
Clemson University
TigerPrints

All Dissertations Dissertations

12-2007

EFFECT OF CARBON NANOFIBERS ON
MICROSTRUCTURE AND PROPERTIES OF
POLYMER NANOCOMPOSITES
Sungho Lee
Clemson University, sunghol@clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations

Part of the Chemical Engineering Commons

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by
an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Lee, Sungho, "EFFECT OF CARBON NANOFIBERS ON MICROSTRUCTURE AND PROPERTIES OF POLYMER
NANOCOMPOSITES" (2007). All Dissertations. 164.
https://tigerprints.clemson.edu/all_dissertations/164

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/240?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/164?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu


 
 
 
 

EFFECT OF CARBON NANOFIBERS ON MICROSTRUCTURE AND PROPERTIES 
OF POLYMER NANOCOMPOSITES 

 
 
 
 

A Dissertation 
Presented to 

the Graduate School of 
Clemson University 

 
 
 
 

In Partial Fulfillment 
of the Requirements for the Degree 

Doctor of Philosophy 
Chemical Engineering 

 
 
 
 

by 
Sungho Lee 

December 2007 
 
 
 
 

Accepted by: 
Dr. Amod A. Ogale, Committee Chair 

Dr. Douglas E. Hirt 
Dr. Graham M. Harrison 

Dr. Gary C. Lickfield 
 
 
 
 
 
 



 

ABSTRACT 
 
 

 Nano-modifiers are typically three orders of magnitude smaller in size than their 

micro-counterparts. At this scale, interactions between matrix molecules and the nano-

modifiers can lead to novel physical and chemical properties of the resulting 

nanocomposites. Carbon nanofibers (CNFs) are a class of nano-modifiers that has 

received significant attention recently because they have superior electrical conductivity 

and mechanical properties with a high aspect ratio (length over diameter). Several recent 

research studies have focused on enhancing electrical and mechanical performance of 

composites in the presence of CNFs. However, the influence of CNFs on the structure of 

the polymer matrix is important in understanding the role CNFs have on the properties of 

nanocomposites, but this has not been thoroughly examined. Therefore, crystalline and 

orientational structure of CNF/polymer composites was investigated in this study.  

First, the microstructure of two different grades of CNFs, MJ (experimental) and 

PR (commercial), was investigated as a function of different thermal treatments. Using 

Raman spectroscopy and XRD analysis, an enhancement of crystallite size was observed 

after heat treatment at 2200°C. The crystallite thickness increased from 1.6±0.1 nm to 

10.9±0.5 nm for MJ fibers and from 3.1±0.3 nm to 11.7±0.4 nm for PR fibers. Also, an 

increase in thermal oxidation stability for heat-treated CNFs was observed. BET 

adsorption isotherms showed a significant reduction of specific surface area of MJ fibers 

after the heat treatment, resulting from a decrease of pore volume. However, even after 

heat treatment, MJ fibers possessed a rougher surface than did PR fibers. The role of such 

 ii



 

nano-texture was studied on two distinct types of polymeric matrices: flexible-chain and 

semi rigid-rod polymers.  

Linear low density polyethylene (LLDPE), a flexible-chain polymer, is widely 

used for packaging applications because of its film-forming properties and good barrier 

characteristics. However, LLDPE has a poor electrical conductivity, which results in poor 

EMI/ESD shielding. Therefore, CNFs were incorporated into LLDPE to improve 

electrical conductivity. The Electrical percolation threshold was observed at 

approximately 15 wt% MJ (MJ15) and 30 wt% PR (PR30). Tensile modulus increased 

from 110 MPa for pure LLDPE to 200 MPa and 300 MPa for MJ15 and PR15, 

respectively. However, the tensile strength remained fairly unchanged at about 20 MPa. 

Strain-to-failure decreased from 690% for pure LLDPE to 460% and 120% for MJ15 and 

PR15, respectively. This indicates that the interfacial bonding of LLDPE matrix with MJ 

fibers is better than that with PR fibers, possibly due to rougher surface of the MJ fibers. 

Crystallization behavior of LLDPE nanocomposites was investigated in the 

presence of three types of CNFs (MJ, PR, and PRCVD). During non-isothermal 

crystallization studies, all three crystalline melting peaks for LLDPE matrix were 

observed in the presence of PRCVD fibers up to 15 wt% content. However, at only 1 

wt% MJ fibers, the disappearance of the intermediate melting peak was observed. The 

broad melting peak at the lower temperature became larger, suggesting an increase in the 

relative content of thinner lamellae in the presence of MJ fibers. The larger and the 

rougher surface of MJ fibers observed from the nano-textural study contributes toward 

the different crystallization behavior of MJ/LLDPE composites. TEM micrographs of 
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nanocomposites revealed transcrystallinity of LLDPE on the surface of CNFs. Further, a 

broader distribution of LLDPE lamellar thickness was observed in TEM images of MJ 

composites.  

The third major component of this research project was a study on the role of 

CNFs on a thermotropic liquid crystalline polymer (TLCP) matrix possessing a semi 

rigid-rod molecular structure. A variation of anisotropy of the TLCP was investigated in 

the presence of CNFs. Electrical percolation threshold was observed at approximately 5 

wt% MJ fibers. Decrease of tensile modulus and strength was observed for composites. 

For a given type of flow, wide angle X-ray diffraction studies showed a decrease in 

Herman’s orientation parameter from 0.85 for pure V400P to 0.71 for 5 wt% MJ 

composites. Thus, the presence of CNFs led to a reduction of the overall anisotropy of the 

nematic phase in the nanocomposite. 

The disruption of molecular orientation of TLCPs was inferred by SEM and TEM 

analysis. SEM micrographs revealed a fibrillar structure for pure TLCPs at a macro-scale. 

However, this structure was not observed in composites at the same scale although micro-

size fibrils were found with the addition of PR fibers. TEM micrographs displayed 

banded structures of pure TLCPs, but these structures were not significant in the vicinity 

of PR fibers. These results indicate that CNFs can help to reduce the severe anisotropy 

that is otherwise observed for TLCPs. In summary, this study establishes the significant 

role of CNFs as nano-modifiers that help modify the texture of the matrix while serving 

to enhance specific properties, such as electrical conductivity, for the nanocomposites.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Introduction to nanocomposites 

Polymers find significant application in the packaging industry due to their low 

gas and water permeability, and ease of processing. In 2003, the estimated world 

consumption of polymers in film was about 40 million tons [Pardos, 2004]. However, 

polymers can not be used in their unmodified state in electronics packaging because of 

their nonconductive nature. Therefore, polymer composites with conductive fillers have 

been developed to enhance their conductivity [Blythe, 1979]. For instance, carbon fillers 

have been incorporated into various polymers (such as polypropylene, polyethylene, 

poly(methyl methacrylate), poly(ethylene terephthalate), and polycarbonate) to improve 

their electrical and mechanical properties [Avella et al., 1996; Thongruang et al., 2002; 

Huang and Young, 1996; Vilcakova et al., 2002].  

In 1999, Ijima reported the discovery of carbon nanotubes and their unique 

mechanical, thermal, and electrical properties [Ijima, 1999]. Since then, nano-scale 

carbonaceous materials such as carbon nanotubes (CNTs) and carbon nanofibers (CNFs) 

have been investigated [Thostenson et al., 2005]. This interest is natural since nano-scale 

size materials with dimensions on the order of 1-100 nm are crucial for nano-system, 

nano-electronics, and nano-structured materials [Thostenson et al., 2005]. Further, 

nanocomposites consisting of polymer matrices are being used for the fabrication of 

nano-scale devices because polymer nanocomposites provide superior processability.  
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Carbon-based nanocomposites are electrically conductive, and are used as 

housing materials for electrical devices to protect them from electromagnetic interference 

(EMI) and electrostatic discharge (ESD) phenomena. Compared to conventional carbon 

fibers or carbon black, a smaller amount of CNTs or CNFs is needed due to their nano-

scale size and high aspect ratio (length over diameter). Further, it has been reported that 

select mechanical properties (such as tensile modulus) of polymers can be enhanced by 

the presence of CNFs [Kuriger et al., 2002].  

However, polymer nanocomposites with CNT or CNF have been facing critical 

challenges: uniform dispersion and orientation of these reinforcements [Thostenson et al., 

2005]. Due to very strong van der Waals bonding, CNTs or CNFs are often agglomerated, 

which hinders uniform dispersion. Orientation is important to maximize the effect of 

incorporation of CNT or CNF on mechanical properties of nanocomposites. However, it 

is difficult to make nano-scaled CNT or CNF aligned along preferred direction.  

Further, the effect of nanofillers on crystalline and orientational structure of 

polymer matrix is critical to understand properties of polymeric composites with those 

nanofillers. Therefore, basic research is still necessary to understand polymer 

nanocomposites with nano-scale carbonaceous materials.  

 

1.2 Carbon nanofibers (CNFs) 

In the 1880’s, a patent was given for the preparation of carbon filaments from iron 

and a hydrocarbon feed stock [Hughes et al., 1889]. Later on, transmission electron 

microscopy allowed researchers to investigate the growth mechanism and structure of 
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CNFs [Baker et al., 1972]. Also, the discovery of carbon nanotubes (CNTs) [Ijima, 1999] 

and the demand of nano-scale materials in industry has stimulated a significant research 

interest in CNFs [Rodriguez et al., 1995; Toebes et al., 2002; Li et al., 2005; Lim et al., 

2005].      

 

1.2.1 Synthesis of carbon nanofibers 

Chemical vapor deposition (CVD) over a metal catalyst is one of the methods to 

produce CNFs. The CVD process is a controllable, cost-effective technique as compared 

to the arc-discharge and laser ablation methods [Toebes et al., 2002]. Furthermore, this 

technique has been adopted for large-scale production of carbon nanotubes [Tibbetts, et 

al., 2007]. CNFs have diameters on the order of 50-200 nm, which are relatively larger 

than that of CNTs (diameters are the order of 5-30 nm). The length of CNFs ranges from 

1 to 100 μm. The primary advantage of CNFs over CNTs is their lower cost (~$0.2/g 

CNF vs. ~$20/g CNT) which is desirable in large-volume applications. 

For batch-scale preparation of CNFs by CVD, powdered metal catalysts are 

precipitated from solution over substrate and then dried. Subsequently, they are calcined 

in air and reduced in a H2/He flow. These catalysts are dispersed in a ceramic boat, which 

is in the center of a horizontal quartz reactor tube located in a furnace (Figure 1.1).  A 

hydrocarbon source (such as methane, ethane, propane, natural gas, and carbon 

monoxide) is introduced into the reactor along with an inert gas.  
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Figure 1.1. Schematic of CVD reactor for carbon nanofibers. 

 

 

 

 

 

 

 

 

 

 

Figure 1.2. Schematic representation of the catalytic growth of a carbon nanofiber using a 
gaseous carbon-containing gas [Toebes et al., 2002]. 
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During CVD reactions, the hydrocarbon is adsorbed and decomposed on the 

surface of catalyst, and carbon atoms diffuse through the catalyst particle. Finally, carbon 

in a fibrous structure form is precipitated on the other side of the catalyst [Baker et al., 

1972; Rodriguez et al., 1995; Toebes et al., 2002]. Figure 1.2 shows a schematic 

representation of the catalytic growth of CNFs [Toebes et al., 2002].  

It has been reported in the literature that morphology and crystalline structure of 

CNFs depends on the chemical nature of the catalyst and the conditions of the reactions 

[Rodriguez et al., 1995; Rodriguez et al., 1997; Li et al., 2005]. Rodriguez et al. [1995] 

synthesized three different types of CNF structures: platelet, herringbone, and ribbon. In 

the platelet structure, graphene layers are parallel to the fiber axis (Figure 1.3a). These 

CNFs were prepared by decomposition of CO/H2 (4:1) over iron catalyst at 600°C. 

Figure 1.3b displays the herringbone structure, where graphene layers were inclined to 

the fiber axis with a solid core. The decomposition of C2H4/H2 (4:1) over iron-copper 

(7:3) catalyst at 600°C produced this structure. Finally, they reported that graphene layers 

aligned perpendicular to the fiber axis (ribbon structure) by the decomposition of CO/H2 

(4:1) over silica supported iron at 600°C (Figure 1.3c).  

Further, modified platelet and herringbone structures have also been reported 

[Rodriguez et al., 1997; Li et al., 2005]. Helical conformation was prepared by the 

decomposition of C2H6 over iron-nickel (8:2) catalyst at 815°C [Rodriguez et al., 1997]. 

Herringbone structured CNFs, with a hollow core, were grown in a mixed flow CO/H2 

(4:1) over Fe/γ-Al2O3 catalyst system at 600°C [Li et al., 2005].  
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Figure 1.3. TEM and schematic presentations of (a) platelet, (b) herringbone, and (c) 
ribbon structure of CNFs [Rodriguez et al, 1995]. 
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Thus, it is noted that a suitable combination of metal catalyst, carbon precursor, and 

thermal energy makes it possible to selectively synthesize various types of carbon 

nanofibers. 

 

1.2.2 Modification of carbon nanofibers 

Further processing, such as non-catalytic CVD, oxidation, carbonization, and 

graphitization can modify the surface and crystalline structure of CNFs. The diameter of 

CNFs increases by the non-catalytic CVD, which is the deposition process of amorphous 

carbon on the surface of CNFs [Lakshminarayanan et al., 2004].  

It has been reported in the literature that as-grown CNFs are hydrophobic [Toebes 

et al., 2004]. Thus, oxygen-containing groups such as carboxylic and carbonyl groups 

have been introduced by liquid phase oxidative treatment on the surface of CNFs. These 

functional groups make CNFs hydrophilic and their surface more reactive 

[Lakshminarayanan et al., 2004; Toebes et al., 2004; Ros et al., 2002; Shaikhutdinov et 

al., 1995]. An advantage of liquid phase oxidative treatment is that pitting and 

degradation of CNFs is less than that afforded by gas phase oxidative treatment. By acid 

treatment with aqueous solutions of HNO3, or mixture of HNO3 and H2SO4, an increase 

of oxygen content and acidic surface groups was observed. However, acid treatment did 

not affect the crystalline structure of CNFs [Toebes et al., 2004; Ros et al., 2002] even 

though an increase of surface area [Lakshminarayanan et al., 2004] (20-25 to 41-73 m2/g) 

and roughness of surface [Shaikhutdinov et al., 1995] of CNFs were found due to 

oxidative treatments.  
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Carbonization and graphitization processes are essentially heat treatment of 

carbonaceous materials. By definition, carbonization implies heat treatment at 

temperatures of 1700°C or less, whereas graphitization refers to heat treating to higher 

temperatures [Buckley and Edie, 1992]. It should be noted that in most cases, CNFs are 

produced below 1000°C. Graphite is an extremely stable form of carbon. However, CNFs 

possess defects and their structure is irregular. When higher temperatures are applied to 

the CNFs, reorganization occurs to convert them into the more stable graphitic structure. 

During heat treatment, topological changes of CNFs have been observed [Kim et al., 

2001]. It was concluded that the morphological change at the micrometer scale from a 

smooth surface, to a rope-like structure, on to a grain-like structure, was closely related 

with the volume change. Further, a structural transformation from turbostratic to a three 

dimensional graphite was shown in the graphitization process of CNFs [Lee et al., 2001]. 

Endo et al. reported that the formation of energetically stable loops between adjacent 

graphene layers form the unstable edge planes in both the outer surface and the inner 

hollow core (Figure 1.4) [Endo et al., 2003].  

 

1.2.3 Analysis of carbon nanofiber 

Scanning electron microscopy (SEM) and transmission electron microscopy 

(TEM) (Figure 1.4) have been widely used to observe micro- and nano-scaled structure of 

CNFs. Recently, in situ TEM images and movies revealed how carbon nanofibers grow 

on the surface of a nickel catalyst [Helveg et al. 2004].  
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Figure 1.4. (a) High-resolution TEM image of a graphitized carbon nanofiber shows 
unusual morphological features of a graphitized carbon nanofiber. Various types of loops 
project from the outer and inner surfaces. (b) High-resolution TEM image shows one wall 
of a graphitized carbon nanofiber. [Endo et al., 2003]. 
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Also, using X-ray diffraction and Raman spectroscopy, the crystalline structure of CNFs 

has been investigated [Pierson, 1993].  

Hexagonal packing is the most common crystalline form of graphitic 

carbonaceous materials. The stacking sequence with a -ABABAB- stacking order can be 

displayed by carbon atoms, which are superimposed over each other in every other layer 

as shown Figure 1.5 [Pierson, 1993]. This graphite structure is reflected as the (002), 

(100), and (101) planes in an X-ray diffractogram. In addition, the average values of the 

degree of orientation, interlayer spacing (d002), crystallite thickness (Lc), and crystallite 

width (La) can also be observed from wide angle X-ray diffraction. The orientation of the 

graphene layers can be calculated from an azimuthal scan at the fixed Bragg position of 

(002) reflection. The full-width-half-maximum of the intensity, Z, or Herman’s 

orientational order parameter [f = 0.5 (3<cos2ϕ>-1)] is used to quantify the degree of 

orientation of the graphene layers. The d002 is obtained from the peak position of (002) 

reflection in radial (2θ) intensity profile using Bragg’s law (2dsin(θ)=nλ). Further, 

2θ scan is used to estimate the values of Lc and La from the (002) and (100) peaks, 

respectively.  

Carbon can exist in a wide range of disordered forms. Raman spectroscopy is one 

of powerful tools used for investigating carbonaceous materials since it is sensitive to 

these structures and to changes that perturb the translational symmetry [Jawhari et al., 

1995].  
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Figure 1.5. Crystal structure of graphite showing ABAB stacking sequence and unit 
cell [Pierson, 1993]. 
 

Table 1.1 The major Raman bands of carbon fibers [Melantis et al., 1996] 

 D band G band D' band G' band 

Peak (cm-1) 1350-1370 1575-1582 ~1620 2690-2730 

Present in poorly graphitized 
fibers. disappeared at 
higher graphitization 
temperatures.  

single graphite 
crystal and all 
carbon fibers 

non-graphitized 
fibers. Detected as 
a shoulder of the G 
band in higher 
graphitization 
temperatures. 

crystalline 
graphite and 
graphitized 
fibers.  

Attribute to the breakdown of the 
lattice symmetry of 
the graphite cell and 
assigned to the A1g 
vibration mode of the 
graphite plane, 
introduced by small 
crystal size and 
structural disorder 

the vibrational 
mode E2g of the 
graphite cell 

disorder and small 
crystallite size. It 
disappears at well-
graphitzed fibers 

overtone of the 
D band 
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This frequency range can be divided into two regions: the first-order region (0-1650 cm-1) 

and the second–order region (1650-3300 cm-1) as the fundamental and 

overtone/combination frequencies, respectively [Melantis et al., 1996]. Various Raman 

bands (D, G, D', and G') are noticeable in experimental Raman studies of carbon fibers, 

and designations of these bands are summarized in Table 1.1 [Melantis et al., 1996].  

Other bands have been also reported in the literature. A broad band at 1500-1550 

cm-1 is associated with amorphous forms of carbon [Nikiel and Jagodzinski, 1993; 

Jawhari et al., 1995]. Keller et al. communicated that bands at 1175 cm-1 indicated the 

presence of basic C=O functional groups [Keller et al., 2002]. Among Raman bands, the 

spectrum between 1300 cm-1 and 1650 cm-1, such as D and G bands, is important because 

the integrated intensity ratio of ID/IG is inversely proportional to crystallite width (La) 

(La=44[ID/IG]-1) [Knight and White, 1989; Nikiel and Jagodzinski, 1993; Jawhari et al., 

1995; Wang et al., 2003; Li et al., 2005].  

