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Abstract

Dengue is one of the most rapidly spreading mosquito-borne viral diseases in

the world and inflicts significant health, economic and social burdens on populations.

In this dissertation, I studied different aspects of modeling of dengue and vector-borne

diseases in general. Among various dengue models that have appeared in literature,

some explicitly model the mosquito population, while others model them implicitly.

In spite of extensive use of both modeling approaches, little guidance exists for which

type of model should be preferred. I developed a Bayesian approach that uses a

Markov chain Monte Carlo (MCMC) method to fit disease models to epidemiological

data and used it to explore how well these models explain observed incidence and to

find good estimates for the epidemiological parameters for dengue. I fitted dengue

hemorrhagic fever data from Thailand to both type of models and found using Akaike

Information Criterion that explicitly incorporating the mosquito population may not

be necessary in modeling dengue transmission. On comparing my estimates of the

basic reproduction number, R0, with other estimates in literature, I found a wide

variability in R0 estimates among studies. This variability in R0 estimate for dengue

transmission is not well understood. By fitting a simple dengue model to dengue

incidence for varying R0 values, I found a logarithmic type relationship between pop-

ulation immunity levels and R0, which may be a reason for the variability in R0

estimates. The result also highlighted the importance of finding better estimates of
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population immunity level to help more accurately estimate R0 and other epidemi-

ological parameters for dengue. Driven by the seasonality in mosquito abundance

and complex dynamics of dengue, introducing a vaccine may induce a transient pe-

riod immediately after vaccine introduction where prevalence can spike higher than

in the pre-vaccine period. These transient spikes could lead to doubts about the

vaccination program among the public and decision makers, possibly impeding the

vaccination program. Using simple dengue-transmission models, I found that large

transient spikes in prevalence are robust phenomena that occur when vaccine efficacy

and vaccine coverage is not either both very high or both very low. Despite the pres-

ence of these spikes, vaccination always reduced total number of infections in the 15

years after vaccine introduction. Therefore, policy makers should prepare for spikes

in prevalence after vaccine introduction to mitigate the burden of these spikes and to

accurately measure the effectiveness of the vaccine program.
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Chapter 1

Introduction

Humankind has always been afflicted by infectious diseases, but epidemics were

comparatively rare before the advent of human civilization. Once people stopped lead-

ing a nomadic life and began living in villages, then in towns and cities, pathogens

that cause infectious diseases started spreading easily. People get exposed to these

pathogens either by direct contact (through air, polluted water and food) or by indi-

rect contact (through bloodsucking insect carriers of disease such as mosquitoes, fleas

and lice).

Dengue is one of the most rapidly spreading mosquito-borne viral diseases in

the world. It inflicts significant health, economic and social burden on populations.

Worldwide, an estimated 2.5 billion people live in areas where dengue is an epidemic,

of which approximately 975 million live in urban areas in tropical and sub-tropical

countries in Southeast Asia, the Pacific and the Americas (Figure 1.1). Dengue

has been recognized in over 100 countries and an estimated 50–100 million dengue

infections occur annually (Guzmán and Kouri, 2002). Moreover, the global estimated

number of disability-adjusted life years (DALYs) lost to dengue in 2001 was 528, 000.

Dengue virus (DEN) is a small, spherical and single-stranded RNA virus in
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Figure 1.1: Areas at risk for dengue transmission, 2008 (WHO, 2009).

the genus Flavivirus in the family Flaviviridae, which also includes yellow fever virus

and West Nile Virus. Dengue viruses are divided into four distinct classes, known

as serotypes, referred to as DEN-1, DEN-2, DEN-3 and DEN-4. Infection with one

serotype provides immunity to other viruses in that same serotype, but no long-term

immunity to the other serotypes. Within each serotype, distinct genotypes have

been identified which indicates the extensive genetic variability within the dengue

serotypes. An individual infected with one of the four serotypes such that the in-

dividual have had no prior infection with any of the serotype is said to be infected

with primary infection. Similarly, an infected individual is said to be infected with

secondary infection if the individual have had prior infection with any one of the

dengue serotypes. Persons living in areas where dengue is an endemic can be infected

with three and probably four dengue serotypes during their lifetime (Gubler, 1998a).

The various serotypes of the dengue virus are transmitted to humans through

the bites of Aedes mosquitoes. Aedes aegypti mosquitoes are the predominant vectors

for dengue infection, however Aedes albopictus and other Aedes species are also able
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to transmit dengue with varying degree of efficiency. The mosquitoes acquire the

virus when they bite an infected human. The mosquitoes are capable of transmitting

dengue if they bite another human immediately or after incubating the infection

for eight to twelve days, which is known as the extrinsic incubation period. The

mosquitoes remain infected for rest of their lives. Vertical transmission of virus from

mother to offspring is thought to be rare in both mosquitoes and humans (Gubler,

1998b; Guzmán and Kouri, 2002; Sabin, 1952; Siler et al., 1926).

Once the dengue virus is inoculated into a human host, it incubates for a pe-

riod of 4–10 days, the intrinsic incubation period. Following incubation, an infected

person enters the acute phase of infection for about 5 days. The host recovers from

the infection usually within 7–10 days. Infection with one type of dengue serotype

provides lifelong protective immunity to the infecting serotype, and possibly partial

short-lived protection from infection with other dengue serotypes (Sabin, 1952). The

symptoms of disease vary greatly: mild fever, high fever with severe headache and

joint pain, and internal hemorrhaging, circulatory failure and death. The cases are

classified in order of increasing severity as dengue fever (DF), dengue hemorrhagic

fever (DHF) and dengue shock syndrome (DSS) (Guzmán and Kouri, 2002; Halstead,

2007). The severity of disease in an individual is determined by several factors such

as age, ethnicity, previous dengue infection and possibly the presence of some chronic

diseases (Guzmán and Kouri, 2002). Young children can be especially susceptible to

dengue morbidity (Guzmán et al., 2002). Most patients who develop severe forms of

dengue (DHF or DSS) have had prior infections with one or more dengue serotypes

(Halstead, 2007). One explanation for this phenomenon is antibody-dependent en-

hancement (ADE), where the presence of antibodies to one dengue serotype enhance

the replication of viruses from other serotypes, perhaps leading to increased suscep-

tibility to infection or transmission once infected, in addition to increasing the risk
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of severe disease (Halstead, 2007). Certain dengue genotypes, particularly those of

DEN-2, are thought to be more virulent than others, since more number of cases of

DHF have been associated with DEN-2 than with the other serotypes (Rico-Hesse,

2003).

Numerous approaches have been used to understand the epidemiology of dengue

fever (DF) and dengue hemorrhagic fever (DHF). There are several ecological char-

acteristics of the dengue virus (DENV) that have often been explored using mathe-

matical models. Various mathematical models for dengue infection have appeared so

far, and successfully helped us understand the different aspects of the disease. For

example, a series of studies by Focks et al. (1993a,b, 1995, 2000) investigated the

quantitative value of models using epidemiological data and simulations, while others

focused purely on qualitative patterns motivated by ecological interests (Esteva and

Mo Yang, 2005; Esteva and Vargas, 2000b; Ferguson et al., 1999a).

To ensure that a mathematical model captures the essential features of epi-

demics, it is imperative to validate the model by fitting it to observed data. Several

estimation methods have been used in the literature to estimate parameters. Least-

squares error fitting has been widely used for vector–host models (Chowell et al.,

2007; Mubayi et al., 2010) and recently the expectation maximization (EM) algo-

rithm has seen some use (Duncan and Gyöngy, 2006; Lavielle et al., 2011). In this

dissertation, I present and use a Bayesian Markov chain Monte Carlo (MCMC) tech-

nique for estimation as it provides a huge amount of modeling flexibility. Compared

with other estimation methods, Bayesian MCMC technique has advantage of giving

a complete posterior distribution for parameters as posterior distributions that en-

ables easy analysis of model parameters or function of parameters. Moreover being a

procedure-based approach, it is easy to implement.

Among various models that have been used to study dengue transmission, some
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explicitly model the mosquito population (e.g. Esteva and Vargas, 2000a; Medlock

et al., 2009; Wearing and Rohani, 2006), while others model the mosquitoes implicitly

in the transmission term (e.g. Adams et al., 2006; Cummings et al., 2005; Nagao and

Koelle, 2008). In spite of extensive use of both modeling approaches, little guidance

exists for which type of model should be preferred. In particular, I found no compar-

ison in the literature of how well these models explain observed incidence. I studied

the impact of these modeling assumptions on the dynamics of dengue to fit dengue

hemorrhagic fever (DHF) data from Thailand to simple dengue models with and

without explicitly modeling mosquitoes using Bayesian MCMC estimation. I found

the parameter estimates obtained from both models consistent with previous studies.

Most importantly, model selection found that the model with implicit mosquitoes was

substantially better than the model with explicit mosquitoes for the DHF data from

Thailand. Therefore, explicitly incorporating the mosquito population may not be

necessary in modeling dengue transmission.

In mathematical modeling of diseases, the basic reproduction number (R0)

that is total number of secondary cases generated by one case during its infectious

period in a completely susceptible population is an important measure as it provides a

threshold to determine the amount of effort that is necessary to prevent an epidemic or

to eliminate a disease from a population. The basic reproduction number for dengue

transmission in Thailand has been estimated by various studies (e.g. Adams et al.,

2006; Chao et al., 2012; Cummings et al., 2009; Nagao and Koelle, 2008). However;

estimates of R0 for dengue transmission vary considerably between these studies.

