [72] discussed the issue of LES statistics and argued that the perfect LES

should correctly predict all statistics of the total velocity, not those of the resolvable-scale velocity.

He showed that the dynamic Smagorinsky model, in fact, minimized the dependence of the predicted

total stress on the filter scale, thereby improving the predictions when the filter scale is larger than

the inertial-range scales. While the perfect LES is desirable, in many cases, the SGS model has no

direct contribution to the higher-order statistics of the total velocity. For example, an SGS stress

model only contributes to the vertical velocity skewness through its correlation with the resolvable-

scale vertical velocity, while the contribution from the SGS vertical velocity is not predicted. More

generally, the one-point PDF of the total velocity cannot be estimated using models for SGS stress.

To predict the total velocity PDF, a different approach that models the SGS velocity distribution
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is needed, e.g., the filtered density function methods ([73, 74]). Therefore, for LES employing SGS

stress models, the optimal LES can only be expected to reproduce the true resolvable-scale statistics,

which approach the total velocity statistics as the filter scale is asymptotically small compared to

the energy-containing scales.

In the present study, the SGS stress and its production rate in the unstable atmospheric

surface layer are studied using field measurements data. The rest of the chapter is organized as

follows. Section 3.1 outlines the field program and the array filter technique for measuring resolvable-

and subgrid-scale variables. The measured conditional SGS stress and the conditional SGS stress

production are discussed in Sections 3.2. Sections 3.3 and 3.4 present the SGS model predictions

and their implications for SGS modeling. Some further discussions on the relationships between the

conditional SGS stress and the conditional SGS stress production are given in Section 3.5, followed

by the conclusions.

3.1 Field measurements and data analysis procedures

The field measurements for this study, named the horizontal array turbulence study, or

HATS field program, were conducted at a field site 5.6 km east-northeast of Kettleman City, Califor-

nia, in the summer of 2000 as a collaboration primarily among the National Center for Atmospheric

Research, Johns Hopkins University and Penn State University (CT was part of the Penn State

group). Horst et al. (2004) [75] describe the field site and the data collection procedures in detail.

The field measurement design is based on the transverse array technique proposed, stud-

ied, and first used by the Penn State group ([76, 77, 48, 49]) for surface-layer measurements in the

ABL. It has subsequently been used by several groups in the ABL over land ([77, 49, 35, 78, 75]) and

ocean (the recent ocean HATS program) as well as in engineering flows ([52, 53, 54, 55, 38, 74]). The

technique uses horizontal sensor arrays (Figure 3.1) to perform two-dimensional filtering to obtain

resolvable- and subgrid-scale variables. Two arrays are vertically spaced to obtain vertical deriva-

tives. The primary horizontal array consists of nine equally spaced sonic anemometers (Campbell

Scientific SAT3) and the secondary array has five sonics at a second height. The arrays are aligned

perpendicular to the prevailing wind direction.

The filter operation in the streamwise direction is performed by invoking Taylor’s hypothesis.

Filtering in the transverse direction is realized by averaging the output of the signals from the sensor

array ([48]). For example, the transversely filtered resolvable-scale velocity (denoted by a superscript
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Figure 3.1 Schematic of the array setup. The secondary array (denoted by a subscript
s) is used to obtain derivatives in the vertical direction.

t) is obtained as

uti(x, t) =

N
∑

j=−N

Cjui(x1, x2 + j×, d, x3, t) (3.10)

where 2N + 1, Cj and d are the number of sensors on an array, the weighting coefficient for the

jth sensor and the spacing between adjacent sensors, respectively. 2N + 1 = 5 is used and 3 for

filtering at the heights of the primary and secondary arrays, respectively, to maintain the same filter

size. The subgrid-scale velocity is obtained by subtracting the resolvable-scale part from the total

velocity. In the present study, the arrays to approximate top-hat filters is used, which are the most

compact type in physical space. Because derivatives are computed using finite differencing (with

a spacing of 4dp in the horizontal directions), which is effectively a top-hat filter, top-hat filters

provide consistency among the resolvable-scale velocity and its derivatives.

The issues in applying the array filtering technique, including the accuracy of the array

filter and the use of Taylor’s hypothesis, have been systematically studied by Tong et al. [48]. They

showed that a two-dimensional filter is a good approximation of a three-dimensional filter. They

demonstrated that among the mechanisms that could affect the accuracy of Taylor’s hypothesis

([79]), including the effect of different convection velocity for different wavenumber components,
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Table 3.1 Configurations of the four arrays (lengths in meter).
Array ∆/zp zp dp zs ds

1 3.88 3.45 3.35 6.90 6.70
2 2.00 4.33 2.167 8.66 4.33
3 1.00 8.66 2.167 4.33 1.08
4 0.48 4.15 0.50 5.15 0.625

temporal changes in the reference moving with the mean velocity, and the fluctuating convecting

velocity, only the last one is significant. Their analyses of the accuracy of a spectral cutoff array filter

as an approximation of a true two-dimensional filter showed that the r.m.s. values of the filtered

variables differ by less than 10%. Because the spectral cutoff filter has the slowest decay in physical

space, it is the most difficult to approximate by the array. Therefore, the accuracy of the top-hat

filter array filter is expected to be higher. The error associated with one-sided finite differencing in

the vertical direction is examined by Kleissl et al. (2003) [78]. They evaluated the divergence-free

condition for the filter velocity field and concluded that reasonable accuracy can be achieved in

computing derivatives of filtered velocity. Horst et al. (2004) [75] further studied various issues of

using the array technique including the aliasing errors associated with evaluating derivatives using

finite diffferencing and also demonstrated sufficient accuracy of the technique.

Four different array configurations, shown in Table 3.1, are employed in the HATS program.

The filter (grid) aspect ratio (∆/z) ranges from 0.48 to 3.88, allowing the effects of grid anisotropy

to be examined. z is referred as the height of the primary array zp here and hereafter. Array 3 is

at a much higher z, therefore the effects of the stability parameter −z/L can be examined, where

L = −
u3

∗
Θ

kag〈u′3θ′〉
, u2∗ = −〈u′1u

′
3〉 (a prime denotes fluctuations), ka = 0.41, and g are the Monin-

Obukov length, friction velocity, von Kármán constant and acceleration due to gravity, respectively.

The surface layer parameters for the data sets collected using the four arrays are given in Tables

3.2 and 3. The results in Section 3.2.3 show that the SGS stress for array 1, which has the largest

∆/z, is the most anisotropic and most difficult for SGS models to predict, therefore discussions of

results are focused on array 1. All array 1 data used in the present study were collected during

daytime under clear conditions and the boundary layer was convective with a Monin-Obukov length

of approximately −15 m.

Although the arrays were arranged to be perpendicular to the prevailing wind direction,

the mean wind direction for a given data section might not be exactly perpendicular to the array.

Therefore, the coordinate system is rotated and the velocity and temperature are interpolated in
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Table 3.2 Surface-layer parameters for array 1 (∆/z = 3.88) under unstable conditions.
The primary array height zp is used for z.

Data 〈u〉 −z/L u∗ ε H Duration
(m s−1) (m s−1) (m2 s−3) (K m s−1) (min)

a 1.42 0.34 0.15 0.003 0.02 35
b 3.56 0.22 0.33 0.031 0.17 30
c 3.65 0.21 0.36 0.039 0.20 83
d 3.25 0.24 0.36 0.041 0.24 33

the Cartesian coordinate system defined by mean wind and cross-wind directions ([75]). The in-

terpolation is performed in spectral space to avoid attenuating the high-frequency (wavenumber)

fluctuations.

In the present work, the unstable surface layer, i.e. z/L < 0 is studied. Data sections that

are quasi-stationary are generally 30-90 min in length. In order to achieve reasonable statistical

convergence, the results of selected data sections collected under similar stability conditions using

each array configuration must be combined. Four data sections collected using array 1 (Table 3.2)

are focused. The conditional statistics obtained using the individual data sets (not shown) are

very similar, but with varying degrees of uncertainty. Therefore, the results for each data set are

normalized using its parameters, then weight-average them according to the number of conditional

samples in each bin.

Because of the complexity of the variables of interest and of the conditional sampling pro-

cedure, a precise level of statistical uncertainty are not able to be provided. However, by monitoring

the statistical scatter while increasing the data size, it is concluded that reasonable statistical con-

vergence is achieved. An example of the convergence process is given in Figure 3.3. In addition,

comparisons between model predictions and measurements require only the relative magnitude of

the results and are less affected by the uncertainty. Therefore, the data size is sufficient for obtaining

reliable statistics for the analyses.

3.2 Results

In this section, discussions on results obtained using data from array are focused. The

stability parameter −z/L has an average value of 0.24. Therefore, it is expected both buoyancy

and shear to affect the surface-layer turbulence. Top-hat filters in both streamwise and cross-

stream directions are used to obtain the resolvable-scale and subgrid-scale variables with a filter size

∆ = 3.88z, which is in the energy-containing range. The results for the other array configurations,

i.e. different ∆/z, and −z/L (Table 3.3), are also obtained. The results are generally similar to
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Table 3.3 Surface-layer parameters for the other arrays under unstable conditions.
The primary array height zp is used for z.

Array ∆/z 〈u〉 −z/L u∗ ε Total duration
(≈) (m s−1) (m s−1) (m2 s−3) (min)

2 2.00 3.09 0.36 0.30 0.020 257
3 1.00 4.22 0.60 0.34 0.018 591
4 0.48 2.73 0.35 0.30 0.021 60

Table 3.4 Measured Reynolds stress and mean SGS stress for the four arrays.
Array σ2u/u

2
∗ σ2v/u

2
∗ σ2w/u

2
∗ 〈τ11〉 /σ

2
u 〈τ22〉 /σ

2
v 〈τ33〉 /σ

2
w 〈−τ13〉 /u

2
∗

1 8.17 9.55 1.52 0.35 0.21 0.89 0.73
2 12.12 13.19 1.86 0.20 0.14 0.76 0.57
3 9.53 13.58 2.19 0.17 0.09 0.54 0.34
4 10.98 10.57 1.69 0.07 0.06 0.35 0.11

those for array 1. Therefore, their differences with those of array 1 and the influence of ∆/z and

−z/L are only briefly discuss. Table 3.4 gives the normalized Reynolds stress and the ratios of the

mean SGS stress components to the Reynolds stress components. Array 1 has the highest fraction

of the vertical shear stress carried by the subgrid scales. The deviatoric part of the measured and

modeled SGS stress components are given in Table 3.5 and discussed in Section 3.3.

The results for conditional SGS stress 〈τij |u
r〉 are normalized by the friction velocity u2∗.

The results for the conditional SGS stress production 〈Pij |u
r〉, the buoyancy production 〈PBij |u

r〉

and the advection term
〈

−ur3
∂τij

∂x3

∣

∣

∣
ur
〉

are normalized by the estimated energy dissipation rate

ε = φε
u3

∗

kaz
, where φε = 1− z/L for z/L ≤ 0 as suggested by Kaimal et al. (1972) [62].

3.2.1 Normal components of 〈τij|u
r〉 and 〈Pij|u

r〉

The results for the conditional normal SGS stress components are plotted against the hor-

izontal resolvable-scale velocity, ur1, for different values of the vertical resolvable-scale velocity, ur3

(Figure 3.2). Owing to the limited data size, the third velocity component in the conditional SGS

stress are not able to be included. The data bin for the first conditioning variable [e.g. ur1 in Figure

3.2(a)] have the width shown in the Figures (12 bins between ±2 standard deviations whereas that

for the second conditioning variable is twice as wide). Figure 3.3 gives a representative case (τ11) of

the convergence of the conditional SGS stress as the sample size is increased from one fifth to the

full data set. Based on such tests it is concluded that reasonable statistical convergence is achieved.

Figures 3.2(a) and 2(c) show that 〈τ11|u
r
1, u

r
3〉 and 〈τ33|u

r
1, u

r
3〉 generally increase with ur3. They also

increase with ur1 when u
r
3 is positive, and depend weakly on ur1 when u

r
3 is negative, indicating that
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Figure 3.2 Conditional means of the measured normal SGS stress components condi-
tional on the resolvable-scale velocity components. The dependence on the horizontal
velocity components is stronger for positive ur3. Here and thereafter uri is normalized
by the r.m.s. fluctuations of the total velocity σui

.

the dependence on ur1 is enhanced by positive ur3. Figure 3.2(b) shows that 〈τ22|u
r
2, u

r
3〉 increases

with ur3 and |u
r
2|, but its dependence on |u

r
2| is generally weaker than that of 〈τ11|u

r
1, u

r
3〉 on u

r
1. The

dependence of 〈τ11|u
r
1, u

r
3〉 (and 〈τ22|u

r
2, u

r
3〉) on u

r
3 can be attributed partly to the vertical advection

([49]). The measured advection (not shown) is generally positive for positive ur3 and vice versa. This

is because in the surface-layer, the velocity variance varies slowly with the distance from the ground

whereas the length scale is proportional to the distance; therefore, the SGS eddies brought up from

near the ground generally contain a larger magnitude of SGS stress.

The anisotropic part of the conditional SGS stress,
〈

τdij |u
r
〉

, which is predicted by some SGS

stress models, is also computed. The diagonal components
〈

τdαα|u
r
〉

(no summation) are shown in

Figure 3.4. The off-diagonal components of
〈

τdij |u
r
〉

are identical to those of 〈τij |u
r〉. The trends of
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Figure 3.3 Convergence of the conditional SGS stress component 〈τ11|u
r
1, u

r
3〉. The

dotted, dashed, and solid lines represent the results obtained using one fifth, one half,
and the full data set, respectively.

〈

τdαα|u
r
〉

are similar to those in Figure 3.2. The magnitudes of
〈

τd11|u
r
1, u

r
3

〉

and
〈

τd22|u
r
2, u

r
3

〉

become

smaller compared to 〈τ11|u
r
1, u

r
3〉 and 〈τ22|u

r
2, u

r
3〉, and

〈

τd33|u
r
1, u

r
3

〉

becomes negative owing to the

strong anisotropy of the surface layer (〈τ11〉 > 〈τ33〉). The anisotropy of 〈τij |u
r〉 is further discussed

in Section 3.2.3. Further understanding of the trends for the conditional SGS normal stress can be

gained from the results for the SGS stress production discussed in the following.

The results for the normal components of the conditional production rate 〈Pαα|u
r〉 (no sum-

mation), which contains the energy transfer terms, are shown in Figure 3.5. Similar to 〈τ11|u
r
1, u

r
3〉,

〈P11|u
r
1, u

r
3〉 also increases with ur3. It also increases with ur1 and the dependence on ur1 is enhanced

by positive ur3 and weakened by negative ur3. Figure 3.5(c) shows that 〈P33|u
r
1, u

r
3〉 decreases with

ur3 and its dependence on ur1 is generally weak, especially for negative ur3. Similar to 〈τ22|u
r
2, u

r
3〉,

〈P22|u
r
2, u

r
3〉 also increases with |ur2|. These trends can be understood in terms of the dynamics of

the unstable surface layer and are discussed below.

The decomposition of 〈Pij |u
r〉 into

〈

P d
ij |u

r
〉

and
〈

− 23τkkSij |u
r
〉

is first examined. Figure

3.6(a) shows that the trend and magnitude of
〈

P d
11|u

r
1, u

r
3

〉

are similar to those of 〈P11|u
r
1, u

r
3〉 (Figure
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Figure 3.4 Conditional means of the measured deviatoric SGS stress components con-
ditional on the resolvable-scale velocity components. The normal component

〈

τd33|u
r
1, u

r
3

〉

generally has the opposite sign as 〈τ33|u
r
1, u

r
3〉 due to the strong anisotropy of the SGS

stress.

3.5a), indicating that the conditional spectral transfer part of 〈P11|u
r〉 dominates over the redis-

tribution part. Figure 3.6(b) shows that
〈

P d
33|u

r
1, u

r
3

〉

weakly depends on ur1 and increases with ur3.

For negative ur3 (ur3 < −0.5),
〈

P d
33|u

r
1, u

r
3

〉

is negative, indicating conditional backscatter. Notice

that the dependence of
〈

P d
33|u

r
1, u

r
3

〉

has the opposite trend to that of 〈P33|u
r
1, u

r
3〉 owing to the

redistribution term
〈

− 23τkkS33|u
r
1, u

r
3

〉

(see below). The conditional energy transfer rate (Figure

3.6e) shows a similar trend to
〈

P d
11|u

r
1, u

r
3

〉

and is forward for ur3 > 0. It decreases monotonically as

ur3 moves toward negative values. It is probable that for large negative ur3 values, the conditional

energy transfer will reverse direction (conditional backscatter). These observations are somewhat

similar to those of Piomelli et al. (1996) [80] in DNS of a plane channel flow that forward transfer

and backscatter are associated with ejections and sweeps, respectively. Sullivan et al. (2003) [36]

showed that the average amount of backscatter increased with the ratio of the vertical-velocity inte-

gral length scale to the filter scale. The results shown here are for the most anisotropic filter in the

present study, i.e. for the smallest length scale ratio; therefore, for the data collected using the other
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Figure 3.5 Conditional means of the measured SGS stress production components
conditional on the resolvable-scale velocity components.

array configurations under similar stability conditions, it is expected larger amounts of conditional

backscatter. Because conditional backscatter has qualitatively different effects on the evolution of

the JPDF than conditional forward transfer, it is important for SGS models to predict conditional

backscatter. Therefore, stochastic backscatter models will not be sufficient if they do not predict

correctly the conditional backscatter.

The redistribution terms
〈

− 23τkkS11|u
r
1, u

r
3

〉

and
〈

− 23τkkS33|u
r
1, u

r
3

〉

are shown in Figures

3.6(c) and 6(d), respectively. Figure 3.6(c) shows that
〈

− 23τkkS11|u
r
1, u

r
3

〉

depends weakly on ur1, but

increases with ur3. It has the same sign as ur3, indicating that τ11 loses energy to τ33 for negative u
r
3

and gains energy for positive ur3 owing to redistribution. Figure 3.6(d) shows that
〈

− 23τkkS33|u
r
1, u

r
3

〉

has a similar trend and magnitude to
〈

− 23τkkS11|u
r
1, u

r
3

〉

but has the opposite sign to ur3, indicating

that τ33 gains energy for negative ur3 and loses energy for positive ur3.

To further understand the conditional SGS stress production rate and its relationship to the

surface-layer dynamics, 〈P11|u
r〉 and 〈P33|u

r〉 is expanded into individual SGS stress and velocity

gradient terms and examine their relative contributions. Such analyses are useful for identifying
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Figure 3.6 Conditional means of the measured production rates of the normal SGS
stress components due to: (a) and (b), the deviatoric part of the SGS stress (τ dij); (c)

and (d), the isotropic part ( 13τkksij, the redistribution term); (e), the conditional energy
transfer rate. Conditional backscatter is evident in (b).
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the surface-layer processes that contribute to these statistics to guide SGS modeling. From (3.5),

〈P11|u
r〉 can be expanded as:

〈P11|u
r〉 = −2

〈

τd11
∂ur1
∂x1

+
1

3
τkk

∂ur1
∂x1

+ τ12
∂ur1
∂x2

+ τ13
∂ur1
∂x3

∣

∣

∣

∣

ur
〉

. (3.11)

The first term on the right-hand side of (3.11) is the conditional energy transfer from resolvable

to subgrid-scales associated with the normal strain rate and the normal SGS stress. The second is

the conditional inter-component exchange (redistribution). The last two terms are the conditional

energy transfer associated with the SGS shear stress and strain components. The results obtained

from the data show that all the terms on the right-hand side of (3.11) are of the same order of

magnitude; therefore, the results for each of them will be discussed. Similarly, 〈P33|u
r〉 can be

expanded as:

〈P33|u
r〉 = −2

〈

τd33
∂ur3
∂x3

+
1

3
τkk

∂ur3
∂x3

+ τ31
∂ur3
∂x1

+ τ32
∂ur3
∂x2

∣

∣

∣

∣

ur
〉

. (3.12)

The terms on the right-hand side of (3.12) are similar to those in (3.11). However, the results

(not shown) indicate that the spectral transfer associated with the shear stress is much smaller

than that associated with the normal stress and the inter-component exchange. This is because

the derivatives of ur3 in the horizontal directions (∂ur3/∂x1 and ∂ur3/∂x2) are small compared to its

vertical derivative. Therefore, two parts of 〈P33|u
r〉,
〈

−2τd33
∂ur

3

∂x3

∣

∣

∣
ur
〉

and
〈

− 23τkk
∂ur

3

∂x3

∣

∣

∣
ur
〉

will be

focused, which are an energy transfer term and the inter-component exchange term, respectively.

The results for the components of 〈P11|u
r
1, u

r
3〉 and 〈P33|u

r
1, u

r
3〉 are discussed now. The

results for positive and negative ur3 will be discussed separately because these components have

qualitatively different characteristics owing to the different surface-layer dynamics associated with

updrafts and downdrafts. When ur3 is positive, vertical-velocity energy-containing eddies move up-

ward and are, on average, stretched in the vertical direction due to buoyancy acceleration, i.e.

∂ur3/∂x3 > 0. At the same time, continuity requires the eddies, on average, to be compressed in the

horizontal direction, i.e. ∂ur1/∂x1 < 0 and ∂ur2/∂x2 < 0. Therefore, the spectral transfer terms asso-

ciated with the normal strain,
〈

−2τd33
∂ur

3

∂x3

∣

∣

∣
ur1, u

r
3

〉

and
〈

−2τd11
∂ur

1

∂x1

∣

∣

∣
ur1, u

r
3

〉

(not shown) are positive

because τd33 < 0 and τd11 > 0 owing to the strong anisotropy in the surface layer (〈τ11〉 > 〈τ33〉), indi-

cating that both τ11 and τ33 gain energy (forward transfer) through the spectral transfer associated

with the normal strain rates. The inter-component exchange terms, however, have opposite signs

with
〈

− 23τkk
∂ur

3

∂x3

∣

∣

∣
ur1, u

r
3

〉

being negative and
〈

− 23τkk
∂ur

1

∂x1

∣

∣

∣
ur1, u

r
3

〉

being positive, indicating that τ33

loses energy to τ11 through inter-component exchange. Because
〈

− 23τkk
∂ur

3

∂x3

∣

∣

∣
ur1, u

r
3

〉

has a larger
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Figure 3.7 Components of 〈P11|u
r
1, u

r
2〉 due to the shear stress components conditional

on the resolvable-scale velocity, which are responsible for the dependence of 〈P11|u
r
1, u

r
2〉

on ur1.

magnitude than
〈

−2τd33
∂ur

3

∂x3

∣

∣

∣
ur1, u

r
3

〉

, τ33 loses more energy owing to the inter-component exchange

than it gains from the spectral transfer, resulting in negative 〈P33|u
r
1, u

r
3〉 values.

The processes described above are enhanced with increasing ur3, making the magnitudes

of
〈

− 23τkk
∂ur

1

∂x1

∣

∣

∣
ur1, u

r
3

〉

and
〈

−2τd11
∂ur

1

∂x1

∣

∣

∣
ur1, u

r
3

〉

(components of 〈P11|u
r
1, u

r
3〉) and 〈P33|u

r
1, u

r
3〉 larger.

This is owing to two aspects of the surface-layer dynamics. First, a larger ur3 generally corresponds to

stronger buoyancy acceleration, therefore larger vertical stretching and larger magnitudes of ∂ur3/∂x3

and ∂ur1/∂x1 (not shown). Second, the local SGS stress is generally enhanced by positive ur3 owing

to eddies with a larger amount of SGS energy brought up from near the ground. This is an advec-

tion effect discussed above. Therefore,
〈

− 23τkk
∂ur

1

∂x1

∣

∣

∣
ur1, u

r
3

〉

and
〈

−2τd11
∂ur

1

∂x1

∣

∣

∣
ur1, u

r
3

〉

(components of

〈P11|u
r
1, u

r
3〉) and the magnitude of 〈P33|u

r
1, u

r
3〉 generally increase with positive ur3.

The spectral transfer terms
〈

−2τd33
∂ur

3

∂x3

∣

∣

∣
ur1, u

r
3

〉

and
〈

−2τd11
∂ur

1

∂x1

∣

∣

∣
ur1, u

r
3

〉

depend only weakly

on ur1. The inter-component-exchange terms also have similar dependencies (not shown). This is be-

cause ∂ur3/∂x3 and ∂u
r
1/∂x1 have weak dependencies on ur1. Consequently, 〈P33|u

r
1, u

r
3〉,
〈

− 23τkk
∂ur

1

∂x1

∣

∣

∣
ur1, u

r
3

〉

,

and
〈

−2τd11
∂ur

1

∂x1

∣

∣

∣
ur1, u

r
3

〉

(components of 〈P11|u
r
1, u

r
3〉) generally depend weakly on ur1. This indicates
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that the dependence of 〈P11|u
r
1, u

r
3〉 on u

r
1 shown in Figure 3.5(a) is due to the shear production com-

ponents −2
〈

τ12
∂ur

1

∂x2

+ τ13
∂ur

1

∂x3

∣

∣

∣
ur1, u

r
3

〉

(Figure 3.7), which have positive contributions to 〈P11|u
r〉.

Both terms depend on ur1 because when ur3 is positive, a larger ur1 on average results in a larger

shear strain rate, ∂ur1/∂x3, and at the same time enhances the SGS shear stress component τ13.

Thus, 〈P11|u
r
1, u

r
3〉 is positive and generally depends on ur1. Increasing ur3 on average enhances the

SGS shear stress components τ13 due to the advection effect, and enhances ∂ur1/∂x3 due to the

large horizontal velocity deficit carried by fluid brought up from near the ground, making the shear

production of the 〈P11|u
r
1, u

r
3〉 larger. Therefore, 〈P11|u

r
1, u

r
3〉 generally increases with ur3.

The results for negative ur3 can also be understood in terms of the surface layer dynamics.

