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ABSTRACT

Equitable efficiency in multiple criteria optimization was introduced math-

ematically in the middle of nineteen-nineties. The concept tends to strengthen

the notion of Pareto efficiency by imposing additional conditions on the preference

structure defining the Pareto preference. It is especially designed to solve multiple

criteria problems having commensurate criteria where different criteria values can

be compared directly.

In this dissertation we study some theoretical and practical aspects of equi-

tably efficient solutions. The literature on equitable efficiency is not very extensive

and provides very limited number of ways of generating such solutions. After in-

troducing some relevant notations, we develop some scalarization based methods of

generating equitably efficient solutions. The scalarizations developed do not assume

any special structure of the problem. We prove an existence result for linear multiple

criteria problems.

Next, we show how equitably efficient solutions arise in the context of a

particular type of linear complementarity problem and matrix games. The set of

equitably efficient solutions, in general, is a subset of efficient solutions. The multiple

criteria alternative of the linear complementarity problem dealt in our dissertation

has identical efficient and equitably efficient solution sets.

Finally, we demonstrate the relevance of equitable efficiency by applying it

to the problem of regression analysis and asset allocation.
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CHAPTER 1

INTRODUCTION

1.1 Multiple Criteria Optimization and Equitable Efficiency

Decision making is an integral and indispensable part of human life. Every

day one has to make decisions of some type or the other. The decision process is

relatively easier when there is a single criterion or objective in mind. The process

gets complicated when one has to make decisions in the presence of more than one

criteria to judge the decisions. In such circumstances, a single decision might not

exist which optimizes all the criteria simultaneously.

Multi-criteria optimization is a mathematical modeling approach to decision

making. It deals with optimization problems governing the optimization of more

than one criterion with or without constraints on the decision variables. Contrary

to intuition, results of single-criteria optimization do not naturally extend to the

realm of multi-criteria optimization.

Roots of multi-criteria optimization can be associated with the seminal work

of Pareto (1909), who theorized that society was in the ‘best state’ when no one’s

state of life could be improved without deteriorating someone else’s state of life.

In traditional multi-criteria optimization, the criteria are considered incom-

parable. Different criteria might represent different physical outcomes and/or en-

tities having different units of measurement. Available methods then tend to find

solutions to the problem without delving into the practical interpretations of the so-

lutions obtained. In practice, there are cases where the criteria to be optimized can

be compared directly in the sense that they represent the same entity and all of them

have the same units of measurement. In such a case, interest lies not only in finding

optimal solutions to all the criteria but do this in an equitable way, in a way where

all the criteria are treated ‘impartially’, so as to improve all the criteria as much



as possible. Impartial treatment of criteria brings the issue of ‘equity’ among solu-

tions to the fore. In equitable multi-criteria optimization(Kostreva and Ogryczak,

1997), the focus is on the distribution among the solutions rather to the solutions

themselves.

A problem most frequently encountered in classical multi-criteria optimiza-

tion is that the set of solutions considered by the optimization process is an infinite

set, making the selection of a unique preferred decision quite difficult. Consider-

ing models with equitable efficiency relieves some of the burden from the decision

maker by shrinking the solution set. It turns out that the set of equitably efficient

solutions is contained within the set of efficient solution for the same problem. It

is noteworthy that the concept of equitable efficiency does not contradict or de-

value the notion of Pareto efficiency; in fact, it strengthens the latter by imposing

additional constraints on the principles governing efficiency.

As noted earlier, multi-criteria optimization is concerned with the optimiza-

tion of more than one objective function simultaneously. Any optimization model

becomes operational only when it clearly defines what optimization means. The

concept of optimality is easily comprehensible for single-criteria optimization prob-

lems. In such problems, two solutions can be easily compared on the basis of their

numerical or scalar values. In the multi-criteria case, a unique solution optimizing

all the criteria seldom exists and it becomes impossible to improve upon the value

of one criterion without worsening the value of at least one other criteria. As for

single-criteria optimization problems, solutions are judged according to their criteria

values and this defines a preference structure in the criteria space. Solution concepts

are developed from an axiomatic point of view and defined in terms of the corre-

sponding preference model Vincke (1992). The preference model corresponding to

standard Pareto efficiency assumes a preference relation defined on the criteria space

to satisfy the properties of reflexivity, strict monotonicity and transitivity. Addi-

tionally, if it also satisfies the principles of symmetry or anonymity and inequality

reduction or the principle of transfers, it becomes an equitable preference relation.

Solutions obtained on the assumptions of an equitable preference relation are said

2



to be equitably efficient. It is clear that an equitable preference relation is a also

Pareto preference and hence equitably efficient solutions are Pareto efficient too.

The notion of equitable efficiency in multi-criteria optimization came up in

the late 90’s,(Kostreva and Ogryczak, 1997). The concept is especially tailored and

designed for problems having uniform criteria, for example the case where different

criteria might represent allocation of resources or location of facilities at specific

point. In such cases, it is desirable to come up with an equitable distribution of

resources to serve the public equitably.

1.2 Research Motivation and Goal

In multi-criteria optimization, the primary goal is to obtain a subset of

the efficient designs. Generally all the existing methods intend to find efficient

solutions in two stages. In the first stage, all the criteria are aggregated into a single

criterion by some aggregation function and in the second stage, techniques of solving

single-criteria problem are applied to the aggregated problem. In aggregating these

different and conflicting criteria, one does not pay much attention to their nature.

The criteria are aggregated even if they are incomparable. This process usually

involves scaling, rendering the criteria unit less.

Motivation for the current research stems from the need to treat a particular

class of multi-criteria optimization problems, namely, one in which all the criteria

to be optimized are uniform, differently than what has been done in the literature.

The objectives of this research are to study the theory and methodology of equitable

efficiency in multi-criteria optimization, devise new methods to generate equitably

efficient solutions, stress the importance of equitably efficient solutions by identifying

solutions of certain problems as equitably efficient solutions of related problems and

demonstrate the relevance of equitable efficiency by looking at practical applications

in some areas. Chapter 2, which is a literature survey on equitable efficiency in

multi-criteria optimization, gives an overview of related research done in this area

by various authors. The remaining text is organized as follows.

3



Chapter 3 presents the formulation of multi-criteria optimization problems in

general. Notations and terminology required in subsequent chapters are introduced.

Equitable efficiency is defined, both from an axiomatic as well as a vector point

of view. The relation between equitable efficiency of a multi-criteria optimization

problem and Pareto efficiency of an associated problem is presented.

Chapter 4 presents some of the existing results related to the generation

of equitably efficient solutions. Scalarization techniques, often used to compute

efficient solutions for a multi-criteria optimization problem, with additional restric-

tions on the parameters, can be applied to generate equitably efficient solutions.

We develop some equitable-scalarization-based methods of finding equitably efficient

solutions. Methods for finding equitably efficient solutions of a multi-criteria opti-

mization problem depend on ordering of objective functions in a monotonic order.

Ordering of functions makes their implementation hard. We develop some equitable-

scalarization-based methods to generate equitably efficient solutions. These methods

act on the objective functions directly without taking any ordering into account.

Furthermore, we present the two-phase minimax method of equitable efficiency.

All the methods developed in this chapter make no assumption about the specific

structure of the optimization problem. We apply the Benson’s criteria to prove

nonexistence of equitably efficient solutions for a particular class of problems.

Chapter 5 stresses the relevance of equitable efficiency by noticing how eq-

uitably efficient solutions naturally arise as solutions of certain problems. We prove

that the solution of a matrix game can be characterized as an equitably efficient

solution of a related multi-criteria problem.

Linear complementarity problems have been a subject of active research for

more than 40 years. In(Kostreva and Wiecek, 1993; Kostreva and Yang, 2004),

the authors propose a unifying approach toward the seemingly different topics of

multi-criteria optimization and a linear complementary problems.We prove that

if all the components of a nondominated vector are equal, then the solution is

equitably nondominated and use the result to relate the solutions of a given linear

complementarity problem to the equitably efficient solutions of a particular type of

4



multi-criteria optimization problem. Existence/non-existence of solutions of linear

complementarity problems are proved in terms of equitably efficient solutions of a

related multi-criteria optimization problem.

Chapters 6 and 7 present the applicability of equitable efficiency to problems

where it is desirable to treat all the criteria uniformly or impartially. For such prob-

lems, looking for solutions with smaller differences between the component criteria

than those obtained from Pareto efficiency is desirable. In the literature on equitable

efficiency, the notion is applied to problems of location and portfolio analysis. In

chapter 6, we present the regression problem of parameter estimation as a multi-

criteria optimization problem where the residuals are considered as criteria functions

to be minimized. Classical methods of regression analysis are suitable under certain

assumptions of the statistical distribution of the given data. Equitable efficiency is

applied without any assumptions on the data set. Equitably efficient solutions for

the multi-criteria regression problem are obtained. We also show how the solution

of the ordinary least squares problem can be obtained as a limiting solution of our

multi-criteria problem.

In multi-criteria portfolio analysis, most of the available models, find effi-

cient portfolios for a bi-criteria problem, treating the expected return and variance

of the stocks as the two criteria. It is noteworthy that these two criteria are in-

commensurate in terms of the units involved in expressing the two criteria values.

Treating the two criteria separately seems more plausible in such a scenario.

In Chapter 7, we build a multi-class asset allocation problem where all stocks

within a particular class are assumed to have some common features. Grouping

the expected return from different classes gives rise to a uniform multi-criteria asset

allocation problem where each class is treated uniformly. We maximize the expected

return of each asset class subject to bounds on the covariance of the assets. A

two-phase method of finding equitably efficient allocations is described. Solutions

obtained are analyzed with respect to solutions obtained without considering equity

of efficient solutions.

5



Chapter 8 concludes the dissertation with some suggestions for further re-

search.
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CHAPTER 2

LITERATURE REVIEW

Multi-criteria optimization problems, in general, are concerned with finding

Pareto efficient or non-dominated solutions. Such solutions have the property that

one can not improve the value of a criterion without deteriorating the value of at

least one other criterion. Such problems have been studied extensively since the

publication of the seminal work of Pareto (1909) and detailed references on some of

the methods related to various multi-criteria optimization processes can be found

in Evans (1984) and more recently in Miettinen (1999).

Multi-criteria optimization forms a part of the more general theory of multi-

criteria decision making discussed by Zeleny (1982), Chankong and Haimes (1983)

and Yu (1985). The last step toward a decision making process is to provide the

decision maker with some efficient solutions of the related multi-criteria problem.

There may be instances of certain problems where the decision maker is not content

with mere efficiency of solutions but requires some kind of parity among the various

criteria values. It is in such a context that the notion of equitably efficient solution

gains importance.

Equity has been a topic of intense interest for sociologists and economists.

Some prevalent measures of inequality can be found in Atknison (1970) and Allison

(1978). Fandel and Gal (2001) and Luss (1999) emphasize the issue of equity within

different areas of applications.

Increasing interest in equity issues resulted in new methodologies in the areas

of operations research. Luss (1999) reviews a variety of resource allocation problems

where it is desirable to allocate limited resources equitably among several activities.

He discusses the lexicographic minimax approach to find equitable solutions for such

problems.



In a recent article, Lemaitre et al. (2003) discuss the exploitation of earth

observing satellites by different groups of users from the multi-criteria optimiza-

tion perspective. The authors attempt to find equitable and efficient allocation of

resources resulting from the co-exploitation of a satellite by several agents. Four dif-

ferent approaches for selecting the best allocation are proposed. The first approach,

allocating satellite revolutions to each agent in turn, is perfectly equitable but lacks

efficiency. The second approach leans towards equity of allocation where the indi-

vidual utilities of the agents are combined linearly into a collective utility function,

but the weighting coefficients are chosen in a way so as to favor equity. In their

third approach, the authors adopt a bi-criteria approach, allowing comparison of

allocations over two criteria, equity and efficiency, with equity, in turn, being based

on inequality indices. The fourth approach considers a unique collective utility of

the agents to characterize equitable and efficient allocations. It is further argued

that each of the four approaches has its own way of tackling the equity/efficiency

dilemma.

It well known that any multi-criteria optimization problem starts usually

with an assumption that the criteria are incomparable, i.e., different criteria may

have different units and physical interpretations. Many applications, however, arise

from situations where the criteria are comparable; every criterion has the same

physical interpretation and their values can be compared directly. In such situations,

one is interested in solutions that are not only efficient but equitable as far as the

distribution of criteria values is concerned.

The literature available on equitable solutions related to operations research

is rather scarce and is mostly related to location and portfolio analysis problems.

The minimax approach is one of the common approaches to solving a multi-

criteria problem. Ogryczak (1997) argues that such an approach, applied to locating

public facilities, does not comply with the principles of efficiency and equity model-

ing. In this article he focuses on the lexicographic minimax method, a refinement of

the minimax method to solve such problems. He shows that this method complies

8



with the Pareto efficiency principle and the principle of transfers, ideas essential for

equity; while the minimax approach may violate both these principles.

Kostreva and Ogryczak (1999) model location problems in a geographic in-

formation systems environment where the geographical space itself acts as the de-

cision as well as the criteria space. A multi-criteria problem is formed where an

individual objective function is associated with each spatial unit. Most classical

location studies focus on some aspects of two major approaches; the center or the

median approach. These two concepts minimize the maximum distance and the

average distance respectively. Under certain conditions these two methods generate

efficient solutions, but the solution concepts do not comply with the principle of

transfers, and hence, the solutions are not equitably efficient. Lexicographic median

and lexicographic center approaches are used to obtain equitably efficient solutions

of the multi-criteria location problem.

Kostreva and Ogryczak (1997) propose a new solution concept, called equi-

table efficiency, to solve linear optimization problems with multiple equitable crite-

ria. The criteria are equitable in the sense that they measure the same physical or

abstract entity. They have shown equitable efficiency to be a refinement of Pareto

efficiency by adding, to the reflexivity, strict monotonicity and transitivity of the

Pareto preference order, the requirements of impartiality and satisfaction of the prin-

ciple of transfers. Finding equitably efficient solutions of such problems is shown

to be equivalent to finding the Pareto efficient solutions of an associated problem

obtained by applying equitable aggregations to the original problem. Based on this

equivalence, several techniques are developed to approximate the equitably efficient

set. By means of an example, the authors explore the domination structure for

equitable efficiency in two-dimensions. It has been geometrically shown that the

domination structure for equitable efficiency is larger than that of Pareto efficiency.

This in turn implies that the set of equitably efficient solutions is smaller than the

set of efficient solutions, and, in fact, the equitably efficient set is contained within

the efficient set. The article stresses the fact that unlike Pareto domination, where

the domination structure is a convex cone, the domination structure for equitable

9



efficiency is neither a cone nor convex. It is proved that if a linear multi-criteria

optimization problem has an efficient solution, then it has an equitably efficient

solution too. The equitably efficient set is proved to be connected.