These R0 estimates vary from low values of around 1–3 to higher values of 10–12.

The estimates of R0 from my study of estimating parameters using Bayesian MCMC

were in the range of 1–3. This variability in the estimates of R0 is not well understood.

Inaccurate estimates of R0 may lead to incorrect assessment of disease risk and so it
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is important to investigate this variability in R0 estimates among studies. In order

to understand the likely reasons for this variability, we fitted a simple dengue model

to dengue incidence for varying values of reproduction number R0 and found that

different levels of population immunity may lead to wide variations in estimates of

the basic reproduction number. More specifically, there seems to be logarithmic type

relationship between the level of population immunity and the basic reproduction

number, so estimating the level of population immunity and the basic reproduction

number together may not provide accurate model parameters. Thus in order to fit

dengue models to observed data from Thailand, it may be necessary to use appropriate

estimates for the proportion of the population immune to infection at the beginning

of the epidemic.

With the expanding geographic distribution and increased disease incidence

in past several decades, the prevention and control of dengue infection has become

very important. Unfortunately, tools available to prevent dengue infection are very

limited. For many years, some viral diseases have been controlled using vaccines,

however a dengue vaccine is not yet available. Therefore, in order to reduce or prevent

dengue virus transmission, there is currently no alternative to vector control. The

dengue vector control programs in most endemic countries have been frequently found

insufficient, ineffective or both. The low success rate of vector control, the continuing

spread of dengue and the increasing incidence of dengue call for a safe, effective and

affordable vaccine. The ideal dengue vaccine should be affordable, free of side effects,

and should induce life-long protection against infection with any of the four dengue

serotypes (i.e. tetravalent) (Guzmán et al., 2010).

Recently, significant progress has been made in the development of vaccine

candidates and several vaccine candidates are showing promise in clinical studies

(Coller and Clements, 2011). A vaccine candidate from Sanofi Pasteur showed effi-
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cacy of 30% and protection against 3 of the 4 serotypes of dengue (Halstead, 2012).

It is expected that a licensed vaccine for dengue will be available in less than 10 years

(Guzmán et al., 2010). Once vaccine is available, policy makers will need to develop

suitable policies to allocate the vaccine. Mathematical models of dengue transmission

predict complex temporal patterns in prevalence, driven by seasonal oscillations in

mosquito abundance. In particular, vaccine introduction may induce a transient pe-

riod immediately after vaccine introduction where prevalence can spike higher than

in the pre-vaccine period. These spikes in prevalence could lead to doubts about

the vaccination program among the public and even among decision makers, possi-

bly impeding the vaccination program. Using simple dengue-transmission models,

I found that large transient spikes in prevalence are robust phenomena that occur

when vaccine coverage and vaccine efficacy are not either both very high or both very

low. Despite the presence of transient spikes in prevalence, the models predict that

vaccination does always reduce the total number of infections in the 15 years after

vaccine introduction. I concluded that policy makers should prepare for spikes in

prevalence after vaccine introduction to mitigate the burden of these spikes and to

accurately measure the effectiveness of the vaccine program.

The chapters hereafter are organized as follows: In chapter 2, I present the

Bayesian MCMC approach to estimate parameters of deterministic mathematical

models. Using artificial incidence data, I show that the method can accurately esti-

mate the parameter values in epidemic models. In chapter 3, I apply the Bayesian

MCMC approach to vector–host and SIR-type models of dengue to estimate param-

eters using monthly DHF-case data from Thailand and perform model selection to

chose a model that fits observed data more parsimoniously. In chapter 4, the vari-

ability in the estimates of the basic reproduction number for dengue transmission in

Thailand is investigated using observed data from Thailand. The short- and long-
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term impacts of vaccine introduction and in particular, possibility of large spikes in

prevalence immediately after introduction of dengue vaccine is analyzed in chapter 5.

Finally, I discuss general conclusions in chapter 6.
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Chapter 2

Parameter estimation using

Bayeisan MCMC

One of the main goals of the mathematical modeling of infectious diseases is

to make reasonable predictions and develop control measures like vaccination and

isolation. In order to achieve these goals, it is imperative that the corresponding

mathematical model captures the essential features of the course of the disease out-

break. Thus, estimating unknown parameters of the models and their validation by

checking whether they fit the observed data becomes very important. It is challenging

to resolve this problem for a system of differential equations, which are the typical

form for infectious disease models. Generally, there are no closed-form solutions and

there are many unknown parameters. In addition, direct data on individual-level

parameters such as transmission or susceptibility are extremely limited, due to an in-

ability to feasibly conduct infection experiments, and instead must be estimated from

indirect population-level data. Most studies either use point estimates of parameter

values derived from clinical and laboratory experiments or from population-level data.

There are several methods that have been used to estimate the parameters of
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mathematical models. The method that has been widely used for vector-borne disease

models is least-squares error fitting techniques. Least-squares fitting minimizes the

sum of squared residuals, a residual being the difference between an observed value

and the fitted value provided by the model. Chowell et al. (2007) used least-squares

error techniques as one of the methods to estimate the transmissibility of dengue fever

during a 2002 epidemic in the Mexican state of Colima, using municipal epidemic data

to evaluate the effect of spatial heterogeneity. Mubayi et al. (2010) computed initial

estimates of parameters for Kala-azar (leishmaniasis) using least-squares fitting and

monthly reported data from Indian state of Bihar for the years 2002 and 2005. They

used these parameter estimates to compute, Kala-azar’s reproduction numbers for

the 21 most affected districts of Bihar and analyzed the impact of underreporting.

Recently, the expectation maximization (EM) algorithm has been used to es-

timate unknown parameters of disease models. The EM algorithm is an iterative

scheme for obtaining maximum likelihood estimates. Duncan and Gyöngy (2006)

used the EM algorithm to estimate the parameters of an age-structured model of

smallpox and estimated R0 using data from smallpox deaths in London over the

period of 1708 to 1748. A variant of the EM algorithm, stochastic approximation ex-

pectation maximization was used by Lavielle et al. (2011) to estimate the parameters

of a long-term HIV dynamic model.

A more sophisticated method to find good estimates for the unknown param-

eters of a model is to take a Bayesian approach that uses Markov chain Monte Carlo

(MCMC) simulations to estimate the unknown parameters. In the Bayesian approach

the parameter of interest is considered to be a quantity whose variation can be de-

scribed by a probability distribution. Initially, this is a subjective distribution called

the prior distribution, based on the experimenter’s belief, which is formulated before

the data are seen. A sample is then taken from a population indexed by the param-
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eter of interest and the prior distribution is transformed using Bayes’s Theorem into

the posterior distribution.

Simple models allow the posterior distribution to be calculated explicitly, while

other methods must be used for complex models. MCMC methods are a class of al-

gorithms for sampling from probability distributions based on constructing a Markov

chain with the desired stationary distribution. In Bayesian models, the MCMC

method estimates the posterior probability distribution of parameters (Gelman and

Rubin, 1996).

MCMC methods are used widely in many different areas of research and

many disease modelers have used it to estimate the parameters of epidemic mod-

els. Cauchemez et al. (2004) used the Bayesian MCMC method on longitudinal data

in order to estimate the main characteristics of infuenza transmission in households.

Huang et al. (2006) used a hierarchical Bayesian approach to implement MCMC sim-

ulations to estimate the dynamic parameters of a HIV model proposed for character-

izing long-term viral dynamics with antiretroviral therapy using longitudinal clinical

data. Brownstein et al. (2004) estimated the parameters of human and nonhuman

surveillance models for West Nile Virus using MCMC simulations and demonstrated

that mosquito surveillance was a more accurate predictor of human risk than mon-

itoring dead and infected wild birds for West Nile Virus. A Bayesian analysis of a

dynamic model for the spread of the Usutu virus by MCMC improved the model fit

and revealed the structure of interdependencies between model parameters (Reiczigel

et al., 2010).

One of the reasons that makes Bayesian MCMC an attractive choice is that

it is generally straightforward to implement and provides a huge amount of modeling

flexibility. The method enables analysis of all of the model parameters and functions

of the parameters. It also has advantage of not giving point estimates of parameters
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but distributions for the parameters that capture uncertainty. Moreover, posterior

summaries such as means, medians, maxima, minima, credible intervals, etc., can

be easily obtained for individual parameters or for joint distributions of parameters.

Also, if the data available is limited it reflects in the result by giving wider posterior

distributions for the parameters.

2.1 Baysian Markov chain Monte Carlo estimation

The method begins with a mathematical model of disease and appropriate

epidemiological data available for the disease. Bayesian inference is then performed,

in which the information regarding the parameters of the model from previous studies

is regarded as prior knowledge and is combined with the epidemiological data to

update the information about the unknown parameters of the model. The Markov

chain Monte Carlo method is used to update the parameter distributions.