When ur3 is negative, the vertical-velocity energy-containing eddies associated with the returning

flow of large convective eddies move downward and are on average compressed in the vertical di-

rection due to the presence of the ground, resulting in negative ∂ur3/∂x3 and positive ∂ur1/∂x1 and

∂ur2/∂x2. Therefore, the spectral transfer associated with both the normal strain
〈

−2τd33
∂ur

3

∂x3

∣

∣

∣
ur1, u

r
3

〉

and
〈

−2τd11
∂ur

1

∂x1

∣

∣

∣
ur1, u

r
3

〉

are negative, indicating that both τ11 and τ33 lose energy through spectral

transfer associated with the normal strain (conditional backscatter). Similar to the case of ur3 > 0, the

inter-component-exchange terms still have opposite signs, but with
〈

− 23τkk
∂ur

3

∂x3

∣

∣

∣
ur1, u

r
3

〉

being posi-

tive and
〈

− 23τkk
∂ur

1

∂x1

∣

∣

∣
ur1, u

r
3

〉

being negative, indicating that τ33 gains energy from τ11 through inter-

component exchange. Because
〈

− 23τkk
∂ur

3

∂x3

∣

∣

∣
ur1, u

r
3

〉

has a larger magnitude than
〈

−2τd33
∂ur

3

∂x3

∣

∣

∣
ur1, u

r
3

〉

,

τ33 gains more energy than it loses due to conditional backscatter, resulting in positive 〈P33|u
r
1, u

r
3〉

values.

These processes are also somewhat enhanced by larger (negative) ur3, although to a much

lesser extent than positive ur3, resulting in larger magnitudes of
〈

− 23τkk
∂ur

1

∂x1

∣

∣

∣
ur1, u

r
3

〉

and
〈

−2τd11
∂ur

1

∂x1

∣

∣

∣
ur1, u

r
3

〉

(components of 〈P11|u
r
1, u

r
3〉) and 〈P33|u

r
1, u

r
3〉. This is because a stronger downdraft (returning flow

of large convective eddies) generally produces larger vertical compression, i.e., larger magnitudes of

∂ur3/∂x3 and ∂ur1/∂x1. However, since the eddies carried by returning flow generally have larger

length scales, they contain smaller SGS stress (τ d11, τ
d
33 and τkk). Therefore, although the magni-

tudes of
〈

− 23τkk
∂ur

1

∂x1

∣

∣

∣
ur1, u

r
3

〉

and
〈

−2τd11
∂ur

1

∂x1

∣

∣

∣
ur1, u

r
3

〉

(components of 〈P11|u
r
1, u

r
3〉) and 〈P33|u

r
1, u

r
3〉

generally increase with magnitude of ur3, the dependence is not as strong as for the case of positive

ur3 because of these competing effects, and because of the milder vertical compression due to the

downdrafts than that due to updrafts (buoyancy acceleration).

When ur3 is negative, 〈P33|u
r
1, u

r
3〉,
〈

− 23τkk
∂ur

1

∂x1

∣

∣

∣
ur1, u

r
3

〉

and
〈

−2τd11
∂ur

1

∂x1

∣

∣

∣
ur1, u

r
3

〉

(components

of 〈P11|u
r
1, u

r
3〉) generally depend weakly on ur1 for reasons similar to those for the case of positive ur3.
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In contrast to the case of positive ur3, the shear production components −2
〈

τ12
∂ur

1

∂x2

+ τ13
∂ur

1

∂x3

∣

∣

∣
ur1, u

r
3

〉

(Figure 3.7) also depend weakly on ur1. This is because both the horizontal shear strain rate compo-

nent, ∂ur1/∂x3, and the SGS shear stress component, τ13, depend weakly on ur1 as the vertical shear

is weakened by the returning flow. Therefore, 〈P11|u
r
1, u

r
3〉 also depends weakly on ur1. The shear

production has a positive contribution, which is larger than the backscatter associated with the

normal strain rates and the loss due to inter-component exchange, resulting in positive 〈P11|u
r
1, u

r
3〉.

Increasing the magnitude of ur3 causes the shear stress components τ13 and shear strain rate com-

ponent ∂ur1/∂x3 to decrease owing to the advection effect and the horizontal velocity deficit carried

by the returning eddies. Therefore, 〈P11|u
r
1, u

r
3〉 generally decreases with ur3.

The trends for 〈P22|u
r
2, u

r
3〉 (Figure 3.5b) are generally similar to those of 〈P11|u

r
1, u

r
3〉. How-

ever, there are several differences. One is that 〈P22|u
r
2, u

r
3〉 increases with |ur2|, because the flow

is symmetric in the lateral direction. Another difference is that the magnitude of 〈P22|u
r
2, u

r
3〉 is

smaller than that of 〈P11|u
r
1, u

r
3〉 and is negative when ur3 has large negative values (ur3 < −0.6)

because the shear strain rate ∂ur2/∂x3 is smaller than ∂ur1/∂x3, resulting in smaller spectral trans-

fer associated with shear compared to the case for 〈P11|u
r
1, u

r
3〉. Thus, 〈P22|u

r
2, u

r
3〉 is smaller than

〈P11|u
r
1, u

r
3〉 when u

r
3 is positive and becomes negative when ur3 is strongly negative. Therefore, when

ur3 is negative, τ22 loses more energy due to the spectral transfer associated with normal strain and

inter-component-exchange than it gains due to spectral transfer associated with shear.

With the above discussions on 〈Pαα|u
r〉, the trends for 〈ταα|u

r〉 become clearer. Be-

cause the evolution of 〈τ11|u
r
1, u

r
3〉 is dominated by 〈P11|u

r
1, u

r
3〉, 〈τ11|u

r
1, u

r
3〉 has similar trends to

〈P11|u
r
1, u

r
3〉. For the same reason, 〈τ22|u

r
2, u

r
3〉 has similar trends to 〈P22|u

r
2, u

r
3〉. However, the trends

for 〈τ33|u
r
1, u

r
3〉 are different from those of 〈P33|u

r
1, u

r
3〉, because buoyancy production dominates the

evolution of τ33. Thus, 〈τ33|u
r
1, u

r
3〉 has similar trends to the buoyancy production rate 〈PB33|u

r
1, u

r
3〉

(Figure 3.8), instead of 〈P33|u
r
1, u

r
3〉. This suggests that buoyancy effects can potentially play an

important role in models of the SGS stress.

To summarize this part of the results, when ur3 is positive, the energy transfer rates due to

both normal and shear strain rates are positive (forward). The former depends strongly on ur3, but

weakly on ur1, whereas the latter depends on both. The inter-component exchange is positive for τ11

and τ22 and is negative for τ33. When ur3 is negative, the energy transfer due to the normal strain is

negative, whereas that due to shear strain is positive. The dependence on both ur1 and u
r
3 is weaker.

The inter-component-exchange terms have opposite signs to those for positive ur3. These are closely

related to the surface-layer dynamics.
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Figure 3.8 The conditional mean of the buoyancy production PB33 conditional on the
resolvable-scale velocity.

3.2.2 Shear components of 〈τij|u
r〉 and 〈Pij|u

r〉

The results for the conditional shear stress component 〈τ13|u
r
1, u

r
3〉 are shown in Figure

3.4(d). The magnitude of 〈τ13|u
r
1, u

r
3〉 generally increases with ur3. It also increases with ur1 and

the dependence is enhanced by positive ur3 and weakened by negative ur3. To further understand

the result of 〈τ13|u
r
1, u

r
3〉, the result of 〈P13|u

r
1, u

r
3〉 is first discussed. Figure 3.5(d) shows that the

trends of 〈P13|u
r
1, u

r
3〉 are similar to those of 〈τ13|u

r
1, u

r
3〉. The results of 〈P13|u

r
1, u

r
3〉 can also be

understood in terms of the dynamics of the unstable surface layer. The results of
〈

P d
13|u

r
1, u

r
3

〉

and
〈

− 23τkkS13|u
r
1, u

r
3

〉

which are due to deviatoric and isotropic parts of the SGS stress, respectively

(Figures 3.9(a) and 9(b)) are examined. Their magnitudes depend on ur1 and are enhanced by

positive ur3. The former is positive, indicating destruction of the shear stress, which has negative

values, owing to straining and rotation of the anisotropic part of the SGS turbulence. The latter is

negative and has about twice the magnitude of the former, indicating production due to straining

of the isotropic part of the SGS turbulence.

To understand 〈P13|u
r〉 in more detail, it is expanded as

〈P13|u
r〉 = −

〈

τ11
∂ur3
∂x1

+ τ12
∂ur3
∂x2

+ τ13
∂ur3
∂x3

+ τ31
∂ur1
∂x1

+ τ32
∂ur1
∂x2

+ τ33
∂ur1
∂x3

∣

∣

∣

∣

ur
〉

. (3.13)
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Figure 3.9 Conditional mean of the measured production rate of the shear SGS stress
component τ13 due to: (a), the deviatoric part of the SGS stress (τ dij); (b), the isotropic

part ( 13τkksij, the redistribution term). The deviatoric part is generally positive, there-
fore reduces the SGS shear stress.

The results obtained from the data show that the first five terms on the right-hand side of (3.13)

are small compared to the last term. This is because the derivatives of ur1 in the horizontal direc-

tions and the derivatives of ur3 are relatively small compared to ∂ur1/∂x3. Therefore, the last term
〈

−τ33
∂ur

1

∂x3

∣

∣

∣
ur
〉

is focused.

The results in Section 3.2.1 have shown that the SGS normal stress τ33 and the shear strain

rate component ∂ur1/∂x3 increase with ur3. They also increase with ur1, but the dependence is

enhanced by positive ur3 and weakened by negative ur3. Therefore, the magnitude of 〈P13|u
r〉 also

has similar trends. To further understand the trends of 〈P13|u
r〉,
〈

−τ33
∂ur

1

∂x3

∣

∣

∣
ur
〉

is rewritten as:

〈

−τ33
∂ur1
∂x3

∣

∣

∣

∣

ur
〉

=

〈

−
1

2
τd33S13

∣

∣

∣

∣

ur
〉

+

〈

−
1

2
τd33Ω13

∣

∣

∣

∣

ur
〉

+

〈

−
1

3
τkk

∂ur1
∂x3

∣

∣

∣

∣

ur
〉

(3.14)

where Ωij is the rotation tensor of resolvable-scale velocity. The first two terms on the right-hand side

of (3.14) are the conditional shear stress production due to straining and rotation of the anisotropic

part of the SGS turbulence. The third is the conditional shear stress production due to the straining

of the isotropic part of the SGS turbulence. The trends of
〈

− 12τ
d
33S13

∣

∣ur1, u
r
3

〉

and
〈

− 12τ
d
33Ω13

∣

∣ur1, u
r
3

〉

(not shown) are similar to that of
〈

P d
13|u

r
〉

. Their magnitudes are nearly equal and are approximately

half of that of
〈

P d
13|u

r
1, u

r
3

〉

, indicating that the destruction of the conditional shear stress due to

rotation, and straining of the anisotropic part of the SGS turbulence are almost equal. Therefore,
〈

P d
13|u

r
1, u

r
3

〉

comes primarily from the interactions of τ d33 with the shear strain rate, S13, and the

rotation sensor component, Ω13. The trend and magnitude of
〈

− 13τkk
∂ur

1

∂x3

∣

∣

∣
ur1, u

r
3

〉

(not shown) are
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Figure 3.10 Conditional mean of P23 conditional on the resolvable-scale velocity com-
ponents (ur2, u

r
3).

close to that of
〈

− 23τkkS13|u
r
1, u

r
3

〉

, indicating that the conditional shear stress production due to

straining of isotropic turbulence comes mainly from the interaction of τkk with the shear strain, S13.

Similarly to 〈P13|u
r
1, u

r
3〉, 〈P23|u

r
2, u

r
3〉 comes mainly from the interaction between the normal

SGS stress τ33 and the horizontal shear ∂ur2/∂x3. The results for 〈P23|u
r
2, u

r
3〉 are shown in Figure

3.10 and are similar to those of 〈P13|u
r
1, u

r
3〉. The differences are that the magnitude of 〈P23|u

r
2, u

r
3〉

increases with |ur2| because the flow is symmetric in the lateral direction, and that the magnitude

of 〈P23|u
r
2, u

r
3〉 is smaller than that of 〈P13|u

r
1, u

r
3〉 because the shear due to ur2 is smaller than that

due to ur1.

The evolution of 〈τ13|u
r
1, u

r
3〉 is dominated by both 〈P13|u

r
1, u

r
3〉 and conditional buoyancy

production 〈PB13|u
r
1, u

r
3〉 (Figure 3.11). The conditional buoyancy production 〈PB13|u

r
1, u

r
3〉 has

similar trends and magnitudes to 〈P13|u
r
1, u

r
3〉. Therefore, 〈τ13|u

r
1, u

r
3〉 also has similar trends. Sim-

ilarly, the evolution of 〈τ23|u
r
2, u

r
3〉 (Figure 3.12a) is dominated by both 〈P23|u

r
2, u

r
3〉 and buoyancy

production 〈PB23|u
r
2, u

r
3〉 (Figure 3.12b), which 〈PB23|u

r
2, u

r
3〉 has similar trends and magnitudes to

〈P23|u
r
2, u

r
3〉. Therefore, 〈τ23|u

r
2, u

r
3〉 also has similar trends.



56

−2 −1 0 1 2
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

ur
1

〈P
B

13
|u

r 1,u
r 3〉/ε

ur
3

1.50
0.67
0.00
−0.67
−1.50

Figure 3.11 Conditional mean of the buoyancy production PB13 conditional on the
resolvable-scale velocity, which has the similar trend to that of 〈τ13|u

r
1, u

r
3〉.

3.2.3 Anisotropy of the conditional SGS stress

An important property of the SGS stress is its level of anisotropy. Sullivan et al. (2003)

[36] found that the mean SGS stress in the surface layer is generally close to axisymmetric with one

large eigenvalue, similar to the Reynolds stress in turbulent boundary layers. It has been argued

that the Smagorinsky model under-predicts the anisotropy (redistribution of SGS energy among the

normal components) ([67]).

The level of anisotropy of the conditional SGS stress can be characterized by the represen-

tation in the Lumley triangle ([81]). The normalized anisotropy tensor for 〈τij |u
r〉,

〈

τdij |u
r
〉

/ 〈τkk|u
r〉 = 〈τij |u

r〉 / 〈τkk|u
r〉 −

1

3
δij , (3.15)

can be determined by two variables ξ and η defined in terms of its invariants ([37])

6η2 = −2II =
〈

τdij |u
r
〉 〈

τdij |u
r
〉

/ 〈τkk|u
r〉
2
, (3.16)

6ξ3 = 3III =
〈

τdij |u
r
〉 〈

τdjk|u
r
〉 〈

τdki|u
r
〉

/ 〈τkk|u
r〉
3
, (3.17)
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Figure 3.12 Conditional means of (a), the measured SGS stress τ23, and (b), the
conditional buoyancy production PB23, which has the similar trend to that of 〈τ23|u

r
2, u

r
3〉.

where II and III are the second and third invariants of the anisotropy tensor. If 〈τij |u
r〉 is isotropic,

both ξ and η are zero. (The first invariant or trace of
〈

τdij |u
r
〉

is always zero by definition). The

representation for the conditional SGS stress results in Figures 3.2 and 3.4 is shown in Figure 3.13.

There is a clear dependence of the anisotropy on the resolvable-scale velocity. When ur3 is positive,

〈τij |u
r
1, u

r
3〉 is quite anisotropic. For negative ur1 (and positive ur3), the points representing the

anisotropy are not far from η = −ξ, indicating that 〈τij |u
r
1, u

r
3〉 is close to axisymmetric with one

small eigenvalue. Such a SGS stress structure is probably a result of the strong buoyancy effects

causing τ33 to lose energy to the horizontal components τ11 and τ22. As ur1 increases, the points

move toward η = ξ, indicating that 〈τij |u
r
1, u

r
3〉 is close to axisymmetric with one large eigenvalue. In

addition, as ur1 and u
r
3 both increase, the points appear to move toward the upper right-hand corner,

indicating that the conditional SGS stress is approaching the one-component limit. This is probably

caused by the strong vertical shear generating an elongated structure under such conditions. For

negative ur3, the points are closer to the origin, indicating that 〈τij |u
r
1, u

r
3〉 is much less anisotropic.

The dependence on ur1 is also weak, consistent with the results on the conditional SGS stress in

Figure 3.4. These results show that not only is there significant anisotropy in 〈τij |u
r
1, u

r
3〉, but also

there are significant variations in the level of anisotropy, which depends on the resolvable-scale

velocity. The implications of the anisotropy on LES are discussed in Section 3.4.

It is noted that the measured invariants, ξ and η, contain statistical uncertainties due to the

uncertainties in the measured conditional SGS stress. While the results for (ξ, η) = F (ur1, u
r
3) are

well behaved (surfaces with bumps due to uncertainties), data points with large but similar (ur1, u
r
3)

can appear at quite different places in the invariant map. This is a manifestation of the uncertainties
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Figure 3.13 Representation of the anisotropy tensor in the Lumley triangle for the
conditional SGS stress 〈τij |u

r
1, u

r
3〉 for array 1 (∆/z = 3.88,−z/L = 0.24). The arrows

represent the conditioning vector (ur1, u
r
3). The anisotropy is stronger for ur3 > 0. The

SGS stress is close to axisymmetric with one large and small eigenvalue for ur1 > 0 and
ur1 < 0, respectively.

because the inverse relationship of (ξ, η) = F (ur1, u
r
3) is shown in the map, suggesting that the results

of the invariants for large ur1 and u
r
3 fluctuations are sensitive to the uncertainties in the conditional

SGS stress. The sensitivity appears to be higher when ur3 is negative, at which the magnitude of the

conditional SGS stress is small (larger relative uncertainties). Nonetheless, the general trends of the

dependence of the anisotropy on the velocity fluctuations are clear on the map.

The results discussed above are for ∆/z = 3.88 and −z/L = 0.24 (array 1). Sullivan et al.

(2003) [36] show that the non-dimensional SGS stress results collapse when plotted as a function of

the ratio of the vertical-velocity length scale to the filter size. To examine the effects of ∆/z and

−z/L the results for the other array configurations are also obtained. The results for 〈τij |u
r
1, u

r
3〉

are qualitatively similar to those for array 1, with the dependence on ur3 generally stronger and the

dependence on ur1 generally weaker. The level of the anisotropy of 〈τij |u
r
1, u

r
3〉 for different array

configurations are shown in Figure 3.14. When −z/L is fixed, reducing ∆/z (from 2.00 for array 2

to 0.48 for array 4) has essentially no effects on shear and buoyancy. However, an anisotropic grid

inherently trends to result in anisotropic SGS stress through anisotropic filtering. Therefore, there

is a slight decease in anisotropy in 〈τij |u
r
1, u

r
3〉 associated with the filter anisotropy. Furthermore,
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near the surface, anisotropic SGS eddies are affected more strongly by the presence of surface, i.e.

the vertical compression due to the returning flows (ur3 < 0) associated with the large convective

eddies. The compression effects for array 4 are weaker than those for array 2, resulting in fewer

points for the axisymmetric SGS stress with one small eigenvalue (η = −ξ). A comparison of the

levels of anisotropy for array 2 (∆/z = 2.00,−z/L = 0.36) and array 3 (∆/z = 1.00,−z/L = 0.60)

shows that 〈τij |u
r
1, u

r
3〉 for array 3 is less anisotropic than that for array 2, and has very few points

near the line of axisymmetric SGS stress with one small eigenvalue (η = −ξ). The height of array

3 is larger than that of the array 2 (Table 3.1), corresponding to a larger −z/L and a smaller ∆/z.

With a larger −z/L, the effects of buoyancy are enhanced, but the effects of shear are weakened.

These competing effects result in more points for axisymmetric SGS stress with one large eigenvalue

(η = ξ). A smaller ∆/z for array 3 slightly reduces the level of anisotropy in 〈τij |u
r〉 and the

compression effects (ur3 < 0), resulting in fewer points for axisymmetric SGS stress with one small

eigenvalue (η = −ξ). Among the four arrays, array 1 has the largest ∆/z and the smallest −z/L,

and consequently has the highest level of anisotropy and the strongest compression effects associated

with the returning flow of large convective eddies. Therefore, it is expected that the SGS stress and

its production rate for array 1 are the most challenging to predict by SGS models. Anisotropic grids

(refined in the vertical direction), which are often used near the surface to match the flow interior

with the surface (e.g., [21]), are therefore of importance. In the following section, SGS stress models

are tested using data obtained using array 1.
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Figure 3.14 The Lumley triangle representation of the conditional SGS stress from
other array configurations: (a) array 2 (∆/z = 2.00,−z/L = 0.36); (b) array 3 (∆/z =
1.00,−z/L = 0.60); (c) array 4 (∆/z = 0.48,−z/L = 0.35). The arrows represent the
conditioning vector (ur1, u

r
3).
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Table 3.5 Measured and modeled deviatoric SGS stress for array 1.
〈

τd11
〉

/u2∗ 〈τ12〉 /u
2
∗ 〈τ13〉 /u

2
∗

〈

τd22
〉

/u2∗ 〈τ23〉 /u
2
∗

〈

τd33
〉

/u2∗
τdij 0.79 -0.02 -0.73 -0.04 -0.06 -0.74
τsmgij 0.02 -0.01 -0.34 0.02 0.01 -0.02

τn1ij 1.15 -0.04 -0.13 -0.05 0.03 -1.10
τmixij 1.16 -0.04 -0.34 -0.03 0.04 -1.12
τn2ij 0.39 -0.01 -0.33 0.17 0.01 -0.54

3.3 SGS stress model predictions

The necessary conditions for predicting the JPDF can be used to test SGS models. In this

section, the model predictions of 〈τij |u
r〉 and 〈Pij |u

r〉 are computed and compared to the experi-

mental results for array 1 (∆/z = 3.88,−z/L = 0.24) presented in Section 3.2. The Smagorinsky

model, the nonlinear model of Leonard (1974) [82], the mixed model ([18]), and the nonlinear model

of Kosović (1997) [67] are considered. The average values of the measured and modeled mean

deviatoric SGS stress components are given in Table 3.5.

3.3.1 Smagorinsky model

The Smagorinsky model is given by Smagorinsky (1963) [60], and Lilly (1967) [1].

τsmgij = −2νTSij = −2(Cs∆)2(2SmnSmn)
1/2Sij , (3.18)

where Cs = 0.154 is the Smagorinsky constant for a box filter. In this work, Cs is determined by

matching the mean energy transfer rate, i.e. Cs =
〈

P d
ii

〉

/ 〈P smg
ii 〉.

The mean normal SGS stress components are severely under-predicted by the Smagorinsky

model and the mean shear stress 〈τ smg13 〉 is under-predicted by a factor of two. The conditional

mean of the model predictions,
〈

τsmgij |ur
〉

and
〈

P smg
ij |ur

〉

is compared with the conditional mean

of the deviatoric part of the SGS stress
〈

τdij |u
r
〉

obtained from the data, because the Smagorinsky

model predicts only this part. The predicted normal components of the conditional SGS stress,

〈τ smg11 |u
r
1, u

r
3〉 (Figure 3.15 a) and 〈τ smg33 |u

r
1, u

r
3〉 (Figure 3.15 c) have weaker trends and smaller

magnitudes compared with the measured
〈

τd11|u
r
1, u

r
3

〉

(Figure 3.4a)
〈

τd33|u
r
1, u

r
3

〉

(Figure 3.4c). The

trends of the production term 〈P smg
11 |u

r
1, u

r
3〉 (Figures 3.16a vs. 3.6a) are predicted better than

those of 〈τ11|u
r
1, u

r
3〉. However, the magnitudes are under-predicted (in addition to no conditional

backscatter). Since correct prediction of
〈

P d
33|u

r
〉

is essential to reproduce the PDF of vertical

resolvable-scale velocity, the results are plotted using ur3 as the independent variable (Figure 3.17a).

The magnitudes of
〈

P d
33|u

r
1, u

r
3

〉

are under-predicted by a factor of two compared with measurements

(Figure 3.17b), probably because the magnitude of the
〈

τd33|u
r
3

〉

is under-predicted by the model.
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Figure 3.15 Predicted conditional SGS stress using the Smagorinsky model condi-
tional on the resolvable-scale velocity. Only the trend of 〈τ13|u

r
1, u

r
3〉 is reasonably well

predicted.

The trend of the SGS shear stress component 〈τ smg13 |u
r
1, u

r
3〉 (Figure 3.15d) compares reasonably

well with 〈τ13|u
r
1, u

r
3〉 (Figure 3.4d). However, the magnitude is under-predicted by a factor of two.

The corresponding production rate 〈P smg
13 |u

r
1, u

r
3〉 (Figures 3.16b vs. 9a) is poorly predicted both

in terms of magnitude and trend. Therefore, it appears that the standard Smagorinsky model can

predict the trends of some SGS shear stress components, but not the normal components, and can

predict the trends of some normal components of conditional SGS stress production, but not the

shear components. The magnitudes of these components are generally poorly predicted.

The Smagorinsky model predictions can be understood in terms of the surface-layer dy-

namics and the model ingredients. The results in Section 3.2 show that although the evolution

(production) of
〈

τd11|u
r
1, u

r
3

〉

involves ∂ur1/∂x1, ∂u
r
1/∂x2 and ∂ur1/∂x3, the shear strain rate compo-

nent ∂ur1/∂x3 has the most important contribution. However, 〈τ smg11 |u
r
1, u

r
3〉 is modeled using only

∂ur1/∂x1. Because ∂ur1/∂x1 and ∂ur1/∂x3 have very different behaviors in the surface-layer (not

shown), neither the magnitude nor trend of 〈τ smg11 |u
r
1, u

r
3〉 are well predicted. The situation is similar



63

−2 −1 0 1 2
0

0.5

1

1.5

2

2.5

3

ur
1

〈P
sm

g
11

|u
r 1,u

r 3〉/ε

ur
3

(a)

1.50
0.67
0.00
−0.67
−1.50

−2 −1 0 1 2
−0.3

−0.2

−0.1

0

0.1

0.2

ur
1

〈P
sm

g
13

|u
r 1,u

r 3〉/ε

ur
3

(b)

1.50
0.67
0.00
−0.67
−1.50

Figure 3.16 Predicted conditional SGS stress production using the Smagorinsky model
conditional on the resolvable-scale velocity. Only the trend of

〈

P d
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〉

is reasonably
well predicted.
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Figure 3.17 Predicted conditional SGS stress production of τ33 using the Smagorinsky
model conditional on the resolvable-scale velocity.

for 〈τ smg22 |u
r
2, u

r
3〉. The normal component 〈τ smg33 |u

r
1, u

r
3〉 is also not predicted correctly because the

model does not take into account of the influence of buoyancy. The predicted trend of 〈τ13|u
r
1, u

r
3〉 is

somewhat better because the model uses ∂ur1/∂x3, which is also contained in P13; however, because

〈τ smg13 |u
r〉 does not include the effect of buoyancy, the magnitude is not predicted well.