Kostreva et al. (2004) present the theory of equitable efficiency in greater

generality. They discuss two different approaches for obtaining the equitably efficient

set for a general, possibly nonlinear multi-criteria optimization problem. In the first

approach they transform the problem to a single criterion optimization problem

by aggregating the functions using equitable aggregations. Any mapping from the

criteria space to the set of reals is said to form an equitable aggregation if it is

strictly monotonic in each criterion value, is indifferent or symmetric with respect

to the criterion values and satisfies the principle of transfers. They show that any

optimal solution to the single-criteria aggregated problem is equitably efficient for

the original multi-criteria problem. The second approach is based on the concept of

Ordered Weighted Averaging of criteria; a concept developed by Yager (1988). In

this approach, the criteria are arranged in a non-increasing order, thereby justifying

the name ordered; a cumulative ordering map is then applied to this ordered set of

criteria vectors. The cumulative ordering map is a function from the criteria space

to the criteria space. The components of the vector obtained after applying this map

represent the sum of the largest criterion value, the sum of the largest two criteria

values and so forth. Finally, another multi-criteria problem is formed whose criteria

are the coordinates of the cumulatively ordered criteria values. It is shown that an

efficient solution for this problem is equitably efficient for the original problem. The

authors apply two methods, namely the weighting and the lexicographic minimax

methods to the transformed problem to find equitably efficient solutions for the

original problem. Applying weights to the cumulatively ordered criteria results in the

single criterion problem referred to as the ordered weighted averaging aggregation

(OWA) problem. Further, it is proved that for strictly decreasing and positive

weights, every optimal solution of the OWA problem is an equitably efficient of the

original multi-criteria optimization problem. A limiting case of the OWA is one

where the difference among the weights tend to infinity. In this case, the OWA

10



problem reduces to the lexicographic minimax problem, where one must minimize

the largest criteria, the second largest criteria, and so on, of the ordered criteria

vector. It is shown that any efficient solution of the lexicographic minimax problem

is equitably efficient for the original multi-criteria problem. The authors apply their

results to a case studied by Fandel and Gal (2001) and show that the solutions

obtained are more equitable than those obtained by Fandel and Gal (2001).

Though seemingly simple and theoretically well developed, the Ordered

Weighted Averaging approach of generating equitably efficient solutions is not sim-

ple to implement in practice. The first step in this approach is to order criteria

vectors, a collection of functions, and there is no easy way to do so. The ordering

map sorts the criteria vector in a non-decreasing order. Such an ordering tends to

introduce nonlinearity into the problem. An otherwise linear multi-criteria problem,

due to the effect of the ordering, may become piecewise linear, thereby bringing the

issue of non-differentiability to the fore.

Baatar and Wiecek (2006) use matrix approach to develop a preference

structure related to equitable efficiency. The authors present a two-step method

of generating equitably efficient solutions.

Ogryczak (2000) considers location problems as a multi-criteria optimization

problem, where for each client, there is defined an individual criterion function,

which measures the effect of a location pattern with respect to client satisfaction.

The author suggests a bi-criteria mean-equity approach as a simplified alternative

to the OWA approach of obtaining equitably efficient solutions. In this model,

efficiency of solutions is related to the minimization of mean criteria, a linear function

of the criteria, and equity is associated with the minimization of some inequity

measure, which again, is a function of the criteria. The author discusses the mean

equity model by assuming a trade-off coefficient between the inequity measure and

the mean criteria value. The trade-off coefficient is used to convert the bi-criteria

mean-equity model to a single criterion problem. An optimal solution to the single

criterion model is called a λ-mean-equity solution, λ being the trade-off coefficient.

The author presents results relating the λ-mean-equity solution to the equitably
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efficient solution of the original multi-criteria optimization problem. It is shown that

any λ-mean-equity solution, with λ within a certain range, is equitably efficient for

the original problem.

Portfolio analysis is another area of application of equitable efficiency. Eq-

uitable efficiency is suitable for finding solutions to multi-criteria problems with

uniform criteria. Ogryczak (2000) develops a multi-period multi-criteria linear pro-

gramming model of the classical portfolio problem with a finite set of securities.

For each security, the expected return for each period is available from observed or

forecasted data. Each period is associated with a criterion measuring the return

from investments into different securities. The model is not governed by the usual

Pareto preference commonly used to compare criteria vectors and identify efficient

solutions. Uniformity of the criteria is utilized to develop a new preference, the

equitable preference, which strengthens the properties of Pareto preference with

the property of impartiality and the Pigou-Dalton principle of transfers. The solu-

tions obtained are equitably efficient. Based on the theory of choice under risk, the

multi-criteria model with equitable preference is shown to be equivalent to a multi-

criteria program with modified criteria functions and the usual Pareto preference.

Since classical scalarization techniques for multi-criteria programs may generate so-

lutions that are not equitably efficient, the author presents two different approaches

of obtaining equitably efficient solutions. The first approach, based on a bi-criteria

problem, is analyzed in the context of three different measures of risk. In each case

it is shown that the optimal solution of a parameterized single criterion problem is

an equitably efficient solution of the portfolio selection problem. The second ap-

proach is based on the method of ordered weighted averaging (OWA). In the OWA

approach, weights are applied to the criteria vectors after arranging them in a non-

decreasing order. Varying the weights allows the identification of equitably efficient

solutions of the portfolio selection problem. When differences between weights tend

to infinity, the OWA problem yields the lexicographic maximization problem, whose

optimal solution is equitably efficient for the portfolio selection problem. For strictly

decreasing and positive weights, OWA yields linear programs with a large number

12



of constraints. Duals of these linear programming problems can be efficiently solved

using the column generation technique. Optimal solutions to these problems are

shown to be equitably efficient for the portfolio selection problem.
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CHAPTER 3

NOTATIONS AND TERMINOLOGY

This chapter provides an introduction to the basic terminology used in multi-

criteria optimization. Results from literature, relevant to our work are presented.

3.1 Notations

The following notations are followed throughout the text.

Distinct vectors are denoted by superscripts while vector components are denoted

by subscripts. Rn denotes the n-dimensional Euclidean space.

Let y1, y2 be two vectors in Rm,

y1 ≦ y2 ⇐⇒ y1
i ≤ y2

i for all i = 1, 2, ....m.

y1 ≤ y2 ⇐⇒ y1 ≦ y2 and not y2 ≦ y1.

Equivalently,

y1 ≤ y2 ⇐⇒ y1
i ≤ y2

i for all i = 1, ..., m

and

y1
j < y2

j for some j ∈ {1, ..., m}.

y1 < y2 ⇐⇒ y1
i < y2

i for all i = 1, 2, ....m.

y1 = y2 ⇐⇒ y1
i = y2

i for all i = 1, 2, ....m.

The relations ≧, ≥ and > are defined in an analogous manner. Further, we denote

the nonnegative and positive orthant of Rm by

Rm
≧

= {y ∈ Rm : y ≧ 0}

Rm
> = {y ∈ Rm : y > 0}.

Let A, B ⊆ Rm. Set addition of A and B is given by the set C ∈ Rm, defined as



C = A + B = {x + y : x ∈ X and y ∈ Y }.

Similarly for y ∈ Rm and A ⊆ Rm, we define the set y + A ⊆ Rm as

y + A = {y + x : x ∈ A}.

3.2 Binary Relations and Orders

Binary relations are ways of describing relationships between two entities.

Mathematical theory of binary relations plays an important role in multi-criteria

optimization. Any decision process requires comparing different alternatives. Binary

relations define the relationship between pairs of alternatives of a given set.

Definition 3.1. Let S be a set. A binary relation on S is a subset R of S × S,

where S × S = {(s1, s2) | s1, s2 ∈ S}. If (s1, s2) ∈ R, we write s1R s2.

Binary relations possessing certain properties are defined accordingly.

Let R be a binary relation on a set S. R is called

1. Reflexive, if sRs for all s ∈ S,

2. Irreflexive, if not sRs for all s ∈ S,

3. Symmetric, if s1R s2 =⇒ s2R s1 for all s1, s2 ∈ S,

4. Asymmetric, if s1R s2 =⇒ not s2R s1 for all s1, s2 ∈ S,

5. Antisymmetric, if s1R s2 and s2R s1 =⇒ s1 = s2 for all s1, s2 ∈ S,

6. Transitive, if s1R s2 and s2R s3 =⇒ s1R s3 for all s1, s2, s3 ∈ S,

7. Connected, if s1R s2 or s2R s1 for all s1, s2 ∈ S, s1 6= s2,

8. Strongly connected(total), if s1R s2 or s2R s1 for all s1, s2 ∈ S.

In the definitions that follow, R is a binary relation on a set S.

Definition 3.2. R is an equivalence relation if it is reflexive, symmetric and tran-

sitive.

Definition 3.3. R is a preorder if it is reflexive and transitive.

Definition 3.4. R is a weak order if it is reflexive, symmetric and connected.

Definition 3.5. R is a partial order if it is reflexive, antisymmetric and transitive.

Definition 3.6. R is a strict partial order if it is asymmetric and transitive.
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3.3 Formulation of the Multi-criteria Optimization Problem

A multi-criteria problem, in general, is concerned with the optimization of

two or more criterion (objective) functions subject to certain constraints on the

decision variables. The term ‘optimization’subsumes both maximization and mini-

mization problems. We consider the problem of optimizing functions fi, where the

fi are m real-valued functions called criteria or objective functions and m ≥ 2.

Maximizing a function is equivalent to minimizing the negative of the same func-

tion. Hence, without loss of generality, we can assume a multi-criteria optimization

problem to be one in which all the criteria are to be minimized. A multi-criteria

optimization problem, then, can be written in the form

(MCOP): minimize {f1(x), . . . , fm(x)}

subject to x ∈ X ⊆ Rn,

where fi : Rn −→ R are m real-valued functions defined on the domain X ⊆ Rn. If

f = (f1, ...., fm),

the above problem can be represented in vector form as

(MCOP): minimize f(x)

subject to x ∈ X ⊆ Rn.

We refer to either of the above problems as MCOP.

Definition 3.7. A vector x ∈ X is called a feasible decision, X is called the set of

feasible decisions and Rn is referred as the decision space. Analogously, the set Y

given by

Y = f(X) = {y ∈ Rm | y = f(x) for some x ∈ X}
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denotes the set of attainable outcomes in the criteria space Rm.

3.4 Minimizing Multiple Criteria

In single objective minimization problems, we compare the objective values

at different feasible decisions to select the best decision. Decisions are ranked ac-

cording to the objective values at those decisions and the decision resulting in the

least smallest objective value is the most preferred decision.

Similarly, to make the multi-criteria optimization model operational, one needs to

assume certain solution concepts specifying what it means to minimize multiple cri-

teria functions. Attainable outcomes belong to the criteria space Rm; accordingly,

solution concepts are defined by the choice of a preference (order) relation on Rm.

The preference relation allows comparisons of different outcome vectors. More de-

tailed study on classification and properties of multi-criteria optimization can be

found in Ehrgott (1997, 1998).

The preference structure in the criteria space, associated with the underlying

preference relation, is characterized by the relation of weak preference denoted by

�,(Chankong and Haimes, 1983).

Closely related to � are two more binary relations, ≺, the relation of strict

preference and ∼=, the relation of indifference. For vectors y1 and y2 ∈ Rm,

y1 ≺ y2 ⇐⇒ y1 � y2 and not y2 � y1,

y1 ∼= y2 ⇐⇒ y1 � y2 and y2 � y1.

Pareto preference, lexicographic preference and the max-ordering preference are

some of the important preference relations used to describe minimization of multiple

criteria functions. Pareto preference is the one that is commonly used.

Definition 3.8. A binary relation � defined on Rm is called a rational(Pareto)

preference if it satisfies the properties of

1. reflexivity, y � y for all y ∈ Rm, meaning y is at least as preferred as y;
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2. transitivity, y1 � y2 and y2 � y3 =⇒ y1 � y3, for all y1, y2, y3 ∈ Rm, which,

in terms of preferences, means that if y1 is at least as preferred as y2 and y2

is at least as preferred as y3, then y1 is at least as preferred as y3; and

3. strict monotonicity, y − ǫei ≺ y for all y ∈ Rm, where ǫ > 0 and ei ∈ Rm is

a unit vector with 1 at the i-th positions and 0 elsewhere.

Note that the principle of strict monotonicity implies that reducing one of the com-

ponents by a positive quantity results in a preferred vector.

Definition 3.9. The outcome vector y1 ∈ Y rationally(Pareto) dominates y2 ∈ Y

if and only if y1 ≺ y2 for all rational preference relations �. Analogously, a feasible

decision x ∈ X is a Pareto optimal(efficient) solution of MCOP if and only if

y = f(x) is rationally nondominated.

To make it practical, rational preference is defined in terms of vector inequalities.

Definition 3.10. Let y1, y2 ∈ Y, y1 ≺ y2 ⇐⇒ y1 ≤ y2. Analogously, a feasible

decision x0 is a Pareto optimal(efficient) solution of MCOP if and only if ∄ x ∈

X, x0 6= x, such that f(x) ≤ f(x0).

The literature on multi-criteria optimization has several other equivalent

definitions of efficiency and nondominance(Ehrgott, 2005). We give the following

definition as it will be used as an alternative when needed.

Definition 3.11. Let x∗ ∈ X. x∗ is an efficient solution of MCOP if f(x) ≦ f(x∗)

for some x ∈ X implies f(x) = f(x∗).

3.5 Equitable Efficiency of Solutions

As already mentioned in the introduction, classical multi-criteria optimiza-

tion assumes the criteria to be incomparable. There are practical instances where

the criteria can be compared directly in the sense that each criterion measures the

same physical outcome. In such cases it is more desirable to treat all the criteria

uniformly than to assign more/less importance to selected ones. Uniform treatment

19



of criteria tends to look for preferences that are symmetrical in the outcome vec-

tor. Equitability of solutions leads to the quest for solutions that lie close to the

absolute-equity hyperplane in the criteria space, Rm. On this hyperplane, all the

criteria achieve the same value. These two features of the desired preference relation

ensure that one does not purposely prefer one criterion over the remaining ones. We

formalize this discussion mathematically.

Let � be a preference relation defined on Rm.

Definition 3.12. (Kostreva and Ogryczak, 1999). � is said to be impartial if

(yπ(1), . . . , yπ(m)) ∼= (y1, . . . , ym) for all y ∈ Y ⊂ Rm, where

π ∈ Π and Π = {π | π is a permutation of the index set I = {1, . . . , m}}.

Note that ∼=, the relation of indifference can be related to � in the following

manner,

(yπ(1), ....yπ(m)) ∼= (y1, ...., ym) if and only if

(yπ(1), ....yπ(m)) � (y1, ...., ym) and (y1, ...., ym) � (yπ(1), ....yπ(m)).

Definition 3.13. (Marshall and Olkin, 1979). � is said to satisfy the ’principle

of transfers,’ if yi > yj =⇒ y − ǫei + ǫej ≺ y, for 0 < ǫ < yi − yj , where, y =

(y1, ., yi, ., yj , .., ym) ∈ Rm and ei ∈ Rm is a unit vector whose i-th component is 1.

Definition 3.14. (Kostreva and Ogryczak, 1999). A binary relation � defined

on Rm is called an equitable preference relation if it is reflexive, transitive, strictly

monotonic, impartial and satisfies the principle of transfers.

Here after, we shall denote an equitable preference relation on the outcome

space Y by �e.

Efficient solutions for a MCOP are defined in terms of the Pareto preference

relation. Solutions for MCOP defined in terms of equitable preference relations are

called equitably efficient solutions.
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Definition 3.15. Let y1, y2 ∈ Rm be two attainable outcomes. y1 is said to

equitably dominate y2 if and only if y1≺e y2 for all equitable preference relations,

�e, where y1≺e y2 if and only if y1�e y2 and not y2�e y1.