 

1.3 Carbon nanofibers based nanocomposites  

Heremans reported that the intrinsic resistivity of carbon nanofibers was 2×10-3 

Ω-cm [Heremans, 1985]. One of commercial CNFs (Pyrograph III®) exhibited 4×10-3 Ω-

cm [Finegan and Tibbetts, 2001] or 55×10-3 Ω-cm [Guillemo and Jana, 2006; Applied 

Science Inc., 2006]. Tensile strength and modulus were in range of 2.0-7.0 and 100-680 

GPa, respectively [Jacobsen, 1995; Kuriger, 2002; Guillemo and Jana, 2006]. Most of 

these reported values in literature were measured indirectly, since it is not easy to 

measure such intrinsic properties of CNFs due to their small size. It is known that CNFs 
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exhibit good electrical conductivity and possess excellent mechanical properties. 

Therefore, the research objectives of this study focused on improving electrical and 

mechanical properties of polymeric matrix nanocomposites. Two different types of 

polymers have been used as matrices: flexible chain and semi rigid-rod polymers.  

It is noted that the majority of referenced studies in this chapter consider melt 

mixing as the technique for composite fabrication. In terms of dispersion and breaking of 

CNFs, in-situ polymerization or solvent casting may be preferred. However, melt mixing, 

such as batch mixing and extrusion, is more conventional and compatible for existing 

polymer melt processes.      

 

1.3.1 Electrical properties of carbon nanofibers based nanocomposites 

Typically, pure polymers have a high volume resistivity (>1012 Ω-cm) [Sperling, 

2001]. Incorporation of conductive fillers such as CNFs can render the composite 

electrically conductive. However, unless enough CNFs are added into the polymer matrix 

to form a network of CNFs, volume resistivity does not decrease significantly. As the 

volume fraction of CNFs increases, the distance between CNFs is small enough to make 

a CNF network and allow electrons to tunnel or hop. This is the transition region, called 

the percolation threshold, in which electrons can pass through composites resulting in a 

significant decrease in volume resistivity. Table 1.2 describes materials classified by their 

resistivity characteristics. Lozano et al. reported that the percolation threshold for 

PP/CNF (Pyrograf-IIITM, PR-24) composites (produced using a Haake internal mixer) 

was observed at 9-18 wt%, and the volume resistivity for samples containing 18 wt% 
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CNF was ~108 Ω-cm [Lozano et al., 2001]. The CNFs used by Lozano et al. were 

purified and functionalized. Hammel et al. used two CNFs (Electrovac nanofibers, ENF®) 

with different diameters (100 nm and 200 nm) for preparing PP/CNF composites  using a 

DACA Microcompounder (DACA Instruments, Goleta, USA) [Hammel et al., 2004]. 

The average length for both CNFs was approximately 10 μm. They reported that volume 

resistivity for PP/CNF (200 nm) composites was 4×106 Ω-cm with 18 wt% CNF content 

whereas PP/CNF (100 nm) composites showed 106 Ω-cm with 10 only wt% CNF content, 

indicating that aspect ratio (length over diameter) is critical for electrical properties in 

CNF based composites.  
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Table 1.2 Material classification based on resistivity characteristics  

Material type 
Volume resistivity 

(Ω-cm) 
Characteristics 

Insulative ≥1×1011

These materials prevent or limit the flow of 

electrons across their surface or though their 

volume. Static charges remain in place on these 

materials for a very long time. 

Electrostatic 

dissipative 
≥1×104, <1×1011

Charges flow to ground more slowly and in a 

somewhat more controlled manner than with 

conductive materials. 

Conductive <1×104 Electrons easily more across the surface or 

through the bulk of these materials. 

Electromagnetic 

interference 

shielding 

<1×103

For ESD-sensitive devices, these materials 

provide Faraday cage protection from energy 

transfer. 

 

Thermally modified CNFs have been incorporated to enhance electrical properties 

of composites. PR-19-HT CNFs (Applied Science, Inc.) graphitized at 3000°C were 

incorporated into PP to measure volume resistivity [Kuriger et al., 2002]. Resistivity as 

low as 20 Ω-cm was achieved with approximately 18 wt% CNF content. This is due to an 

increase of intrinsic conductivity of CNFs after graphitization. Howe et al. investigated 

the effect of heat treatment of CNFs on PP/CNF (Pyrograf-IIITM, PR-19) composites 

[Howe et al., 2006]. It was evident that as heat treating temperature increased, the d002 

decreased and Lc increased, indicating a higher graphitic content of CNFs, which resulted 

in an increase of intrinsic conductivity. However, they observed, using TEM, that with 
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heat treatment to 2900°C, fibers were converted into short nested conical crystallites 

(Figure 1.6), which reduced electrical transport properties.  

Hine et al., incorporated CNF (Pyrograf-IIITM, PR-19) into PP using a Prism 

Eurolab twin screw extruder [Hine et al., 2005]. After mixing, in order to measure the 

fiber length in composites, samples were burned off at 450°C for 2 hr. They observed a 

significant decrease in fiber length from 20-100 μm (from manufacturer) to 2.53±1.5 μm. 

To reduce this fiber breaking effect during fabrication of composite by melt mixing, 

Guillermo and Jana used chaotic mixing for PMMA/CNF composites, which could 

produce lower shear stress compared to a conventional internal mixer [Guillermo and 

Jana, 2006]. They reported that a nominal size of particle agglomerates in chaotic mixing 

was bigger than that in internal mixing. Further, longer fibers were also found in chaotic 

mixing. They concluded that this chaotic mixing resulted in a percolation threshold at ~2 

wt% CNF content (~106 Ω-cm), whereas composites produced by internal mixing led to a 

percolation threshold of 6 wt% CNF (106 Ω-cm) [Guillermo and Jana, 2006].  
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Figure 1.6. TEM of (a) an as-grown fiber corresponding to a heat-treatment temperature 
of 1100°C and (b) a fiber heat treated to 2900°C [Howe et al., 2006]. 

 

 17



 

1.3.2 Mechanical properties of carbon nanofibers based nanocomposites 

Orientation of CNFs affects the performance of nanocomposites, especially the 

mechanical properties. It is very difficult to have aligned fibrous nanofillers along a 

preferred composite flow direction due to their discontinuity and nano-scale dimension. 

Therefore, although tensile modulus has been found to increase with CNF-reinforced 

composites with various polymers, a significant increase of tensile strength has not been 

observed [Kumar et al., 2002; Ma et al., 2003; Zeng et al., 2004].  

It has been reported [Kumar et al., 2002] that the fibers spun from 5 wt% CNF 

(Pyrograf-IIITM, PR-21) with PP, using melt spinning equipment showed an increase of 

the modulus and compressive strength over pure PP by 50% and 100%, respectively. 

However, there was only a small increase in tensile strength and almost 30% decrease in 

elongation at break [Kumar et al., 2002]. With melt-spun fibers of poly(ethylene 

terephthalate) (PET) containing 5 wt% of CNF (Pyrograf-IIITM, PR-24), Ma et al. 

observed insignificant increase in tensile modulus [Ma et al., 2003]. However, a decrease 

in tensile strength and elongation at break was observed. Zeng et al., reported that 5 and 

10 wt% of CNFs (Pyrograf-IIITM, PR-21 and PR-24) with a fiber length of 60 μm were 

incorporated into poly(methyl methacrylate) using a twin screw extruder [Zeng et al., 

2004]. Tensile modulus increased by 50% as compared to pure PMMA. However, a 

decrease of 20 and 35% was observed in tensile strength and elongation at break, 

respectively.  

Kuriger et al. reported that an improved tensile strength of PP/CNF composites 

was observed with increase of the degree of CNF (Pyrograf-IIITM,PR-21 and PR-19) 
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orientation [Kuriger et al., 2002]. They also determined electrical resistivity of strands 

and sheet type composites. Due to the additional misalignment of fibers, sheets showed 

low electrical resistivity. This indicates that a high degree of CNF orientation is not 

preferred for electrical properties. 

Another factor that affects mechanical properties of composites is interfacial 

bonding between nanofillers and polymers. When composites are stretched, the load is 

transferred from matrix to nanofiller. Therefore, a strong bonding is particularly essential 

for tensile strength and elongation at break. It is known that an insignificant improvement 

in tensile strength and a decrease in elongation at break in composites result from poor 

bonding associated with defects at the interface [Choi et al., 2005; He et al., 2005]. Hence, 

work on surface modification of CNFs has been done toward enhancing the interfacial 

bonding with polymers [Brandl et al., 2004; Finegan et al., 2003; Howe et al., 2006]. 

CNFs were plasma treated in order to introduce oxygen containing functional 

group which increased CNF hydrophilicity [Brandl et al., 2004]. Composites with 5 wt% 

CNFs in PP were prepared using twin screw extrusion and injection molding. In 

mechanical testing, an increase in tensile modulus and strength by up to 49 and 19 wt%, 

respectively, was observed. Finegan et al. prepared air-etched fibers after oxidation in air 

at 450°C for 16 min [Finegan et al., 2003]. Adhesion between CNF and PP was enhanced 

due to an increase of surface area and surface energy of CNFs. They also varied 

feedstock residence time during synthesis of CNFs, and lower feedstock residence times 

led to more graphitic fibers which displayed poorer adhesion to PP. Howe et al. reported 

the effect of heat treating CNFs on mechanical performance of composites with PP 
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[Howe et al., 2006]. Short nested conical crystallites formed after heat treatment at 

2900°C (Figure 1.6) resulted in reduced tensile strength and modulus. It was observed 

that optimal mechanical properties resulted when CNFs were treated at 1500°C (Figure 

1.7).  

 

 
(a) 

 

 

 

 

 

 

 

(b)  

 

 

 

 

 

 

 
 
Figure 1.7. Mechanical properties of PP/CNF composites as a function CNF heat 
treatment temperature: (a) tensile strength and (b) tensile modulus [Howe et al., 2006] 
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1.3.3 Polymer crystalline structure in carbon nanofibers based nanocomposites  

As described above, there is significant interest in carbon nanofiber based 

nanocomposites obtained from semi-crystalline flexible polymer matrices such as PE and 

PP. These polymers have lamellar structures, which can be represented by crystalline 

lamellae and amorphous regions stacked alternatively. TEM has been used for observing 

lamellar structure of PE and PP [Defoor et al., 1992; Schmitt, 2000; Feng et al., 2002; 

Marega et al., 2003; Muller et al., 2003] (Figure 1.8). Samples were prepared by cryo-

microtoming and staining with chlorosulfonic acid [Defoor et al., 1992; Schmitt] or 

Ruthenium tetroxide [Feng et al., 2002; Marega et al., 2003; Muller et al., 2003].  

When fibers are incorporated into semicrystalline polymers, they act as nucleating 

agents, and crystallization occurs along the interface between fibers and polymer. Nuclei 

of polymers can not grow laterally due to a dense nuclei density on the fiber surfaces. As 

a result, most nuclei grow perpendicularly to the fiber surfaces, resulting in 

transcrystalline layers [Quan et al., 2005]. This is important to understand fiber/polymer 

interfaces, which affect mechanical performance of composites. Transcrystallinity has 

been observed with composites based on carbon fibers [Mironov et al., 2002], where 

transcrystalline lamellae of high density polyethylene (HDPE) grew on the surface of CFs 

(Figure 1.9).  

In study of CNFs based polymer composites, an increase of crystallization 

temperature was found using DSC, confirming the role of CNFs as nucleating agents 

[Lozano and Barrera, 2001]. However, there are few literature studies that report on the 

polymer crystalline structure in composites (Figure 1.10) [Hine et al., 2005].    
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Figure 1.8. TEM micrograph of a pure LLDPE (ethylene/1-octene copolymer) [Defoor et 
al., 1992]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.9. Optical micrograph of carbon fiber/HDPE composite. Transcrystallinity is 
observed on the surface of carbon fiber [Mironov et al., 2002]. 
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Figure 1.10. Transcrystallinity of PP around carbon nanofibers in carbon nanofiber/PP 
composite. This SEM micrograph was taken of a freeze fractured sample [Hine et al., 
2002]. 
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1.4  Liquid crystalline polymers (LCPs) 

In this section, liquid crystalline polymers and their composites with 

carbonaceous materials will be reviewed. Liquid crystals are defined as substances that 

exhibit long-range order in one or two dimensions. Solid crystals are ordered in all three 

dimensions whereas liquids are entirely disordered [Sperling, 2001]. The liquid 

crystalline state, discovered by Friedrich Reinitzer in 1888, was found with cholesteryl 

benzonate. It was reported that it melted from a solid to a cloudy liquid at 145.5°C and 

then a cloudy liquid changed to a clear liquid at 178.5°C [Reinitzer, 1888]. Lehman 

[Lehman,1890] described the new phase as the liquid crystalline or mesomorphic phase. 

Since then, a large number of liquid crystalline materials have been synthesized, and their 

characteristics have been studied [Kelker and Hatz, 1980; Chung, 2001; Tjong, 2003].  

Crystalline order can be described by positional order and orientational order. In 

other words, molecules occupy certain positions in lattice sites and orient themselves in 

specific directions. As temperature increases, the solid state changes into a liquid state 

and then both the position and orientation order are destroyed. However, in some 

materials, between solid state and liquid state, there is liquid crystalline phase, which 

possesses orientational order but no (or little) positional order (Figure 1.11). This means 

that in liquid crystalline phase, molecules orient along a preferred direction known as a 

director (Figure 1.12) [Tjong, 2003].  
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Figure 1.11. Schematic of a solid, liquid crystal, and liquid phase [Tjong, 2003]. 
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Figure 1.12. Molecular ordering with director [Tjong, 2003]. 
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Depending on molecular ordering, liquid crystals are classified as nematic, 

smectic and cholesteric (Figure 1.13) [Freidel, 1922]. The nematic phase has orientational 

order but no long-range position order. When the nematic phase is more arranged as a 

layered structure, the smectic phase is formed with positional ordering in one dimension. 

There are two common smectic phases depending on orientational correlation between 

the director of molecules and a layer plane. The smectic A phase exhibits perpendicular 

director of molecule into the layer plane whereas the director and a layer plane has some 

angle in the smectic C phase. The cholesteric phase can be simply described as a helical 

nematic layer structure. This phase consists of a stack of nematic layers for which the 

director changes from one layer to another.  

Liquid crystalline behavior can be observed in both molten and solution states 

[Sperling, 2001]. The lyotropic state is liquid crystallinity in a solution above a certain 

concentration. The thermotropic state is liquid crystallinity in the melt phase above 

certain temperature. Several literature studies report on synthesizing and developing 

liquid crystalline polymers (LCPs) since they possess unusually high mechanical 

properties (i.e., strength and stiffness), good chemical resistance and a low thermal 

expansion coefficient [Han and Bhowmik, 1997]. These synthetic LCPs exhibit liquid 

crystalline characteristics described, i.e., intermediate between crystalline phase and 

amorphous phase (Figure 1.14) [Wu and Schultz, 2002]. This intermediate state can be 

close to a poor crystalline structure, or on the other hand, close to an oriented amorphous 

structure with no long-range position. In polymers, the liquid crystalline phase is formed 
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by the presence of mesogenic monomer units [Tjong, 2003]. These units can be in the 

main chain or the side-chain of LCPs backbone [Donald and Windle, 1992].  
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Figure 1.13. Schematic of nematic, smectic and cholesteric phases [Tjong, 2003]. 
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Figure 1.14. Schematic of polymer phases [Wu and Schultz, 2002] 

 

 

 

1.4.1 Thermotropic liquid crystalline polymers (TLCPs) 

Typically, a very strong solvent is needed for processing lyotropic LCPs, and the 

solvent removal process limits its application. For example, “Kevlar” developed in 1965 

by DuPont as a commercial lyotropic LCP, is spun from a concentrated sulfuric acid 

solution. In contrast, in terms of processability, thermotropic LCPs are preferred since 

they can be processed by conventional melt processes such as blown film, cast film and 

melt-spinning processes.  
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In the 1970s, chemical companies such as Carborundum, Eastman-Kodak, 

Celanese, Amoco, and DuPont developed and commercialized TLCPs due to their melt 

processability, good mechanical properties, low moisture up-take, and excellent thermal 

and chemical resistance [Chung, 2001]. “Ekkcel I-2000” by Carborundum was an 

aromatic copolyester based on a biphenol monomer. Eastman-Kodak synthesized an 

aromatic-aliphatic copolyster (X7G). “Vectra” is a copolyster based on  1,4-

hydroxybenzoic acid and 2,6-hydroxynaphthalene acid [Chung, 2001]. 

The melting temperature of thermotropic LCPs (TLCPs) with mesogenic units in 

the polymer backbone is relatively high; 430°C and 440°C for the hydroxybenzoic acid 

homopolymer and hydroxynaphthalene acid homopolymer, respectively [Langelaan and 

Posthuma de Boer, 1996]. Modified TLCPs have been developed with a lowered melting 

temperature. From a thermodynamic point of view, where melting temperature is 

determined by entropy and enthalpy changes during melting, high melting temperatures 

result from low melting entropy.  

 

S
HTm Δ

Δ
=  

 

Therefore, increasing entropy change or decreasing enthalpy change can reduce 

melting temperature. An enthalpy change decreases by disrupting crystal structure of 

thermotropic LCPs, which have rigid mesogenic units. Introducing either flexible spacers, 

links with more freedom, or bulky side-groups or chains that provide less chemical 
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regularity related with molecular packing, can disrupt thermotropic LCPs structure 

[Donald and Windle, 1992]. 

There are homopolymers that exhibit the characteristics of thermotropic LCPs. 

Such polymers are synthesized from terephthalic acid (TA), 1,4-hydroxybenzoic acid 

(HBA), and hydroquinone (HQ) (Figure 1.15). As expected, these homopolymers have 

very high melting temperature for conventional process. Copolymerization is one of the 

modifications done to LCP structure to lower melting temperature by incorporating other 

mesogenic monomers randomly [Tjong, 2003].  

For commercially available thermotropic LCPs, the aromatic rings of the above 

monomers have been replaced by naphthalene or biphenyl units during copolymerization 

with 2,6-dihydroxynaphthalene (DHN), 2,6-hydroxynaphthalene acid (HNA) or 2,6-

naphthalene dicarboxylic acid (NDA) (Figure 1.15) [Tjong, 2003]. Thus, copolymers are 

composed of molecules with rigid and flexible monomeric unit. The rigid part (the 

mesogenic monomer) imparts high thermal and mechanical properties, while the flexible 

monomers contribute to processibility. For example, Celanese has developed and 

commercialized a copolyester based on HBA as the mesogenic monomer and HNA as the 

comonomer using random copolymerization. As a result, the three dimensional molecular 

packing of HBA units is disrupted by HNA units and melting temperature is reduced, but 

the extended chain conformation is maintained [Tjong, 2003]. 
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Figure 1.15. Chemical structures of monomers for TLCPs [Tjong, 2003]. 
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1.4.2 Structure and orientation of HBA/HNA copolyester  

The structure of HBA/HNA copolyester has been studied using WAXD [Kaito et 

al., 1990; Wilson et al., 1993; Langelaan and Posthuma de Boer, 1996]. Kaito et al. 

[Kaito et al., 1990] used HBA/HNA (73 mol%/27 mol%), provided by Polyplastics Co. 