Given a set of differential equations with parameters θ and the epidemiological

data Di = D(ti) at the discrete time points {t1, t2, ....}, the aim is to find a set of free

parameters so that the model fits the data at those time points. Let y(ti | θ) be the

time series produced by the mathematical model at the same discrete time point, ti’s

for which the data is available. An error function is assigned to this data and aim

is to minimize the error. The most common error function is the mean square error,

which can be written as:

E2 =
∑
i

(
Di − y(ti | θ)

)2

(2.1)

Next, a likelihood function for the parameters of the model is constructed. The like-

lihood is the conditional probability of obtaining the data given the set of parameter
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values. The likelihood function is derived by assigning some probability distribution

to the error function. There are several ways to form the likelihood function, for

example assigning the error function to have a binomial, normal or Poisson distribu-

tion. But in practice, a normal distribution works well, so we assumed that the error

function (2.1) obeys a normal distribution with zero mean and standard deviation 1

and write likelihood function as

L(θ) = Pr(D | θ) = exp(−E2) (2.2)

In order to use Bayesian inference to estimate the parameters, a prior distri-

bution for all the parameters is needed. If we have some prior information about the

parameters, then it can be used to assign the prior distribution to the parameters.

However, if we do not know any specific, definite information which can be used to

assign the prior distribution to the parameters, then we can choose a prior which is

flat. In this case the prior is called a noninformative prior. A noninformative prior ex-

presses vague or general information about the parameters such as “the parameter is

positive” or “the parameter is less than some limit”. We called the prior distribution

for the parameters Pr(θ).

Finally, the posterior distribution of the unknown parameters is calculated.

The posterior distribution is the conditional distribution of the parameter values

given the data. By Bayes’s Theorem,

Pr(θ | D) =
Pr(D | θ) Pr(θ)

Pr(D)
, (2.3)

where P (D | θ) is the likelihood function L(θ) from (2.2), Pr(θ | D) is the posterior

distribution, Pr(θ) is the prior distribution and Pr(D) is called the evidence, which
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is an integral of the likelihood over the prior distribution of the parameters:

Pr(D) =

∫
Pr(D | θ) Pr(θ) dθ. (2.4)

The posterior distribution can be estimated by calculating the expression (2.3). Un-

fortunately, Pr(D) is computationally difficult if not impossible to calculate for all

but the simplest likelihood as there is not enough information and there are two many

possible parameter values.

However, we do know that the posterior distribution is proportional to the

likelihood times the prior:

Pr(θ | D) ∝ Pr(D | θ) Pr(θ). (2.5)

Using Bayes’s Theorem (2.5), a Markov chain is formed which asymptotically con-

verges to the posterior distribution by using a simple Metropolis Algorithm. The

Metropolis Algorithm is an iterative procedure that uses an acceptance–rejection rule

to converge to the required distribution (Gelman et al., 2004). The algorithm is:

1. Start with some initial guess for the parameter values. A starting point θ0 is

chosen randomly from the prior distribution Pr(θ).

2. For each iteration n = 1, 2, 3, ......

(a) A new proposed set of parameter values is generated by sampling θ∗

from the proposal distribution J (θ∗ | θn−1). The proposal distribution

J (θ∗ | θn−1) must be symmetric, i.e. J (θ∗ | θn−1) = J (θn−1 | θ∗), for this

algorithm.
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(b) Using the likelihood function, the ratio of the posterior estimates

r = min

{
Pr(θ∗ | D) Pr(θ∗)

Pr(θn−1 | D) Pr(θn−1)
, 1

}
(2.6)

is calculated.

(c) A random uniform number (α) between 0 and 1 is generated. Then the

parameter values for this iteration are

θn =


θ∗ if α < r,

θn−1 otherwise.

(2.7)

This algorithm must be run for enough iterations for the parameter values

to converge to the posterior distribution. There are several convergence diagnostics

that can be employed to detect whether the chain has converged (Cowles and Carlin,

1996). We used the Gelman–Rubin test (Gelman and Rubin, 1992) for the conver-

gence diagnostic of our simulations, which is based on multiple independent simulated

chains. The variances within each chain are compared to the variances between the

chains: large deviation between these two variances indicates non-convergence.

The posterior is insensitive to the choice of proposal density, J(θ∗ | θn−1), but

the number of iterations until the chain converges may be heavily affected. It is diffi-

cult to choose an efficient proposal distribution, but normal distributions have been

found to be useful in many problems (Gelman et al., 2004). We used a multivariate

normal distribution with mean θn−1 and covariance λ2Σ as our proposal distribution,

J
(
θ∗ | θn−1

)
∼ N

(
θn−1, λ2Σ

)
. (2.8)

For the multivariate normal proposal distribution, for optimal convergence, proposals
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should be accepted at a rate of 0.44 in one dimension and 0.23 in higher dimensions

(Gelman et al., 2004). To achieve this, we used a variant of the Metropolis Algorithm

that updates the covariance matrix Σ and the scaling factor λ of the proposal distri-

bution after every 500 iterations. We initially chose the covariance to be the d × d

identity matrix (Σ0 = I) and the initial scaling factor to be λ0 = 2.4/
√
d, where d is

the number of parameters being estimated. After every 500 iterations, the covariance

matrix was updated by

Σk = pΣk−1 + (1− p)Σ∗ (2.9)

where Σ∗ is the covariance of the last 500 parameter values and p = 0.25 is the weight

given to the old covariance matrix. Similarly, the scaling factor was updated using

the Robbins–Monro algorithm (Robbins and Monro, 1951),

λk = λk−1 exp

(
α∗ − α̂
k

)
, (2.10)

where α∗ is the acceptance rate for the last 500 iterations and the target acceptance

rate is

α̂ =


0.44 for d = 1,

0.23 for d > 1.

(2.11)

The adaptive algorithm we used has two phases: first, the adaptive phase,

which was run until the Gelman–Rubin convergence test passed, and then the fixed

phase, where one of chains was chosen randomly and using its last estimates of the

parameters along with the updated covariance matrix and scaling factor as starting

point, the algorithm was run for next m iterations to sample from the posterior

distribution without updating the covariance matrix and the scaling factor. We used

the samples from the only last phase for the final inferences.
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2.2 Examples

We provide two simple examples of parameter estimation of a simple SIR

model using Bayesian MCMC. To show that the method works, we used synthetic

data generated for some particular choice of parameter values and compared the

estimates from Bayesian MCMC with these values.

A simple SIR model is given by

dS

dt
= −βIS,

dI

dt
= βIS − γI,

dR

dt
= γI,

(2.12)

where β is contact rate and γ is recovery rate and S, I and R are numbers of suscep-

tibles, infectious and recovered in the population (Anderson and May, 1992) In our

first example we estimated the contact rate and recovery rate of this SIR model using

the synthetic data. The initial conditions of the model were also estimated along with

the parameters in the second example.

2.2.1 Estimating contact rate and recovery rate

We estimated the contact rate β and the recovery rate γ in the aforementioned

SIR model. In general, the epidemiological data is available as the number of infec-

tious individuals at different points in time, so we generated a synthetic data set for

the number of infectious individuals by solving the SIR model using particular values

of parameters β and γ. We chose β = 0.5 per person per day, γ = 0.3333 per day

and initial conditions (S(0), I(0), R(0)) = (1, 0.000001, 0) to generate the synthetic

data for infectious individuals at 180 daily data points using the ODE solver ODE45
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Parameter True Value Initial guesses
β 0.5 0.8, 0.4, 0.6, 0.5
γ 0.3333 0.2, 0.6, 0.4, 0.5

Table 2.1: Initial guesses used to estimate β and γ

in Matlab. Now we used our Bayesian MCMC algorithm to estimate the values of

contact rate β and recovery rate γ. At each step of our simulations, we generated the

simulation data for infectious individuals at the same data points for which we have

obtained the synthetic data using same initial conditions and the current estimates

of parameter values to form the error function. Following the steps of the method

described in section 2.1, the error function (2.1)) was formed . Assuming lack of any

prior information about the parameters we wished to estimate, we chose noninforma-

tive priors for β and γ. We specified uniform distributions (U(0, 10)) for both the

parameters. Table 2.1 provides the parameter values used to generate synthetic data

as well as initial guesses used for parameter values to begin the simulations.

We ran four parallel MCMC chains and used Gelman–Rubin test along with

an upper bound of 5000 iterations for stopping criteria. Once the convergence criteria

was met, the estimates of parameters for each MCMC chain against the number of

iteration was plotted (Figure 2.1).

All chains converged to distributions around the true values of the parameters.

Finally, to make inferences about our result, second phase of the adaptive algorithm

was run for next 1000 iterations (Figure 2.2). We used the posterior density to

summarize our output in terms of means, medians and credible intervals (Table 2.2).

The mean and median estimates were very close to the true values (0.5000, 0.3333),

with the mean being slightly closer than the median in this example. The credible

intervals included the true parameter values and were relatively narrow, suggesting
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Figure 2.1: Estimates of β and γ vs. number of iterations.

Parameter True Value Mean Median 90% Credible Interval
β 0.5 0.5002 0.5003 (0.4897, 0.5110)
γ 0.3333 0.3333 0.3338 (0.3201, 0.3464)

Table 2.2: Posterior summary of β and γ. See also Figure 2.2.

the data was sufficient for good estimation of the parameters.