An outcome vector y is equitably nondominated if and only if there does not

exist another outcome vector y′ such that y′ equitably dominates y. Analogously,

a feasible decision x0 ∈ X is called an equitably efficient solution of the MCOP

if and only if there does not exist x ∈ X such that f(x)≺e f(x0) for all equitable

preference relations.

Similar to efficiency, to make it practical, equitable efficiency too can be de-

fined in terms of vector inequalities. In order to do that, we define certain mappings.

Definition 3.16. Let Θ : Rm −→ Rm be a mapping defined as

Θ(y) = (θ1(y), ...., θm(y)), where θ1(y) ≥ θ2(y) ≥ ....,≥ θm(y)

and

θi(y) = yπ(i), where π is some permutation of the set I = {1, ...., m}.

Note that Θ is an ordering map that sorts the components of y in a non-increasing

order.

Definition 3.17. Define the cumulative ordering map on Rm, Θ̄ : Rm −→ Rm as

Θ̄(y) = (θ̄1(y), ...., θ̄m(y)), where

θ̄i(y) =
i∑

j=1

θj(y), for i = 1, ...., m.

Note that the ith coefficient of the vector Θ̄(y) represents the sum of i largest

components of the vector y.

Defining equitable efficiency from the preference point of view is too abstract.

As mentioned in the previous section, equitable efficiency is made operational by

relating the preference relation to vector inequalities in the outcome space.
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Theorem 3.1. (Kostreva et al., 2004). Let y1, y2 be two outcome vectors in Rm.

y1 equitably dominates y2 if and only if Θ̄(y1) ≤ Θ̄(y2).

By Definition 3.17 and Theorem 3.1, it is clear that finding equitably efficient

solutions of MCOP is equivalent to finding efficient solutions of the problem

(COMCOP): minimize (θ̄1(f(x), ...., θ̄m(f(x))

subject to x ∈ X ⊆ Rn,

or

(COMCOP): minimize Θ̄(f(x))

subject to x ∈ X ⊆ Rn.

We refer to either of the above problem as COMCOP, the cumulatively ordered

multi-criteria optimization problem.

Corollary 3.1. (Kostreva et al., 2004). A feasible solution x ∈ X is an equitably

efficient solution of MCOP if and only if it is an efficient solution of COMCOP.

In the following chapter we develop characterizations of equitably efficient

solutions of MCOP in terms of solutions of single objective optimization problems.
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CHAPTER 4

SOME CHARACTERIZATIONS OF EQUITABLY

EFFICIENT SOLUTIONS

Solving any multi-criteria optimization problem implies finding a subset of

the efficient decisions. While there is extensive amount of literature on finding effi-

cient solutions of such problems, the literature on finding equitably efficient solutions

of such problems is not very extensive. Kostreva and Ogryczak (1999) develop a

weighting method of finding equitably efficient solutions of a linear MCOP.

In this chapter we develop some scalarization-based methods to generate equitably

efficient solutions. It is well known that a solution of a minimax optimization prob-

lem is, in general, only weakly efficient for the corresponding multi-criteria prob-

lem(Ehrgott, 2005). We show that under uniqueness condition, the solution is eq-

uitably efficient. We present the two-phase minimax method of finding equitably

efficient solutions regardless of uniqueness.

Questions regarding existence of solutions to any optimization problem are of pri-

mary concern. We prove conditions under which equitably efficient solutions may

not exist for linear multi-criteria problems.

4.1 Scalarizations and Equitable Efficiency

Scalarization is one of the most common approaches used to solve a MCOP.

As discussed earlier, finding an equitably efficient solution of a MCOP is equivalent

to finding an efficient solution to its related COMCOP. Scalarizing functions are

used to transform a given MCOP into a single criterion optimization problem, here

after referred to as SCOP, by aggregating the criteria of a MCOP into a single

criterion. Efficient solutions of the MCOP are then studied in terms of the optimal

solution(s) of the SCOP.



In order to guarantee consistency of the aggregated problem with minimiza-

tion of all the criteria of the MCOP, the scalarizing function must be strictly in-

creasing coordinatewise.

Definition 4.1. (Ehrgott, 2005). Let Y ⊆ Rm. Any function g : Y → R is called

a scalarizing function for Y . Let y1, y2 ∈ Y . The scalarizing function g is strongly

increasing if

y1 ≤ y2 =⇒ g(y1) < g(y2).

Note that strongly increasing functions are strictly increasing componentwise.

Definition 4.2. Let the MCOP with feasible set X ∈ Rn, criteria functions

fi : Rn → R, i = 1, . . . , m and the strongly increasing scalarizing function g

be given. The SCOP associated with the MCOP is given by

(SCOP) : minimize {g(y) : y ∈ Y = f(X)},

where f = (f1, . . . , fm).

As the feasible set Y in the criteria space is not given explicitly, one deals

with the above problem with feasible decisions in the decision space. In such a case,

the above problem is equivalent to

(SCOP) : minimize {g(f(x)) : x ∈ X}.

Definition 4.3. Let the SCOP associated with the MCOP be given. A feasible

decision x0 ∈ X is said to be an optimal solution of SCOP if

g(f(x0) ≤ g(f(x) for all x ∈ X.

Let g be a strongly increasing scalarizing function. If x̂ ∈ X is an optimal

solution of SCOP, then x̂ is an efficient solution of MCOPEhrgott and Wiecek (2005).
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4.1.1 Weighting-sum scalarization

The weighting sum method is one of the most common ways of finding

efficient solutions of MCOP. Details of the method can be found in Geoffrion (1968).

Definition 4.4. The weighting sum scalarization of the MCOP is defined as

W(w): minimize

m∑

i=1

wifi(x)

subject to x ∈ X,

where w ∈ Rm
≥ is any given weighting vector.

Note that in this case the scalarizing function g is given by

g(f(x)) =
m∑

i=1

wifi(x).

Analogously, the weighting method for the COMCOP is given by

W(w): minimize

m∑

i=1

wiθ̄i(f(x))

subject to x ∈ X,

where w ∈ Rm
≥ is any given weighting vector.

Due to Definitions (3.16) and (3.17) of Θ and Θ̄ respectively, the above problem is

equivalent to

P (λ) : minimize

m∑

i=1

λiθi(f(x))

subject to x ∈ X,
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where λi =
∑i

j=1 wi for i = 1, . . . , m.

Proposition 4.1. (Kostreva et al., 2004). For any sequence of strictly decreasing

and positive weights {λi}
m
i=1, each optimal solution of P(λ) is an equitably efficient

solution of the MCOP

Proposition 4.2. (Kostreva and Ogryczak, 1999). Suppose the criteria function

fi, i = 1, . . . , m are linear and the feasible set X of MCOP is defined by a system of

inequalities and equalities. A feasible solution x0 is equitably efficient if and only if,

there exists a sequence of strictly decreasing and positive weights λ1 > λ2 > . . . >

λm > 0, such that x0 is an optimal solution of problem P (λ).

Proposition 4.3. (Kostreva and Ogryczak, 1999). Suppose the multi-criteria opti-

mization problem is a linear one, in which the criteria functions are linear and the

feasible set X is defined by a system of linear inequalities. If the problem has an

efficient solution, it has an equitably efficient solution.

4.1.2 Minimax scalarization

One of the most common approaches to building a single-criterion optimiza-

tion problem from a given MCOP is by using some kind of norm function as the

scalarizing function. Based on certain properties of the norm defining the scalariza-

tion, we are able to generate a weekly efficient or an efficient decision for the MCOP.

The minimax scalarization corresponds to the lp norm of a vector when p −→ ∞.

Definition 4.5. For the MCOP, its associated min-max scalarization is defined as

(MINIMAX): minimize max
i=1,...,m

fi(x)

subject to x ∈ X.

In case the MINIMAX problem has alternate optimal solutions, one of these

solutions is efficient. In case the solution is unique, it is efficient for the MCOP,
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Kouvelis and Yu (1997). We show that in case of an unique optimal solution for the

MINIMAX problem, the solution is equitably efficient for the MCOP.

Proposition 4.4. Let x∗ be the unique optimal solution of MINIMAX, then x∗ is

an equitably efficient solution of MCOP.

Proof. : Let z = maxi=1,...,m fi(x), then problem MINIMAX is equivalent to

(MINIMAX) : minimize {z : x ∈ X, fi(x) ≤ z, i = 1, . . . , m}.

Let (x∗, z∗) uniquely solve MINIMAX, then

z∗ = minimize {z : x ∈ X, fi(x) ≤ z, i = 1, . . . , m}.

Hence

fi(x
∗) ≤ z∗ for all i = 1, . . . , m (4.1)

and

fj(x
∗) = z∗ for some j ∈ {1, . . . , m}.

Assume x∗ is not an equitably efficient solution of MCOP, then there exists some

x0 in X, x0 6= x∗, such that

θ̄i(f(x0)) ≤ θ̄i(f(x∗))

for all i = 1, . . . , m with strict inequality for at least one i.

In particular, consider

θ̄1(f(x0)) ≤ θ̄1(f(x∗)).

If

θ̄1(f(x0)) = θ̄1(f(x∗)),

27



then by definitions (3.16) and (3.17) of θi and θ̄i respectively and from (4.1), we

get

max
i=1,...,m

fi(x
0) = max

i=1,...,m
fi(x

∗)

≤ z∗ (4.2)

= min z

≤ z.

If

θ̄1(f(x0) < θ̄1f(x∗)

then

max
i=1,...,m

fi(x
0) < max

i=1,...,m
fi(x

∗)

≤ z∗

= min z (4.3)

≤ z.

From (4.2) and (4.3), we have

max
i=1,...,m

fi(x
0) ≤ z∗

≤ z.

But

max
i=1,...,m

fi(x
0) ≤ z∗ =⇒ fi(x

0) ≤ z (4.4)

for all i = 1, . . . , m and x0 ∈ X.

equation (4.4) implies that x0 is feasible for MINIMAX.
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Let z0 be the value of MINIMAX at decision x0, then

z0 = min z,

where

fi(x
0) ≤ z0

for all i = 1, . . . , m and

fj(x
0) = z0 (4.5)

for some j ∈ {1, . . . , m}.

From (4.4) and (4.5), we get

fj(x
0) = z0

≤ max
i=1,...,m

fi(x
0)

≤ z∗.

z0 ≤ z∗ implies that x∗ is not the unique optimal solution of MINIMAX, a contra-

diction. Hence x∗ is an equitably efficient solution of the MCOP.

Proposition (4.4) can be used to find an equitably efficient solution provided

the solution of the related minimax problem is known to be unique. An instance,

where uniqueness is guaranteed is when the objective functions of the multi-criteria

optimization problem are all strictly convex and the feasible region is convex. For a

bicriteria problem(Yu, 1973) derives conditions for Pareto optimality in the criteria

space under which the minimax problem has a unique solution. In general, however,

uniqueness can not be verified(Marler and Arora, 2004). Regardless of uniqueness,
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in the proposition that follows, we prove that the two-phase method(Kouvelis and

Yu, 1997) can be utilized to find an equitably efficient solution of the related multi-

criteria problem. We prove a lemma which is needed in the proof of the proposition

that follows.

Lemma 4.1. Let y1, y2 ∈ Rm. If maxi=1,...,m y1
i = maxi=1,...,m y2

i

and Θ̄(y1) ≤ Θ̄(y2), then θ̄m(y1) < θ̄m(y2).

Proof. : Without loss of generality, let

y1 = (y1
1, . . . , y

1
m) and y2 = (y2

1, . . . , y
2
m) where

y1
1 ≥ . . . ≥ y1

m and y2
1 ≥ . . . ≥ y2

m.

By assumption

y1
1 = max

i=1,...,m
y1

i = y2
1 = max

i=1,...,m
y2

i . (4.6)

If j = 2, then

θ̄j(y
1) ≤ θ̄j(y

2) =⇒ y1
1 + y1

2 ≤ y2
1 + y2

2

=⇒ y1
2 ≤ y2

2, by (4.6).

Proceeding inductively, it is clear that for every j > 1 the inequalities

θ̄j(y
1) ≤ θ̄j(y

2) =⇒ y1
j ≤ y2

j

and

θ̄k(y
1) < θ̄k(y

2) for some k ∈ {2, . . . , m}

imply that y1
k < y2

k.

The arguments presented above show that under the conditions stated in the lemma

θ̄m(y1) =
m∑

i=1

y1
i <

m∑

i=1

y2
i = θ̄m(y2)
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Proposition 4.5. Let z̃ be the optimal objective value of MINIMAX problem. Con-

sider the problem

(SUM): minimize
m∑

i=1

fi(x)

subject to fi(x) ≤ z̃

x ∈ X.

If x∗ is an optimal solution of problem SUM, then x∗ is an equitably efficient solution

of MCOP.

Proof. Since z̃ is the optimal objective value of minimax,

fi(x) ≤ z̃, ∀x ∈ X and i = 1, . . . , m.

fi(x) ≤ z̃ =⇒ max
i=1,...,m

fi(x) ≤ z̃, ∀x ∈ X. (4.7)

Let x∗ be an optimal solution of SUM. Suppose x∗ is not an equitably efficient

solution of MCOP, then x∗ is not an efficient solution of COMCOP and there exists

some x0 6= x∗ ∈ X such that Θ̄(f(x0)) dominates Θ̄(f(x∗)). Hence

θ̄i(f(x0)) ≤ θ̄i(f(x∗)) ∀i ∈ {1, . . . , m}. (4.8)

In particular, for i = 1,

θ̄1(f(x0)) ≤ θ̄1(f(x∗))

=⇒ max
i=1,...,m

fi(x
0) ≤ max

i=1,...,m
fi(x

∗)

≤ z̃, by (4.7).

If

max
i=1,...,m

fi(x
0) < max

i=1,...,m
fi(x

∗) ≤ z̃
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then x0 provides a smaller objective value to minimax problem than z̃, the optimal

objective value. Hence

max
i=1,...,m

fi(x
0) = max

i=1,...,
fi(x

∗) ≤ z̃. (4.9)

From (4.8), (4.9) and Lemma (4.1), we get

θ̄m(f(x0)) < θ̄m(f(x∗))

=⇒
m∑

i=1

fi(x
0) <

m∑

i=1

fi(x
∗). (4.10)

Inequality (4.10) contradicts the optimality of x∗ for SUM.

Corollary 4.1. Every optimal solution of the problem

minimize

m∑

i=1

fi(x)

subject to fi(x) ≤ z∗, x ∈ X,

where z∗ = minx∈X maxi=1,...,m fi(x), is an equitably efficient solution of MCOP.

Proof. Follows from Propositions 4.4 and 4.5.

4.1.3 Benson scalarization

Benson (1978) scalarization is often used to investigate the efficiency of a

given feasible decision. In this section we utilize Benson’s scalarizations on the

ordered objectives to characterize equitably efficient solutions of a multi-criteria

optimization problem with the solution of single-criterion problem. Further, we

also prove a result which shows that equitably efficient solutions to a multi-criteria
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problem may not exist under certain assumptions on the criteria functions and the

feasible region.

Definition 4.6. Given any feasible decision x0 ∈ X, Benson’s scalarization of the

MCOP is defined as

(BENSON) : maximize

m∑

i=1

ǫi

subject to fi(x
0) − fi(x) = ǫi, i = 1, . . . , m

ǫi ≥ 0, x ∈ X.

As in Yager (1988), we call following multi-criteria optimization problem

(OWA) : minimize {θ1(f(x)), . . . , θm(f(x))}

subject to x ∈ X

where,

f = (f1, . . . , fm) : Rm −→ R

and

Θ = (θ1, . . . , θm) : Rm −→ R,

as defined in Definition (3.16), is an ordering map on Rm, OWA, the ordered

weighted averaging problem.