The Smagorinsky model prediction of the anisotropy tensor is obtained by using the modeled
〈

τdij |u
r
〉

and the measured conditional SGS energy, i.e. it is assumed that the model for the SGS

energy used in combination with the Smagorinsky model is accurate. The data points in Figure

3.18(a) are much closer to the origin than the results in Figure 3.13, indicating that the level

of anisotropy is severely under-predicted. This is perhaps a reflection of the properties of the

resolvable-scale strain rate tensor.
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Figure 3.18 The Lumley triangle representation of the conditional SGS stress from
SGS models: (a), the Smagorinsky model; (b), the Nonlinear model; (c), the deviatoric
mixed model; (d), Kosović’s nonlinear model. The arrows represent the conditioning
vector (ur1, u

r
3).

Another variation of the Smagorinsky model uses the SGS kinetic energy to obtain eddy

viscosity ([65]), νT = Ce∆e
1/2 (e is the SGS kinetic energy). This model has been used extensively

in large-eddy simulation of the atmospheric boundary layer ([83, 84, 21]). The predictions of 〈τij |u
r〉

and 〈Pij |u
r〉 are also computed using this model. The results are close to those given by (3.18),

probably because they both use eddy viscosity and the resolvable-scale strain rate.

3.3.2 Nonlinear model

Bardina et al. (1980) [24] proposed a similarity model, which is based on the scale invariance

of inertial-range turbulence. It assumes that the instantaneous SGS stress has similar structures at

different scales. The model involves two filters with different filter sizes. Owing to the limitation of

the array configuration, this double filtering cannot be performed to test the model. However, the

data set allows to test the nonlinear model, which is the first-order approximation of the similarity
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model ([82, 22]).

τn1ij =
1

12
∆2

∂uri
∂xk

∂urj
∂xk

, (3.19)

The nonlinear model under-predicts the energy transfer rate by a factor of two and the SGS kinetic

energy by 23% (
〈

τn1kk
〉

/u2∗ = 4.29 vs. 〈τkk〉 /u
2
∗ = 6.27). The normal mean SGS stress components

are generally under-predicted (can be obtained from Table 3.5), but their deviatoric parts are over-

predicted (Table 3.5). The conditional SGS stress component
〈

τn111 |u
r
1, u

r
3

〉

(Figure 3.19(a) and
〈

τn122 |u
r
2, u

r
3

〉

(not shown) are only slightly under-predicted whereas
〈

τn133 |u
r
1, u

r
3

〉

(not shown) are

under-predicted by a factor of two. The model also predicts the SGS shear stress
〈

τn113 |u
r
1, u

r
3

〉

poorly both in terms of the trend and magnitude. On the other hand, the trends for the conditional

SGS stress production rate components are predicted quite well (
〈

Pn1
11 |u

r
1, u

r
3

〉

is shown in Figure

3.19(b)). Their magnitudes are under-predicted by a factor of two except that of
〈

Pn1
22 |u

r
2, u

r
3

〉

.

Matching the mean energy transfer rate by changing the model coefficient improves the predictions

for 〈Pij |u
r〉, but causes the magnitude of the conditional SGS stress to be over-predicted. Therefore,

the nonlinear model also cannot predict the conditional SGS stress and its production rate at the

same time.

The nonlinear model predictions can also be understood in terms of the model ingredi-

ents and the production of the SGS stress. Because
〈

τn111 |u
r
〉

involves ∂ur1/∂x1, ∂u
r
1/∂x2, and

∂ur1/∂x3, which also appear in 〈P11|u
r
1, u

r
3〉, its trend is better predicted. The situation is simi-

lar for
〈

τn122 |u
r
2, u

r
3

〉

. The modeled component
〈

τn133 |u
r
1, u

r
3

〉

does not include the dominant influence

of buoyancy, thus, 〈τ33|u
r
1, u

r
3〉 is poorly predicted. Although

〈

τn113 |u
r
1, u

r
3

〉

involves ∂ur1/∂x3, it is also

related to ∂ur1/∂x1 and ∂u
r
3/∂x3 which are likely to introduce spurious dependence on ur, therefore,

〈τ13|u
r
1, u

r
3〉 is also poorly predicted (Figure 3.19c).

Unlike the Smagorinsky model, the nonlinear model (Figure 3.18b) over-predicts the level

of anisotropy. The results are still close to either η = −ξ or η = ξ, i.e. axisymmetric with one small

or large eigenvalue, but are much closer to the two-component axisymmetric or the one-component

limits. The lowest predicted level of anisotropy is comparable to the highest measured level. These

trends perhaps occur because the nonlinear model contains the resolvable-scale rotation tensor, and

therefore contains the effects of the mean rotation.
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Figure 3.19 Predicted conditional SGS stress and conditional SGS stress production
using the nonlinear model conditional on the resolvable-scale velocity. Both 〈τ11|u

r
1, u

r
3〉

and 〈P11|u
r
1, u

r
3〉 are reasonably well predicted.

3.3.3 The mixed model

The above results show that the Smagorinsky model and the nonlinear model under- and

over-predict the anisotropy of the conditional SGS stress, respectively. Thus, a mixed model combin-

ing these two models (the term, mixed model, is originally used as the combination of the similarity

model and Smagorinsky model):

τmixij =
1

12
∆2

∂uri
∂xk

∂urj
∂xk
− 2(Cs∆)2(2SmnSmn)

1/2Sij (3.20)

can potentially provide improved predictions. The results of Vreman et al. (1997) [18] show that

this model is better than that of the nonlinear model or Smagorinsky model alone in the large-eddy

simulation of a turbulent mixing layer. Here this model are also tested. The model coefficient Cs

is determined by matching the mean energy transfer rate, i.e. letting 〈Pii〉 =
〈

Pmix
ii

〉

. The results

show that the normal components of SGS stress, 〈τ11|u
r
1, u

r
3〉 and 〈τ22|u

r
2, u

r
3〉, and their production

rate, 〈P11|u
r
2, u

r
3〉 and 〈P22|u

r
2, u

r
3〉, are generally predicted well. However, the vertical components of
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〈τij |u
r
1, u

r
3〉 and 〈Pij |u

r
1, u

r
3〉 are under-predicted. For example, comparisons between Figures 3.20(a)

and 4(d) and between Figures 3.20(b) and 3.5(d) show that 〈τ13|u
r
1, u

r
3〉 and 〈P13|u

r
1, u

r
3〉 are under-

predicted. The anisotropy (not shown) is very similar to that of the nonlinear model. Therefore,

a linear combination of the nonlinear model and the Smagorinsky model does not significantly

improve the predicted conditional means. A problem for this mixed model is that the nonlinear

model predicts the total SGS stress, but the Smagorinsky model predicts only the deviatoric part.

This suggests that a combination of the deviatoric part of the nonlinear model and the Smagorinsky

model might be useful. Therefore, the mixed model is rewritten as:

τmixij =
1

12
∆2
{

∂uri
∂xk

∂urj
∂xk
−

1

3

∂urm
∂xk

∂urm
∂xk

δij

}

− 2(Cs∆)2(2SmnSmn)
1/2Sij . (3.21)

The deviatoric mixed model not only predicts well the normal components of SGS stress,
〈

τd11|u
r
1, u

r
3

〉

and
〈

τd22|u
r
2, u

r
3

〉

, and their production rates,
〈

P d
11|u

r
1, u

r
3

〉

and
〈

P d
22|u

r
2, u

r
3

〉

, but also predicts well
〈

τd33|u
r
1, u

r
3

〉

(Figure 3.21a) and
〈

P d
33|u

r
1, u

r
3

〉

(Figure 3.21b), which are under-predicted by the original

mixed model. The SGS shear stress production
〈

Pmix
13 |u

r
1, u

r
3

〉

(Figure 3.21c) is also better predicted

than that in Figure 3.20(b). Unfortunately, 〈τ13|u
r〉 (identical to the mixed model prediction shown

in Figure 3.20a) remains to be improved, which is a very important component for LES in the surface

layer. The predicted anisotropy (Figure 3.18c) using the deviatoric mixed model is stronger than

measurements, but is improved over that of the nonlinear model. The mixed model over-predicts the

(intrinsic) anisotropy, but under-predicts 〈τ13|u
r
1, u

r
3〉, suggesting that the directions of the principal

axes of 〈τij |u
r
1, u

r
3〉 are not predicted well. This is in contrast to the Smagorinsky model which

under-predicts both. It is also experimented by changing the ratio of the two model coefficients

(strictly speaking, the coefficient for the nonlinear part is fixed by the filter type) with little effect

on the anisotropy.

It is interesting to note that another type of cancelation between the Smagorinsky model and

the similarity model ([24]) was observed by Liu et al. (1999) [85] in rapidly strained homogeneous

turbulence. There, the under-prediction by the Smagorinsky model and the over-prediction by the

similarity model of the mean spectral energy transfer rate during straining were partially canceled

when a mixed model was used. Therefore, it appears that various kinds of opposing trends of the

Smagorinsky model and the similarity (and nonlinear) model can be partially canceled by using a

mixed model.
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Figure 3.20 Predicted conditional shear SGS stress 〈τ13|u
r
1, u

r
3〉 and the conditional

production 〈P13|u
r
1, u

r
3〉 using mixed model conditional on the resolvable-scale velocity.

3.3.4 Kosović’s nonlinear model

Kosović (1997) [67] proposed another nonlinear model:

τn2ij = −(Cs∆)2
{

2(2SmnSmn)
1/2Sij + C1(SikSkj −

1

3
SmnSmnδij)

+ C2(SikΩkj − ΩikSkj)
}

. (3.22)

where Cs, C1 and C2 are model constants, which are determined here by matching the mean energy

transfer rate, i.e. letting
〈

P d
ii

〉

=
〈

Pn2
ii

〉

while maintaining the ratios of their original values in

Kosović [67]. The first part of this model is essentially the Smagorinsky model. By setting C2 = 0,

this model is essentially the deviatoric mixed model. A comparison between the results of this

model (results not shown) and the deviatoric mixed model shows that the latter predicts 〈τ13|u
r
1, u

r
3〉

(Figure 3.22) better, but the rest of the components of the conditional SGS stress and the conditional

SGS stress production are less well predicted. Therefore, this nonlinear model has a somewhat more

balanced overall performance. Like the Smagorinsky model, this nonlinear model under-predicts the

magnitude of the conditional SGS stress (by approximately 50%) when the mean energy transfer

is matched. It is probably because the Smagorinsky model over-predicts the correlation between

the SGS stress and the strain rate. The level of anisotropy of 〈τij |u
r
1, u

r
3〉 (Figure 3.18d) is also

under-predicted, but the prediction is improved over that of the Smagorinsky model.

3.4 Effects of SGS model deficiencies on LES results

The measured conditional SGS stress and the SGS stress production and the model pre-

dictions can be used to identify model deficiencies that cause inaccuracies in LES results. Previous

studies have shown that the Smagorinsky model over-predicts the mean shear and the streamwise
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Figure 3.21 Predicted conditional SGS stress and conditional SGS stress production
using the deviatoric mixed model conditional on the resolvable-scale velocity. Note
that the predicted 〈τ13|u

r
1, u

r
3〉 is identical to that of the mixed model.

velocity variance near the surface ([8, 10]). It is argued that these inaccuracies are at least partly

due to the under-prediction of the anisotropy of the SGS stress and its variations in the near-wall

region. In the atmospheric boundary layer (ABL) the vertical shear stress component is determined

by the geostrophic conditions and the mean shear ([86, 9]), which are a combination of the large-scale

pressure gradient and the Coriolis force, therefore a simulation tends to adjust itself to satisfy these

conditions. Because the anisotropy of the SGS stress (Figure 3.13) is under-predicted, the simulation

must generate a larger strain rate to produce the correct SGS shear stress, thereby over-predicting

the mean shear. In addition, the larger strain rate will cause over-prediction of the production of

the streamwise velocity variance, −〈ur′1 u
r′
3 〉

∂U1

∂x3

, therefore the streamwise velocity variance itself,

where ur′i is the fluctuation of uri . Furthermore, the conditional variations of the anisotropy (the

SGS shear stress) are also severely under-predicted, further reducing the transfer of the streamwise

velocity variance to the subgrid-scales.
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Figure 3.22 Predicted conditional shear SGS stress 〈τ13|u
r
1, u

r
3〉 using Kosović’s non-

linear model conditional on the resolvable-scale velocity, which is improved over the
mixed model.

The stochastic backscatter model of Mason and Thomson (1992) [8] introduces additional

energy (on average) into the resolvable scales through random forcing, at the same time increasing

the dissipation by eddy viscosity to maintain the energy balance. In doing so, the model is able to

predict τ13 and anisotropy better without generating an excessive strain rate. In the split model of

Sullivan et al. (1994) [10], an increasing part of τ13 is produced by the mean shear as the surface

is approached; therefore the results are less affected by the inability of the Smagorinsky model to

predict the anisotropy. The nonlinear model of Kosović [67] is also capable of producing a higher

level of anisotropy (Figure 3.18d) and gives improved LES results. Therefore, it appears that the

anisotropy of the SGS stress is important for the correct prediction of the mean shear and the

streamwise velocity variance.

Another important surface-layer statistic is the vertical velocity skewness, which is under-

predicted by LES using the Smagorinsky model ([87, 88]). This can be examined by considering

the conditional SGS stress 〈τ33|u
r
3〉 and the SGS stress production 〈P33|u

r
3〉, which appear in the
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equation for the resolvable-scale vertical velocity PDF

∂fur
3

∂t
+ v3

∂fur
3

∂x3
=

∂2

∂v3∂x3

{

〈τ33|u
r
3 = v3〉 fur

3

}

+
∂2

∂v3∂v3

{

−
1

2
〈P33|u

r
3 = v3〉 fur

3

}

+
∂2

∂v3∂x3

{

〈pr|ur3 = v3〉 fur
3

}

+
∂2

∂v3∂v3

{〈

pr
∂ur3
∂x3

∣

∣

∣

∣

ur3 = v3

〉

fur
3

}

−
g

Θ

∂

∂v3

{

〈θr|ur3 = v3〉 fur
3
,
}

(3.23)

where fur
3
= 〈δ(ur3 − v3)〉. The mixed transport terms due to the conditional SGS stress and the

resolvable-scale pressure are expected to diminish with the filter scale, whereas the terms due to the

conditional pressure-strain correlation and the conditional SGS stress production are expected to be

invariant for inertial-range filter scales.

The pressure-strain correlation is associated with return to isotropy and partially counters

the production. Therefore, the dominant term in the equation is expected to be the conditional

SGS stress production. In a quasi-stationary and horizontally homogeneous ABL there is a balance

primarily among advection, transport due to conditional pressure-strain correlation, and transport

due to the conditional SGS stress production. Sabelnikov (1998) [40] analysed the PDF equation for

scalar fluctuations generated by a constant mean scalar gradient and stationary isotropic turbulence

and provided a self-similar relationship between the scalar PDF and the conditional scalar dissipa-

tion, which plays a similar role to P33 in equation (3.23). He showed that for a conditional dissipation

independent of the scalar value, the scalar PDF is Gaussian. If the conditional dissipation increases

with the scalar fluctuations, the PDF is super-Gaussian and vice versa. Because of the similarities

between equation (3.23) and the scalar PDF transport equation, these trends are expected to hold

qualitatively for equation (3.23). Therefore, there exists a direct link between the resolvable-scale

vertical velocity PDF and 〈P33|u
r
3〉 for a stationary ABL. Physically, to maintain a longer (or higher)

tail of the PDF, the SGS turbulence must extract more energy from the resolvable scales when the

velocity fluctuations are large. Figure 3.17(b) shows that the measured 〈P33|u
r〉 increases with ur3,

therefore is asymmetric with respect to ur3. Consequently, the positive side of fur
3
is higher than the

negative side, resulting in a positive skewness. On the other hand, the prediction of the Smagorinsky

model is much less dependent on ur3, and consequently will result in a smaller skewness. Therefore,

the under-prediction of the vertical velocity skewness is probably due to the inability of the model

to predict the asymmetry in 〈P33|u
r
3〉. The specific model deficiencies identified here can be used to

guide development of improved SGS models that will correctly predict these statistics. The analyses

in this section and Section 3.2 can serve as examples for studying aspects of SGS turbulence and

SGS models that are important for specific applications.
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It is noted that previous a priori tests, especially those correlating the modeled to the true

SGS stress, have provided little information about how SGS models will perform in a simulation.

For example, the Smagorinsky model has very low correlation coefficients with the true SGS stress,

but performs quite well in LES of isotropic turbulence while the similarity model correlates well with

the true stress, but may cause simulations to become unstable. The difficulty in interpreting a priori

test results and model performance in simulations is partly because there is no equation relating the

tests results to LES statistics. In addition, owing to the chaotic nature of the LES equations, a high

(unless perfect) correlation between the modeled and true SGS stress cannot guarantee accurate

LES statistics. Another problem of these a priori tests is that they focused solely on the SGS stress

whereas equation (3.4) shows that the SGS stress production rate is also important. In the case

of homogeneous turbulence, the influence of the conditional SGS stress vanishes. In such flows,

the conditional mean SGS energy transfer rate (near the mean velocity) plays an dominant role

in determining the lower-order LES statistics. Therefore, the Smagorinsky, whose coefficient is

determined by matching the inertial-range energy transfer rate to the theoretical values, performs

quite well in LES of homogeneous turbulence with a well-resolved energy-containing range despite

the low correlation with the true SGS stress. On the other hand, the similarity model under-predicts

the (mean and conditional) energy transfer rate, therefore does not perform well (in fact might not

be used alone) despite its relatively high correlation with the true SGS stress. In inhomogeneous

flows, both the conditional SGS stress and the conditional SGS stress production rate are important.

The mixed model makes use of the abilities of the Smagorinsky model to predict the mean energy

transfer and of the similarity model to predict the SGS stress, resulting in improved performance.

Therefore, a priori tests based on the JPDF equation differ fundamentally from the traditional tests

and can provide valuable information about model performance.

3.5 Further analyses of 〈τij|u
r〉 and 〈Pij|u

r〉

The results in the present study for the conditional SGS stress 〈τij |u
r〉 and conditional SGS

stress production rate 〈Pij |u
r〉 show that there are similarities between their trends. The deviatoric

parts of 〈τij |u
r〉 and 〈Pij |u

r〉 (not shown) also have similar dependence on ur. Wyngaard (1992)

[9] showed that the Reynolds shear stress budget in the unstable surface layer is generally in local

balance among shear production, buoyancy production, and pressure destruction, whereas turbulent

transport is negligible. The (slow) pressure destruction term is usually modeled using Rotta (1951)’s
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[89] “return-to-isotropy” model,

1

ρ0

〈

ui
∂p

∂xj
+ uj

∂p

∂xi

〉

∼
〈uiuj〉 −

1
3 〈ukuk〉 δij

tl
(3.24)

where tl is a time scale, which is of the order of the integral time scale. Therefore, it may be ex-

pected some similarities between 〈uiuj〉 and the combination of the shear and buoyancy production.

Wyngaard (2004) [58] suggests that the balance between the SGS stress and the production can be

given as

τmodij

t∆
= P a

ij (3.25)

where t∆ is a turbulent time scale and P a
ij = Pij −

1
3Pkkδij is the anisotropic part of the SGS

stress production tensor. Because P a
ij contains τij , this relationship could potentially be used as

an algebraic SGS model. To investigate this potential, the geometric alignment and eigenvalue

relationship between
〈

τdij |u
r
〉

and
〈

P a
ij |u

r
〉

is studied. The effects of advection urk
∂τd

ij

∂xk
and buoyancy

can also be analyzed by adding corresponding terms to the right-hand side of (3.25).

The eigenvalues of the conditional SGS stress tensor,
〈

τdij |u
r
〉

, are denoted as ατ , βτ and

γτ , ordered such that ατ ≥ βτ ≥ γτ , and the corresponding unit eigenvectors as ~ατ , ~βτ and ~γτ .

Similarly, the eigenvalues of the conditional SGS stress production tensor,
〈

P a
ij |u

r
〉

, are denoted as

αP , βP and γP , ordered such that αP ≥ βP ≥ γP , and the corresponding unit eigenvectors as ~αP , ~βP

and ~γP . In order to characterize the geometric alignment between the eigenvectors of
〈

τdij |u
r
〉

and
〈

P a
ij |u

r
〉

, three angles, θ, φ and ξ, are defined as θ = cos−1(|~γP ·~γτ |) (the angle between ~γP and ~γτ ),

φ = cos−1(|~βP · ~βτ |), and ξ = cos−1(|~αP · ~ατ |).

The geometric alignment results for
〈

τdij |u
r
〉

and
〈

P a
ij |u

r
〉

are shown in Figure 3.23. For,
〈

τdij |u
r
1

〉

and
〈

P a
ij |u

r
1

〉

, the values of θ, φ and ξ are generally less than 10◦ and weakly depend on

ur1, indicating very good alignment. Figure 3.23(b) shows that
〈

τdij |u
r
3

〉

and
〈

P a
ij |u

r
3

〉

are aligned

well when ur3 is positive but are less well aligned when ur3 is negative. Because 〈τij |u
r〉 is much less

anisotropic and
〈

τdij |u
r
3

〉

and
〈

P a
ij |u

r
3

〉

are small when ur3 has large negative values, the alignment

angles are less well defined.

The effects of advection and buoyancy on the conditional SGS stress are also examined

by including these terms in the alignment calculation. The alignment results for
〈

τdij |u
r
〉

and
〈

P a
ij +Aaij |u

r
〉

and
〈

P a
ij + P a

Bij |u
r
〉

are also computed, where Aaij is the advection term of τdij and

P a
Bij = PBij −

1
3PBkkδij . The trends and the magnitudes of the alignment angles (not shown) are

very close to those shown Figure 3.23. Therefore, introducing the advection term and the buoyancy

production generally has a negligible effect on the geometric alignment.
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Figure 3.23 Geometric alignment of the measured conditional SGS stress and the
conditional SGS stress production conditional on (a), ur1 and (b), ur3. The alignment
angles are small for positive ur3 and increases for negative ur3 but depends weakly on ur1.

The eigenvalues of
〈

τdij |u
r
1

〉

and
〈

τdij |u
r
3

〉

conditional on ur1 and u
r
3 are shown in Figure 3.24.

The eigenvalues ατ and γτ generally depend on ur1 and ur3, and the magnitudes generally increase

with ur1 and ur3, indicating that the SGS turbulence is more anisotropic when both ur1 and ur3 are

positive. The magnitude of αβ is generally small and weakly depends on ur1 and ur3. In order

to characterize the eigenvalue relationship between
〈

τdij |u
r
〉

and
〈

P a
ij |u

r
〉

, the ratio of ατ/αP and

γτ/γP conditional on ur1 and ur3 are plotted in Figures 3.25(a) and 3.25(b), respectively. The ratio

of eigenvalue βτ and βP is not shown because both of them are small. The ratios ατ/αP and γτ/γP

depend both on ur1 and u
r
3, and the dependence on ur1 is generally weaker than on ur3. The eigenvalue

ratios of
〈

τdij |u
r
〉

and
〈

P a
ij +Aaij |u

r
〉

are also computed (not shown). The results are similar to those

in Figure 3.25(a, b) because the magnitude of the advection is small. The eigenvalue ratios of
〈

τdij |u
r
〉

and
〈

P a
ij + P a

Bij |u
r
〉

conditional on ur1 are shown in Figure 3.25(c) and are not significantly different

from those in Figure 3.25(a) which depend on ur1. The results of
〈

P a
ij + P a

Bij +Aaij |u
r
〉

are close

to the results of
〈

P a
ij + P a

Bij |u
r
〉

(not shown). The effects of buoyancy production are somewhat

surprising considering that plays an important role in the production of τ13 and τ33.

The overall similarity between
〈

τdij |u
r
〉

and
〈

P a
ij |u

r
〉

can be quantified using their contrac-

tion,

〈

τdij |u
r
〉

:
〈

P a
ij |u

r
〉

=

〈

τdij |u
r
〉 〈

P a
ij |u

r
〉

|
〈

τdij |u
r
〉

||
〈

P a
ij |u

r
〉

|
. (3.26)

If the two tensors are perfectly aligned and their eigenvalues are proportional, the contraction has

the value of one. The results in Figure 3.26(a) show that the
〈

τdij |u
r
1

〉

:
〈

P a
ij |u

r
1

〉

is close to one and
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Figure 3.24 Eigenvalues of the conditional SGS stress conditional on (a), ur1 and (b),
ur3. The magnitudes of the eigenvalues increase with the resolvable-scale velocity.

weakly depends on ur1. The values in Figure 3.26(b) are also close to one and weakly depend on

ur3 when ur3 is positive, but decrease with increasing magnitude of ur3 when ur3 is negative. Again,

for negative ur3 the eigenvalues of
〈

τdij |u
r
3

〉

and
〈

P a
ij |u

r
3

〉

are generally small and
〈

τdij |u
r
3

〉

is less

anisotropic, thus the alignment results are less well defined. The results also show that including the

advection term has little effect on the contraction. However, including the buoyancy production rate

causes the contraction to decrease and results in a stronger dependence on ur3. From a modeling

point of view, because both
〈

τdij |u
r
〉

and
〈

P a
ij |u

r
〉

are small for negative ur3, it is probably more

important to model correctly their magnitudes than their orientations.

3.6 Summary

In the present study, field measurements data taken in the convective atmospheric boundary

layer are used to analyse the subgrid-scale turbulence. The necessary conditions for LES to pre-

dict correctly the one-point resolvable-scale velocity JPDF are that the SGS model reproduces the

conditional means of the SGS stress and the SGS stress production rate. The conditions highlight

the importance of the conditional energy transfer from the resolvable to the subgrid scales and the

production rate of SGS shear stress.