2.2.2 Estimating initial conditions along with parameters

In general, we do not know the initial conditions that should be used for solving

the mathematical models, so we must also estimate the initial conditions as well. Here

we estimated the initial conditions for the SIR model along with the contact rate β

and the recovery rate γ. The three equations in our SIR model resulted into three

initial conditions, that is, one for each initial number of susceptibles S(0), initial

number of infectious I(0) and initial number of recovered R(0). In the beginning of

the epidemic, we assumed that the number of recovered R(0) must be 0, so is not

needed to be estimated. We followed the same steps as before to estimate β, γ, S(0)

and I(0) in order to fit the synthetic data generated in the previous example to the
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Figure 2.2: Histogram for posterior densities of parameters β and γ. See also Ta-
ble 2.2.

Parameter True Value Initial guesses
β 0.5 0.8, 0.4, 0.6, 0.5
µ 0.3333 0.2, 0.6, 0.4, 0.5
S0 1 0.3, 0.7, 0.4, 0
I0 0.000001 0.00000124, 0.00000226, 0.000000083, 0.000000152

Table 2.3: Initial guesses used to estimate β, γ, S(0) and I(0)

model. We began with over-dispersed initial guesses (Table 2.3) and assigned uniform

priors to the parameters and initial conditions.

We ran four parallel MCMC chains and used Gelman–Rubin test along with an

upper bound of 20, 000 iterations for stopping criteria. Once the convergence criteria

was met, the estimates of parameters and initial conditions for each MCMC chain

was plotted (Figure 2.3). The second phase of the adaptive algorithm was run for

next 2000 iterations to make inferences about the results. The posterior density was

used to summarize the output (Figure 2.3) in terms of means, medians and credible

intervals (Table 2.4).
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Figure 2.3: Estimates of β, γ, S(0) and I(0) vs. number of iterations

Parameter True Value Mean Median 90% Credible Interval
β 0.5 0.5334 0.5240 (0.4373, 0.6502)
γ 0.3333 0.3260 0.3242 (0.2714, 0.4019)
S0 1 0.9297 0.9363 (0.6970, , 1.2940)
I0 0.000001 0.00000118 0.00000121 (0.00000081, 0.00000162)

Table 2.4: Posterior summary of β, γ, S(0) and I(0). See also Figure 2.4.
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The mean and median estimates for the parameters β and γ were close to

their true values. The mean for β was slightly closer to its true value than the

median, whereas the median was slightly closer to the true value of γ than the mean.

The mean and median estimates for the initial conditions were very close to the

true values (1, 0.000001). All the credible intervals included the true values, but the

credible intervals of parameters were wider compared to the ones obtained when only

parameters were estimated.

2.3 Summary

We developed and presented a method of Bayesian MCMC estimation for

fitting disease models to observed data. In this method, prior information from pre-

vious studies regarding the model parameters is combined with epidemiological data

to update the information about the model parameters. The connection between the

observed data and the parameters is made by a likelihood function. The prior dis-

tribution of model parameters are then transformed in the posterior distribution by

Bayes’s Theorem. In Bayesian models, slight deviations from simple models renders

the models intractable analytically. So, we used a MCMC method based on Metropo-

lis algorithm to generate posterior distribution for the model parameters. To improve

the speed of convergence to the posterior distribution, a variant of Metropolis algo-

rithm that updates the covariance matrix and scaling factor of jumping distribution

after every fixed number of iterations was used. In our simulations, Gelman–Rubin

test determined when the convergence was met and was used as stopping criteria.

We demonstrated the use of the Bayesian MCMC estimation by applying it

on a simple SIR-type model. We generated artificial incidence data by running the

model with fixed parameter values and initial conditions. We performed Bayesian
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MCMC estimation on the model and the artificial data to find estimates for the model

parameters and initial conditions. The mean and median estimates for the parameters

and initial conditions were very accurate and the credible intervals captured the

uncertainties in the estimates well.

Parameter estimation using epidemiological data is one of the key aspects of

disease modeling. We showed that Bayesian MCMC estimation is a novel method

to estimate parameters of disease models and differential equation models in general.

The method is easy to implement and has advantage of giving complete posterior

distribution for parameters that enables easy analysis of model parameters or function

of parameters.
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Chapter 3

Comparing vector–host and SIR

models for dengue transmission

3.1 Introduction

Dengue infection is one of the leading causes of illness in the tropics and

subtropics, where it inflicts substantial health, economic and social burdens (Center

for Disease Control and Prevention, Accessed January 14, 2013). Humans are infected

with dengue viruses by the bite of an infective female mosquito Aedes aegypti, the

principal vector of dengue. Once a person gets bitten by an infective mosquito, the

virus undergoes an incubation period of about 4 to 7 days, after which the person

enters the acute phase of infection. The acute phase can be as short as 2 days and

as long as 10 days. If other female A. aegypti mosquitoes bite the ill person during

this acute phase, those mosquitoes may become infected and subsequently begin the

transmission cycle anew. Dengue infection is generally characterized by a sudden

onset of fever and other nonspecific signs and symptoms, including frontal headache,

body aches, nausea and vomiting (Gubler, 1998a). Symptoms range from mild fever
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to high fever with severe headache and joint pain, and even to internal hemorrhaging,

circulatory failure and death. Cases are classified, in order of increasing severity as

dengue fever, dengue hemorrhagic fever (DHF) and dengue shock syndrome (Medlock

et al., 2009). Dengue has been recognized in over 100 countries and an estimated 50–

100 million cases of dengue fever and several hundred thousand DHF cases occur

yearly, depending on epidemic activity (Guzmán and Kouri, 2002). Particularly, in

Thailand, dengue disease incidence has increased from 9 per 100 000 in 1958 to 189

per 100 000 in 1998, with the largest reported incidence of 325 per 100 000 in 1987,

making dengue a severe public health problem in Thailand (Nisalak et al., 2003).

Several mathematical models have been proposed to investigate dengue epi-

demiology, some of which explicitly model the mosquito population (e.g. Esteva and

Vargas, 2000a; Medlock et al., 2009; Wearing and Rohani, 2006), while others im-

plicitly model it in the transmission term (e.g. Adams et al., 2006; Cummings et al.,

2005; Nagao and Koelle, 2008). Although both kinds of models have been extensively

used for dengue, little guidance exists for which type of model should be preferred. In

particular, there has been no comparison of how well these models explain observed

incidence. In this study, we considered simple dengue models with and without ex-

plicitly modeling mosquitoes, fit both models to DHF incidence data, and used model

selection to compare the models.

Fitting models to data validates the model as well as provides estimates of

unknown model parameters. There are some examples in the literature where dengue

models have been fit to data. Chowell et al. (Chowell et al., 2007) estimated the

transmissibility of dengue during a 2002 epidemic in the Mexican state of Colima

using municipal epidemic data to evaluate the effect of spatial heterogeneity. Ferguson

et al. (Ferguson et al., 1999b) used longitudinal incidence of serious dengue disease

from Thailand and estimated the basic reproductive number R0 to gain insight into
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the transmission dynamics and epidemiology of dengue. We fit a simple vector–host

dengue model as well as an SIR-type dengue model and obtain estimates of unknown

parameters like recovery rate, probability of severe form of disease, mosquito mortality

rate, etc.

The goal of the present study is to understand the impact of some modeling

assumptions on quantifying estimates of epidemiological metrics for dengue. We

applied Bayesian Markov chain Monte Carlo (MCMC) estimation on a simple vector–

host dengue model as well as an SIR-type dengue model to estimate model parameters

using monthly DHF incidence data in Thailand for January 1984 to March 1985.

The Bayesian MCMC techniques that we used in this study have been commonly

used to estimate model parameters of infectious diseases (Brownstein et al., 2004;

Cauchemez et al., 2004; Huang et al., 2006; Reiczigel et al., 2010). We use the

posterior distribution of the model parameters obtained from Bayesian MCMC to

perform uncertainty and sensitivity analysis of basic reproductive number R0 and

thereafter, use model selection on a set of vector–host and SIR models to find a

model which agrees with the data most parsimoniously.

3.2 Methods

We built two mathematical models of dengue transmission, one in which the

mosquitoes are explicitly tracked and another without explicit mosquito populations.

We then used Bayesian MCMC to fit DHF data from Thailand to these two models.

In this section, we outline the data source, models and methods and refer to more

detailed descriptions in Appendix A.
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Figure 3.1: Monthly dengue hemorrhagic fever (DHF) incidence in Thailand from
1983 to 1997.

3.2.1 Data Source

The Thailand Ministry of Public Health have been recording the number of

DHF cases since 1972. Cases are diagnosed using criteria established by the World

Health Organization. We obtained the monthly incidence of DHF for Thailand from

1983 to 1997 (Figure 3.1) (Johns Hopkins Center for Immunization Research, Ac-

cessed January 14, 2013). We chose one epidemic, from January 1984 to March 1985

(Figure 3.2), to fit the dengue models: this particular epidemic was chosen as a clear,

representative example among this data. More specifically, we used the cumulative

monthly number of DHF cases for the period January 1984 to March 1985. Cumula-

tive incidence is generally smoother than the original incidence data and thus easier

to fit and it also easily handles delayed reporting on holidays and weekends.

