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Abstract

In recent years, many new concepts for micro-power generation have been introduced

to harness wasted energy from the environment and maintain low-power electronics

including wireless sensors, data transmitters, controllers, and medical implants. Gen-

erally, such systems aim to provide a cheap and compact alternative energy source

for applications where battery charging or replacement is expensive, time consuming,

and/or cumbersome.

Within the vast field of micro-power generation, utilizing the piezoelectric effect to

generate an electric potential in response to mechanical stimuli has recently flourished

as a major thrust area. Based on the nature of the ambient excitation, piezoelectric

energy harvesters are divided into two major categories: the first deals with harvest-

ing energy from ambient vibrations; while the second focuses on harvesting energy

from aerodynamic flow fields such as wind or other moving fluids. This Dissertation

aims to investigate the potential of integrating both sources of excitation into a sin-

gle energy harvester. To that end, the Dissertation presents reduced-order models

that can be used to capture the nonlinear response of piezoelectric energy harvesters

under the combination of external base and aerodynamic excitations; and provides

approximate analytical solutions of these models using perturbation theory. The

analytical solutions are used, subsequently, to identify the important parameters af-
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fecting the response under the combined loading and to develop an understanding

of the conditions under which the combined loading can be used to enhance efficacy

and performance. As a platform to achieve these goals, the Dissertation considers

two energy harvesters; the first consisting of a piezoelectric cantilever beam rigidly

attached to a bluff body at the free end to permit galloping-type responses, while

the second consists of a piezoelectric cantilever beam augmented with an airfoil at

its tip. The airfoil is allowed to plunge and pitch around an elastic axis to enable

flutter-type responses. Theoretical and experimental studies are presented with the

goal of comparing the performance of a single integrated harvester to two separate

devices harvesting energy independently from the two available energy sources.

It is demonstrated that, under some clearly identified conditions, using a single piezo-

electric harvester for energy harvesting under the combined loading can improve its

transduction capability and the overall power density. Even when the wind velocity

is below the cut-in wind speed of the harvester, i.e. galloping or flutter speed, using

the integrated harvester amplifies the influence of the base excitation which enhances

the output power as compared to using one aeroelastic and one vibratory energy

harvesters. When the wind speed is above the cut-in wind speed, the performance

of the integrated harvester becomes dependent on the excitation’s frequency and its

magnitude with maximum improvements occurring near resonance and for large base

excitation levels.
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base displacement |ȳb|∗ and wind speed U∗. Results are obtained for a harvester

with square-sectioned bluff body (A1 = 2.5, A3 = −70). . . . . . . . . . . . . 75

5.1 Schematic of piezoaeroelastic energy harvester. . . . . . . . . . . . . . . . . . 77

5.2 A schematic of a simplified model that captures the physical behavior of the energy

harvester. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3 Variation of the eigenvalues with the wind speed: (a) real part, and (b) imaginary

part. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.4 Time history of the output voltage and the corresponding RMS value for δ = 0.01.

(a) |z̄| = 0, (b) |z̄| = 2.5 × 10−3 and Ω = 0.97ω0, (c) |z̄| = 2.5 × 10−3 and

Ω = 1.075ω0, and (d) |z̄| = 1.25× 10−3 and Ω = 1.075ω0. . . . . . . . . . . . . 85

5.5 Comparison between the analytical prediction (dashed) and the numerical solution

(solid): (a) pitch angle, (b) plunge deflection, and (c) output voltage. . . . . . . 90

xiv



5.6 Variation of the steady-state output voltage amplitude with the excitation fre-

quency for different wind speed, U , below the flutter speed. Results are obtained

for |z̄| = 2.5× 10−3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.7 Variation of the RMS output power of the harvester with the excitation amplitude

|z̄|. Results are obtained for σ = 0, and R = 75 kΩ. . . . . . . . . . . . . . . 93

5.8 Variation of the steady-state amplitude of the output voltage with the excitation

frequency. (a) Analytical; solid line represents stable periodic solutions, stars rep-

resent unstable solutions, and dashed lines represent quasiperiodic solutions. (b) A
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Chapter 1

Introduction

1.1 Motivations

Only a decade ago, the concept of micropower generation would have been ridiculed

because output power levels in the range of a few microwatts to several milliwatts

were considered unusable. However, today and as a result of recent advances in circuit

design and micro-fabrication technologies, many critical electronics, such as health-

monitoring sensors [1, 2], pace makers [3], spinal stimulators [4], electric pain relievers

[5], wireless sensors [6, 7, 8], micro-electromechanical systems [9, 10], etc., require

minimal amounts of power to function. For instance, a wireless transponder for data

transmission can operate efficiently with less than 1 mW of power [11, 12]. A sensor

interface chip for health monitoring that consists of a sensor and a microcontroller

has an average power consumption of 48 µW [13, 14]. Such devices have, for long

time, relied on batteries that have not kept pace with the devices’ demands, especially

in terms of energy density [15]. In addition, batteries have a finite life span, adverse

environmental impacts, and require regular replacement or recharging, which, in many

1



of the previously mentioned examples, is a very cumbersome and expensive process.

One area that is currently suffering from battery technology’s shortcomings is active

implantable medical devices [16]. The long-anticipated artificial pancreas to treat

diabetes operates on batteries that must be replaced every nine months posing a

significant risk of infection that can claim lives, thereby rendering this life-saving

technology inefficient. Other devices, like cochlear ear implants are too small to

contain batteries [16].

In light of such challenges, scavenging otherwise wasted energy from the environment

can provide a solution to lower our dependence on batteries and advance many life-

saving technologies. While the process of harnessing energy, also known as energy

harvesting, is not new and has been historically practised by humans in the form of

windmills, sailing ships, and waterwheels; today, and due to many recent and critical

advances in manufacturing electronics that made low-power consumption devices a

reality; researchers are taking this same old approach into new domains where the

goal is to design compact and scalable generators that can harvest minute amounts

of energy to run and maintain low-power consumption electronics [17, 18, 19].

1.2 Current Approaches for Micro-power Genera-

tion

To power, maintain, and allow autonomous operations of low-power consumption de-

vices, the concept of micro-power generators (MPGs) was introduced [20, 21, 22, 23,

24]. Micro-power generators are essentially compact and scalable energy harvesting

devices that can transform wasted ambient energy, e.g., thermal, solar, wind, and vi-
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Figure 1.1: Schematic of a piezoelectric vibratory energy harvester and its associated linear fre-

quency response.

brations into electricity. Among such approaches, vibratory energy harvesting (VEH)

has flourished as a major thrust area. Various devices have been developed to trans-

form mechanical motions directly into electricity by exploiting the ability of active

materials and some mechanisms (such as piezoelectric, magnetostrictive, ferroelec-

tric, electrostatic, and electromagnetic) to generate an electric potential in response

to mechanical stimuli and external vibrations [17, 18, 19]. However, the concept of

VEH has a critical shortcoming in its operation. Specifically, as shown in Fig. 1.1,

vibratory energy harvesters operate efficiently only within a narrow frequency band-

width where the excitation frequency, Ω, is very close to the fundamental frequency

of the harvester, ω0 (resonance condition). Small variations in the excitation fre-

quency around the harvester’s fundamental frequency drop its small energy output

even further making the energy harvesting process inefficient [25, 26, 27, 28, 29, 30].

This issue becomes even more pressing when one realizes that most environmental

excitations have a broad-band or time-dependent characteristics in which the energy

is distributed over a wide spectrum of frequencies or the dominant frequencies drift

with time. As such, many viable excitation sources such as structural and machine

vibrations, ocean waves, acoustic excitations, running, walking, among other motions

are considered impractical due to their inherent randomness or non-stationarities.
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Several investigations on modeling and analyzing the response under harmonic and

random excitations have been performed to improve the performance of VEHs by

maximizing the output power and more importantly achieving a broad frequency

bandwidth. Different techniques have been employed for this purpose including

magnetic coupling, multi degree-of-freedom harvesting, and bistable configurations

[31, 32, 33, 34, 35, 36].

Another approach for micro-power generation which has been receiving a growing

interest in recent years is flow energy harvesting (FEH). This new research field aims

to provide efficient, scalable, and easy to fabricate harvesters that outperform small-

scale wind turbines. Unfortunately, traditional wind turbine designs that are based on

rotary-type generation concepts are known to suffer from two critical problems. First,

they have scalability issues because their performance drops significantly as their size

decreases. Mitcheson et al. [37] reported that the power coefficient can drop from

0.59 which corresponds to the Betz limit to less than 0.1 as the size of the turbine

gets smaller. This is a result of i) relatively high viscous drag on the blades at low

Reynolds numbers [38], ii) bearing and thermal losses which increase significantly as

size decreases, and iii) high electromagnetic interferences. In addition to performance

issues, design and fabrication of traditional small-scale rotary-type generators that

require a rotor, a stator, magnets, wirings, and blades is a very complex and expensive

process. This makes their actual implementation for compact applications such as

those mentioned previously a difficult task.

The basic principle of FEH lies in replacing rotary type generators by simpler yet more

efficient designs that can channel energy from a moving fluid to a mechanical oscillator

by coupling the dynamic forces culminating from the motion of the fluid past the

oscillator to its natural modes of vibration. As a result of this coupling, the oscillator
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Figure 1.2: An overview of flow energy harvesting.

undergoes large amplitude motion which can be transformed into electricity using

an electromechanical transduction mechanism, e.g., piezoelectric, electromagnetic, or

electrostatic. An overview of the mutual interaction between the fluid, mechanical,

and electrical domains can be seen in Fig. 1.2. In the first stage, the kinetic energy

of the moving fluid is converted into strain energy in the elastic structure in the

form of large amplitude oscillations. These oscillations, arise from distinct fluid-

dynamic phenomena/instabilities that can be classified by the nature of the flow

patterns around the structure. These patterns depend on the characteristics of the

structure or the mechanical oscillator such as its shape and dimensions as well as the

ongoing flow conditions, e.g., steadiness, velocity, and angle of attack. In the second

stage, the elastic energy is converted into electrical energy via an electro-mechanical

transduction mechanism.

In general, the efficacy of a FEH mechanism depends on the strength of the coupling
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Figure 1.3: Several widely-used mechanisms for flow energy harvesting: (a) vortex-induced vibra-

tions, (b) flutter, and (c) galloping.

between the dynamic fluid forces and the restoring forces of the oscillator (harvester).

This coupling determines the portion of the kinetic energy of the flow which is con-

verted into elastic energy, and subsequently transformed into electricity. Figure 1.3

depicts three different coupling mechanisms for piezoelectric FEH in uniform and

steady flow. The first approach is known as wake-galloping or vortex-induced vi-

brations and is based on placing the harvester– here a flexible cantilever beam with

piezoelectric laminate attached to a resistive load, R– in the wake of a bluff body.

When the flow separates on the bluff body, vortices are shed from first one side and

then the other forming the so called Kármán vortex street. As the vortices move

downstream, surface pressures are imposed on the beam as shown in Fig. 1.3 (a).

The oscillating pressures cause the beam to vibrate in a periodic manner at a fre-
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quency equals the vortex shedding frequency which is given by fv.s = StU/D, where

St is the Strouhal number and D is the cross-flow frontal dimension of the body.

The output power, in this case, is also a function of the vortex shedding frequency

which is proportional to the wind speed. The maximum output power occurs at the

wind speed for which the shedding frequency matches or locks onto the first modal

frequency of the piezoelectric beam, f0. Away from that frequency, the output power

drops significantly similar to the resonant behavior of vibratory energy harvesters as

shown in Fig. 1.3 (a).

The second approach represents energy harvesting through a two-degree-of-freedom

instability known as flutter. The harvesting beam, in this case, is attached to an

airfoil section which is allowed to plunge in the vertical direction and to pitch about

an elastic axis. In general, the two-degree-of-freedom motion is coupled inertially, and

aerodynamically through an instantaneous angle of attack which includes the effects

of both torsion and plunge of the airfoil. This generates lift and moment loads on the

airfoil. When the airflow approaches the wind speed of the flutter instability, Uf , at

which the energy input by the aerodynamic loading balances the energy dissipated

by the damping, the two modal frequencies of the plunge and the pitch degrees-of-

freedom converge to form a single frequency-coupled mode allowing self-sustained

oscillations to emerge. The steady-state amplitude of these oscillations increases as

the wind speed is increased as shown in Fig. 1.3 (b).

The third approach is known as galloping and can be treated as a special case of

flutter. In this case, a bluff body which is only allowed to plunge or translate vertically

is attached to the free end of the piezoelectric beam representing a one degree-of-

freedom instability. The incoming flow generates a drag force on the bluff body and

as the flow separates on both sides, inner circulation flow forms under the two shear
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layers. This circulation produces surface pressures which causes a net lift on the body.

As the wind speed exceeds the onset speed of galloping, Ug, the resulting aerodynamic

loads overcome the intrinsic damping in the system causing the structure to vibrate

transversally. The motion of the structure increases the effective angle of attack which,

in turn, increases the aerodynamic loading. This increasing load then amplifies the

oscillations resulting in a self-feeding or sustained vibrations that build up until its

limited by the hardening nonlinearities. As the wind speed is further increased, the

amplitude of the self-sustained oscillations increases as shown in Fig. 1.3 (c).

Just like vibration-based energy harvesting, several investigations have been carried

out on flow energy harvesting employing the previous mechanisms of aerodynamic

loading: wake-galloping [39, 40, 41], galloping [42, 43, 44, 45, 46, 47], and flutter

[48, 49, 50, 51, 52]. Other configurations have also been designed using two or more

harvesters each with a cylindrical bluff body placed in a tandem arrangement such

that the downstream harvester can oscillate in the wake of an upstream harvester as

in [53].

From performance perspective, the attachment of the airfoil or prismatic structure

to the flexible piezoelectric beam as in the second and third approaches increases the

aeroelastic coupling due to the fact that the dynamic loads on the tip body are trans-

mitted directly to the beam. This improves the fluid-elastic conversion efficiency by

two orders of magnitude larger than the vortex-induced vibrations case as reported in

[45]. Another advantage is that, for flutter-based and galloping harvesters, the onset

of instability is followed by a monotonic increase in the output power of the harvester

as the wind speed is increased. Therefore, the harvester does not exhibit the resonant

behavior typical of wake-galloping oscillators. As such, it is obvious that FEH using

the first mechanism is not preferred. In fact, in the third approach, and depending

8



Figure 1.4: The I-35W Mississippi River bridge collapse. Picture taken by Kevin Rofidal, United

States Coast Guard.

on the size and the shape of the tip body and the associated Strouhal’s number, a

harvester can experience vortex-induced and galloping oscillations separately or in

combination.

1.3 Thesis Objectives

While previous research studies have only considered one source of excitation, i.e.,

vibratory or flow excitations, the primary objective of this thesis is to investigate

the potential of integrating both sources of excitation into a single energy harvester.

Such device can find potential applications especially for powering wireless electronics

where coexisting vibrations and ambient flows are available. One scope of applica-

tion is the health monitoring of structures such as bridges and aircrafts. During the

last two decades, more than 500 bridge failures were reported in the United States

[54]. Some of these, similar to the I-35W Mississippi River bridge collapse in 2007,
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were sudden catastrophic failures claiming human lives and resulting in millions of

dollars in damage as shown in Fig. 1.4. One way to avoid such disasters is to im-

plement an early warning system using structural health-monitoring sensor networks.

The sensor nodes provide measurements of performance parameters such as vibra-

tion, load, strain, displacement, temperature, corrosion and tilt/inclination. These

measurements can then be analyzed to detect structural damage by monitoring slow

or sudden changes in the response of structures to various environmental stimuli.

Traditionally, information is gathered using sensor nodes that are hard wired to data

acquisition systems. However, this conventional approach has many drawbacks in-

cluding high installation and maintenance costs. In addition, having wires spread

all over the structure make them very prone to failure and tampering and could as

well disturb the normal operation of the system. To avoid these problems, wireless

health-monitoring sensor networks (WHMSN) have been recently proposed and are

currently being implemented as a replacement for the older hard-wired systems. Such

networks provide similar functionalities of efficient and real-time monitoring and in-

spection at a much lower cost and, because of the absence of wires, provide higher

spatial density of sensor’s distribution [55]. It has been recently demonstrated, that

the energy harvested from wind loading and vibrations caused by the flow of traffic

over bridges, the swaying of a building due to wind, or even earthquakes is feasible

to power WHMSN [56, 57].

The thesis contributions towards achieving the primary objective of investigating

the concept of concurrent energy harvesting under vibratory and flow inputs can be

outlined as follows:

• Investigating piezoelectric energy harvesting under the combination

of base and galloping excitations. To achieve this goal, i) an energy har-
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vester which consists of a thin cantilever beam with piezoelectric patch attached

to its upper surface is considered. To permit galloping excitation, a bluff body is

rigidly attached at the free end of the piezoelectric beam similar to the scenario

shown in Fig. 1.3 (c). A nonlinear electromechanical distributed-parameter

model of the harvester under the combined excitation is derived using the en-

ergy approach and by adopting the nonlinear Euler-Bernoulli beam theory, lin-

ear constitutive relations for the piezoelectric transduction, and the quasi-steady

assumption for the aerodynamic loading; ii) the partial differential equations of

the system are discretized and a reduced-order-model is obtained; iii) the math-

ematical model is validated experimentally under different loading conditions

represented by wind speed, base excitation amplitude, and excitation frequency

around the primary resonance; and iv) results of the combined systems are then

compared to a scenario where two separate energy harvesters, one VEH and a

FEH, are used to independently harvest energy from their respective excitation

source. In other words, the VEH is designed to only harvest energy from the

available base excitation, while the FEH can only harvest energy from the air

flow. Two cases are discussed; the first compares the performance when the

wind speed is below the speed of galloping instability, while the second case

represents comparison for wind speeds above the galloping speed. Results are

presented to determine whether a single integrated harvester can outperform

the two separate harvesters and to demonstrate the regions of enhanced perfor-

mance.

• Implementing a systematic analysis to understand the role of the de-

sign parameters on the performance characteristics of galloping FEH.

It has been observed that the process of improving the performance of FEHs,
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which involves minimizing the cut-on wind speed and maximizing the output

power, can be very complicated because it requires investigating and optimizing

the influence of a myriad of design parameters taking into consideration all of

the three constituting domains, i.e. the aerodynamic, structural, and electrical

domains. In this thesis, a nonlinear analysis is carried out to obtain an approx-

imate analytical solution that provides a deeper insight into the physics of the

problem and an explicit understanding of the effects of the system parameters.

Two cases are considered; the first is for a harvester subjected to galloping ex-

citations only, while the second treats a harvester under concurrent galloping

and base excitations. In addition to deriving and experimentally validating the

analytical approximations, a dimensional analysis is performed to identify the

important parameters that affect the system’s response in both cases.

• Investigating piezoelectric energy harvesting under the combination

of vibratory base and flutter aeroelastic excitations. This task is very

similar in structure to the first task with the main difference that a flutter

based two-degree-of-freedom harvester is used instead of the galloping har-

vester. i) An energy harvester which consists of a rigid airfoil supported by

nonlinear flexural and torsional springs is considered. The harvester is placed

in an incompressible air flow and subjected to a harmonic base excitation in

the plunge direction. To capture the qualitative behavior of the harvester, a

five-dimensional lumped-parameter model which adopts nonlinear quasi-steady

aerodynamics and accounts for the piezoelectric coupling in the plunge-mode is

used; ii) a center manifold reduction is implemented to reduce the full model

into one nonlinear first-order ordinary differential equation; iii) the method of

normal form is then utilized to obtain an approximate analytical solution that
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can be used to study slow modulation of the response amplitude and phase of

the reduced system near the flutter instability. The availability of this solution

is essential for in-depth understanding of the effects of the combined loading

and of the design parameters on the energy harvesting process. Numerical in-

tegration of the five-dimensional equations of motion is a very time-consuming

and a cumbersome process which cannot be used solely to draw definitive con-

clusions about the effects of the design and the excitation parameters; and iv)

theoretical and experimental results are presented to demonstrate the role of the

wind speed, excitation amplitude as well as excitation frequency on the output

power.