Analyses of the conditional SGS stress and the conditional SGS stress production using the

field data show that they are closely related to the surface-layer dynamics. Specifically, the updrafts

generated by buoyancy, the downdrafts associated with the large-scale convective eddies, the mean



76

−2 −1 0 1 2
0.4

0.5

0.6

0.7

0.8

0.9

ur
1

(a)

γτ/γP
c

ατ/αP
c

−2 −1 0 1 2
0

0.5

1

1.5

2

2.5

ur
3

(b)

γτ/γP
c

ατ/αP
c

−2 −1 0 1 2
0.5

0.6

0.7

0.8

0.9

1

ur
1

(c)

γτ/γP
c

ατ/αP
c

Figure 3.25 Ratios of the eigenvalues of the conditional SGS stress and the conditional
SGS stress production conditional on (a), ur1 and (b), ur3. The buoyancy production is
included in (c).

shear, and the length scale inhomogeneity play important roles in the behaviors of 〈τij |u
r〉 and

〈Pij |u
r〉.

The results show that when ur3 is positive (updrafts), the subgrid-scale eddies move upward

and are on average stretched in the vertical direction owing to shear and buoyancy acceleration.

Under such conditions, all three components of the normal SGS stress gain energy through the

spectral transfer. However, τ33 loses energy to τ11 (and τ22) through inter-component exchange,

resulting in anisotropy in the SGS stress. These processes are enhanced with increasing ur3 owing to

stronger vertical shear and buoyancy acceleration as well as the advection effects. While 〈P33|u
r
1, u

r
3〉

generally depends weakly on ur1, 〈P11|u
r
1, u

r
3〉 depends on ur1, because a larger ur1 causes stronger

vertical shear, further increasing the level of anisotropy. For negative ur3, the subgrid-scale eddies

associated with the returning flow of large convective eddies move downward and are on average
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Figure 3.26 Contraction of the conditional SGS stress and the conditional SGS stress
production conditional on (a), ur1 and (b), ur3. The effects of advection and buoyancy
production are also included and are generally small.

compressed in the vertical direction owing to the presence of the ground. The spectral transfer is

negative (conditional backscatter) under such conditions. However, τ33 gains energy from τ11 (and

τ22) through inter-component exchange. These processes are also somewhat enhanced by increasing

the magnitude of (negative) ur3, resulting in nearly isotropic SGS stress. These processes depend

weakly on ur1 because the vertical shear is weakened by the returning flow.

Representation of the conditional SGS stress in the Lumley triangle also shows similar trends

for anisotropy. In general, the anisotropy is weak for negative ur3 and is much stronger for positive

ur3. For positive and negative ur1 values, 〈τij |u
r
1, u

r
3〉 is close to axisymmetric with one large and

one small eigenvalue, respectively, perhaps reflecting the shear and buoyancy effects. The results

for the SGS shear stress 〈τ13|u
r
1, u

r
3〉 and the production term 〈P13|u

r
1, u

r
3〉 are consistent with the

dependence of the anisotropy on ur1 and ur3. The magnitude of 〈P13|u
r
1, u

r
3〉 depends on ur1 and is

enhanced by positive ur3. Comparisons of the results for different array configurations (∆/z and

−z/L) show that both grid anisotropy and the stability parameter (−z/L) affect the anisotropy

of the SGS stress. The anisotropy of 〈τij |u
r〉 is argued to be important for correctly predicting

the mean velocity profile and the streamwise velocity variance. The results also show that there is

significant similarity between 〈τij |u
r〉 and 〈Pij |u

r〉 when ur3 is positive. This is further evidenced by

the small angles between their eigenvectors (less than 10◦) and high values of the normalized tensor

contraction (> 0.9).

Systematic tests of several current SGS models are performed. The Smagorinsky model can

predict well neither the conditional mean of SGS stress nor its production. It can predict quite
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well the trends of some shear stress components, but not the normal components, and can predict

the trends of some normal components of conditional SGS stress production, but not the shear

components. The magnitudes of these components are generally poorly predicted. The level of

anisotropy is also severely under-predicted.

The nonlinear model ([82]) can predict reasonably well the trends of some normal stress

components, but not the shear components, and can predict the trends of some normal components

and shear components of the conditional SGS stress production rate. It over-predicts the conditional

backscatter. Unlike the Smagorinsky model, the nonlinear model over-predicts the level of anisotropy.

The mixed Smagorinsky-nonlinear model does not show significant improvement. The deviatoric part

of the mixed model has an improved performance. It can predict most components of the conditional

SGS stress and the conditional SGS stress production quite well. Unfortunately, 〈τ13|u
r〉 is poorly

predicted, which is very important for LES in the surface layer. Although the anisotropy is over-

predicted, it is closer to the measurements than the mixed model and the nonlinear model.

The predicted 〈τ13|u
r〉 using Kosović’s nonlinear model is improved over of the deviatoric

mixed model, but the rest of the components of the conditional SGS stress and the conditional SGS

stress production are less well predicted. It also under-predicts the magnitude of the conditional SGS

stress when the mean energy transfer is matched. The level of anisotropy is also under-predicted

compared with measurements, but the prediction is improved over that of the Smagorinsky model.

Using the measured 〈τij |u
r〉 and 〈Pij |u

r〉 and their model predictions, the deficiencies in

current LES results, such as the over-predictions of the mean velocity profile and the streamwise

velocity variance, and the under-prediction of the vertical velocity skewness are linked to the inability

of the SGS models to predict 〈τij |u
r〉 and 〈Pij |u

r〉 correctly. Specifically, the former is related to

the under-prediction of the anisotropy of 〈τij |u
r〉 and the latter is due to the under-prediction of

the dependence of 〈P33|u
r〉 on ur3 and the asymmetry in the dependence.

The analyses of the conditional SGS stress and the conditional SGS stress production rate

can serve as an important guide in developing improved SGS models. In particular, the understand-

ing gained on the characteristics of the SGS stress and its production and the deficiencies identified

of SGS models in predicting these characteristics can be used to improve specific aspects of LES

results that are crucial to a given application. It is emphasized that although the testing of the SGS

models performed in the present study is a priori in nature, the linkage between the modeled terms

and resolvable-scale velocity JPDF is strong because the analyses use the JPDF equation. Therefore,

the test results can be used to identify the possible causes for LES deficiencies. Nonetheless, it would
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be very useful to carry out a posteriori testing of SGS models by comparing model predictions of

〈τij |u
r〉 and 〈Pij |u

r〉 from actual LES with measurements.



CHAPTER 4

On the subgrid-scale fluxes and their pro-

duction rates in a convective atmospheric

boundary layer

In this chapter, the subgrid-scale (SGS) scalar flux in the atmospheric surface layer is studied

using field measurements data. When the filter scale is in the inertial range, the energy-containing

scales are well resolved and most of the turbulent stress is contained in the resolvable scales. The

effects of subgrid scales are generally considered to be limited to extracting energy from the resolvable

scales at the correct rate ([1, 27, 61]). Thus, the LES results are to some extent insensitive to the

subgrid-scale model employed ([6, 21]).

However, in LES of high-Reynolds-number turbulent boundary layers, such as the atmo-

spheric boundary layer (ABL), the filter scale in the near-wall region is inevitably in the energy-

containing scales ([62, 21, 32, 48, 49]). This causes the near-wall results to depend heavily on the

SGS model ([49]). Therefore, the deficiencies of SGS models are likely to result in inaccuracies in the

LES statistics in the near-wall region. For example, the standard Smagorinsky model over-predicts

the mean scalar gradient and the mean scalar variance, but under-predicts the mean vertical scalar

flux in the LES of the unstable ABL ([8, 10]). Therefore, an important question in improving SGS

models is how the SGS turbulence and SGS models affect the resolvable-scale statistics under these

conditions.

Previous studies of SGS turbulence have generally focused on the energy transfer rate from

the resolvable to the subgrid scales (e.g., [61, 27]). However, a limitation of such studies is that

they do not provide information on how the SGS turbulence affects the resolvable-scale statistics. a

priori and a posteriori tests of SGS models (e.g., [22, 23, 24, 6, 25, 26, 8, 27, 28, 29, 30, 21, 31, 32,

33, 19, 34, 35, 36]) are also very limited in their ability to relate SGS model to the resolvable-scale

statistics. For a priori tests, it is difficult to infer the effects of model performance on LES results.
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For a posteriori tests, it is difficult to relate the deficiencies of LES results to specific model behaviors

([90]).

To better understand the effects of SGS turbulence and SGS models on the resolvable-scale

statistics, a systematic approach was employed ([38, 91, 90]), which is based on the transport equa-

tions of the resolvable-scale velocity and velocity-scalar joint probability density function (JPDF).

This approach has several advantages over traditional methods for testing SGS models. First, it

deals with the resolvable-scale statistics, whose accurate predictions are generally the primary ob-

jective of LES. By contrast, traditional methods often compare instantaneous SGS variables which

are very difficult interpret. Second, unlike the filtered Navier-Stokes equations and the scalar trans-

port equation, the JPDF transport equation is not chaotic and previous analytical results of similar

equations ([70, 40]) can be used to understand the behavior of SGS turbulence and SGS models

([90]). It is noted that the JPDF equations can be used to study the SGS turbulence and to perform

both statistical a priori and a posteriori tests of SGS models. Chen and Tong (2006) [90] emphasized

such a priori tests provide a strong linkage between the modeled SGS terms and the resolvable-scale

velocity JPDF, and therefore, are qualitatively different from the traditional a priori tests based on

correlations of the measured and modeled SGS variables.

Chen and Tong (2006) [90] used this approach to study the SGS turbulence in the surface

layer of the ABL and identified several deficiencies of the SGS models that affects the LES statistics.

They argued that the over-predictions of the mean shear and streamwise velocity variance near the

surface by the Smagorinsky model are partly due to the under-prediction of the anisotropy of the

SGS stress and its variations in the near-wall region. They also pointed out that the under-prediction

of the vertical velocity skewness is likely due to the inability of the Smagorinsky model to predict

the asymmetry in the production rate of the vertical normal component of the SGS stress. These

analyses based on the JPDF equation provide important knowledge for improving SGS model.

The present work studies the influence of the SGS scalar flux and the SGS stress on the

resolvable-scale velocity-scalar JPDF using the JPDF transport equation, which can be derived

following the method given by Pope (1985) ([39]). Differentiating the definition of the JPDF:

f =

〈

δ[θr − ψ]

3
∏

i=1

δ[uri − vi]

〉

, (4.1)

we obtain

∂f

∂t
= −

∂

∂vi

{〈

∂uri
∂t
|ur = v, θr = ψ

〉

f

}

−
∂

∂ψ

{〈

∂θr

∂t
|ur = v, θr = ψ

〉

f

}

, (4.2)
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where δ is the Dirac delta function, and v and ψ are the sample-space variables for the resolvable-scale

velocity ur and the resolvable-scale scalar θr (a superscript r denotes a resolvable-scale variable),

respectively, and the angle brackets denote an ensemble mean. Substituting the time derivatives,
∂ur

i

∂t

and ∂θr

∂t , in equation (4.2) with the right-hand side of the equation for the resolvable-scale velocity:

∂uri
∂t

= −
∂urju

r
i

∂xj
−
∂τij
∂xj
−
∂pr

∂xi
+
g

Θ
θrδi3 + ν

∂2uri
∂xj∂xj

, (4.3)

where τij = (uiuj)
r−uriu

r
j , p

r, Θ, θ, and ν are the SGS stress (the Leonard stress Lij = (uriu
r
j)
r−uriu

r
j

has been included in τij), the filtered pressure, the mean potential temperature, the fluctuation

potential temperature, and the kinematic viscosity, respectively, and the filtered resolvable-scale

scalar equation:

∂θr

∂t
= −

∂θruri
∂xi

−
∂Fi
∂xi

+ Γ
∂2θr

∂x2i
, (4.4)

where Fi = (uiθ)
r − uri θ

r and Γ are the SGS scalar flux and the molecular diffusivity, respectively,

we have

∂f

∂t
+ vj

∂f

∂xj
=

∂

∂vi

{〈

∂τij
∂xj
|ur = v, θr = ψ

〉

f

}

+
∂

∂vi

{〈

∂pr

∂xi
|ur = v, θr = ψ

〉

f

}

−
g

Θ

∂

∂v3
{〈θr|ur = v, θr = ψ〉 f}+

∂

∂ψ

{〈

∂Fi
∂xi
|ur = v, θr = ψ

〉

f

}

. (4.5)

The two terms on the left-hand side are the time rate of change and the advection in physical space.

The first three terms on the right-hand side are transport in velocity space of the JPDF by the SGS

stress divergence, the resolvable-scale pressure gradient, and the buoyancy force, respectively. The

last term is transport in scalar space by the SGS scalar flux divergence. The viscous force and scalar

diffusion terms are small and are omitted at high Reynolds numbers and high Peclet numbers.

Because SGS turbulence is often studied by analyzing the SGS stress and flux rather than

their divergences, an alternative form of the equation was given by Chen et al. (2005) [91]:

∂f

∂t
+vj

∂f

∂xj
=

∂2

∂vi∂xj
{〈τij |u

r = v, θr = ψ〉 f}+
∂2

∂vi∂vj

{〈

−
1

2
Pij |u

r = v, θr = ψ

〉

f

}

+
∂2

∂ψ∂xi
{〈Fi|u

r = v, θr = ψ〉 f}+
∂2

∂ψ∂vi
{〈PFi|u

r = v, θr = ψ〉 f}

+
∂2

∂ψ∂ψ
{〈Pθ|u

r = v, θr = ψ〉 f}+
∂2

∂vi∂xi
{〈pr|ur = v, θr = ψ〉 f}

+
∂2

∂vi∂vk

{〈

pr
∂urk
∂xi
|ur = v, θr = ψ

〉

f

}

+
∂2

∂vi∂ψ

{〈

pr
∂θr

∂xi
|ur = v, θr = ψ

〉

f

}

−
g

Θ

∂

∂v3
{〈θr|ur = v, θr = ψ〉 f} , (4.6)
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where Pij = −
{

τik
∂ur

j

∂xk
+ τjk

∂ur
i

∂xk

}

, PFi = −
{

τik
∂θr

∂xk
+ Fk

∂ur
i

∂xk

}

, and Pθ = −Fi
∂θr

∂xi
are the SGS

stress production rate, the SGS scalar flux production rate, and the SGS scalar variance production

rate, respectively. The terms on the right-hand side now are transport and mixed transport in

velocity, physical, and scalar spaces due to the SGS stress, the SGS stress production rate, the

SGS scalar flux, the SGS scalar flux production rate, the SGS scalar variance production rate, the

resolvable-scale pressure, the pressure-strain correlation, the pressure-scalar-gradient correlation,

and the buoyancy force, respectively. Therefore, the necessary conditions for LES to correctly predict

the resolvable-scale velocity-scalar JPDF are that the conditional SGS stress, the conditional SGS

scalar flux, the conditional SGS stress production rate, the conditional SGS scalar flux production

rate, the conditional SGS scalar variance production rate are reproduced by the SGS models ([91]).

The functional form of these conditional SGS statistics and their dependence on the surface-layer

dynamics are therefore of great importance for understanding the influence of the SGS turbulence

and SGS models on the resolvable-scale statistics.

These conditions were used to study the dependencies of the resolvable-scale velocity-scalar

JPDF on the SGS turbulence in a turbulent jet ([91]). The results show that the conditional

SGS scalar flux and the conditional SGS scalar flux production rate have a strong dependence

on the resolvable-scale velocity and scalar, indicating strong flow history effects. Chen and Tong

(2006) [90] investigated the SGS velocity field in the surface layer of the ABL and showed that the

behaviors of the conditional SGS stress and the conditional SGS stress production rate are closely

related to the surface dynamics, i.e., updrafts generated by buoyancy force, downdrafts associated

with the large-scale convective eddies, the mean shear, and the length scale inhomogeneity in the

vertical direction. In addition, they found that the conditional SGS stress and the conditional SGS

stress production rate have similar trends, and their eigenvectors are generally well aligned with the

normalized tensorial contraction being close to one, thereby indicating the potential of modeling the

conditional SGS stress using its production rate.

In the present work the effects of the SGS motions on the resolvable-scale velocity-scalar

JPDF in unstable atmospheric surface layer are investigated using measurement data. The field

program and the array filter technique for measuring resolvable- and subgrid- scale variables are

given in Section 4.1. Section 4.2 examines the measured conditional SGS statistics and the SGS

model predictions. The conclusions are given in Section 4.3.
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Table 4.1 Surface layer parameters for array 1 (∆/z = 3.88) under unstable conditions.
The primary array height zp is used for z.

Data# 〈u〉 −z/L u∗ ε H χT Duration
(ms−1) (ms−1) (m2s−3) (K ·ms−1) (K2s−1) (min)

a 1.42 0.34 0.15 0.003 0.02 0.001 35
b 3.56 0.22 0.33 0.031 0.17 0.026 30
c 3.65 0.21 0.36 0.039 0.20 0.035 83
d 3.25 0.24 0.36 0.041 0.24 0.048 33

Table 4.2 Surface layer parameters for the other arrays under unstable conditions.
The primary array height zp is used for z.

Array ∆/z 〈u〉 −z/L u∗ ε H χT Total duration
(≈) (ms−1) (ms−1) (m2s−3) (K m s−1) (K2s−1) (min)

2 2.00 3.09 0.36 0.30 0.020 0.15 0.017 257
3 1.00 4.22 0.60 0.34 0.018 0.19 0.009 591
4 0.48 2.73 0.35 0.30 0.021 0.15 0.017 60

4.1 Measurement Data

Measurement data used in this chapter is the same as that in Chapter 3. Field measurements

and data process procedures are thoroughly described in Chapter 3. The surface layer parameters

for the data sets collected using the four arrays are given in Tables 3.1, 4.1, and 4.2.

The results in Section 3.3 show that the SGS stress for array 1 which has the largest

∆/z, is the most anisotropic and most difficult for SGS models to predict, therefore, similar to

Chapter 3, the discussions of results are focused on array 1. In present work, the unstable surface

layer is studied. Data sections that are quasi-stationary are generally 30-90 minutes in length. To

achieve reasonable statistical convergence, the results of selected data sections collected under similar

stability conditions are combined using each array configuration as done in Chapter 3. Therefore,

the results for each data set are normalized using its parameters, then weight-averaged according to

the number of conditional samples in each bin. In addition, similar to the conclusion in Chapter 3,

the data size is sufficient for obtaining reliable statistics for the analyses.

4.2 Results

Similar to Chen and Tong (2006) [90] discussions are focused on results obtained using data

from array 1. The stability parameter −z/L has an average value of 0.24. Top-hat filters in both

the streamwise and crossstream directions are used to obtain the resolvable-scale and subgrid-scale

variables with a filter size ∆ = 3.88z, which is in the energy-containing range. The results for the

other array configurations, i.e. different ∆/z, and −z/L (Table 4.2), are also obtained. The results
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Table 4.3 Measured Reynolds scalar flux and mean SGS scalar flux for the four arrays
Array 〈u′1θ

′〉/H 〈u′2θ
′〉/H 〈F1〉/H 〈F2〉/H 〈F3〉/H

1 -1.70 -0.23 -0.96 -0.00 0.70
2 -1.20 0.04 -0.62 0.02 0.56
3 -0.85 0.35 -0.26 0.01 0.33
4 -1.16 -0.21 -0.10 0.01 0.18

are generally similar to those for array 1 and will not be discussed. Table 4.3 gives the normalized

Reynolds scalar flux and the ratios of the mean SGS scalar flux components to the vertical mean

scalar flux. Array 1 has the largest fraction of the vertical SGS scalar flux and thus is the most

challenging case for modeling. The measured and modeled SGS scalar flux components are given in

Table 4.4 and discussed in Section 4.2.7

The results are normalized using the surface layer parameters. The conditional SGS stress,

〈τij |u
r, θr〉, and the conditional SGS stress production rate, 〈Pij |u

r, θr〉, are normalized by the

friction velocity, u2∗, and the estimated energy dissipation rate, ε = θε
u3

∗

kaz
, respectively, where θε =

1 − z/L for z/L ≤ 0, as suggested by Kaimal et al. (1972) [62]. The conditional SGS scalar flux,

〈Fi|u
r, θr〉, and the conditional SGS scalar flux production rate, 〈PFi|u

r, θr〉, are normalized by the

mean vertical heat flux, H = 〈θ′u′3〉, and
−T∗u

2

∗

z , respectively, where prime denotes fluctuations and

T∗ = − H
u∗

is the scale for temperature fluctuations. The conditional SGS variance spectral transfer

rate, 〈Pθ|u
r, θr〉, is normalized by the estimated scalar variance transfer rate, χT = θh

T 2

∗
u∗

kaz
, where

θh = 0.74× (1− 9z/L)−1/2 for z/L ≤ 0, as suggested by Businger et al. (1971) [92].

4.2.1 SGS scalar flux and its production rate

The results for the conditional SGS scalar flux components 〈F1|u
r, θr〉, 〈F2|u

r, θr〉, and

〈F3|u
r, θr〉 are shown in Figure 4.1. For convenience the sample-space variables v and ψ are omitted

from the conditional means here and hereafter. In addition, only the fluctuation parts of ur and θ,

which are normalized by their respective r.m.s. values, are plotted.

The results show that 〈F1|u
r, θr〉 and 〈F3|u

r, θr〉 depend strongly on ur1 and u
r
3 for positive

and small θr fluctuations, and the dependence is weaker for negative θr fluctuations. 〈F2|u
r, θr〉

also depends on |ur2| and ur3 for positive and small θr fluctuations, and the dependence is weaker

for negative θr fluctuations. 〈F1|u
r, θr〉 generally has large values, because the large temperature

fluctuations are highly correlated with the streak structure in the surface layer. The trends of the SGS

scalar production rates 〈PF1|u
r, θr〉 , 〈PF2|u

r, θr〉 and 〈PF3|u
r, θr〉 (Figure 4.2) are generally similar

to those of 〈F1|u
r, θr〉, 〈F2|u

r, θr〉, and 〈F3|u
r, θr〉, respectively, for positive and small θr fluctuations,
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Figure 4.1 Conditional means of the SGS scalar flux. The dependencies on resolvable-
scale velocity are strong for positive θr and are weak for negative θr.

indicating the dominant influence of the SGS scalar flux production rate on the evolution of the SGS

scalar flux. The dependence on the resolvable-scale velocity for negative θr fluctuations is weak.

To better understand the connections between the conditional SGS scalar flux and its pro-

duction rate, 〈PF1|u
r, θr〉 is expanded as

〈PF1|u
r, θr〉 = −

〈

F1
∂ur1
∂x1

+ F2
∂ur1
∂x2

+ F3
∂ur1
∂x3

+ τ11
∂θr

∂x1
+ τ12

∂θr

∂x2
+ τ13

∂θr

∂x3
|ur, θr

〉

. (4.7)

The first three terms on the right-hand are the production rate due to the interactions between the

SGS scalar flux components and the resolvable-scale velocity gradient components and the last three

terms are the production due to the interactions between SGS stress and the resolvable-scale scalar

gradient. The results show that the leading components in 〈PF1|u
r, θr〉 are

〈

−F3
∂ur

1

∂x3

|ur, θr
〉

and
〈

−τ13
∂θr

∂x3

|ur, θr
〉

, which have similar trends and magnitudes on which the discussion is focused in

the following. The rest of terms are relatively small because the horizontal derivatives of ur1 and θr

are relatively small compared to their vertical derivatives. Similarly, 〈PF3|u
r, θr〉 can be expanded
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Figure 4.2 Conditional means of the SGS scalar flux production rate.

as:

〈PF3|u
r, θr〉 = −

〈

F1
∂ur3
∂x1

+ F2
∂ur3
∂x2

+ F3
∂ur3
∂x3

+ τ31
∂θr

∂x1
+ τ32

∂θr

∂x2
+ τ33

∂θr

∂x3
|ur, θr

〉

(4.8)

The terms on the right-hand side of equation 4.8 are similar to those in equation 4.7. The dominant

component in 〈PF3|u
r, θr〉 is

〈

−τ33
∂θr

∂x3

|ur, θr
〉

. This is because the derivatives of ur3 and θr in the

horizontal directions are relatively small. Therefore, the attention is focused on
〈

−τ33
∂θr

∂x3

|ur, θr
〉

.

The trends for 〈PF1|u
r, θr〉 and 〈PF3|u

r, θr〉 are now discussed. For positive θr fluctuations,

the eddies associated with updrafts generally come from the region near the ground, and contain

large magnitudes of the vertical SGS flux and the SGS stress. They also likely to have experienced

strong shear and vertical temperature gradient. Therefore, both F3, τ33, ∂u
r
1/∂x3 have large positive

values while τ13 and ∂θr/∂x3 have large negative values, resulting in negative
〈

−F3
∂ur

1

∂x3

|ur, θr
〉

and
〈

−τ13
∂θr

∂x3

|ur, θr
〉

, and positive
〈

−τ33
∂θr

∂x3

|ur, θr
〉

. Because both the vertical shear, flux, and

temperature gradient are enhanced by positive values of ur1 and ur3, the magnitudes of 〈PF1|u
r, θr〉
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and 〈PF3|u
r, θr〉 increase with ur1 and ur3. For small θr fluctuations, the eddies are generally well

mixed, and therefore, tend to be more symmetric in the vertical direction, which is reflected by the

symmetry of ∂ur1/∂x3 and ∂θr/∂x3 in respect to ur3. Consequently, the magnitudes of 〈PF1|u
r, θr〉

and 〈PF3|u
r, θr〉 increase with ur1 and |ur3|. For negative θ

r fluctuations, the eddies associated with

downdrafts generally come from the mixed layer region, and contain relatively small SGS fluxes

(Figure 4.1(c)). Therefore, the magnitudes of 〈PF1|u
r, θr〉 and 〈PF3|u

r, θr〉 are small and have weak

dependencies on the resolvable-scale velocity.

Comparing the three cases of different θr values, the location of peak values of the conditional

SGS scalar flux production rate appears to shift toward positive ur3 for positive θr fluctuations,

and toward negative ur3 for negative θr fluctuations. This is probably because 〈∂ur1/∂x3|u
r, θr〉

and 〈∂θr/∂x3|u
r, θr〉 (not shown) have similar trends, which indicates that the local gradients are

enhanced by both updrafts with high temperature (positive θr fluctuations) and downdrafts with

low temperature (negative θr fluctuations).