Ltd. Oriented sheets (thickness of 0.4-0.5 mm) were prepared by extrusion and molding 

at 290oC. Analysis of WAXD patterns (Figure 1.16) obtained from those samples showed 

two distinct peaks in the equatorial region. These peaks were associated with (110) and 

(211) planes at 2θ of 19.8 and 27°.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.16. WAXD pattern of an extruded sheet sample of HBA/HNA copolyester 
[Kaito et al., 1990]. 
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Wilson et al. [Wilson et al., 1993] claimed that fibers of HNA rich copolymers 

(HNA:HBA=3:1 from Hoechst-Celanese Co.) exhibited an orthorhombic phase since the 

pseudo-hexagonal phase in fibers of HBA rich copolymers (HNA:HBA=1:3 from 

Hoechst-Celanese Co.) was distorted. Using WAXD data, a pseudo-hexagonal phase in 

HBA rich polymers was characterized by a single, a very intense equatorial region 

associated with (110) plane and two other reflections associated with (211) and (310) 

planes. Furthermore, there was a diffuse region of diffracted intensity centered at the 

equator which was associated with the non-crystalline phase (Figure 1.17). However, in 

HNA rich copolymers there is splitting of the (110) peaks into (110) and (200) peaks 

corresponding to orthorhombic phase (Figure 1.18). It was also noted that not only 

chemical compositions but also heat treatment can affect the molecular structure of 

HBA/HNA copolymers [Kaito et al., 1990; Wilson et al., 1993]. 

Using these WAXD diffractograms, the degree of molecular orientation was 

quantified [Butzbach et al., 1986; Kaito et al., 1991; Romo-Uribe and Windle, 1996]. The 

(110) planes were used for calculating an average orientation parameter, which was 

determined from the second order Legendre polynomial of the orientation distribution. 

The parameter f, also called Herman’s orientation parameter, is defined as 

2

1cos3 2 −
=

θ
f  

where θ is the angle between the transition moment vector and the chain axis [Kaito et al., 

1991]. If molecules are oriented along longitudinal direction, f is 1, and if molecules are 

oriented along transverse direction, f is -0.5.  
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Figure 1.17. (a) Schematic of pseudo-hexagonal phase of WAXD pattern and (b) radial 
(2θ) intensity profile in fibers of HBA rich copolymers (HNA:HBA=1:3) [Wilson et al., 
1993]. 
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Figure 1.18. (a) Schematic of orthorhombic phase of WAXD pattern and (b) radial (2θ) 
intensity profile in fibers of HNA rich copolymers (HNA:HBA=3:1) [Wilson et al., 1993]. 
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Further, f is zero for a random distribution of molecules. Kaito et al. [Kaito et al., 1991] 

prepared strand samples of HBA/HNA (73 mol%/27 mol%, Polyplastics Co. Ltd.) using 

a single screw extruder. Subsequently, these strands were stretched to a draw-down ratio 

of 10. They reported Herman’s orientation parameter values of 0.68-0.88 in strands. 

 

1.4.3. Liquid crystalline polymer composites with carbonaceous materials 

As noted earlier, one of the interesting features of liquid crystalline polymers is 

their excellent mechanical performance. Ticona, a TLCP manufacturer, reported values 

of 10 GPa and 200 MPa for tensile modulus and strength, respectively, for injection 

molded Vectra A950 [Ticona, 2007]. It has been found that these high modulus and 

strength values are due to the intrinsically high degree of molecular alignment in the 

liquid crystalline phase [Handlos and Baird et al., 1996]. This characteristic helps TLCPs 

melt processing since their melt viscosities are much lower than those of conventional 

polymers. In addition, TLCPs possess a low coefficient of thermal expansion, high 

resistance to chemical degradation, and very low oxygen permeability (Figure 1.19) 

[Chiou and Paul, 1987]. All these properties make TLCPs promising candidates for 

electronics packaging applications [Flodberg et al., 2003]. However, like other polymers, 

TLCPs are not electrically conductive. Therefore, pure TLCPs are inadequate for 

sensitive electronics packaging applications that need electrostatic dissipative 

characteristics. 
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Figure 1.19. The illustration of the exceptionally low permeability to water vapor and 

oxygen for TLCP (Vectran LCP) [Ticona]. 

 

 

Therefore, carbonaceous materials such as carbon blacks (CBs) [Wong and Shin, 

2001; Tchoudakov et al., 2004; King et al., 2006], carbon fibers (CFs) [Jou et al., 2002; 

Wolf and Willert-Porada, 2005], and CNFs [Yang et al., 2003 and 2005] have been 

incorporated into TLCPs as conductive fillers. The goal of most of these literature studies 

was to enhance conductivity and evaluate EMI shielding effectiveness of TLCP 

composites. 
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King et al. [King et al., 2006] incorporated CBs (Ketjenblack) into Vectra A950 

using a single screw extruder. Ketjenblack possesses a highly branched structure and a 

large surface area (1250 m2/g) compared to normal CBs, resulting in decreased electrical 

resistivity (10-2-10-1 Ω-cm) [King et al., 2006]. They found an electrical percolation 

threshold at 5 wt% of CB and volume resistivity decreased significantly down to 107 Ω-

cm. Other researchers reported that a similar CB content was required to observe 

percolation threshold phenomena [Wong and Shin, 2001]. In the open literature, there are 

only limited studies on CNF/TLCP composites [Yang et al., 2003 and 2005]. Yang et al. 

reported a volume resistivity of 3×102 Ω-cm with TLCP composites containing 5wt% 

CNFs.  

 

1.5 Objectives  

From a literature review of carbon nanofibers and their nanocomposites, it is 

noted that although there are several studies reported on carbon nanofibers composites, 

no systematic study has been reported in the literature about the influence of carbon 

nanofibers on polymer structure. The primary goal of this research was to investigate 

polymer crystalline and orientation structure in carbon nanofiber based composites. For 

this study, two different types of carbon nanofibers were incorporated into linear low 

density polyethylene and thermotropic liquid crystalline polymers. Fundamental 

properties, such as electrical and mechanical properties, were investigated. 

Microstructure was investigated using various techniques such as scanning electron 
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microscopy, transmission electron microscopy and wide angle X-ray diffraction. The 

specific objectives were to:  

1. investigate the micro-structure of carbon nanofibers with different core and 

surface structures as a function of heat treatments;  

2. examine the influence of surface and structural changes of carbon nanofibers 

on the electrical and  mechanical properties, and crystallization behavior of 

linear low density polyethylene nanocomposites;  

3. determine the role of carbon nanofibers in controlling the microstructure of 

thermotropic liquid crystalline polymers and the resulting properties.  

 

In Chapter 2, the microstructure of two different grades of carbon nanofibers with 

different core structures, hollow (PR) and solid (MJ), was investigated as a function of 

two treatments: CVD and thermal. Using Raman spectroscopy and X-ray diffraction 

analysis, crystallite thickness and width was measured for fibers. Further, the effect of 

thermal treatment on morphology and textural properties of carbon nanofibers were 

investigated by BET adsorption isotherms and TEM techniques.  

It is hypothesized that the microstructure of nanomodifiers, including surface 

characteristics, plays a critical role in the properties of nanocomposites that are ultimately 

produced. By using two different types of carbon nanofibers in linear low density 

polyethylene, in Chapter 3, mechanical and electrical properties of nanocomposites are 

reported. Further, the effect of carbon nanofibers on the crystallization characteristics of 
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linear low density polyethylene was investigated by thermal analysis, wide angle X-ray 

diffraction, and electron microscopy.  

In Chapter 4, copolyester thermotropic liquid crystalline polymers were chosen to 

investigate how carbon nanofibers affect the orientational structure of polymers. This 

characteristic can enable us to observe a distinct influence of carbon nanofibers on 

orientation of thermotropic liquid crystalline polymers. Electrical and mechanical 

properties of thermotropic liquid crystalline polymer composites in the presence of 

carbon nanofibers were investigated. The orientational microstructure of nanocomposites 

was investigated by wide angle X-ray diffraction. Also, scanning electron microscopy 

and transmission electron microscopy were used to study microstructure and morphology 

of thermotropic liquid crystalline polymers and their composites.  

Finally, Chapter 5 summarizes the conclusions drawn from the present research, 

and provides ideas for future work. Detailed experimental procedures are described at the 

end of this dissertation in various appendices.   
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CHAPTER 2 

STRUCTURAL CHARACTERIZATION OF CARBON NANOFIBERS  

 
 
2.1 Introduction 

 
It is known that structure of carbon nanofibers (CNF) can vary depending on the 

type of catalyst and carbon precursor used during synthesis [Lee et al., 2001; Qin et al., 

2004; Rodriguez et al., 1995]. CNFs contain graphite platelets stacked perpendicular to 

the fiber axis when iron catalyst is used in conjunction with carbon monoxide/hydrogen 

(4:1) at 600°C [Rodriguez et al., 1995]. These graphite platelets are parallel to the fiber 

axis with silica supported iron catalyst even though the same carbon precursor and 

synthesis conditions were used. Herringbone structure is observed with CNFs synthesized 

with ethylene/hydrogen (4:1) over iron-copper catalyst at 600°C [Rodriguez et al., 1995].  

Carbon precursor also plays an important role of structure of CNFs. It has been 

reported that helical CNFs were obtained by chemical decomposition of acetylene [Qin et 

al., 2004; Rodriguez et al., 1995]. In contrast, a fairly straight shape is observed for PR-

24-PS and PR-19-PS (Applied Science, Inc., Cedarville OH) that were obtained from 

iron-sulfide catalyst and natural gas precursor [Applied Science, Inc., 2007].  

Two variations of commercial grades (PR-19-PS and PR-24-PS) and one research 

grade (MJ) were examined in this study. Chapters 3 and 4 will discuss the role of theses 

nanofibers in the microstructure of the matrices and resulting nanocomposites. The 

microstructure of reinforcements, including surface characteristics, plays a critical role in 

the properties of composite materials that are ultimately produced. In this chapter, a 
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fundamental study of the microstructure of CNFs with different core structure (hollow 

and solid) was conducted as a function of two treatments: CVD and thermal. The surface 

and structural changes in CNFs resulting from these treatments are important for 

ultimately controlling the properties of nanocomposites. This Chapter is based on our 

results that were recently published [Lee et al., 2007a]. 

 

2.2 Experimental  

 
2.2.1 Materials 

MJ fibers were prepared from the chemical decomposition of C2H4-H2 mixture 

(4:1) over Ni-Cu (7:3) bimetallic catalyst [Lee et al., 2001a]. To modify the structure of 

these CNFs, heat treatment or CVD steps were applied. For heat treatment, an Astro 

furnace (Thermal Technology Inc.) was used with a He atmosphere. After CNF loading, 

the temperature was increased to 1000°C at a rate of 20 °C/min. Subsequently, the 

temperature was increased to 2200°C at a rate of 10 °C/min and the CNFs were held at 

2200°C for 1 h. CVD layers were deposited over MJ fibers by pure CH4 decomposition at 

850°C for 5 h in a tubular quartz reactor [Han et al., 2006]. PR-24-PS and PR-19-PS 

fibers, synthesized using the chemical decomposition of hydrocarbons over iron-sulfide 

catalyst, were obtained from Applied Science, Inc. (Cedarville OH) [Applied Science, 

Inc., 2007]. PR-19-PS fibers already have a carbon layer deposited by chemical vapor 

deposition (CVD) as the outer surface [Applied Science, Inc., 2007]. Hence, six different 

CNF combinations were studied in this work: MJ, heat treated MJ (MJHT), CVD treated 
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MJ (MJCVD), PR-24-PS (PR), PR-19-PS (PRCVD) and heat treated PR-24-PS (PRHT) 

fibers. 

 

2.2.2 Characterization 

Raman spectroscopy was performed using a Renishaw Raman system 100 with 26 

mW-785 nm diode laser. All the spectra were obtained over a spectral range of 500–3000 

cm-1. X-ray diffractometry (XRD, X’pert Pro, Netherlands) using Cu Kα radiation 

(λ=1.5406 Å) was used over the 2θ range of 5 to 50°. From these techniques, crystallite 

width (La), interlayer spacing (d002), and crysatallite thickness (Lc) were calculated. 

Typically, three replicates were obtained for quantitative analysis of graphitic structure of 

CNFs. The overall degree of crystallinity was determined by the oxidation profiles of 

CNFs using a Pyris 1 Perkin-Elmer thermo gravimetric analysis (TGA) instrument. 

Samples were heated up to 1000°C at a rate of 10 °C/min under CO2 gas. STEM-Hitachi 

H 2000 and TEM-Hitachi H 9500 transmission electron microscope (TEM) were used for 

investigating structure of CNFs. CNFs were dispersed in a vial with acetone and 

sonicated for 10 min. This solution was dropped on a formvar/carbon film supported 

copper grid and dried. The surface area of CNFs was determined by the N2 adsorption 

data at 77 K using an automatic surface analyzer (Autosorb-1, Quantachrome). Pore size 

distribution was obtained by BJH method [Barrett et al., 1951]. These textural 

measurements and analyses were performed by Dr. Kim’s group at Myungji University, 

Korea. 
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2.3 Results and Discussion 

 

2.3.1 Crystalline structure of CNFs 

Figure 2.1 displays Raman spectra of all six types of CNFs. A weak shoulder at 

~1170 cm-1 and two sharp peaks at ~1320 cm-1 and ~1590 cm-1 were observed for both of 

the base fibers (MJ and PR). For carbon materials, the G band at 1580 cm-1 is attributed 

to the graphitic crystalline structure [Melanitis et al., 1996; Yu et al., 2003; Park et al., 

2005]. Structural disorder within graphite planes resulted in the D band at 1360 cm-1 

[Melanitis et al., 1996; Yu et al., 2003; Park et al., 2005] and the D' band at 1620 cm-1 

[Melanitis et al., 1996; Jawhari et al., 1995]. A broad peak around 1500-1550 cm-1 has 

been observed with amorphous carbon [Jawhari et al., 1995]. A broad peak around 1150-

1200 cm-1 is associated with functional groups such as C=O [Keller et al., 2002]. Thus, a 

shoulder at ~1170 cm-1 observed for both fibers can be inferred as functional groups 

obtained during nanofiber synthesis and storage. At 1400-1500 cm-1, a higher intensity 

band was observed for PR fibers than for MJ fibers, indicating that PR fibers possess a 

larger amorphous carbon content than do MJ fibers. Therefore, broader D and G bands 

were observed for PR fibers. For both nanofibers, a shift of the G band from 1580 cm-1 

(for highly crystalline structure) to ~1590 cm-1 was observed, being inferred as a merger 

of the G and the D' band. The Raman spectra of CVD-processed fibers did not show a 

significant difference relative to that of the base fibers. 

Heat-treated MJ fibers (MJHT) revealed significant changes in their Raman 

spectra. They showed a sharper D band, indicating a reduction of functional groups and 
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amorphous carbon phase. Also, the ~1590 cm-1 peak split into 1580 cm-1 and 1610 cm-1 

peaks associated with the G and the D' bands, respectively. Further, a peak at 2610 cm-1, 

known as the G' band of crystalline graphite, was observed. These results confirm that the 

heat treatment helps in the graphitization of the amorphous carbon phase. For PRHT 

fibers, four sharp D, G, D', and G' peaks were observed at 1320, 1580, 1610, and 2620 

cm-1, respectively. It is interesting to note that the intensity of the G band is higher than 

that of the D band, indicating more crystalline graphite content.  

In addition, the G' band in PRHT fibers was more intense than that in MJHT 

fibers. Therefore, PR fibers were more graphitized than MJ fibers at the given heat 

treatment condition. After deconvolution of Raman spectra for nanofibers, the integrated 

intensity ratios of the D to G bands (ID/IG) were measured. Using the ID/IG ratio, 

crystallite width (La) was determined (La=44[ID/IG]-1(nm)) [Yu et al., 2003; Park et al., 

2005] and is reported in Table 2.1. It is evident that crystallite width increased with the 

heat treatment for both MJ and PR fibers. Further, the heat treatment led to more 

significant change of La of PR fibers (1.7±0.7→8.0 ±0.7nm) than that of MJ fibers 

(1.0±0.2→3.1±0.5nm). 
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Figure 2.1. Raman spectra of carbon nanofibers. 

 



 

Table 2.1. Crystalline properties of carbon nanofibers 

CNFs d002
1 (nm) Lc

1 (nm) ID/IG
2 La

2  (nm) 

MJ 0.3409 1.6±0.1 4.4±1.0 1.0±0.2 

MJCVD 0.3409 1.7±0.1 4.7±0.2 0.9±0.1 

MJHT 0.3384 10.9±0.5 1.4±0.2 3.1±0.5 

PR 0.3400 3.1±0.3 3.1±1.3 1.7±0.7 

PRCVD 0.3405 2.9±0.1 2.5±0.7 1.9±0.6 

PRHT 0.3386 11.7±0.4 0.6±0.1 8.0±0.7 

Obtained from 1XRD and 2Raman data 

 

 

 

 

The integrated azimuthal profiles (2θ scans) from XRD of CNFs are displayed in 

Figure 2.2; the baselines are shifted vertically for convenience. At 2θ ≈ 26°, a distinct 

peak associated with the (002) graphene planes appeared for all samples. It is evident that 

peaks of heat treated CNFs sharpened and shifted to higher angles. Also, for PR fibers, a 

weak peak and a shoulder were observed at 2θ ≈ 43 and 44°, indicating (100) and (101) 

graphene planes, respectively [Park et al., 2005; Hwang et al., 2002]. It is evident that the 

intensity of these peaks was higher for PRHT. In contrast, MJ fibers showed two weak, 

broad peaks at 2θ ≈ 43 and 44°.  
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Figure 2.2. X-ray diffractograms of carbon nanofibers. 
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Despite an increase of intensity of these peaks for MJHT over MJ fibers, they were less 

significant compared to those for PRHT over PR fibers. Based on these profiles, the 

interlayer spacing (d002) was calculated using Bragg’s law. Using Scherrer formula, 

crystallite thickness (Lc) was calculated for all CNFs (Table 2.1). As expected, the 

integrated azimuthal profiles and d002 data confirm that the heat treatment for both MJ 

and PR fibers led to a significant increase of graphitic content and crystallite thickness.  

Further, using TGA analysis, the weight loss of various CNFs in a CO2 

environment was measured at a heating rate of 10°C/min (Figure 2.3). The onset 

temperatures were ~600°C and ~500°C for MJ and PR fibers, respectively. The oxidation 

was complete at ~800°C and ~890°C for MJ and PR fibers, respectively. This broader 

oxidation range of PR fibers indicates that, as compared to MJ fibers, PR fibers contain a 

wider range of ordered carbon structure.  

The onset and complete oxidation temperature of MJCVD fibers were ~ 630°C 

and ~880°C, higher than that of MJ fibers. It is likely that the CVD layers obtained at 

850°C contribute additional crystallinity over that of bare MJ fibers (prepared at 600°C). 

Another possible explanation is that the more active sites for CO2 oxidation are blocked 

by the CVD layers. In contrast, PRCVD fibers showed a similar oxidation profile as PR 

fibers (~500°C and ~910°C for onset and complete oxidation temperature, respectively). 

The onset temperatures were ~730°C and ~780°C for MJHT and PRHT fibers, 

respectively. The oxidation was complete at ~1000°C and ~1100°C for MJHT and PRHT 

fibers, respectively.  
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Figure 2.3. TGA profiles of various carbon nanofibers. 