1.4 Dissertation Outline

The rest of the manuscript is organized as follows:

In Chapter 2, the potential of utilizing a FEH to scavenge energy from combination

of vibratory base excitations and aerodynamic loading is investigated. A distributed-

parameter nonlinear electromechanical model of a harvester subjected to galloping

and harmonic base excitations is derived. A reduced-order model which can be used

to obtain an in-depth understanding of the behavior of the system’s response in terms

of the harvested output power and the excitation parameters is then obtained.

In Chapter 3, experimental results validating the theoretical analysis of the harvester’s

response to primary resonance excitations are provided for wind speeds below and

above the galloping speed.

In Chapter 4, an approximate analytical solution to the dynamic problem of the
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harvester subjected to galloping and base excitations is obtained using the method of

multiple scales. This solution is validated numerically and experimentally and then

utilized in an optimization analysis for the galloping excitation case. Results are

presented to provide new insights into the optimal performance conditions.

Chapter 5 investigates the transduction of a piezoaeroelastic energy harvester under

the combination of flutter and vibratory base excitations. A five-dimensional lumped-

parameter model which adopts nonlinear quasi-steady aerodynamics is used. A center

manifold reduction is implemented to reduce the full model into one nonlinear first-

order ordinary differential equation. The normal form of the reduced system is then

derived to study slow modulation of the response amplitude and phase near the flutter

instability.

Finally, Chapter 6 presents the main conclusions and directions for future research.
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Chapter 2

Mathematical Modeling Under

Galloping and Base Excitations

In this Chapter, we obtain a mathematical model that represents the dynamics of a

piezoelectric energy harvester under a combination of vibratory base and galloping

excitations. The availability of this model is essential to fully characterize the re-

sponse behavior of the harvester and to optimize the design parameters for enhanced

performance. To achieve this goal, a non-linear distributed-parameter model is de-

rived. Subsequently, a Galerkin descritization is utilized to obtain a reduced-order

model of the system.

2.1 Nonlinear Distributed-Parameter Model

As shown in Fig. 5.2, the energy harvester under investigation consists of a thin can-

tilever beam with a piezoelectric patch bonded to its upper surface. The piezoelectric

beam is rigidly attached at the free end to a square-sectioned tip body with a cross-
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Figure 2.1: A schematic diagram of the energy harvester and piezoelectric beam section.

flow width, Dt, and length, Lt. The harvester is subjected to an external harmonic

base motion, yb, and is placed in a uniform air flow with mean flow speed, U∞. When

the flow speed exceeds the onset speed of galloping, U∗, the harvester can undergo

steady-state limit-cycle oscillations in the cross-flow direction, y, in addition to the

oscillations induced by the base motion. These oscillations strain the piezoelectric

element, which in turn, generates a voltage, V , across an electric load, R.

2.1.1 Strain-Displacement Relationship

This section presents the development of a distributed-parameter model which cap-

tures the nonlinear dynamics of the harvester. Towards that end, we start by develop-

ing the strain-displacement relationships of the beam. For a slender beam uni-morph

similar to the one considered here, shear deformations and rotary inertia can be ne-

glected allowing for the adoption of the nonlinear Euler-Bernoulli’s beam theory to

model the beam’s response. According to Euler’s theory, the flexural dynamics of the

beam can be described using a longitudinal displacement, u(s, t), and a transversal

displacement, w(s, t), as depicted in Fig. 2.2, where, s, denotes the arclength and, t,

denotes time. To describe a beam element before and after deformation, two carte-
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Figure 2.2: Deformation of a differential beam element.

sian coordinate systems are utilized: the (x, y, z) is considered to be global, while

the (x̄, ȳ, z̄) is a local system, and they are related through a transformation matrix

corresponding to the rotation around the z̄-axis. Using Fig. 2.2, it follows that the

longitudinal elongation of the beam element can be written as [58]:

e =
√

(ds+ du)2 + dw2 − ds. (2.1)

Dividing Equation (2.1) by the element length, ds, the strain along the neutral axis

of the differential element becomes

ε0 =
√

(1 + u′)2 + w′2 − 1, (2.2)

where the over-prime denotes a derivative with respect to the arclength, s. Due to

rotation of the differential beam element, the strain at a point located a distance ȳ

relative to the neutral axis can be written in terms of the beam’s curvature as

εr = −ȳ dψ
ds
, (2.3)
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where, ψ, is the rotation angle of the differential beam element, which can be further

related to the beams deflection using

ψ = tan−1

[
w′

1 + u′

]
, (2.4)

Substituting Equation (2.4) into Equation (2.3), and adding the resulting expression

to Equation (2.2) yields the total strain at a given point along the beam’s thickness.

Upon expanding the resulting expression in a Taylor series up to cubic terms, we

obtain

εx = ε0 + εr = u′ +
w′2

2
− u′w′2

2
− z̄

[
w′′ − w′′u′ − w′u′′ − w′′w′2

]
. (2.5)

For cantilever beams, with zero geometric boundary condition at one end, it can be

safely assumed that the beam is inextensible, i.e. the relative elongation along the

neutral axis is equal zero, ε0 = 0, [58]. Using a Taylor series expansion up to quadratic

terms, the extensibility condition can be used to relate the longitudinal displacement

to the transverse displacement via

u′ = −1

2
w′2, or u = −1

2

s∫
0

w′2ds. (2.6)

2.1.2 Constitutive Relationships

Considering planar bending vibrations, the axial stress, σx, and strain, εx, of the

beam and the piezoelectric layer are assumed to, respectively, follow the following

linear constitutive relationships:

σbx = Y bεbx, (2.7)
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σpx = Y p [εpx − d31E3] , (2.8)

in which, the superscripts/subscripts b and p stand for the structural and piezoelectric

layers, respectively; Y is Young’s modulus, d31 is the piezoelectric constant, and E3 is

the electric field which can be related to the voltage, V (t), developed across a piezo-

electric layer of thickness, tp, according to E3 = V (t)/tp. Considering a harvesting

circuit with a purely resistive electric load, R, the harvested voltage can be related

to the current via Ohm’s law as V (t) = RQ̇R(t), where Q̇R(t) is the current passing

through the load and the over-dot indicates a derivative with respect to time. Sub-

stituting the aforementioned relations back into Equation (2.8), yields the following

constitutive relation for the piezoelectric element:

σpx = Y p

[
εpx +

d31

tp
RQ̇R(t)

]
. (2.9)

2.1.3 Equations of Motion and Boundary Conditions

To obtain the equations of motion, we use Hamilton’s variational principle which

states that
t2∫
t1

δL+ δWextdt = 0, (2.10)

where t1 to t2 is any arbitrary time interval, δ is the variational operator, L = T −U

is the Lagrangian, and Wext is a non-conservative work term. The kinetic energy, T ,
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of the system can be expressed as

T =
1

2

Lb∫
0

M(s)


 ∂
∂t

s∫
0

1

2
w′2ds

2

+ (ẏb + ẇ)2

 ds+
1

2
It ẇ′

∣∣
Lb

2

+
1

2
Mt

(ẏb + ẇ|Lb + Lc ẇ′
∣∣
Lb

)2

+

 ∂

∂t

Lb∫
0

1

2
w′2ds− Lc ẇ′

∣∣
Lb
w′|Lb

2
 .
(2.11)

The first term in Equation (2.11) represents the translational kinetic energy dis-

tributed along the piezoelectric beam and resulting from the beam’s relative deflection

and base displacement in the transverse y-direction, and the longitudinal deflection

in the x-direction. It should be noted that the effect of the beam rotary inertia is

neglected in this term since it is of the same order as the effect of shear deformations.

The mass per unit length of the beam, M(s), is given by

M(s) = mb +mp [H(s)−H(s− Lp)] , mb = ρbWbtb, mp = ρpWptp,

where, ρ, is the mass density, t, W , and L are the associated thickness, width, and

length of the layer as shown in Fig. 5.2, and H(s) is the Heaviside function.

The second term in Equation (2.11) represents the rotational kinetic energy of the

tip body. Here, the angular velocity is a result of the rotation of the beam at the

free end with angle w′|Lb , and, It, is the moment of inertia of the tip body around its

center of mass. Finally, the third term represents the translational kinetic energy of

the tip body of mass Mt. The total translational motion of the body’s center of mass

corresponds to the deflection of the beam at the free end in addition to the motion

resulting from the rotation and the offset between the body’s center of mass and the
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beam’s free end, Lc.

The total potential energy of the system, U , consists of the strain energy of the com-

posite beam in addition to the electric potential stored in the capacitive piezoelectric

layer. These can be expressed as

U =
1

2

∫
V

(
σbxε

b
x + σpxε

p
x

)
dV − 1

2

∫
V

E3D3dV , (2.12)

where, V , is the domain and, D3, is the electric displacement given by the following

linear piezoelectric constitutive relation:

D3 = d31Y
pεpx − e33E3, (2.13)

where e33 is the permittivity at constant strain.

Replacing the electric field, E3, in Equation (2.13) again by −RQ̇R/tp, then substi-

tuting Equations (2.5), (2.6) (2.7), (2.9), and (2.13) back into Equation (2.12), and

carrying the integration over the cross-sectional area of each layer, we obtain up to

quartic terms:

U =
1

2

Lb∫
0

{
Y I (s)

(
w′′2 + w′′2w′2

)
+ θ(s)

(
w′′ +

1

2
w′′w′2

)
RQ̇R

}
ds

+
1

2
Cp

(
RQ̇R

)2

,

(2.14)

where Y I(s), θ(s), and Cp are, respectively, the bending stiffness, the electromechan-
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ical coupling, and the piezoelectric capacitance

Y I(s) =
1

3

(
WbY

b
(
ȳ3

1 − ȳ3
0

)
+WpY

p
(
ȳ3

2 − ȳ3
1

))
[H (s)−H (s− Lp)]

+ Y bIb [H (s− Lp)−H (s− Lb)] , Ib =
Wbt

3
b

12
,

θ(s) =
−WpY

pd31

2tp

(
ȳ2

2 − ȳ2
1

)
[H(s)−H(s− Lp)] , Cp =

e33WpLp
tp

.

Here, ȳ0, ȳ1, and, ȳ2, are the thickness boundaries measured from the neutral axis

of the beam as depicted in Fig. 5.2. The location of the neutral axis is determined

relative to the bottom surface of the composite beam by recalling that stresses through

the cross section must be in equilibrium. This yields

ȳ0 = −1

2

Y bWbt
2
b + 2Y pWptptb + Y pWpt

2
p

Y bWbtb + Y pWptp
, ȳ1 = tb + ȳ0, ȳ2 = tp + ȳ1. (2.15)

2.1.3.1 Non-Conservative Forces:

The work done by nonconservative forces is divided into three parts, namely, the

work done by the aerodynamic lateral force, Fy, the work done by mechanical viscous

damping, ca, and that done to extract the electric energy and dissipate it into the

resistive load, R. With that, the nonconservative virtual work term can be expressed

as

δWext = Fy δw|Lb + FyLc δw
′|Lb −

Lb∫
0

[ca (ẇ + ẏb) δw] ds−RQ̇R(t)δQR, (2.16)

To model the aerodynamic forces, Fy, we use the quasi-steady assumption which

states that the aerodynamic forces acting on the moving tip body with center velocity,

ẏt, are produced by relative wind velocity, Urel, at an effective angle of attack, α, as
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Figure 2.3: Tip body cross section in flow.

shown in Fig 4.3. These are given by

Urel =
√
U2
∞ + ẏ2

t , α = Γ + w′|Lb , Γ = tan−1

[
ẏt
U∞

]
, (2.17)

where

ẏt =
[
ẏb + ẇ|Lb + Lc ẇ′

∣∣
Lb

cos
(
w′|Lb

)]
.

The corresponding drag and lift force components can be expressed as [59]

FD =
1

2
ρaCFD(α)DtLtU

2
rel, FL =

1

2
ρaCFL(α)DtLtU

2
rel, (2.18)

where, ρa, is the air density, CFD and CFL are, respectively, the drag and lift coef-

ficients obtained experimentally by static wind-tunnel tests for a given bluff body.

These coefficients can be approximated by polynomial functions of α according to

Parkinson and Brooks [59]. The normal force acting in the y-direction can be, there-

fore, written as

Fy =
1

2
ρaCFy(α)DtLtU

2
∞, where CFy = − [CFD tan Γ + CFL ] sec Γ (2.19)
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in which, we assume that the resulting lateral force coefficient, CFy , can be expanded

in powers of α as

CFy = a1α + a3α
3, α = w′|Lb + (ẏb + ẇ|Lb)/U∞, (2.20)

where a1 and a3 are empirical coefficients obtained by curve fitting. It should be

mentioned that the fluid-structure interaction on the piezoelectric beam is assumed

to have little influence on the dynamics when compared to that resulting from the

bluff body, and is therefore neglected. To account for these effects, one can use the

vortex lattice method as in [60, 61].

Substituting Equations (2.11), (2.14), and (2.16) back into Hamilton’s equation,

(2.10), then applying the δ operator and setting the coefficients of δw and δQR to zero,

we obtain the following equations and boundary conditions governing the dynamics

of the beam’s transverse deflection, w(s, t), and harvested voltage, V (t), as:

M(s)ẅ + caẇ + [Y I(s)w′′]
′′

+ [w′(Y I(s)w′w′′)′]
′
+

[
θ(s)(1 +

1

2
w′2)

]′′
V (t)

+

w′ s∫
Lb

M(s)

1

2

s∫
0

(ẅ′)2ds

 ds
′ = −caẏb −M(s)ÿb

−Mt [δ(s− Lb)− Lcδ′(s− Lb)] ÿb + Fy [δ(s− Lb)− Lcδ′(s− Lb)] , (2.21)

CpV̇ (t) +
1

R
V (t) =

∂

∂t

 Lb∫
0

θ(s)w′′(1 +
1

2
w′2)ds

 , (2.22)

where δ(s) is the Dirac-delta function. The associated boundary conditions, after
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ignoring tip body inertia nonlinearity, are given by

{w = 0, w′ = 0}|s=0 ,{
Y I(s)w′′ = −MtLcẅ −

[
It +MtL

2
c

]
ẅ′, Y I(s)w′′′ = Mt

[
ẅ + Lcẅ′

]}∣∣
s=Lb

.

2.2 Reduced-Order Model

In order to solve Equations (2.21) and (2.22), we utilize a Galerkin expansion to dis-

cretize the partial differential equations. To that end, we express the spatio-temporal

function representing the transversal vibrations of the beam, w(s, t), in the form of a

convergent series of eigenfunctions multiplied by unknown temporal coordinates, i.e.,

we let

w(s, t) =
∞∑
i=1

φi(s)qi(t), (2.23)

where qi(t) are the generalized time-dependent coordinates and φi(s) are chosen as

the set of mass-normalized orthonormal admissible functions representing the mode

shapes of a clamped-free uniform beam with a tip mass rigidly attached at the free

end. These are obtained by solving the differential eigenvalue problem and can be

written as

φi(s) = Ai

[
cos

λi
Lb
s− cosh

λi
Lb
s+ ξi

(
sin

λi
Lb
s− sinh

λi
Lb
s

)]
(2.24)

where

ξi =
(sinλi − sinhλi) +R1λi [cosλi − coshλi −R2λi (sinλi + sinhλi)]

(cosλi − coshλi)−R1λi [sinλi − sinhλi +R2λi (cosλi − coshλi)]
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The eigenvalue of the ith mode denoted by λi represents the dimensionless free-

undamped modal frequency expressed as

ωi = λ2
i

√
Y bIb
mbL4

b

(2.25)

The values of λi
,s can be obtained by solving the following characteristic equation

associated of the differential eigenvalue problem:

R1R3 [1− cosλi coshλi]λ
4
i −

(
R1R

2
2 +R3

)
[sinλi coshλi + sinhλi cosλi]λ

3
i

−2R1R2 [sinλi sinhλi]λ
2
i +R1 [cosλi sinhλi − coshλi sinλi]λi

+ [1 + cosλi coshλi] = 0, (2.26)

where R1, R2, and R3 are, respectively, the mass, length, and rotary inertia ratios

given by

R1 =
Mt

mbLb
, R2 =

Lc
Lb
, R3 =

It
mbL3

b

. (2.27)

The modal constant, Ai, is obtained by enforcing the following orthogonality condi-

tion:

Lb∫
0

φiM(s)φjds+
[
φiMtφj + (φiMtLcφj)

′ + φ′i
(
It +MtL

2
c.g

)
φ′j
]∣∣
s=Lb

= δij,

(2.28)

where δij is the Kronecker delta.

Substituting Equation (2.23) into Equation (2.21), multiplying by φn(s), integrating

over the length of the beam, and using the orthonormality properties of the chosen

mode shapes yields the following linearly-decoupled set of nonlinear ordinary differ-
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ential equations (n = 1, 2, 3, ...):

q̈n + 2ζnωnq̇n + ω2
nqn + θ∗nV (t) +

∞∑
i,j

AnijqiqjV (t) +
∞∑
i,j,k

Bnijkqi(q̈jqk + 2q̇j q̇k + qj q̈k)

+
∞∑
i,j,k

Cnijkqiqjqk = Dnÿb + Fn(q, q̇, ẏb), (2.29)

where ζn and ωn are, respectively, the modal damping ratio and frequency; θ∗ and A

are the linear and nonlinear electromechanical coupling; B and C are the inertia and

geometric nonlinearities; Dn and Fn are the external base excitation coefficient and

the aerodynamic forcing term. Here, it is assumed that the modal damping ratio of

a desired mode, ζn, can be identified directly through experimental modal analysis,

the rest of the parameters are given by

ω2
n =

Lb∫
0

Y I(s)φ′′2n ds, θ∗n =

Lb∫
0

φnθ
′′(s)ds, Anij =

1

2

Lb∫
0

φ′′nθ(s)φ
′
iφ
′
jds,

Bnijk =

Lb∫
0

φn
2

φ′i s∫
L

M(s)

 s∫
0

φ′jφ
′
kds

 ds

′ ds,
Cnijk =

Lb∫
0

φn
[
φ′i(Y I(s)φ′jφ

′′
k)
′]′ ds, Dn = −

Lb∫
0

φnM(s)ds−MtEn,

En = (φn(Lb) + Lcφ
′
n(Lb)) , Fn =

1

2
EnρaDtLtU

2
∞

(
a1α

∗ + a3α
∗3
)
,

α∗ =
∞∑
i

φ′i(Lb)qi +
1

U∞

(
ẏb +

∞∑
i

φi(Lb)q̇i

)
.

Also, substituting Equation (2.23) into Equation (2.22), we obtain the following set
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of modal equations governing the circuit dynamics:

CpV̇ (t) +
1

R
V (t) =

∞∑
n

θ∗nq̇n +
∞∑
nij

Anij(q̇nqiqj + qnq̇iqj + qnqiq̇j). (2.30)
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Chapter 3

Experimental Validations

This Chapter describes the series of experiments conducted to assess the validity of

the model derived in Chapter 2 and to enable parameter identification. Two cases are

discussed; the first studies the performance of the harvester under combined loading

when the wind speed is below the speed of galloping instability, while the second case

studies the performance for wind speeds above the galloping speed.

3.1 Experimental Setup

Figure 5.17 shows the experimental setup used to investigate the harvester’s response.

The harvester consists of a Steel cantilever beam attached to a square-sectioned cylin-

der at the free end. A piezoelectric Macro Fiber Composite layer (MFC-M8514-P2,

Smart Material Corporation) is laminated to the beam and connected to a resistive

load to provide the electromechanical transduction. An electrodynamic shaker along

with a signal generator is used to produce the harmonic base displacement. The

acceleration level is measured by an accelerometer and used as a feedback to the
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signal generator to maintain the base acceleration at a fixed level while varying the

frequency. The velocity response of the cantilever is recorded by a laser vibrometer.

The experimental setup is placed in a controlled air flow environment to produce

the aerodynamic excitation such that the bluff body is facing the airflow. The av-

erage wind speed in the vicinity of the harvester is measured using an anemometer.

The generated voltage and other captured data are acquired through a dSpace data

acquisition system.