Chen and Tong (2006) [90] observed that the conditional SGS stress and the conditional

SGS stress production rate also have similar trends for positive ur3, which they argued to be the

result of the approximate balance between the SGS stress production and the pressure destruction

and the fact that the pressure destruction term can be modeled as τij/t∆ where t∆ is a time scale.

The similar trends between the conditional SGS scalar flux and the conditional SGS scalar flux

production rate for positive θr fluctuations also reflects the consistency with balance between the

production rate and pressure destruction and the use of the SGS scalar flux and a time scale to

model the pressure destruction. The differences between the trends of the conditional SGS scalar

flux and the conditional SGS scalar flux production rate for small and negative θ fluctuations are

probably because the production rates are small and no longer balance the pressure destruction.

The dominant components in 〈PF1|u
r, θr〉 contains a slow term

〈

−F3
∂ur

1

∂x3

|ur, θr
〉

, in which

F3 influences 〈PF1|u
r, θr〉 through the interaction with ∂ur1/∂x3. However F1 does not direct af-

fect 〈PF3|u
r, θr〉, which is dominated by

〈

τ33
∂θr

∂x3

|ur, θr
〉

. Consequently, accurate modeling of the

vertical SGS scalar flux component may be more important than that of the horizontal SGS scalar

flux component, and poor predictions of the vertical SGS scalar flux component by a SGS model

may result in the inaccuracies in the horizontal SGS scalar flux in a LES. In addition, because
〈

−τ13
∂θr

∂x3

|ur, θr
〉

affects 〈PF1|u
r, θr〉 due to the dominant vertical derivative of resolvable-scale

scalar, under-predictions of the condition SGS shear stress components by a SGS model may also

result in the inaccuracies in the resolvable-scale horizontal scalar flux in a LES.
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4.2.2 SGS scalar variance production rate

The SGS scalar variance production rate 〈Pθ|u
r, θr〉 (Figure 4.3) generally increase with ur1

and ur3 and the dependence is strong for positive θr fluctuations and weak for negative θr fluctuations.

For small θr fluctuations, the dependence of 〈Pθ|u
r, θr〉 on ur3 is symmetric and increases with |ur3|.

The dominant component of 〈Pθ|u
r, θr〉 is

〈

F3
∂θr

x3

|ur, θr
〉

. Because both F3 and ∂θr/∂x3 increase

with ur1 and ur3 for positive θr, so does 〈Pθ|u
r, θr〉. The symmetric dependence of 〈Pθ|u

r, θr〉 on ur3

is due to the symmetric dependence of ∂θr/∂x3 on ur3. The asymmetry with respect to θr is likely

to result in a positive skewness for θr.
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Figure 4.3 Conditional mean of the SGS scalar variance production rate.

4.2.3 Alignment of SGS scalar flux and its production rate

Chen and Tong (2006) [90] observed that the deviatoric part of 〈τij |u
r〉 and 〈Pij |u

r〉 have

similar trends, and the eigenvectors of 〈τij |u
r〉 and 〈Pij |u

r〉 are well aligned with the normalized ten-

sorial contraction being close to unity for positive ur3, indicating the balance between the production

rate and pressure destruction and the validity of using the SGS stress and a time scale for modeling

the pressure destruction. The results in section 4.2.1 also show that 〈Fi|u
r, θr〉 and 〈PFi|u

r, θr〉 have

similar trends. To investigate the relationship between 〈Fi|u
r, θr〉 and 〈PFi|u

r, θr〉, the alignment

angle between 〈Fi|u
r, θr〉 and 〈PFi|u

r, θr〉 is computed, which is given by

α = cos−1
(

| 〈Fi|u
r, θr〉 · 〈PFi|u

r, θr〉 |

‖ 〈Fi|ur, θr〉 ‖ · ‖ 〈PFi|ur, θr〉 ‖

)

(4.9)

Figure 4.4 shows that 〈Fi|u
r, θr〉 and 〈PFi|u

r, θr〉 are generally well aligned with the align-

ment angle α is generally less than 10◦ for positive and small θr fluctuations. For negative θr

fluctuations, the alignment angle is small for positive ur3 and larger (but still less than 30◦) for
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Figure 4.4 Geometric alignment of the measured conditional SGS scalar flux and the
conditional SGS stress production rate. (a) the alignment angles are small for positive
ur3 and θr and increases for negative ur3 and θr; (b) the effects of buoyancy is included,
and the alignment angles are similar to (a).

negative ur3. This trend is similar to the alignment property between the conditional SGS stress and

its production rate ([90]). This is probably because 〈PFi|u
r, θr〉 is small and might no longer be a

dominant term in the SGS flux transport equation, and therefore not in balance with the pressure

destruction. Another possibility is that the pressure destruction cannot be modeled as the SGS flux

and a time scale under these condition. In order to study the effects of buoyancy force on the align-

ment property, the buoyancy production term (PFB = g
Θ [(θ

2)r − (θr)2]) is also included in the SGS

scalar flux production rate. The alignment angle (Figure 4.4(b)) increase slightly, indicating that

buoyancy does not significantly alter the alignment property. These results are consistent with the

similarity between the conditional SGS scalar flux and the conditional SGS scalar flux production

rate, suggesting the balance between the production rate and pressure destruction and the validity

of using the SGS scalar flux and a time scale for modeling the pressure destruction for positive θr

fluctuations.

4.2.4 SGS stress and its production rate

The normalized conditional SGS stress components 〈τ11|u
r, θr〉 and 〈τ33|u

r, θr〉 are given in

Figure 4.5. The results show that similar to the SGS scalar flux 〈τ11|u
r, θr〉 and 〈τ33|u

r, θr〉 generally

increase with ur1 and ur3. The dependencies are strong for positive θr fluctuations and are weak for

negative θr fluctuations.

The conditional SGS stress production rate 〈P11|u
r, θr〉 (Figure 4.6 (a)) has a similar trend

to 〈τ11|u
r, θr〉 (Figure 4.5(a)), suggesting that there is a local conditional equilibrium between the



91

-2

-1

0

1

2

θ
r

-2
-1

0
1

2 u
r
1

-2
-1

0
1

2
u r

3

0.00 2.57 5.14 7.71 10.29
〈τ11|u

r,θr〉

(a)

-2

-1

0

1

2

θ
r

-2
-1

0
1

2 u
r
1

-2
-1

0
1

2
u r

3

0.20 0.84 1.49 2.13 2.77
〈τ33|u

r,θr〉

(b)

Figure 4.5 Conditional means of the normal components of the SGS stress. The
dependencies are strong for positive θr and are weak for negative θr.

SGS stress production rate and the pressure destruction. However, the trend of 〈P33|u
r, θr〉 (Figure

4.6(b)) is different from 〈τ33|u
r, θr〉 (Figure 4.5(b)) because the buoyancy production rate dominates

the evolution of 〈τ33|u
r, θr〉, consistent with the previous results ([90]).
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Figure 4.6 Conditional means of the normal components of the SGS stress production
rates.

The dependence of 〈P33|u
r, θr〉 on the resolvable-scale velocity decreases with θr fluctua-

tions. For positive θr fluctuations, 〈P33|u
r, θr〉 has negative values, indicating that τ33 loses energy

to τ11 and τ22 and there is conditional backscatter. For negative θr fluctuations, 〈P33|u
r, θr〉 is

positive, indicating that τ33 gains energy. Previous study ([90]) has shown that under-prediction of

the dependence of 〈P33|u
r, θr〉 on ur3 will cause the same for the vertical velocity skewness. This will

be further examined along with SGS models in Section 4.2.7.
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Figure 4.7 Conditional means of the shear components of the SGS stress and the
shear production rate.

The conditional shear stress component 〈τ13|u
r, θr〉 (Figure 4.7(a)) has similar trend to τ11.

〈P13|u
r, θr〉 (Figure 4.7(b)) has a similar trend, again indicating the conditional quasi-equilibrium.

Previous study ([90]) has shown that under-predictions of the trend and magnitude of the τ13 cause

over-predictions of the mean streamwise velocity gradient near the surface, and that the correct

prediction of 〈τ13|u
r〉 is very important for predicting the horizontal velocity variance profile.

The dependence of 〈τij |u
r, θr〉 on θr is partly due to the flow history effect. The velocity

field is not affected by a passive scalar. The dependence of the conditional SGS stress and conditional

SGS stress production rate on the resolvable-scale scalar reflects the different flow histories that the

SGS eddies with the same resolvable-scale velocity but different resolvable-scale scalar values have

experienced ([91]). The temperature in the ABL is generally not passive, therefore, the dependence

is probably partly due to the flow history and partly due to the buoyancy effects.

4.2.5 Anisotropy of the conditional SGS stress

An important property of the SGS stress is its level of anisotropy. The level of anisotropy of

the conditional SGS stress can be characterized by the representation in the Lumley triangle ([81]).

The dependence of the anisotropy on the resolvable-scale velocity (Lumley triangle for 〈τij |u
r〉) Chen

and Tong (2006) [90] shows that the anisotropy is weak for negative ur3 and is much stronger for

positive ur3. For positive and negative ur1 values, 〈τij |u
r〉 is close to axisymmetric with one large

and one small eigenvalue, respectively, probably reflecting the shear and buoyancy effects. Here the

dependence of the anisotropy on the resolvable-scale scalar is studied. The normalized anisotropy

tensor for 〈τij |u
r, θr〉,

〈τij |u
r,θr〉

〈τkk|ur,θr〉 −
1
3δij , can be determined by two variables ξ and η defined in terms
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of its invariants ([37])

6η2 = −2II =

〈

τdij |u
r, θr

〉 〈

τdij |u
r, θr

〉

〈τkk|ur, θr〉
2 (4.10)

and

6ξ3 = 3III =

〈

τdij |u
r, θr

〉

〈

τdjk|u
r, θr

〉

〈

τdki|u
r, θr

〉

〈τkk|ur, θr〉
3 , (4.11)

where τdij = τij − τkkδij/3 is the deviatoric part of the SGS stress, and II and III are the second

and third invariants of the anisotropy tensor respectively. If 〈τij |u
r, θr〉 is isotropic, both ξ and η

are zero. (The first invariant or trace of
〈

τdij |u
r, θr

〉

is always zero by definition). The representation

for the conditional SGS stress results are shown in Figure 4.8. The arrows represent the conditional

velocity vector (see [90] for more details). The results show that there is a clear dependence of the

anisotropy on the resolvable-scale scalar. For positive and small θr fluctuations, 〈τij |u
r
1, u

r
3, θ

r〉 is

quite anisotropic and close to the results for 〈τij |u
r
1, u

r
3〉 (without conditioning on θr), consistent

with the trends of 〈τij |u
r, θr〉 in Section 4.2.4. The points representing the anisotropy are not far

from η = −ξ and η = ξ indicating that 〈τij |u
r
1, u

r
3, θ

r〉 is close to axisymmetric with either one

small eigenvalue or one large eigenvalue. One difference between the results for small θr fluctuations

and for positive θr fluctuations is that there are more points close to η = ξ than that of η = −ξ,

indicating that the SGS eddies are more likely to contain SGS stress that is close to axisymmetric

with one large eigenvalue. This is probably because the compression and shear effects are weakened

as these eddies are likely to has gone through a strong mixing process.

For negative θr fluctuations, there are more points representing the anisotropy close to the

origin than for positive and small θr fluctuations, indicating a slightly less anisotropic SGS stress. In

addition, some points with ur3 < 0 are close to the axisymmetric with one small eigenvalue (η = −ξ)

due to the compression effect, and some points with ur3 > 0 are close to the axisymmetric with one

large eigenvalue (η = ξ) due to the weakened shear effect.

The results discussed above are for ∆/z = 3.88 and −z/L = 0.24 (array 1). The level

of the anisotropy of 〈τij |u
r
1, u

r
3, θ

r〉 for different array configurations are shown in Figure 4.9. For

positive temperature fluctuations, the results for 〈τij |u
r
1, u

r
3, θ

r〉 is similar to the results 〈τij |u
r
1, u

r
3〉

(without conditional on θr) which was discussed by Chen and Tong (2006) [90]. The results of

〈τij |u
r
1, u

r
3, θ

r > 0〉 for different array configurations are qualitatively similar to those for array

1, with the dependence on ur3 generally stronger and the dependence on ur1 generally weaker. A

comparison of the level of anisotropy for array 2 and array 4 (fixing −z/L and reducing ∆/z from

2.00 for array 2 to 0.48 for array 4), the results for array 4 has fewer points for the axisymmetric

SGS stress with one small eigenvalue (η = −ξ) than that of array 2. This is because the compression
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Figure 4.8 Lumley triangle representation of the conditional SGS stress. The ar-
rows represent the conditional vector (ur1, u

r
3). (a) for positive θr, 〈τij |u

r
1, u

r
3, θ

r〉 is quite
anisotropic and close to the results for 〈τij |u

r
1, u

r
3〉 (without conditioning on θr); (b) for

small θr, the results are similar to the (a); (c) for negative θr, the conditional SGS
stress is less anisotropy.

effects associated with the returning flow of large convective eddies for array 4 are weaker than those

of for array 2. A comparison of the levels of anisotropy for array 2 (∆/z = 2.00,−z/L = 0.36)

and array 3 (∆/z = 1.00,−z/L = 0.60) shows that 〈τij |u
r
1, u

r
3〉 for array 3 is less anisotropic than

that for array 2, and has very few points near the line of axisymmetric SGS stress with one small

eigenvalue (η = −ξ). This is because the enhanced buoyancy due to larger z/L and weakened shear

and compression effects due to smaller ∆/z. The level of the anisotropy of 〈τij |u
r
1, u

r
3, θ

r〉 for small

temperature fluctuations (not shown) is similar to the results for positive temperature fluctuations.

For negative temperature fluctuations, the level of anisotropy for different arrays is generally more

isotropy and less different, which is due to weaker buoyancy effect. Among the four arrays, array

1 has the largest ∆/z and the smallest −z/L, and consequently has the highest level of anisotropy

and the strongest compression effects associated with the returning flow of large convective eddies.

Therefore, it is expected that the SGS stress and its production rate for array 1 are the most

challenging to predict by SGS models. Anisotropic grids (refined in the vertical direction), which

are often used near the surface to match the flow interior with the surface (e.g., [21]), therefore are

of importance.
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Figure 4.9 The Lumley triangle representation of the conditional SGS stress from
other array configurations: (a-b) array 2 (∆/z = 2.00,−z/L = 0.36); (c-d) array 3 (∆/z =
1.00,−z/L = 0.60); (e-f), array 4 (∆/z = 0.48,−z/L = 0.35). The arrows represent the
conditioning vector (ur1, u

r
3).

4.2.6 Alignment between the conditional SGS stress and its production

rate

The geometric alignment of
〈

τdij |u
r, θr

〉

and
〈

P a
ij |u

r, θr
〉

can be characterized by the angles

between their eigenvectors. The alignment between
〈

τdij |u
r
〉

and
〈

P a
ij |u

r
〉

(P a
ij = Pij−Pkkδij/3) were

first studied by Chen and Tong (2006) [90] with the finding that
〈

τdij |u
r
3

〉

and
〈

P a
ij |u

r
3

〉

are well aligned

for positive ur3 with the alignment angles are less than 10◦ but are less well aligned for negative ur3.

Here the dependence of the alignment between the conditional SGS stress and its production rate

on temperature fluctuations are further examined. The alignment angles are defined in the same

way as those in Chen and Tong (2006) [90]. The eigenvalues of the conditional SGS stress tensor,
〈

τdij |u
r, θr

〉

, are denoted as ατ , βτ and γτ , ordered such that ατ ≥ βτ ≥ γτ , and the corresponding

unit eigenvectors as ~ατ , ~βτ and ~γτ . Similarly, the eigenvalues of the conditional SGS stress production
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tensor,
〈

P a
ij |u

r, θr
〉

, are denoted as αP , βP and γP , ordered such that αP ≥ βP ≥ γP , and the

corresponding unit eigenvectors as ~αP , ~βP and ~γP . Three alignment angles, ψ, φ and ξ, are defined

as ψ = cos−1(|~γP ·~γτ |) (the angle between ~γP and ~γτ ), φ = cos−1(|~βP · ~βτ |), and ξ = cos−1(|~αP ·~ατ |).
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Figure 4.10 Geometric alignment of conditional SGS stress and its production rate.
The alignment angles are small for positive θr and increases for negative θr and ur3.

The results for the alignment angles are given in Figure 4.10. The results show that
〈

τdij |u
r, θr

〉

and
〈

P a
ij |u

r, θr
〉

are generally well aligned for positive ur3 and is less well aligned for

negative ur3, but that the alignment angles weakly depend on ur1, which is similar to the results of

Chen and Tong (2006) [90]. Alignment angles are smaller for positive θr fluctuations and larger for

negative θr fluctuations.

The results for the Lumley triangle (Figure 4.8) show that SGS stress is more anisotropic

for ur3 > 0, therefore, there is likely a strong trend to return to isotropy, and therefore the pressure

destruction can be predicted well by τij/t∆ hence the better alignment where t∆ is a time scale.

In addition, the updrafts with higher temperature (θr > 0) generally experience stronger shear and
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Table 4.4 Modeled mean SGS scalar flux for array 1
〈F1〉 /H 〈F2〉 /H 〈F3〉 /H

F smg
i -0.003 -0.003 0.51
Fnl
i -1.31 0.03 0.13

Fmix
i -1.31 0.03 0.54

temperature gradients near ground with large production rate with the production and pressure

destruction as the dominant terms in the SGS stress transport equation, approximately balancing

each other. Therefore, the SGS stress and its production rate are well aligned. For ur3 < 0, The

Lumley triangle shows that the SGS stress is less anisotropic. Therefore the tendency to return to

isotropy may be weaker, resulting in poor alignment. Another possible explanation for the poor

alignment is that the production rate is small and is no longer a dominant term to balance the

pressure destruction. However, it is not clear which term in the SGS stress transport equation

causes the imbalance, although Chen and Tong (2006) [90] showed that the vertical advection term

is not the cause.

4.2.7 SGS scalar flux model

The results discussed in the previous parts of this section provide a basis for studying the

effects of SGS models on LES statistics. Here the model predictions of 〈Fi|u
r, θr〉 , 〈PFi|u

r, θr〉 and

〈Pθ|u
r, θr〉 are examined using the Smagorinsky model, the nonlinear model, and the mixed model,

and compare them to the experimental results. The mean values of the measured and modeled mean

SGS scalar flux components are given in Table 4.4.

In order to compute the modeled SGS scalar flux production rate PFi, the modeled SGS

stress is needed. In this work, the modeled SGS stress is computed using the same procedure given

in Chen and Tong (2006) [90]. Previous study ([90]) shows that the conditional mean of the normal

components are severely under-predicted by the Smagorinsky model and slightly over-predicted

by the nonlinear model. The trends of the shear components are generally well predicted by the

Smagorinsky model and are poorly predicted by the nonlinear model. The magnitudes of the shear

components are generally under-predicted by a factor of two using the Smagorinsky model. The

mixed model can predict normal components well but not the shear component. These results are

important for understanding the trends and magnitudes of the conditional mean of the SGS scalar

flux production rate discussed in the following.
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The Smagorinsky model

The Smagorinsky model is given by Smagorinsky (1963) [60] and Lilly (1967) [1].

F smg
i = −Pr−1T (CS∆)2(2SmnSmn)

1/2 ∂θ
r

∂xi
(4.12)

where Cs = 0.154 is the Smagorinsky constant for a box filter and PrT is the SGS turbulent Prandtl

number, and Sij is the resolvable-scale velocity strain rate. In this work, Pr−1T C2s is determined by

matching the mean SGS scalar variance production rate.
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Figure 4.11 Predicted conditional SGS scalar flux using the Smagorinsky model. The
trend of 〈F3|u

r, θr〉 is well predicted.

Tables 4.3 and 4.4 show that the mean horizontal SGS scalar flux is severely under-predicted

and the mean vertical SGS scalar flux is under-predicted by approximately 30 percent. The pre-

dicted conditional means using the Smagorinsky model are shown in Figure 4.11 and 4.12. Figures

4.11(a) and 4.1(a) shows that the horizontal SGS scalar flux, 〈F1|u
r, θr〉 is under-predicted, be-

cause the model uses only the horizontal scalar gradient ∂θr/∂x1, which is very small. The sign of

〈F1|u
r, θr〉 is also not predicted correctly. As discussed in Section 4.2.1 the conditional production

of F1 is dominated by
〈

F3
∂ur

1

∂x3

|ur, θr
〉

and
〈

τ13
∂θr

∂x3

|ur, θr
〉

. However, these gradients do not appear

in the model; therefore the model cannot account for the dominant production mechanisms and

consequently cannot predict the flux correctly. The results demonstrate the importance of including

the effects of the dominant vertical gradient in the modeling of 〈F1|u
r, θr〉.

Figures 4.11(b) and 4.1(c) shows that the magnitude of the vertical SGS scalar flux 〈F3|u
r, θr〉

is better predicted than that of 〈F1|u
r, θr〉. The trends of 〈F3|u

r, θr〉 are generally well predicted for
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positive θr fluctuations. The trends for small θr fluctuations are somewhat less well predicted. Be-

cause 〈F smg
3 |ur, θr〉 uses the gradients ∂θr/∂x3 which is in the dominant term in PF3, it is generally

much better predicted than 〈F smg
1 |ur, θr〉
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Figure 4.12 Predicted conditional SGS scalar flux production rate and SGS scalar
variance production rate using the Smagorinsky model. The trend of 〈PF1|u

r, θr〉 is well
predicted.

The trend of 〈PF1|u
r, θr〉 is generally well predicted (Figures 4.12(a) and 4.2(a)). 〈P smg

F1 |u
r, θr〉

(= −
〈

τsmg1k
∂θr

∂xk
+ F smg

k
∂ur

1

∂xk
|ur, θr

〉

) is dominated by the term−
〈

F smg
3

∂ur
1

∂x3

+ τ smg13
∂θr

∂x3

|ur, θr
〉

. There-

fore, the well predicted trend of 〈PF1|u
r, θr〉 is largely due to the well predicted trends of τ13 and

F3. However, the magnitude is under-predicted approximately by a factor of two due to the under-

prediction of the magnitude of τ13 ([90]) and F3. The trend and magnitude of 〈PF3|u
r, θr〉 in Figure

4.12(b) are poorly predicted. As discussed in Section 4.2.1 〈P smg
F3 |u

r, θr〉 (= −
〈

τsmg3k
∂θr

∂xk
+ F smg

k
∂ur

3

∂xk
|ur, θr

〉

)

is dominated by the term
〈

−τ smg33
∂θr

∂x3

|ur, θr
〉

. Therefore, the poor prediction of 〈PF3|u
r, θr〉 is due to

the poor prediction of τ33 by the Smagorinsky model ([90]). The trend and magnitude of 〈Pθ|u
r, θr〉

in Figure 4.12(c) are generally well predicted, which is likely to lead to well predicted skewness of
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θr. The dominant term of 〈P smg
θ |ur, θr〉 is

〈

F smg
3

∂θr

∂x3

|ur, θr
〉

, therefore, the well predicted trend

(the magnitude is matched) is due to the well predicted trend of F3.

The results for the SGS production rates show that when the conditional means of the SGS

stress and/or flux components that appear in a SGS production rate are well predicted by a SGS

model, the conditional mean of the SGS production rate is also well predicted. This suggests that

the correlations between the conditional fluctuations of the SGS stress (flux) and the resolvable-scale

gradients are of less importance. Consequently, it appears to be sufficient to focus on the conditional

means.

The nonlinear model

The nonlinear model ([82, 22]) is essentially the first order approximation of the similarity

model [24] and is given by:

Fnl
i =

1

12
∆2

∂θr

∂xk

∂uri
∂xk

. (4.13)

The predictions of the nonlinear model are shown in Figures 4.13 and 4.14. In general, the nonlinear

model predicts the overall trends and the magnitudes better than the Smagorinsky model. The

trends for small θr fluctuations are under-predicted but the magnitude is slightly over-predicted.

The mean horizontal SGS scalar flux is over-predicted by approximately 35 percent and

the mean vertical SGS scalar flux is under-predicted by approximately 80 percent. The predicted

magnitude of 〈F1|u
r, θr〉 using the nonlinear model is better than that of the Smagorinsky model.

The better prediction can be understood as following: data (not shown) indicate that the nonlinear

model component Fnl
1 = ∂θr

∂xk

∂ur
1

∂xk
is dominated by the term ∂θr

∂x3

∂ur
1

∂x3

, which can be rewritten in terms

of the Smagorinsky-model-like terms as

Fnl
1 ∼

∂θr

∂x3

∂ur1
∂x3

∝ F smg
3

∂ur1
∂x3

+ τ smg13

∂θr

∂x3
. (4.14)

The previous section shows that τ13 and F3 are well predicted by the Smagorinsky model. Therefore,

the term F smg
3

∂ur
1

∂x3

+ τ smg13
∂θr

∂x3

in equation (15) is effectively the Smagorinsky model prediction of

〈PF1|u
r, θr〉. Figures 4.1(a), 4.2(a), and 4.4(a) have shown that the conditional SGS flux and the

conditional flux production rate have similar trends, which is likely a result of the balance between

the SGS flux production rate and the pressure destruction and the fact that the latter can be quite

well predicted by the SGS flux and a SGS time scale. Therefore, 〈F1|u
r, θr〉 is better predicted by

the nonlinear model.
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Figure 4.13 Predicted conditional SGS scalar flux using the nonlinear model. The
trend of 〈F1|u

r, θr〉 is well predicted.

The trend of 〈F3|u
r, θr〉 is under-predicted. Furthermore,

〈

Fnl
3 |u

r, θr
〉

has some spurious

negative values and the magnitudes for positive values are under-predicted. The dominant compo-

nent of Fnl
3 is ∂θr

∂x3

∂ur
3

∂x3

, which can be rewritten as

Fnl
3 ∼

∂θr

∂x3

∂ur3
∂x3

∝ τ smg33

∂θr

∂x3
. (4.15)

Because τ33 is poorly modeled by the Smagorinsky model, ∂θr

∂x3

∂ur
3

∂x3

is not a good model for the

dominant term of PF3. Therefore, 〈F3|u
r, θr〉 is poorly modeled by the nonlinear model.