 



 

It is evident that heat-treated CNFs showed higher onset temperatures than did 

untreated CNFs. More interestingly, PRHT fibers showed higher onset and completion 

temperatures than did MJHT fibers, indicating that the structure of PRHT fibers is more 

ordered than that of MJHT fibers. Thus, heat treatment at 2200°C is more effective in 

changing the structure of PR fibers than that of MJ fibers. 

 

2.3.2 Morphology of CNFs 

MJ and PR nanofibers were investigated using scanning electron microscopy 

(SEM). It is interesting that MJ nanofibers are twisted or even coiled whereas PR 

nanofibers are fairly straight (Figure 2.4). Surface morphology of CNFs was observed by 

STEM (Figure 2.5a-f). STEM micrographs of the CNFs reveal that MJ nanofibers 

possessed rough surfaces even after CVD or heat treatment. It is noted that the surface of 

PR nanofibers was significantly smoother than that of MJ nanofibers.  
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Figure 2.4. Scanning electron micrographs of: (a) PR and (b) MJ fibers. 
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Figure 2.5. Scanning transmission electron micrographs of (a)PR, (b)MJ, (c)PRCVD, 
(d)MJCVD, (e)PRHT, and (f)MJHT fibers. 
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Uchida et al. [Uchida et al., 2006] reported single and double layer morphologies 

for PR-24-HT fibers (heat treated at 3000°C). Single layer PR-24-HT fibers possessed 

graphite sheets oriented at about 15° to the fiber axis. In contrast, TEM of a distinct 

double layer PR-24-HT fiber has been reported to show that two layers have different 

angles with respect to the fiber axis [Uchida et al., 2006]. Graphite sheets of inner layer 

were varied between 4 to 36°, whereas outer layers were oriented along fiber axis 

[Uchida et al., 2006]. Single layer PR-24-HT displayed the loops in outer and inner 

surface of a wall, which has been also reported in prior literature studies. [Hwang et al., 

2002; Uchida et al., 2006; Endo et al., 2003]. 

Similar morphologies were observed in PRHT fiber at a much lower heat 

treatment temperature of 2200°C, as compared with that of Uchida et al. [Uchida et al., 

2006] (Figure 2.6). Loops were observed at both walls for single layer PRHT. A more 

interesting observation was that there was a significant discontinuity between inner and 

outer layer due to folding of graphene layer (Figures 2.6e and f). This spatial 

discontinuity was not visible in PR fibers (Figures 2.6a and b). There was not a 

significant difference between PR and PRCVD fibers.  

Figures 2.7a and b display TEM micrographs of MJ fibers. These nanofibers 

possess a solid core, in contrast to the hollow core for PR fibers. Similar to PR fibers, a 

significant change was not observed after CVD treatment. Inter layers of MJHT (Figure 

7e) were more aligned than those of MJ (Figure 7a). Further, on the edge of MJHT, loops 

were observed due to heat treatment, indicating enhancement of graphitic structure 

(Figure 7f).  
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Figure 2.6. Transmission electron micrographs of double layer structure of (a)PR, (b)PR, 
(c)PRCVD, (d)PRCVD, (e)PRHT, and (f)PRHT fibers. (b), (d), and (f) are in high 
resolution for (a), (c), and (e), respectively. 
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Figure 2.7. Transmission electron micrographs of (a)MJ, (b)MJ, (c)MJCVD, (d)MJCVD, 
(e)MJHT, and (f)MJHT fibers. (b), (d), and (f) are in high resolution for (a), (c), and (e), 
respectively.  
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There was a spatial discontinuity between graphene layers for MJHT (Figures 7e and f), 

but not for MJ. It is likely that an irregular reorganization and a decrease of the interlayer 

spacing resulted in a distinct spatial discontinuity. It is evident that crystallinity of MJHT 

(Figure 7e and f) is less than that of PRHT (Figure 6e and f). This is consistent with the 

more significant change of structure of PR fibers than that of MJ fibers during heat 

treatment.  

The selected area electron diffraction (SAED) technique uses selected area 

aperture during TEM to analyze the microstructure. The advantage of this technique is 

that a much smaller area is needed than that for X-ray diffraction. Therefore, SAED can 

focus on an individual specimen, whereas X-ray diffraction provides structural 

information of the bulk specimen. SAED has been used to investigate the graphitic 

structure of carbon nanotubes [Belin and Epron, 2005; Le Brizoual et al., 2007] and 

carbon nanofibers [van Gulijk et al., 2006; Ono and Oya, 2006; Zheng et al., 2006; 

Lueking et al., 2007; Lin et al., 2007].   

SAED patterns and corresponding bright field images of PR and PRHT fibers are 

shown in Figures 2.8a and 2.8b, respectively. PR fibers showed one set of arcs and two 

diffuse haloes, associated with (002), (100), and (110) planes. The inset bright field 

image indicated the orientation of PR fiber, and confirmed that the (002) arcs are parallel 

to the graphene layer of CNFs.  

In contrast, in the SAED pattern of PRHT fiber, two sets of arcs associated with 

(002) and (004) planes were observed, indicating a higher order of crystalline structure of 

PRHT fiber. It is noted that (002) and (004) arcs also have superposed spots.  
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Figure 2.8. SAED patterns of (a) PR and (b) PRHT fibers. The insets show the 
corresponding bright field images.  
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Lin et al., claimed that more than one set of (002) diffraction spots are related to the 

arrangement of graphitic laminations in the microstructure [Lin et al., 2007]. Further, two 

diffraction rings, associated with (100) and (110) planes, were also observed. It was 

reported that these two diffraction rings are related with the random chiralities of 

graphene cones that are perpendicular to the electron beam [Lueking et al., 2007]. These 

are consistent with the fact heat treatment of PR led to enhancement of graphitic structure 

from X-ray, Raman, and TEM as described above. 

To measure textural properties, N2 adsorption-desorption isotherms at 77K were 

obtained. According to the IUPAC classification, all CNFs exhibit Type Π characteristic 

(Figure 2.9) [Donohue and Aranovich,1998]. Using such isotherms, surface area was 

calculated (Table 2.2). MJ fibers possessed larger surface area (300 m2/g) than did other 

CNFs. It is evident from pore size distribution and pore volume of various CNFs that MJ 

fibers have a large total pore volume (0.525 cm3/g). However, significant reduction of 

surface area and pore volume was observed after CVD and heat treatment; the values 

were 51 m2/g and 0.146 cm3/g for MJCVD, and 30 m2/g and 0.098 cm3/g for MJHT, 

respectively. PR fibers had a significantly smaller surface area and pore volume (35 m2/g 

and 0.069 cm3/g) as compared with MJ fibers. However, there was no significant 

reduction of these values after CVD and heat treatment. In MJ fibers, the reduction of 

surface area and pore volume suggests that CVD and heat treatment lead to pore-filling 

and pore-collapsing, respectively.  
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Figure 2.9. (a) N2 adsorption-desorption isotherms and (b) pore size distributions of 
carbon nanofibers. 



 

 

 

Table 2.2. Textural properties of carbon nanofibers 

CNFs BET surface 
area (m2/g) 

Total pore 
volume (cm3/g)

Micropore 
volume (cm3/g) 

Mesopore 
volume (cm3/g)

MJ 300 0.525 0.174 0.351 

MJCVD 51 0.146 0.030 0.116 

MJHT 30 0.098 0.019 0.079 

PR 35 0.069 0.016 0.053 

PRCVD 19 0.037 0.010 0.027 

PRHT 29 0.062 0.014 0.048 

 
 
 

PR and MJ fibers showed no significant difference of La (1.7±0.7 nm and 1.0±0.2 nm for 

PR and MJ, respectively) and Lc (3.1±0.3 nm and 2.9±0.1 nm for PR and MJ, 

respectively), indicating a similar degree of crystallinity (Table 2.1). However, after heat 

treatment, it was observed that PRHT fibers possess a higher crystalline order relative to 

MJHT fibers. It is likely that pore-collapsing by diffusion of carbon species may limit the 

graphitization of MJ fibers. Even after pore-collapsing due to heat treatment, all pores 

can not be filled, implying that pores trapped inside act as discontinuities. Hence, it is 

apparent that discontinuity is bigger as graphene layers are dense after reorganization.  

In contrast, PR fibers inherently possess fewer pores that lead to a higher 

crystallinity without discontinuity. However, a distinct spatial discontinuity between 

inner and outer layer on double layer structure of PRHT fiber due to folding, which was 
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not evident in PR fibers, suggesting that discontinuity disrupts a perfect growth of 

crystalline structure of CNFs with heat treatment.    

These surface and structural differences between PR and MJ fibers are relevant in 

composite applications. The enhanced graphitic structure of PR fibers (after heat 

treatment) indicates that PRHT fibers may be better-suited for EMI shielding application 

where highly conductive materials (>1×10-2 S/cm) are needed [Yang et al., 2005]. In this 

preliminary study, linear low density polyethylene nanocomposites with 10 wt% PRHT 

(~1.5×10-2 S/cm) showed two orders of magnitude higher conductivity than those with 10 

wt% PR (~1.5×10-4 S/cm). In contrast, MJ fibers possess rough surfaces and porous 

structures (without subjecting them to surface activation treatment), which hinders 

development of graphitic structure during heat treatment. Therefore, composites based on 

these fibers can be used for electrodes of electrochemical application such as super 

capacitors or fuel cells where a large surface area and pore volume of conducting 

materials are crucial [Kim et al., 2004; Chai et al., 2005].  

 
 

2.4. Conclusions 

The microstructure of two different grades of CNFs, MJ (experimental) and PR 

(commercial), was investigated as a function of different thermal treatments. From 

Raman spectroscopy and XRD analysis, an enhancement of crystallite size was observed 

after heat treatment at 2200°C. The crystallite thickness increased from 1.6±0.1 nm to 

10.9±0.5 nm for MJ fibers and from 3.1±0.3 nm to 11.7±0.4 nm for PR fibers; width 

increased from 1.0±0.2 nm to 3.1±0.5 nm for MJ fibers and from 1.7±0.7 nm to 8.0±0.7 
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nm for PR fibers, confirming an increase of crystalline size. Also, an increase in thermal 

oxidation stability for heat-treated CNFs was observed. BET adsorption isotherms 

showed a significant reduction of specific surface area for MJ fibers (300 m2/g) after the 

heat treatment (51 m2/g) and also after the CVD surface treatment (30 m2/g), resulting 

from a decrease of pore volume (from 0.525 cm3/g for MJ to 0.146 cm3/g and 0.098 

cm3/g for MJCVD and MJHT, respectively). However, even after heat treatment, MJ 

fibers possessed a rougher surface than did PR fibers. In addition, TEM micrographs 

revealed a significant spatial discontinuity after heat treatment, resulting from 

reorganization of graphene layers due to pore-collapsing and folding of graphene layers 

for PRHT and MJHT fibers, respectively. These surface and structural changes in CNFs 

are important for ultimately controlling the electrical and electrochemical properties of 

nanocomposites because graphitic content and structure play an important role in the 

nanocomposite. In Chapters 3, PRCVD, PR, and MJ fibers were incorporated into linear 

low density polyethylene using intensive mixing. Also, PR and MJ fibers were used for 

preparing nanocomposites with thermotropic liquid crystalline polymers.  
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CHAPTER 3 

INFLUENCE OF CARBON NANOFIBERS ON THE PROPERTIES AND 

CRYSTALLIZATION BEHAVIOR OF LINEAR LOW DENSITY POLYETHYLENE 

NANOCOMPOSITES 

 

 
3.1 Introduction 

 
Due to the significantly small length scale of nanofibers relative to carbon fibers, 

crystallization of polymer matrices in the presence of such nanoreinforcements has 

received significant attention in recent studies [Lozano and Barrera, 2001; Bhattacharyya 

et al., 2003; Manchado et al., 2005; Probst et al., 2004; Li et al., 2004]. Lozano et al. 

observed that 5 wt% CNF content led to a higher nucleation rate of polypropylene (PP), 

which was reflected as an increase in crystallization temperature by 8°C [Lozano and 

Barrera, 2001]. It was also observed that the addition of carbon nanotubes in various 

polymers such as polyethylene (PE) [McNally et al., 2005], polypropylene 

[Bhattacharyya et al., 2003; Manchado et al., 2005], polyvinyl alcohol [Probst et al., 

2004], and ethylene-vinyl acetate copolymer [Li et al., 2004] increased the crystallization 

temperature without significantly affecting the degree of crystallinity or melting point 

(Tm). For example, Tm of medium density PE remained almost unchanged after the 

addition of 10 wt% MWNT (~127°C) [McNally et al., 2005].  

Linear low density polyethylene (LLDPE) is widely used for packaging 

applications because of its film-forming properties, good barrier characteristics, and 

 66



 

desirable mechanical properties [Cherukupalli and Ogale, 2004]. These properties of 

LLDPE can be modified by the incorporation of various α–olefin co-monomers such as 

1-butene, 1-hexene and 1-octene [Prasad, 1998]. However, incorporation of such co-

monomers does not change the electrical properties to any appreciable extent. Therefore, 

in this study, two commercial grades of CNFs (PR and PRCVD) and one research grade 

(MJ) were incorporated into LLDPE to improve electrical conductivity. Electrical and 

mechanical properties of these nanocomposites were measured. However, the focus of 

this study is the effect of carbon nanofibers on the crystallization characteristics of 

LLDPE, as measured by thermal analysis, wide angle X-ray diffraction (WAXD), and 

electron microscopy. This Chapter is based on our work that was recently published [Lee 

et al., 2007b].   

 

3.2. Experimental 

 

3.2.1. Materials 

Poly(ethylene-co-1-octene) (DOWLEX 2045 LLDPE, Dow Chemical) was used 

throughout this study as it is suitable for film applications. The properties of the resin as 

given by the manufacturer are: density of 0.920 g/cm3, melt flow index (MFI) of 1.0 g/10 

min, DSC melting point of 122°C, and vicat softening point of 108°C.  

A Rheomix 600 mixer was used for intensive mixing of LLDPE and various 

contents of CNF (PRCVD, PR, and MJ fibers). 30 g of physically blended LLDPE and 

CNFs were fed into the device and mixed for durations ranging from 2 min to 20 min at 
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190°C.  Shorter mixing times (2-6 min) resulted in lower percolation threshold and 

higher electrical conductivity, but also resulted in poorer spatial homogeneity of the 

nanocomposites.  Consequently, the longer mixing time of 20 min was used for all 

subsequent studies.  Next, the compounded forms of pure LLDPE (control) and 

nanocomposites were pressed in a Carver laboratory press at 190°C at a nominal pressure 

of 2.8 MPa applied for 5 min. Subsequently, the pressure was increased to 5.5 MPa for 3 

min, and pressed samples were air-cooled to ambient conditions in approximately10 min.  

 

3.2.2. Nanocomposite characterization 

The static decay time was measured at 25°C using a static decay meter (Model 

406D, Electro-Tech Systems, Inc.) to characterize the ability of molded samples to 

dissipate an induced surface charge. The test method was based on the Federal Test 

Method 101C, Method 4046, and Military Specification Mil-B-81705B that require 99 % 

of the induced charge to be dissipated in less than 2 s. The electrical resistivity was 

measured by a digital ohmmeter (Megohmmeter ACL 800) at ~25°C. The electrical 

measurements were conducted at two different voltages (10 and 100 V) to account for 

low and high resistances and corrected for specimen geometry (Appendix A3). 

Measurements were conducted at ten different locations on three replicates. 

For mechanical testing, the compressed sheets were cut into dumbbell shaped 

specimens to dimensions of 7.5mm × 24.5 mm, with a thickness of 0.4 to 0.6 mm. The 

tensile properties were measured according to ASTM D 638 using an ATS universal 
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tensile tester 900 at ~25°C. The crosshead speed was 50 mm/min for all specimens, and 

five replicates were tested at each condition.  

A Hitachi FE S-4300 scanning electron microscope (SEM) was used for examing 

cross-section of fractured nanocomposites. Specimens were cryo-fractured in liquid 

nitrogen. The specimens were coated with platinum for 1 min using a sputter coater, and 

then the cross-section was examined.  

Pure LLDPE and its nanocomposites were also investigated by WAXD (Rigaku 

and XRD 2000 Scintag units) equipped with Cu Kα X-ray source. Diffracted patterns 

were captured on 2-D image plates, which were scanned using a Fuji BAS 1800 scanner. 

An exposure time of 30 min per image was utilized throughout the study. The Fraser-

corrected WAXD diffractograms were analyzed using Polar® 2.6.8 software.  

Thermal analysis was performed in a Perkin-Elmer differential scanning 

calorimeter (DSC). An indium standard was used for temperature calibration. Samples 

were heated to 190°C at a rate of 10°C/min and held at that temperature for 10 min to 

erase thermal history of samples. Subsequently, samples were cooled to 50°C at a rate of 

0.5-10°C/min and then heated to 190°C again at a rate of 10°C/min for studying the 

effect of nanofibers on the non-isothermal crystallization. For isothermal crystallization, 

samples were rapidly cooled (40°C/min) from 190°C and held at 112-116°C for 60 min.  

A Hitachi H 7600 and H 9500 transmission electron microscope (TEM) were used for 

investigating crystalline structure of LLDPE in pure and composite forms containing 15 

wt% CNFs. To control thermal history of samples, they were held for 10 min at 190°C 

and cooled at a rate of 10°C/minin in a Perkin-Elmer DSC. Samples were chemically 
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treated with chlorosulphonic acid for 10 hrs at 25°C [Sawyer and Grubb, 1996; Defoor et 

al., 1992]. After cryo-microtoming at -50°C, samples were dispensed on a 

formvar/carbon film-supported copper grid. Subsequently, they were stained with 2% 

uranyl acetate for 2 hrs at 25°C [Sawyer and Grubb, 1996; Defoor et al., 1992].  

The nominal thickness of polymer lamellae was measured in pure LLDPE and 15 

wt% CNF nanocomposites. Seven replicate images were obtained for each composition, 

and the thickness of multiple lamellae (n=70) was computed by the use of image analysis 

software provided with the microscope.  

 

3.3. Results and Discussion 

 

3.3.1. Electrical and mechanical properties 

The static decay time for a pure LLDPE and its composites is presented in Table 

3.1. MJ composites with a CNF content of 5 wt% or lower showed an unacceptably long 

static decay time. For more than 10 wt% MJ fiber content, the nanocomposites showed a 

static decay time below 2 seconds for both positive and negative charges. Thus, MJ 

composites containing 10 wt% CNF content are static dissipative. In contrast, for 

PRCVD and PR fibers, about 20 wt% CNFs were needed to obtain a static decay time 

that was less than 2 seconds. 

Figure 3.1 presents the dependence of volume resistivity on the CNF content. For 

composites containing up to 10 wt% MJ fibers, the volume resistivity did not change 

significantly from the pure LLDPE value. However, at 15 wt% MJ fiber content, the 

 70



 

volume resistivity decreased over 5 orders of magnitudes to 8.9×103 ohm-cm. No further 

significant change was observed at 20 wt% MJ fiber content. In contrast, for PR and 

PRCVD composites, the volume resistivity started to decrease only at a higher content of 

20 wt%. As CNF content increased further, a gradual decrease of volume resistivity was 

observed. At 35 wt% CNF content, the PR and PRCVD composites possessed volume 

resistivities of 4.2×103 ohm-cm and 2.4×105 ohm-cm, respectively.  

 

 

 

 

 

Table 3.1. Static decay time of LLDPE composites 

Decay time (s) ∞  0.01 

MJ composites 0 ~ 5 wt% > 10 wt% 

PR composites 0 ~ 20 wt% > 25 wt% 
CNF 

content 

PRCVD composites 0 ~ 20 wt% > 25 wt% 
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Figure 3.1. Volume resistivity of pure LLDPE and its composites.  
 