The geometric and material properties of the harvester are listed in Table 5.2. Before

delving into the experimental validations, a convergence analysis is conducted to

determine the minimum number of modes to be kept in the Galerkin expansion such

that the addition of any more modes does not affect the predictions of the response.

Towards that end, the equations of motion are integrated numerically using a single-

and three-mode expansions. The resulting RMS tip deflection as function of wind

Shaker

Bluff Body

MFC Layer

Accelerometer

Anemometer

Electric Load

Figure 3.1: A view of the experimental setup.
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speed is shown in Fig. 3.2 (a). The figure clearly demonstrates negligible differences

between the single- and three-mode response with a maximum error of less than

0.35%. This indicates that a single-mode is sufficient to capture the dynamics of the

response. As such, further analysis presented in this manuscript will be based on a

reduced-order model consisting of a single mode. Initially, the mechanical damping

Table 3.1: Geometric and material properties of the piezoelectric galloping energy harvester.

Physical properties

Structural member
Young’s modulus, (Eb) 190 GPa

Mass density, (ρb) 9873 kg/m3

Length, (Lb) 14.5 cm
Width, (Wb) 1.4 cm
Thickness, (tb) 0.51 mm
Piezoelectric member
Young’s modulus, (Ep) 15.86 GPa

Mass density, (ρp) 5440 kg/m3

Length, (Lp) 8.5 cm
Width, (Wp) 7 mm
Thickness, (tp) 0.3 mm
Permittivity, (e33) 19.36 nF/m
Piezoelectric constant, (d31) −170 pm/V
Bluff body
Mass, (Mt) 102.3 g
Moment of inertia, (It) 2614.3 g.cm2

Width, (Dt) 5.08 cm
Length, (Lt) 10.16 cm
Other

Air density, (ρa) 1.24 kg/m3

Electric load, (R) 100 kΩ

ratio is identified experimentally by matching the peaks of the deflection frequency

response curves for low base excitation level and short circuit conditions as shown
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Figure 3.2: Variation of the RMS tip deflection with (a) wind speed: Single-mode approximation

(solid) and a three-mode reduced order model (dashed) and (b) excitation frequency for a base

excitation of 0.08 m/s2: Theoretical (solid-line), and experimental (asterisks).

in Fig. 3.2 (b). The estimated value is found to be ζ = 0.0063. Furthermore, the

parameters associated with the aerodynamic normal force are identified by conducting

wind velocity sweeps in the absence of the base excitation. The linear coefficient, a1,

is then predicted by Den Hartog’s criterion at the galloping speed, at which the

negative damping from airflow balances the positive damping of the harvester. The

cubic term, a3, on the other hand, is estimated by matching the experimental response

with theoretical simulations in the range above the galloping speed. The estimated

values are found to be, a1 = 3.75, and a3 = −14.8.

3.2 Galloping Speed

To determine the galloping speed, variation of the harvester’s response with the wind

speed is first investigated in the absence of base excitation. The experimental and
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Figure 3.3: Variation with wind speed (a) the steady-state RMS amplitude of the beam tip

deflection and output voltage and (b) the response frequency and the effective damping. Asterisks

represent experimental data.

predicted values of the steady-state root mean square (RMS) beam tip deflection and

the generated voltage are plotted and compared as shown in Fig. 3.3 (a). Results

demonstrate that the harvester is capable of maintaining fixed amplitude steady-

state motions as long as the wind speed is slightly above 2.3 m/s which corresponds

to the onset speed of galloping. This can be further seen in Fig. 3.3 (b) which shows

variation of the effective damping of the harvester with the wind speed. As the wind

speed is increased beyond 2.3 m/s, the effective damping becomes negative giving

rise to galloping oscillations. The figure also shows that the frequency of galloping

oscillations is always consistent with the first modal frequency of the harvester further

justifying the use of a single-mode reduced-order model.
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3.3 Response Behavior Below the Galloping Speed

Next, the performance of the harvester under combined loading is assessed by inte-

grating Equations (2.29) and (2.30) numerically and generating the response when

the harvester is subjected to harmonic base excitation and wind speeds below the

galloping speed. Figure 3.4 depicts variation of the frequency response curves of the

RMS tip deflection and the harvested voltage when a constant base acceleration of

0.11 m/s2 is applied at the base while the wind speed is kept below the galloping

speed. In this case, self-sustained oscillations resulting from the aerodynamic forces

cannot be excited and the response is always periodic containing only the frequency

of excitation, Ω. For a wind speed of 2 m/s, a substantial amplification in the har-

vester’s response is observed when compared to the frequency response curve in the

absence of any aerodynamic loads, U = 0 m/s. The amplification, which emanates

from a reduction in the effective damping of the system due to the aerodynamic loads,

increases the output voltage by as much as 55%, which clearly demonstrates the en-

hanced performance of the harvester under dual loading at low wind speeds. In fact,

if not for the hardening nonlinearities present in the beam’s restoring force and aero-

dynamic loading which limit the growth of the steady-state response, a much more

significant amplification of the response can be achieved since the linear damping

approaches zero when the wind speed approaches the galloping speed. These results

are validated through experimental measurements of the harvester’s response under

the same loading conditions as depicted in Fig. 3.5.
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Figure 3.4: Variation of the theoretical response with the excitation frequency for different wind

speeds above the onset speed of galloping: (a) RMS tip deflection and (b) RMS output voltage.
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Figure 3.5: Variation of the experimental response with the excitation frequency for different wind

speeds above the onset speed of galloping: (a) RMS tip deflection and (b) RMS output voltage.

3.4 Response Behavior Above the Galloping Speed

When the wind speed is increased beyond 2.3 m/s, the harvester’s response can be

periodic or quasi-periodic due to the presence of two frequencies in the response;
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Figure 3.6: Variation of the theoretical response with the excitation frequency for different wind

speeds below the onset speed of galloping: (a) RMS tip deflection and (b) RMS output voltage.
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Figure 3.7: Variation of the experimental response with the excitation frequency for different wind

speeds below the onset speed of galloping: (a) RMS tip deflection and (b) RMS output voltage.

namely those resulting from the base excitation and self-sustained galloping oscilla-

tions. Hence, for a given wind speed and base acceleration, the overall performance of

the harvester can be analyzed based on the nearness of the two frequencies. Towards

investigating the influence of these parameters, Equations (2.29) and (2.30) are inte-
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grated numerically to generate the RMS frequency-response curves of the harvester’s

response at a constant base acceleration of 0.15 m/s2 and different wind speed above

2.3 m/s as depicted in Fig. 3.6. For performance comparison purposes, the RMS

value of the harvester’s response corresponding to galloping excitations only is also

shown in the figure by dashed lines.

When the excitation frequency is away from resonance, the resulting response is

quasi-periodic. In this range of frequency, the effect of the base excitation diminishes

and the steady-state RMS response resulting from the combined loading approaches

that resulting from the aerodynamic loads alone. For excitation frequencies that

are closer to the resonance frequency but still outside the resonance bandwidth, the

RMS response drops below that obtained using the aerodynamic loading alone. Due

to the hardening nonlinearity, the dip in the response amplitude is slightly lower for

frequencies above resonance. Finally, when the response is periodic and the excitation

frequency is very close to the natural frequency, the two frequencies lock into each

other resulting in a periodic response. In this region, a significant improvement in

the harvester’s output voltage is observed. The percentage improvement relative to

the galloping response decreases as the wind speed is increased for the same base

acceleration level.

37



0 20 40
−4

−2

0

2

4

D
e
fl
e
c
ti
o
n
[c
m
]

Time [s]
−4 −2 0 2 4

−50

0

50

V
e
lo
c
it
y
[c
m
/
s
]

Deflection [cm]
2 2.2 2.4 2.6 2.8 3

F
F
T

Frequency [Hz]

0 0.05 0.1 0.15 0.2 0.25

1

0 20 40 60
−4

−2

0

2

4

D
e
fl
e
c
ti
o
n
[c
m
]

Time [s]
−4 −2 0 2 4

−50

0

50

V
e
lo
c
it
y
[c
m
/
s
]

Deflection [cm]
2 2.2 2.4 2.6 2.8 3

F
F
T

Frequency [Hz]

0 0.05 0.1 0.15 0.2 0.25

2

0 20 40 60 80
−4

−2

0

2

4

D
e
fl
e
c
ti
o
n
[c
m
]

Time [s]
−4 −2 0 2 4

−50

0

50

V
e
lo
c
it
y
[c
m
/
s
]

Deflection [cm]
2 2.2 2.4 2.6 2.8 3

F
F
T

Frequency [Hz]

0 0.05 0.1 0.15 0.2 0.25

3

0 10 20 30 40
−5

0

5

D
e
fl
e
c
ti
o
n
[c
m
]

Time [s]
−5 0 5

−50

0

50

V
e
lo
c
it
y
[c
m
/
s
]

Deflection [cm]
2 2.2 2.4 2.6 2.8 3

F
F
T

Frequency [Hz]

0 0.05 0.1 0.15 0.2 0.25

4

0 50 100
−4

−2

0

2

4

6

D
e
fl
e
c
ti
o
n
[c
m
]

Time [s]
−5 0 5

−50

0

50

V
e
lo
c
it
y
[c
m
/
s
]

Deflection [cm]
2 2.2 2.4 2.6 2.8 3

F
F
T

Frequency [Hz]

0 0.05 0.1 0.15 0.2 0.25

5

0 10 20 30
−4

−2

0

2

4

D
e
fl
e
c
ti
o
n
[c
m
]

Time [s]
−4 −2 0 2 4

−50

0

50

V
e
lo
c
it
y
[c
m
/
s
]

Deflection [cm]
2 2.2 2.4 2.6 2.8 3

F
F
T

Frequency [Hz]

0 0.05 0.1 0.15 0.2 0.25

6

0 10 20 30 40
−4

−2

0

2

4

D
e
fl
e
c
ti
o
n
[c
m
]

Time [s]
−4 −2 0 2 4

−50

0

50

V
e
lo
c
it
y
[c
m
/
s
]

Deflection [cm]
2 2.2 2.4 2.6 2.8 3

F
F
T

Frequency [Hz]

0 0.05 0.1 0.15 0.2 0.25

7

Figure 3.8: (Color online) Experimental time histories, phase portraits, and power spectra of the

harvester at points (1)-(7) shown in Fig. 3.7(a).
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These results are confirmed experimentally as depicted in Fig. 3.7. The overall agree-

ment between the numerical and experimental results over the frequency range of

interest is reasonable. This again demonstrates that a single-mode reduced-order

model of the system is sufficient to predict the response behavior. The transition

from periodic to quasiperiodic responses or vice versa is further demonstrated in

Fig. 3.8 by plotting the time history, phase portrait, and the fast Fourier transform

(FFT) of the deflection at different excitation frequencies corresponding to the points

numbered from 1 to 7 in Fig. 3.7 (a). The figure clearly shows that the maximum

improvement in the harvester’s response under combined loading occurs at point 4

which represents the resonant peak in the periodic response region.

Variation of the RMS frequency-response curves for the tip deflection and the output

voltage at a constant wind speed of 3.8 m/s and different base accelerations is shown

in Fig. 3.9. As mentioned previously, when the excitation frequency is away from

resonance, the base excitation has a negligible influence on the harvester’s response

and the total RMS responses under combined loading approach that resulting from

the galloping excitation alone regardless of the base acceleration level.

When the excitation frequency is closer to the resonance bandwidth, four differ-

ent scenarios can occur as the base acceleration is increased. The first scenario in-

volves a transition between two different quasi-periodic responses, for instance, at

Ω = 2.45 Hz. In this case, increasing the base acceleration has a negative influence

on the performance of the harvester and reduces the output power. In the second

scenario, a transition between two different periodic responses occurs as the base ac-

celeration is increased. This improves the performance of the harvester as can be

seen at Ω = 2.55 Hz. The third scenario occurs at frequencies slightly above the peak

frequency. In this case, increasing the base acceleration quenches the quasi-periodic
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Figure 3.9: (Color online) Variation of the harvester’s response with the excitation frequency at

constant wind speed of 3.8 m/s and different base acceleration amplitudes: (a) RMS tip deflection

and (b) RMS output voltage.

response leading to a periodic response. This process improves the harvester’s output

power tremendously as can be seen when increasing the base acceleration from |z̈|1
to |z̈|2 at Ω = 2.6 Hz. The last scenario occurs when increasing the base acceleration

leads to a transition from periodic to a quasi-periodic response or vice versa. This

takes place at frequencies below the peak frequency where the two responses coex-

ist depending on the excitation level, for instance at Ωa and Ωb. In this case, the

RMS value of the response can either increase or decrease as the base acceleration

level is increased. This is further demonstrated by studying variation of the RMS tip

deflection and the output voltage at Ωa and Ωb with the base acceleration level as

depicted numerically and experimentally in Fig. 3.10. It should be noted that, as the

acceleration level is increased, the maximum performance enhancement of a harvester

under combined excitations as compared to galloping alone, only occurs in the second

and third scenarios for frequencies slightly above and below the peak frequencies.
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Figure 3.10: (Color online) Variation of the RMS tip deflection and output voltage with the base

excitation at a constant wind speed of 3.8 m/s and different excitation frequencies: (a) numerical

and (b) experimental.
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Chapter 4

Nonlinear Analysis of

Galloping-based Energy Harvesters

The open literature contains a large number of examples describing the design and

characterization of FEHs incorporating the galloping mechanism [44, 45, 46, 47, 62].

Results have been presented for different prismatic bodies, geometric, and material

properties of the oscillator, as well as different transduction mechanisms and circuit

designs. However, as of today, there is no clear understanding of the relative perfor-

mance of these devices, or which combination of design parameters yield the optimal

performance of the harvester for a given flow conditions. This Chapter aims to fill this

void by presenting a generalized analytical formulation which can simplify the anal-

ysis and performance optimization of galloping energy harvesters. We hope that the

analytical analysis presented here will provide additional insights towards designing

more efficient galloping FEHs.
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4.1 General Formulation
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✓(ẏb � ẏ)
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Figure 4.1: A schematic diagram of the single-mode flow energy harvester.

Based on the experimental validation results, its shown that a single-mode reduced-

order model is sufficient to predict the response behavior of the system and, hence,

is utilized in conducting a nonlinear analysis to obtain an approximate analytical

solution which can be used to gain a better qualitative understanding of the effect

of design parameters. After ignoring the geometric, inertia, and electromechanical

coupling nonlinearities, which are generally very small as compared to the other

terms, the model can be written as

Mÿ + Cẏ +Ky − θV = Fy +Kyb + Cẏb, (4.1)

Cpṙ +
r

R
+ θ (ẏ − ẏb) = 0, (piezoelectric),

Lṙ +Rr + θ (ẏ − ẏb) = 0, (electromagnetic), (4.2)

Here, the dot represents a derivative with respect to time, t. The effective mass of the
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bluff body and the supporting structure is represented by M ; while K, C, and θ are,

respectively, the linear stiffness, damping, and electromechanical coupling coefficients

as shown in Fig. 4.1 (a). These values can be obtained by relating the terms to their

corresponding modal parameters in Equation 2.29.

Equations (5.1a) and (5.1c) represent a linear mechanical oscillator coupled to an

electric circuit through either a first-order RC circuit representing a piezoelectric

transduction mechanism or a first-order RL circuit representing an electromagnetic

transduction as shown in Fig. 4.1 (b) and (c), respectively. Here, Cp is the capacitance

of the piezoelectric element, and L is the inductance of the harvesting coil.

In addition to dynamic flow forces, Fy, corresponding to wind speed U , the harvester is

subjected to a base excitation, yb. Due to the combined loading, the mass oscillates in

the cross flow direction with an absolute displacement, y. These oscillations produce

an electric output, r, across an electric load, R. The electric output, r, represents

the voltage in piezoelectric energy harvesters and the current in electromagnetic ones.

The load, R, is the parallel equivalent of the piezoelectric resistance, Rp, and the load

resistance, Rl, for piezoelectric transduction, and the series equivalent of the load and

coil resistance, Rc, for electromagnetic transduction.

For generality, the vertical component of the aerodynamic force, Fy, acting on the

bluff body is modeled using a quasi-steady assumption with a mth-order polynomial

approximation in ẏ
U

such that [59]

Fy =
1

2
ρaU

2LtDtCẏ, (4.3)
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where

Cẏ =

m∑
n:odd

An

(
ẏ

U

)n
+

m∑
n:even

An

(
ẏ

U

)n
ẏ

|ẏ| , n ≥ 1. (4.4)

The coefficients, An, are dependent on the general geometry and aspect ratio of the

bluff body. These are usually obtained empirically from normal aerodynamic force

measurements on a static bluff body at different angles of attack [59].

4.1.1 Non-dimensional Model

To obtain a dimensionless form of Equations (5.1a) and (5.1c), we introduce the

following non-dimensional parameters

ȳ =
y

Dt

, ȳb =
yb
Dt

, µ =
ρaLtD

2
t

4M
, Ū =

U

ωnDt

,

r̄ =
Cp
θDt

r, κ =
θ2

KCp
, α =

1

RCpωn
, (piezoelectric)

r̄ =
L

θDt

r, κ =
θ2

KL
, α =

R

Lωn
, (electromagnetic)

where ȳ, ȳb, and r̄ represent the dimensionless transverse displacement, base displace-

ment, and electric quantity, respectively, µ is the flow to harvester mass ratio, Ū is

the reduced wind speed, κ is the dimensionless electromechanical coupling, α is the

mechanical to electrical time-constant ratio. The natural frequency of the harvester

at short-circuit conditions is given by ωn =
√
K/M and used to introduce the non-

dimensional time as t̄ = ωnt; whereas the mechanical damping ratio, ζm, is defined

by C = 2ζmMωn. Equations (5.1a) and (5.1c) can be rewritten in terms of the

non-dimensional parameters as

ȳ′′ + 2ζmȳ
′ + ȳ − κr̄ = 2µŪ2Cȳ + ȳb + 2ζmȳ

′
b, (4.5)
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r̄′ + αr̄ + (ȳ′ − ȳ′b) = 0. (4.6)

Here, the prime denotes a derivative with respect to non-dimensional time, t̄ and the

non-dimensional lateral force coefficient is given by

Cȳ =

∑
n:odd

An

(
ȳ′

Ū

)n
+

∑
n:even

An

(
ȳ′

Ū

)n
ȳ′

|ȳ′| , n ≥ 1. (4.7)

4.1.2 Model Assumptions

The general model presented here invokes several assumptions on the fluid-structural

interaction problem that are worth mentioning:

1. The quasi-steady assumption: This is a very common assumption that simplifies

the modeling of the fluid interactions with the bluff body [63]. Quasi-steadiness

essentially implies that the motion of the bluff body is too slow compared to

the motion of the fluid such that vertical force stays constant for a given angle

of attack. This assumption requires that U/(ωnDt) ≥ 10

2. The effect of added mass and fluid damping is neglected. This is a valid as-

sumption for low density and low viscosity fluids such as air.

Additionally, the restoring force is assumed to be a linear function of the displacement.