3.2.2 Vector–host model

The Ross–Macdonald model, originally developed for malaria, is a standard

mathematical model for vector-borne pathogens that tracks infections in both humans
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Figure 3.2: Monthly DHF incidence in Thailand from January 1984 to March 1985.

and mosquitoes (Macdonald, 1957). Following this framework, we built a vector–host

model for dengue consisting of three human host compartments, susceptible (the

number of susceptible humans is HS), infectious (HI) and recovered (HR), and two

mosquito compartments, susceptible (VS) and infectious (VI). Mosquitoes do not

recover from infection. The model is the system of differential equations

dHS

dt
= BH −mcβH

VI
V
HS − µHHS,

dHI

dt
= mcβH

VI
V
HS − γHHI − µHHI ,

dHR

dt
= γHHI − µHHR,

dVS
dt

= BV − cβV
HI

H
VS − µV VS,

dVI
dt

= cβV
HI

H
VS − µV VI ,

(3.1)

where H = HS +HI +HR and V = VS + VI are the human and mosquito population

sizes, respectively. A susceptible human gets infected with force of infection mcβH
VI
V

,

where m is number of mosquitoes per person, c is mean rate of bites per mosquito

and βH is the mosquito-to-human transmission probability per bite. Infectious people
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recover at rate γH . The force of infection for mosquitoes is cβV
HI

H
, where βV is

the human-to-mosquito transmission probability. For simplicity, we ignored disease-

induced mortality in both humans and mosquitoes, which is small (Burattini et al.,

2008). Because we only fit the model to an epidemic lasting about a year, we assumed

the human population was constant size by using the birth rate BH = µHH. We also

assumed the mosquito population was constant size (BV = µV V ), neglecting seasonal

fluctuations for simplicity.

Standard mathematical analysis of the model (Appendix A.1) shows that the

basic reproductive number, the number of new human infections caused by a single

infected human in an otherwise completely susceptible population, is

R0 =
mc2βHβV

µV (µH + γH)
. (3.2)

In addition, there are two equilibrium points, the disease-free equilibrium and the

endemic equilibrium. An equilibrium point is asymptotically stable if nearby orbits

converge to it as time increases, and it is globally asymptotically stable if all orbits,

not just those nearby, converge to the equilibrium (Alligood et al., 1996). For R0 >

1, the disease-free equilibrium is unstable and the endemic equilibrium is locally

asymptotically stable. The disease-free equilibrium is globally asymptotically stable

when R0 ≤ 1 (and the endemic equilibrium is out of the relevant state space, having

HI and VI negative, and unstable).

To simplify the parameter estimation, rather than fitting human mortality

rate along with the other parameters, we fixed µH = 1/69 y−1 based on the average

human duration of life in Thailand in 1984 of about 69 years (World Bank, Accessed

January 14, 2013). The remaining unknown parameters are the human recovery rate

(γH), the mosquito mortality rate (µV ), the probability of DHF (p), the mosquito
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biting rate (c), the number of mosquitoes per person (m), the mosquito-to-human

transmission probability (βH) and the human-to-mosquito transmission probability

(βV ). The biting rate, c, always appears in the model multiplied with either βH or

βV . Similarly, m always appears multiplied with βH . Therefore, only 2 of these 4

parameters can be separately estimated, which we chose to be βaH = mcβH and

βaV = cβV . In addition, the initial proportion of humans recovered in the host

population (hR(0) = HR(0)/H) as well as initial proportion of mosquitoes infected in

the vector population (vI(0) = VI(0)/V ) are unknown and must be determined. Thus,

we estimated a total of 5 unknown parameters and 2 initial conditions for the vector–

host model. We used the incidence data for January 1984 and Thailand’s population

in year 1984 to calculate initial conditions for initial proportion of hosts infected,

i.e. hI(0) = HI(0)/H(0), where HI(0) = 454 and H(0) = 46 806 000. Since both

the human and mosquito populations are constant, initial proportions of susceptible

humans and mosquitoes were calculated using the other initial conditions, i.e. hS(0) =

1− hI(0)− hR(0) and vS(0) = 1− vI(0).

3.2.3 SIR model

Dengue transmission has been extensively modeled using SIR-type models,

which only explicitly track human infections (e.g. Adams et al., 2006; Cummings

et al., 2005; Nagao and Koelle, 2008). These SIR models are simpler than vector–

host models, making analysis and parameter estimation easier. SIR models for dengue

have typically been constructed directly (e.g. Cummings et al., 2005). Alternately,

an SIR model can be derived from a vector–host model by assuming that infection

dynamics in the vector are fast compared to those of the host, a quasi-equilibrium

approximation (Keeling and Rohani, 2011).
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We used a standard SIR model,

dHS

dt
= BH − β

HI

H
HS − µHHS,

dHI

dt
= β

HI

H
HS − γHHI − µHHI ,

dHR

dt
= γHHI − µHHR,

(3.3)

where H = HS +HI +HR is the human population size. Again, we kept the popula-

tion size constant by setting the birth rate to BH = µHH. A susceptible person gets

infected with force of infection βHI

H
, where β is the composite human-to-human trans-

mission rate. Comparing the equilibria of the vector–host model and the SIR model

(Appendix A.2) provides β in terms of the parameters of the vector–host model:

β ≈ mc2βHβV
µV

. (3.4)

SIR model (3.3) is a standard mathematical model for directly transmitted

pathogens like influenza and has been thoroughly analyzed (e.g. Hethcote, 2000).

The basic reproductive number is

R0 =
β

µH + γH
. (3.5)

As with vector–host model (3.1), there are two equilibrium points, the disease-free

equilibrium and the endemic equilibrium: for R0 > 1 the disease-free equilibrium

is unstable and the endemic equilibrium is globally stable, while the disease-free

equilibrium is globally asymptotically stable for R0 ≤ 1 (with the endemic equilibrium

having HI < 0 and being unstable).

The unknown parameters are the transmission rate (β), the recovery rate

(γH) and the probability of DHF (p), along with the initial proportion of humans
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recovered (hR(0) = HR(0)/H). As in the vector–host model, we used the fixed value

for the human mortality rate µH = 1/69 y−1 to simplify the parameter estimation.

Again, the initial proportion of infected humans is given by hI(0) = HI(0)/H(0) with

HI(0) = 454 and H(0) = 46 808 000. Like the vector–host model, the other initial

condition is hS(0) = 1− hI(0)− hR(0).

3.2.4 Bayesian Markov chain Monte Carlo estimation

To estimate the unknown parameters, we used a Bayesian MCMC technique.

Bayesian inference uses prior information of the model parameters from previous

studies, which is then combined with new data to generate estimates in the form of a

probability distribution for the parameters. More precisely, for parameters θ and data

D, with the prior parameter distribution Pr(θ) and likelihood function Pr(D | θ), the

posterior parameter distribution Pr(θ | D) is given by Bayes’s Theorem:

Pr(θ | D) =
Pr(D | θ) Pr(θ)

Pr(D)
(3.6)

or, alternately,

Pr(θ | D) ∝ Pr(D | θ) Pr(θ). (3.7)

Because there are no general closed-form solutions, MCMC or other methods must

be used to generate approximate samples from the posterior parameter distribution

Pr(θ | D).

The connection between the data and the parameters is made by the likelihood

function L(θ) = Pr(D | θ), which is the conditional probability of obtaining the data

(D) for the given parameter values (θ). Therefore, L(θ) needs to be maximized to

obtain best-fit parameter set. In our case, the likelihood function is derived from
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the vector–host and SIR models, the solutions to which provide estimates of the

DHF monthly incidence data. We added a compartment to each model to calculate

the cumulative number of DHF infections (HC). We assumed that a fraction p of

infections were diagnosed as DHF, with p constant in time. We added differential

equations for the HC compartment,

dHC

dt
= pmcβH

VI
V
HS, (3.8)

for the vector–host model, and

dHC

dt
= pβ

HI

H
HS, (3.9)

for the SIR model, which are precisely the rates of new infections multiplied by p. The

“ode15s” function in Matlab was used to numerically solve the vector-host model (3.1)

& (3.8) and the SIR model (3.3) & (3.9). These numerical solutions give the predicted

monthly cumulative DHF incidence, yi = HC(ti)/H, where ti = 0, 30, 60, ... days.

Using the least-squares error between the cumulative DHF data Di and the model

prediction,

E2 =
15∑
i=1

(
Di − yi(θ)

)2

, (3.10)

we assumed the errors were Gaussian, giving the likelihood function

L(θ) = Pr(D | θ) = exp
(
−E2

)
. (3.11)

For the prior parameter distributions, we assigned wide uniform distributions,

with ranges chosen to represent our general understanding about where the parameter

values may lie. In the absence of any information on parameters estimates, we used
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least-squares fitting to find best-guess estimates of parameters. Estimates of γH , µV

and µH from the literature (γH = 1/7 d−1, µV = 1/14 d−1 and µH = 1/69 y−1) were

used and the vector–host model was fitted to the data using least squares in Berkeley

Madonna to find initial point estimates βaH = 0.002, βaV = 1.8 and p = 0.04. We

used these initial point estimates to form uniform priors for these parameters such

that their point estimates lie inside the range of priors. For the transmission term β

of the SIR model, we simply choose a very wide uniform prior. Where parameters

were common to both models, both models used the same prior (Table 3.1).