Consider the scalarization of OWA given by

P (ǫ) : maximize

m∑

i=1

ǫi

subject to θi(f(x0)) − θi(f(x)) = ǫi, i = 1, . . . , m

ǫi ≥ 0, x ∈ X,

where x0 is any given feasible decision in X and θi’s are as defined in Definition

(3.16).

Theorem 4.1. x0 ∈ X is an equitably efficient solution of MCOP if and only if the

optimal objective value of P (ǫ) is zero.
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Proof. : For x0 ∈ X, P (ǫ) is feasible with ǫ = 0.

ǫi ≥ 0, ∀i = 1, . . . , m =⇒
m∑

i=1

ǫi ≥ 0.

Hence, the optimal objective value of P (ǫ) ≥ 0.

Let ǫ = (ǫ1, . . . , ǫm) be such that the vector (x, ǫ) is feasible for P (ǫ). Feasibility

of (x, ǫ) for P (ǫ) implies ǫi ≥ 0.

ǫi ≥ 0 =⇒ θi(f(x0)) − θi(f(x)) ≥ 0, ∀i = 1, . . . , m (4.11)

and

max

m∑

i=1

ǫi ≥ 0. (4.12)

Let the optimal objective value of P (ǫ) be zero, then, by nonnegativity of ǫ, ǫi = 0

for all i = 1, . . . , m. Due to definition of P (ǫ),

ǫ = 0 =⇒ θi(f(x0)) − θi(f(x)) = 0, for all i = 1, . . . , m

=⇒ θi(f(x0)) = θi(f(x)), for all i = 1, . . . , m. (4.13)

By Definition (3.17)

θ̄i =
i∑

j=1

θj , for i = 1, . . . , m.

Hence from (4.13), we get

θ̄i(f(x0))) = θ̄i(f(x)) for all i = 1, . . . , m.

So, if there is some x ∈ X such that θ̄i(f(x) ≦ θ̄i(f(x0)), then θ̄i(f(x)) = θ̄i(f(x0))

for all i = 1, . . . , m.

Hence, by Definition (3.17), x0 is an efficient solution of OWAP and by Corollary

(3.17), x0 is an equitably efficient solution of MCOP.
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Conversely, let x0 be an equitably efficient solution of MCOP. Let ǫ̂ denote the

optimal objective value of P (ǫ) attained at some optimal decision x̂. Suppose ǫ̂ > 0.

ǫ̂ > 0 =⇒ max

m∑

i=1

ǫi > 0 (4.14)

=⇒
m∑

i=1

ǫi > 0 (4.15)

=⇒ ǫi > 0 for at least one i ∈ {1, . . . , m} (4.16)

and

ǫi ≥ 0 for all other i. (4.17)

Using the definition of P (ǫ) together with (4.16) and (4.17) we get

θi(f(x0)) − θi(f(x̂)) > 0 for at least one i ∈ {1, . . . , m}

and

θj(f(x0)) − θj(f(x̂)) ≥ 0 for all other i. (4.18)

By definition of θ̄i, θ̄i =
∑i

j=1 θj , hence from (4.18) we get

θ̄i(f(x0)) − θ̄i(f(x̂)) > 0 for at least one i ∈, {1, . . . , m}

and

θ̄i(f(x0)) − θ̄i(f(x̂)) ≥ 0 for all other i. (4.19)

Now, (4.19) implies that x0 is not an efficient solution of COMCOP. Hence it is not

an equitably efficient solution of MCOP, a contradiction.

4.1.4 Existence of equitably efficient
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solutions for linear MCOPs

Question of existence of equitably efficient solutions is dealt withinKostreva

and Ogryczak (1999). In this article, the authors show that for a linear multi-criteria

optimization problem, if the set of efficient solutions is nonempty, then the set of

equitably efficient solutions is nonempty too. In the theorem that follows, we show

that under unboundedness of the Benson problem, the equitably efficient set of a

linear multi-criteria problem is empty.

Theorem 4.2. Suppose the criteria functions fi, i = 1, . . . , m, of the MCOP are

linear and the feasible set X is defined by a system of linear equalities and inequali-

ties. If the optimal objective value of P (ǫ) is not finite, then MCOP has no equitably

efficient solution.

Proof. Since P (ǫ) is unbounded, for every real number M ≥ 0, there exists some

xM ∈ X such that

ǫi = θi(f(x0)) − θi(f(xM )) ≥ 0 (4.20)

and

m∑

i=1

ǫi =
m∑

i=1

(θi(f(x0)) − θi(f(xM ))) > M. (4.21)

Suppose x′ is an equitably efficient solution of MCOP, from Proposition (4.2) there

exists a sequence of weights λ1 > λ2 > . . . λm > 0 such that x′ is an optimal

solution of

minimize

m∑

i=1

λi θi(f(x))

subject to x ∈ X. (4.22)

For such a sequence of weights,

m∑

i=1

λi (θi(f(x)) − θi(f(x′))) ≥ 0 for all x ∈ X. (4.23)
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Since x0 ∈ X, (4.23) implies that

m∑

i=1

λi (θi(f(x0)) − θi(f(x′))) ≥ 0. (4.24)

Let λ = λm. Let M ′ > 0 be any fixed but arbitrary real number. Let M = M ′

λ
≥ 0.

From (4.20) and (4.21), for such an M , there exists some xM ∈ X such that

ǫi = θi(f(x0)) − θi(f(xM )) ≥ 0 (4.25)

and

m∑

i=1

ǫi =
m∑

i=1

(θi(f(x0)) − θi(f(xM ))) > M. (4.26)

If

m∑

i=1

(θi(f(x0)) − θi(f(xM ))) > M

then

λ

m∑

i=1

(θi(f(x0)) − θi(f(xM ))) > λM

=
M ′

M
M

= M ′

≥ 0. (4.27)

Since λ = λm < λi for all i = 1, . . . , m − 1, (4.27) gives

m∑

i=1

λi (θi(f(x0)) − θi(f(xM ))) > λ

m∑

i=1

(θi(f(x0)) − θi(f(xM )))

> M ′

≥ 0. (4.28)

From (4.24)
m∑

i=1

λi (θi(f(x0)) − θi(f(x′))) ≥ 0.
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Since M ′ ≥ 0 is arbitrary, setting

M ′ =
m∑

i=1

λi (θi(f(x0)) − θi(f(x′)) ≥ 0 in (4.28)

we get

m∑

i=1

λi (θi(f(x0)) − θi(f(x′))) <

m∑

i=1

λi (θi(f(x0)) − θi(f(xM )))

=⇒
m∑

i=1

−λi θi(f(x′)) <

m∑

i=1

−λi θi(f(xM )). (4.29)

Because λi > 0 for all i = 1, . . . , m, from (4.29) we get

m∑

i=1

λi θi(f(xM )) <

m∑

i=1

λi θi(f(x′)). (4.30)

Then, (4.30) implies that x′ is not an optimal solution of (4.22), a contradiction.

Hence MCOP does not have an equitably efficient solution.

4.2 Equitable Scalarizations

Any optimal solution of SCOP is an efficient solution of MCOP if the scalar-

izing function is strongly increasing(Ehrgott and Wiecek, 2005). We show that

scalarizing functions with additional properties may be used to find equitably effi-

cient solutions.

Definition 4.7. Let

g : Y ⊆ Rm −→ R

be a scalarizing function defined on Y .

g is said to be symmetric if g(y1, . . . , ym) = g(yτ(1), . . . , yτ(m)

for every permutation τ of the index set I = {1, . . . , m}.

Definition 4.8. Let y = (y1, . . . , ym) and yi > yj for some i, j ∈ {1, . . . , m}.

g is said to satisfy the principle of transfers if

g(y1, . . . , yi − ǫ, . . . , yj + ǫ, . . . , ym) < g(y1, . . . , yi, . . . , yj , . . . , ym)

for 0 < ǫ < yi − yj .
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Definition 4.8 expresses the fact that transferring a small amount from a

better to a worse component results in a more preferred outcome vector.

If g is symmetric and satisfies the principle of transfers, then it is called

strictly Schur-convex. Scalarizations of MCOP defined in terms of functions that

are strongly increasing and strictly Schur-convex are ‘equitable scalarizations’. In

case g is an equitable scalarization function, every optimal solution of SCOP is an

equitably efficient solution of MCOP(Kostreva et al., 2004).

In this section, we present some equitable scalarizations and prove that they define

strictly Schur-convex scalarizing functions.

4.2.1 Exponential Schur scalarization

For any y = (y1, . . . , ym) ∈ Y , consider the scalarizing function defined as

(ESS): ; g(y) =
m∑

i=1

eayi

where

yi = fi(x), x ∈ X and a > 0.

We show that ESS defines an equitable scalarization on Y .

1. Let y1 ≤ y2, where

y1 = (y1
1, . . . , y

1
m) and y2 = (y2

1, . . . , y
2
m) ∈ Y,

y1 ≤ y2 =⇒ y1
i ≤ y2

i ∀ i ∈ {1, . . . , m} and y1 6= y2. (4.31)

Since a > 0, from (4.31) we get

ay1
i ≤ ay2

i for all i ∈ {1, . . . , m} and

ay1
j < ay2

j for some j ∈ {1, . . . , m}. (4.32)
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From (4.32)

eay1
i ≤ eay2

i for all i ∈ {1, . . . , m} and

eay1
j < eay2

j for some j ∈ {1, . . . , m}.

Summing (4.32) over the index set {1, . . . , m}, we get

m∑

i=1

eay1
i <

m∑

i=1

eay2
i

=⇒ g(y1) < g(y2). (4.33)

Inequality (4.33) implies that g is strongly increasing.

2. Let T be the set of permutations of the set I = {1, . . . , m}. For any τ ∈ T

g(yτ(1), . . . , yτ(m)) =
m∑

i=1

eayτ(i)

=
m∑

i=1

eayi

= g(y1, . . . , ym). (4.34)

Inequality (4.34) shows that g is symmetric. Finally, we show that g satisfies

the principle of transfers.

3. Let y1 = (y1
1, . . . , y

1
m) ∈ Y where y1

i > y1
j for some i, j ∈ {1, . . . , m}.

Since g is symmetric, we can assume y1
i = y1

1 and y1
j = y1

2.

Let 0 < ǫ < y1
1 − y1

2.

Consider the vector y2 obtained by transferring ǫ from y1
1 to y1

2 keeping other

components the same,

y2 = (y1
1 − ǫ, y1

2 + ǫ, . . . , y1
m).
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By assumption, 0 < ǫ < y1
1 − y1

2. Since a > 0, 0 < aǫ < a(y1
1 − y1

2). Then

a(y1
1 − y1

2) > aǫ =⇒ ea(y1
1−y1

2) > eaǫ

=⇒
eay1

1

eay1
2

> eaǫ

=⇒
eay1

1

eaǫ
> eay1

2 (4.35)

and

aǫ > 0 =⇒ eaǫ > e0 = 1

=⇒ 1 − eaǫ < 0. (4.36)

Multiplying (4.35) by (1 − eaǫ) and using (4.36) we get

eay1
1

eaǫ
(1 − eaǫ) < eay1

2 (1 − eaǫ)

=⇒ eay1
1 (e−aǫ − 1) < eay1

2 (1 − eaǫ)

=⇒ ea(y1
1−ǫ) − eay1

1 < eay1
2 − ea(y1

2+ǫ)

=⇒ ea(y1
1−ǫ) + ea(y1

2+ǫ) < eay1
1 + eay1

2 . (4.37)

Inequality (4.37) implies

ea(y1
1−ǫ) + ea(y1

2+ǫ)+

(eay1
3 + . . . + eay1

m) < eay1
1 + eay1

2+

(eay1
3 + . . . + eay1

m)

=⇒ g(y1
1 − ǫ, y1

2 + ǫ, . . . , y1
m) < g(y1

1, y
1
2, . . . , y

1
m)

=⇒ g(y2) < g(y1). (4.38)

Inequality (4.38) implies that g satisfies the principle of transfers. Thus g is strongly

increasing, symmetric and satisfies the principle of transfers. Hence, it defines an

equitable scalarization on the outcome space Y .
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4.2.2 Squared-sum Schur scalarization

Let

ai = min
x∈X

fi(x)

and

a < min
i=1,...,m

ai.

For any y = (y1, . . . , ym) ∈ Y , consider the scalarizing function defined as

(SSSS) : g(y1, . . . , ym) =
m∑

i=1

(yi − a)2, where yi = fi(x), x ∈ X.

We prove that (SSSS) is an equitable scalarization.

1. Let y1 ≤ y2 where

y1 = (y1
1, . . . , y

1
m) and y2 = (y2

1, . . . , y
2
m) ∈ Y

and

y1 ≤ y2 =⇒ y1
i ≤ y2

i ∀ i ∈ {1, . . . , m} and y1 6= y2. (4.39)

By assumption

a < y1
i and a < y2

i ∀i ∈ {1, . . . , m}. (4.40)

Inequality (4.40) implies

0 < y1
i − a and 0 < y2

i − a ∀i ∈ {1, . . . , m}. (4.41)

From (4.39) and (4.41)

(y1
i − a)2 ≤ (y2

i − a)2 ∀i ∈ {1, . . . , m}

and

(y1
j − a)2 < (y2

j − a)2 for some j ∈ {1, . . . , m}. (4.42)
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Summing both sides of (4.42) yields

m∑

i=1

(y1
i − a)2 <

m∑

i=1

(y2
i − a)2

=⇒ g(y1
1, . . . , y

1
m) < g(y2

1, . . . , y
2
m)

=⇒ g(y1) < g(y2) (4.43)

Inequality (4.43) implies g is strongly increasing.

2. Let τ be the vector denoting any permutation of the index set I = {1, . . . , m},

then

g(yτ(1), . . . , yτ(m) =
m∑

i=1

(yτ(i) − a)2

=
m∑

i=1

(yi − a)2

= g(y1, . . . , ym). (4.44)

Inequality (4.44) implies that g is symmetric.

3. Let y1 = (y1
1, . . . , y

1
m) ∈ Y where y1

i > y1
j for some i, j ∈ {1, . . . , m}.

Without loss of generality, let i > j, i, j ∈ {1, . . . , m} be such that y1
i > y1

j .

Let 0 < ǫ < y1
i − y1

j and y2 be the vector obtained from y1 by transferring ǫ

from y1
i to y1

j keeping other components the same,

y2 = (y1
1, . . . , y

1
i − ǫ, . . . , y1

j + ǫ, . . . , y1
m).

Note that y1
i − y1

j = −(y1
j − y1

i ) = −((y1
j − a) − (y1

i − a)). Then

y1
i − y1

j = −((y1
j − a) − (y1

i − a) > ǫ

=⇒ −2((y1
j − a) − (y1

i − a)) > 2ǫ.
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Since ǫ > 0, the above inequality implies

−2ǫ((y1
j − a) − (y1

i − a)) > 2ǫ2

=⇒ 2ǫ2 + 2ǫ{(y1
j − a) − (y1

i − a)} < 0

=⇒ 2ǫ2 + 2ǫ(y1
j − a) − 2ǫ(y1

i − a) < 0. (4.45)

From (4.45)

2ǫ2 + 2ǫ(y1
j − a) − 2ǫ(y1

i − a) +

(y1
1 − a)2 + . . . + (y1

m − a)2 < (y1
1 − a)2 + . . .