This implies that the geometric nonlinearities in the structure can be neglected which

is an accurate assumption for sufficiently small deflections.
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4.2 Approximate Analytical Solution

In an attempt to understand the dynamics described by Equations (4.5) and (4.6),

we present an approximate analytical solution of these equations utilizing the method

of multiple scales. Towards that end, the time dependence is expanded into fast and

slow time scales in the form T0 = t̄ and T1 = εt̄, respectively, where ε is a scaling

parameter. Using the new time scales the time derivatives can be expressed as

d

dt̄
= D0 + εD1 +O(ε2),

d2

dt̄2
= D2

0 + 2εD0D1 +O(ε2), (4.8)

where Dn = ∂
∂Tn

. Furthermore, we expand ȳ and V̄ in the following forms:

ȳ(t̄) = ȳ0(T0, T1) + εȳ1(T0, T1) +O(ε2),

r̄(t̄) = r̄0(T0, T1) + εr̄1(T0, T1) +O(ε2),

(4.9)

The constant coefficients in Equation (4.5) are scaled such that the effect of viscous

damping, electromechanical coupling, and aerodynamic forcing appear at the same

order of the perturbation problem. In other words, we let

ζm = εζm, κ = εκ, and µ = εµ. (4.10)

Since the influence of the base excitations is dominant near the natural frequency of

the harvester, only its primary-resonant influence is analyzed; that is, the excitation

frequency is assumed to be close to the natural frequency of the harvester. There-

fore, a detuning parameter, σ, is introduced to describe the nearness of theses two

frequencies by letting ω = (1 + εσ)ωn, or Ω = ω
ωn

= (1 + εσ). Moreover, we order the

amplitude of base excitation so that it appears in the same perturbation equation as
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the previously scaled parameters. Thus, we assume the excitation to have the form

ȳb = ε|ȳb| cos(Ωt̄) = ε|ȳb| cos(T0 + σT1). (4.11)

Substituting the time scaling, its derivatives, and the scaled parameters back into

Equations (4.5) and (4.6) then collecting terms of equal powers of ε yields

O(ε0):

D2
0ȳ0 + ȳ0 = 0, (4.12)

D0r̄0 + αr̄0 = −D0ȳ0, (4.13)

O(ε1):

D2
0ȳ1 + ȳ1 =−2D0D1ȳ0 − 2ζmD0ȳ0 + κr̄0 + 2µŪ2Cȳ0 + |ȳb| cos(T0 + σT1), (4.14)

D0r̄1 + αr̄1 =−D1r̄0 −D1ȳ0 −D0ȳ1 − |ȳb| sin(T0 + σT1), (4.15)

where

Cȳ0 =

∑
n:odd

An

(
D0ȳ0

Ū

)n
+

∑
n:even

An

(
D0ȳ0

Ū

)n
D0ȳ0

|D0ȳ0|
, n ≥ 1. (4.16)

The solution of the zeroth-order perturbation problem can be written as

ȳ0 = a (T1) cosφ, (4.17)

r̄0 = γa (T1) sin [φ− ψ] , γ =
1√

1 + α2
, ψ = sin−1 γ, (4.18)

where φ = [T0 + β(T1)]; while a (T1) and β (T1) are, respectively, slowly varying ampli-

tude and phase functions to be determined at the next step. Substituting Equations
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(4.17) and (4.18) into Equation (4.14) and eliminating the secular terms (terms that

have the factor cos [φ] or sin [φ]), yields

a′ =− 1

π

2π∫
0

{
ζma sinφ+

κ

2
γa sin [φ− ψ] +

|ȳb|
2

cos [φ− β + σT1]

}
sinφdφ

−µŪ
2

π

∑
n:even

An

( a
Ū

)n 2π∫
0

sinn φ
− sinφ

|− sinφ| sinφdφ

−µŪ
2

π

∑
n:odd

An

( a
Ū

)n 2π∫
0

sinn φ sinφdφ, (4.19)

aβ′ =− 1

π

2π∫
0

{
ζma sinφ+

κ

2
γa sin [φ− ψ] +

|ȳb|
2

cos [φ− β + σT1]

}
cosφdφ

−µŪ
2

π

∑
n:even

An

( a
Ū

)n 2π∫
0

sinn φ
− sinφ

|− sinφ| cosφdφ

−µŪ
2

π

∑
n:odd

An

( a
Ū

)n 2π∫
0

sinn φ cosφdφ. (4.20)

Using De Moivre’s formula, Euler’s formula and binomial theorem [64], one can write

sinn φ=
1

2n

(
n
n
2

)
+

2

2n

n
2−1∑
k=0

(−1)(
n
2
−k)
(
n

k

)
cos [(n− 2k)φ] , if n is even (4.21)

sinn φ=
2

2n

n−1
2∑

k=0

(−1)(
n−1
2
−k)
(
n

k

)
sin [(n− 2k)φ] , if n is odd. (4.22)

49



Carrying out the integration in Equations (4.19) and (4.20), we obtain

a′ = −ζTa+ µŪ2Ca +
|ȳb|
2

sin δ, (4.23)

aδ′ =

(
σ − ζe

α

)
a+
|ȳb|
2

cos δ, (4.24)

where δ = σT1 − β. The parameter ζT = ζm + ζe represents the total damping in the

system, in which the electrical damping component is given by ζe = ακ/ [2(1 + α2)].

The lateral force coefficient, for n ≥ 1, is expressed as a polynomial function of a as

Ca =

∑
n:even

4An
π

( a

2Ū

)n n/2∑
k=0

(−1)
n
2
−k

(n+ 1− 2k)

(
n+ 1

k

)
+

∑
n:odd

An

( a

2Ū

)n(n+ 1
n+1

2

) ,
(4.25)

4.3 Asymptotic Response

At steady-state, the fixed points of Equations (4.23) and (4.24), a0 and δ0, respec-

tively, correspond to the steady-state amplitude and phase of the periodic solutions of

the original Equations, i.e. Equations (4.5) and (4.6). Therefore, the non-dimensional

displacement and voltage can be written, to the first approximation, as

ȳ = a0 cos (Ωt̄− δ0) +O(ε), r̄ = γa0 sin [Ωt̄− (δ0 + ψ)] +O(ε). (4.26)

The fixed points, a0 and δ0 are obtained by setting the time derivatives in Equations

(4.23) and (4.24) to zero, i.e. a′ = δ′ = 0. Squaring and adding the resulting
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expressions yields the flow-frequency-response equation:

(Ω∗a∗)2 +
[
U∗2Ca∗ − a∗

]2
= |ȳb|∗2, (4.27)

where

Ω∗ =
σ − ζe/α

ζT
, a∗ =

aµ

ζT
, U∗ =

Ūµ

ζT
, |ȳb|∗ =

|ȳb|µ
2ζ2
T

,

Ca∗ =

∑
n:even

4An
π

(
a∗

2U∗

)n n/2∑
k=0

(−1)
n
2
−k

(n+ 1− 2k)

(
n+ 1

k

)
+

∑
n:odd

An

(
a∗

2U∗

)n(
n+ 1
n+1

2

) ,

4.4 Stability Analysis

The stability of the resulting asymptotic solutions can be assessed by evaluating the

eigenvalues of the Jacobain matrix associated with Equations (4.23) and (4.24), which

is given by

J =

 ζT

(
U∗2 dCa∗

da∗
− 1
)

ζ2
T |ȳ∗b | cos (ζT δ

∗)

− |ȳ
∗
b |

a∗2
cos (ζT δ

∗) −ζT |ȳ
∗
b |
a∗

sin (ζT δ
∗)

 .
The eigenvalues of the Jacobian matrix, λi, are then obtained by taking the determi-

nant of the Jacobian matrix which yields the following characteristic equation:

λ2
i−ζT

[
U∗2

(
Ca∗

a∗
+
dCa∗

da∗

)
− 2

]
λi+ζ

2
T

[
Ω∗2 +

(
U∗2

Ca∗

a∗
− 1

)(
U∗2

dCa∗

da∗
− 1

)]
= 0.

(4.28)
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By inspecting Equation (4.28), it can be noted that stable fixed points, and thereby,

stable periodic solutions exist when

U∗2
[
Ca∗

a∗
+
dCa∗

da∗

]
< 2,

[
Ω∗2 +

(
U∗2

Ca∗

a∗
− 1

)(
U∗2

dCa∗

da∗
− 1

)]
> 0. (4.29)

4.5 Numerical Validation
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Figure 4.2: Variation of the dimensionless amplitude of the response with the dimensionless wind

speed: (a) without base excitation and (b) with base excitation. Lines represent analytical results:

(solid) for stable solutions, (dash-dot) for quasi-periodic solutions and (dash) for saddles. Markers

represent numerical results for the periodic responses only: (circle) for forward sweep and (plus) for

backward sweep.

To validate the asymptotic analytical solutions, the results of the perturbation anal-

ysis are compared to a numerical integration of the equations of motion. Two sets

of results are presented here to validate the solution with and without the base ex-

citation term as depicted in Fig. 4.2 (a) and (b), respectively. Results presnetd in

Fig. 4.2 are obtained for a harvester with a bluff body of a trapezoidal cross-section
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(cross-stream rear to front face ratio 3/4, depth to front face ratio 1) whose normal

aerodynamic force can be presented using a seventh order polynomial with coefficients

given as A1 = 2.79, A2 = 0, A3 = −84.5, A4 = 0, A5 = 1.2388 × 103, A6 = 0, and

A7 = −4.994 × 103. For the combined loading case, Fig. 4.2 (b), the dimensionless

base displacement parameter is set to |ȳb|∗ = 4.35× 10−2 with σ = 0.

The results in Fig. 4.2 show excellent agreement between the analytical and numerical

solutions with and without base excitations and for both branches of solutions gener-

ated by forward and backward sweeps of wind speed. This demonstrates the accuracy

of the analytical approximation and its ability to predict the periodic responses of

the harvester and the various bifurcations occurring in the parameters space. Specif-

ically, it can be clearly seen that for the case considered here, and in the absence

of the base excitation, the fixed points undergo a supercritical Hopf bifurcation near

U∗ = 0.38. As a result, the static solution loses stability giving way to a dynamic

periodic solution whose amplitude increases with the wind speed. Near U∗ = 0.82

the dynamic solution undergoes a cyclic fold bifurcation and the response jumps to a

larger-orbit period solution. Further increase in U∗ causes a smooth increase in the

harvester’s output following the large orbit branch of solutions.

4.6 Response in the Absence of Base Excitations

When the harvester is subjected to flow excitations only, i.e., |ȳb|∗ = 0, the response

equation reduces to

U∗2
Ca∗

a∗
− 1 = 0, (4.30)
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with stable limit cycle solutions existing when

U∗2
dCa∗

da∗
− 1 < 0. (4.31)

Equation 4.30 contains only the aerodynamic constants An characterizing the cross

section of the bluff body, while all the other geometric, mechanical, and electrical

properties of the harvester are contained within the parameter, U∗. This leads to the

important conclusion that the response of all galloping harvesters having the same

aerodynamic constants (bluff body) can be described by a universal curve in the plane

U∗ × a∗ irrespective of the other design parameters.

Figure 4.3 shows examples of normal force coefficient plots and the corresponding

universal response curves of the harvester. To obtain the universal response curve of

a certain bluff body, static wind tunnel tests are first conducted to characterize the

cross-section by constructing the normal force coefficient versus angle of attack curve.

This curve is then approximated in the form of a polynomial function of α0 ≈ ẏ/U

using curve fitting. Once the empirical coefficients, An, are obtained, Equation (4.30)

is solved to generate the universal response curve in the plane U∗ × a∗. The stability

of the solutions is assessed by utilizing Equation (4.31).

Four different possibilities for the universal response curve can occur as demonstrated

in Fig 4.3. The first possibility occurs when A1 =
dCFy
dα0

∣∣∣
α0=0

> 0 and the CFy curve

is concave upward. In this case, as shown in Fig. 4.3 (a), the Hopf bifurcation is

supercritical resulting in a smooth transition from the zero equilibrium point a∗ = 0

to the limit-cycle oscillation near U∗0 .

The second case occurs when A1 > 0 and the CFy curve is concave downward. In this

scenario, a subcritical Hopf bifurcation occurs as shown in Fig. 4.3 (b). The third
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possibility occurs when A1 > 0 and there is an inflection point in the CFy curve. In

this case, oscillation hysteresis due to cyclic fold bifurcation can occur in the response

curve as demonstrated in the interval between U1 and U2 in Fig. 4.3 (c). When this

hysteresis occurs, depending on the actual values of aerodynamic coefficients An,

the separation between the bifurcation points is directly proportional to the ratio

ζT/µ [65]. A such, this interval vanishes when the total damping, ζT approaches

zero. Finally, a fourth possibility occurs when A1 ≤ 0 which represents the case of

a hard oscillator. In this case, two branches of limit cycle oscillations are born at

U∗0 , as shown in Fig. 4.3 (c). By checking the stability, it is found that the lower

branch is unstable while the upper branch is stable. In this situation, the harvester

can oscillate only if large initial conditions are applied. The limit cycle solutions of

the four scenarios can further understood by inspecting the phase portraits of the

response for different intervals as shown in Fig. 4.3.

4.6.1 The Universal Curve

In the previous section, we noted the presence of a universal curve for galloping

oscillators which is basically a curve in the U∗ × a∗ plane that is only sensitive to

the geometry of the bluff body, but is otherwise invariant under any changes in the

design parameters. This universal curve was initially identified by Novak [65] in 1969

for galloping oscillators. Here, we show that this universal relation can be extend for

galloping energy harvesters even in the presence of base excitations. We also show

that this curve is an invaluable tool which allows a simple and direct comparative

analysis of the performance of galloping energy harvesters. Towards that end, we

considered an experimental study of a galloping energy harvester with a square bluff

body. Using static wind tunnel tests, we characterized the normal coefficient and
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Figure 4.3: Typical Normal force coefficients and the corresponding types of harvester response

and phase portraits: (a) A1 > 0 and concave down, (b) A1 > 0 and concave up, (c) A1 > 0 with

inflection point, and (d) A1 < 0 and concave up. In phase portraits, solid-line represents a stable

limit cycle while a dashed-line represents unstable limit cycle.

found that a cubic normal force coefficient of the form

CFy = A1

(
ẏ

U

)
− A3

(
ẏ

U

)3

, (4.32)

with the aerodynamic constants A1 = 2.5 and A3 = 70 is sufficient to accurately

model the aerodynamic forces. In this case, Equation (4.30) can be solved to obtain

the steady-state amplitudes of the transverse displacement, electric quantity, and
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harvested power, P :

|y|
y0

=
|r|
r0

=
2√
3

√
U∗

A3

(A1U∗ − 1),
|P |
P0

=

( |r|
r0

)2

, (4.33)

where the corresponding dimensionless quantities are, respectively, given by

y0 =
ζTDt

µ
, r0 =

θy0

Cp
√

1 + α2
(piezoelectric),

r0 =
θy0

L
√

1 + α2
(electromagnetic), P0 =

r2
0

R
.

Equation 4.33 is used to generate the universal curve for the non-dimensional dis-

placement, electric quantity, and power for all galloping harvesters having the same

square-sectioned bluff body as shown in Fig. 4.4. The figure clearly depicts the gal-

loping speed of the harvester and the monotonic increase of the response amplitude

with the reduced velocity within the typical range considered.

Next, to verify that this curve is actually universal for all energy harvesters with the

same bluff body, experiments with five harvesters of different design parameters and

a fixed bluff body are conducted. To change the other parameters of the harvester

including its stiffness and damping, two beams with different materials are considered:

Steel and Aluminum. For the Steel beam, three different lengths are used to study

the influence of varying the stiffness in the range of 3.1 Hz to 4.1 Hz. The mechanical

damping ratio was identified experimentally under short circuit condition using the

logarithmic decrement method and is found to vary between 0.0039 and 0.0043. For

the Aluminum beam, two different beam cuts are used to vary the frequency from

3.44 Hz to 4.04 Hz, and the estimated damping ratio is found to remain constant

at 0.003. The wind speed is increased incrementally and the steady-state amplitude

57



0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

|y
|/
y
0
,
|r
|/
r
0

0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

U∗

|P
|/
P

0

U∗ > 1
A1

Figure 4.4: Universal response curves of the displacement, electric quantity, and power of a gal-

loping harvester with a square-sectioned bluff body. Asterisks represent numerical results.

of the beam tip deflection is measured. The experimental results are then converted

into the U∗ × |y|
y0

plane as shown in Fig. 4.5 clearly indicating that the data collapse

nicely onto effectively a single universal curve for all configurations.

An important note which can be deduced by inspecting Fig. 4.5 in view of Equa-

tion 4.33 is that the displacement measurements of a single beam, without electrome-

chanical transduction components, can be used to estimate the aerodynamic force

coefficients and construct the universal response curve of any cross sectional shape

to avoid the static test measurements. This curve then, would be applicable to all

harvesters with a bluff body of the same cross section and can be used to predict not

only the displacement response, but also the voltage and output power for different

scales, material properties, and circuit components provided that the quasi-steady

assumption is valid and all inherent flow conditions remain the same.

As shown in Fig. 4.6, the universal curve also permits comparing performance of
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Figure 4.5: (Color online) Experimental universal response curve of galloping harvester with

square-sectioned bluff body. Asterisks for Steel beam results: blue (ωn = 3.09 Hz, ζm = 4.1×10−3),

green (ωn = 3.59 Hz, ζm = 4.3 × 10−3), and red ( ωn = 4.09 Hz, ζm = 3.9 × 10−3). Circles

for Aluminum beam results: blue (ωn = 3.44 Hz, ζm = 3 × 10−3), and red (ωn = 3.44 Hz,

ζm = 3× 10−3). Solid line represents theoretical results.

different bluff bodies by simply inspecting variation of y/y0 versus U∗ without the

need to carry out experiments to determine the actual output voltage and power.

For instance, by comparing the curves of Fig. 4.6, it can be directly concluded that

there exists a set of mechanical and electrical design parameters for which an energy

harvester with a squared-section bluff body will always outperform the ones with a

D-shaped and triangular sections even when these are optimally designed. Similarly,

it can be also concluded that, for larger wind speeds, a 53◦ isosceles-triangular sec-

tion harvester can always be designed to outperform the D-shaped one if both were

to be designed using the optimal parameters; whereas, the D-shaped section can al-

ways outperform the triangular one at the lower wind speeds provided that both are

designed to operate optimally.
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Figure 4.6: (Color online) Experimental universal response curves of galloping harvesters with

different bluff bodies. Squares for a square section, circles for D-shaped section, and triangles for a

53◦ isosceles-triangular section. Solid lines represent theoretical predictions. In all cases, the bluff

body is oriented with the flat surface facing the wind. The maximum turbulence intensity is 5%.

4.6.2 Optimization Analysis

The universal relationship of Equation (4.33) also provides significant insights into

the optimal design parameters of galloping energy harvesters. The cut-in wind speed

is governed by the simple relation U∗A1 = 1. Hence, for a given bluff body charac-

terized by A1, reduction of the cut-in flow speed can be achieved by minimizing the

quantity ζT/µ. This can be realized by minimizing the mechanical damping ratio or

maximizing, µ, i.e., the flow to harvester’s mass ratio. Similarly, the effects of dif-

ferent design parameters on the output power can be easily understood by studying

their influence on U∗ and P0.
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4.6.3 Optimal Harvesting Circuit Design Parameters

The influence of the electric parameters can be analyzed by investigating the elec-

trical damping which contains the time constant ratio, α, and the electromechanical

coupling, κ. The time constant ratio captures the influence of the electric load, R,

while κ represents the strength of coupling between the mechanical and electrical

subsystems. To study the influence of the electrical damping on the response of the

harvester, one can rewrite the power expression in Equation (4.33) as

|P |
P ∗0

=
8

3A3

U∗

(
ζe
ζm

)[
A1U∗ −

(
ζe
ζm

)
− 1

]
. (4.34)

where P ∗0 = MD2
t (ζmωn)3/µ2, and U∗ = µŪ/ζm. By inspecting Equation (4.34),

it becomes evident that the reduced cut-in wind speed of the harvester, Uc, can

be obtained by setting the right hand side of the equation to zero; this yields Uc =

1
A1

[
1 +

(
ζe
ζm

)]
. As such, for a given design of the harvester, the minimum cut-in wind

speed is attained when ζe = 0, i.e. at short or open circuit for fixed κ. As the electric-

to-mechanical damping ratio is increased, either by increasing the electromechanical

coupling or as α approaches one as shown in Fig. 4.7 (b), the cut-in wind speed

increases linearly as depicted in Fig. 4.7 (a).

Equation (4.34) can also be used to find the optimal electric-to-mechanical damping

ratio at which maximum output power is harvested. This can be achieved by mini-

mizing Equation (4.34) with respect to ζe/ζm which yields
(
ζe
ζm

)
opt

= 1
2

(A1U∗ − 1) at

which the corresponding maximum output power P ∗ is |P
∗|

P ∗0 opt
= 2

3A3
U∗ [A1U∗ − 1]2.