 

 



 

Figure 3.2 displays mechanical properties of pure LLDPE and its composites 

containing up to 15 wt% CNF. As CNF content increased, tensile modulus increased for 

all three types of composites (Figure 3.2a), indicating that CNFs play a role of increasing 

stiffness of composite. It is likely that this is more significant in the presence of straight 

carbon nanofibers such as PR fibers due to their higher intrinsic stiffness. Tensile strength 

did not change significantly in going from pure LLDPE to composites containing 15 wt% 

CNF (Figure 3.2b). It has been reported that in a particular direction, tensile strength can 

be increased when CNFs are well oriented in the given direction [Kuriger et al., 2002a; 

Kuriger et al., 2002b]. It should be noted that tensile test samples used in this study were 

obtained from compressed molded plaques, implying that crystalline regions of LLDPE 

and CNFs in composites did not possess a preferred orientation.  

Increasing CNF content for all composites led to decreasing strain-to-failure 

(Figure 3.2c). However, an interesting result was observed for composites containing MJ 

fibers in that even at 15 wt% fiber content, values as high as 460% were measured. In 

contrast, 15 wt% PR and PRCVD composites showed an approximate 100% strain-to-

failure. This trend is counter-balanced by a higher increase of modulus for PR composites 

than for MJ composites. Incorporation of solid modifiers has been reported in the 

literature to significantly reduce strain-to-failure of resulting composites [Kumar et al., 

2002; Zeng et al., 2004]. In composites, the decease in strain-to-failure of LLDPE 

depended on the type of CNFs, indicating a significance of modifiers on strain-to-failure 

of LLDPE. 

 

 73



 

(c) 

0 5 10 15
0

200

400

600

800

 pure
 PRCVD
 PR
 MJ

 

 

St
ra

in
-to

-fa
ilu

re
 (%

)

CNF content (wt%)

(a) 

0 5 10 15

100

150

200

250

300

350

 

 

Te
ns

ile
 m

od
ul

us
 (M

P
a)

CNF content (wt%)

 pure
 PRCVD
 PR
 MJ

(b) 

0 5 10 15
0

5

10

15

20

25

30

 pure
 PRCVD
 PR
 MJ

 

 

Te
ns

ile
 s

tre
ng

th
 (M

Pa
)

CNF content (wt%)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. (a) Tensile modulus, (b) tensile strength, and (c) strain-to-failure of a pure 
LLDPE and its composites. 
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Interfacial bonding may have an important role in understanding the relatively 

higher strain-to-failure of MJ fiber. Surface morphology of CNFs influences the 

interfacial bonding with the matrix, which is critical for the development of mechanical 

properties of the composites. For better interfacial bonding with polymer matrices, fiber 

surface treatments such as oxidation treatment [Zhang et al., 2004], cryonic treatment 

[Zhang et al., 2004], and plasma treatment [He et al., 2005; Brandl et al., 2004] have been 

performed. Therefore, rough surfaces [Zhang et al., 2004] or chemical functional groups 

on the surface [He et al., 2005; Brandl et al., 2004] were obtained to influence interfacial 

bonding.  

It is likely that interfacial bonding of MJ fibers with LLDPE matrix is better than 

that of PR fibers because MJ fibers possess a rougher surface. During deformation, e.g., 

tensile testing, this interfacial bonding of MJ composites, formed as a mechanical 

interlock, may prevent fibers from slipping past the LLDPE matrix, leading to elongation 

in an interphase area. After sufficient elongation of LLDPE in the interphase area, tensile 

stress transfers to the bulk matrix, which leads to a high strain-to-failure. In contrast, PR 

fibers possessing a smooth surface have a poor interfacial bonding with LLDPE. The 

interfacial bonds break before LLDPE is fully stretched during tensile testing. This 

interfacial debonding acts as defects, which propagate so that PR composites fail earlier 

than their MJ counterparts.  

To investigate the dependency of electrical volume resistivity on CNF content, 

dispersion of CNFs in LLDPE was examined using SEM. Dispersion of nanometer scale 

modifiers in polymer matrices remains a significant research issue because strong van der 
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Waals bonding between nanofillers hinders their dispersion, which leads to 

agglomeration. This agglomeration may reduce the effect of CNFs on electrical 

conductivity of composites. SEM was performed on cross-sections of cryo-fractured 

composites containing 15 wt% each of PRCVD, PR, and MJ fibers. From Figures 3.3a-c, 

it is evident that CNFs are well dispersed in all composites and dispersion issue can be 

minimized as the source of different volume resistivities of different grades.  

An interesting observation from insets of each micrographs is that PRCVD and 

PR composites showed holes, which may be introduced during cryo-fracture sample 

preparation, indicating that PRCVD or PR fibers pulled out. In contrast, MJ composites 

did not show any significant holes. It may be recalled from Chapter 2 (Figure 2.4) that 

MJ fibers are curled or coiled, whereas PRCVD and PR fibers are fairly straight. PRCVD 

and PR fibers pulled out during the sample failure. In contrast, MJ fibers will break rather 

than pull out because of their curled structure. This may explain the different morphology 

of cryo-fractured composites.  

After cryo-microtoming of nanocomposites containing 15 wt% CNFs without 

staining, TEM was also performed to observe dispersion of CNFs. From Figures 3.4a-c, it 

is evident that CNFs are well dispersed in all composites. This is consistent with SEM 

analysis. Further TEM analysis will be presented later in section 3.3.4.  
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Figure 3.3. SEM micrographs of 15 wt% CNF/LLPDE composites containing: (a) 
PRCVD, (b) PR, and (c) MJ fibers. The inset micrographs are at a higher magnification. 
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Figure 3.4. TEM micrographs of 15 wt% CNF/LLPDE composites containing: (a) 
PRCVD, (b) PR, and (c) MJ fibers.  
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The intrinsic volume resistivity of nanofibers in bulk is presented in Table 3.1. 

PRCVD fibers (1.71 ohm-cm) have higher volume resistivity than PR fibers (0.33 ohm-

cm) and MJ fibers (0.43 ohm-cm). Also, SEM micrographs were used to measure 

nanofiber diameter, and the distribution is presented in Figure 3.5. As expected, the CVD 

layer led to thicker nanofibers, a lower aspect ratio, and a higher intrinsic volume 

resistivity in PRCVD fibers (as compared with PR fibers). This explains why PRCVD 

fiber composites showed a higher resistivity than did PR fiber composites.  

However, MJ fibers were thicker than PR fibers and the intrinsic volume 

resistivity was higher than that of PR fibers (Table 3.2). But, MJ composites possessed a 

lower volume resistivity as compared with that of PR composites. Hence, microstructure 

of nanofibers can also play a role in the electrical behavior of composites. Because 

twisted/coiled MJ fibers have a higher probability to contact each other than do straight 

PR fibers, a lower percolation threshold can result from this higher degree of connectivity 

of MJ fibers, and can help to reduce volume resitivity of MJ composites.  

 

 

Table 3.2. Properties of carbon nanofibers 
 

 volume resistivity in bulk (Ω-cm) diameter (nm) length (μm) 

PRCVD 1.71 148±60  10-100 

PR 0.33 116±46 10-100 

MJ 0.43  130±76 10-100  
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Figure 3.5. Histograms of diameter distribution of: (a) PRCVD (b) PR (c) MJ fibers. 
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3.3.2. Crystallization kinetics 

To investigate additional effects that CNFs have on the LLDPE matrix, 

crystallization behavior of LLDPE in the presence of CNFs was investigated. Using non-

isothermal DSC analysis, melting peaks from the first heating scan are displayed in 

Figures 3.6a-c. Pure LLDPE showed two melting peaks, one at 115°C and the other at 

121°C. With the addition of PRCVD and PR fibers, the melting peaks remained 

essentially unchanged. But, for MJ composites, the lower temperature peak (115°C) 

started to shift to higher temperatures (~120°C), and a broad peak appeared at ~ 109°C 

for higher nanofiber contents. Thus, 15 wt% MJ composite displayed one sharp (121°C) 

and one broad (~109°C) melting peak.  

Since the first heating scans reflect thermal history experienced by the 

nanocomposites during sample processing steps, and may vary from one process to 

another, second heating scans were also obtained to investigate the crystallization 

behavior intrinsic to the polymer/CNF material system. Samples were held at 190°C for 

10 min after the first heating scan to remove prior thermal history and then slowly cooled 

at 10 °C/min. The cooling crystallization thermograms are presented in Figure 3.7, 

followed by the second heating scans at 10°C/min in Figure 3.8. During cooling, DSC 

thermograms of pure LLDPE (‘pure’ in Figures 3.7a, b, and c) display one sharp peak at 

104.7°C followed by a broad tail (towards lower temperatures). Thermograms for PR 

composites, displayed in Figures 3.7a and b, also showed a sharp peak and a broad tail 

with a small shifting of the peak temperature to higher values (104.5→106.7°C for 

PRCVD and 104.5→107.9°C for PR, as in Table 3.3).  
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Figure 3.6. DSC thermograms (first heating) of pure LLDPE/ CNF composites at a heating rate of 10°C/min for: (a) PRCVD, (b) PR, 
and (c) MJ fibers.  
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Figure 3.7. DSC thermograms (cooling) of pure LLDPE/ CNF composites at a heating rate of 10°C/min for: (a) PRCVD, (b) PR, and 
(c) MJ fibers.  
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Figure 3.8. DSC thermograms (second heating) of pure LLDPE/ CNF composites at a heating rate of 10°C/min for: (a) PRCVD, (b) 
PR, and (c) MJ carbon nanofibers.  
 



Table 3.3. The crystallization temperatures (Tc), melting points (Tm), and heats of crystallization measured by DSC for LLDPE 
and its composites containing PRCVD, PR and MJ fibers  
 

Type CNF content 
(wt%) Tc1(℃) Tc2(℃) Tm1(℃) 

(shoulder) Tm2(℃) Tm3(℃) ∆Hf(J/gpoly) X (%) 

LLDPE 0 − 104.5±0.3 106.5±1.0 118.1±0.3 122.0±0.2 100.8±1.7 35.0±0.6 

1 − 104.5±0.3 106.4±0.2 118.0±0.5 121.4±0.2 93.7±1.8 32.5±0.6 

5 − 105.2±0.3 107.1±0.5 118.3±0.2 121.4±0.2 94.5±2.0 32.8±0.7 

10 − 106.3±0.2 107.6±0.2 118.9±0.4 121.9±0.2 94.1±1.6 32.7±0.6 

 
 
 

PRCVD 

15 − 106.7±0.2 107.6±0.4 119.2±0.3 122.1±0.1 94.3±1.9 32.7±0.7 

1 − 105.7±0.1 106.6±0.2 118.5±0.2 weak shoulder 95.2±1.4 33.0±0.5 

5 − 106.4±0.7 107.4±0.7 119.0±0.4 weak shoulder 92.1±1.5 32.0±0.5 

10 97.7±0.9 107.9±0.4 108.3±0.2 120.1±0.2 weak shoulder 97.2±1.6 33.8±0.6 
PR 

15 98.2±0.4 107.4±0.4 108.2±0.3 119.7±0.4 weak shoulder 94.8±1.0 32.9±0.4 

1 99.5±1.0 109.1±0.5 109.0±0.2 120.6±0.1 weak shoulder 99.3±1.1 34.5±0.4 

5 100.0±0.2 110.3±0.1 109.6±0.2 − 121.4±0.13 99.0±5.1 34.4±1.8 

10 100.4±0.2 112.0±0.1 109.9±0.3 − 122.1±0.12 99.3±1.7 34.2±0.5 
MJ 

15 101.8±0.1 113.6±0.2 110.2±0.5 − 122.4±0.05 99.3±4.9 33.2±1.7 
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In contrast, for MJ composites, a sharp peak (109.1-113.6°C) and another broad peak 

(99.5-101.8°C) were observed. It is evident that increasing CNF content shifted the peak 

temperature of crystallization to significantly higher values, and the broad tail of pure 

LLDPE became a broad peak.  

Thermograms from second-heating are presented in Figure 3.8, and the measured 

transition temperatures (Tm) and heats of fusion (∆Hf) are summarized in Table 3.3. Pure 

LLDPE displayed melting peaks at three temperatures: 106.5, 118.1 and 122.0°C. For all 

PRCVD composites, the three melting peaks were observed with an insignificant increase 

to higher temperatures. However, for PR composites, as nanofiber content increased, the 

meting peaks shifted to higher temperatures (106.6→108.2°C for the broad peak and 

118.5→120.1°C for the sharp peak). Thus, 15 wt% PR composites showed a broad peak 

at ~108°C and a sharp peak at ~120°C.  

For 1 wt% MJ composite, a broad lower melting peak at 109.0°C, a sharper 

melting peak at 120.6°C, and a shoulder at 122.2°C were observed (Figure 3.8c). It is 

likely that each of the melting peaks of pure LLDPE shifted to higher temperatures with 

the addition of MJ fibers. For 5 wt% and higher content of MJ fibers, two melting peaks 

were observed in DSC scans: one broad and one sharp. With an increase in CNF content, 

the broader peak at low temperature gradually became prominent without significant 

change in peak temperature (~109°C). In contrast, the sharp melting temperature 

increased (120.6→122.4°C) with increasing CNF content.  

After deconvolution of DSC thermograms, the relative area under the broad 

melting peak (109°C) was calculated to be 73.5±1.3, 72.9±0.3, 76.9±0.2, and 80.8±0.5% 

 86



 

for pure LLDPE, PRCVD, PR, and MJ composites (1 wt%), respectively (Table 3.4). At 

15 wt% CNFs, the values were found to be 75.9±1.0, 78.5±0.4, and 83.6±1.1 for PRCVD, 

PR, and MJ, respectively (Table 3.4). Representative deconvoluted thermograms for pure 

LLDPE and 1 wt% and 15 wt% composites are displayed in Figure 3.9. This indicates 

that with increasing CNF content, the broad melting peak became bigger whereas the 

sharp melting peak became smaller. 

 

 

 

 

Table 3.4. The relative area of melting peaks after deconcolution of DSC thermograms 
for LLDPE and its composites containing PRCVD, PR, and MJ fibers  
 

Type CNF content (wt%) % area (Tm1) % area (Tm2) % area (Tm3) 

LLDPE 0 73.5±1.3 14.9±0.4 11.6±1.7 

1 72.9±0.3 16.2±1.6 10.9±1.3 
PRCVD 

15 75.9±1.0 19.5±2.3 4.6±1.7 

1 76.9±0.2 21.8±0.6 1.4±0.6 
PR 

15 78.5±0.4 19.4±0.8 2.1±0.9 

1 80.8±0.5 18.5±0.5 0.7±0.2 
MJ 

15 83.6±1.1 − 16.4±1.1 
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Figure 3.9. Representative deconvoluted thermograms (second heating) of pure LLDPE 
and its composites.  
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It has been reported in the literature that DSC endotherms of LLDPEs prepared by 

Ziegler-Natta catalyst display multiple melting peaks [Prasad, 1998; Springer et al., 1986; 

Schouterden et al., 1987; Puig et al., 2001]. The α–olefin short-chain branches are not 

introduced at regular intervals in the main LLDPE chain, and the intra- and inter-

molecular heterogeneity leads to multiple melting peaks [Prasad, 1998]. The broader 

melting peak can be attributed to thinner lamellae of highly branched chain segments, 

whereas the sharper peaks arise from the long thick lamellae containing little or no 

branches [Prasad, 1998; Springer et al., 1986; Schouterden et al., 1987; Puig et al., 2001]. 

Defoor et al. observed by transmission electron microscopy (TEM) that thickest lamellae 

of LLDPE were mostly formed during the initial stage of the crystallization process 

[Defoor, 1992]. Later, at lower temperatures, thinner lamellae fill up the space between 

thick lamellae [Defoor, 1992]. In addition, depending on the α–olefin used as the co-

monomer, a broad melting peak with a lower melting point around 106-110°C and higher 

peaks in the range of 120-124°C have also been observed [Prasad, 1998].  

Further, for samples obtained after a slow cooling rate, the disappearance of the 

sharp melting peak of LLDPE prepared by Ziegler-Natta catalyst systems has been 

reported in the literature [Prasad, 1998]. Even though two sharp melting peaks for these 

LLDPEs were observed after a fast cooling rate of 10°C/min, only one melting peak 

appeared after a cooling rate of 5°C/min [Prasad, 1998]. The double melting peaks 

(generated during fast-cooling) can be attributed to melt-recrystallization, which is the 

reorganization of meta-stable lamellae into more stable thicker lamellae [Prasad, 1998]. 

A similar melting behavior was observed for LLDPE in Figure 3.10: for samples cooled 
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at the slow rate of 0.5°C/min, one sharp melting peak was observed, but an additional 

shoulder appeared in melting peaks for samples that had been cooled at moderate rates of 

1 and 2.5°C/min. Further, two distinct melting peaks were observed for samples that had 

been cooled at the faster rates of 5 and 10°C/min.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

90 100 110 120 130

Temperature (oC)

CR=10oC/min

CR=5oC/min

CR=2.5oC/min

CR=1oC/min

CR=0.5oC/min

E
xo

   
  (

W
/g

)  

0 

2 

4 

6 

8 

10 

12 

14 

 

 

Figure 3.10. DSC thermograms (second heating) of pure LLDPE at a heating rate of 
10°C/min after various cooling rates (CR). 
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For MJ composites, the 118°C melting peak shifted towards higher temperature, 

but became smaller. This suggests that CNFs lead to the development of some thicker, 

but fewer, LLDPE lamellae. However, the observation that the broad melting peak 

(109→110°C) became bigger with increasing CNF content suggests that CNFs also tend 

to generate additional thinner LLDPE lamellae. Note that as CNF content increases, the 

broad peak becomes more intense in the cooling scan as well (Figure 3.7c). It is evident 

that thin lamellae, likely associated with a broad melting peak in the second heating scan, 

were formed at lower temperature during cooling with the addition of CNFs.  

Non-isothermal crystallization kinetics were modeled using the non-isothermal 

Avrami analysis for pure LLDPE and its composites containing 1 wt% of CNFs. The 

extent of isothermal crystallization, X(t), may be related to time as: 

   )exp()(1 n
ttZtX −=−

where n is the Avrami crystallization exponent, and Zt is a crystallization rate constant 

[Sperling, 2001]. For non-isothermal crystallization, the modified time t is related to 

temperature T as φ/)( TTt o −=  where To is the onset temperature of crystallization and 

φ  is the cooling rate. From the Avrami plots (Figure 3.11), n values were calculated to be 

2.87±0.01, 2.90±0.11, and 2.83±0.05 for pure LLDPE, 1 wt% PRCVD, and 1 wt% PR 

composites, respectively. The crystallization exponents for pure LLDPE and PR 

composites were statistically not different (at 95% confidence interval). Also, these 

values were similar to those reported in the literature for polyethylene, a range of 1.7-3.8 

[Gupta et al., 1994; Rabesiaka and Kovacs, 1961]. However, MJ composite showed two 

slopes that led to two crystallization exponents: the steeper curve led to values of 
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2.61±0.03, whereas the shallower curve resulted in 1.13±0.03. It is evident that the 

second slope resulting from the broad peak (99.5°C) observed in Figure 3.7c indicates 

slower crystallization.    
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Figure 3.11. Avrami plots of pure LLDPE and 1 wt% composites containing PRCVD, PR, 
and MJ fibers. 