The above analysis of the nonlinear model using the Smagorinsky model and the surface

layer SGS dynamics provides a physical explanation of the performance of the nonlinear model. Here

a similar analysis of the nonlinear SGS stress model is also provided. The normal component of the

nonlinear model τnl11 can be rewritten as τnl11 ∼
∂ur

1

∂x1

∂ur
1

∂x1

+
∂ur

1

∂x2

∂ur
1

∂x2

+
∂ur

1

∂x3

∂ur
1

∂x3

∝ τ smg11
∂ur

1

∂x1

+ τ smg12
∂ur

1

∂x2

+

τsmg13
∂ur

1

∂x3

. Because the trend of τ13 is well predicted by the Smagorinsky model, τ smg13
∂ur

1

∂x3

is a good

model for the dominant term in P11, therefore, τ11 is well predicted. Similarly, the dominant term

in τnl33 ,
∂ur

3

∂x3

∂ur
3

∂x3

, can be written as τ smg33
∂ur

3

∂x3

. Because τ33 is poorly predicted by the Smagorinsky

model, so is τ33 by the nonlinear model.

These model predictions can also be used to analyze predictions of 〈Pij |u
r, θr〉. The magni-

tude and the trend of 〈PF1|u
r, θr〉 for positive θr fluctuations are not well predicted (Figure 4.14(a)).

This is due to the poor predictions of F3 and τ13, which are in the dominant terms in 〈PF1|u
r, θr〉

(−
〈

F3
∂ur

1

∂x3

+ τ13
∂θr

∂x3

|ur, θr
〉

). The magnitude of 〈PF3|u
r, θr〉 (Figure 4.14(b)) is under-predicted,

while the trend for positive θr fluctuations is better predicted than that for small and negative

θr fluctuations. This is due to the well predicted trend of τ33, which is in the dominant term of
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Figure 4.14 Predicted conditional SGS scalar flux production rate and the scalar
variance production rate using the nonlinear model.

〈PF3|u
r, θr〉 (

〈

−τ33
∂θr

∂x3

|ur, θr
〉

). The magnitude of 〈Pθ|u
r, θr〉 is well predicted, whereas the trend

is not as well predicted as the Smagorinsky model. This is due to the poor prediction of F3, which

is in the dominant term of 〈Pθ|u
r, θr〉 (

〈

F3
∂θr

∂x3

|ur, θr
〉

).

The mixed model

The previous results show that the Smagorinsky model can predict quite well 〈F3|u
r, θr〉,

but not 〈F1|u
r, θr〉, and the nonlinear model can predict quite well 〈F1|u

r, θr〉, but not 〈F3|u
r, θr〉.

Therefore, a mixed model combining these two models, as done for SGS stress ([22, 30]),

Fmix
i =

1

12
∆2

∂θr

∂xk

∂uri
∂xk
− Pr−1T (CS∆)2(2SmnSmn)

1/2 ∂θ
r

∂xi
, (4.16)

can potentially provide improved predictions.

The mean horizontal SGS scalar flux is over-predicted by approximately 35 percent and the

mean vertical SGS scalar flux is under-predicted by approximately 23 percent. The results of the



103

-2

-1

0

1

2

θ
r

-2
-1

0
1

2 u
r
1

-2
-1

0
1

2
u r

3

-3.00 -2.40 -1.80 -1.20 -0.60
〈F1

mix|ur,θr〉

(a)

-2

-1

0

1

2

θ
r

-2
-1

0
1

2 u
r
1

-2
-1

0
1

2
u r

3

0.06 0.26 0.46 0.66 0.87
〈F3

mix|ur,θr〉

(b)

Figure 4.15 Predicted conditional SGS scalar flux using the mixed model.

conditional means for the mixed model are shown in Figure 4.15 and 4.16. The predicted magnitude

and trend of 〈F1|u
r, θr〉 are close to, but not quite as good as the predictions of the nonlinear

model due to the under-predicted magnitude of 〈F1|u
r, θr〉 by the Smagorinsky part of the model.

The predicted trend of 〈F3|u
r, θr〉 is in between the predictions of the Smagorinsky model and the

nonlinear models, because the magnitude of
〈

Fnl
3 |u

r, θr
〉

is comparable to that of 〈F smg
3 |ur, θr〉.

The magnitude and trend of
〈

Pmix
F1 |u

r, θr
〉

are close to the predictions of the nonlinear model

with improved magnitude. This is because the mixed model predictions of F3 and τ13 are better than

the nonlinear model, but not as good as the Smagorinsky model. The magnitude of
〈

Pmix
F3 |u

r, θr
〉

is close to the predictions of the nonlinear model, because the magnitude of 〈P smg
F3 |u

r, θr〉 is smaller

than that of
〈

Pnl
F3|u

r, θr
〉

. The trend of
〈

Pmix
θ |ur, θr

〉

is in between those of
〈

Pnl
θ |u

r, θr
〉

and

〈P smg
θ |ur, θr〉. Therefore, the prediction of 〈Pθ|u

r, θr〉 using the mixed model is not as good as that

of the Smagorinsky model but better than that of the nonlinear model. Therefore, the mixed model

offers a compromise between the Smagorinsky model and the nonlinear model.

4.2.8 Potential effects of SGS models on the resolvable-scale statistics

The conditional SGS fluxes and their production rates discussed above evolve the resolvable-

scale velocity-scalar JPDF through equation (4.6). Deviations of SGS model predictions from their

true values will lead to inaccuracies in the predicted JPDF. Chen and Tong (2006) [90] discussed the

potential effects of the modeled SGS stress and their prediction rates on the resolvable-scale velocity

JPDF. Here the velocity-scalar JPDF is focused.

The results in previous sections show that the conditional horizontal scalar flux production

rate is dominated by
〈

−F3
∂ur

1

∂x3

|ur, θr
〉

and
〈

−τ13
∂θr

∂x3

|ur, θr
〉

, and the conditional vertical scalar flux
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Figure 4.16 Predicted conditional SGS scalar flux production rate and SGS scalar
variance production rate using the mixed model.

production rate is dominated by
〈

−τ33
∂θr

∂x3

|ur, θr
〉

. Therefore, correct predictions of F3, τ13 and τ33

are very important for reproducing the resolvable-scale velocity-scalar JPDF. It is emphasized that

τ13 and τ33 not only affect the resolvable-scale velocity statistics, but also the resolvable-scale scalar

and velocity-scalar joint statistics.

The Smagorinsky model under-predicts the conditional horizontal SGS scalar flux but pre-

dicts well the trend of the conditional vertical SGS scalar flux. The under-prediction of the condi-

tional horizontal SGS scalar flux directly affects the scalar PDF, and therefore the velocity-scalar

JPDF. The model also under-predicts the conditional τ33 ([90]). Because τ33 appears in the domi-

nant term of the conditional vertical scalar flux production rate, τ33
∂θr

∂x3

, the under-prediction of the

conditional τ33 causes under-prediction of the conditional vertical scalar flux production rate, which

in turn results in under-prediction of the resolvable-scale vertical scalar flux (velocity-temperature
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correlation). With a constant heat flux boundary condition, the mean scalar gradient will be over-

predicted because the LES fields have to adjust themselves to carry the correct heat flux at the

boundary. The improved mean scalar profile using the split model ([8]) and stochastic model ([10])

may be partly because these models provide improved τ13 and τ33, which is important for predicting

the scalar flux production rate.

The nonlinear model can predict quite well the conditional horizontal SGS scalar flux but

not the vertical SGS flux. Again due to the constant heat flux boundary condition the under-

prediction of the vertical SGS scalar flux causes over-prediction of the mean scalar gradient. The

under-predictions of the conditional F3 and τ13 also cause under-prediction of the conditional PF1,

which results in under-prediction of the horizontal resolvable-scale scalar flux.

These potential SGS models effects indicate that for LES to reproduce a resolvable-scale

statistics, all the relevant conditional SGS stress, flux, and SGS production rates must be correctly

predicted. An example in which this condition is not satisfied is the poor prediction of the conditional

τ33 by the Smagorinsky model, which can lead to incorrect predictions of the conditional PF3 and

hence the resolvable-scale vertical scalar flux even when F3 is quite well predicted. Previous efforts

to improve SGS models generally focused on the model predictions of the SGS stress and flux. The

results here show that in addition to the SGS stress and flux, the predictions of the SGS production

rates must also be improved.

The statistical a priori tests in Chen and Tong (2006) [90] and in the present work using the

JPDF equation method, which differ qualitatively from the traditional a priori analyses, demonstrate

the importance of modeling the conditional SGS stress, flux, and SGS production rate for correctly

reproducing LES statistics. To evaluate the model performance in actual simulations, a posteriori

test must be conducted. LES data of high-Reynolds number convective atmospheric boundary

layers have been begun being used to obtain these conditional statistics. Like the a priori tests,

such a posteriori tests are also qualitatively different from the traditional ones. For traditional a

posteriori tests, the mean, variance, spectra profile and other. flow parameters are compared with

experiment measurements. A major limitation of the traditional tests is that it is difficult to relate

the deficiencies of LES results to specific aspects of the model behaviors. This is partly because

the SGS stress evolves LES fields through dynamic equations, which are chaotic with many degrees

of freedom, making it difficult to relate the properties of the solutions to the behaviors of the SGS

terms in the equation. By contrast, the a posteriori tests examine the conditional means, which

evolve directly the resolvable-scale velocity and scalar statistics through the JPDF equation, which

is not chaotic. Therefore, it provides a more direct link between the resolvable-scale statistics and
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the SGS models. The conditional means of SGS stress, scalar flux, and their production rate are

compared with the a prior test results here and in Chen and Tong (2006) [90]. The results, which

will be published separately from the present work, show a high level of consistency between the a

priori and a posteriori tests, providing future support for PDF equation-based approach for studying

SGS turbulence and SGS models.

4.3 Summary

In the present study, Field measurements data taken in a convective atmospheric boundary

layer was used to analyze the SGS statistics that evolve the resolvable-scale velocity-scalar JPDF.

These statistics must be correctly modeled for LES to reproduce the JPDF. The results show that

the statistics, including the conditional SGS scalar flux, its production rate, and the SGS scalar

variance production rate conditional on the resolvable-scale velocity and scalar, depend strongly on

the resolvable-scale velocity and scalar and the dependence is closely related to the surface layer

dynamics. Therefore, SGS model predictions of these SGS statistics can potentially have strong

effects on LES statistics.

Analyses show that the dependence is generally strong for positive resolvable-scale tempera-

ture fluctuations and is weak for negative fluctuations. For positive θr fluctuations, eddies associated

with updrafts generally come from the near ground region, which contain large magnitudes of vertical

SGS flux and SGS stress, and experience strong shear and vertical temperature gradient, resulting

in large SGS flux production rates. For small θr fluctuations, eddies are generally well mixed, there-

fore, the results tend to be more symmetric with respect to ur3. For negative θ
r fluctuations, eddies

associated with downdrafts generally come from the mixed layer region, which carry relatively small

fluxes, resulting small magnitudes and weak dependence of the conditional SGS scalar flux produc-

tion rates on the resolvable-scale velocity. Therefore, it may be more important (and more difficult)

to model correctly the strong dependence for positive θr fluctuations. In addition, the dependence

of the SGS stress and its production rate on the resolvable-scale temperature suggests that it may

be beneficial to model such dependencies to account for flow-history effects.

The vertical SGS scalar flux is shown to have a “slow” effect on the horizontal SGS scalar

production rate. The horizontal SGS scalar flux does not influence directly the vertical SGS scalar

flux production rate but nonetheless affects the resolvable-scale scalar PDF. It is argued that the de-

pendencies of the SGS stress and its production rate on the resolvable-scale temperature fluctuations

are partly due to the flow history effect.
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The conditional SGS scalar flux and the conditional SGS scalar flux production rate have

similar trends and are generally well aligned for positive θr fluctuations with the alignment angle

being generally less than 10◦. This is consistent with the balance between the production rate and

pressure destruction and the validity of using the SGS scalar flux and a time scale for the pressure

destruction. The similarities and the dynamic connections between the conditional scalar flux and

its production rate provide the potential of using the conditional scalar flux production rate to model

the scalar flux in convective ABLs.

The Lumley triangle representation of the conditional SGS stress shows that the anisotropy

of 〈τij |u
r
1, u

r
3, θ

r〉 for positive temperature fluctuations is quite strong and is close to the that for

〈τij |u
r
1, u

r
3〉 (without conditioning on θr). The conditional SGS stress are not far from being axisym-

metric with either one small or large eigenvalue. For small θr fluctuations, the results are somewhat

similar to the results for positive θr fluctuations. For negative θr fluctuations, the conditional SGS

stress is less anisotropic. The conditional SGS stress and its production are generally well aligned for

positive θr fluctuations and are less well aligned for negative θr, consistent with the results on the

Lumley triangle and the possible quasi-equilibrium between the SGS stress production and pressure

destruction.

Statistical a priori tests using these conditional statistics show that the Smagorinsky model

under-predicts the conditional horizontal scalar flux but it predicts quite well the conditional vertical

SGS scalar flux because it uses the dominant vertical scalar gradients. The model also predicts quite

well the trends of the conditional horizontal scalar flux production rate, because the conditional τ13

and F3 are quite well predicted. However, it predicts poorly the conditional vertical SGS scalar flux

production rate due to its poor prediction of τ33. The conditional scalar variance production rate

are well predicted because the trend of F3 is well predicted, which may lead to good prediction of

the resolvable-scale scalar skewness.

The nonlinear model predicts quite well the conditional horizontal SGS scalar flux. Both the

conditional horizontal and vertical SGS scalar flux production rates are under-predicted. Predictions

of the SGS flux using the nonlinear model are found to be closely related to the predictions of the

Smagorinsky model and the quasi-equilibrium between the production and pressure destruction.

The analysis of the nonlinear model using the Smagorinsky model and the surface layer dynamics

provides a physical explanation of the performance of the nonlinear model. A similar analyse of the

nonlinear SGS stress model are also performed.

Analyses of the SGS models show that the current SGS models have varying level of perfor-

mance in predicting different SGS components. Often the poor prediction of one SGS flux component
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affects the prediction of the production rate of another SGS flux component, thereby resulting in

errors in the LES statistics that depend on the production rate. Therefore, efforts to improve SGS

models need to ensure that all the relevant SGS fluxes related to the LES statistics of interests or

of importance to the intended applications are correctly predicted.



CHAPTER 5

A new a posteriori test for subgrid-scale stress

models

In this chapter, a new a posteriori test is employed to study SGS model performance. Large

eddy simulation (LES) computes the large, or resolvable scales of turbulent flows, and models the

effects of the small, or subgrid (SGS) scales. In the ideal situation, the filter scale is in the inertial

range, the energy-containing scales are well resolved and most of the turbulent stresses is carried

by the resolvable scales. Under such conditions the LES result is to some extent insensitive to the

subgrid-scale model employed ([6, 21]).

However, in LES of many important flows, such as in the near-wall region of a high-Reynolds-

number turbulent boundary layer, the filter scale is inevitably in the energy-containing scales because

the latter scale with the distance from the surface ([62, 21, 32, 48, 49]). Consequently, a significant

portion of the turbulent stress must be carried by the SGS model, thereby causing strong dependence

of the results on the SGS model ([49]). The deficiencies in the SGS model are therefore likely to lead

to errors in LES results in the near-wall region. For example, LES of the unstable ABL using the

Smagorinsky model over-predicts the mean shear and the streamwise velocity variance ([6, 21, 10, 63])

in the surface layer, and at the same time under-predicts the vertical velocity skewness. These

deficiencies in LES results has been argued to be related to the Smagorinsky model’s being too

dissipative ([21, 10]). Various methods for improving LES results have been developed, including

stochastic backscatter ([65, 66, 8]), the split model of Schumann ([65, 10]), a nonlinear model ([67]),

and the scale-dependent dynamic Smagorinsky model ([64]). The improvements achieved by these

methods demonstrated the importance of incorporating surface-layer SGS physics into SGS models

and of systematically understanding the effects of model behaviors on LES results. Therefore, an

important question in improving SGS models is how the SGS turbulence and SGS models affect the

resolvable-scale statistics under these conditions.

Traditional a priori and a posteriori tests of SGS models (e.g., [22, 23, 24, 6, 25, 26, 8, 27,

28, 29, 30, 21, 31, 32, 33, 19, 34, 35, 36]), although have contributed greatly to understanding of the
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current SGS models, provide little information regarding the relationship between SGS models and

LES results (statistics). For a priori tests it is difficult to predict the effects of model behaviors on

LES results. For example, the correlation between the modeled and measured SGS stress components

provides little information about model performance in a simulation. For a posteriori tests it is

difficult to relate deficiencies of LES results (e.g., the mean velocity and Reynolds stress profiles) to

specific aspects of the model behaviors.

To better understand the relationship between SGS models and LES statistics, as well as that

between the SGS turbulence and the resolvable-scale statistics, a systematic a priori test approach

was developed ([38, 91, 90]) using the transport equations of the resolvable-scale velocity and velocity-

scalar joint probability density function (JPDF). This approach analyzes the SGS dynamic terms

that evolves the JPDF, which contains all single-point velocity statistics, through the JPDF equation,

thereby making it possible to relate models test results to LES statistics, i.e., model performance in

simulations.

Chen and Tong (2006) [90] used this approach to study the SGS turbulence in the surface

layer of the atmospheric boundary layer and identified several deficiencies of the SGS models that

affects the LES statistics. The Smagorinsky model, the nonlinear model, the mixed model, and the

Kosović’s nonlinear model were tested using the JPDF equation method in a convective atmospheric

surface layer in their study, which differ qualitatively from the traditional a priori analyses. They

found that none of these models can predict both conditional SGS stress and conditional SGS stress

production rate correctly at the same time. The Smagorinsky and the Kosović’s nonlinear model

under-predict the anisotropy and the variations of the anisotropy whereas the nonlinear model and

the mixed model over-predict both, which are considered to be important for predicting the mean

shear and the streamwise velocity variance profile. The under-prediction of the vertical velocity

skewness is argued to be related to the inability to predict the asymmetry in 〈P33|u
r
3〉. Therefore,

such a priori analyses using PDF equation can provide important guidance for developing SGS

models. To evaluate the model performance in actual simulations, these conditional statistics need

to be examined in actual LES.

In the present work, a new a posteriori test is developed based on the transport equations

of the resolvable-scale velocity JPDF to study the subgrid-scale (SGS) stress using the LES data in

the atmospheric surface layer. The resolvable-scale velocity JPDF equation was given by Chen and
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Tong (2006) [90]:

∂f

∂t
+ vj

∂f

∂xj
=

∂2

∂vi∂xj
{〈τij |u

r = v〉 f}+
∂2

∂vi∂vj

{〈

−
1

2
Pij |u

r = v

〉

f

}

+
∂2

∂vi∂xi
{〈pr|ur = v〉 f}+

∂2

∂vi∂vj

{〈

pr
∂urj
∂xi
|ur = v

〉

f

}

−
g

Θ

∂

∂v3
{〈θr|ur = v〉 f} . (5.1)

where

τij = (uiuj)
r − uriu

r
j

is the SGS stress (the Leonard stress Lij = (uriu
r
j)
r − uriu

r
j has been included in τij), a superscript

r denotes a resolvable-scale variable, Θ and θ are the mean and fluctuation potential temperatures,

respectively.

The left-hand side of the equation is the time derivative and the advection in physical space.

The right-hand side represents mixed transport in physical and velocity spaces by the conditional

SGS stress and the resolvable-scale pressure and transport in velocity space by the conditional SGS

stress production rate,
〈

− 12Pij |u
r = v

〉

, the conditional resolvable-scale pressure-strain correlation,

and the conditional buoyancy force, where

Pij = −

{

τik
∂urj
∂xk

+ τjk
∂uri
∂xk

}

Equation (1) shows that the SGS stress directly affects the resolvable-scale velocity JPDF through

the conditional SGS stress and the conditional SGS stress production and indirectly through the

pressure terms. Therefore, the necessary conditions for LES to correctly predict the velocity JPDF

are that the conditional means of SGS stress and SGS stress production rate must be reproduced

by the SGS model ([38]). Therefore, equation (1) provides a link between the SGS stress and the

resolvable-scale velocity JPDF and can be used to study the effects of the SGS stress on the JPDF

in a posteriori tests. In the test the conditional means of LES-generated the SGS stress and its

production rate are compared to measurements (or DNS).

It is noted that the a posteriori tests performed here are qualitatively different from the

traditional tests, in which the mean, variance, spectra and other profiles of other flow parameters

are compared with experiment measurements. (Direct comparisons between the instantaneous LES-

generated SGS stress and measurements as done in traditional a priori tests are not possible because

LES fields are not correlated to the true turbulence fields). A major limitation of such a posteriori

tests is that it is difficult to relate the deficiencies of LES results to specific aspects of the model
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behaviors. This is because the SGS stress evolves LES fields through dynamic equations, which are

chaotic with many degrees of freedom, making it difficult to relate the properties of the solutions to

the behaviors of the SGS terms in the LES equations. By contrast, this a posteriori tests examine the

conditional means, which evolve directly the resolvable-scale velocity and scalar statistics through

the JPDF equation. Therefore, it provides a more direct link between the resolvable-scale statistics

and the SGS models. In addition, traditional a posteriori tests results generally cannot be directly

related to a priori tests results, partly because the former often deal with statistics and the latter

deal with instantaneous SGS stress. The JPDF equation based a posteriori tests, on the other hand,

analyze the same JPDF equation as the (s a priori tests, making it possible to directly evaluate the

consistency of model performance in the two types of tests.

In LES employing certain SGS models, such as the Smagorinsky model, only the deviatoric

part of the SGS stress, τdij = τij −
1
3τkkδij , is modeled. Therefore, it is also useful to examine the

corresponding production term P d
ij defined as

P d
ij = −

{

τdik
∂urj
∂xk

+ τdjk
∂uri
∂xk

}

. (5.2)

Thus, Pij can be written as

Pij = P d
ij −

2

3
τkkSij , (5.3)

where Sij is the resolvable-scale strain rate tensor. Equation (3) shows that the normal components

of Pij contain the energy transfer from the resolvable to the subgrid scales, P d
αα (α = 1, 2, 3), and

the redistribution among three normal components of the SGS stress (inter-component exchange),

− 23τkkSαα, respectively. The shear components of Pij contain the production of SGS shear stress in

anisotropic turbulence owing to both straining and rotation by the resolvable-scale velocity field, P d
ij ,

and the production of shear stress due to straining of isotropic SGS turbulence, − 23τkkSij , (i 6= j).

Therefore the decomposition in (3) is useful for further understanding the physics of Pij ([90]).

They found that the results of 〈τij |u
r〉 and 〈Pij |u

r〉 closely related to the surface-layer dynamics.

Specifically, the updrafts generated by buoyancy, the downdrafts associated with the large-scale

convective eddies, the mean shear, and the length scale inhomogeneity play important roles in the

behaviors of 〈τij |u
r〉 and 〈Pij |u

r〉. They found that 〈P11|u
r〉 is dominated by −2

〈

τ13
∂ur

1

∂x3

∣

∣

∣
ur
〉

, and

secondarily dominated by −2
〈

τ11
∂ur

1

∂x1

∣

∣

∣
ur
〉

due to the dominated shear ∂ur1/∂x3. Similarly, 〈P33|u
r〉

is dominated by −2
〈

τ33
∂ur

3

∂x3

∣

∣

∣
ur
〉

, and 〈P13|u
r〉 is dominated by −

〈

τ33
∂ur

1

∂x3

∣

∣

∣
ur
〉

. Therefore, the

evolution of 〈τ11|u
r〉 is primarily influenced by the conditional SGS shear stress 〈τ13|u

r〉 (dominant

term in 〈P11|u
r〉), and secondarily influenced by 〈τ11|u

r〉. Similarly the evolution of 〈τ22|u
r〉 is
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Table 5.1 LES simulation parameters
Case Lx, Ly × Lz Nx, Ny ×Nz Q∗ Ug u∗ −zi/L

Sullivan 1994 10000× 2000 250× 128 0.1 20.0 0.66 5.63
Otte 2001 (Smag) 2500× 999 144× 160 0.2 15.0 0.66 6.04
Otte 2001(Kosović) 2500× 1000 140× 160 0.2 15.0 0.65 5.57

influenced by 〈τ23|u
r〉 and 〈τ22|u

r〉. The evolution of 〈τ33|u
r〉 is influenced by 〈τ33|u

r〉, and the

evolution of 〈τ13|u
r〉 is influenced by 〈τ33|u

r〉 as well. This dynamics relation can be used to analyze

the trend of the conditional SGS stress production rate predicted by SGS models, and analyze the

dynamics between the scalar flux and its production rate (Chapter 4). In this chapter, this method

is adopted to analyze the means and conditional means of the SGS stress and its production rate of

the LES.

In this chapter, a new a posteriori test is employed to study SGS model performance using

LES data. The rest of the paper is organized as follows. Section 5.1 outlines the large-eddy simulation

and field measurement. The means and conditional means of SGS stress and its production rate of

LES results are compared with the measurements and a priori test results in Section 5.2 and 5.3,

followed by conclusions.

5.1 LES and field measurements

In this chapter, the LES data of atmospheric boundary layers are obtained by using the

Smagorinsky model ([60, 83]), the split model (also called two-part eddy-viscosity model) ([10]), and

the Kosović model ([67], Otte and Wyngaard 2001). The LES data using the Smagorinsky model

and the Kosović model are described by Otte and Wyngaard 2001. The data using the split model

are described by Sullivan et al. (1994) [10]. The split model was used by Sullivan et al. (1994)

[10], which preserves the usual SGS turbulent kinetic energy eddy-viscosity model formulation, but

includes a mean flow contribution and a reduced contribution from turbulent fluctuation near surface

layer. Previous a priori study ([90]) showed that the conditional statistics of the split model are

similar to that of the standard Smagorinsky model, but with smaller magnitudes and mean offsets.