As shown in Fig. 4.7 (c), the previous expressions reveal that the optimal ζe/ζm

varies linearly with wind speed whereas the optimal power varies quadratically with

it. Additionally, at the optimal value of ζe/ζm, the cut-in wind speed reduces to
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Figure 4.7: Variation of (a) the cut-in wind speed with the electric-to-mechanical damping ratio (b)

the cut-in wind speed with time constant ratio and electromechanical coupling-to-mechanical damp-

ing ratio and (c) the optimal electric-to-mechanical damping ratio and the corresponding dimen-

sionless maximum output power with wind speed. Results in (c) are obtained for square-sectioned

bluff body with A1 = 2.5 and A3 = 70.

Uc = 1/A1. This implies that, the optimal electric-to-mechanical damping ratio

not only maximizes the harvested power but also minimizes the cut-in wind speed.

However, from practical perspective, this is very hard to achieve because it requires

additional circuit conditioning components to match the electric damping with its

optimal value at each wind speed.
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4.6.4 Optimal Electric Load

The electric load of the harvesting circuit represents one important parameter that is

usually optimized to enhance the flow of energy from the environment. Optimizing

the output power with respect to the electric load can be investigated by substituting

ζe = ακ/ [2(1 + α2)] back into the optimal electric-to-mechanical damping ratio rela-

tion and solving for αopt. Analyzing the resulting solutions reveals that the ratio of

the electromechanical coupling to the mechanical damping separates the optimization

results into two distinctive regions. When
(

κ
ζm

)
< 2 (A1U∗ − 1), the optimal load re-

sistance embedded within the optimal time constant ratio, αopt, and the corresponding

maximum output power are given by

αopt = 1, (4.35)

|P ∗|
P ∗0

=
2

3A3

(
κ

ζm

)
U∗

[
A1U∗ −

1

4

(
κ

ζm

)
− 1

]
.

In this region, the optimal load is a constant and represents that resulting from the tra-

ditional linear impedance matching. On the other hand, when
(

κ
ζm

)
> 2 (A1U∗ − 1),

the optimal load and the maximum output power are given by

1

αopt
=

(
κ
ζm

)
±
√(

κ
ζm

)2

− 4 (A1U∗ − 1)2

2 (A1U∗ − 1)
, (4.36)

|P ∗|
P ∗0

=
2

3A3

U∗ [A1U∗ − 1]2 .

Here, the results of the optimization yield two different values for the optimal load,

with both values providing the same maximum output power. Figure 4.8 (a) and (b)

provide further insight into these optimization results. For small values of κ/ζm, the
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Figure 4.8: Variation of the optimal resistive load and the maximum output power with κ/ζm

for different reduced wind speeds U∗: (a) Optimal resistive load. Solid-line represents maxima and

dashed-lines represent minima. (b) Maximum harvested power. Dashed-lines represents the loci of

optimal electromechanical coupling-to-mechanical damping ratio.

output power exhibits a single maximum. This maximum always occurs at the same

optimal resistive load corresponding to αopt = 1, i.e. R∗ = 1/(Cpωn) (piezoelectric)

and R∗ = Lωn (electromagnetic). As κ/ζm is increased beyond the critical value

2 (A1U∗ − 1), this maximum becomes a minimum, as represented by the dashed-lines

in Fig. 4.8 (a), and two new optimal loads branch out. The value of these two loads
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which depends on κ/ζm produces the same amount of maximum output power. As

such, the harvesting circuit can be designed with two modes of operation; the high

voltage/low current mode or the high current/low voltage mode by utilizing the small

or the large optimal loads, respectively.

4.6.5 Optimal Electromechanical Coupling

Figure 4.8 (b) also reveals that, for a given U∗, the maximum output power increases

with κ/ζm up to the critical value of 2 (A1U∗ − 1). This optimal coupling-to-damping

ratio represents the optimal value beyond which the maximum attainable output

power saturates and cannot be increased even if the electromechanical coupling is

increased. This seemingly counterintuitive results can be explained by realizing that

the electromechanical coupling acts as electric damping which, when increased signif-

icantly, shifts the cut-in flow speed into higher values as shown in Fig. 4.7 (a); thereby

reducing the net energy transferred from the flow to the harvester.

4.6.6 Efficiency Estimation at the Optimal Conditions

The total aero-electro-mechanical efficiency of the harvester can be defined as the

ratio of the generated electric power to the total input power available in a steady

flow. The harvested power at the optimal electric design parameters is given by |P ∗| in

Equation (4.36), while the total input wind power can be defined as Pin = 1
2
ρaAfU

3,

where Af is the frontal area of the harvester in operation which can be related to

tip deflection via Af = 2(Dt/2 + |y|)Lt. After simplification, the total conversion
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efficiency of the harvester can be written as

η =
(A1U∗ − 1)2

A3U2
∗

[
2
√

6
(
ζm
µ

)√
U∗
A3

(A1U∗ − 1) + 3
] . (4.37)

For a given aerodynamic coefficients, A1, and, A3, which represent the shape of the

bluff body and its ability to extract energy from the flow, i.e. its aeroelastic conversion

efficiency, Equation (4.37) can be used to predict the total efficiency of the harvester

in terms of two dimensionless parameters only; the wind speed U∗ and the mechanical

damping to mass ratio ζm/µ. Figure 4.9 depicts the total efficiency obtained for a

harvester with a square-sectioned bluff body of A1 = 2.5 and A3 = 70 . The figure

shows that, for a given ζm/µ, there is an optimal reduced wind speed Ū at which the

maximum efficiency of the harvester occurs. Furthermore, by inspecting the variation

of the efficiency for a given Ū , one realize that the efficiency increases significantly as

the ratio ζm/µ decreases. This can be achieved by minimizing the mechanical damping

in the system and/or by increasing the size of the bluff body while simultaneously

reducing its mass.

4.7 Response in the Presence of Base Excitations:

In the presence of base excitations, the response equation is governed by only three

dimensionless loading parameters; the flow U∗, the base displacement |ȳb|∗, and its

frequency Ω∗. As such, the universal response of all harvesters of a given bluff body

shape can be generated in the 4-dimensional parameter space (a∗ × U∗ × |ȳb|∗ × Ω∗)

allowing the design of efficient harvesters subjected to concurrent loading. Two cases

are discussed; the first studies the performance of the harvester under combined

66



0

10

20 0
1

2
3

4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

U∗

ζm/µ

η
%

Figure 4.9: Variation of the total conversion efficiency with wind speed U∗ and the mechanical

damping to mass ratio ζm/µ. Results are obtained for square-sectioned bluff body with A1 = 2.5

and A3 = 70.

loading when the wind speed parameter is below the cut-in wind speed associated

with the galloping instability, i.e. U∗ < 1/A1, while the second case studies the

performance for wind speeds above the galloping speed U∗ ≥ 1/A1.

4.7.1 Response below the cut-in wind speed:

When the velocity of the flow is below the galloping speed, i.e. U∗ < 1/A1, the self-

sustained oscillations cannot be excited and the harvester’s response only contains the

frequency of excitation, Ω. As such, the response is always periodic with a frequency

matching the excitation frequency. However, for a given wind speed, the amplitude

of the harvester’s response a∗, and, hence the output power can either be amplified

or reduced depending on the sign of the aerodynamic damping represented by the

polynomial (−Ca∗). More specifically, for small oscillations’ amplitude, a∗, the posi-
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Figure 4.10: Variation of the critical base excitation loading term with wind speed U∗. (solid-

line) for square-sectioned bluff body (A1 = 2.5, A3 = −70) and (dashed-line) for bluff body with

trapezoidal section (A1 = 2.79, A3 = −84.5, A5 = 1.2388× 103, A7 = −4.994× 103).

tive low-order terms will dominate the negative high-order ones making the effective

aerodynamic damping, Ca∗ , negative. This, in turn, reduces the total damping in the

system and causes response amplification. On the other hand, for larger amplitudes,

a∗, the aerodynamic damping is positive which increases the total damping and causes

response reduction.

To demonstrate the influence of the aerodynamic damping on the response of the har-

vester, a third-order polynomial expansion of Ca∗ is considered, i.e. Ca∗ = A1

(
a∗

U∗

)
+

3
4
A3

(
a∗

U∗

)3
. Studying the sign of Ca∗ reveals that, for a given wind speed, there is

a critical base displacement, |ȳb|cr at which Ca∗ = 0. At this critical value, the re-

sponse of the harvester under base excitations is not influenced by the aerodynamic

damping. For the case of Ω∗ = 0, this critical base displacement can be expressed as

|ȳb|cr =
√
−4A1

3A3
U∗.

For further demonstration, a harvester of a square-sectioned bluff body with A1 = 2.5
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and A3 = −70 is considered. If the harvester is subjected to flow velocity equals half

of the cut-in wind speed, i.e. U∗ = 1/(2A1) = 0.2, the corresponding critical value of

the base displacement is found to be |ȳb|cr = 4.36× 10−2, Fig. 4.10. Below this value

the harvester’s response is amplified due to the aerodynamics loading and vise versa.

Figure 4.11 depicts the frequency-response curves of the harvester for different values

of the base displacement. Results are presented for both loading scenarios, i.e. base

excitation only (dashed-line) and combined loading with U∗ = 1/(2A1) (solid-line).

Results clearly demonstrate that, for small values of |ȳb|∗, a harvester produces more

power under the combined loading as compared to its output from vibratory excita-

tions only. As the base excitation level is increased, the power amplification decreases

until it approaches zero near |ȳb|∗ = |ȳb|cr. As the base excitation is increased further,

response deamplification occurs. As a result, the harvester produces more power un-

der vibratory excitations only as shown in Fig. 4.11 (b). It should be noted that the

critical base displacement can also be defined for more complex bluff bodies requiring

higher order polynomial expansion for the lift force. Such curve has been generated

for a a bluff body with a trapezoidal-section, as shown by the dashed-line in Fig. 4.10.

Figure 4.12 shows different frequency response curves obtained at a fixed base excita-

tion, when |ȳb|∗ < |ȳb|cr, and different wind speeds below the cut-in wind speed. As

the wind speed is increased, the amplitude of the harvester’s response increases from

shifting the critical base displacement into higher values as shown in Fig. 4.10. When

U∗ = 0, the peak response at Ω∗ ≈ 0 is simply given by a∗ = |ȳb|∗. This means that

the peak dimensionless response equals the dimensionless base displacement input.

Moreover, in the case of a third order expansion of the aerodynamic coefficient, the
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Figure 4.11: Frequency response curves for U∗ = 0.5/A1 = 0.2 and different base excitations |ȳb|∗.

(a) below the critical excitation |ȳb|cr, |ȳb|∗ = 0.01, 0.02, 0.03, and 0.0436. (b) above the critical

excitation |ȳb|∗ = 0.0436, 0.06, and 0.08. Solid-line represents response from combined excitations

and dashed-line represent response due to base excitation. Results are obtained for square-sectioned

bluff body (A1 = 2.5, A3 = −70).

peak response equation is given by

3

4U∗
A3a

∗3 + [1− A1U
∗] a∗ = |ȳb|∗. (4.38)
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Figure 4.12: Frequency response curves for |ȳb|∗ = 8.7× 10−3 and different wind speeds U∗ = 0,

0.25/A1, 0.5/A1, 0.75/A1. Results are obtained for a square-sectioned bluff body with A1 = 2.5,

A3 = −70 with the rest of the An’s equal to zero: analytically (solid-line) and numerically (circles).

Hence, one can define the amplification factor of the response under the combined

loading with respect to that from base excitation only at the peak frequency as f =

a∗/|ȳb|∗. Substituting f in Equation (4.38), the peak amplification factor equation

can be given by

3

4
A3
|ȳb|∗2
U∗

f 3 + [1− A1U
∗] f = 1. (4.39)

Equation (4.39) is used to study the variation of the peak amplification factor with

the input base displacement and wind speed as shown in Fig. 4.13. The contour lines

in the figure represent all combinations of wind speed and base displacement that

yield the same amplification factor with the line f = 1 representing the critical base

displacement as function of wind speed. Figure 4.13 also serves as a tool to predict

the peak response and the associated harvested power resulting from the combined

loading for wind speeds below the cut-in wind speed by simply using a∗ = f × |ȳb|∗

. At the cut-in wind speed, U∗ = 1/A1, Equation (4.39) can be solved for the
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Figure 4.13: Contour plot of the peak amplification factor as function of wind speed U∗ and base

excitation |ȳb|∗.

peak amplification factor as f = 3

√
4

−3A1A3|ȳb|∗2
. This factor can reach up to 4.65

for the case shown in Fig. 4.12 indicating that the response of the harvester under

base excitation can be amplified 4.65 times when the harvester is subjected to wind

loading corresponding to the cut-in wind speed .

4.7.2 Response above the cut-in wind speed:

When the harvester is excited at its base and the wind speed is above the cut-in

wind speed, U∗ > 1/A1, the response contains the excitation frequency, Ω, and the

limit-cycle oscillation frequency, ωn. Consequently, the response can be periodic or

quasiperiodic in time depending on the stability of the fixed points, a∗. If a∗ is stable

then the solution is certainly periodic in time. Otherwise, the response can either

undergo a secondary Hopf bifurcation which introduces additional frequencies to the

dynamics leading to quasi-periodic responses, or other types of bifurcation that are

of lesser importance to the present analysis (e.g. symmetry breaking, cyclic fold,
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Figure 4.14: (a) Frequency response curves for different base displacements |ȳb|∗ : 0.01, 0.025,

0.05, 0.1 and fixed wind speed U∗ = 1.5/A1. Solid lines represent stable periodic solutions, dash-dot

lines for unstable quasiperiodic solutions, and dashed line for saddle points. (b) The associated RMS

value of the response: circles for |ȳb|∗ = 0.1 and dashed-line for |ȳb|∗ = 0. Results are obtained for

a harvester with square-sectioned bluff body (A1 = 2.5, A3 = −70).

transcritical, etc.). The stability of the resulting solutions can be easily ascertained

by the condition given in Equation (4.29) which depends on the three dimensionless

parameters U∗, |ȳb|∗, and Ω∗.

Towards investigating the influence of these three parameters on the output of the

harvester, the analytical approximation is used to generate the universal frequency-

response curves of the harvester at U∗ = 1.5/A1 and different base displacements as

depicted in Fig. 4.14 (a). Here, stable solutions are presented by solid lines while

unstable solutions are presented by dash-dotted lines for the quasi-periodic solutions,

and by dashed lines for unstable, physically unrealizable periodic orbits. Figure. 4.14

(a) demonstrates that, at a given |ȳb|∗ and for small |Ω∗|, the response is always

periodic where the free-oscillation component of the response is entrained by the

forced component. This, in turn, results in a synchronized periodic response with
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the response frequency matching the excitation frequency. On the other hand, when

|Ω∗| is large, the periodic response loses stability via a secondary Hopf bifurcation,

yielding quasiperiodic responses on either side of the symmetric frequency response

curve.

Figure 4.14 (a) also demonstrates that for small values of |ȳb|∗, three branches of so-

lution can coexist. The lower branch represents quasi-periodic responses that extend

over the whole range of frequencies, while the higher amplitude solutions represent

a branch of stable periodic orbits (upper branch) and a branch of unstable periodic

orbits (lower branch) which collide and destruct each other in two cyclic fold bifur-

cations on either side of Ω∗ = 0. As |ȳb|∗ increases, only a single branch of solutions

exists for all values of Ω∗. This branch is periodic near Ω∗ = 0 but becomes quasi-

periodic as |Ω∗| becomes large. Evidently, the bandwidth of frequencies associated

with periodic solutions increases with |ȳb|∗.

From a performance perspective, it should be noted that the total harvested average

power will be maximum at resonance, Ω∗ = 0, and minimum near the frequency where

a transition from stable to unstable response occurs. This can be seen by inspecting

the associated RMS value of the response as depicted by circles in Fig. 4.14 (b). Far

away from resonance, the average power corresponding to the quasiperiodic response

approaches that resulting from aerodynamic loading only as presented by the |ȳb|∗ = 0

dashed-line in Fig. 4.14 (b).

The analytical approximation can also be used to study the peak response at reso-

nance, Ω∗ = 0, and generate the universal response curves for different U∗ and |ȳb|∗

as shown in Fig. 4.15 (a). It is evident that, for the considered range of parameters,

the harvester’s response under the combined loading increases with U∗ and |ȳb|∗. To

measure the effective improvement in performance of the integrated harvester above
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|ȳ
b
|∗

  0  3.3  4.9  6.3  7.6  8.8 10.0 11.2 12.3

2.0

1.6

1.4

1.2

1.8

×10−2

(b)

Figure 4.15: (a) Universal response curves as function of base displacement |ȳb|∗ and different

wind speeds U∗ = 2/A1, 2.5/A1, 3/A1 for Ω∗ = 0. Solid lines represent stable periodic solutions,

dash-dot lines for unstable quasiperiodic solutions, and dashed line for saddle points. (b) Contours

of the peak amplification factor as function of base displacement |ȳb|∗ and wind speed U∗. Results

are obtained for a harvester with square-sectioned bluff body (A1 = 2.5, A3 = −70).

the cut-in wind speed, a new peak amplification factor can be defined as the ratio

between the responde under combined loading and the response from galloping exci-

tation only. For the third-order expansion case, these are given by Equation (4.39)

and Equation (4.33), respectively. Figure. 4.15 (b) depicts contours of the peak am-

plification factor as function of U∗ and |ȳb|∗. For a given combination of loading

conditions, the response of the harvester can be estimated by multiplying the cor-

responding amplification factor with the response resulting from galloping which is

given by the top-axis for each wind speed.
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Chapter 5

Modeling and Analysis Under

Flutter and Base Excitations

This Chapter investigates the transduction of a piezoaeroelastic energy harvester un-

der the combination of vibratory base excitations and aerodynamic loadings. The

harvester which consists of a rigid airfoil supported by nonlinear flexural and tor-

sional springs is placed in an incompressible air flow and subjected to a harmonic

base excitation in the plunge direction. To capture the qualitative behavior of the

harvester, a five-dimensional lumped-parameter model which adopts nonlinear quasi-

steady aerodynamics is used. A linear stability analysis is carried out to determine

the flutter speed of the harvester. A center manifold reduction is implemented to

reduce the full model into one nonlinear first-order ordinary differential equation.

The normal form of the reduced system is then derived to study slow modulation

of the response amplitude and phase near the flutter instability. Subsequently, the

analytical solution is used in conjunction with numerical simulations to investigate

the harvester’s performance below and above the flutter speed.
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5.1 Model Formulation

Time

base
motion

R

airfoil

elastic beam

piezoelectric
element

wind

Figure 5.1: Schematic of piezoaeroelastic energy harvester.

A piezoaeroelastic energy harvester, which is generally placed on a structure can

also undergo vibrations due to external base excitations. To shed some light onto the

response behavior of the harvester under the combined loading, we consider an energy

harvester similar to the one shown in Fig. 5.1. The external vibratory excitation

is applied at the clamped end. The qualitative dynamics of the harvester can be

captured using a lumped-parameter three-degree-of-freedom (two mechanical and one

electrical) model as shown in Fig. 5.2. The harvester consists of a typical rigid airfoil

supported by hardening flexural and torsional springs with stiffness, Kh, and, Kα,

respectively, and the corresponding structural damping coefficients Ch, and, Cα. The

airfoil has a mass, mW , a mass moment of inertia, Iα, and is allowed to pitch about the

elastic axis with an angle, α, positive nose up; and to plunge, or translate vertically, a

distance, h, positive downward. The elastic axis is located at a distance, a, from the

mid-chord, while the center of mass is located at a distance, χG, from the elastic axis.

Both distances are positive when measured towards the trailing edge of the airfoil.

The harvester is subjected to an external harmonic base motion, z, in the plunge

direction, and placed in an incompressible uniform air flow with mean flow speed, U .
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Figure 5.2: A schematic of a simplified model that captures the physical behavior of the energy

harvester.

When the mean speed, U , exceeds the flutter speed, Uf , the harvester can undergo

steady-state limit-cycle oscillations in addition to the oscillations induced by the base

motion. These oscillations strain the piezoelectric element, which in turn, generates

a voltage, V , across an electric load, R.