To generate the posterior parameter distribution, we used an MCMC method

based on the Metropolis algorithm using a Gaussian jumping distribution with an

adaptive covariance matrix. For each model, we simulated 4 independent MCMC

chains and used the Gelman–Rubin test to determine when the chains had converged

to the stationary distribution, i.e. the parameter posterior distribution. The Gelman–

Rubin test signals convergence when the variance between independent chains is sim-

ilar to the variance within the chains. (See section 2.1 for more details.) Once the

Gelman–Rubin test passed, we continued sampling from one of the chains for 10 000

more iterations without updating the covariance matrix, saving every 5th iterate as

the posterior parameter distribution.

3.3 Results

We estimated 7 total parameters for the vector–host model and 4 total pa-

rameters for the SIR model by Bayesian MCMC using the cumulative DHF incidence

data. Both models with their maximum-likelihood (ML) parameter estimates fit the

data well (Figure 3.3), with the vector–host model fitting slightly better. (More on

model fitting and model selection below.)
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The estimates of the human recovery rate were similar for both models (Fig-

ure 3.4(d) and Table 3.1). The average duration of human dengue infection is be-

tween 2 and 7 days approximately, with ML estimates of about 2 to 3 days. The

initial proportion of humans recovered (hR(0)) was estimated to be small in both

models, indicating that the human populations were almost entirely susceptible when

the outbreak started.

Estimates of the probability of DHF differed somewhat between models: ML

of around 3 DHF cases per 1000 infections from the vector–host model and around 14

DHF cases per 1000 infections from the SIR model. The vector–host model includes

several parameters not present in the SIR model. From the vector–host model, the

range of average lifespan of mosquitoes (1/µV ) was found to be approximately 13 to

26 days, with ML estimate of about 15 days. The initial proportion of mosquitoes

infected was very small (ML of about 0.5%), so that the outbreak had just started in

the mosquitoes as well as the humans.

The transmission rates are not common between the models, but comparison

of equilibria of both the models allowed us to compare the composite transmission rate

β from the SIR model with β = βaHβaV /µV for the vector–host model (Figure 3.4(c)).

Although, the ML estimates of β from both models are similar, the distribution from

the vector–host model has more weight at higher values of β than the distribution

from the SIR model: e.g. the median estimates are 0.4882 and 0.3243 respectively.

The basic reproductive number (R0), the expected number of secondary cases

produced by a single infection in a completely susceptible population, was calculated

using equations (3.2) and (3.5) for the respective models, for each MCMC parameter

sample (Figure 3.4(i)). For all parameter samples, R0 > 1 as expected since the

data show an epidemic, but the R0 values from the vector–host model (ML: 1.57) are

higher than from the SIR model (ML: 1.10).
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Figure 3.3: Fits of the vector–host and SIR models. Shown are the cumulative DHF
cases from the data (black circles), and from the models with the maximum–likelihood
parameter estimates (thick black curves) and 20 samples from the posterior parameter
distribution (thin color curves).
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Figure 3.4: Posterior parameter densities for the vector–host and SIR models. (For
the vector–host model, β = βahβav/µv.)
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Posterior
Parameter Prior Model ML Median 90% CI

βaH
(
d−1

)
U(0, 1) VH 0.0686 0.0521 (0.0146, 0.2241)

Mosquito-to-human transmission rate

βaV
(
d−1

)
U(0.1, 2) VH 0.4307 0.4867 (0.1299, 1.6821)

Human-to-mosquito transmission rate

β
(
d−1

)
U(0, 10)

VH 0.4881 0.4882 (0.2782, 0.9364)
Composite transmission rate SIR 0.5718 0.3243 (0.1931, 0.5805)

γH
(
d−1

)
U(0.1, 0.6)

VH 0.3104 0.2480 (0.1521, 0.4440)
Human recovery rate SIR 0.5211 0.2650 (0.1347, 0.5315)
p

U(0, 0.1)
VH 0.0028 0.0022 (0.0010, 0.0086)

Probability of DHF SIR 0.0137 0.0057 (0.0018, 0.0354)

µH

(
y−1

)
1/69

VH — — —
Human mortality rate SIR — — —

µV

(
d−1

)
U(0.01, 0.1) VH 0.0605 0.0531 (0.0378, 0.0781)

Mosquito mortality rate
hR(0) U(0, 1)

VH 0.0067 0.0020 (0.0000, 0.1320)
Initial humans recovered SIR 0.0332 0.0019 (0.0000, 0.1363)
vI(0) U(0, 1) VH 0.0009 0.0005 (0.0000, 0.0056)
Initial mosquitoes infected
R0 —

VH 1.5724 1.9733 (1.3556, 3.2059)
Basic reproductive number SIR 1.0972 1.1989 (1.0523, 1.5243)

Table 3.1: Posterior summary of parameter estimates. For simplicity, µh was not
estimated. R0 is not a parameter, but rather a function of the other parameters.
U(a, b) is the uniform distribution between a and b. For parameters common to
both models, the same prior was used for both models. “ML” is maximum-likelihood
estimate; “CI” is credible interval; “VH” is the vector–host model. Parameter units
are given in parentheses.
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Because R0 is an important metric for an infectious disease, we performed un-

certainty and sensitivity analysis of R0 for both models using partial rank correlation

coefficients (PRCC). The PRCC measures the independent effect of each input pa-

rameter on R0, assuming the parameters to be independent (Blower and Dowlatabadi,

1994). The ordering of these PRCCs directly corresponds to the level of statistical

influence, the impact that uncertainty in the estimate of a parameter has on the

variability of R0 (Sanchez and Blower, 1997). We used the “prcc” function of the R

library epiR (Stevenson, Accessed March 10, 2013).

For both models, all of the parameters were significantly different from 0

(p-value < 2.5 × 10−135). For the vector–host model, all parameters except hR(0)

and vI(0) were most influential in determining the magnitude of R0 (|PRCC| > 0.5),

while only β and γH for the SIR model were most influential on the magnitude of

R0. A positive PRCC value indicates that an increase in that parameter leads to an

increase in R0, while a negative value shows that increasing that parameter decreases

R0. For the parameters that appear explicitly in the R0 equations (3.2) and (3.5),

the signs of the PRCCs were as expected. Of the remaining parameters, p and vI(0)

have a negative influence on R0, while hR(0) has a positive influence on R0.

Parameter estimates for both models suggest that the initial proportion of

humans recovered and the initial proportion of vectors infectious are very small. As

a result, we tried fitting both models by fixing hR(0) = 0 and vI(0) = 2hI(0) and

estimating the other parameters in order to decrease the complexity of the models

(Figure 3.6). We fit the vector–host model by fixing hR(0) only, fixing vI(0) only and

fixing both hI(0) and vI(0). Similarly we fit the SIR model by fixing hR(0).

We used the Akaike Information Criterion (AIC) to compare the competing

6 models (Table 3.2). The AIC is a measure of the relative goodness of fit of a sta-

tistical model, balancing fit with number of parameters, finding the simplest model
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Log- Akaike
Model df likelihood AIC ∆AIC weight

Vector–host 7 −0.0779 14.1559 7.7212 0.0130
Vector–host, vI(0) fixed 6 −0.6847 13.3695 6.9348 0.0193
Vector–host, hR(0) fixed 6 −0.1173 12.2346 5.7999 0.0341
Vector–host, hR(0) & vI(0) fixed 5 −0.5835 11.1669 4.7322 0.0581
SIR 4 −0.1020 8.2039 1.7692 0.2558
SIR, hR(0) fixed 3 −0.2173 6.4347 0 0.6196

Table 3.2: Comparison of the vector–host and SIR models with and without fixed
initial conditions. “df” is degrees of freedom, i.e. number of parameters.

that best approximates the true, but unknown mechanisms generating the data. The

SIR model with fixed hR(0) had the minimum AIC value, implying this model was

the best among the models. The difference in AIC between the best model and the

others (∆AIC) gave “considerably less support” for all the vector–host models and

“substantial support” for both SIR models (Burnham and Anderson, 2002). Alterna-

tively, Akaike weights provide the probability that a model is the best among the set

of candidate models. The Akaike weight for the SIR model with fixed hR(0) gave 62%

probability of it being the better model whereas the SIR model where hR(0) is also

estimated was 26% likely to be the better model. There was only a 12% probability

that any of the vector–host models was best.

3.4 Discussion

The fitting of dengue incidence data from Thailand to simple vector–host and

SIR model provided estimates of model parameters. The estimates of human recovery

rate from both the models suggest a recovery period of 2 to 7 days, which is consistent

with the estimates used in previous studies (Cummings et al., 2005; Gubler, 1998a).

The estimates of the probability of DHF from the vector–host model and the SIR
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model are that about 3 and 14 out of 1000 infections develop into DHF, respectively

for the two models. Based on the annual number of dengue infections and DHF cases

(Gubler, 1998a), 5 out of 1000 infections develop into DHF.

The ML estimate of the basic reproductive number (R0) for the SIR model is

30% smaller than the estimate for the vector–host model. This is driven by the recov-

ery rate (γH) being estimated as 68% larger in the SIR model. The MLE probability

of DHF (p) is 4.9 times larger for the SIR model. The two models—one with high

R0 and low p, the other with low R0 and high p—both fit the data well. The PRCC

result showing a negative influence of p on R0 confirms the relationship between these

two parameters.