 

From the second heating scans, the crystallinity of all samples was determined by 

dividing the  of crystallization by  value of 288 J/g for LLDPE [Mirabella and 

Bafna, 2002], and the results are summarized in Table 3.3.  The normalized  values 

reported are based on the polymer content (since fibers do not crystallize). The overall 

crystallinity of the LLDPE phase (35.0-32.7%) did not change significantly with 

increasing CNF content (Table 3.3).  

o
fΔH o

fΔH

fΔH

Isothermal crystallization of pure LLDPE and 1 wt% composites was conducted 

in the temperature range from 112 to 116°C. When samples were quenched to the desired 

temperature, there was a lag between the sample temperature and programmed 

temperature. This temperature transience has also been reported in the literature and 

results from the heat capacity of materials and non-isothermal crystallization [Feng and 

Kamal, 2005]. Therefore, the initial non-isothermal heat effects are subtracted from the 

overall heat effects [Feng and Kamal, 2005]. By following this procedure, corrected 

isothermal scans, such as those plotted in Figure 3.12, were obtained. However, due to 

the removal of initial heat effects, the crystallinity value from isothermal scans is less 

than that measured from non-isothermal crystallization. For poly(ethylene-co-1-hexene) 

synthesized by metallocene catalyst, Janimak and Stevens [1999] observed that the 

crystallinity measured from isothermal scans at 110°C was about half of that measured 

from non-isothermal scans. Since the crystallinity measured from isothermal scans was 

about a quarter of that measured from non-isothermal scans in the present study, it is 

believed that these isothermal results do not accurately represent crystallization kinetics, 

and will not be discussed further.  
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Figure 3.12. Isothermal crystallization exotherms at 114°C for pure LLDPE, and 1 wt% 
composites containing PRCVD, PR and MJ fibers. 
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The integrated azimuthal profiles (2θ scans) from WAXD of pure LLDPE, 1 wt% 

and 15 wt% MJ composites are displayed in Figure 3.13a. The peaks associated with 

(110), (200) and (020) planes of orthorhombic LLDPE crystals appear at 2θ values of 

21.7±0.2°, 24.1±0.2° and 36.5±0.2°, respectively. For 15 wt% MJ composites, a peak 

appears at 2θ ≈ 26° from the (002) graphene planes of CNFs, but the peak positions for 

LLDPE did not change significantly for any CNF composites. Further, as illustrated in 

Figure 3.13b for 1 wt% CNF content, no measurable change of peak positions was 

observed with different CNFs. These diffractograms indicate that CNFs did not 

significantly affect the orthorhombic crystal structure of LLDPE. 

Overall crystallinity of LLDPE was also calculated by WAXD in pure polymer 

samples and those containing 1 wt% CNFs, based on the sum of (110) and (200) peak  

areas as a ratio of the total area [Aggarwall and Tilley, 1955; Orsini et al., 1963; Beach 

and Kissin, 1984]. The degree of crystallinity was found to be 36±2, 34±2, 34±3, and 

35±2%, for pure LLDPE, PRCVD, PR and MJ 1 wt% composites, respectively. These 

WAXD-based values are consistent with those obtained from DSC (Table 3.3), and 

indicate that there was not any appreciable difference in the overall degree of crystallinity 

with the addition of various CNFs.  
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Figure 3.13. Integrated azimuthal profiles (2θ plots) for: (a) pure LLDPE, and 1 wt% and 
15 wt % MJ composites and (b) LLDPE/1 wt% composites containing PRCVD, PR and 
MJ fibers. 
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3.3.4. Microstructure and morphology  

Figures 3.14a-h display TEM micrographs of LLDPE lamellar structure in pure 

and composite forms (15 wt% of PR-19, PR-24, and MJ CNFs) at two different 

magnifications. Lamellae growing perpendicular to the surface of CNFs were observed in 

nanocomposites, indicating the presence of transcrystallinity. The nominal thickness of 

polymer lamellae were 10.0±1.3 nm, 10.2±1.5 nm, 10.3±1.9 nm, and 10.3±2.0 nm for 

pure LLDPE, PRCVD, PR, and MJ nanocomposites, respectively. These values were not 

significantly different in the pure versus nanocomposite form. However, a broader 

distribution of LLDPE lamellar thickness was observed in nanocomposites compared to 

that in the pure state (Figure 3.15a-d). This is also consistent with results reported by Wu 

et al. [Wu et al., 2002] who showed the preferential crystalline growth of HDPE at the 

end of carbon fibers was a consequence of surface roughness. Thus, as expected, surface 

topography of the nanoreinforcement plays an important role in the crystallization 

behavior of the polymer.  
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Figure 3.14. Transmission electron micrographs of: (a) pure LLDPE, and LLDPE/15 wt% 
composites containing (c) PR-19, (e) PR-24 and (g) MJ fibers. (b), (d), (f), and (h) are in 
high resolution for (a), (c), (e), and (g), respectively.  
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Figure 3.15. Histograms of thickness distribution of LLDPE lamellae in: (a) pure, and 15 
wt% composites containing (b) PRCVD, (c) PR, and (d) MJ fibers. 
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3.4. Conclusions 

A significant drop in volume resistivity was observed for nanocomposites starting 

with 15 and 25 wt% of MJ and PR fiber contents, respectively. It was observed that 

twisted/coiled MJ fibers led to better inter-fiber connectivity and reduced percolation 

threshold, compared to fairly straight PR fibers. Strain-to-failure decreased from 690% 

for pure LLDPE to 460% and 120% for 15 wt% MJ and 35 wt% PR composites, 

respectively. This indicates that the interfacial bonding of the LLDPE matrix with MJ 

fiber is better than that with PR fibers, resulting from the rougher surfaces of MJ fibers. 

WAXD results indicate that the overall crystallinity of LLDPE did not change 

significantly in the LLDPE/CNF nanocomposites. Non-isothermal DSC analysis of 

nanocomposites indicated that 15 wt% PRCVD composites exhibited three melting peaks, 

similar to those for pure LLDPE. However, one of the three melting peaks for LLDPE 

disappeared in the presence of MJ fibers. Further, the observation that the broad melting 

peak becomes more intense with increasing MJ fiber content suggests that MJ fibers lead 

to thinner LLDPE lamellae. TEM micrographs of nanocomposites revealed 

transcrystalline growth of LLDPE on CNF surface, and a slightly broader distribution of 

lamellar thickness. In Chapter 2, STEM studies revealed a rougher surface morphology of 

the MJ fibers relative to that of PR fibers. A larger specific surface area of MJ fibers 

relative to that of PR fibers (BET studies of Chapter 2) and the rougher surface of MJ 

fibers contribute toward the different crystallization behavior of the nanocomposites.  
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CHAPTER 4 

EFFECT OF CARBON NANOFIBERS ON THE ANISOTROPY OF AN AROMATIC 

THERMOTROPIC LIQUID CRYSTALLINE POLYMER 

 
 
4.1 Introduction 

 
In contrast to flexible-chain polymers (viz. LLDPE), semi rigid-rod thermotropic 

liquid crystalline polymers (TLCPs) provide unique properties such as high strength and 

low oxygen/water vapor permeability. These superior properties make them promising 

candidates for high performance molding and extrusion applications [Foldberg et al., 

2003]. The degree of uniaxial orientation is typically very high, and this preferred 

orientation of the nematic phase imparts excellent tensile strength to TLCPs [Donald and 

Windle 1992]. The alignment of nematic domains has been reported even in moderately 

weak flows in prior studies (shear rates ∼1s-1) [Guo et al., 2005].  

Fourier transform infrared microspectroscopy [Kaito et al., 1991] and wide angle 

X-ray diffraction (WAXD) [Kaito et al., 1991; Saengsuwan et al., 2003; Sun et al., 1991; 

Romo-Uribe and Windle 1996] studies on copolyester TLCPs indicate that the degree of 

orientation can be very high along the flow/processing direction. WAXD analysis of 

copolyester TLCPs fibers has revealed pseudohexagonal and orthorhombic structures 

depending upon the annealing conditions [Sun et al., 1991].  

Unfortunately, this severe anisotropy of TLCP poses significant challenges for 

film applications since the high degree of orientation in the longitudinal direction leads to 

a high tensile strength in the longitudinal direction, but a low strength in the transverse 
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direction. Thus, an imbalance of in-plane properties, including tear resistance, is observed 

for such TLCP films. Another challenge faced in using TLCPs is their low electrical 

conductivity, which is inadequate for sensitive electronics packaging applications that 

need electrostatic dissipative materials. In this chapter, the role of carbon nanofibers (PR 

and MJ fibers) was investigated for the purpose of controlling the microstructure of the 

TLCP. The primary focus of this study was enhancing electrical conductivity while 

reducing anisotropy in the TLCP matrix. This chapter is based on a published paper [Lee 

et al., 2005]      

 

4.2. Experimental 

 

4.2.1. Materials 

Two commercial grades of TLCPs were used in this study: Vectran V400P and 

Vectra A950 provided by Ticona, the technical polymers business of Celanese A. G.. 

Vectran V400P is an aromatic copolyester composed of 1,4-hydroxybenzoic acid (HBA), 

2,6-hydroxynaphthoic acid (HNA), and other comonomers that provide selected meta-

linkages [Linstid 2001]. Vectra A950 consists the composition of a random copolyester 

of 73 mol% 1,4-HBA and 27 mol% 4,6-HNA [Lin and Winter, 1988]. The molecular 

weight of Vectra A950 is approximately 30,000 and the polydispersity index is 

approximately 2. MJ and PR fibers were used as carbon nanofibers to incorporate into 

TLCPs. Details on these fibers were reported in Chapter 2.  
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4.2.2. Processing  

TLCP pellets were vacuum dried for 24 h at 110°C before mixing. A Rheomix 

600 mixer was used for intensive mixing of TLCP and 0.1-15 wt% of MJ fibers for 20 

min at 210°C. Pure TLCP pellets without any nanofibers were also processed under the 

same condition; these samples served as the control material.  

The compounded materials, both pure TLCP and nanocomposites, were extruded 

into rods using a circular die of 2.7 mm diameter at a low wall shear rate of 2 s-1 at 230°C. 

The diameter of the extruded rods was close to 2.7 mm since no draw-down was imposed. 

A compression press (Carver model 30-12-2T) was used for processing of the polymeric 

rods into molded samples using a rectangular mold cavity (150 mm × 14 mm × 0.3 mm). 

A compression temperature of 210°C, pressure of  ∼ 4 MPa, and a holding time of  ∼ 4 

min was used for all of the molded samples. These conditions mimic those encountered 

in thermoforming processes that are used to produce packaging products.  Further, we 

note that Vectran V400P polymer can be processed at temperatures as low as 210-250°C 

[Guo et al., 2005; Linstid et al., 2001], in contrast to the injection molding grade TLCP 

copolyesters (such as Vectra A950) that need to be processed at temperatures exceeding 

300°C. 

To prepare extrudates, the pure TLCP and the nanocomposites containing MJ 

fibers were extruded under identical conditions in a capillary rheometer (Instron 

Instruments) at 250°C using a circular die of 500 µm diameter. The nominal wall shear-

rate was 55 s-1 for all extrudates. The extrusion temperature was slightly higher than that 

used in the molding process because it was not possible to extrude the nanocomposite 
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containing 5 wt% nanofibers at the lower temperatures of 210-230°C. A draw-down ratio 

of ∼ 3 was used for all materials resulting in samples with a diameter of ~ 275 µm. 

Also, V400P and A950, and their composites containing PR fibers, were extruded 

using a single screw extruder. A circular die of 1 mm diameter (L/D=10) was used at an 

apparent shear rate of 500 s-1. For V400P, the temperature profile was 170, 200, 250, and 

250°C in the feed, two metering sections, and die, respectively. The temperature profile 

for A950 was 230, 260, 300, 300°C. Extrudates were not post-drawn, and their nominal 

diameter was ~0.8mm. 

 

4.2.3. Characterization 

The static decay time was measured at 25°C using a static decay meter (Model 

406D, Electro-Tech Systems, Inc.) to characterize the ability of molded samples to 

dissipate an induced surface charge. The test method was based on the Federal Test 

Method 101C, Method 4046, and Military Specification Mil-B-81705B that require 99 % 

of the induced charge to be dissipated in less than 2 s. The electrical resistivity was 

measured by a digital ohmmeter (Megohmmeter ACL 800) at 25°C. The electrical 

measurements were conducted at two different voltages (10 and 100 V) to account for 

low and high resistances and corrected for the specimen geometry. Ten replicate 

specimens were used for all electrical measurements.  

To measure the mechanical properties, the extrudates for a pure V400P and its 

composites containing 0.1, 1, and 5 wt% MJ fibers were prepared. The tensile properties 

of extrudates were measured using an ATS Universal Tensile Tester 900 at 25°C. The 
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crosshead speed was 50 mm/min for all specimens. The tensile property of each 

extrudates was an average of the tensile data from at least eight specimens.  

Thermal analysis was performed in a Perkin-Elmer differential scanning 

calorimeter (DSC). Samples were heated to 350°C at a rate of 20°C/min and held at that 

temperature for 10 min to erase thermal history of samples. Subsequently, samples were 

cooled to 50°C at a rate of 20°C/min and then heated up to 350°C again at a rate of 

20°C/min for studying the effect of nanofibers on the non-isothermal crystallization.  

The orientation in pure TLCP and composites was observed from the azimuthal 

intensity distribution of wide angle X-ray diffraction (WAXD) patterns obtained from an 

Osmic Micromax Cu K　 X-ray source with a collimator pinhole size of 0.3 mm. The 

distance from the sample to the detector was 10 cm. Diffracted patterns were captured on 

2-D image plates, which were scanned using a Fuji BAS 1800 scanner. An exposure time 

of 30 min per image was utilized throughout the study. The Fraser-corrected WAXD 

diffractograms were analyzed using Polar® 2.6.5 software. Two replicate scans were 

performed on all samples. 

 

4.3. Results and Discussion 

 

4.3.1. Electrical and mechanical properties 

As presented in Table 4.1, composites containing MJ fiber contents below 5 wt% 

displayed a static decay time greater than 2 s for both positive and negative charges, 

indicating that the material is static dissipative starting only at 5 wt % content of the MJ 
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fibers. Further, Figure 4.1 displays the dependence of volume resistivity on the MJ fiber 

content. At 5 wt% MJ fiber content, a significant volume resistivity drop (over 3 orders 

of magnitudes) occurred, which corresponds to the onset of percolation. Thus, static 

decay time test and volume resistivity showed consistent results in that 5 wt% MJ fiber 

content represents percolation threshold. 

 
Table 4.1. Static decay time of pure V400P and MJ composites  

CNF content (wt%) 0 ~ 4 5 ~ 15 

∞Positive charge 0.01  
Decay time (s) 

∞Negative charge 0.01  
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Figure 4.1. Volume resistivity of pure V400P and MJ composites. 
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Tensile modulus and strength as mechanical properties for pure V400P and its 

composites (0.1, 1, and 5 wt% of MJ fibers) were measured (Figure 4.2). There was no 

significant change in tensile modulus and strength in going from pure V400P to 1 wt% 

MJ composites. As the MJ fiber content was increased up to 5 wt%, tensile modulus 

decreased from 70 GPa to 38 GPa and tensile strength from 420 MPa to 200 MPa, 

respectively. A similar trend for strain-to-failure was observed in that elongation at break 

value was 1.5% for pure, 0.1 wt%, and 1 wt% MJ composites, which decreased to 1.1% 

for 5 wt% MJ composites.  

One of the interesting characteristics of TLCP is the severe uniaxial orientation 

along the flow direction, which results in superior tensile properties of TLCPs. 

Significantly higher tensile properties were obtained for V400P specimens as compared 

to those of flexible-chain polymers. It should be recalled from Chapter 3 that tensile 

modulus and strength of LLDPE were 110 MPa and 20 MPa, respectively. However, the 

tensile properties of composites containing 5 wt% MJ fibers were drastically reduced, 

indicating that the structure of V400P changed significantly in the presence of MJ fibers.  

To investigate structural changes of TLCPs with the addition of MJ fibers, non-

isothermal DSC analysis of pure V400P and MJ composites was conducted. 

Thermograms are displayed in Figure 4.3 with baselines shifted vertically for 

convenience. From heating and cooling scans, it is evident that the glass transition occurs 

at 110°C for pure V400P, but no melting or crystallization transitions were observed 

during the heat up or cool down.  
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Figure 4.2. Tensile properties for pure V400P and MJ composites. 
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Figure 4.3. The DSC thermograms for pure V400P and 15 wt% MJ composite at a rate of 
20 °C/min. 



 

This indicates a non crystalline structure for solid V400P, which is consistent with that 

reported in earlier studies [Linstid et al., 2001; Guo et al., 2005]. Composites containing 

15 wt% MJ fibers also showed only one transition at 110°C. These thermograms suggest 

that the effect of MJ fibers on thermal behavior of V400P is not significant.     

 

4.3.2 Wide angle X-ray diffraction analysis 

The 2D diffraction images for pure V400P and its composites containing 0.1 wt%, 

1 wt%, and 5 wt% MJ fibers are displayed in Figures 4.4 and 4.5. Further, in Figure 4.6, 

the highest scattering intensity of the diffracted 2θ peak for pure V400P and MJ 

composite samples was observed around 2θ of 19.8° in all cases.  For Vectra A950, 

literature studies indicate that this peak results from (110) planes associated with pseudo-

hexagonal (PH) packing of TLCP polymer chains [Sun et al., 1991]. This structure is also 

referred to as orthorhombic form III, in which the lattice parameters are related as a= √3b.   

A distinct (200) peak was not observed in the vicinity of 2θ ≈20°, but a shoulder 

appeared in the 2θ region of 26-28° due to (211) planes. For V400P composite containing 

5 wt% MJ fibers, there was a distinguishable peak in the broad shoulder region that was 

associated with graphene (002) planes from carbon nanofibers. It is noted that the 

location of the (110) peak for the extruded samples of neat Vectran V400P and MJ 

composites is similar to that observed for their molded counterparts.  
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Figure 4.4. Wide angle x-ray diffraction patterns of molded samples from: (a) pure TLCP, 
(b) 0.1 wt%, (c) 1 wt% and (d) 5 wt% MJ composites. 
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Figure 4.5. Wide angle x-ray diffraction patterns of extrudates from: (a) pure TLCP, (b) 
0.1 wt%, (c) 1 wt% and (d) 5 wt% MJ composites. 
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Figure 4.6. Radial (2θ) intensity profiles of molded and extruded samples from pure,  
1 wt% and 5 wt% MJ composites. 
 

The (200) peak associated with orthorhombic form I in Vectra A950 was never observed 

in Vectran V400P for the extruded samples that were also subjected to significant 



 

extensional flow during draw down. The (200) peak did not develop in Vectran V400P 

samples even after annealing, in contrast to what has been observed for Vectra A950 type 

TLCPs [Sun et al., 1991; Wilson et al., 1993].   

In the diffraction patterns of the molded samples (Figure 4.4), the (110) plane 

formed an intense arc for pure TLCP. In contrast, for the same set of planes, broader arcs 

were observed at 0.1 and 1 wt% MJ fiber contents that finally evolved to a uniform ring 

at a MJ fiber content of 5 wt%. It is noted that the shorter the arc length, the higher is the 

orientational order. Quantified azimuthal intensity profiles for (110) peak are displayed in 

Figure 4.7, which show that intensity profiles of pure TLCP and 0.1 wt % MJ fiber-

modified TLCP were concentrated in the equatorial region. Higher contents of MJ fibers 

led to broader profiles. Therefore, the orientation of TLCP chains becomes less severe 

with higher content of MJ fibers. 