The non-dimensional equations governing the motion of this lumped-parameter sys-

tem can be written as [66]:

h̄
′′

+ χαα
′′ + 2ζh

(
h̄
′ − z̄′

)
+ F̄h − eθV̄ = −L̄, (5.1a)

α′′ + χhh̄
′′

+ 2ζαα
′ + F̄α = M̄, (5.1b)

V̄
′
+ eRV̄ + (h̄

′ − z̄′) = 0, (5.1c)
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where the prime denotes a derivative with respect to the non-dimensional time, τ ,

defined as τ = Uf t/b, where, b, is the half chord length, and t is time. Here, h̄ = h/b,

and, z̄ = z/b, are the non-dimensional plunge and base motion, respectively.

The first of the three equations, Equation (5.1a), represents the dynamics of the

plunging mode which frequency is given by ωh = (Kh/mT )1/2 with mT being the total

mass of the airfoil and supporting structure. The equation accounts for the inertial

forces in the plunge direction (first term); the inertial coupling to the pitch mode

due to the static imbalance presented in χα (second term); the mechanical dissipative

forces in the plunge direction presented in the damping ratio, ζh = Ch
2ωhmT ūf

(third

term), where ūf = Uf/(ωhb) is the non-dimensional flutter speed; and the nonlinear

restoring forces (fourth term) which can be expressed in the polynomial form

F̄h =
(h̄− z̄)

ū2
f

(1 + fh(h̄− z̄)2), (5.2)

where fh is a constant representing the hardening nonlinearity in the plunging mode.

Furthermore, the equation accounts for the backward coupling due to the piezoelectric

damping forces (fifth term). This is presented in the coefficient eθ = θ2

mTω
2
hCpū

2
f
, where

θ is the piezoelectric coupling and Cp is the piezoelectric capacitance.

The aforementioned internal forces in the plunge direction balance the lift force, L̄,

induced by the air flow. In this paper, this force is modeled using a quasi-steady

approximation where the temporal aerodynamic loads depend only upon the effective

angle of attack induced by the instantaneous motion. Using the stall model, NACA

0012, to represent the nonlinear loads, the non-dimensional aerodynamic lift can be

written as [67]

L̄ = cLα

(
U

Uf

)2 (
αeff − c3α

3
eff

)
,
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where cLα is related to the aerodynamic lift coefficient and c3 is a nonlinear parameter

associated with the lift curve derived from wind tunnel tests. The effective angle of

attack is given by

αeff = α +
1

U/Uf
h̄
′
+

1/2− ā
U/Uf

α′. (5.3)

where ā = a/b. The second of the three equations, Equation (5.1b), represents the

dynamics of the pitch mode which linear frequency is given by ωα = (Kα/Iα)1/2.

The equation accounts for the inertial moment in the pitch direction (first term); the

inertial coupling to the plunge mode due to the static imbalance, χh, (second term);

the mechanical dissipative moment in the pitch direction (third term) presented in

the damping ratio, ζα = Cα
2ωhIαūf

; and the nonlinear restoring moment (fourth term)

which can be expressed in the polynomial form

F̄α =

(
ωα
ωhūf

)2

(α + fαα
3),

Here, fα is a constant representing the hardening nonlinearity in the pitch mode. Note

that the effect of piezoelectric backward coupling on the pitch motion is neglected.

Again, these internal moments balance the external aeroelastic moment induced by

the flow and given by

M̄ =
1/2 + ā

r2
α

L̄,

where r2
α = Iα/(mT b

2) is the radius of gyration of the cross section.

The third equation, Equation (5.1c), represents the harvesting circuit dynamics which

assumes a purely resistive load, R, and no energy harnessed from the pitch motion. In

this equation, V̄ = V/Vc represents the non-dimensional voltage, where Vc = θb/Cp;

and eR is a time constant ratio given by eR = 1
CpRωhūf

.
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5.2 Flutter Speed

We find it convenient to convert the equations of motion into a standard Jordan

canonical form (linearly decoupled). To that end, we introduce the state vector

X = [x1, x2, x3, x4, x5]T ≡ [α, α′, h̄, h̄′, V̄ ]T . This yields

X ′ = F (X; z̄). (5.4)

where the components of the vector field F (X; z̄) are defined in Appendix A. The

right-hand side of Equation (5.4) is further expanded in a Taylor series around the

system’s fixed point, X0 = 0, to obtain

X ′ = AX +G(X, z̄), where A =
∂F

∂X

∣∣∣∣
X0=0

, and G = F − A. (5.5)

For a typical aeroelastic structure, the flutter phenomenon occurs at a wind speed,

Uf , causing the structure to undergo limit-cycle oscillations as a result of a Hopf

bifurcation. To study the dynamic response of the system near the bifurcation point,

Uf , we introduce a perturbation parameter, δ, such that U/Uf = 1/(1 − δ) and

substitute it into Equation (5.5). For small values of δ, Equation (5.5) can be further

expanded in a Taylor series around δ = 0 to obtain

X ′ = A0X + δBX +G0(X, z̄), (5.6)

where

A0 = A
∣∣
δ=0

, B =
dA

dδ

∣∣∣∣
δ=0

, and G0 = G
∣∣
δ=0

.
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Next, we introduce the similarity transformation Y = P−1X, where

Y = [y1, y2, y3, y4, y5]T ,

and P is a transformation matrix obtained from the eigenspace of A0, such that

P−1A0P = J , where J is the Jordan canonical form of A0. This yields

Y ′ = JY + δP−1BY + P−1G0(PY, z̄). (5.7)

By construction of the state-space, some of the states of the vector Y can be directly

related to each other such that y2 is the complex conjugate of y1, and y4 is the complex

conjugate of y3. Hence, by determining y1 and y3, y2 and y4 can be easily obtained.

Equation (5.7) can now be used to analyze the linear stability of the system and

determine the flutter speed which can be obtained by monitoring the eigenvalues of

the Jacobian matrix A0 of Equation (5.6) when evaluated at the equilibrium points.

The parameters used in the simulations are based on the piezoaeroelastic energy

harvester described in a prior work of Erturk et al. [49], and are listed in Table 5.2.

At the flutter speed, the Jacobian matrix A0 = J has five eigenvalues. Two pairs

of complex conjugate eigenvalues corresponding to the dynamics of the aeroelastic

system. One of those pairs represents purely imaginary eigenvalues, λ1,2 = ±jω0,

resulting from the flutter condition, where ω0 represents the frequency of the born

limit cycle just beyond the flutter speed. The other pair, λ3,4, consists of two complex

conjugate eigenvalues with negative real parts corresponding to the other two states

of the aeroelastic system. The fifth eigenvalue, λ5, is always real and negative and

corresponds to the dynamics of the harvesting circuit.
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Table 5.1: Geometric and material properties of the piezoelectric flutter energy harvester (numer-

ical validations).

Physical properties

b[m] 0.125 ζα 0.0036
a[m] -0.0625 Kh[N/m] 2370
χG[m] 0.0325 fh 0.0014
χh 1.0166 ζh 0.0043
χα 0.1001 cLα 0.1635
mW [kg] 0.901 c3 10.833
mT [kg] 2.34 Cp[µF ] 120

Iα[kg.m2] 0.0036 θ[mN/V ] 1.55
Kα[Nm/rad] 0.848 R[kΩ] 75
fα 1.33

Figure 5.3 (a) and (b) depict, respectively, variation of the real and imaginary parts

of the first four eigenvalues with the air speed. As the speed is increased, the real

part of the first pair of complex conjugate eigenvalues, λ1,2, increases and approaches

zero at the flutter speed, Uf ≈ 9.16m/sec. The transversal crossing of the eigenval-

ues form the left- to the right-hand side of the complex plane represents transition

from asymptotically stable, decaying response, to growing oscillations indicating the

onset of a Hopf bifurcation. The reduction in the magnitude of the real part of the

eigenvalues is accompanied by a reduction in the imaginary part corresponding to

the oscillation frequency as depicted in Fig. 5.3 (b). For instance, the frequency of

oscillation decreases from approximately 1.05 to approximately 0.42 at the onset of

flutter. This signifies that the air flow reduces the effective stiffness of the system.

Once the flutter speed is determined, a numerical integration of Equations (5.1a-5.1c)

is used to study time histories of the response just beyond it. Examples of the output

voltage are presented in Fig. 5.4 for U = 1.01Uf under harmonic base excitations of
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Figure 5.3: Variation of the eigenvalues with the wind speed: (a) real part, and (b) imaginary

part.

the form z̄ = |z̄| cos(Ωτ). The corresponding root mean square (RMS) value which

represents a better measure of the harvester’s performance is also presented as dashed

lines.

Figures 5.4 (a) represents the periodic output voltage of the harvester due to flutter

only in the absence of base excitation. Figures 5.4 (b) and 5.4 (c) are obtained for

equal values of the base excitation magnitude, |z̄| = 2.5× 10−3, and at different fre-

quencies of Ω = 0.97ω0 and Ω = 1.075ω0, respectively. Time histories demonstrate

the transition from almost periodic response of the harvester (small-amplitude mod-

ulation) to a two-period quasi-periodic response (large-amplitude modulation). The

amplitude modulation causes the RMS value of the voltage to drop significantly even

when similar peak voltages are realized. Quite interestingly, as depicted in Fig. 5.4

(d), when the base excitation is reduced to half its original value while keeping the

excitation frequency constant at Ω = 1.075ω0; the RMS voltage stays almost constant

around 10 Volts when compared to Fig. 5.4 (c). This clearly indicates that, due to the
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quasiperiodicity of the response, increasing the input excitation does not necessarily

increase the RMS output voltage of the harvester.
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Figure 5.4: Time history of the output voltage and the corresponding RMS value for δ = 0.01.

(a) |z̄| = 0, (b) |z̄| = 2.5 × 10−3 and Ω = 0.97ω0, (c) |z̄| = 2.5 × 10−3 and Ω = 1.075ω0, and (d)

|z̄| = 1.25× 10−3 and Ω = 1.075ω0.

The preceding examples reveal that the nature of the harvester’s response is very

complex to be understood based on a purely numerical study and simple time histo-

ries. To gain a deeper physical insight into the qualitative behavior of the harvester,
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we reduce the order of the system using a center manifold reduction of Equation (5.7).

The reduced system is then transformed into its simplest normal form using a coordi-

nate transformation [68]. This permits the development of two first-order nonlinear

ordinary differential equations that are better suited to study slow modulation of the

amplitude and phase of the harvester’s voltage output.

5.3 Approximate Analytical Solution

In general, analysis of the dynamics of an n-dimensional continuous system near one of

its fixed points can be reduced to the analysis of the dynamics on its center manifold.

At the flutter speed, δ = 0, the origin, X0 = 0, becomes a nonhyperbolic fixed point.

Hence, there exists a local center manifold for the nonlinear system of Equation (5.7)

near X0. Moreover, since none of the eigenvalues of this fixed point lie in the right-half

of the complex plane, the long-time dynamics of the system can be described by the

dynamics on the center manifold, thereby reducing the dimensionality of the system.

For the system at hand, this reduces the five-dimensional system of Equation (5.7)

into one first-order nonlinear differential equation that approximates the system’s

dynamics. This equation can be further simplified by finding its normal form which

represents a coordinate transformation in which the dynamics takes its simplest form.

Since the procedure associated with obtaining this reduced and simplified system

is not the main scope of the work and tends to distract the reader from the main

objective of this Chapter, we present the analysis in Appendices B and C. Upon

completion of the analysis, an approximate solution for the transformed state y1(τ)
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can be written in the following general form:

y1(τ) = a(τ) cos(Ωτ + β(τ)), (5.8)

where Ω is the base excitation frequency, and, a(τ) and β(τ) represent, respectively,

the real-valued amplitude and phase of the systems’ oscillations which, after keeping

the slowly varying terms, are governed by

a′ = α1δa+ α2a
3 + (α3 + σα4)|z̄| cos γ + α5a|z̄|2 + α6|z̄|3 cos γ + α7a

2|z̄| cos γ, (5.9)

aγ′ = (1− σ)ω0a− (α3 + σα4)|z̄| sin γ − α6|z̄|3 sin γ − α9a
2|z̄| sin γ, (5.10)

where σ = Ω/ω0 − 1, |z̄| is amplitude of base excitation, γ = (β − σω0τ), and αi are

constants that depend on the system’s geometric and material parameters.

At steady-state, the fixed points of Equations (5.9) and (5.10) correspond to the

steady-state amplitude and phase of the periodic solutions of the original system of

Equations (5.7). To find the fixed points, we set a′ = γ′ = 0 and solve Equation (5.9)

and (5.10) numerically for the fixed points a0 and γ0. The stability of the resulting

solutions can then be assessed by evaluating the eigenvalues of the Jacobain matrix

associated with Equations (5.9) and (5.10). If all the eigenvalues of the Jacobian

matrix are in the left-hand plane, then (a0, γ0) are stable and there exists a stable

periodic solution such that

y1(τ) = a0 cos(Ωτ + γ0), (5.11)

On the other hand, when two complex conjugate eigenvalues transversally cross the

imaginary axis, the periodic solution loses stability giving way to a two-period solution
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which can be quasi-periodic if the two periods are incommensurate.

With the knowledge of (a0, γ0), and using the transformation X = PY , the non-

dimensional pitch, plunge, and output voltage of the harvester can be, respectively,

related to y1 via

α(τ) = |P (1, 1)|a0 cos
(
Ωτ + γ0

)
, (5.12)

h̄(τ) = |P (3, 1)|a0 cos
(
Ωτ + γ0

)
, (5.13)

V̄ (τ) = |P (5, 1)|a0 cos
(
Ωτ + γ0

)
, (5.14)

where |P (i, j)| represent the i, j-th elements of the transformation matrix P . The

preceding analytical solutions represent a first-order approximation for the nonlinear

response of Equations (5.1a-5.1c).

In the absence of the base excitation, the modulation equations take the simpler form

a′ = α1δa+ α2a
3, (5.15)

aγ′ = (1− σ)ω0a, (5.16)

which represents the normal form of a pitchfork bifurcation in the a − γ plane or a

Hopf bifurcation in the y1 − y2 plane. The steady-state amplitude of the response is

obtained by sitting a′ equals to zero. This yields

a0 = 0, a0 = ±
√
−δα1

α2

(5.17)

The nontrivial solutions only exist when the quantity under the square root is positive.

It turns out that for the set of parameters used in the simulation, α1 > 0 and α2 < 0.

Hence, the nontrivial solutions only exist when δ > 0, or when U > Uf . Such solutions
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turn out to be stable indicating that the Hopf bifurcation is supercritical. As such,

in the absence of the base excitation, the harvester is said to be self excited and

generates periodic steady-state voltages with amplitude |V̄ | = |P (5, 1)|
√
−δα1

α2
when

U > Uf .

5.4 Validity of the Analytical Solution

Before delving into the response behavior of the harvester, we demonstrate the ac-

curacy of the analytical approximation obtained via Equations (5.12-5.14) by com-

paring the analytical predictions with solutions obtained via numerical integration of

the original equations of motion, Equations (5.1a-5.1c).

Figure 5.5 depicts a comparison between the analytical approximation (dashed lines)

obtained via Equations (5.12-5.14) and the numerical solutions (solid lines) obtained

using Equations (5.1a-5.1c) for increasing values of the wind speed represented by

the bifurcation parameter, δ. Two cases are considered; the free response case in the

absence of the external base excitation, and the forced case which shows the steady-

state response due to a combination of aerodynamic and base excitations. The base

displacement is set to z̄ = 2.5× 10−3 cos(ω0τ) with a forcing frequency matching the

oscillation frequency, ω0 (primary resonance).

The steady-state amplitudes demonstrate good agreement between the analytical

and numerical solutions for moderate values of δ. As δ increases away from δ = 0,

the analytical solution starts to deviate from the numerical integration due to the

previous assumption that δ and σ are small, see Appendix B for details. As such,

while analyzing the response of the harvester using the analytical approximation, it is

important to bear in mind that the solutions acquired via the combination of center
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Figure 5.5: Comparison between the analytical prediction (dashed) and the numerical solution

(solid): (a) pitch angle, (b) plunge deflection, and (c) output voltage.

manifold reduction and the method of normal forms are accurate for a small range

of the bifurcation parameters. Hence, the accuracy is expected to deteriorate as δ

and/or σ become arbitrarily large.
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5.5 Response Behavior Below the Flutter Speed

When the velocity of the flow is below the flutter speed, i.e. U < Uf , the self-sustained

oscillations cannot be excited and the harvester’s response only contains the frequency

of excitation, Ω. As such, the response is always periodic with a frequency matching

the excitation frequency. Figure 5.6 depicts the voltage frequency-response behavior

of the harvester for wind speeds that are below the flutter speed. For U = 0, the

harvester exhibits a linear frequency response similar to that seen for a base-excited

linear harvester. As the wind speed is increased, the amplitude of the steady-state

voltage increases and the curves bend to the right due to the hardening nonlinearity

in the plunge and pitch restoring forces which becomes prevalent as the amplitude

of motion increases. Due to the bend in the frequency response curves, a region of

multivalued solutions exists. In this region, three branches of solutions coexist, one

branch of unstable and physically unrealizable saddles (stars), and two branches of

stable solutions corresponding to the large and small amplitude branch of solutions.

Initial conditions determine which of the solutions represents the actual motion.

Since the oscillation frequency of the harvester decreases with the wind speed as

shown previously in Fig. 5.3 (b), the peak of the voltage-response curves shifts

towards smaller frequencies as depicted in Fig. 5.6. The reduction in the frequency

which is caused by a reduction in the effective stiffness and damping of the system

due to the flow of air has the desired influence of increasing the steady-state voltage

amplitude for the same value of input excitation. For instance, a 50% improvement

in the output voltage can be attained when the harvester is placed in an air flow

with a speed approximately half of the flutter speed, U = 4.6 m/s. The amplification

becomes even more prevalent as the speed is increased further toward U = 8.6 m/s.

Such result has a critical implication since it clearly indicates that the output voltage
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of a base-excited harvester can be significantly improved if it is subjected to an air

flow with a speed below the flutter speed.
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Figure 5.6: Variation of the steady-state output voltage amplitude with the excitation frequency

for different wind speed, U , below the flutter speed. Results are obtained for |z̄| = 2.5× 10−3.

Variations of the root mean square (RMS) output power of the harvester with the

amplitude of the base excitation for wind speeds below the flutter speed are shown in

Fig. 5.7. Results are obtained for a resistive load of 75kΩ and σ = 0, i.e., when the

excitation frequency is equal to the frequency of the self-sustained oscillations at the

given wind speed. Again, Fig. 5.7 clearly demonstrates that the air flow amplifies the

influence of the base-excitation on the harvester. The amplification can be substantial

for wind speeds just below flutter. Furthermore, the dependence of the power on the

amplitude of the base excitation is quadratic in nature. This is similar to what is

seen in vibration energy harvesters indicating that the base excitation governs the

nature of the response with the air flow serving to amplify its amplitude by reducing

the effective stiffness and damping.
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Figure 5.7: Variation of the RMS output power of the harvester with the excitation amplitude |z̄|.

Results are obtained for σ = 0, and R = 75 kΩ.

5.6 Response Behavior Above the Flutter Speed

5.6.1 Characteristics of the Output Voltage

In general, when the harvester is excited at its base and the wind speed is above

the flutter speed, one would expect the response to contain the excitation frequency,

Ω, and the limit-cycle oscillation frequency, ω0. Consequently, as shown previously

in Fig. 5.4, the voltage across this resistor can be periodic or quasiperiodic in time

depending on the wind speed, the magnitude of the base excitation, and its frequency.

Towards investigating the influence of these parameters on the output voltage of the

harvester, Equations (5.9) and (5.10) are used to generate the frequency-response

curves of the harvester just beyond the flutter instability as shown in Fig. 5.8 (a).

When Ω is close to ω0 (|σ| is small), the response is periodic and characterized by

the frequency Ω (solid-line). In this case, the free-oscillation component of the re-

sponse is entrained by the forced component, resulting in a synchronized periodic
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output voltage. On the other hand, when Ω is far from ω0 (|σ| is large), a pair of

complex conjugate eigenvalues associated with the Jacobian of the modulation equa-

tions transversally crosses the imaginary axis from the left- to the right-hand side.