The parameters for the simulations are given in Table 5.1. The simulation results are compared with

both the a priori test results and the results from measurement data (HATS) in Chen and Tong

(2006) [90]).
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The Smagorinsky model is given by Smagorinsky (1963), Lilly (1967), and Moeng (1984)

[60, 1, 83].

τsmgij = −2νtSij = −2Ck∆e
1/2Sij , (5.4)

where Ck = 0.1 is the Smagorinsky constant ([83]), e is the SGS turbulent kinetic energy, Sij is the

resolvable-scale strain rate, and ∆ is the filter size.

The split model is given by Sullivan et al. (1994) [10].

τsplitij = −2νtγSij − 2νT 〈Sij〉, (5.5)

where γ is the isotropy factor, and νT is the mean field eddy-viscosity. These two factors changes

with height to match the similarity theory at the first grid point and provide anisotropy in the SGS

motion near the wall. In present study, the second grid point data are chose to compute the mean

and the conditional mean statistics. The corresponding isotropy factor γ = 0.61.

Kosović (1997) [67] proposed a nonlinear model:

τkosij = −2νtSij − (Cs∆)2
{

C1(SikSkj −
1

3
SmnSmnδij) + C2(SikΩkj − ΩikSkj)

}

, (5.6)

where Cs, C1 and C2 are model constants.

The conditional statistics of the LES are compared with the results obtained using the field

measurement (HATS). The field measurements for this study, named the horizontal array turbulence

study, or HATS field program, were conducted at a field site 5.6 km east-northeast of Kettleman

City, California, in the summer of 2000 as a collaboration primarily among the National Center for

Atmospheric Research, Johns Hopkins University and Penn State University (CT was part of the

Penn State group). Horst et al. (2004) [75] describe the field site and the data collection procedures

in detail.

The field measurement design is based on the transverse array technique proposed, stud-

ied, and first used by the Penn State group ([76, 77, 48, 49]) for surface-layer measurements in the

ABL. The technique uses horizontal sensor arrays to perform two-dimensional filtering to obtain

resolvable- and subgrid-scale variables. Two arrays are vertically spaced to obtain vertical deriva-

tives. The primary horizontal array consists of nine equally spaced sonic anemometers (Campbell

Scientific SAT3) and the secondary array has five sonics at a second height. The arrays are aligned

perpendicular to the prevailing wind direction.
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The filter operation in the streamwise direction is performed by invoking Taylor’s hypothesis.

Filtering in the transverse direction is realized by averaging the output of the signals from the sensor

array ([48]). In the present study, the arrays are used to approximate top-hat filters, which are the

most compact type in physical space. Because derivatives are computed using finite differencing,

which is effectively a top-hat filter, top-hat filters provide consistency among the resolvable-scale

velocity and its derivatives.

Four different array configurations are employed in the HATS program. The filter (grid)

aspect ratio (∆/z, where z as the height of the primary array) ranges from 0.48 to 3.88, allowing

the effects of grid anisotropy to be examined. Chen and Tong (2006) [90] focused on the unstable

data case of array 1, because it has the largest ∆/z = 3.88, the most anisotropic and most difficult

for SGS models to predict. In the present work, the unstable data case of array 2 are chose, because

its aspect ratio ∆/z = 2.0 is closer to that of the LES data (∆/z = 2.14 for Sullivan 1994 runs and

∆/z = 1.92 for Otte 2001 runs). Comparisons between model predictions and measurements only

require the relative magnitude of the results and the conditional means obtained from array 2 has

no quantitatively different from the conditional means obtained from array 1, therefore, the results

in Chen and Tong (2006) [90] are still applicable to present study.

Due to the complexity of the variables of interest and of the conditional sampling procedure,

a precise level of statistical uncertainty are not able to be provided. However, by monitoring the

statistical scatter while increasing the data size, it is concluded that reasonable statistical conver-

gence is achieved [90]. In addition, comparisons between model predictions and measurements only

require the relative magnitude of the results and are less affected by the uncertainty. Therefore, the

data size is sufficient for obtaining reliable statistics for the analyses.

The results for the mean SGS stress 〈τij〉 and the conditional SGS stress 〈τij |u
r〉 are normal-

ized by the friction velocity u2∗. The results for the mean 〈Pij〉 and the conditional SGS stress produc-

tion 〈Pij |u
r〉 is normalized by the estimated energy dissipation rate ε = φε

u3

∗

kaz
, where φε = 1− z/L

for z/L ≤ 0 as suggested by Kaimal et al. (1972) [62].

5.2 Unconditional statistics

The mean horizontal resolvable-scale velocity vertical gradient (Φm = ∂u
∂z

kaz
u∗

), the (total)

velocity variances profiles, and the vertical resolvable-scale velocity skewness of the simulation are

shown in Figures 5.1 and 5.2, respectively. The LES profiles obtained using the split model and the

Kosović model are closer to measurements ([90]) than those using the Smagorinsky model.
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Table 5.2 Mean statistics of the HATS (array 2), a priori test, and LES results (at the
second grid-point height).

HATS a priori LES
Smag Split Kosović Smag Split Kosović

〈u′1u
′
1〉 /u

2
∗ 12.12 5.08 5.79 4.80

〈u′2u
′
2〉 /u

2
∗ 13.19 4.52 5.15 4.47

〈u′3u
′
3〉 /u

2
∗ 1.86 1.43 1.20 0.89

〈−u′1u
′
3〉 /u

2
∗ 1.00 0.84 0.98 0.82

〈

ur1
′ur1

′
〉

/u2∗ 9.78 3.76 4.96 3.39
〈

ur2
′ur2

′
〉

/u2∗ 11.40 3.20 4.31 3.16
〈

ur3
′ur3

′
〉

/u2∗ 0.44 0.12 0.38 0.25
〈

−ur1
′ur3

′
〉

/u2∗ 0.46 0.39 0.71 0.52
〈

τd11
〉

/u2∗ 0.55 0.01 0.01 0.32 0.01 0.00 0.29
〈

τd22
〉

/u2∗ -0.08 0.01 0.03 0.05 0.01 0.01 0.19
〈

τd33
〉

/u2∗ -0.44 0.01 0.01 -0.33 -0.01 -0.01 -0.48
〈−τ13〉 /u

2
∗ 0.57 0.23 0.38 0.23 0.44 0.28 0.29

〈τkk/3〉 /u
2
∗ 1.87 1.32 0.83 1.12

〈P11〉 /ε 0.87 0.67 0.75 0.69 1.13 0.80 0.64
〈P22〉 /ε 0.29 0.44 0.42 0.46 0.18 0.27 0.32
〈P33〉 /ε 0.07 0.09 0.08 0.03 -0.04 0.00 0.02
〈−P13〉 /ε 0.63 0.90 0.90 0.53 1.34 0.60 0.32
〈

P d
11

〉

/ε 0.80 0.59 0.67 0.62 1.10 0.79 0.60
〈

P d
22

〉

/ε 0.19 0.34 0.32 0.36 0.15 0.24 0.30
〈

P d
33

〉

/ε 0.11 0.12 0.11 0.07 0.04 0.06 0.09
〈

P d
13

〉

/ε 0.22 -0.05 -0.05 0.32 0.00 0.02 0.43

Table 5.2 shows that the measured Reynolds (mean total) stress components 〈u′1u
′
1〉 and

〈u′2u
′
2〉 (where ′ denotes the fluctuations) have larger values than the other components, so are the

measured mean resolvable-scale stress components
〈

ur1
′ur1

′
〉

and
〈

ur2
′ur2

′
〉

. This feature is generally

captured by the all simulations. The smaller LES values for the normal components may be related

to the difference in zi/L for LES and measurements.

The mean SGS stress normal components,
〈

τd11
〉

and
〈

τd33
〉

, have larger magnitude than
〈

τd22
〉

. This features is not captured by the Smagorinsky model and the split model in both the

a priori and a posteriori tests. The Kosović model capture this trend much better, but slightly

over-predicts
〈

τd22
〉

and
〈

τd33
〉

. The mean SGS shear stress are under-predicted by all the models in

both a priori and a posteriori tests.

The mean SGS stress production rate 〈P11〉 , 〈P22〉, and 〈P13〉 have large magnitudes than

the other components, which are generally captured by the models both in a priori and a posteriori

tests. However, none of the models captures well the relative magnitudes among those components.

The large magnitudes of
〈

P d
11

〉

and
〈

P d
22

〉

are generally captured by those models, but their

ratio is less well captured.
〈

P d
13

〉

is under-predicted by both the Smagorinsky model and the split

model in both a priori and a posteriori test, which is due to the under-prediction of the
〈

τd33
〉

.
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Figure 5.1 LES results of the mean horizontal resolvable-scale velocity vertical gradi-
ent profile in the surface layer.

However, it is over-predicted by the Kosović model in both a priori test and in LES, which is due

to the over-prediction of the
〈

τd33
〉

.
〈

P d
33

〉

is well predicted in a priori test by both the Smagorinsky

model and the split model but less well captured in the LES, which is probably due to the LES not

reproducing correctly the correlation between τ d33 and ∂ur3/∂x3 (the dominant term in
〈

P d
33

〉

).

In order to quantitatively measure the relationships among SGS components, their eigen-

value structures are examined using the Lumley triangle ([81]). For example, the normalized mean

SGS stress tensor for 〈τij〉,
〈

τdij
〉

/ 〈τkk〉 = 〈τij〉 / 〈τkk〉 −
1

3
δij , (5.7)

can be determined by two variables ξ and η defined in terms of its invariants ([37])

6η2 = −2II =
〈

τdij
〉 〈

τdij
〉

/ 〈τkk〉
2
, (5.8)

6ξ3 = 3III =
〈

τdij
〉 〈

τdjk
〉 〈

τdki
〉

/ 〈τkk〉
3
, (5.9)

where II and III are the second and third invariants of the anisotropy tensor. If 〈τij〉 is isotropic,

both ξ and η are zero (the first invariant or trace of
〈

τdij
〉

is always zero by definition).

The Lumley triangle representation for the measured Reynolds stress and the resolvable-

scale stress (Figure 5.3(a)) shows that both are close to axisymmetric with two large eigenvalues

(η = −ξ). On the other hand, the mean SGS stress is close to axisymmetric with one large eigenvalue

(η = ξ) in the surface layer. This difference is because the influence of large-scale convective

eddies, which results in the large value of σu and σv. The filter near the boundary removes the

effects of large-scale eddies, resulting in a structure close to axisymmetric with one large eigenvalue.

As the filter size increases, the eigenvalue structure of the mean SGS stress would change from
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Figure 5.2 LES results of the (total) velocity variance and the vertical resolvable-scale
velocity skewness profiles in the surface layer: a) the Smagorinsky model; b) the split
model; c) the Kosović model; d) the vertical resolvable-scale velocity skewness.

being axisymmetric with one large eigenvalue structure to axisymmetric with two large eigenvalue

structure. The eigenvalue structure of the modeled mean SGS stress using these models (a priori

tests), also shown in Figure 5.3(a), are less anisotropic than the measurements. The slightly higher

level of anisotropy of the Kosović model than that of the Smagorinsky model was also observed in

a priori test ([90]). The higher level of anisotropy of the split model than that of the Smagorinsky

model is due to the contribution from the mean part of the modeled τ13 component.

In order to examine the influence of the modeled mean SGS stress on the resolved stress

coming from scales close to the filter scale, the band-passed stress is computed using a bandpass

filter (
〈

τ bij
〉

=
〈

(uri − u
nr
i )(urj − u

nr
j )
〉

where nr denotes a second low-pass filter of width n times

larger than the LES filter size). Figure 5.3(b) shows the LES results for several second filter widths

ranging from 2 grid spaces to 34 grid spaces. The measured mean band-passed stress for n = 2

(Figure 5.3(a)) is axisymmetric with one large eigenvalue structure. As the width increases, i.e.,

large scales are included, the structure moves closer to the mean resolvable-scale stress structure.
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Figure 5.3 Lumley triangle representation of: a) the measured Reynolds stress, mean
resolvable-scale stress, mean SGS stress, mean band-passed stress with a second filter
size twice that of the first filter, and the modeled (a priori test) mean SGS stress. The
strain rate is also given for reference; b) the LES results of the mean band-passed stress
using the Kosović model. The bandwidth increases from 2 grid spaces to 34 grid spaces
by each step increment 4; c) the measured mean SGS stress production rate; d) the
measured 〈P d

ij〉.

These results indicate that the SGS stress influence strongly the structure near the filter scale but

not the large-scales.

Chen et al. (2003) [38] found that while the influence of SGS stress decreases with decreasing

filter scale, the SGS stress production rate has persistent influences on the resolvable-scale velocity

JPDF. Thus, it is important for the SGS models to predict the structure of the mean SGS stress

production rate well. Though the SGS stress production rate does not satisfy the Cauchy-Schwarz

inequality and its ξ and η values are not confined to the Lumley triangle, it is nonetheless useful to

present its structure using Lumley triangle. an arbitrary factor is used to normalize the production

rate such that the ξ and η values fall within the Lumley triangle. Therefore, ξ > 0 still represents

a structure close to axisymmetric with one large eigenvalue, ξ < 0 represents a structure close to

axisymmetric with two large eigenvalue, and the origin represent an isotropy structure. However,
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Figure 5.4 LES results (a posteriori test) of the Lumley triangle representation of: a)
the mean SGS stress; b) the mean SGS stress production rate using the Smagorinsky
model.

the distance from the origin does not represent the level of anisotropy as is the case for the SGS

stress. Figure 5.3(c) and (d) show the Lumley triangle representation of the measured 〈Pij〉 and
〈

P d
ij

〉

, respectively. Figure 5.3(c) shows that 〈Pij〉 has a similar structure to the mean SGS stress

because they are on the same radical line starting from origin, consistent with the good alignment

and tensorial contraction between the conditional SGS stress and its production rate ([90]). Figure

5.3(d) shows that
〈

P d
ij

〉

has similar structure to that of 〈Pij〉, but is closer to axisymmetric with one

large eigenvalue (η = ξ). This indicates that including the production due to straining of isotropic

part of the SGS stress moves the SGS stress production rate structure to axisymmetric with two

large eigenvalue structure. Note that in a priori tests the SGS stress τij for the SGS models is

obtained by adding the measured τkk/3 into the modeled τdij to compute modeled Pij . Therefore,

the eigenvalue structure of the mean SGS stress production rate is influenced by the relative ratio

between the measured τkk/3 and the modeled τdij . By varying the percentage of τkk, it is found that

the eigenvalue structure of the mean SGS stress production rate moves closer to the axisymmetric

with two large eigenvalue structure when the percentage of τkk increasing.

The Lumley triangle representation for the Reynolds stress, the mean resolvable-scale stress,

and the mean SGS stress obtained in LES using the Smagorinsky model, the split model, and the

Kosović model are showed in Figure 5.4(a), 5.5(a), and 5.6(a), respectively. The structure of the

Reynolds stress and the mean resolvable-scale stress are well predicted using the split model and the

Kosović model. The predicted level of anisotropy of the Reynolds stress using the Smagorinsky model

is slightly lower than the measurements, but the resolvable-scale mean stress is slightly higher than
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Figure 5.5 LES results (a posteriori test) of the Lumley triangle representation of: a)
the mean SGS stress; b) the mean SGS stress production rate using the split model.
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Figure 5.6 LES results (a posteriori test) of the Lumley triangle representation of: a)
the mean SGS stress; b) the mean SGS stress production rate using the Kosović model.

the measurements, which comes from the over-prediction of the magnitude of 〈u′3u
′
3〉 and the under-

prediction the magnitude of 〈ur3u
r
3〉 by the Smagorinsky model. The mean band-passed stress from

these simulations is close to axisymmetric with one large eigenvalue, similar to the measurements.

The Lumley triangle representation for the LES mean SGS stress using the Kosović model is

close to axisymmetric with two large eigenvalue. The LES mean SGS stress using the Smagorinsky

model and the split model have similar eigenvalue structures: close to axisymmetric with two large

eigenvalues. Their eigenvalue structures are different from the measured mean SGS stress eigenvalue

structure, but similar to the a priori test results (Figure 5.3(a)).

While the LES mean SGS stress eigenvalue structure is different from the measurements,

the Reynolds, mean resolvable-scale, and the mean band-passed stress eigenvalue structures are

generally well predicted. These predictions can be understood by examining the first two terms on
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the right-hand-side of equation (1): in a horizontally homogenous atmospheric boundary layer, the

derivatives in horizontal direction vanish, and the SGS stress influences the resolvable-scale JPDF

through 〈τ13|u
r〉 , 〈τ23|u

r〉, and 〈τ33|u
r〉. Therefore, the over-prediction the magnitude of 〈τ22〉 by the

Kosović model does not influence strongly the eigenvalue structure of the Reynolds, mean resolvable-

scale, and the mean band-passed stress. However, it may cause inaccuracies in flow that are not

horizontally homogenous. The slight inaccuracies in the LES eigenvalue structures of the Reynolds

stress and the mean resolvable-scale stress using the Smagorinsky model come from the inaccuracies

of 〈u′3u
′
3〉 and 〈u

r ′
3u

r ′
3〉, which is probably due to the inaccuracies of the 〈τ33〉 (the dominant term

in 〈P33〉). The improvement of the LES results using the split model over the Smagorinsky model

probably is because the increased anisotropy through 〈τ13〉, which partially compensates the effects

of the under-prediction of the τ33.

From equation (1), it is also seen that the SGS stress production rate influence the resolvable-

scale statistics regardless of homogeneity ([38]). The Lumley triangle representation of 〈Pij〉 from

LES is close to axisymmetric with one large eigenvalue (Figure 5.4(b), 5.5(b), and 5.6(b)), which are

similar to the measurements shown in Figure 5.3(c). The Lumley triangle representation of
〈

P d
ij

〉

is also axisymmetric with one large eigenvalue, which are similar to the measurements and the a

priori test results (Figure 5.3(d)), except the Kosović model, which over-predicts the magnitude of

P22 due to the over-predicted magnitude of τ22. These results are consistent to the above analysis

that the SGS stress production rate is important. In addition, the Lumley triangle representation of

the properly normalized mean LES strain rate (normalized by
√

〈τkk〉/2/(0.1∆)) are also generally

well predicted by all models (Figure 5.3(a), 5.4(a), 5.5(a) and 5.6(a)).

5.3 Conditional statistics

The results for the conditional normal SGS stress components are plotted against the hor-

izontal resolvable-scale velocity, ur1, for different values of the vertical resolvable-scale velocity, ur3

(Figure 5.7). Only the fluctuation parts of ur components normalized by their respective r.m.s.

values is plotted.

The measurement results of the conditional SGS stress and its production rate are shown in

Figures 5.7 and 5.8. The trends and the magnitudes of the conditional SGS stress and its production

generally depend on the resolvable-scale velocity and increase with the resolvable-scale velocity. One

exception is 〈P33|u
r〉 which weakly depends on ur1, similar to the results in Chen and Tong (2006)

[90]. The Lumley triangle representation, the eigenvalue geometric alignment, eigenvalue, and the
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Figure 5.7 Conditional means of the measured deviatoric SGS stress components con-
ditional on the resolvable-scale velocity components. The dependence on the horizontal
velocity components is generally stronger for position ur3.

eigenvalue ratio of the conditional SGS stress and its production rate are shown in Figure 5.9(a)

and 5.10 respectively. These results are similar to those for array 1 discussed in detail in Chen and

Tong (2006) [90].
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Figure 5.8 Conditional means of the measured SGS stress production rate components
conditional on the resolvable-scale velocity components.
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Figure 5.9 Lumley triangle representation of the measured and modeled (a priori test)
conditional SGS stress: a) the measurement; b) the Smagorinsky model; c) the split
model; d) the Kosović model. The arrows represent the conditioning vector (ur1, u

r
3).

The a priori test results for the Smagorinsky model are shown in Figures 5.11 and 5.12.

The model can predict well neither the conditional mean of SGS stress nor its production. It can

predict quite well the trends of some shear stress components, but not the normal components, and

can predict the trends of some normal components of conditional SGS stress production, but not

the shear components. The magnitudes of these components are generally poorly predicted. The

level of anisotropy is also severely under-predicted (Figure 5.9(b)). These results are similar to those

discussed in Chen and Tong (2006) [90]. The a priori test results for the split model are generally

similar to that of the Smagorinsky model except 〈τ13|u
r〉 (Figure 5.13) because the contribution from

the mean part is generally small except for the shear stress. Figure 5.13 shows that the variation

of 〈τ split13 |u
r〉 is smaller but the magnitude is larger than that of the Smagorinsky model due to the

contribution from the mean part, which results in a higher level of anisotropy (Figure 5.9(c)).
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Figure 5.10 The measured geometric alignment angles and eigenvalues of the con-
ditional SGS stress and its production rate: (a-b) the geometric alignment angles;
(c-d) the eigenvalues of the conditional SGS stress; (e-f) the eigenvalue ratios of the
conditional SGS stress to its production rate.
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Figure 5.11 Predicted conditional SGS stress (a priori test) using the Smagorinsky
model. Only the trend of 〈τ13|u

r〉 is predicted reasonably well.
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Figure 5.12 Predicted conditional SGS stress production rate (a priori test) using the
Smagorinsky model.
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Figure 5.13 Predicted conditional SGS shear stress (a priori test) using the split model.
The variations of the predicted 〈τ13|u

r〉 are smaller but the magnitude is larger than
that of the Smagorinsky model due to the contribution from the mean part.

The results of the Kosović model (Figures 5.14-5.15) show that it has better overall per-

formance than the Smagorinsky model and the split model. Chen and Tong (2006) [90] showed

that it has the best overall performance among the models tested. However, it under-predicts the

magnitude of the conditional SGS stress when the mean energy transfer is matched. The level of

anisotropy (Figure 5.9(d)) is also under-predicted compared with measurements, but the prediction

is improved over that of the Smagorinsky model.

In the following the a posteriori test (LES) results of these SGS models are presented and

compared with the measurements and the a priori test results discussed above (Figure 5.7-5.15).

5.3.1 Smagorinsky model

The LES results for
〈

τsmgij |ur
〉

and
〈

P smg
ij |ur

〉

are shown in Figures 5.16 and 5.17, respec-

tively. The magnitudes of both
〈

τdij |u
r
〉

and
〈

P d
ij |u

r
〉

are generally under-predicted. The magnitudes

and trends of these conditional means are generally similar to that of the a priori test results using

the measurements (HATS) data ([90]).

Figure 5.16(a) shows that the trends of
〈

τd11|u
r
〉

are generally well predicted. However,

similar to the a priori test results, the magnitudes are severely under-predicted. The trends and

magnitudes of
〈

τd22|u
r
〉

(Figure 5.16(b)) are generally well predicted. The dependence of
〈

τd33|u
r
〉

(Figure 5.16(c)) on ur1 and the magnitude are under-predicted. Figure 5.16(d) shows that the trend

of 〈τ13|u
r〉 on ur3 is reasonably well predicted, but the magnitude is under-predicted. Similarly,

the magnitude
〈

τd23|u
r
〉

are generally under-predicted. These results are similar to the a priori

test results (Figure 5.11). The under-prediction of 〈τ13|u
r〉 in both a priori and a posteriori tests
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Figure 5.14 Predicted conditional SGS stress (a priori test) using the Kosović model.

provides strong support to the argument that it causes the over-prediction of the vertical derivative

of the streamwise velocity.

The magnitude of
〈

P d
11|u

r
〉

(Figure 5.17(a)) is generally under-predicted, and the depen-

dence on ur3 is reasonably well predicted. The under-prediction of the magnitude is due to its

under-prediction of the magnitude of τ d11 and τ13 (
〈

P d
11|u

r
〉

=
〈

−τd1j
∂ur

1

∂xj
|ur
〉

). The magnitude of
〈

P d
33|u

r
〉

(Figure 5.17(c)) and its asymmetric dependence on ur3 is not well captured, which is due to

the under-prediction of τ33 because
〈

P d
33|u

r
〉

is dominated by
〈

−τd33
∂ur

3

∂x3

|ur
〉

([90]). The trends and

magnitudes of
〈

P d
13|u

r
〉

(Figure 5.17(d)) on ur1 are slightly under-predicted. Again, this is due to the

model prediction of 〈τ33|u
r〉. These results are similar to the a priori tests with the exception that

the a posteriori results for
〈

P d
13|u

r
〉

are somewhat better than that of the a priori test results. The

poor predictions of
〈

P d
33|u

r
〉

, in particular its asymmetric dependence on ur3 in both a priori and

a posteriori tests confirm the argument that it is the cause for the under prediction of the vertical

velocity skewness in the surface layer.
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Figure 5.15 Predicted conditional SGS stress production rate (a priori test) using the
Kosović model.

Chen and Tong (2006) [90] found that the level of anisotropy of the conditional SGS stress

is very important for both understanding the surface layer dynamics and SGS modeling. The level

of anisotropy of the conditional SGS stress can also be characterized by the representation in the

Lumley triangle ([81]). The Lumley triangle for the conditional SGS stress can be obtained in the

way similar to that for the mean SGS stress in Section 5.2 as done in Chen and Tong (2006) [90].

Measurements ([90]) show that the anisotropy is weak for negative ur3 and is much stronger

for positive ur3. For positive and negative ur1 values, 〈τij |u
r〉 is close to axisymmetric with one large

and one small eigenvalue, respectively, probably reflecting the shear and buoyancy effects.
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Figure 5.16 LES results (a posteriori test) of the conditional SGS stress using the
Smagorinsky model.
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Figure 5.17 LES results (a posteriori test) of the conditional SGS stress production
rate using the Smagorinsky model.
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Figure 5.18 LES results (a posteriori test) of the Lumley triangle representation of the
conditional SGS stress using: a) the Smagorinsky model; b) the split model; c) the
Kosović model.

The level of anisotropy of the conditional SGS stress in LES represented in the Lumley

triangle are shown in Figure 5.18(a). Similar to the a priori test results, the data points are close

to the origin, indicating the under-prediction of the level of the anisotropy. The qualitatively de-

pendence of the eigenvalue structure on the resolvable-scale velocity is not correctly predicted. The

underpediction of the anisotropy is probably due to the similar reason that it was under-predicted

in a priori test: the strong correlation between the modeled SGS stress and the strain rate forces

reduction of the magnitude of the anisotropic (deviatoric) SGS stress to maintain the correct energy

transfer.