Dengue had been causing annual outbreaks in Thailand for some time prior

to the 1984 epidemic (Nisalak et al., 2003). Despite this, our estimates of the ini-

tial proportion of people immune (hR(0)) from both models are very small. A high

birth rate (United Nations, Accessed March 25, 2013) and the reemergence of dengue

serotypes 3 and 4 (Nisalak et al., 2003) could explain this low immunity. In addition,

mosquito seasonality may be important to explain the monthly variation in dengue

incidence (Wearing and Rohani, 2006), and keeping the mosquito population constant

for simplicity in our model could have contributed towards small estimates of hR(0).

The vector–host model fits the data slightly better than the SIR model, but

the fewer number of parameters results in the SIR model being strongly selected by

the AIC. Alternative measures for model selection like the Bayesian Information Cri-

terion and the Deviance Information Criterion more strongly penalize the number of

parameters than AIC, so we expect the result of model selection to remain unchanged.

This suggests that incorporating mosquito populations explicitly in dengue models

may not be necessary to estimate incidence.

We believe that for any vector-borne pathogen, explicitly including vector
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populations may generally be unnecessary to model prevalence or incidence in human

or other primary host. We expect that models with and without explicit vectors

will fit primary-host data about equally well and then the fewer parameters of the

model without explicit vectors will result in it being preferred by formal model selec-

tion. Other factors like seasonality in mosquito abundance may be crucial to fit some

long-term data (e.g. Figure 3.1), which could result in explicit-vector models fitting

the data significantly better than implicit-vector models. In addition, explicit-vector

models are necessary when interventions are targeted at the disease vector, e.g. in-

secticide or genetically modified mosquitoes. When the desired model output is the

effectiveness or cost-effectiveness of an intervention that acts on the primary host,

our result suggests that implicit-vector models are likely to be sufficient.

The composite transmission parameter (β) for the vector–host model was ob-

tained from the equilibria of the two models and may not be a good approximation

for our comparison of the dynamics of the models. This may explain the difference in

the estimates of the composite transmission parameter (β) between the two models.

This is reinforced by the fact that the SIR model fits the observed data well, but not

for the same β values as the vector–host model. Thus, in addition to being preferred

by model selection, use of the SIR model is justified when only the equilibrium values

are of interest.

We chose to use DHF cases because the data was available monthly, while we

are only aware of annually reported DF cases (Nisalak et al., 2003). Moreover, a

person infected with DHF is more likely to visit hospital due to the severity of the

disease, and so more likely to be diagnosed and reported. Therefore, data on reported

DHF cases may be more accurate to actual DHF cases than DF data is to DF cases.

We used a Bayesian MCMC technique for estimation, though other estimation

methods have also been used in the literature. In particular, least-squares error
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fitting is popular (e.g. Mubayi et al., 2010) and the expectation maximization (EM)

algorithm has seen some use (Duncan and Gyöngy, 2006; Lavielle et al., 2011). We

choose Bayesian MCMC approach as it provides a huge amount of modeling flexibility

and enables analysis of all the model parameters or functions of parameters. It

also has advantage of providing a complete distribution for parameters as posterior

distributions instead of point estimates. Moreover, posterior summaries such as mean,

medians, maximum likelihoods, maximum, minimum and credible intervals are easy

to obtain as well.

In this study, we fitted dengue incidence data from Thailand to vector–host and

SIR models and obtained estimates of model parameters including average duration of

dengue infection in humans, lifespan of mosquitoes and the probability of the severe

form of disease. The parameter estimates were consistent with existing published

values and PRCC values showed that all the parameters except initial conditions have

significant influence on the magnitude of the basic reproduction number R0. Both the

vector–host model as well as the SIR model fit the incidence data well, however AIC

model selection found the SIR model with fixed hR(0) to be substantially better than

the vector–host model, implying that incorporating mosquito population explicitly in

a dengue model may not be necessary to explain the incidence data from Thailand.
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Chapter 4

The role of population immunity

for accurately estimating model

parameters for dengue

transmission

4.1 Introduction

The basic reproduction number (R0) is defined as the number of secondary

cases that one case would generate on average over the course of its infectious period

in a completely susceptible population (Heffernan et al., 2005). R0 is a useful metric

to determine whether or not an infectious disease can spread through a population.

The outbreaks of epidemics and the persistence of endemic levels of an infectious

disease are associated with R0 > 1 (Heffernan et al., 2005). More specifically, when

R0 > 1 each infectious case generates more than one new infectious case and so

infection would be able to invade the susceptible population, whereas for R0 < 1,
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each infectious case generates less than one new infectious case and therefore infection

would be cleared from the population. This threshold allows one to determine the

amount of effort that is necessary to prevent an epidemic or to eliminate a disease from

a population. The estimation of R0 has proved to be very critical in understanding

the outbreak and spread of infectious diseases, for example severe acute respiratory

syndrome (SARS) (Choi and Pak, 2003), West Nile virus (Wonham et al., 2004), foot

and mouth disease (Ferguson et al., 1999c), dengue (Luz et al., 2003) and malaria

(Hagmann et al., 2003). The value of R0 varies considerably for different infectious

diseases, as well as in different populations, as it depends on the duration of infectious

period, the probability of transmission of infection per contact and the number of

new susceptible individuals contacted per unit time. As a result, it is important to

estimate R0 for a given disease in a particular population.

Dengue, a mosquito-borne viral disease of tropical and sub-tropical regions

around the world, poses a substantial health burden on the population in Thailand

(Clark et al., 2005). Dengue fever and dengue hemorrhagic fever (DHF) are among

the leading causes of hospitalization of children in Thailand and southeast Asia gen-

erally (Clark et al., 2005). Several studies have estimated the basic reproduction

number and used it to understand the spread and dynamics of dengue transmission

in Thailand (Adams et al., 2006; Chao et al., 2012; Cummings et al., 2009; Nagao

and Koelle, 2008). The estimates of the reproduction number of dengue in Thailand

vary considerably between these studies, from values of around 1–3 (Adams et al.,

2006; Chao et al., 2012) to 6.7 (Cummings et al., 2009) to 10–12 (Nagao and Koelle,

2008). More recently, we fitted standard dengue models to monthly observed DHF

cases in Thailand in 1984 using Bayesian MCMC and found R0 estimates in the range

1–3 (Pandey et al., 2013). This variability in R0 estimates among different studies

is not well understood and may possibly be attributed to the complex dynamics of
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dengue due to interactions of its 4 different serotypes (Adams et al., 2006; Chao et al.,

2012; Cummings et al., 2009; Nagao and Koelle, 2008). In addition, different methods

of estimating R0 may contribute to the variability (Heffernan et al., 2005; Li et al.,

2011).

In the present study, we fit a simple SIR-type deterministic model to monthly

DHF cases in Thailand in 1984 to investigate the variability in the basic reproduction

number for dengue. We found that that our model fits the observed data evenly for

varying values of the basic reproduction number as other parameters vary. Specifi-

cally, there was a logarithmic type relationship between the level of initial population

immunity and the basic reproduction number that suggests difficulty in estimating

the level of population immunity and the basic reproduction number together from

same data source. Thus, in order to estimate the model parameters accurately, either

the basic reproduction number or the proportion of the population immune at the

beginning of the epidemic must be estimated from separate data.

4.2 Model and Approach

We used a standard SIR-type deterministic dengue model (Hethcote, 2000). As

we are only interested in infections in humans, we did not model mosquito population

explicitly (Pandey et al., 2013). The model consists of three compartments, one each

for the number of people susceptible (HS), infectious (HI) and recovered (HR). The

model is the system of differential equations

dHS

dt
= BH − β

HI

H
HS − µHHS,

dHI

dt
= β

HI

H
HS − γHHI − µHHI ,

dHR

dt
= γHHI − µHHR,

(4.1)
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where H = HS + HI + HR is the human population size. A susceptible person

gets infected with force of infection βHI

H
, where β is the composite human-to-human

transmission rate (Pandey et al., 2013). The average duration of infection is 1/γH

and 1/µH is the average lifespan of people in Thailand. Since we only fit the model

to an epidemic lasting a year, we assumed the population size is constant by setting

the birth rate equal to the death rate, BH = µHH. The basic reproduction number

is

R0 =
β

µH + γH
. (4.2)

We obtained the monthly incidence of DHF for Thailand from 1983 to 1997

(Johns Hopkins Center for Immunization Research, Accessed January 14, 2013). We

choose the 1984 epidemic as a clear, representative example among this data. Since

cumulative incidence is generally smoother and thus easier to fit, we used the cumu-

lative monthly number of DHF cases for the period January 1984 to December 1984.

We added a compartment to our model (4.1) to calculate the cumulative number of

DHF infections (HC). We assumed a fraction p of infections were diagnosed as DHF,

with p constant in time. The differential equation for the HC compartment is

dHC

dt
= pβ

HI

H
HS, (4.3)

which is precisely the rate of new infections multiplied by p.

The unknown parameters are the transmission rate (β), the recovery rate (γH)

and the probability of DHF (p), along with the initial proportion of people immune

(hR(0) = HR(0)/H). As we are interested in the variability in reproduction number

R0, we reparametrized our model using (4.2) to avoid estimating β directly. For

simplicity, we fixed µH = 1/69 y−1 based on the average human duration of life
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in Thailand in 1984 of about 69 years (World Bank, Accessed January 14, 2013).