Consequently, the periodic response loses stability via a secondary Hopf bifurcation.

This yields a two-period quasiperiodic output voltage indicated by the dashed-line.
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Figure 5.8: Variation of the steady-state amplitude of the output voltage with the excitation

frequency. (a) Analytical; solid line represents stable periodic solutions, stars represent unstable

solutions, and dashed lines represent quasiperiodic solutions. (b) A numerical Poincarè map (fre-

quency sweep up) with the dashed lines representing the RMS voltage. Results are obtained for

δ = 0.01 and |z̄| = 2.5× 10−3.

The analytical results are further confirmed in Fig. 5.8 (b) which depicts a strobo-

scopic Poincarè map obtained by long-time integration of the original equations of mo-

tion for the same set of parameters. Clearly, the analytical results are in good agree-

ment with those obtained numerically. The transition from periodic to quasiperiodic

responses at the critical frequencies, which are also know as the lock-out frequencies,

is well predicted. Further, for the given wind speed and base excitation amplitude,

it is demonstrated that the frequency bandwidth which produces a periodic output
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voltage yields a significantly higher voltage level as compared to the quasiperiodic

region.

5.6.2 Influence of the Base Excitation

Figure 5.9 investigates the effect of the amplitude of base excitation on the output

voltage just beyond the flutter speed for δ = 0.01. It is evident that, for small values

of |z̄|, a large bandwidth of quasiperiodic responses exists. The bandwidth decreases

and diminishes as |z̄| increases and exceeds a threshold value. Furthermore, as the

amplitude of the excitation increases, the steady-state output voltage of the harvester

increases and the frequency-response curves bend further to the right. Consequently,

the peak voltage is harnessed at a higher frequency.
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Figure 5.9: Variation of the output voltage with the excitation frequency for different excitation

amplitudes |z̄|: (a) Steady-state voltage obtained analytically for δ = 0.01. Solid lines represent

stable periodic solutions and dashed lines represent unstable periodic solutions. (b) RMS voltage

obtained numerically for δ = 0.05.

Due to the quasiperiodicity of the response away from the resonant frequency, im-
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provement in the output voltage with the magnitude of the input excitation as demon-

strated in Fig. 5.9 (a) does not necessarily imply enhanced performance under the

combined loading for all values of the excitation frequency. To better understand

the effect of adding the base excitation on the overall performance, variation of the

RMS voltage with the frequency is studied for δ = 0.05 and different values of |z̄|.

Results are then compared to the RMS output voltage of the harvester when |z̄| = 0

as shown in Fig. 5.9 (b). When |z̄| 6= 0, there is a range of frequencies within which

the external excitation is beneficial producing a positive voltage gain (shaded-area).

This occurs when the RMS voltage due to the combined loading is higher than the 22

Volts resulting from the aerodynamic loading alone (dashed-lines). This frequency

bandwidth always occurs within the periodic response range near the resonance peak

and increases as the amplitude of the base excitation increases. Additionally, for ex-

citation frequencies that are sufficiently lower than the resonant frequency, the RMS

voltage is always less than the 22 Volts obtained using the aerodynamic loading. In

such cases, the air flow serves to dissipate energy from the external excitation, thereby

reducing the output voltage.

A stroboscopic Poincaré map of the steady-state output voltage of the harvester with

the amplitude of base excitation and the corresponding RMS voltage are presented

in Fig. 5.10 (a) and (b), respectively. The figures demonstrate that quasiperiodic

responses only occur for small values of |z̄| due to the presence of two incommensurate

frequencies in the voltage response. As |z̄| is increased beyond a certain threshold,

a transition to periodic responses is always observed. At the transition point, both

frequencies lock into each other and the increase in the energy provided by the external

excitation eliminates (quenches) the quasiperiodic response. For higher wind speeds,

the transition to quasiperiodic solutions is delayed to larger base excitations because
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the base excitation has to supply higher energy to quench the response. As the

excitation amplitude approaches the quenching boundary, the RMS voltage increases

rapidly as shown in Fig. 5.10 (b). Consequently, higher wind speed require larger

base excitations for enhanced performance.
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Figure 5.10: Variation of the steady-state output voltage with the excitation amplitude. Results

are obtained by numerical integration of the equations of motion for σ = 0 and different values of

δ. (a) Poincaré map and (b) the corresponding RMS voltage. Vertical dashed-lines represent the

quenching boundary.

Variation of the quenching boundary with the excitation frequency for different val-

ues of δ as calculated via the stability of Equations (5.9) and (5.10) is shown in

Fig. 5.21. The regions filled with circles (red) represent amplitude-frequency combi-

nations leading to quasiperiodic responses (generally lower output voltage) and the

star-filled regions (blue) represent periodic responses (generally higher output volt-

age). Figure 5.21 also shows regions where the two responses overlap as a result of the

bend in the frequency response curves. In such regions, initial conditions determine

the actual performance of the harvester. The solid-line represents the locus of peaks

at which the maximum output voltage can be attained.
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For wind speeds below the flutter instability, δ ≤ 0, the response is always periodic

and stable as shown in Fig. 5.21 (a). As expected, the peak voltage shifts towards

larger frequencies as |z̄| increases due to the bend in the frequency response curves

. When the wind speed crosses the flutter boundary, δ = 0.01, two regions where

quasiperiodic responses develop can be observed on either side of the σ = 0 axis. As

|σ| increases, Ω is away from ω0, larger base excitations become necessary to quench

the quasiperiodic responses.

When the wind speed is increased further to δ = 0.1, a region where coexisting peri-

odic and quasiperiodic responses coexist develops. In this region, the initial conditions

determine whether the harvester will generate large RMS voltage (periodic response)

or small RMS voltage (quasiperiodic response). The size of this region increases as δ

is increased further to δ = 0.3.

5.6.3 Influence of the Wind Speed

Another important factor influencing the response of the harvester is the wind speed.

Figure 5.12 (a) depicts the voltage-frequency response curves for a base excitation of

magnitude |z̄| = 2.5 × 10−3 and different wind speeds. As the wind speed increases,

the voltage-frequency response curves shift toward lower frequencies and higher out-

put voltages are realized. As far as performance is concerned, the total RMS voltage

of the harvester is compared to the RMS voltage due to flutter only (dashed lines) as

demonstrated in Fig. 5.12 (b). It is evident that there exists a bandwidth of frequen-

cies right around resonance in which the RMS voltage resulting from the combined

loading exceeds that obtained via only the aerodynamic loading. However, for ex-

citation frequencies that are below resonance, the RMS voltage drops significantly

98



−0.1 −0.05 0 0.05 0.1
0

1

2

3

4

5
x 10

−3 δ = 0

σ

|z̄
|

(a)

−0.1 −0.05 0 0.05 0.1
0

1

2

3

4

5
x 10

−3 δ = 0.01

σ

|z̄
|

(b)

−0.1 −0.05 0 0.05 0.1
0

1

2

3

4

5
x 10

−3 δ = 0.1

σ

|z̄
|

(c)

−0.1 −0.05 0 0.05 0.1
0

1

2

3

4

5
x 10

−3 δ = 0.3

σ

|z̄
|

(d)

Figure 5.11: Quenching boundary as a function of the excitation frequency. Circles represent

quasiperiodic solutions and stars represent periodic solutions. Results are obtained for (a) δ = 0,

(b) δ = 0.01, (c) δ = 0.1, and (d) δ = 0.3.

below the values obtained from flutter. This clearly indicates that the nearness of the

excitation frequency to the flutter frequency plays a significant role in characterizing

the performance of the harvester under the combined loading.

Variation of the RMS output power of the harvester with the amplitude of the base

excitation for different wind speeds is shown in Fig. 5.13. Results are obtained for
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Figure 5.12: Variation of the output voltage with the excitation frequency for |z̄| = 2.5×10−3 and

different wind speeds: (a) Steady-state voltage obtained analytically. Solid lines represent stable

periodic solutions and dashed lines represent unstable periodic solutions. (b) RMS voltage obtained

numerically. Dashed lines represent output voltage for |z̄| = 0

.

a resistive load of 75kΩ and σ = 0, i.e., when the excitation frequency is equal

to the frequency of the self-sustained oscillations at the given wind speed. As the

wind speed is increased beyond the flutter boundary, two distinct regions appear in

the RMS power curves. In the first region, which occurs for small values of |z̄|, a

substantial variation of the power with the base excitation is observed. It is in this

region where the response is quasiperiodic and the dynamics of the harvester depends

significantly on the amplitude of excitation. In the second region, a transition from

quasiperiodic oscillations to periodic oscillations occurs at the quenching boundary

causing the RMS power to increase and become less dependent on the amplitude of

excitation.
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Figure 5.13: Variation of the RMS output power of the harvester with the excitation amplitude

|z̄|. Results are obtained for σ = 0, and R = 75 kΩ.

5.7 Optimal Load Resistance

In this section, we investigate the influence of the electric load on the output power. In

the absence of external base excitations, and for wind speeds just beyond the flutter

speed (δ = 0.01, 0.05), the RMS output power increases and exhibits a peak for a

certain load resistance as shown in Fig. 5.14 (a). Notably, the RMS output power

drops sharply to zero just beyond the optimal load. This behavior can be understood

by inspecting the influence of the load resistance on the flutter speed of the harvester

as depicted in Fig. 5.14 (b). Since the energy dissipated in the load is equivalent to

an electric damping, the wind speed necessary to initiate flutter increases near the

optimal resistance. As a result, close to the optimal load, oscillations cease to exit

for the lower wind speeds (δ = 0.01, 0.05) and the power drops to zero. As the load

resistance continues to increase away from the optimal load, the electric damping

decreases and another peak appears. This behavior is clearly evident when δ =

0.05, 0.06, and 0.075. For wind speeds sufficiently larger than the flutter instability,
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e.g. δ = 0.125, and 0.15, the power exhibits only one peak at a single optimal load.
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Figure 5.14: (a) Variation of the RMS output power of the harvester with the electric load R.

Results are obtained for increasing values of the wind speed, δ = 0.01, 0.05 , 0.06, 0.075, 0.1, 0.125,

0.15, and |z̄| = 0. (b) Variation of the flutter speed with the load resistance.

Figure 5.15 shows variation of the RMS output power with the electric load for a fixed

base excitation amplitude, |z̄| = 2.5× 10−3, and different frequencies, σ. Results are

obtained for δ = 0.01. When |σ| is small and the limit cycle oscillations due to flutter

are entrained by the forced response, the RMS power exhibits a single peak as shown

in Fig. 5.15 (a) and (b). Following the concept of impedance matching for linear

systems, the peak power occurs at an electric load which is very close to the optimal

load that maximizes the output power of a vibratory energy harvester when U = 0.

On the other hand, due to the quasiperiodicity of the response, another peak appears

near the optimal load of a flutter-based energy harvester when |σ| is relatively large

(dashed-lines). Increasing the excitation frequency away from resonance reduces the

influence of the base excitation on the output power causing the amplitude of the

second peak in the output power to drop as shown in Fig. 5.15 (d).
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Figure 5.15: Variation of the RMS output power of the harvester with the electric load R. Results

are obtained for δ = 0.01, |z̄| = 2.5× 10−3 and different values of excitation frequency σ. (a) σ = 0,

(b) σ = ±0.025, (c) σ = ±0.05, and (d) σ = ±0.1. Dashed lines represent output power for |z̄| = 0.

5.8 Efficiency

The total energy conversion efficiency of the harvester under combined loading is

shown in Fig. 5.16. The efficiency is calculated for the same design parameters given

in Table. 5.2 with constant base acceleration of 0.5 m/s2 and different excitation

frequencies. The average input power given to the system through base excitation
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and aerodynamic loading is estimated by Pin = 1
T

∫ t0+T

t0
(mT z̈ż − Lḣ + Mα̇)dt. The

time-averaged power dissipated across the load R is given by Pout = 1
T

∫ t0+T

t0

V 2

R
dt.

Here T is the period of the system. The efficiency of conversion from mechanical

energy to electrical energy is then found by η = Pout
Pin

. The figure clearly shows that,

below the flutter speed 9.16 m/s, the efficiency is strongly dependent on the nearness

of the excitation frequency to the resonant frequency and decreases as the wind speed

increases. When flutter occurs, the efficiency becomes less dependent on the excitation

frequency and the maximum efficiency is obtained right after the flutter speed.
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Figure 5.16: Variation of the conversion efficiency of the harvester with the wind speed. Results

are obtained for a constant base acceleration 0.5 m/s2 and different σ.

5.9 Experimental Validations

5.9.1 Experimental Setup

Figure 5.17 depicts the experimental setup used to investigate the response of the

integrated vibratory and aeroelastic energy harvester (IVAEH) . The airfoil is con-
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Figure 5.17: A view of the experimental setup.

structed out of lightweight wood and mounted on the tip of the beam with a torsional

spring assembly that can be manually adjusted. A load resistance is connected across

the electrodes of the piezoelectric laminate. The generator is attached to a seismic

shaker which provides the harmonic base excitation, and the whole setup is placed

in a wind tunnel to provide the aerodynamic loading. The control of the shaker and

the collection of data are accomplished by use of a DS1103 controller board in con-

junction with dSPACE. Acceleration at the base of the cantilever is measured using

an accelerometer, and the velocity response of the cantilever is recorded using a laser

vibrometer. The wind speed is measured by a conventional anemometer. Numerical

parameters corresponding to the experimental setup are listed in Table 5.2.

5.9.2 Flutter Speed

In the absence of the base excitation, the IVAEH has two distinctive regions of opera-

tion defined by the flutter wind speed, Uf . When the flow velocity is below the flutter

speed, the linear component of the lift produced by the flow over the airfoil cannot
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Table 5.2: Geometric and material properties of the piezoelectric flutter energy harvester (experi-

mental validations).

Physical properties

b[cm] 4.2 ζα 0.12
a[cm] -2.1 Kh[N/m] 26.6
χG[mm] 3 ζh 0.005
S[cm] 5.2 CL 2π
mW [g] 31.4 c3 6.5
mT [g] 72.5 Cp[µF ] 120

Iα[g.cm2] 97.2 θ[mN/V ] 0.11
Kα[mN.m/rad] 1.9 R[kΩ] 99.5

overcome the intrinsic damping present in the system. Hence, any initial disturbances

decay in time and the harvester cannot maintain the steady-state oscillations neces-

sary for energy harvesting. On the other hand, when the flow speed is above the

flutter speed, the linear component of the lift overcomes the system’s intrinsic damp-

ing and the harvester undergoes self-sustained periodic oscillations whose amplitude

and frequency depends on the flow velocity. As shown in Fig. 5.18, it was observed

that the harvester is capable of maintaining fixed amplitude periodic steady-state

oscillations for any set of initial conditions as long as the wind speed is slightly above

U = 2.3 m/s, which corresponds to the flutter velocity, Uf . The point is also known

as a super-critical Hopf bifurcation where a smooth transition from no oscillations to

small amplitude steady-state oscillations is observed as the wind speed (bifurcation

parameter) is slightly increased above Uf .

In the presence of the base excitation, the IVAEH is also expected to have a qualita-

tively different dynamic behavior within these two regions. Therefore, it is convenient
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Figure 5.18: Variation of the steady-state amplitude of the output voltage and beam tip deflection

with wind speed. Asterisks represent experimental data.

to divide the performance analysis into two distinctive regions based on the flutter

speed.

5.9.3 Response Behavior Below the Flutter Speed

We first investigate the frequency response of the harvester below the flutter speed,

U < Uf , for a fixed base acceleration of 0.1 m/s2 as shown in Fig. 5.19. The

response of the harvester is observed to be always periodic with the air flow serving

to amplify the magnitude of the steady-state response. The power amplification is

accompanied by a reduction in the resonant frequency due to a reduction in the

effective stiffness as clearly evident by the shift of the peak frequency towards lower

values. This reduction in stiffness amplifies the output power for the same level of

input acceleration. Such results, which are also confirmed experimentally, indicate

that the air flow over the airfoil improves the transduction capabilities of the harvester
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in the presence of base excitations even when the flow velocity is much below the

flutter speed. A 150% improvement in the RMS output power per unit acceleration

is observed experimentally as the wind speed is increased from 0 to 2m/sec. To put

these numbers in a better perspective, we compare the results obtained using a single

IVAEH to a scenario where two separate energy harvesters, one vibratory (VEH) and

the other aeroelastic (AEH), are used to independently harvest energy from their

respective excitation source. In other words, the VEH can only harvest energy from

the available base excitation, while the AEH can only harvest energy from wind. In

this case, and since the wind speed is below the flutter speed, U < Uf , the AEH

cannot harvest any energy. On the other hand, the VEH which is not augmented

with the airfoil can only produce the maximum power produced at zero wind speed.

Thus, using two separate harvesters will reduce the RMS output power by 150% as

compared to the IVAEH, not to mention the reduction in the power density due to

using two separate harvesters instead of a single one.

5.9.4 Response Behavior Above the Flutter Speed

When the wind speed exceeds the flutter speed, U > Uf , the response of the IVAEH

under the dual loading becomes much more complex due to the presence of two

frequencies, namely, the base excitation frequency and the frequency of self-sustained

oscillations. Consequently, the voltage across the electric load can be periodic or

quasi-periodic in time. To demonstrate this fact, Equations (5.1a)-(5.1c) are used to

generate a stroboscopic Poincarè map representing the voltage-response curve of the

harvester just beyond the flutter instability for U = 3 m/s and a base acceleration

of 0.15 m/s2. In the stroboscopic map shown in Fig. 5.20 (a), the response under

the combined loading is periodic with the same period as the excitation only when
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Figure 5.19: Variation of the RMS output power with the excitation frequency for different wind

speeds below the flutter speed. Results are shown per unit g. Asterisks represent experimental data.

Here, σ represents the shift between the excitation frequency and the first modal frequency of the

system.

the map yields one point in the frequency response curve. This appears to be the

case when the frequency of excitation is close to the frequency of the self-sustained

oscillations, i.e. when |σ| which represents the shift between the excitation frequency

and the first modal frequency of the system is small. In this case, the self-sustained

oscillation component of the response is entrained by the forced component, resulting

in a synchronized periodic output voltage. On the other hand, when |σ| becomes

large, the voltage becomes two-period quasi-periodic with amplitude modulation as

depicted in the time histories shown in Fig. 5.20 (a). This is due to the presence of

two incommensurate frequencies in the response.

As far as performance is concerned, the total RMS voltage of the IVAEH (solid line)

is compared to the RMS voltage due to flutter only (dashed lines). It is evident

that there exists a bandwidth of frequencies right above resonance wherein the RMS
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voltage resulting from the combined loading exceeds that obtained from the air flow

only. However, for excitation frequencies that are slightly below resonance, the RMS

voltage drops below the values obtained from the air flow. Away from resonance,

the effect of the base excitation diminishes and the output voltage resulting from the

combined loading approaches that resulting from the wind speed. These results are

further confirmed experimentally in Fig. 5.20 (b) clearly indicating that the nearness

of the excitation frequency to the flutter frequency is key for enhanced performance

under the combined loading.
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Figure 5.20: Variation of the RMS output voltage with the excitation frequency: (a) Theoretical

with the dashed line representing the RMS voltage when z = 0. (b) Experimental.

The magnitude of the base excitations also plays a critical role in improving the per-

formance of the IVAEH by defining the bandwidth of frequencies where the desired

periodic solutions exist. As the magnitude of the base excitation increases, the ex-

ternal excitation has more energy to quench the self-sustained oscillations resulting

from the airflow causing the two frequencies to lock into each other. This broadens

the bandwidth of frequencies where the desired periodic solutions exist. Figure 5.21

clearly illustrates this fact by showing that the bandwidth of frequencies where the
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periodic solutions exist becomes wider as the magnitude of the base excitation in-

creases.
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Figure 5.21: Quenching boundary as a function of the excitation frequency. Here, |z̄| = |z|/b.
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Figure 5.22: Variation of the RMS output power with the excitation frequency for two harvesting

units. (Dashed): two IVAEHs, and (solid): combined power resulting from one AEH and one VEH.