+(y1
m − a)2. (4.46)

Regrouping terms in (4.46), keeping together terms involving y1
i and y1

j gives

(y1
1 − a)2 + . . . + (2ǫ2 + 2ǫ(y1

j − a) −

2ǫ(y1
i − a) + (y1

i − a)2 + (y1
j − a)2) +

. . . + (y1
m − a)2 < (y1

1 − a)2 + . . . + (y1
m − a)2

=⇒ (y1
1 − a)2 + . . . + (y1

j − a + ǫ)2 +

(y1
i − a − ǫ)2 + . . . + (y1

m − a)2 < (y1
1 − a)2 +

. . . (y1
m − a)2. (4.47)

Equivalently,

(y1
1 − a)2 + . . . + (y1

i − ǫ − a)2 +

(y1
j + ǫ − a)2 + . . . + (y1

m − a)2 <

(y1
1 − a)2 + . . . (y1

m − a)2

=⇒ g(y1
1 − a, . . . , y1

i − ǫ − a, . . . +

y1
j + ǫ − a + . . . + y1

m − a)2 <

g(y1
1 − a, . . . , y1

m − a). (4.48)

From (4.48)

g(y2) < g(y1), (4.49)
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g satisfies the principle of transfers.

Proposition 4.6. If a > 0, then every optimal solution of

minimize
m∑

i=1

eafi(x)

subject to x ∈ X

is an equitably efficient solution of MCOP.

Proof. From section 4.2.1,
∑m

i=1 eafi(x) is an equitable scalarization defined on the

outcome space Y . Hence every optimal solution of

minimize

m∑

i=1

eafi(x), subject to x ∈ X

is an equitably efficient solution of MCOP(Kostreva et al., 2004).

Proposition 4.7. Every optimal solution of

minimize
m∑

i=1

(fi(x) − a)2 (4.50)

subject to x ∈ X (4.51)

where a < mini=1,...,m ai and ai = minx∈X fi(x), is an equitably efficient solution of

MCOP.

Proof. For a defined according to the conditions in the proposition,
∑m

i=1 (fi(x)−a)2

defines an equitable scalarization on the outcome space Y , section 4.2.2. Hence every

optimal solution of

minimize

m∑

i=1

(fi(x) − a)2, subject to x ∈ X

is an equitably efficient solution of MCOP(Kostreva et al., 2004).

Stressing the relevance of equitably efficient solutions is the focus of the next chapter.

In this chapter we present equitably efficient solutions in relation to solutions of

matrix game and linear complementarity problems.
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CHAPTER 5

MATRIX GAMES, LINEAR COMPLEMENTARITY

PROBLEMS AND EQUITABLE EFFICIENCY

Matrix games or two-person zero-sum games are games with only two par-

ticipants in which one participant wins what the other loses. The first attempt to

formalize a theory of such games was made by Borel (1921, 1924, 1927). Later a

strong foundation of the theory was laid by Neumann (1928) who gave the cele-

brated ”Minimax Theorem” for such games. Linear Complementarity problem, on

the other hand, is a general problem which unifies linear and quadratic programs

and bimatrix games(Murty, 1988).

In this chapter we present multi-criteria formulations of matrix games and

linear complementarity problems and study the relationships between solutions of

the latter two problems and equitably efficient solutions of the related multi-criteria

problem . For the matrix game, we show that a solution of the game can be obtained

by finding an equitably efficient solution of the multi-criteria problem. Solutions

of the linear complementarity problem, on the other hand, can be identified as

equitably efficient solutions that have specific values for the objective functions.

5.1 Matrix Games and Equitable Efficiency

A matrix game τ is defined by a real m × n matrix A along with the

cartesian product X × Y , where X = {x ∈ Rm |xi ≥ 0,
∑m

i=1 xi = 1} and

Y = {y ∈ Rn | yi ≥ 0,
∑n

j=1 yj = 1}. x ∈ X is called a mixed strategy for the

row player and y ∈ Y a mixed strategy for the column player. For i = 1, . . . , m,

the mixed strategy with 1 at the ith position and 0 elsewhere is called the ith pure

strategy for the row player. A similar definition of pure strategy holds for the column

player.

Definition 5.1. If (x, y) ∈ X × Y , then the payoff associated with the strategy

(x, y) is given by E(x, y) =
∑m

i=1

∑n
j=1 xiaijyj .



Definition 5.2. A solution of the matrix game τ is a pair of mixed strategies

x̄ = (x̄1, . . . , x̄m), ȳ = (ȳ1, . . . , ȳn) and a real number v such that xAȳt ≤ x̄Aȳt =

v ≤ x̄Ayt. x̄ is called an optimal strategy for the row player and ȳ, an optimal

strategy for the column player. v is called the value of the game.

Theorem 5.1. (Chv́atal, 2000). For any matrix game τ defined by the m×n matrix

A, there exist optimal strategies x∗, y∗ for the row and column players respectively

such that

min
y

x∗Ayt = max
x

xAy∗t

with the minimum taken over all y ∈ Y and maximum taken over all x ∈ X.

As shown in Chv́atal (2000), finding an optimal strategy to the matrix game

is equivalent to solving the following linear programming problems:

(LP ) maximize v

s.t. v −
m∑

i=1

xiaij ≤ 0 , j = 1, . . . , n,

m∑

i=1

xi = 1,

xi ≥ 0, i = 1, . . . , m

and

(LD) minimize w

s.t. w −

n∑

j=1

aijyj ≥ 0 , i = 1, . . . , m,

n∑

j=1

yj = 1,

yj ≥ 0, j = 1, . . . , n.

Note that LP and LD are duals of one another.

We formulate the matrix game problem as expressed by LP and LD as a

biobjective problem and look at the relationship of solutions between the two prob-

lems. Toward this end, consider the biobjective optimization problem formulated
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as

(BOP ) minimize{−v, w}

s.t. v −
m∑

i=1

xiaij ≤ 0 , j = 1, . . . , n,

w −
n∑

j=1

aijyj ≥ 0 , i = 1, . . . , m,

m∑

i=1

xi = 1,

xi ≥ 0, i = 1, . . . , m,

n∑

j=1

yj = 1,

yj ≥ 0, j = 1, . . . , n.

Let χ denote the feasible set of the above BOP.

Theorem 5.2. Let (x∗, v∗, y∗, w∗), where (x∗, v∗) ∈ Rm+1 and (y∗, w∗) ∈ Rn+1 solve

the matrix game τ , then (x∗, v∗, y∗, w∗) is an equitably efficient solution of BOP.

Proof. If (x∗, v∗, y∗, w∗) solves the matrix game A, then (x∗, v∗) solves LP and

(y∗, w∗) solves LD.

If (x∗, v∗) solves LP, then by feasibility

v∗ ≤

m∑

i=1

x∗
i aij , ∀j = 1, . . . , n, (5.1)

m∑

i=1

x∗
i = 1, x∗

i ≥ 0, ∀i = 1, . . . , m (5.2)

and as (y∗, w∗) solves LD

w∗ ≥
n∑

j=1

aijy
∗
j , ∀i = 1, . . . , m, (5.3)

n∑

j=1

y∗j = 1, y∗j ≥ 0, ∀j = 1, . . . , n. (5.4)

Inequalities (5.1)-(5.4) imply that (x∗, v∗, y∗, w∗) is a feasible solution of BOP. Sup-

pose (x∗, v∗, y∗, w∗) is not an equitably efficient solution of BOP, then, by Corollary
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3.1, (x∗, v∗, y∗, w∗) is not an efficient solution of the problem

minimize {θ̄1(−v, w), θ̄2(−v, w) |x ∈ χ}.

Hence, there exists some (x, v, y, w) ∈ χ such that (−v, w) dominates (−v∗, w∗) in

the objective space.

If (−v, w) dominates (−v∗, w∗) then

θ̄i(−v, w) ≤ θ̄i(−v∗, w∗) for i = 1, 2 (5.5)

and

θ̄j(−v, w) < θ̄j(−v∗, w∗) for at least one j ∈ {1, 2}. (5.6)

By definition of θ̄, θ̄i(f(x)) =
∑i

j=1 θj(f(x)), where the vector θ(f(x)) denotes

the components of the vector f(x) sorted in a nonincreasing order. Applying this

definition to the vectors (−v, w) and (−v∗, w∗), we get

θ̄1(−v, w) = max{−v, w}, (5.7)

θ̄1(−v∗, w∗) = max{−v∗, w∗}, (5.8)

θ̄2(−v, w) = −v + w (5.9)

θ̄2(−v∗, w∗) = −v∗ + w∗. (5.10)

Since (x∗, v∗, y∗, w∗) solves the matrix game, (x∗, v∗) and (y∗, w∗) solve LP and LD

respectively. As LP and LD are dual to each other, by the strong duality theorem,

v∗ = w∗. With v∗ = w∗, 5.10 gives θ̄2(−v∗, w∗) = 0. If strict inequality in (5.6)

holds for j = 2, then combining (5.6) and (5.10), we get

θ̄2(−v, w) = −v + w < θ̄2(−v∗, w∗) = 0

=⇒ w < v. (5.11)

If (x, v, y, w) is feasible to BOP, then (x, v) and (y, w) are feasible to LP and LD

respectively. So we have feasible solutions to two dual LPs such that the objective

value of the min problem is strictly less than the objective value of the max problem.
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This contradicts the weak duality theorem. Hence, strict inequality in (5.6) can not

hold for j = 2.

If j = 1 in (5.6), then from (5.6)-(5.8), we get

θ̄1(−v, w) = max{−v, w} < θ̄1(−v∗, w∗) = max{−v∗, w∗}. (5.12)

In (5.12), we have the following possibilities:

Case 1.

max{−v, w} = −v, max{−v∗, w∗} = −v∗, then

−v < −v∗ =⇒ v > v∗.

We have a feasible point (x, v) of LP at which the objective value is strictly greater

than the objective value at (x∗, v∗). This contradicts the optimality of (x∗, v∗) for

LP.

Case 2.

max{−v, w} = −v, max{−v∗, w∗} = w∗, then

w ≤ −v < w∗ =⇒ w < w∗.

Now we have a feasible point (y, w) of LD at which the objective value is strictly

less than the objective value at (y∗, w∗). This contradicts the optimality of (y∗, w∗)

for LD.

Case 3.

max{−v, w} = w, max{−v∗, w∗} = −v∗, then

−v ≤ w < −v∗ =⇒ v > v∗.

Again we arrive at a contradiction to (x∗, v∗) being an optimal solution of LP.

Case 4.

max{−v, w} = w, max{−v∗, w∗} = w∗, then

−v ≤ w < w∗ =⇒ w < w∗.
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The above contradicts the optimality of (y∗, w∗) for LD.

In all the possible cases, we arrive at contradictions. Hence, the inequality in 5.6

can not hold for j = 1 too and our assumption about (x∗, v∗, y∗, w∗) can not be

true.

Theorem 5.3. If (x∗, v∗, y∗, w∗) is an equitably efficient solution of BOP, then it

solves the matrix game τ .

Proof. Suppose (x∗, v∗, y∗, w∗) is an equitably efficient solution of BOP but is not a

solution of the matrix game, then there exists some (x̃, ṽ) feasible to LP and (ỹ, w̃)

feasible to LD respectively such that

−ṽ ≤ −v∗ and w̃ ≤ w∗ with strict inequality for at least one of them. (5.13)

Inequality (5.13) implies that

−ṽ + w̃ < −v∗ + w∗. (5.14)

If (x̃, ṽ) is feasible to LP and (ỹ, w̃) is feasible to LD, then the point (x̃, ṽ, ỹ, w̃) is a

feasible point of the BOP.

By definition of θ̄,

θ̄1(−ṽ, w̃) = θ1(−ṽ, w̃) = max{−ṽ, w̃}, (5.15)

θ̄2(−ṽ, w̃) = θ1(−ṽ, w̃) + θ2(−ṽ, w̃) = −ṽ + w̃, (5.16)

θ̄1(−v∗, w∗) = θ1(−v∗, w∗) = max{−v∗, w∗} and (5.17)

θ̄2(−v∗, w∗) = θ1(−v∗, w∗) + θ2(−v∗, w∗) = −v∗ + w∗. (5.18)

Combining (5.16) and (5.18) with (5.14), we get

θ̄2(−ṽ, w̃) < θ̄2(−v∗, w∗). (5.19)
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Consider the following possible cases for θ̄1(−ṽ, w̃) and θ̄1(−v∗, w∗) :

Case 1.

θ̄1(−ṽ, w̃) = max{−ṽ, w̃} = −ṽ, (5.20)

θ̄1(−v∗, w∗) = max{−v∗, w∗} = −v∗. (5.21)

Inequalities (5.13), (5.20) and (5.21) together imply that

θ̄1(−ṽ, w̃) ≤ θ̄1(−v∗, w∗). (5.22)

Case 2.

θ̄1(−ṽ, w̃) = max{−ṽ, w̃} = −ṽ, (5.23)

θ̄1(−v∗, w∗) = max{−v∗, w∗} = w∗. (5.24)

max{−v∗, w∗} = w∗ =⇒ −v∗ ≤ w∗,

but from (5.13),−ṽ ≤ −v∗. Hence, −ṽ ≤ −v∗ ≤ w∗.

−ṽ ≤ w∗ =⇒ θ̄1(−ṽ, w̃) ≤ θ̄1(−v∗, w∗). (5.25)

Case 3.

θ̄1(−ṽ, w̃) = max{−ṽ, w̃} = w̃, (5.26)

θ̄1(−v∗, w∗) = max{−v∗, w∗} = −v∗. (5.27)

Inequality (5.26) implies −ṽ ≤ w̃ and inequality (5.27) implies w∗ ≤ −v∗. Combining

these two inequalities with (5.13) we get

−ṽ ≤ w̃ ≤ w∗ ≤ −v∗.

w̃ ≤ −v∗ =⇒ θ̄1(−ṽ, w̃) ≤ θ̄1(−v∗, w∗). (5.28)

Case 4.

θ̄1(−ṽ, w̃) = max{−ṽ, w̃} = w̃, (5.29)

θ̄1(−v∗, w∗) = max{−v∗, w∗} = w∗. (5.30)
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From (5.13), w̃ ≤ w∗, which together with 5.29 and 5.30 implies

θ̄1(−ṽ, w̃) ≤ θ̄1(−v∗, w∗). (5.31)

From (5.22), (5.25), (5.28) and (5.31) we see that

θ̄1(−ṽ, w̃) ≤ θ̄1(−v∗, w∗) (5.32)

for all possible choices of θ̄1(−ṽ, w̃) and θ̄1(−v∗, w∗). Finally, combining (5.19) and

(5.32), we get

θ̄i(−ṽ, w̃) ≤ θ̄i(−v∗, w∗) (5.33)

where strict inequality holds for i = 2.

Inequality (5.33) implies that the point (x∗, v∗, y∗, w∗) is dominated by the point

(x̃, ṽ, ỹ, w̃) in the objective space. Hence (x∗, v∗, y∗, w∗) can not be an efficient point

of the problem

minimize {θ̄1(−v, w), θ̄2(−v, w) | x ∈ χ}

and equivalently, by Corollary 3.1, it can not be an equitably efficient solution of

MOP, a contradiction.

Hence, our assumption that (x∗, v∗, y∗, w∗) does not solve the matrix game can not

be true.