To study the eigenvalue structure relationships between the conditional SGS stress and its

production rate, the geometric alignment between
〈

τdij |u
r
〉

and
〈

P a
ij |u

r
〉

(where P a
ij = Pij−Pkkδij/3)

are examined, which is characterized by the angle of their eigenvectors.

The alignment between 〈τdij |u
r〉 and 〈P a

ij |u
r〉 were studied by Chen and Tong (2006) [90].

They found that 〈τdij |u
r
1〉 and 〈P

a
ij |u

r
1〉 are generally well aligned. The alignment angle is less than 10◦
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and weakly depend on ur1. 〈τ
d
ij |u

r
3〉 and 〈P

a
ij |u

r
3〉 are well aligned for positive ur3 and less well aligned

for negative ur3. The definition of the geometric alignment was given in Chen and Tong (2006) [90],

and are simply repeated here. The eigenvalues of the conditional SGS stress tensor, 〈τ dij |u
r, 〉, are

denoted as ατ , βτ and γτ , ordered such that ατ ≥ βτ ≥ γτ , and the corresponding unit eigenvec-

tors as ~ατ , ~βτ and ~γτ . Similarly, the eigenvalues of the conditional SGS stress production tensor,

〈P a
ij |u

r〉, are denoted as αP , βP and γP , ordered such that αP ≥ βP ≥ γP , and the corresponding

unit eigenvectors as ~αP , ~βP and ~γP . In order to characterize the geometric alignment between the

eigenvectors of 〈τdij |u
r〉 and 〈P a

ij |u
r〉, three angles, θ, φ and ξ, are defined as θ = cos−1(|~γP ·~γτ |) (the

angle between ~γP and ~γτ ), φ = cos−1(|~βP · ~βτ |), and ξ = cos−1(|~αP · ~ατ |).

The geometric alignment between
〈

τdij |u
r
〉

and
〈

P a
ij |u

r
〉

(in Figure 5.19(a-b)) are generally

well predicted in LES for ur1 and u
r
3 > 0, but is not predicted correctly for ur3 < 0. The generally good

alignment for ur3 > 0 indicates that the LES reproduces the quasi-equilibrium dynamics between the

SGS stress production and destruction mechanism in surface layer. But for ur3 < 0, the LES still

predicts this quasi-equilibrium while the surface layer is not.

The trends of the eigenvalue of
〈

τdij |u
r
1

〉

(Figure 5.19(c-d)) are generally well predicted. The

dependence of the eigenvalues on ur3 are generally less well predicted. The magnitudes are generally

under-predicted, which is consistent with the results for
〈

τdij |u
r
〉

. The trends and the magnitude of

the eigenvalue ratio of
〈

τdij |u
r
1

〉

to
〈

P a
ij |u

r
1

〉

(Figure 5.19(e-f)) are not predicted correctly.
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Figure 5.19 LES results (a posteriori test) of the geometric alignment angles and eigen-
values of the conditional SGS stress and its production rates: (a-b) the geometric align-
ment angles; (c-d) the eigenvalues of the conditional SGS stress; (e-f) the eigenvalue
ratios of the conditional SGS stress to its production rate using the Smagorinsky model.



137

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1

ur
1

HATS
Smag
Split
Kosovic

(a)

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1

ur
3

HATS
Smag
Split
Kosovic

(b)

Figure 5.20 Contraction of the conditional SGS stress and its production rate from
the LES (a posteriori test) and the measurements (a priori test).

The overall similarity between 〈τ dij |u
r〉 and 〈P a

ij |u
r〉 can be quantified using their contraction,

〈τdij |u
r〉〈P a

ij |u
r〉 =

〈τd
ij |u

r〉〈Pa
ij |u

r〉

|〈τd
ij |u

r〉||〈Pa
ij |u

r〉|
. If the two tensors are perfectly aligned and their eigenvalues are

proportional, the contraction has the value of one. The magnitudes and the trends of the contraction

(Figure 5.20) are predicted well for ur3 > 0, but not for ur3 < 0. This is consistent with the above

eigenvalue alignment and eigenvalue results. These results are similar to the a priori tests (not

shown).

These results of the conditional SGS stress and its production and their geometric alignment

are generally similar to the a priori test results, indicating that the LES correctly reproduced the

conditional resolvable-scale strain rate. The deviation of
〈

P d
13|u

r
〉

in LES from the a priori test

results indicates that the LES does not correctly reproduce the resolvable-scale stress and strain

rate correlation. The consistency between the a posteriori test results and the a priori test results

suggest that analyzing the conditional SGS stress and its production rate are a highly capable

approach for identifying specific model deficiencies and for evaluating SGS model performance in

simulations.

5.3.2 Split model

Table 5.2 shows that the LES results for the mean SGS stresses using the split model are the

same as those of the Smagorinsky model except the mean SGS shear stress component 〈τ13〉. The

LES results for the conditional means for the two models are also similar except
〈

τd13|u
r
〉

(Figure

5.21(a)). The dependence of
〈

τd13|u
r
〉

for the split model on ur1 is under-predicted. The magnitude

is also under-predicted and is smaller than that of the Smagorinsky model. The deviation of the a
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posteriori test (LES) results from a priori tests and measurements indicates that the dependencies

of flow statistics on the resolvable-scale velocity are not correctly reproduced.

While the LES mean SGS stress using the split model are generally similar to that of the

Smagorinsky model except the mean shear SGS stress component 〈τ13〉, the LES mean SGS stress

production rate is different from that of the Smagorinsky model. The magnitudes of the conditional

SGS stress production are different from that of the Smagorinsky model. This finding provides

further support the importance of the SGS stress production rate ([38]).
〈

P split
11 |ur

〉

(Figure 5.21(b))

has a similar trend to that of the Smagorinsky model (Figure 5.17(a)), but with smaller magnitude

due to the smaller magnitude of the predicted τ d13. The magnitude of
〈

P split
33 |ur

〉

(Figure 5.21(d)) is

slightly smaller than that of the Smagorinsky model. The magnitude of
〈

P split
13 |ur

〉

(Figure 5.21(e))

on ur1 is also slightly smaller than that of the Smagorinsky model.

The Lumley triangle representation of the conditional SGS stress are shown in Figure

5.18(b). Similar to the a priori test results, the data points are close to the origin, indicating

under-prediction of the level of the anisotropy. The trends and magnitude of the geometric align-

ment (not shown) between the conditional SGS stress and its production rate are generally similar to

that of the Smagorinsky model except the alignment angle θ and ξ are about five degrees larger. The

generally good tensorial alignment indicates that the simulation reproduces the quasi-equilibrium

dynamics between the SGS stress production and destruction rates in the surface layer for ur3 > 0.

However, the model over-predicts the alignment for ur3 < 0 when the surface layer is probably not

in quasi-equilibrium.

The trend of the eigenvalue of and eigenvalue ratios (not shown) are also similar to those

of the Smagorinsky model, but with slightly smaller values. The trend of the tensorial contraction

(Figure 5.20) is also similar to that of the Smagorinsky model, but with sightly larger magnitudes.

These results of the conditional SGS stress and its production as well as their geomet-

ric alignment are similar to the a priori test results, not qualitatively different from that of the

Smagorinsky model. Therefore, in spite of the improved mean LES profiles using the split model,

the conditionals means are still similar to that of the LES using the Smagorinsky model. Con-

sequently, the improvement resolvable-scale velocity JPDF over the Smagorinsky model may be

limited.
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5.3.3 Kosović model

The trends for
〈

τdij |u
r
〉

(Figure 5.22) and
〈

P d
ij |u

r
〉

(Figure 5.23) are generally well predicted

in LES using the Kosović model. The magnitudes of
〈

τdij |u
r
〉

is generally under-predicted. The

magnitudes of
〈

P d
ij |u

r
〉

is generally better predicted.

The trends of
〈

τd11|u
r
〉

are generally well predicted, but the magnitudes are under-predicted,

similar to the a priori test results ([90]). The trends and magnitudes of
〈

τd22|u
r
〉

are well predicted.

The magnitude of
〈

τd33|u
r
〉

is slightly under-predicted. The trends of
〈

τd33|u
r
〉

are generally well

predicted, but the dependence on ur3 is over-predicted, which is due to the over-prediction of the de-

pendence on ur3 of the conditional vertical gradient of the vertical resolvable-scale velocity 〈∂u
r
3/∂x3〉.

The magnitude of
〈

τd13|u
r
〉

is under-predicted by a factor of 2. The dependence of
〈

τd13|u
r
〉

on ur1

is generally well predicted, but the dependence on ur3 is under-predicted. Both the trends and the

magnitudes of
〈

τd23|u
r
〉

are under-predicted.

The magnitudes of
〈

P d
11|u

r
〉

are under-predicted by a factor of 2, which is due to the under-

prediction of the magnitudes of the conditional SGS shear stress 〈τ13|u
r〉. The trend of

〈

P d
11|u

r
〉

is

generally well predicted. The magnitude
〈

P d
33|u

r
〉

is generally well predicted. The dependence on ur3

is over-predicted because the dependence of
〈

τd33|u
r
〉

is over-predicted on ur3, which is the dominant

term of
〈

P d
33|u

r
〉

.

The magnitudes and trends of
〈

P d
13|u

r
〉

are well predicted, but the dependence on ur3 is

over-predicted, which is due to the over-prediction the dependence on ur3 of τ33. These results of the

conditional SGS stress and its production are similar to the a priori test results.

The Lumley triangle representation of the conditional SGS stress, shown in Figure 5.18(c),

is different from the measurements but similar the a priori test results. There are more data points

close to η = −ξ (axisymmetric with two large eigenvalue) than to η = ξ (axisymmetric with one large

eigenvalue). This result comes from the over-prediction of the magnitude of
〈

τd22|u
r
〉

. Again, the

over-prediction of the magnitude of
〈

τd22|u
r
〉

is expected to have little consequence on the resolvable-

scale statistics in horizontally homogenous boundary layer, but may results in large inaccuracies in

other flows where τ22 is important.
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Figure 5.21 LES results (a posteriori test) of the conditional SGS stress and its pro-
duction rate using the split model.
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Figure 5.22 LES results (a posteriori test) of the conditional SGS stress using the
Kosović model.
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Figure 5.23 LES results (a posteriori test) of the conditional SGS stress production
rate using the Kosović model.
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Figure 5.24 LES results (a posteriori test) of the geometric alignment angles and eigen-
values of the conditional SGS stress and its production rate: (a-b) the geometric align-
ment angles; (c-d) the eigenvalues of the conditional SGS stress; (e-f) the eigenvalue
ratios of the conditional SGS stress to its production rate using the Kosović model.
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The trends of the geometric alignment between
〈

τdij |u
r
〉

and
〈

P a
ij |u

r
〉

are shown in Figure

5.24(a) and (b). The alignment is generally well predicted for ur1 and ur3 > 0. The dependence for

ur3 < 0 is not well predicted, but shows some improvements over the Smagorinsky model and the

split model.

The dependence of the eigenvalue of
〈

τdij |u
r
〉

(Figure 5.24(c) and (d)) are generally well

predicted. But its magnitudes are under-predicted. The trends and the magnitudes of the eigenvalue

ratios (Figure 5.24(e) and (f)) are not predicted correctly. The magnitudes and the trends of the

contraction between
〈

τdij |u
r
1

〉

and
〈

P a
ij |u

r
1

〉

are shown in Figure 5.20, which are very close to the

measurement results and show improvement over the Smagorinsky model and the split model. These

results of the geometric alignment between the conditional SGS stress and its production are similar

to the a priori test results.

5.4 Summary

In this study a new a posteriori test is developed and employed to study SGS model per-

formance. The approach compares the conditional means of the LES-generated SGS stress and

the conditional stress production rate conditional on the resolvable-scale velocity, which must be

reproduced by the SGS model for large eddy simulation (LES) to correctly predict the one-point

resolvable-scale velocity joint probability density function, with measurements.

The measurement results for the Lumley triangle representation show that the Reynolds

stress and the mean resolvable-scale stress are close to axisymmetric with two large eigenvalue,

whereas the mean SGS stress is close to axisymmetric with one large eigenvalue in surface layer.

This is because the influence of large-scale eddies. The filter near the boundary removes the effect

of large-scale eddies, resulting in a structure close to axisymmetric with one large eigenvalue. The

Lumley triangle representation of the mean SGS stress production rate shows that it has a similar

structure to the mean SGS stress consistent to the good alignment and tensorial contraction between

the conditional SGS stress and its production rate ([90]).

The LES results of the Lumley triangle representation for the Reynolds stress and the mean

resolvable-scale stress are well predicted using the split model and the Kosović model. The predicted

level of anisotropy of the Reynolds stress using the Smagorinsky model is slightly lower than the

measurements, but the resolvable-scale mean stress is slightly higher than the measurements. The

Lumley triangle representation for the LES mean SGS stress of all models are close to axisymmetric
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with two large eigenvalue, different from the measured mean SGS stress eigenvalue structure, but

similar to the a priori test results.

The LES results for the magnitudes of the both conditional SGS stress and its production

rate are generally under-predicted using the Smagorinsky model. The LES can reproduce the trends

of some shear stress components but not the normal components, and can reproduce the trends

of some normal components of the conditional SGS stress production rate, but not the shear com-

ponents. These a posteriori test results are generally similar to that of the a priori test results

([90]).

Anisotropy of the conditional SGS stress as shown in the Lumley triangle using the Smagorin-

sky model is under-predicted in LES, similar to the a priori test results. The geometric alignment,

eigenvalues, eigenvalue ratios, and contraction of the conditional SGS stress and its production rate

are generally reproduced in LES using the Smagorinsky model for ur3 > 0, but not for ur3 < 0, which

are similar to the a priori tests.

The LES results of the conditional SGS stress and its production as well as their geometric

alignment using the split model are similar to the a priori test results, and are not qualitatively

different from that of the Smagorinsky model. Therefore, in spite of the improved mean LES

profiles using the split model, the conditionals means are still similar to that of the LES using the

Smagorinsky model. Consequently, the improvement of the resolvable-scale velocity JPDF over the

Smagorinsky model may be limited.

The LES results of the conditional SGS stress and its production, their geometric alignment,

eigenvalues, and contraction using the Kosović model are similar to the a priori test results and show

improvement over the Smagorinsky model.

The a posteriori test results discussed are generally consistent with the a priori test results.

The model strength and deficiencies observed here are also similar to those identified in previous

statistical a priori tests analyzing the conditional statistics. The consistency is partly because both

types of tests analyze the SGS terms in the velocity JPDF equation. By contrast the traditional

a priori test have not direct relationship to a posteriori tests because the former compare the

instantaneous modeled and measured SGS stress and the latter compare the LES and measured

statistics profiles. More importantly, the consistency provides strong support to the approach of

analyzing the conditional SGS stress and its production rate in the JPDF equation to test SGS

models and to understand SGS physics, which is capable of identifying specific model deficiencies

and of evaluating SGS model performance in simulations.



CHAPTER 6

Conclusions

In this work, the effects of the subgrid-scale (SGS) turbulence on the resolvable-scale statis-

tics as well as the effects of SGS models on large-eddy simulation (LES) are studied. It is shown that

the SGS turbulence evolves the resolvable-scale joint probability density function (JPDF) through

the conditional means of the SGS stress, the SGS scalar flux, and their production rate, which must

be reproduced by the SGS model for LES to predict correctly the one-point resolvable-scale statistics,

a primary goal of LES. This necessary condition is used as the basis for studying SGS physics and

for testing SGS models. Theoretical predictions, measurements data obtained in a turbulent jet and

in a convective atmospheric surface layer, and large-eddy simulation data of convective atmospheric

boundary layers are combined to investigate the effects of filter size, the dependence of the SGS

turbulence on the flow dynamics, and SGS models performance using new a priori and a posteriori

tests developed in this research.

For inertial-range filter scales, the issue of the influences of the SGS stress and the SGS scalar

flux on the resolvable-scale velocity-scalar JPDF are examined. The filter-scale dependencies of the

mean production rates are predicted using Lumley’s assumption. The results using the data obtained

in a slightly heated turbulent jet show that the conditional SGS flux and the conditional SGS flux

production rates are found to strongly depend on the resolvable-scale velocity and scalar and have

similar functional forms for eddies that are likely in quasi-equilibrium. This is also observed in the

atmospheric surface layer, suggesting that the similarity exists whenever SGS eddies are in quasi-

equilibrium regardless of the larger-scale flow geometry. It is also found that the dependencies on the

resolvable-scale velocity have qualitatively different forms for positive and negative resolvable-scale

scalar fluctuations, indicating strong flow history effects.

The measured mean SGS scalar flux, the mean SGS scalar flux production rate, and the mean

SGS shear stress production rate are generally consistent with the predictions based on Lumley’s

assumption, which is consistent with Kolmogorov’s hypothesis, suggesting that the SGS flux, its

production rate, and the SGS shear stress production have diminishing effects on the lower-order

resolvable-scale velocity-scalar statistics. However, it is found that the conditional SGS scalar flux
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and SGS scalar flux production rate fall-off much slower with the filter scale than the mean SGS

scalar flux and SGS scalar flux production rate, a behavior similar to the conditional SGS shear

stress production rate Chen et al. (2003) [38]. The slower fall-offs of these conditional statistics

suggest that they have non-diminishing influences on the JPDF and the high-order statistics of the

resolvable-scale velocity and scalar, such as turbulent transport and scalar PDF.

The Smagorinsky model predictions of the filter-scale dependencies of the mean SGS fluxes

and the mean SGS flux production rate are consistent with predictions and experimental results;

therefore, the models are likely to have diminishing effects on lower-order LES statistics (e.g. mean

and r.m.s.). The model predictions of the conditional SGS flux decrease faster with the filter scale

than measurements whereas the conditional SGS flux production does not decrease. Therefore,

models are likely to have effects on the high-order LES statistics even for inertial-range filter scales

but in ways different from that of the SGS turbulence.

For energy-containing filter scales, field measurements data take in the convective atmo-

spheric boundary layer are used to analyse the effects of the subgrid-scale stress and its production

rate on the resolvable-scale velocity JPDF. Analyses of the conditional SGS stress and the conditional

SGS stress production using the field data show that they are closely related to the surface-layer

dynamics. Specifically, the updrafts generated by buoyancy, the downdrafts associated with the

large-scale convective eddies, the mean shear, and the length scale inhomogeneity play important

roles in the behaviors of the conditional SGS stress and its production rate.

The results show that when the resolvable-scale vertical velocity (ur3) is positive (updrafts),

the subgrid-scale eddies move upward and are on average stretched in the vertical direction owing to

shear and buoyancy acceleration. Under such conditions, the spectral transfer and inter-component

exchange among the normal SGS stress components result in forward energy transfer and anisotropy

in the SGS stress. For negative ur3, the subgrid-scale eddies associated with the returning flow of

large convective eddies move downward and are on average compressed in the vertical direction

owing to the presence of the ground. The spectral transfer and inter-component exchange result in

conditional backscatter and nearly isotropic SGS stress.

Representation of the conditional SGS stress in the Lumley triangle also shows similar trends

for anisotropy. The results also show that the conditional SGS stress and its production rate have

similar trends and are generally well aligned.

Statistic a priori tests of several current SGS models are performed. None of those models

are able to predict correctly the trends of both the conditional SGS stress and its production rate.

The Smagorinsky and Kosović’s nonlinear model under-predict the anisotropy and the variations of
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the anisotropy, whereas the other nonlinear model ([82]) and the mixed model over-predict both.

However, Kosović’s nonlinear model shows a better overall performance than the Smagorinsky, the

nonlinear model, and the mixed model.

Using the measured conditional SGS stress and its production rate and their model predic-

tions, the deficiencies in current LES results, such as the over-predictions of the mean velocity profile

and the streamwise velocity variance, and the under-prediction of the vertical velocity skewness are

linked to the inability of the SGS models to predict the conditional SGS stress and its production

rate correctly. Specifically, the former is related to the under-prediction of the anisotropy of the

conditional SGS stress and the latter is due to the under-prediction of the dependence of 〈P33|u
r〉

on ur3 and the asymmetry in the dependence.

To further study the effects of the SGS turbulence on the resolvable-scale velocity-scalar

statistics for energy-containing filter scales, field measurements data taken in a convective atmo-

spheric boundary layer are used to analyze the SGS statistics that evolve the resolvable-scale velocity-

scalar JPDF. The results show that the conditional SGS scalar flux, its production rate, and the

SGS scalar variance production rate conditional on the resolvable-scale velocity and scalar, depend

strongly on the resolvable-scale velocity and scalar and the dependence is closely related to the sur-

face layer dynamics. Therefore, SGS model predictions of these SGS statistics can potentially have

strong effects on LES statistics.

Analyses show that the dependence is generally strong for positive resolvable-scale tem-

perature fluctuations and is weak for negative fluctuations. For positive temperature fluctuations,

eddies associated with updrafts generally come from the near ground region, which contain large

magnitudes of vertical SGS flux and SGS stress, and experience strong shear and vertical tempera-

ture gradient, resulting in large SGS flux production rates. For negative temperature fluctuations,

eddies associated with downdrafts generally come from the mixed layer region, which carry relatively

small fluxes, resulting small magnitudes and weak dependence of the conditional SGS scalar flux

production rates on the resolvable-scale velocity.

Examination of the SGS flux production rates show that the vertical SGS scalar flux influ-

ences the horizontal SGS scalar production rate, however the horizontal SGS scalar flux does not

influence directly the vertical SGS scalar flux production rate but nonetheless affects the resolvable-

scale scalar PDF. Therefore, correct modeling of the conditional vertical scalar flux components

is crucial. Furthermore, The conditional SGS scalar flux and the conditional SGS scalar flux pro-

duction rate have similar trends and are generally well aligned. The similarities and the dynamic
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connections between the conditional scalar flux and its production rate indicate the potential of

using the conditional scalar flux production rate to model the scalar flux in convective ABLs.

Statistical a priori tests using these conditional statistics show that the Smagorinsky model

can predict well the conditional vertical scalar flux and the conditional horizontal scalar flux produc-

tion rate. The nonlinear model can predict well the conditional horizontal scalar flux. Predictions

of the SGS flux using the nonlinear model are found to be closely related to the predictions of the

Smagorinsky model and the quasi-equilibrium between the production and pressure destruction.

Analyses of the nonlinear model using the Smagorinsky model and the surface layer dynamics pro-

vide a physical explanation of the performance of the nonlinear model. A similar analyse of the

nonlinear SGS stress model are also performed.

To understand the model performance in LES, a new a posteriori test is developed and

employed to study SGS model performance. The approach compares the conditional means of the

LES-generated SGS stress and the conditional stress production rate with measurements.

The measurement results for the Lumley triangle representation show that the Reynolds

stress and the mean resolvable-scale stress are close to axisymmetric with two large eigenvalue,

whereas the mean SGS stress is close to axisymmetric with one large eigenvalue in surface layer. The

Lumley triangle representation of the mean SGS stress production rate shows that it has a similar

structure to the mean SGS stress, consistent with the good alignment and tensorial contraction

between the conditional SGS stress and its production rate ([90]).

The LES results of the Lumley triangle representation for the Reynolds stress and the mean

resolvable-scale stress are well predicted using the split model and the Kosović model but are less

well predicted using the Smagorinsky model. The Lumley triangle representation for the LES mean

SGS stress of all models are inconsistent with the measured mean SGS stress eigenvalue structure,

but similar to the a priori test results.

The magnitudes of the both conditional SGS stress and its production rate are generally

under-predicted in LES using the Smagorinsky model. The LES cannot reproduce the trends of the

conditional SGS stress and its production rate well at same time. These a posteriori test results are

generally similar to that of the a priori test results ([90]). The Lumley triangle representation and

geometric alignments using the Smagorinsky model are also similar to the a priori test results. The

LES results of the conditional SGS stress and its production rate using the split model are similar

to the a priori test results, and are not qualitatively different from that of the Smagorinsky model.

Therefore, in spite of the improved mean LES profiles using the split model, the conditionals means

are still similar to that of the LES using the Smagorinsky model. The LES results of the conditional
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SGS stress and its production rate using the Kosović model are similar to the a priori test results

and show improvement over the Smagorinsky model.

The results obtained in this research have strong implications on SGS modeling. Analy-

ses show that for the inertial-range filter scales SGS predictions of the mean statistics support the

premise of LES at the level of lower-order statistics. However, in applications where higher-order

statistics (e.g. turbulent transport and scalar PDF) are important, SGS predictions of these condi-

tional statistics should be an essential part of model tests. For the energy-containing filter scales the

current SGS models have varying level of performance in predicting different SGS components. As

a results, the poor prediction of one SGS component often affects the prediction of the production

rate of another SGS component, thereby resulting in errors in the LES statistics. Therefore, efforts

to improve SGS models need to ensure that all the relevant SGS fluxes related to the LES statistics

of interests or of importance to the intended applications are correct predicted. Given the strong

dependence of the conditional statistics on the flow dynamics, it may be necessary to incorporate

some aspects of the dynamics to correctly predict these conditional statistics.

The a posteriori test results are generally consistent with the a priori test results. The model

strength and deficiencies observed here are also similar to those identified in previous statistical a

priori tests analyzing the conditional statistics. The consistency is partly because both types of

tests analyze the SGS terms in the velocity JPDF equation. By contrast the traditional a priori

test have not direct relationship to a posteriori tests. The consistency provides strong support to

the approach of analyzing the conditional SGS stress and its production rate in the JPDF equation

to test SGS models and to understand SGS physics, which is capable of identifying specific model

deficiencies and of evaluating SGS model performance in simulations.

To further understand the SGS scalar flux model performance in LES, this new a posteriori

test can be extended to study the resolvable-scale velocity-scalar JPDF equation. The conditional

means of the SGS fluxes and their production rate conditioning on the resolvable-scale velocity and

scalar need to be examined using LES data. Analytical results used to investigate the relationship

between the SGS terms and the JPDF equation in Chapter 3 is important for identifying the de-

ficiencies of SGS models. This provides impetus for further analytical understanding of the JPDF

equations, which will greatly benefit the evaluation and development of improved SGS models.
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