For the purpose of performance comparison, the total RMS output power harvested

using two IVAEHs is compared to that harvested using two separate energy harvesters,

one VEH and the other AEH. Figure 5.22 clearly demonstrates the superiority of using

a IVAEH to harvest energy from the combined loading with improvements in the RMS
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output power reaching as much as three times that obtained from the AEH and VEH

together.
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Chapter 6

Conclusions

This Chapter presents the concluding remarks for this Dissertation and a summary

of potential future research.

In general the research in this Dissertation focused on investigating the potential

of concurrent energy harvesting from combination of vibratory base excitations and

aerodynamic loading. As a platform to achieve the Dissertation objectives, two cate-

gories of aeroelastic energy harvesters were considered. The first category investigates

galloping-based harvesters in which a bluff body, which is only allowed to plunge or

translate vertically, is attached to the free end of a cantilever beam representing a

one (mechanical) degree-of-freedom instability. The second category studies flutter-

based harvesters. The harvesting beam in this case is attached to an airfoil section

which is allowed to pitch about an elastic axis and to plunge representing two degree-

of-freedoms instability. The following sections summarize the different tasks and

conclusions drawn from each case.
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6.1 Galloping-based Harvesters

An experimentally-validated model of a piezoelectric energy harvester under a combi-

nation of galloping and base excitations was developed. A nonlinear electromechan-

ical distributed-parameter model of the harvester was first derived using the energy

approach and by adopting the nonlinear Euler-Bernoulli beam theory, linear piezo-

electricity, and the quasi-steady assumption for the aerodynamic loading. The partial

differential equations were then discretized and a reduced-order model was obtained

using a Galerkin expansion. The model was validated by conducting a series of exper-

iments in which the harvester was attached to an electrodynamic shaker to provide

the base excitations. The whole set up was then placed in a wind tunnel such that

the bluff body is facing the air flow. In the experiments, the loading conditions in

terms of the wind speed, base excitation amplitude, and excitation frequency were

varied to study the harvester’s response under the combined loading below and above

the galloping speed. Results demonstrating the overall agreement between the pre-

dicted and experimental response were presented for both cases. It was shown that,

when the wind speed is below the galloping speed, the response is always periodic

containing only the frequency of excitation and a substantial amplification in the

harvester’s response was observed due to a reduction in the effective damping of the

system. On the other hand, when the wind speed is above the galloping speed, the

harvester’s response can be periodic or quasi-periodic in time due to the presence of

two frequencies in the response and the overall performance can be analyzed based

on the nearness of the two frequencies.

A generalized formulation, analysis, and optimization was then presented. A nonlin-

ear analysis based on perturbation theory was carried out to obtain an approximate

analytical solution of the reduced-order model. A dimensional analysis was performed
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to identify the important parameters that affect the system’s response. The analysis

was divided into two parts; the first for a harvester subjected to galloping excitations

only. It was shown that, for a given shape of the bluff body and under quasi-steady

flow conditions, the harvester’s dimensionless response can be described by a sin-

gle universal curve irrespective of the geometric, mechanical, and electrical design

parameters. In the second part, a harvester under concurrent galloping and base

excitations was analyzed. The total output power was shown to be dependent on

three dimensionless loading parameters, namely, wind speed, base excitation ampli-

tude, and excitation frequency. The response curves of the harvester were generated

in terms of the loading parameters serving as a complete design guide for scaling and

optimizing the performance of galloping-based harvesters under combined loading.

6.2 Flutter-based Harvesters

A lumped-parameter five-dimensional model representing the dynamics of the plunge

and pitch motions of a piezoelectric energy harvester under the combined loading

was considered. The elastic restoring forces in the plunge and pitch direction are

assumed to be nonlinear and are represented by hardening flexural and torsional

springs, respectively. A nonlinear quasi-steady approximation of the aerodynamic

lift and moment was utilized and a harmonic external excitations was applied at the

base. To study the response characteristics of the harvester near the flutter speed,

center manifold reduction was used to reduce the original five-dimensional system

into an equivalent first-order nonlinear ordinary differential equation. Subsequently,

the method of normal forms was applied to obtain an approximate analytical solution

of the resulting equation when the frequency of excitation is close to the frequency
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of the self-sustained limit-cycle oscillations. Steady-state approximate analytical ex-

pressions for the pitch angle, plunge deflection, and output voltage were derived and

validated against a numerical integration of the original equations of motion. The

resulting expressions were then used to investigate how the base excitation influences

the steady-state response of the harvester. It was observed that below the flutter

speed, the response of the harvester is always periodic with the air flow serving to

amplify the influence of the base excitation on the response by reducing the effec-

tive stiffness and damping of the system, and hence, increasing the RMS output

power. Beyond the flutter speed, two distinct regions were observed. The first occurs

when the base excitation is small and/or when the excitation frequency is far from

the frequency of the self-sustained oscillations induced by the flutter instability. In

this case, the response of the harvester is two-period quasiperiodic with amplitude

modulation due to the presence of two incommensurate frequencies in the response.

This amplitude modulation reduces the RMS output power. The second region oc-

curs when the amplitude of excitation is large enough to quench the quasiperiodic

response by causing the two frequencies to lock into each other. In this region, the

response becomes periodic and the output power increases exhibiting little depen-

dence on the amplitude of base excitation. The performance of the piezoelectric was

then studied experimentally below and above the flutter speed and found to exhibit

qualitative agreement with the theory. In terms of its transduction capabilities and

power density, the integrated device was shown to have a superior performance under

the combined loading when compared to utilizing two separate devices to harvest

energy independently from the two available energy sources. Even below its flutter

speed, the proposed device was able to provide 1.5 times the power obtained using

two separate harvesters.
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6.3 Directions for Future Research

Although galloping-based and flutter-based harvesters exhibit the same qualitative

performance enhancement characteristics under combined loading, from a design per-

spective, the multiplicity of variables in a two-degree-of-freedom flutter harvester

makes progress in understanding and analysis of the problem very difficult. Unlike

galloping, there are several parameters in addition to the aerodynamic loading co-

efficients that have to be carefully chosen. For instance, a weak coupling between

the pitch and plunge modes shifts the flutter speed into higher wind speeds. At

the same time, increasing this coupling by increasing the mass of the airfoil can

lead to a static divergence instability rather than flutter oscillations [69]. Hence,

investigating the relative performance of energy harvesters with different aeroelastic

excitation mechanisms represents an interesting topic for future work. For instance, a

relative performance study can be conducted to determine whether the two degrees-

of-freedom flutter harvester can outperform the single degree-of-freedom galloping

harvester. This can be achieved by comparing the root mean square output power

of both harvesters for the same loading conditions. For a fair comparison, the same

piezoelectric beam should be used. The tip body, i.e square-sectioned bluff for gal-

loping harvester and an airfoil for flutter harvester, should be designed to have the

same mass, span, and operational volume. The elastic axis or the coupling between

the pitch and plunge modes can also be designed such that the wind speed of flutter

instability and galloping instability are the same. The analysis can be extended to

include the influence of base excitations. Results of this study can be utilized as a

basis to develop performance metrics and provide conclusions about which harvester

is favorable for the given loading conditions.

Investigating the role of nonlinearities in the transduction of aeroelastic energy har-
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vesters forms another avenue for future research. Different nonlinear configurations

such as softening, hardening, and bi-stability can be introduced to the harvester by

exploiting nonlinear magnetic interactions. As numerical simulations might not be

sufficient to understand the influence of system parameters, analytical approximations

that predict the response behavior of harvesters with mono- and bi-stable potentials

need to be obtained. These approximations can then by utilized to provide a new

insight into the dynamics favorable for energy harvesting.
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Appendix A State-Space Formulation

The equations governing the dynamics of the harvester, Equation (5.1a)-(5.1c), can

be transformed into state space by introducing the state vector

X = [x1, x2, x3, x4, x5]T ≡ [α, α′, h̄, h̄′, V̄ ]T .

This yields the following five dimensional system:

x′1 = x2,

x′2 =

[
a21 − a22

(
U

Uf

)2]
x1 +

[
a23 −

(
1

2
− ā
)
a22

(
U

Uf

)]
x2

−a24x3 −
[
a25 + a22

(
U

Uf

)]
x4 + χαa26x5 + f2(X; z̄),

x′3 = x4,

x′4 =

[
a41

(
U

Uf

)2

− χαa21

]
x1 +

[(
1

2
− ā
)
a41

(
U

Uf

)
− χαa23

]
x2

+a42x3 +

[
a43 + a41

(
U

Uf

)]
x4 − r2

αa26x5 + f4(X; z̄),

x′5 = −x4 − eRx5 + z̄
′
. (A.1)

where the nonlinear functions of the state variables and base displacement are ex-

pressed as

f2(X; z̄) = a21fαx
3
1 + a24z̄ + a25z̄

′ − a24fh(x3 − z̄)3 + a22Ψ,

f4(X; z̄) = −χαa21fαx
3
1 − a42z̄ − a43z̄

′
+ a42fh(x3 − z̄)3 − a41Ψ.

and

Ψ = c3

(
U

Uf

)2[
x1 +

x4

U/Uf
+

(
1/2− ā

)
U/Uf

x2

]3

.
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The constants aij appearing in Equation (A.1) are given by

a21 =
r2
α

D

(
ω̄

ūf

)2

, a22 =
cLα
D

(
1

2
+ ā+ χα

)
, a23 = 2ζα

r2
α

D ,

a24 =
χα
ū2
fD

, a25 = 2ζh
χα
D , a26 =

eθ
D , a41 =

cLα
D

(
r2
α + χα

(
1

2
+ ā

))
,

a42 =
r2
α

ū2
fD

, a43 = 2ζh
r2
α

D , D =
(
χ2
α − r2

α

)
.

Appendix B Center Manifold Reduction

According to the center-manifold theorem, analysis of the dynamics of an n-dimen-

sional continuous system near one of its fixed points can be reduced to the analysis

of the dynamics on its center manifold. At the flutter speed, δ = 0, the origin,

X0 = 0, becomes a nonhyperbolic fixed point. Hence, there exists a local center

manifold for the nonlinear system of Equation (5.7) near X0. Moreover, since none

of the eigenvalues of this fixed point lies in the right-half of the complex plane, the

long-time dynamics of the system can be described by the dynamics on the center

manifold, thereby reducing the dimensionality of the system.

Since the base excitation is harmonic of the form z̄(τ) = |z̄| cos(Ωτ), Equation (5.7)

represents a non-autonomous system of equations. To facilitate the implementation

of the center manifold reduction, we transform Equation (5.7) into an autonomous

form by introducing an additional state variable into the vector Y , such that

y6 = |z̄|ejΩτ , and y7 = |z̄|e−jΩτ . (B.1)

where the tilde denotes the complex conjugate. With that, we can write y′6 = jΩy6,

and y′7 = −jΩy7 Using Equation (B.1), the five-dimensional nonautonomous system

121



of Equation (5.7) is transformed into a seven-dimensional autonomous system.

Since the influence of the base excitation on the harvester’s response is mostly pro-

nounced when the excitation frequency, Ω is close to the limit-cycle frequency ω0, we

limit the analysis to such scenarios and describe the nearness of Ω to ω0 by introducing

the detuning parameter, σ, such that

Ω = (1 + σ)ω0. (B.2)

To capture the dependence of the center manifold dynamics on δ and σ, we make use

of the suspension trick [70]; that is, we augment Equation (5.7) with the additional

equations

δ′ = 0, and σ′ = 0. (B.3)

Next, we construct the center manifold in the neighborhood of the fixed point. To this

end, we separate the center and the stable subspaces by dividing the vector Y into

a center subspace (non-decaying dynamics), Yc = [y1, y2, y6, y7, δ, σ]T , and a stable

subspace (decaying dynamics) Ys = [y3, y4, y5]T . This yields

Y ′c = JcYc + Fc(Yc, Ys), (B.4)

Y ′s = JsYs + Fs(Yc, Ys), (B.5)

where Jc and Js are coefficient matrices associated with the center and stable dynam-

ics, respectively; and Fc and Fs are nonlinear functions of Yc and Ys.

Since the stable subspace is three-dimensional, we seek a three-dimensional cen-

ter manifold emanating from the origin in the form Ys = CM(Yc), where CM =

(CM1, CM2, CM3)T . The goal here is to describe the decaying dynamics of Ys
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in terms the center dynamics, Yc. Noting that the center manifold is invariant,

Ys(τ) = CM(Yc(τ)), we can write

Y ′s =
∂Ys
∂τ

=
∂CM

∂Yc

∂Yc
∂τ

=
∂CM

∂Yc
Y ′c . (B.6)

Substituting Equation (B.4) and (B.5) into Equation (B.6), we obtain the center

manifold dynamics as

∂

∂Yc
CM(Yc)

[
JcYc + Fc(Yc,CM(Yc)

]
−
[
JsCM(Yc) + Fs(Yc,CM(Yc)

]
= 0. (B.7)

The boundary conditions are obtained from the fact that the center manifold is tan-

gent to the center eigenspace at the origin, that is

CM(0) = 0, and
∂

∂Yc
CM(0) = 0. (B.8)

To solve Equation (B.7) with boundary conditions (B.8) , we approximate the com-

ponents of CM(Yc) with polynomials. The polynomial approximations are taken

to be cubic since the nonlinear terms in Equation (5.7) start first at a third order.

Additionally, the polynomials do not contain constant or linear terms, such that

the conditions of Equation (B.8) are satisfied. Assuming that σ and δ are of or-

der y2
i , the assumed polynomial approximation CMi will have twenty eight unknown

coefficient multiplying a cubic-order combination of the center state variables, i.e.,

[y3
1, y

3
2, y

3
6, y

2
1y6, σy1, δy6, . . .]. This yields a total of eighty four unknown coefficients

for the three-dimensional center manifold. These coefficients can be obtained by sub-

stituting the assumed polynomial approximation for CMi into Equation (B.6) and

equating the coefficients associated with the basis of the polynomial approximation

to zero.
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Once the coefficients are obtained, the stable dynamics becomes a known cubic poly-

nomial expansion of the center states. Specifically, y3, y4 and y5 can now be described

as a polynomial function of y1, y2, y6, y7, σ, and δ. Substituting these expressions back

into Equation (B.4), we obtain the following first order nonlinear differential equation

which accurately describes the y1 dynamics on the center manifold:

y′1 = jω0y1 + κ1y6 + κ2y7 + Fc(δ, σ, y1, y2, y6, y7), (B.9)

where Fc is a nonlinear function that involves all the cubic combinations of its variables

(δ, σ, y1, y2, y6, y7) multiplied by known coefficients keeping in mind that δ and σ are

assumed to be of quadratic order.

The solution of the original five-dimensional system, Equation (5.7), near the origin

and the bifurcation value can now be studied by analyzing the one-dimensional system

of Equation (B.9).

Appendix C Normal Form Analysis

The method of normal forms can now be implemented to find a coordinate system in

which Equation (B.9) takes the simplest form [68]. This coordinate transformation is

found by solving a sequence of linear problems. To keep track of the different orders

of magnitude, we use a non-dimensional parameter ε as a bookkeeping device and

scale the nonlinearity, such that

y′1 = jω0y1 + ε
[
κ1y6 + κ2y7 + Fc(δ, σ, y1, y2, y6, y7)

]
. (C.1)
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To obtain the normal form, we introduce the coordinate transformation (near identity

transformation) [68]

y1 = η + εh1(δ, σ, η, y2, y6, y7) + ... (C.2)

Substituting Equation (C.2) into Equation (C.1), using y′6 = jΩy6, and y′7 = −jΩy7,

and equating the coefficients of ε on both sides, we obtain the following homology

equations for h1

O(ε0) :

η′ = jω0η, (C.3)

O(ε1) :

jω0

(
∂h1

∂η
η − ∂h1

∂y2

y2

)
+ jΩ

(
∂h1

∂y6

y6 −
∂h1

∂y7

y7

)
= jω0h1(δ, σ, η, y2, y6, y7)

+κ1y6 + κ2y7 + Fc(δ, σ, η, y2, y6, y7). (C.4)

Next, we choose h1 to eliminate as many terms as possible from Equation (C.4). It

turns out that h1 can be chosen to eliminate all nonresonant terms from Equation

(C.4). The resonant and near-resonant terms remain yielding the following equation

for y1.

y′1 = jω0y1 + 1
2
(α3 + σα4)y6 + δα1y1 +

(
4α2y

2
1y2 + (α7 − α9)y2

1y7 + α8y2y
2
6

+1
2
α6y

2
6y7 + (α7 + α9)y1y2y6 + α5y1y6y7

)
. (C.5)

Equation (C.5) represents the simplest form of Equation (B.9) and can be used to

study the dynamics of the harvester near the flutter instability under the condition

that the frequency of external excitation is close to the frequency of the limit cy-

cle.
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[63] M. P. Päıdoussis, S. J. Price, and E. De Langre. Fluid-Structure Interactions:

Cross-Flow-Induced Instabilities. Cambridge University Press, 2011.

[64] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions: with

Formulas, Graphs, and Mathematical Tables. Number 55. Courier Dover Publi-

cations, 1972.

[65] M. Novak. Aeroelastic Galloping of Prismatic Bodies. ASCE Journal of the

Engineering Mechanics Division, 96:115–142, 1969.

[66] L. Liu, Y. S. Wong, and B. H. K. Lee. Application of the Centre Maniflod Theory

in Non-linear Aeroelasticity. Jounal of Sound and Vibration, 234:641–659, 2000.

[67] Y.C. Fung. An Introduction to the Theory of Aeroelasticity. Wiley, New York,

1955.

[68] A. H. Nayfeh. The Method of Normal Forms. Wiley-VCH, New York, 2nd

edition, 2011.

[69] M. Bryant, E. Wolff, and E. Garcia. Aeroelastic Flutter Energy Harvester Design:

the Sensitivity of the Driving Instability to System Parameters. Smart Materials

and Structures, 20(12):125017, 2011.

[70] J. Carr. Applications of Center Manifold Theory. Springer Verlag, New York,

1981.

134


	Clemson University
	TigerPrints
	8-2014

	Investigation of Concurrent Energy Harvesting from Ambient Vibrations and Wind
	Amin Bibo
	Recommended Citation


	Abstract
	Dedication
	Acknowledgments
	List of Figures
	List of Tables
	Introduction
	Motivations
	Current Approaches for Micro-power Generation
	Thesis Objectives
	Dissertation Outline

	Mathematical Modeling Under Galloping and Base Excitations
	Nonlinear Distributed-Parameter Model
	Strain-Displacement Relationship
	Constitutive Relationships
	Equations of Motion and Boundary Conditions

	Reduced-Order Model

	Experimental Validations
	Experimental Setup
	Galloping Speed
	Response Behavior Below the Galloping Speed
	Response Behavior Above the Galloping Speed

	Nonlinear Analysis of Galloping-based Energy Harvesters
	General Formulation
	Non-dimensional Model
	Model Assumptions

	Approximate Analytical Solution
	Asymptotic Response
	Stability Analysis
	Numerical Validation
	Response in the Absence of Base Excitations
	The Universal Curve
	Optimization Analysis
	Optimal Harvesting Circuit Design Parameters
	Optimal Electric Load
	Optimal Electromechanical Coupling
	Efficiency Estimation at the Optimal Conditions

	Response in the Presence of Base Excitations:
	Response below the cut-in wind speed:
	Response above the cut-in wind speed:


	Modeling and Analysis Under Flutter and Base Excitations
	Model Formulation
	Flutter Speed
	Approximate Analytical Solution
	Validity of the Analytical Solution
	Response Behavior Below the Flutter Speed
	Response Behavior Above the Flutter Speed
	Characteristics of the Output Voltage
	Influence of the Base Excitation
	Influence of the Wind Speed

	Optimal Load Resistance
	Efficiency
	Experimental Validations
	Experimental Setup
	Flutter Speed
	Response Behavior Below the Flutter Speed
	Response Behavior Above the Flutter Speed


	Conclusions
	Galloping-based Harvesters
	Flutter-based Harvesters
	Directions for Future Research

	Appendices
	State-Space Formulation 
	Center Manifold Reduction
	Normal Form Analysis