5.2 Linear Complementarity Problems and
Equitable Efficiency

Relationships between solutions of linear complementarity problems(LCP)

and multiple criteria optimization problems(MOP) have been described in the works

of several authors. In the literature, the first approach to unify the two seemingly

different concepts seems to be that of Kostreva and Wiecek (1993) where the au-

thors propose the concept of zero-efficient solutions to study LCPs. In(Isac et al.,

1995), the authors propose multiple objective approximation to certain feasible but

unsolvable LCPs. Ebiefung (1995) explores the connections between generalized

LCPs and MOP.
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In this section, we develop conditions by which solutions to a LCP can be identi-

fied as equitably efficient solutions to a related MOP. The results allow us to view

zero efficient points as nothing else but equitably efficient solutions of MOP with

particular objective values.

Given an n × n matrix M and an n × 1 column vector q, LCP (q, M) is to

determine x ∈ Rn satisfying

y = Mx + q

yi ≥ 0

xi ≥ 0

yixi = 0, ∀i = 1, . . . , n.

Associated with the LCP, we formulate the following multi-objective problem(MOP)

as in Kostreva and Wiecek[1993].

(MOP) minimize {y1x1, . . . , ynxn}

subject to x ∈ X,

where,

X = {x ∈ Rn|x ≥ 0, y = Mx + q ≥ 0}.

In addition, let,

fi(x) = yixi, ∀i = 1, . . . , n.

Remark 5.1. Note that in the above MOP formulation, the objective functions are

uniform in the sense that they have the same form. Each function can be thought

of as expressing the same physical outcome. For such a problem, equitably efficient

solutions are more justified than the efficient solutions.

In(Kostreva et al., 2004) the authors show that if x̄ is an efficient solution

of the multiple criteria problem

minimize {f1(x), . . . , fm(x), s.t. x ∈ X}
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and si : R −→ R are strictly increasing scaling functions satisfying the requirement

s1(f1(x̄)) = . . . = sm(fm(x̄)),

then x̄ is an equitably efficient solution of the scaled problem

minimize {s1(f1(x)), . . . , sm(fm(x)), s.t. x ∈ X}.

We prove a similar result relating efficient and equitably efficient solutions of a

general MOP without imposing any conditions on the criteria functions. The result

will later be used to prove some other theorems in the chapter.

Theorem 5.4. If there exists an efficient solution x0 ∈ X such that f1(x
0) =

f2(x
0) = . . . = fm(x0), then x0 is an equitably efficient solution of MCOP.

Proof. Let f1(x
0) = f2(x

0) = . . . = fm(x0) = a. If x0 ∈ X is an efficient solution

of MCOP then

f(x0) = (f1(x
0), . . . , fm(x0)) = (a, . . . , a) (5.34)

is a nondominated solution in the criteria space. Suppose x0 is not an equitably

efficient solution of MCOP, then by Theorem 3.1, x0 is not an efficient solution of

the multiple criteria problem

minimize { Θ̄(f(x)) s. t. x ∈ X},

where

Θ̄(f(x)) = (θ̄1(f(x)), . . . , θ̄m(f(x))),

θ̄i(f(x)) =
i∑

j=1

θ(f(x)), ∀i = 1, . . . , m; x ∈ X,

θ1(f(x)) ≥ θ2(f(x)) ≥ . . . ≥ θm(f(x)) and

θi(f(x)) = fτ(i)(x) for some permutation τ of {1, 2, . . . , m}.
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Hence, there exists some x ∈ X, x 6= x0 such that Θ̄(f(x)) dominates Θ̄(f(x0). If

Θ̄(f(x)) dominates Θ̄(f(x0)) then

θ̄i(f(x)) ≤ θ̄i(f(x0)) ∀ i = 1, 2, . . . , m and

θ̄j(f(x)) < θ̄j(f(x0)) for at least one j ∈ {1, . . . , m}. (5.35)

By Definition 3.16,

θ1(f(x)) ≥ . . . ≥ θm(f(x)),

where

θi(f(x)) = fτ(i)(x), for some permutation τ of the set {1, . . . , m}.

fi(x
0) = a =⇒ θi(f(x0)) = θi(a, a, . . . , a) = a, ∀i = 1, . . . , m.

By Definition 3.17,

θ̄i(f(x0)) =

i∑

j=1

θj(f(x0))

= ia, ∀i = 1, . . . , m. (5.36)

From (5.35) and (5.36) we get

θ̄i(f(x)) ≤ ia for all i = 1, . . . , m and

θ̄j(f(x)) < ja for at least one j ∈ {1, . . . , m}. (5.37)

In particular, for i = 1, inequality (5.37) gives

θ̄1(f(x)) = θ1(f(x)) ≤ a, (5.38)

but

θ1(f(x)) = max
i=1,...,m

f(x).
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Hence,

max
i=1,...,m

fi(x) ≤ a.

max
i=1,...,m

fi(x) ≤ a =⇒ fi(x) ≤ a for all i = 1, . . . , m. (5.39)

By assumption of the theorem

fi(x
0) = a for all i = 1, . . . , m,

so from inequality (5.39) we get

fi(x) ≤ fi(x
0) for all i = 1, . . . , m. (5.40)

From inequality (5.35)

i∑

j=1

θj(f(x)) = θ̄i(f(x))

< θ̄i(f(x0))

= ia for at least one i ∈ {1, . . . , m},

which is possible only if

fi(x) < fi(x
0) for at least one i in inequality 5.40. (5.41)

Combining inequalities 5.40 and 5.41, we get

fi(x) ≤ fi(x
0) for all i ∈ {1, . . . , m} and

fj(x) < fj(x
0) for at least one j ∈ {1, . . . , m}. (5.42)

Inequality (5.42) implies that the point f(x) dominates f(x0), a contradiction.

Hence our assumption that x0 is not an equitably efficient solution can not be

true.
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Theorem 5.5. If x0 solves LCP then x0 is an equitably efficient solution of MOP

with fi(x
0) = 0, ∀i = 1, . . . , n.

Proof. If x0 solves LCP, then

x0
i ≥ 0, y0

i ≥ 0 and (5.43)

y0
i x

0
i = 0, ∀i = 1, . . . , n, where (5.44)

yi = Mix
0 + qi, Mi being the ith row of the matrix M.

Inequalities (5.43) and (5.44) imply that x0 is a feasible solution of MOP with

criteria function values fi(x
0) = 0, for all i = 1, . . . , m.

We show that x0 is an efficient solution of MOP.

Suppose x0 is not an efficient solution of MOP, then ∃ some x 6= x0 ∈ X such that

fi(x) ≤ fi(x
0) = 0, ∀i ∈ {1, . . . , n} and

fj(x) < fj(x
0) = 0 for at least one j ∈ {1, . . . , n}. (5.45)

x ∈ X =⇒ xi ≥ 0, yi ≥ 0.

xi ≥ 0, yi ≥ 0 =⇒ fi(x) = yixi ≥ 0, ∀i = 1, . . . , n. (5.46)

Inequalities (5.45) and (5.46) can not hold simultaneously. Hence our assumption

that x0 is not efficient can not be true.

x0 is an efficient solution of MOP with fi(x) = 0, ∀i = 1, . . . , n; hence by Theorem

5.1, x0 is an equitably efficient solution of MOP.

Theorem 5.6. If x0 is a feasible solution of MOP with fi(x
0) = 0,∀i = 1, . . . , n,

then x0 is an equitably efficient solution of MOP and solves LCP.

Proof. Let x0 ∈ X be such that fi(x
0) = y0

i x
0
i = 0, ∀i = 1, . . . , n.

Suppose x0 is not equitably efficient for MOP, then x0 is not an efficient solution of

the cumulatively ordered multiple criteria problem

minimize {θ̄1(f(x)), . . . , θ̄n(f(x)), s.t. x ∈ X}.
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Hence, there exists some x 6= x0 ∈ X such that

θ̄i(f(x)) ≤ θ̄i(f(x0)) ∀i ∈ {1, . . . , n} and (5.47)

θ̄j(f(x)) < θ̄j(f(x0)) for at least one j ∈ {1, . . . , n}. (5.48)

fi(x
0) = 0 =⇒ θi(f(x0)) = 0∀ i = 1, . . . , n

=⇒ θ̄i(f(x0)) = 0∀ i = 1, . . . , n. (5.49)

Substituting the above values of θ̄i(f(x0)) from inequality (5.49) in inequalities

(5.47) and (5.48), we get

θ̄i(f(x)) ≤ 0∀i ∈ {1, . . . , n} and

θ̄j(f(x)) < 0 for at least one j ∈ {1, . . . , n}. (5.50)

x ∈ X =⇒ xi ≥ 0, yi ≥ 0,

xi ≥ 0, yi ≥ 0 =⇒ fi(x) = yixi ≥ 0, ∀i = 1, . . . , n,

fi(x) ≥ 0 =⇒ θi(f(x)) ≥ 0 =⇒ θ̄i(f(x)) ≥ 0∀i = 1, . . . , n. (5.51)

Inequalities (5.50) and (5.51) can not hold simultaneously. Hence, x0 is an efficient

solution of the cumulatively ordered multiple criteria problem, which by Theorem

3.1 is an equitably efficient solution of the MOP.

Alternatively, using the definition of efficient solutions, it can be easily ver-

ified that any x0 ∈ X for which f(x0) = 0, is efficient.

This, coupled with the fact that all the criteria values are equal, namely 0, proves

that x0 is an equitably efficient solution of MOP.

Since x ∈ X, xi ≥ 0, yi ≥ 0, yixi = 0, where yi = Mix + qi,∀i = 1, . . . , n, x0 solves

the LCP.

Remark 5.2. From Theorems 5.5 and 5.6 it is clear that any feasible solution of

MOP at which all the objective values attain the value zero, is equitably efficient.
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Corollary 5.1. x0 ∈ X is an equitably efficient solution with fi(x
0) = 0, ∀ i =

1, . . . , n, if and only if x0 solves LCP.

Proof. The proof follows from Theorems 5.5, 5.6 and Remark 5.2.

Remark 5.3. In general, the set of equitably efficient solutions of a MOP is a

proper subset of the set of equitably efficient solutions of the MOP. This follows

from the fact that equitably efficient solutions are obtained by imposing additional

conditions on the Pareto preference that identifies efficient solutions. For the MOP

related to the LCP, the set of equitably efficient solutions, if there exists one, is the

same as the set of efficient solutions.

Corollary 5.2. If LCP(q,M) has a solution, then the set of efficient solutions of

MOP and the set of equitably efficient solutions of MOP are non-empty and identical.

If x is in either of these sets, then fi(x) = 0, i = 1, . . . , n.

Proof. Follows from Theorem 5.5 and Remark 5.3.

The following two chapters demonstrate equitably efficient solutions by ap-

plying the concept to problems as diverse as linear regression analysis and asset

allocation.
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CHAPTER 6

EQUITABLE EFFICIENCY AND REGRESSION ANALYSIS

The problem of parameter estimation in regression analysis is well known

and widely studied. Regression analysis models the relationship between a response

or the dependent variable, usually named y and one or more predictor or the inde-

pendent variables, usually named x’s. Linear regression assumes the best estimate

of the response variable as a linear function of some unknown parameters, the re-

gression parameters, while in nonlinear models, relationship between variables to

be analyzed is nonlinear in the parameters. Deviation between the observed or the

actual value of the response variable and the value obtained from the regression

function is called the error. The goal of regression analysis is to choose the regres-

sion parameters so as to minimize some function of these errors. Depending on

the data under study, various error functions are used to model the problem, the

ones commonly used being the least squares regression function, regression function

formed by taking the maximum of the absolute deviations and the one formed by

summing the absolute deviations. When relationship between the variables can not

be adequately described by linear models, nonlinear models are applied to the data.

In this chapter we study some regression models as multiple criteria opti-

mization models. Since regression is concerned with minimization of some function

of the errors, there seems no reason to treat these errors in any way but equitable.

We start by defining the problem as is done in statistical literature, provide an al-

ternative equitable multiple criteria optimization formulation and apply methods of

multiple criteria optimization to obtain various equitably nondominated errors in

the criteria space and correspondingly, equitably efficient solutions in the parameter

space. We further notice how the regression parameters of the ordinary statistical

model can be identified as an equitably efficient solution of the related multi criteria

optimization problem in a limiting sense.



Statistical models start with certain assumptions on the distribution of the underly-

ing data. Irrespective of the statistical distribution of the errors, our multi-criteria

model can be used to obtain the parameters resulting in equitable errors.

6.1 Linear Regression Problem

Regression analysis is concerned with the problem of predicting the values of

a variable, called the dependent or the response variable, on the basis of information

provided by other variables, called the independent, predictor or regression variables.

Let Y , an n × 1 vector, denote the values of the response variable corre-

sponding to X, an n × k matrix of the values of the regressor variables. Then

(RM) : Y = β0η + Xβ + ǫ

is the multiple linear regression model, where β0, a scalar, β, a k × 1 vector of

unknown parameters, are the regression parameters, η is a n× 1 vector of ones and

ǫ is a n×1 vector of unobservable random errors. The objective of regression analysis

is to estimate the regression parameters in a way so as to minimize the deviations

between the actual values of Y from those obtained by the regression model. This

’closeness’ between the two Y values is expressed in terms of Lp-norms, resulting in

minimization problems of the form

minimize (
n∑

i=1

|ei|
p)

1
p , p ≥ 1

where ei = yi − (b0 + xi · b), i = 1, . . . , n.

yi, then denotes an estimate of the ith element of the vector Y . xi is the ith row of

the matrix X, b0 is a scalar and b is a k × 1 vector. b0 and b1 give estimates of β0

and β respectively.

The three most common approaches of estimating β correspond to the cases where

p = 1, 2 and p = ∞.
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p = 1 represents the L1-norm estimation problem, commonly referred as MSAE,

minimizing sum of absolute errors,

(MSAE) : minimize

n∑

i=1

|ei|.

For p = ∞, the L∞-norm estimation problem, known as MMAE, minimizing max-

imum of absolute errors, is defined as

(MMAE) : minimize max
i=1,...n

|ei|.

The optimization commonly used in regression analysis corresponds to the case when

p = 2, called the L2-norm estimation problem. This problem is more frequently

referred as MSSE, minimizing sum of squared errors or the least squares regression

problem,

(MSSE) : minimize (

n∑

i=1

(|ei|)
2)

1
2 .

6.2 Multi-criteria Formulation of the
Linear Regression Problem

The MSSE criterion of parameter estimation results in the best linear un-

biased estimator of the parameters, Arthanari and Dodge (1981). The criterion

is optimal and results in the maximum likelihood estimates only if the errors are

independent and follow a normal distribution with mean zero and common vari-

ance σ2, but for non-gaussian distributions, the estimators might be far away from

optimal(Andrews, 1974). In(Hogg, 1974), the author demonstrates that the effect

of outliers that occur at the extreme values of the predictor variables can be very

disruptive. Similar limitations apply for the MSAE estimators too. MSAE estima-

tion procedure is preferred to the MSSE when errors follow contaminated normal

distribution(Ekblom, 1974).

The problem of estimating the regression parameters of regression models of

the form (RM) via multiple criteria formulations have been studied earlier by some

authors. In(Narula and Wellington, 1980, 2002), the authors formulate the multiple

regression problem as a multiple criteria problem by considering MSSE, MAAE and

65



MSAE as three different criteria. They argue that under certain circumstances,

choice of a single criterion might not be appropriate for estimating the parameters

and propose alternative ways of using combinations of these three different criteria,

rather than a single one, to estimate the parameters. In(Narula and Straubel,

1992), the authors propose similar procedure for parameter estimation in nonlinear

regression models.