The equatorial (110) peak was used to evaluate axial orientation of the samples. 

The second order Legendre polynomial or Herman’s orientation parameter, is defined for 

orientation of polymer molecular chain as f = 0.5 (3<cos2ϕ>-1), where <cos2 ϕ> is the 

ensemble-average value of the cosine squared of the angle ϕ between the longitudinal 

sample direction and a molecular chain axis [Dees and Spruiell, 1974]. According to this 

equation, the orientation factor can range from -0.5 to 1.0. For a random orientation, the 

value is zero. Further, 1.0 and -0.5 indicate perfectly oriented molecules parallel and 

perpendicular to the longitudinal direction, respectively.  
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Figure 4.7. Azimuthal intensity profiles at 2θ = 19.8° of molded samples: pure V400P, 
0.1 wt%, 1 wt% and 5 wt% MJ composites. 

 

 



 

Herman’s orientation parameter in the longitudinal direction was calculated for 

molded and extruded samples using POLAR software based on PH packing of V400P 

chains. The f values, displayed in Table 4.2, ranged between 0.51 (pure V400P) and 0.20 

(5 wt% composites) for molded samples. At 1 wt % MJ fiber content, a significant 

decrease of the orientational order was observed.  The 1 wt % and 5 wt % MJ composites 

showed lower f values than those displayed by pure V400P and dilute composites.  

For extrudates, the azimuthal profiles were significantly sharper than those for 

molded samples, and the orientation parameter ranged from 0.85 for pure V400P to 0.71 

for 5 wt% MJ composite as shown in Figure 4.8. The higher orientational order observed 

for extrudates (than for molded samples) may be attributed to flow-induced orientation 

and is well documented for strong flows, i.e., high shear rates and/or extensional flow 

field [Saengsuwan et al., 2003; Romo-Uribe and Windle, 1996].  However, for a given 

type of flow, we found that the addition of MJ fibers results in a reduced orientation order.    

 

 

 

Table 4.2. Herman’s orientation parameter for molecular alignment of pure V400P and its 
composites containing MJ fibers  
 

CNF wt % 0 0.1 1 5 

molded sample 0.51 0.50 0.27 0.20 

extrudate 0.85 0.79 0.73 0.71 
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Figure 4.8. Azimuthal intensity profiles at 2θ = 19.8° of extrudates from pure TLCP,  
0.1 wt%, 1 wt% and 5 wt% MJ composites. 
 

 



 

Using Polar™ image analysis software, isotropic intensity distribution I(θ,φ) could 

be resolved and the residual anisotropic intensity distribution obtained. Figures 4.9a and b 

display normalized radial distribution plots of the extruded samples with resolved 

anisotropic scattering intensity for pure V400P and V400P containing 5wt% MJ fibers, 

respectively. For pure V400P samples, there was no significant difference between total 

and anisotropic intensity profiles, indicating primarily anisotropic distribution of V400P 

molecules. In contrast, after subtracting isotropic contributions for 5 wt% MJ composite, 

the intensity of anisotropic (110) reflection (2θ ∼19.8°) due to V400P molecules 

decreased. Therefore, it is evident that incorporation of MJ fibers reduces anisotropy for 

the (110) planes. Further, it is noted that the carbon (002) peak almost disappeared from 

the resolved anisotropic profile. Thus, it can be inferred that the carbon nanofibers do not 

have a significant preferred orientation, and help in reducing the preferred orientation of 

neighboring TLCP molecules. 

A decrease of molecular alignment in TLCP, in the presence of nanofibers, can 

also explain the drop in tensile strength that was observed earlier. Addition of nanofibers 

prevents the TLCP matrix from forming a highly ordered structure and reduces the 

anisotropy. A reduction of anisotropy of in-plane properties has also been reported in the 

literature for aromatic copolyesters (HBA/HNA and HBA/isophthalic acid 

(IA)/hydroquinone (HQ)) in the presence of glass fibers [Chivers and Moore, 1991].  
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Figure 4.9. Radial (2θ) intensity profiles of extrudates for: (a) pure TLCP, (b) 5 wt% MJ 
composites. 

 119



 

The reduction of TLCP orientation is likely a consequence of surface anchoring of 

the nematic phase on the nanofiber surface. It has been reported that the molecular 

orientation of TLCP in TLCP/fiber composites was anchored by the carbon and glass 

fiber surfaces [Bhama and Stupp, 1990; Lee et al., 1994]. Furthermore, this observation is 

consistent with that reported in an earlier study [Cho et al., 2003], where it was shown 

that the incorporation of carbon nanotubes in discotic liquid crystalline pitch precursor 

disrupted the severe radial orientation of the disc-like molecules and produced a more 

random orientation in the plane. Therefore, it is hypothesized that, for a given set of 

processing conditions, the microstructure of TLCP can be rendered less anisotropic due 

to the surface anchoring afforded by inclusions such as carbon nanofibers.   

To further generalize these observations, WAXD analyses were performed for 

other combinations of carbon nanofibers and TLCPs. V400P and A950, and their 

composites containing PR fibers, were extruded using a single screw extruder. It is noted 

from Chapter 2 that PR fibers were straight as compared with curly MJ fibers. A circular 

die of 1 mm diameter (L/D=10) was used at an apparent shear rate of 500 s-1. These shear 

rates were calculated from measured values of throughput and die 

diameter: . For V400P, the temperature profile was 170, 200, 250, and 

250°C in the feed, two metering sections, and die, respectively. The temperature profile 

for A950 was 230, 260, 300, 300°C. Extrudates were not post-drawn, and their nominal 

diameter was ~0.8mm. 

3/4 RQwa πγ =&

In Figure 4.10, individual 2D diffraction images of extrudates processed at 500 s-1 

of shear rate are presented for pure V400P and its composites containing 1, 5, and 10 
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wt% PR nanofibers. For pure V400P and 1 wt% PR composite, the (110) plane formed an 

intense arc. In contrast, the same reflection produced broader arcs at 5 wt% PR composite 

that finally evolved to a uniform ring at a PR fiber content of 10 wt%. It is noted that the 

shorter and more intense is the arc length, the higher is the orientational order.  

Next, Figure 4.11a displays integrated (2θ) intensity profiles of pure V400P and 

its PR composites. These profiles are similar to those observed for MJ fiber/V400P 

composites. The highest scattering intensity was observed at 2θ of ~19° in all cases. 

Further, at 2θ of 26-28° for pure V400P and 1 wt% composites, a shoulder appeared. In 

contrast, for 5 and 10 wt% composites, a distinguishable peak associated with graphene 

(002) planes from carbon nanofibers was observed. The azimuthal intensity profiles for 

(110) peak, presented in Figure 4.11b, showed that higher contents of nanofibers led to 

broader profiles.  

Figure 12 displays individual 2D diffraction images of A950 and its composites 

containing PR fibers prepared at 500 s-1 of shear rate. For pure A950, two peaks were 

observed in integrated (2θ) intensity profiles (Figure 13a). At a 2θ of 27°, distinct peaks 

due to (211) planes appeared, whereas V400P showed only a shoulder. It is likely that 

comonomers added for synthesizing V400P weaken the degree of packing of polymer 

chains. It should be noted that the equatorial reflection is most intense for pure A950 

samples than its composites. As observed in V400P and its composites, addition of PR 

fibers into A950 led to a reduction of the intensity of the equatorial peak and a uniform 

ring. These rings were more intense compared to V400P.  
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Figure 4.10. Wide angle x-ray diffraction patterns of the extrudates from: (a) pure V400P, 
(b) 1 wt%, (c) 5 wt%, and (d) 10 wt% PR composites. 
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Figure 4.11. (a) Radial (2θ) intensity profiles and (b) azimuthal intensity profiles at 2θ ~ 
19° of extrudates: pure V400P, 1 wt%, 5 wt%, and 10 wt% PR composites. 
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Figure 4.12. Wide angle x-ray diffraction patterns of extrudates: (a) pure A950, (b) 1 
wt%, (c) 5 wt%, and (d) 10 wt% PR composites. 
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Figure 4.13. (a) Radial (2θ) intensity profiles and (b) azimuthal intensity profiles at 2θ ~ 
19° of extrudates: pure A950, 1 wt%, 5 wt%, and 10 wt% PR composites. 

 



 

For 5 and 10 wt% composites, an intense peak at a 2θ of 26°, associated with graphene 

(002) planes from CNFs, revealed the (211) peaks into a shoulder.  

Using the equatorial (110) peak, Herman’s orientation parameter (f) in the 

longitudinal direction was calculated for V400P, A950, and their composites containing 

PR fibers. From the f values, a significant difference between V400P and A950 

composites was not observed. Further, compared to MJ fiber/V400P composites (Table 

4.2), a smaller decrease of f values in PR fiber/V400P composites was observed at the 

same content of CNF, even though pure TLCPs showed a similar degree of orientation. 

This may result from the straight morphology of PR fibers, which are probably oriented 

more along a given flow direction, compared to MJ fibers. However, it should be noted 

that these results confirm that CNFs decrease molecular orientation of TLCPs. 

 

 

 

Table 4.3. Herman’s orientation parameter for V400P, A950, and their composites 
containing PR fibers 
 

TLCP pure 1wt% 5wt% 10wt% 

V400P 0.86 0.84 0.80 0.74 

A950 0.85 0.82 0.80 0.75 
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4.3.3 Microstructure  

Figure 4.14a displays a cross section of a pure V400P sample cryo-fractured 

under liquid nitrogen at a low magnification (X100). It is interesting to note that the cross 

section was not circular, but was deformed. Various sheet-like structures appeared. It is 

likely that tensile force applied during testing, which can lead to a severe orientation in 

the longitudinal direction, led to these structures.  

In higher magnification SEM micrographs, additional features were observed. 

Figure 4.14b displays a typical fibrillar structure. Further, tape-like structure was 

observed in Figure 4.14c. These are layered sheets made by aligned bundle of fibrils. In 

Figure 4.14d, fibrils, having a diameter of 2-5μm became tapered at the end, indicating 

necking resulting from tensile forces.  

Sawyer et al. have described the microstructure of TLCPs, which were 

copolyester TLCPs composed of 2,6-naphthyly and 1,4-phenyl units [Sawyer et al., 1987]. 

They observed a fibrillar structure in the longitudinal direction. Fibrillar structure was 

described as a structure that is fiber-like with high aspect ratio, but does not possess fiber 

symmetry. Further, they observed tape-like structures, which are uniaxially oriented 

sheets. According to the hierarchical model [Sawyer et al., 1987], TLCPs possess bundles 

of macro fibrils (5 μm), fibrils (0.5 μm), and micro fibrils (0.05 μm), in decreasing order 

of their size. SEM micrographs of pure TLCP samples from present study also revealed 

macro fibrils. Sawyer et al. reported that these fibrillar structures and the length of fibrils 

observed with fractured surface correlated with the strength of the material.  
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Figure 4.14. SEM micrographs of pure V400P at various magnifications: (a) 100, (b) 1K, (c) 1K, and (d) 10K   
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Figures 4.15a-d display cross-sections of composites containing 10 wt% of PR 

fibers. Samples were prepared by cryo-fracturing in liquid nitrogen. From Figure 4.15a, it 

is evident that the cross-section is circular and intact, as compared to that for pure V400P. 

Further, fibrillar and tape-like structures, which were observed for pure V400P, did not 

appear to any appreciable extent (Figures 4.15a and b). Therefore, it is inferred that the 

highly oriented structure along longitudinal direction, one of TLCP characteristics, was 

modified in the presence of PR fibers. However, in higher magnification micrographs of 

composites (Figure 4.15c and d), micro fibrils (0.05 μm) of V400P were observed even 

though their aspect ratio was not high. PR fibers were distinguished by uniform diameter 

and hollow core, whereas V400P fibrils were tapered at the end. It is evident that PR 

fibers pulled out from V400P matrix even though the other side of PR fibers was wetted 

by the V400P matrix.  

These morphological changes confirm the effect of CNFs in disrupting the severe 

orientation that can otherwise develop in TLCPs. From WAXD results, it was confirmed 

that CNFs led to a reduction of the degree of orientation of TLCPs. SEM micrographs 

further confirm that macro fibrillar structure of TLCPs was not significant in the presence 

of CNFs, even though micro-fibrillar structure existed.  

To further verify these results, pure A950 and its composites containing 10 wt% 

of PR fibers were also examined and SEM micrographs are presented in Figures 4.16a-d 

and 4.17a-d. Pure A950 showed distinct macro size fibrils and tape-like structures, which 

were similar to those of pure V400P. These structures were longitudinally oriented. 
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Figure 4.15. SEM micrographs of V400P/10 wt% PR fibers at various magnifications: (a) 100, (b) 1K, (c) 10K, and (d) 30K.   
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Figure 4.16. SEM micrographs of pure A950 at various magnifications: (a) 100, (b) 1K, (c) 1K, and (d) 10K.   
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Figure 4.17. SEM micrographs of A950/10 wt% PR fibers at various magnifications: (a) 100, (b) 1K, (c) 10K, and (d) 20K.   



 

In contrast, such highly oriented fibrillar and tape-like structures were not observed in 

composites. 

For observing structure at higher magnification, transmission electron microscopy 

(TEM) analysis was performed. Extrudates of pure TLCPs and their 10 wt% PR 

composites were cryo-microtomed in the perpendicular direction using a diamond knife 

under liquid nitrogen. Figure 4.18a displays bright field images for pure V400P at low 

magnification. Contrast in bright field image of TEM results from thickness variation. 

Bright and dark sections indicate thin and thick regions, respectively. These are artifacts 

of cutting (white lines), which also resulted in folding of layers (black lines) 

perpendicular to longitudinal direction, as illustrated by the arrow on the micrographs in 

Figure 4.18a.  

It should be noted that at higher magnification, micrographs were obtained from 

relatively homogeneous areas to avoid artifacts noted above. In Figure 4.18b, banded 

structures were observed even though they are small and weak. These are more 

significant in Figure 14.8c, and finally very fine wavy structures appeared in Figure 14.8d.   

The fibrillar hierarchy described above has been reported in prior literature 

studies [Sawyer and Jaffe 1986; Sawyer et al., 1993]. Microstructure of TLCPs has also 

been studied using other techniques such as scanning tunneling microscopy (STM) 

[Sawyer et al., 1993] and TEM [Donald and Windle, 1983; Donald et al., 1983; Sawyer 

and Jaffe 1986; Sawyer et al., 1993; Taylor et al., 2003; Chan and Gao, 2005].  
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Figure 4.18. TEM micrographs of V400P at various magnifications: (a) 15K, (b) 50K, (c) 
100K, and (d) 300K.   
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From TEM micrographs, the most interesting feature of TLCPs observed was the banded 

structure which is associated with a serpentine path or “meander of the molecules” at a 

periodicity of 500 nm [Donald and Windle, 1983]. Donald and Windle observed bands of 

alternating diffracting (bright) and non-diffracting (dark) regions. Further, these bands 

were normal to the shear direction. In contrast, bright field imaging did not show clear 

banded structures. Banded structures of Vectra grade TLCPs have also been reported by 

other scientists [Sawyer and Jaffe 1986; Sawyer et al., 1993; Taylor et al., 2003; Chan 

and Gao, 2005]. Sawyer and Jaffe observed the periodicity of the microbands with a size 

of 100 nm from as-spun fibrils by TEM [Sawyer and Jaffe 1986]. Figure 4.18d indicates 

that these microbands were observed in the present results as a wavy path of molecules. 

Width of the dark bands was 10~50 nm, which is relatively smaller than those from 

literature studies.    

Sawyer and coworkers confirmed periodic microbanded structures by STM, 

which is capable of imaging down to 1 nm. Further, three-dimensional images of Vectran 

fibers by STM revealed that microfibrils possessed tape-like structure with width of 

10~50 nm and thickness of 2~10 nm rather than a round fibrous structure [Sawyer et al., 

1993]. Using these observations, an expanded hierarchical fibrillar structure model with 

more detailed microfibril sizes, shapes and order was suggested [Sawyer et al., 1993]. 

Because the TEM micrographs reported here are two-dimensional, information about 

thickness of microstructure can not be obtained from Figure 14.8d. However, width of 

dark bands (10~50 nm) is consistent with results from STM micrographs by Sawyer and 

coworkers [Sawyer et al., 1993].  
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TEM micrographs of composites containing 10 wt% PR fiber content are shown 

in Figures 4.19a-d. Artifacts such as cutting lines and folding by microtoming appeared at 

a low magnification (Figure 4.19a), which were also observed for pure V400P. From 

Figures 4.19b and c, it was evident that PR fibers were fairly dispersed, but they are not 

oriented along one direction, indicating that the flow field applied for sample preparation 

is not strong enough to align discontinuous PR fibers in V400P matrix. This may disrupt 

the anisotropy of V400Ps. In Figure 4.19c, several microbands were observed. However, 

Figure 4.19d suggests that microbands were not significantly observed in the vicinity of 

PR fibers, indicating a disruption of periodicity of banded structures. 

  Samples for pure A950 and its composites containing 10 wt% PR fibers were 

also investigated, and TEM micrographs are presented in Figures 4.20a-d and 4.21a-d, 

respectively. There was not a significant difference in the micrographs for pure V400P 

and pure A950 (Figures 4.20a-d). The width of banded structures was observed in the 

range of 20-50nm (Figure 4.20d). Further, TEM micrographs of A950 composites 

revealed the disruption of banded structures of TLCPs by PR fibers (Figure 4.21c), while 

banded structures were observed in the area devoid of PR fibers (Figure 4.21d). These 

results confirm the disrupting effect of CNFs on microstructure of TLCPs, which was 

also observed for V400P composites.  
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Figure 4.19. TEM micrographs of V400P/10 wt% PR fibers at various magnifications: (a) 
10K, (b) 50K, (c) 100K, and (d) 300K.   
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Figure 4.20. TEM micrographs of A950 at various magnifications: (a) 10K, (b) 50K, (c) 
100K, and (d) 300K.   
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Figure 4.21. TEM micrographs of A950/10 wt% PR fibers at various magnifications: (a) 
10K, (b) 50K, (c) 100K, and (d) 300K.   
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4.4. Conclusions 

The incorporation of MJ fibers in a thermotropic liquid crystalline polymer 

(V400P) improved the electrical conductivity of the resulting nanocomposite. The 

electrical percolation threshold was observed in the V400P composite at approximately 5 

wt% MJ fiber. A decrease in tensile modulus from 70 GPa for a pure V400P to 38 GPa 

for 5 wt% MJ composites was observed. Also, tensile strength decreased from 420 MPa 

for pure V400P to 200 MPa for 5 wt% MJ composites. The preferred orientation of 

V400P molecules was studied by WAXD and, as expected, was found to be higher for 

samples processed in strong flows. However, the V400P molecular orientation 

distribution broadened with increasing MJ fiber content. WAXD studies showed a 

decrease of Herman’s orientation parameter from 0.85 for pure TLCP to 0.71 for 5 wt% 

MJ composites. These phenomena were also confirmed for other grades of CNF (PR 

fiber) and TLCP (A950).  