Its noteworthy that the aforesaid criteria are incommensurate in the sense that

they are different in nature and hence can not be directly compared, but for any of

the given MSSE, MSAE or the MMAE measures, all the errors for any particular

measure are commensurate as they represent outcomes that have the same physical

interpretation and units.

Let

ei = yi − (b0 + xi · b), i = 1, . . . , n,

where (b0, b) is the vector estimating the vector (β0, β) of parameters and ei denotes

the error associated with the i − th observation.

Let

ρ : R −→ R,

denote the criterion function associated with the error. The multi-criteria regression

model associated with the linear regression problem, then, is defined as the problem

(MCRP ) : minimize {ρ(e1), . . . , ρ(en)}.

If

ρ(e) = e2,

we have the multi-criteria alternative of the linear L2-norm estimation problem,

given by,

(MCLSQ) : minimize {e2
1, . . . , e

2
n}

and if

ρ(e) = |e| ,
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the multi-criteria model corresponding to the linear L1-norm estimation is given by

(MCAE) : minimize {|e1|, . . . , |en|}.

Note that the (MMAE) model of linear regression can be obtained by applying

minimax optimization to the (MCAE) model.

In the next section we apply the (MCLSQ) model to estimate the regression

parameters from an equitable point of view. We also see that the solution to the

(MSSE) model can be obtained as an equitably efficient solution of the related

multi-criteria problems for a particular limiting sequence of weights. The method is

applicable to other regression models too.

6.3 Equitably Efficient Solutions of the
Multiple Criteria Regression Model

In most cases, choice of a specific regression model to fit a data set depends

on the problem under study. For example, ordinary least squares is unsuitable for a

data where the errors are not normally distributed. even for data where the errors

are normally distributed, the least squares estimation is more sensitive to outliers

and are often removed from the data before applying the principles of least squares

estimation. In certain cases, for example, in biological data sets, it might not be

wise to remove the outliers as they might be the ones being more responsible for a

meaningful interpretation of the model. Equitable models can be considered as an

alternative way to to study such problems, where it is desirable to retain the outliers

and treat the errors uniformly. As the goal of the modeling is to produce equitable

solutions, no assumption is superposed on the underlying data set.

6.3.1 Equitable solutions of the MCLSQ model

Consider the MCLSQ problem defined earlier,

(MCLSQ) : minimize {e2
1, . . . , e

2
n} ,
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where, ei = yi − (b0 + xi.b). Let f = {e2
1, . . . , e

2
n}.

Let

θ1(f) ≥ θ2(f) ≥ . . . θn(f)

denote the nonincreasing ordering of the components of f and

θ̄i(f) =

i∑

j=1

θj(f), i = 1, . . . , n.

From Corollary 3.1, finding equitably efficient solutions of MCLSQ is equivalent to

finding efficient solutions of the problem

(OWAMCLSQ) : minimize {θ̄1(f), . . . , θ̄n(f)}.

Ordering the functions in OWAMCLSQ makes it difficult to make the problem

implementable, but the above problem can be reduced to an equivalent problem,

Kostreva et al. (2004),

minimize {z1, . . . , zn}

subject to zk = ktk +
n∑

i=1

dik, k = 1, . . . , n (6.1)

tk + dik ≥ e2
i , i, k = 1, . . . , n.

We apply the weighted method to the convert the above problem to

minimize

n∑

i=1

wizi

subject to zk = ktk +
m∑

i=1

dik, k = 1, . . . , n,

tk + dik ≥ e2
i , i, k = 1, . . . , n,

dik ≥ 0 for all i, k = 1, . . . , n,

where, w = (w1, . . . , wn), wi > 0 for all i = 1, . . . , n is a given weighting vector.

Solving the above problem by varying the weights results in various efficient solutions

of OWAMCLSQ, which, in turn are equitably efficient solutions of MCLSQ.
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In particular, for 0 < ǫ < 1, consider the weighting vectors w ∈ Rn given by

w = (ǫ, . . . , ǫ, 1 − ǫ).

0 < ǫi < 1 =⇒ wi > 0, ∀i = 1, . . . , n.

Every optimal solution of the weighted problem

minimize { w1θ̄1(f) + w2θ̄2(f) + . . . + wnθ̄n(f)},

is an efficient solution of OWAMCLSQ, which, by Corollary 3.1, is an equitably

efficient solution of MCLSQ.

As a limiting case, the weighting vector given by

w = lim
ǫ→0

(ǫ, . . . , 1 − ǫ)

generates an equitably efficient solution of MCLSQ. Note that such a weighting

vector tends to minimize the function

θ̄n(f) =

n∑

j=1

θj(f)

= e2
1 + . . . e2

n,

which is the objective function of the ordinary least squares problem.

By making ǫ sufficiently close to zero, one is able to generate solutions that are not

only equitably efficient but stay close enough to the solution of the ordinary least

squares problem. Hence, in addition to obtaining various equitably efficient solutions

to the multi-criteria model, the solution of the ordinary least squares problem can

be viewed as an equitably efficient solution for a particular limiting sequence of

weights.

In the following section, we obtain equitable estimators of a numerical prob-

lem.

6.3.2 Example

Consider the data set in table 6.1(Arthanari and Dodge, 1981).
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Table 6.1 Example Data

Observation Number(i) yi xi

1 2 5
2 5 4
3 4 6
4 8 9
5 3 7

The linear least squares estimators for this data set are obtained as the

optimal solution of the problem

minimize {
5∑

i=1

(yi − (b0 + b1xi))
2, s.t. (b0, b1) ∈ R2}.

Table 6.2 gives the least squares estimators of the data along along with the squared

errors and the sum of squared errors.
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Table 6.2 Least Squared Estimators and Corresponding Errors

Estimators(bi) Squared Errors(e2
i ) Sum of Squared Errors

b0 b1 e2
1 e2

2 e2
3 e2

4 e2
5

∑5
i=1 ei

2

-0.0416 0.7162 2.3733 4.7336 0.0659 2.5427 3.8926 13.6081
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We obtain some some equitably efficient parameters of the MCLSQ model

ensuring that the errors are equitably nondominated in the criteria space.

Equitably efficient solutions of MCLSQ problem are obtained as equitably efficient

solutions of the problem

minimize {(y1 − (b0 + b1x1))
2, . . . , (y5 − (b0 + b1x5))

2, s.t. (b0, b1) ∈ R2},

which, by (6.1), can be obtained by finding the efficient solutions of the problem

minimize {z1, . . . , z5}

subject to zk = ktk +
5∑

i=1

dik, k = 1, . . . , 5, (6.2)

tk + dik ≥ (yi − (b0 − b1xi)
2, i, k = 1, . . . , 5,

(b0, b1) ∈ R2.

Efficient solutions of (6.2) can be obtained as optimal solutions of the single-objective

weighted problem

minimize

5∑

i=1

wkzk

subject to zk = ktk +
5∑

i=1

dik, k = 1, . . . , 5,

tk + dik ≥ (yi − (b0 + b1xi))
2, i, k = 1, . . . , 5,

dik ≥0 for all i, k = 1, . . . , 5,

for given weighting vectors (w1, . . . , w5), where wi > 0 for all i = 1, . . . , 5.

Table 6.3 presents some of the equitably efficient solutions for certain vector

of weights while Table 6.4 presents the equitably efficient solutions along with the

individual squared errors as well as the sum of squared errors.
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Table 6.3 Equitable Estimators and Corresponding Weights

Weights(wi) Equitable Estimators(bi)

w1 w2 w3 w4 w5 b0 b1

0.0100 0.0100 0.0100 0.0100 0.9600 0.0241 0.7072
0.0100 0.0100 0.0100 0.4600 0.5100 0.0624 0.7054
0.0100 0.0100 0.0100 0.9100 0.0600 0.1111 0.7017
0.0100 0.0100 0.4600 0.0100 0.5100 0.6829 0.6167
0.0100 0.0100 0.4600 0.4600 0.0600 0.7635 0.6052
0.0100 0.0100 0.9100 0.0100 0.0600 0.8000 0.6000
0.0100 0.4600 0.0100 0.0100 0.5100 0.7000 0.6000
0.0100 0.4600 0.0100 0.4600 0.0600 0.7277 0.6000
0.0100 0.4600 0.4600 0.0100 0.0600 0.8000 0.6000
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Table 6.4 Equitable Estimators with Errors and Squared Errors

Equitable Squared Sum of
Estimators(bi) Errors(e2

i ) Squared Errors

b0 b1 e2
1 e2

2 e2
3 e2

4 e2
5

∑5
i=1 e2

i

0.0241 0.7072 2.4346 4.6093 0.0716 2.5943 3.8999 13.6097
0.0624 0.7054 2.5257 4.4780 0.0868 2.5257 4.0000 13.6162
0.1111 0.7017 2.6226 4.3356 0.1031 2.4771 4.0917 13.6301
0.6829 0.6167 3.1207 3.4232 0.1469 3.1207 4.0000 13.8114
0.7635 0.6052 3.2026 3.2965 0.1559 3.2026 4.0000 13.8576
0.8000 0.6000 3.2400 3.2400 0.1600 3.2400 4.0000 13.8800
0.7000 0.6000 2.8900 3.6100 0.0900 3.6100 3.6100 13.8100
0.7277 0.6000 2.9851 3.5054 0.1074 3.5054 3.7162 13.8194
0.8000 0.6000 3.2400 3.2400 0.1600 3.2400 4.0000 13.8800
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From Table 6.4, we find that the first three solutions have sum of squared

errors very close to that obtained for the ordinary least squares regression of Table

6.2. Comparing the range of the individual errors, we see that these equitable

solutions are lesser dispersed than the ordinary least squares solution. For the

remaining solutions, the sum of squared errors are relatively higher but the solutions

are much less dispersed, thereby, reducing inequity. Equity of these solutions can

be considered to compensate for the increase in the sum of squares values.

Table 6.5 presents some equitably efficient solutions for limiting sequence

of weights and Table 6.6 presents the equitably efficient solutions with individual

squared errors and sum of squared errors corresponding to these weights.
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Table 6.5 Equitable Estimators and Corresponding Weights

Weights(wi) Equitable Estimators(bi)

w1 w2 w3 w4 w5 b0 b1

0.00001 0.00001 0.00001 0.00001 0.99999 -0.0405 0.7162
0.00002 0.00002 0.00002 0.00002 0.99998 -0.0404 0.7162
0.00003 0.00003 0.00003 0.00003 0.99997 -0.0403 0.7163
0.00004 0.00004 0.00004 0.00004 0.99996 -0.0402 0.7162
0.00005 0.00005 0.00005 0.00005 0.99995 -0.0401 0.7162
0.00006 0.00006 0.00006 0.00006 0.99994 -0.0400 0.7162
0.00007 0.00007 0.00007 0.00007 0.99993 -0.0399 0.7162
0.00008 0.00008 0.00008 0.00008 0.99992 -0.0399 0.7162
0.00009 0.00009 0.00009 0.00009 0.99991 -0.0398 0.7161
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Table 6.6 Equitable Estimators with errors and Squared Errors

Equitable Estimators(bi) Squared Errors(e2
i ) Sum of Squared Errors

b0 b1 e2
1 e2

2 e2
3 e2

4 e2
5

∑5
i=1 e2

i

-0.0405 0.7162 2.3734 4.7334 0.0659 2.5427 3.8927 13.6081
-0.0404 0.7162 2.3735 4.7332 0.0660 2.5427 3.8928 13.6081
-0.0403 0.7163 2.3736 4.7329 0.0660 2.5426 3.8929 13.6081
-0.0402 0.7162 2.3738 4.7327 0.0660 2.5426 3.8931 13.6081
-0.0401 0.7162 2.3739 4.7324 0.0660 2.5425 3.8932 13.6081
-0.0400 0.7162 2.3741 4.7322 0.0660 2.5424 3.8934 13.6081
-0.0400 0.7162 2.3743 4.7319 0.0661 2.5423 3.8935 13.6081
-0.0399 0.7162 2.3745 4.7316 0.0661 2.5423 3.8937 13.6081
-0.0398 0.7161 2.3747 4.7313 0.0661 2.5422 3.8939 13.6081
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From Table 6.6, except for round-off errors, the range of dispersion of equi-

table errors for any solution are almost similar to the dispersion range of the solution

obtained using the ordinary least squares procedure. The sum of squared errors for

these solutions are very close to the least squares solution. This seems to justify

the applicability of the equitably efficient concept to the least squares regression

problem which demands equity in treatment of individual errors.
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CHAPTER 7

EQUITABLE ASSET ALLOCATION FOR

SINGLE PERIOD INVESTMENT

Portfolio allocation is concerned with investing an initial outlay of capital

into a number of assets whose returns are uncertain. In single period allocation,

money is invested at the initial time and payoff is attained at the end of the time-

period. Uncertainty associated with the returns make the investment risky and the

investor is faced with the task of investing judiciously so as to maximize his expected

portfolio return with minimum risk involved. Portfolio problem, thus, is a bicriteria

problem consisting of two criteria, expected return and risk of returns, the former

being maximized and the latter being minimized.

Different risk measures associated with the returns are studied in portfolio literature,

variance of returns being the most commonly used. Markowitz (1952) formulated

the portfolio selection problem as a parametric quadratic programming problem

in which the variance of the returns is minimized subject to the constraint that

the required expected return is warranted(Teo and Yang, 2001). Diversifying by

investing suitable amounts in different financial instruments tends to reduce the

overall risk of the portfolio.

Asset allocation is the term given to portfolio allocation where that the

financial instruments under consideration are divided into different asset classes.

For example, if we are looking for an investment strategy to invest in stocks, bonds

and futures on commodities, it is better to have two asset classes, one composed of

stocks and bonds and the other composed of the futures. The underlying principle is

based on the correlation between assets in different classes. Futures on commodities

tend to be negatively correlated to stocks and bonds and dividing the classes on

basis of the correlation tends to reduce the risk.



In this chapter we look at the problem of asset allocation by dividing the

assets under suitable classes. The asset returns being random and each state of

nature being equally probable, it seems justified to treat each class, or more specif-

ically, the return from each, uniformly. In this way we create an objective function

for each class which corresponds to the expected return from that class and look for

equitably efficient solutions of this multiple objective problem. This ensures lesser

dispersion of returns relative to each other than that one would expect by maximiz-

ing the expected return from all the classes grouped together. This might provide

added protection in the case the most favored stock goes down drastically.

Our formulation differs from the traditional approach too in the sense that the ex-

pected returns from each class solely form the objective functions of the problem

while keeping the variance of the assets completely outside the objectives domain.

This ensures that we are not comparing two entities that have totally different units

and thus avoids the need of any scaling.

7.1 Multiple Criteria Asset Allocation Problem

Consider the set J = {S1, . . . , Sn} consisting of n assets. Let

J = ∪m
i=1Ji, where Ji ⊂ J and Ji ∩ Jj = φ for i 6= j

denote the m asset classes in which the n assets are divided. Without loss of

generality, let

J1 = {S1, . . . , Sk1}

J2 = {Sk1+1, . . . , Sk1+1+k2}, ....

Jm = {Skm−1+1, . . . , Skm−1+1+km
}, km = n.

Let R = (ri)
n
i=1 be the row vector denoting the random rate of return of stock i,

X = (xi)
n
i=1 be the row vector of the fraction of money invested in asset i. Further,

let E(ri) = r̄i represent the expected return from asset i. Expected return from the
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m asset classes, then, are given by

E(R1) = E(r1x1 + . . . ,+rk1xk1)

= E(r1)x1 + . . . ,+E(rk1)xk1

= r̄1x1 + . . . ,+r̄k1xk1 , . . . ,

E(Rm) = E(rkm−1+1xkm−1+1 + . . . + rkm−1+1+km
xkm−1+1+km

)

= E(rkm−1+1)xkm−1+1 + . . . + E(rkm−1+1+km
)xkm−1+1+km

= r̄km−1+1xkm−1+1 + . . . + r̄km−1+1+km
xkm−1+1+km

.

If A denotes the n × n matrix representing the covariance between the returns

from the n assets, then our problem is to maximize the expected returns of each

class subject to bounds on the covariance of the asset classes. Mathematically, the

multiple-criteria asset allocation is defined as

(MCAAP ) : maximize{E(R1), . . . , E(Rm)}

subject to Cmin ≤ XAXt ≤ Cmax

∑n
i=1 xi = 1

xi ≥ 0,

where Cmin and Cmax represent reasonable lower and upper bounds on the risk of

investment.

Our goal is to find equitably efficient allocations.

7.2 Two-phase Solution Procedure

Solution of MCAAP depends on the risk level, which, in turn, depends on

the covariance matrix A. Choosing the risk level arbitrarily might make the problem

infeasible. Reasonable values of Cmin and Cmax can be obtained by finding bounds

on the portfolio variance.
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In phase 1, we solve the following single objective optimization problems:

(SOPI) : maximize XAXt

subject to

n∑

i=1

E(Ri) = z

n∑

i=1

xi = 1

xi ≥ 0, i = 1, . . . , n

and

(SOPII) : minimize XAXt

subject to

n∑

i=1

E(Ri) = z

n∑

i=1

xi = 1

xi ≥ 0, i = 1, . . . , n,

where z is a variable.

Let Cmax be the optimal objective value of SOPI and Cmin be the optimal objective

value of SOPII.

In phase 2 we can use corollary (4.1) or results from sections 4.2.1 and 4.2.2 to find

some equitably efficient asset allocations of MCAAP by setting the risk level bounds

Cmin and Cmax obtained from phase 1. Depending on the method used, phase 2

results in one or several equitably efficient solutions. For instance, if corollary (4.1)

is used and minimax problem has a unique solution, then we get one equitably

efficient solution. Equitably efficient allocations tend to reduce risk by selecting

portfolios with returns less dispersed relative to each other. In the next section we

present a numerical example and compare the solutions obtained using the equitable

approach to that obtained using the traditional multiple-criteria approach.
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7.3 Example

Consider the data in Table 7.1 that gives the monthly returns and standard

deviations of commodity futures and bonds from July 1959 to December 2004(Gor-

ton and Rouwenhorst, 2005). The calculated variances are also shown. The corre-

Table 7.1 Example Data

Commodity Futures Bonds

Average Return(r̄) 0.89 0.64
Standard Deviation(σ) 3.47 2.45

Variance(σ2) 12.0409 6.0025

lation between bonds and commodities futures during that period was -0.14. The

correlation being negative, its better to take the two instruments as two different

asset classes.

The correlation between to random variables X and Y is given by

ρ(X, Y ) =
cov(X, Y )

σXσY

.

The covariance between commodities futures and bonds is

cov = −0.14 ∗ 3.47 ∗ 2.45 = −1.1902.

The covariance matrix for returns of futures and bonds is given in Table 7.2.
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Table 7.2 Covariance Matrix

Commodities Futures Bonds
Commodities Futures 12.0409 -1.1902
Bonds -1.1902 6.0025

From Tables 7.1 and 7.2 we see that the maximum return on commodities

futures is about 40% higher than that on the bonds but the associated risk is almost

double. The comparitive higher return comes with a relatively higher risk. The two

assets are negatively correlated too. A conservative investor would like to maximize

his return without taking too much risk. Under such circumstances it seems more

reasonable to look for allocations where the difference between the weights assigned

to the two assets is not too huge. Hence, we look for allocations that are efficient as

well as equitable. Equitably efficient allocations of the two asset allocation problem

are obtained by finding equitably efficient solutions of the problem

(BCAAP ) : maximize{r̄1x1, r̄2x2}

subject to Cmin ≤ XAXt ≤ Cmax

x1 + x2 = 1

x1, x2 ≥ 0,

where r̄1 = 0.89 and r̄2 = 0.64 represent the expected returns on futures commodities

and bonds respectively.

Phase 1 optimal solutions of the single objective problems associated with BCAAP
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are obtained by solving the problems

maximize XAXt

subject to r̄1x1 + r̄2x2 = z

x1 + x2 = 1 (7.1)

x1, x2 ≥ 0

and

minimize XAXt

subject to r̄1x1 + r̄2x2 = z

x1 + x2 = 1 (7.2)

x1, x2 ≥ 0

where x1 and x2 are the fractions invested in commodities futures and bonds re-

spectively.

Optimal solutions of (7.1) and (7.2) along with the objective values are

(x1, x2, z, XAXt) = (1.0000, 0.0000, 0.8900, 12.0409)

(x1, x2, z, XAXt) = (0.3522, 0.6478, 0.7280, 3.4694).

In phase 2, we solve BCAAP by setting Cmin = 3.47 and Cmax = 12.04. The two-

phase minimax method from Corollary 4.1 yields the equitably efficient asset given

in Table 7.3.
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Table 7.3 Equitable Assets using 2-phase Minimax

Futures Bonds Futures Return Bonds Return Variance

x1 x2 E(R1) E(R2) XAX
′

0.3522 0.6478 0.3134 0.4146 3.4694

Several equitably efficient solutions of BCAAP can be obtained by applying

equitable scalarizations from section 4.2 or applying the weighted method to the

ordered weighted averaging formulation

maximize {θ̄1(r̄1x1, r̄2x2), θ̄2(r̄1x1, r̄2x2)}

subject to Cmin ≤ XAXt ≤ Cmax

x1 + x2 = 1 (7.3)

x1, x2 ≥ 0.

Since

θ̄1(r̄1x1, r̄2x2) = maximum {r̄1x1, r̄2x2}

and

θ̄2(r̄1x1, r̄2x2) = r̄1x1 + r̄2x2,
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formulation (7.3) is equivalent to

maximize {y, r̄2x2 + r̄2x2}

subject to Cmin ≤ XAXt ≤ Cmax

r̄1x1 ≤ y (7.4)

r̄2x2 ≤ y

x1 + x2 = 1

x1, x2 ≥ 0.

Table 7.4 presents some of the equitably efficient allocations of BCAAP

obtained by applying the weighting method to formulation (7.4). Table 7.5 presents

efficient allocations of BCAAP.
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Table 7.4 Equitably Efficient Assets

Futures Bonds Futures Bonds Net Absolute Variance
Return Return Return Difference

x1 x2 E(R1) E(R2) E(R1)+E(R2) |E(R1)-E(R2)| XAX
′

0.4264 0.5736 0.3795 0.3671 0.7466 0.0124 3.5819
0.3487 0.6513 0.3103 0.4169 0.7272 0.1065 3.4697
0.3389 0.6611 0.3017 0.4231 0.7247 0.1214 3.4730
0.3271 0.6729 0.2911 0.4307 0.7218 0.1395 3.4823
0.4152 0.5848 0.3695 0.3743 0.7438 0.0048 3.5505
0.3406 0.6594 0.3031 0.4220 0.7251 0.1189 3.4722
0.3813 0.6187 0.3394 0.3960 0.7353 0.0566 3.4868
0.3408 0.6592 0.3033 0.4219 0.7252 0.1185 3.4721
0.3520 0.6480 0.3133 0.4147 0.7280 0.1014 3.4694
0.3599 0.6401 0.3203 0.4097 0.7300 0.0894 3.4706
0.3830 0.6170 0.3409 0.3949 0.7358 0.0540 3.4889
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Table 7.5 Efficient Assets

Futures Bonds Futures Bonds Net Absolute Variance
Return Return Return Difference

x1 x2 E(R1) E(R2) E(R1)+E(R2) |E(R1)-E(R2)| XAX
′

0.5596 0.4404 0.4981 0.2818 0.7799 0.2162 4.3485
0.3742 0.6258 0.3330 0.4005 0.7335 0.0675 3.4793
0.2470 0.7530 0.2198 0.4819 0.7017 0.2621 3.6954
0.2510 0.7490 0.2233 0.4794 0.7027 0.2560 3.6787
0.3589 0.6411 0.3194 0.4103 0.7297 0.0909 3.4703
0.3849 0.6151 0.3425 0.3937 0.7362 0.0511 3.4913
0.2882 0.7118 0.2565 0.4555 0.7121 0.1990 3.5529
0.3042 0.6958 0.2707 0.4453 0.7160 0.1746 3.5165
0.6208 0.3792 0.5525 0.2427 0.7952 0.3098 4.9432
0.6281 0.3719 0.5590 0.2380 0.7970 0.3210 5.0242
0.4273 0.5727 0.3803 0.3665 0.7468 0.0138 3.5848
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From Table 7.4 we find that the maximum absolute difference of returns

for the equitably efficient allocations is 0.1395 corresponding to allocation 4 and the

minimum is 0.0045 corresponding to asset 5. The net returns corresponding to these

allocations are 0.7218 with a variance of 3.4283 and 0.7438 with a variance of 3.5505,

respectively. The dispersion of the components of the outcome vectors(individual

returns) lie between 0.0048 and 0.1315. The variances for all the allocations are

reasonably low and are much lower than the individual variances of the two assets.

Equitable assets, thus, provide better hedge against investment risk by eliminating

allocations with disproportionate returns. Even if one class under performs, we can

expect a some what ’balanced’ return from the other.

From Table 7.5 we see that most of the allocations are widely dispersed in

their returns, compared to the equitably efficient allocations. The allocations with

low dispersion have returns and variances similar to the equitable ones. For the

assets with wide dispersions, the higher returns are out weighed by the relatively

higher variances. such allocations, despite their higher returns, provide reduced

hedge against risk in case the class with higher return under performs.

In Table 7.6 we present efficient portfolios for the same data from Table

7.2 without dividing the assets into classes. We apply the classical mean-variance

portfolio approach to obtain the solutions. Its evident from the Table that except for

the last portfolio, returns and variances for the remaining ones are similar and close

to those obtained by asset-class division approach of Table 7.4. In fact, the equitable

approach eliminates the last portfolio which has a some what higher return at the

expense of reasonably higher variance. Hence finding equitably efficient allocations

after carefully dividing into suitable classes seems to reduce the investment risk by

assigning allocations with equitable returns.

Figures 7.1 and 7.2 present comparative plots of the equitably efficient assets

and efficient assets respectively of our 2-class asset allocation problem. Figure 7.3

is a plot of efficient portfolios without using the class approach and applying the

classical mean-variance approach of Markovitz.
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Table 7.6 Efficient Mean-Variance Portfolio

Portfolio Return Variance

E(R) XAX
′

0.7280 3.4694
0.7282 3.4694
0.7284 3.4695
0.7287 3.4696
0.7291 3.4698
0.7296 3.4702
0.7303 3.4712
0.7316 3.4736
0.7342 3.4817
0.7418 3.5314
0.8900 12.0409

Figure 7.1 Equitably Efficient Assets in the Criteria Space
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Figure 7.2 Efficient Assets in the Criteria Space
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Figure 7.3 Mean-Variance Efficient Portfolio in the Criteria Space
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Next chapter is the last chapter of our present research in which we conclude

our work with some suggestions for future research.
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CHAPTER 8

CONCLUSION AND FUTURE WORK

The objective of our work is to study the theory and methodology of equi-

table efficiency in multiple-criteria optimization, stress its importance and demon-

strate its relevance by means of applications. In the present chapter, we summarize

the findings pertaining to our goal and present some directions for future research.

The first two chapters presented a brief introduction and literature review

on equitable efficiency in multiple criteria optimization. After introducing the no-

tations and terminology required in our work, we developed some characterizations

of equitably efficient solutions. Ordering of objective functions is hard to imple-

ment in practice. Toward a theoretical foundation of equitable efficiency, we came

up with additional ways of generating such solutions by building equitable aggrega-

tions based on strictly-Schur-convex functions. The single-objective optimizations

problems resulting from these aggregations being independent of the ordering of the

objective functions remove the onus of ordering of objective functions, and thus,

focus on ways of generating equitable solutions by working with the objective func-

tions directly. Furthermore, our methods do not assume any special structure on the

optimization problem and are able to generate several equitably efficient solutions

by varying the parameter.

The minimax procedure is widely discussed in many areas of optimization including

multiple-criteria optimization. We proved that the two-phase minimax method can

be used to find equitably efficient solutions. We addressed a question related to the

existence of equitably efficient solutions for linear MCOPs.

In the next part of our work, we demonstrated the relevance of equitable

efficiency by showing its relation to matrix games and linear complementarity prob-

lems. We showed how zero-efficient solutions, as defined by some authors in an



earlier work, are the same as equitably efficient solutions with specific objective val-

ues. Because equitable dominance is a refinement of Pareto dominance, the set of

equitably efficient solutions is, in general, a subset of the efficient solutions. Chap-

ter 5 demonstrated the equivalence of equitably efficient and efficient solutions for

a MCOP related to a particular class of linear complementarity problems.

In Chapters 6 and 7 we presented the problems of regression analysis and

asset allocation where the application of equitable efficiency might be relevant. In

the past, regression problems were studied as a multi-criteria optimization problem

but none of the previous papers in the area addressed the issue of equitable treatment

of regression errors. We considered all the errors to be uniform, which seemed

justified too, and thus obtained solutions in which all the errors are treated in an

equitable manner. In our view, the equitable asset allocations from Chapter 7 can

be justified from a risk-averse investor’s view point. A risk averse investor may

prefer almost similar returns from two different asset classes than bearing the risk

of losing too much in case the preferred asset class performs unexpectedly.

Future work

The issue of equitable efficiency in multiple-criteria optimization is not much

explored in the literature. We have developed some theory related to finding equi-

tably efficient solutions by means of equitable aggregations. There is much potential

for future work on finding ways to generate equitably efficient solutions using existing

scalarizations of finding efficient solutions. The applicability of such scalarizations,

for example, the epsilon-constraint scalarization(Chankong and Haimes, 1983), ap-

plied to the ordered weighted problem, is one area of concern.

Equitably efficient solutions are contained within the set of efficient solutions. An-

other direction of research is a two-phase method in which efficient solutions from

phase 1 are used to find equitably efficient solutions in phase 2.

We demonstrated the applicability of equitable efficiency to two different

problems. Another problem of interest is from stratified sampling. Optimization
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models have been applied to such problems in the past. (Mulvey, 1983), demon-

strates that such problems are special cases of facility location problems. Loca-

tion problems are well studied in terms of equitable efficiency(Ogryczak, 2000).

Analysing the sampling results on the basis of equity deserves attention.

As another area of application, we would like to apply equity models to

problems of machine utilization in multi period production systems. For each period

we are interested in maximizing the fraction of time the machine is utilized(not idle).

For such systems we would like to have solutions that do not result in too disparate

utilization from period to period.

There may be many more questions coming up as the work progresses in the

future.
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