The disruption of molecular orientation of TLCPs was inferred by SEM and TEM 

analysis. SEM micrographs revealed a fibrillar structure for pure TLCPs at a macro-scale 

(2-5 μm). However, this structure was not observed in composites at the same scale even 

though micro-size fibrils (0.05 μm) were found with the addition of PR fibers. TEM 

micrographs displayed banded structures of pure TLCPs, but these structures were not 

significant in the vicinity of PR fibers. These results indicate that PR fibers can help to 

reduce the severe anisotropy that is otherwise observed for TLCPs. In summary, the 

nanofiber solid surface constrains the nematic phase, a phenomenon also referred to as 
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“surface anchoring”, and helps reduce the severely high degree of molecular order in the 

TLCP matrix, and reduces anisotropy in the nanocomposite. 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

 

The objective of this research was to investigate the effect of nano-modifiers such 

as carbon nanofibers (CNFs) on crystalline and orientational structure of linear low 

density polyethylene and thermotropic liquid crystalline polymers processed by extrusion. 

This chapter summarizes results obtained from Chapters 2, 3, and 4. Finally, 

recommendations for future work are provided at the end of the chapter.  

 

5.1 Conclusions 

First, the microstructure of two different grades of CNFs, MJ (experimental) and 

PR (commercial), was investigated as a function of different thermal treatments. From 

Raman spectroscopy and XRD analysis, an enhancement of crystallite size was observed 

after heat treatment at 2200°C. The crystallite thickness increased from 1.6±0.1 nm to 

10.9±0.5 nm for MJ fibers and from 3.1±0.3 nm to 11.7±0.4 nm for PR fibers; width 

increased from 1.0±0.2 nm to 3.1±0.5 nm for MJ fibers and from 1.7±0.7 nm to 8.0±0.7 

nm for PR fibers, confirming an increase of crystalline size. Also, an increase in thermal 

oxidation stability for heat-treated CNFs was observed. BET adsorption isotherms 

showed a significant reduction of specific surface area of MJ fibers (300 m2/g) after the 

heat treatment (51 m2/g) and also after the CVD surface treatment (30 m2/g), resulting 

from a decrease of pore volume (from 0.525 cm3/g for MJ to 0.146 cm3/g and 0.098 

cm3/g for MJCVD and MJHT, respectively). However, even after heat treatment, MJ 
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fibers possessed a rougher surface than did PR fibers. It is concluded that these surface 

and structural changes in CNFs are controlled by heat treatment, which can play an 

important role in the nanocomposite. 

In Chapter 3, these CNFs were incorporated into linear low density polyethylene 

(LLDPE) using intensive mixing. It was observed that electrical volume resistivity of 

composites decreased with the addition of CNFs (>1×1012, 8.9×103, and 4.2×103 ohm-

cm for pure LLDPE, 15 wt% MJ, and 35 wt% PR composites, respectively). Tensile 

modulus increased from 110 MPa for pure LLDPE to 200 MPa and 300 MPa for 15 wt% 

MJ and 15 wt% PR composites, respectively. However, the tensile strength remained 

fairly unchanged at about 20 MPa. Strain-to-failure decreased from 690% for pure 

LLDPE to 460% and 120% for 15 wt% MJ and 15 wt% PR composites, respectively. It 

was inferred that the interfacial bonding of LLDPE matrix with MJ fibers is better than 

that with PR fibers, resulting from the rougher surface of MJ fibers. 

Crystallization behavior of LLDPE nanocomposites is reported in the presence of 

three types of CNFs (MJ, PR and PRCVD). WAXD results indicate the orthorhombic 

crystal structure of LLDPE from (110), (200), and (020) planes. Overall crystallinity of 

LLDPE (approximately 35%), calculated using WAXD diffractograms, did not change 

significantly in any of the LLDPE/CNF nanocomposites. Non-isothermal DSC analysis 

of nanocomposites indicated that 15 wt% PRCVD composites exhibited three melting 

peaks at 107.6°C, 119.2°C, and 122.1°C, similar to those for pure LLDPE. However, one 

of the three melting peaks for LLDPE disappeared in the presence of MJ fibers. Further, 

the observation that the broad melting peak becomes more intense with increasing MJ 
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fibers content suggests that MJ fibers lead to thinner LLDPE lamellae. TEM micrographs 

of nanocomposites revealed transcrystalline growth of LLDPE on CNF surface, and a 

slightly broader distribution of lamellar thickness. It is concluded that a larger specific 

surface area of MJ fibers relative to that of PR fibers (BET studies of Chapter 2) and the 

rougher surface of MJ fibers contribute toward the different crystallization behavior of 

the nanocomposites.  

In Chapter 4, the incorporation of MJ fibers in a thermotropic liquid crystalline 

polymer (TLCP) improved the electrical conductivity of the resulting nanocomposite. 

The electrical percolation threshold was observed in the V400P composite at 

approximately 5 wt% MJ fiber. A decrease of tensile modulus from 70 GPa for a pure 

V400P to 38 GPa for 5 wt% MJ composites was observed. Also, tensile strength 

decreased from 420 MPa for pure V400P to 200 MPa for 5 wt% MJ composites. The 

preferred orientation of V400P molecules was measured by WAXD and, as expected, 

was found to be higher for samples processed in strong flows. However, the V400P 

molecular orientation distribution broadened with increasing MJ fiber content. WAXD 

studies showed a decrease in Herman’s orientation parameter from 0.85 for pure V400P 

to 0.71 for 5 wt% MJ composites. These phenomena were also confirmed for other 

grades of CNF (PR fiber) and TLCP (A950).  

The disruption of molecular orientation of TLCPs was inferred by SEM and TEM 

analysis. SEM micrographs revealed a fibrillar structure for pure TLCPs at a macro-scale 

(2-5 μm). However, this structure was not observed in composites at the same scale even 

though micro-size fibrils (0.05 μm) were found with the addition of PR fibers. TEM 
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micrographs displayed banded structures of pure TLCPs, but these structures were not 

significant in the vicinity of PR fibers. These results indicate that PR fibers can help to 

reduce the severe anisotropy that is otherwise observed for TLCPs. It is concluded that 

the nanofiber solid surface constrains the nematic phase, a phenomenon also referred to 

as “surface anchoring”, and helps reduce the severely high degree of molecular order in 

the TLCP matrix, and reduces anisotropy in the nanocomposite. In summary, surface and 

structural changes in CNFs are important for ultimately controlling the electrical, 

mechanical properties, and microstructure of nanocomposites because graphitic content 

and structure play an important role in the nanocomposite. 

 

5.2 Recommendations for Future Work 

The following are the proposed recommendations for future research based on the 

current study: 

In Chapter 2, the change of surface structure of CNFs resulted from heat treatment 

due to a decrease of pore volume and reorganization of graphitic structure. It was 

concluded that surface structure of CNFs plays an important role for composite properties. 

In Chapter 3, the dependence of mechanical properties on surface structure of CNFs with 

a different origin was observed. However, heat treated CNFs were not incorporated into 

polymer. For future work, polymer composites containing CNFs heat treated to ultrahigh 

temperatures should be prepared and their effect on interfacial bonding and resulting 

mechanical properties should be studied. 
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As discussed in Chapter 3, shorter mixing times (2-6 min) resulted in lower 

percolation threshold and higher electrical conductivity, but also resulted in poorer spatial 

homogeneity of the nanocomposite. Consequently, 20 min of mixing time was used for 

this study. Intensive mixing used in this study results in breaking CNFs, and this effect 

becomes severe with a longer mixing time although more uniformly dispersed CNFs can 

be obtained. Therefore, a study on mixing variables such as mixing time and mixing 

temperature is necessary to study the degree of dispersion and breakage of CNFs. Also, 

that study can be directed toward maximizing the effect of CNFs on enhancing electrical 

properties of composites.   

In Chapter 4, WAXD diffractograms provided overall orientation of composites, 

which decreased significantly in the presence of CNFs. Orientation obtained from XRD 

is an average value for the extrudates (due to the beam size of 0.5 mm diameter). 

However, to understand how CNFs work for reducing the severe anisotropy of TLCPs, an 

interfacial region between CNFs and TLCPs should be investigated. Selected area 

electron diffraction (SAED) can focus on a small area around 2 μm in diameter, allowing 

for investigating the microstructure of TLCP in the vicinity of CNFs. Therefore, SAED 

introduced in Chapter 2 to observe structure of CNFs could be extended to polymer 

composites. 

The influence of nano-modifiers on TLCPs should be studied in biaxial flow 

system. In the present study, we considered only uniaxial flow process such as extrusion 

and fiber spinning, which can induce a highly oriented molecular orientation of TLCPs. 

However, in the case of TLCP films that experience biaxial flow, the incorporation of 
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CNF can lead to less severe orientation and more balanced in-plane properties of TLCPs. 

This may help TLCP films overcome imbalanced mechanical properties, resulting from 

the anisotropic nature of TLCPs.  

One of the interesting characteristics of TLCPs is that in a steady state flow, they 

display a "three-region" flow curve. Regions I and III (at a low and high shear rate, 

respectively) are referred to as shear thinning in which the viscosity decreases with 

increasing shear rate. In intermediate plateau region II, the viscosity is independent of 

shear rate. Shear thinning behavior at a low shear rate, region I, has been observed only 

in LCPs, whereas regions II and III are common for flexible polymers. This rheological 

phenomenon has been explained by a process of continuous textural evolution of LCPs 

with increasing shear rate. Therefore, a study of the rheological behavior of TLCP/CNF 

composites can also provide the evolution of microstructure of TLCPs and a systematic 

understanding of the influence of CNF on this microstructural evolution of TLCPs.  

The evolution of microstructure of pure V400P and its composites during fiber 

spinning should be investigated thoroughly by on-line characterization system available 

in the Center for Advanced Engineering Fibers and Films (CAEFF). Fiber spinning 

involves an extensional uniaxial flow during the draw-down step, in addition to the shear 

flow studied for extrudates in Chapter 4. Evolution of diameter, velocity, temperature 

profiles, and orientational structure of pure V400P and its composites needs to be 

investigated thoroughly. 

Results of microstructure evolution from on-line characterization study are of 

value in validating modeling results obtained from simulation work on complex flows 
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incorporating Rey’s constitutive equations. Simulation coding can be developed by 

collaborative interaction with the modeling group in the Center for Advanced 

Engineering Fibers and Films (CAEFF).       
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APPENDIX A 

 The Detailed Experimental Procedure  

 

A1. Tensile Testing 

Tensile properties such as tensile modulus, tensile strength, and strain-at-break to 

evaluate mechanical performance of pure polymers and their composites were measured 

using an ATS universal tensile tester 900 at 25°C. For calculating tensile modulus, 

tensilestrength, and stain at break, using following equations. 

 

L
LΔ

=ε                                                                                                                      (1) 

ε
σ

=E                                                                                                                        (2)                

A
F

=σ                                                                                                                        (3)                

where ε , ∆L, L, E, σ, F, and A are a strain, a displacement, an initial length of sample, 

tensile modulus, tensile strength, force, and a cross sectional area of sample, respectively. 

However, the measured displacement is not only from the elongation of a sample but also 

from the elongation of system such as a loading and a griping. Therefore, compliance test 

can help for removing the system elongation. The measured displacement is described by 

a following equation. 

 

sm ΔLΔLΔL +=                                                                                                        (4) 
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where ΔLm, ΔLs, and ΔL are the measured displacement, the system displacement, and the 

sample displacement. Further, if a compliance (C =ΔL/F) is introduced, the equation (4) 

can be modified with a following equation. 

 

sm C C C +=                                                                                                               (5) 

where Cm, Cs, and C are the measured compliance, the system compliance, and the 

sample compliance, respectively. Equation (5) can be described with modulus as a 

following  

 

A
L

E
1

A
L

LF
AΔLC C C sm +=

⋅
⋅

+=+= CC                                                                    (6) 

From the equation (6), a slope and an intercept correspond an inverse modulus 

and the system compliance in plot Cm vs. L/A. Therefore, the modulus from only sample 

can be obtained without a system influence. For this compliance test, the tensile test 

should be conducted with at least three different gauge lengths.  Figure A.1 can be 

referred for the following procedure. 
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Figure A.1. A photograph of the ATS universal tensile tester 900. 

 

 

A2. Static Charge Decay 

The pure polymers and their composites were characterized for their ability to 

dissipate an induced surface charge within a specified time. The test method was based 

on the Federal Test Method 101C, Method 4046, and military specification Mil-B-

81705B that require this time frame to be less than 2 seconds to dissipate 99 percent of 

the induced charge. A static decay meter (Model 406D, Electro-Tech Systems, Inc) was 

used to measure the static decay time. Figure A.2 can be referred for following this 

procedure. 
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1. Press the “POWER” button and set “HIGH VOLTAGE” off. 
 
2. Allow 15 min for warm-up. 

 
3. Place STM-1 test module in sample holder electrodes  

 
4. Insert white banana plug into jack on chassis. 

 
5. Cage cover is down and select “+ HIGH VOLTAGE”. 
 
6. Rotate “HIGH VOLTAGE ADJUST” for “+5KV” on “CHARGING VOLTAGE” 

meter. 
 

7. Select “MANUAL” mode and “10% CUTOFF”. 
 

8. “SAMPLE CHARGE” meter was set to "0" by adjusting “ZERO” control.  
 

9. Press “CHG” button and adjust “FULL SCALE” control (STM-1 position) for 
setting “+5KV” reading on “SAMPLE CHARGE” meter.  

 
10. Press “ZERO/STBY” button and recheck "0" setting. 

 
11. Press “CHG” button. When “SAMPLE CHARGE” meter reads “+5KV”, press 

“TEST” button. Decay time should equal time on STM-1±0.05 sec. 
 

12. Repeat steps 8-11 for -5KV. Measured decay time should be within 0.2sec of time 
measured at +5KV  

 
13. Select desired “CUTOFF” and press “CHG” button.  

 
14. Check “SAMPLE CHARGE” meter read "0". 

 
15. Place a 3" X 5" aluminum foil in test cage electrodes. 

 
16. Select “+5KV” and adjust “FULL SCALE” control (“NORM” position) for 

“+5KV” reading on “SAMPLE CHARGE” meter. 
 

17. Do not readjust this control when testing samples. 
 

18. Remove foil and place test sample in sample holder electrodes.  
 

19. Press “ZERO/STBY” button and adjust “ZERO” setting. 
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20. Press “CHG” button. When “SAMPLE CHARGE” meter reads full scale, press 
“TEST” button. 

 
21. Record measures decay time displayed on the screen. 

 
22. Repeat steps 14-21 for “-5KV”. 

 
 
 
 

 
 

 

 

 Faraday cage 

 
Decay meter 

 

 

 

 

 

 

Figure A.2. A photograph of the static decay meter. 

 

 

A3. Surface resistivity  

Surface resistivity was measured according to EOS/EDS-S11.11 using ACL 800 

Megaohmeter (ACL Staticide, USA). Surface resistivity is not a basic material property 
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even though volume resistivity is a material property. With an assumption that material is 

thin and homogeneous, surface resistivity converts into volume resistivity using 

following equation 

tVS ⋅= σσ  

where σs, σv, and t are surface resistivity, volume resistivity, and sample thickness. 

To distinguish surface resistivity from a simple resistivity, ohms/square is used for the 

unit of surface resistivity. Figure A.3 can be referred for following this procedure. 

1. Surface of testing sample should be clean and free of contaminants before testing  
 
2. Place the Megaohmmeter on the sample surface.   

 
3. Select desired voltage either 10 or 100 volts using switch in the unit.   

 
4. Press and hold the test button with 5 lbf for ~15 sec. 

 
5. Record surface resistivity (ohm/in2) on the screen.  

 
 

 
 
 
 
 
  
 Test button 

 
Switch for voltage selection 

 

 

 Figure A.3. A photograph of the 
Megaohmmeter. 
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A.4 Scanning Electron Microscopy 

Morphology of carbon nanofibers, polymers, and their composites was observed 

using Scanning Electron microscope (Hitachi FE S-4300, Japan).  

 
1. Stick a double-stick carbon tape on an aluminum stub and place samples on the 

surface of the carbon tape.  
 
2. Mark beside of samples to distinguish between the different samples on one stub. 

 
3. Use the Hummer® 6.2 Sputtering system in the Electron Microscope Facility for 

coating pure polymers or their composites with platinum.  
 

4. Before coating, check if the main power is off, voltage is zero and gas switch is 
off.  

 
5. Place the stub in the chamber.  
 
6. Turn on the main power and check if the chamber is on the right position.  
 
7. Allow the vacuum to reach ~40 millitorr.  
 
8. Turn on the gas switch, and open the valve until the gas (argon) pressure in the 

chamber reaches 200 millitorr.  
 
9. Close the valve to decrease the pressure to 70 millitorr. Then, switch on the 

voltage and increase it till the current is 15 mA.  
 
10. Put the timer switch in auto, and rotate a knob to 1.5 to coat the samples for 1.5 

mins.  
 
11. When the power is automatically turned off after 1.5 mins, remove the stub, and 

turn off the main power. Ensure if the main power is off, voltage is zero and gas 
switch is off.  

 
12. Load the stub with the sample on the SEM sample holder.  

 
13. Adjust the height, and check the height of the holder with no-go gauge. It must be 

less than 12cm.  
 
14. Press the open button in SEM chamber and open the chamber.  

 

 156



 

15. Place and tighten a sample holder to the arm, and pull back the arm.  
 

16. Close the chamber and press the close button.  
 

17. Open the gate after vacuuming the chamber, and move the arm directly beneath 
the electron beam.  

 
18. Close the gate. The arm can be computer controlled. 
 
19. Set the appropriate working distance, level of detector, and accelerating voltage 

(e.g. 10cm, upper detector, 5 KV and 10 μA). 
 
20. Focus on the sample for the desired magnifications and save the micrographs. 

 
 
 

A.5 Transmission Electron Microscopy 

Graphitic structure of carbon nanofibers, morphology and lamellar structure of 

polymers, and their composites was observed using Transmission Electron microscope 

(Hitachi H-7600, Japan). Figure A.5 can be referred for following this procedure. 

1. For Acc voltage on (the left hand side monitor), click “40 kV” → “Set” → “HV 
on”, then wait for 5min. Follow these steps for each voltage (60, 80, 100, and 120 
kV). When 120 kV was reached, move to "Filament on"  

 
2. Click on “Filament on” (the left hand side panel) 

 
3. Select HR1 for a high resolution (max = 600K X) (on the left hand side monitor) 

 
4. Put 5 for spot number (spot size = 5 μm) and click “Set” (on the left hand side 

monitor) 
 

5. Reset “LENS” on the left hand side panel  
 

6. Press “ZOOM1” button in “LENS MODE” on the left hand side panel 
 

7. Rotate “BRIGHT” knob to check beam alignment on the left hand side panel 
 

8. Condenser lens alignment 
      Make beam be ciurclar using two adjustment knobs on both panels.  
      Press “BH” button on the right hand side panel. Make beam be ciurclar  
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      using two adjustment knobs on both panels 
 

9. Z axis alignment 
      Put a magnification of 10K. On the right hand side panel, press “WOB” on  
      “MODULE” to make beam move around. Adjust a knob under the sample holder  
      tube to have a stable beam. Press “MODU” on “MODULE” to make beam   
      sputter with a magnification of 30K. Make beam be stabe using two adjustment  
      knobs on both panels. 
 
10. Put a magnification of 200K and focus on a copper grid. 
 
11. Select “FFT” on the right hand side monitor and “FFT” window will pop up.  

 
12. Make beam be circular using two adjustment knobs on both panels. 

 
13. Back to “Survey” on the right hand side monitor. 

 
14. Make sure that “BH” should be “ON” on the right hand side panel. 

 
 
 
 
 
 
 

objective lens 

condenser lens 

vertical adjustment 

parallel adjustment 

Sample holder tube 

 
 
 
 
 
 
 
 
 

 

 

 

Figure A.4. A schematic of TEM. 
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