We used the first month of the incidence data (January 1984) to calculate initial

conditions for the initial population infected, HI(0) = 454. Since the population is

constant, the initial susceptible population was calculated as HS(0) = H(0)−HI(0)−

HR(0) where H(0) = 46 806 000 is Thailand’s population in 1984.

We used the “ode15s” function in Matlab to numerically solve the model

(4.1) and (4.3) to generate the predicted monthly cumulative DHF incidence, yi =

HC(ti)/H, where ti = 0, 30, 60, ... days. Using the least-squared error between the

cumulative DHF data Di and the model prediction yi(θ) for the input parameter

values θ,

E2 =
12∑
i=1

(
Di − yi(θ)

)2

, (4.4)

we assumed the errors were Gaussian, giving the loglikelihood function

Loglik(θ) = log (Pr(D | θ)) = −E2, (4.5)

which is log of the conditional probability of obtaining the data (D) for the given

parameter values (θ).

For our simulations, we varied R0 from 1 to 20 and sought optimal estimates for

rest of the unknown parameters (γH , p and hR(0)) that maximize the likelihood func-

tion (4.5). For a given value of R0, we used the Matlab function “fminsearchbnd”,

which first transforms the problem into an unconstrained problem and then uses

Nelder–Mead smilex direct search to minimize the negative of the loglikelihood func-

tion over the rest of parameters while remaining within the wide bounds that were

chosen for rest of the parameters based on on our past work (Pandey et al., 2013) to

represent our general understanding about where the parameter values lie (Table 4.1).
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Parameter Definition Value
BH birth rate (y−1) 1/69
µH per capita mortality rate (y−1) 1/69
γH recovery rate (d−1) (0.125, 1)
p proportion of dengue infections that become DHF (0, 0.1)

hR(0) initial proportion of people immune (0, 1)
R0 basic reproduction number (1, 20)

Table 4.1: Parameters of the dengue model.

For each R0 value, we ran our simulation from 11 random initial conditions to ensure

that algorithm did not get stuck at local minima and saved the parameter values that

resulted in the best loglikelihood value. For some values of R0, the method found

suboptimal local maxima, so we used Matlab’s function “smooth” to implement a

3-point moving average to smooth our results in order to highlight the overall trend.

4.3 Results

For values of the basic reproduction number from 1 to 20, we found optimal es-

timates of the remaining model parameters: recovery rate (γH), proportion of dengue

infections that develop DHF cases (p) and the initial proportion of humans immune

(hR(0)).

We found good fits for varying values ofR0 (Figure 4.1). With increasing values

of R0 the likelihood increases as well, but the model fits appear similar (Figure 4.2).

As R0 varied from 1 to 20, the optimal estimates for recovery rate (γH) decreased from

around 0.6 and stabilized around 0.3 (i.e., the average duration of dengue infection

varied from around 2 days to 3 days) (Figure 4.3a). Similarly, the optimal estimates

for proportion of dengue infections that develop DHF cases (p) varied from 0.02 to 0.08

(Figure 4.3b). Equally good fits (similar likelihoods) are achieved for higher R0 values
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Figure 4.1: Maximum of loglikelihood for R0 from 1 to 20. The maximum of loglike-
lihood corresponds to the maximum likelihood. A 5-point moving-average method
was used for smoothing.

at relatively smaller recovery rate (γH) estimates and relatively larger probability of

DHF (p) estimates, but the variation in the estimates is not large and is consistent

with existing estimates (Cummings et al., 2005; Gubler, 1998a).

The estimates of the initial proportion of people immune hR(0) increased as

R0 increased (Figure 4.3c). Moreover, the variation in hR(0) was very large as hR(0)

increased from values of around 0.16 to 0.96. Immunity in around 15% of population

at the beginning of the epidemic resulted in R0 of 1 to 2, whereas immunity in more

than 90% of population at the beginning of the epidemic resulted in large reproduction
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Figure 4.4: Maximum of loglikelihood for varying R0 and hR(0) values.

numbers (R0 > 11). This relationship between the level of population immunity at

the beginning of the epidemic and the basic reproduction number was clear when we

found the maximum likelihood for varying R0 and the proportion of humans immune

hR(0) together and maximized likelihood over the remaining parameters (γH and p)

(Figure 4.4).

This connection between R0 and hR(0) can be further explored by assuming

that dengue incidence has reached a steady-state. We found a relationship between

the initial proportion of humans recovered hR(0) and the cumulative number of infec-

tions after the end of one year (details in Appendix B), The balance between birth,
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Figure 4.5: Optimal estimates of hR(0) and h∗R for varying R0 values.

death and infection gives

h∗R =
(HC(1)−HC(0))γH

(µH + γH)pµHH
(4.6)

where h∗R is the proportion of people immune when system is at steady-state. For

varying basic reproduction number, we plotted the optimal estimates of the initial

proportion of humans immune (hR(0)) at the beginning of 1984 and h∗R calculated

using the optimal estimates of the rest of the model parameters, human population

(H = 46 806 000) in 1984 and fixed µH = 1/69 y−1. We found that system is not in

steady–state for the observed data for R0 between 1 to 20 (Figure 4.5).
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4.4 Discussion

We found that equally good fits of our standard dengue model to 1984 monthly

DHF incidence data from Thailand can be achieved for wide range of R0 values. As

R0 varied, the other parameters also varied to generate similar maximum likelihoods.

The largest variation in optimal parameter values was found in the initial proportion

of people immune (hR(0)). hR(0) increased from low values of around 0.16 for R0 in

the range of 1 to 2 to high values of about 0.96 for R0 > 11. The relationship between

hR(0) and R0 means that when estimating parameters using observed data, low levels

of the initial population immunity are consistent with lower values for R0, whereas

high levels of population immunity are consistent with higher values for R0. The

role of the level of initial population immunity in determining estimates for the basic

reproduction number seems justified as for high levels of the population immunity, the

disease needs to be more infectious and thus will have higher reproduction number

in order to generate the same number of infections in the the population, compared

to when the level of the initial population immunity is low.

Our results highlight the importance of finding the immunity level in pop-

ulation in order to estimate the rest of the parameters. In other words, choosing

inaccurate estimates for the level of initial population immunity to estimate R0 may

fit the data well, but may not give correct values. In order to estimate model param-

eters accurately, it is vital that we use an estimate from another source for the level

of initial population immunity or for the basic reproduction number. It is difficult

to know the level of population immunity for any pathogen and 4 different dengue

serotypes circulating in Thailand make it even more challenging. Specific data that

classifies dengue incidence by serotype along with the knowledge of dengue serotypes

circulating in the population at present and in prior years may be used to find reason-
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able estimates for the level of population immunity at the beginning of the epidemic.

The optimal estimates of the duration of infection (1/γH) and the proportion

of dengue infections that develop DHF cases (p) increased with increasing values of

R0. The variation in both of these parameters was not large, as the optimal estimates

for the duration of infection varied between about 2 to 3 days and the variation in

the number of DHF cases per 100 dengue infections was between 2 and 8.

Based on the assumption that the epidemic has already reached steady-state

and using the optimal estimates for initial population immunity, we found that for

the 1984 epidemic in Thailand, the population immunity levels were not consistent

with the basic reproduction number between 1 to 20 meaning either the system is not

in steady-state for the observed data or the it has a R0 higher than 20. We believe

the system has not reached the steady-state for the DHF incidence data in Thailand.

As the transmission parameter (β) depends on the biting rates of mosquitoes,

and probabilities of transmission, it is difficult to estimate a range of values for this

transmission parameter. Thus, we avoided estimating β by reparametrizing the model

in terms of R0. For our simulations, we varied R0 from 1 to 20 to ensure a wide range

that includes values for dengue transmission that have been used or estimated in the

literature.

The monthly DHF incidence data from Thailand in 1984 was used for this

study. However, our results do not change considerably when we chose epidemic data

from three different years (1985, 1987 and 1990). The likelihood in our study was

chosen on the assumptions that the errors follow a Gaussian distribution, but we

believe that we would get similar results if a different likelihood was chosen.

We used a standard SIR-type dengue model to investigate the reasons be-

hind the wide variability in estimates of the basic reproduction number in Thailand.

We found that the initial population immunity plays a vital role in determining the
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estimate for R0. Assuming a small initial population immunity results in lower esti-

mates for R0, whereas large initial population immunity gives higher values for R0.

This relationship between the initial population immunity and the basic reproduction

number may be a reason for wide range of R0 estimates found in studies. Moreover,

finding better estimates of population immunity level would help to more accurately

estimate R0 and other epidemiological parameters for dengue.
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Chapter 5

The introduction of dengue vaccine

may temporarily cause large spikes

in prevalence

5.1 Introduction

Dengue is an RNA virus in the family Flaviviridae. There are four serotypes of

dengue virus, each of which induces a specific antigenic response in humans. Infection

with any of the four serotypes can cause disease ranging from dengue fever (DF)

to dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS), in order of

increasing severity (Guzmán and Kouri, 2002). Infection with a serotype provides life-

long immunity to that serotype and an increased risk for the severe forms of disease

(DHF and DSS) during subsequent infection with a different serotype (Nagao and

Koelle, 2008). Dengue infection has been recognized in over 100 countries: DF and

DHF are important public-health problems, especially in the tropics and subtropics,

where nearly 2.5 billion people are at risk of infection (Guzmán and Kouri, 2002). An
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estimated 50 million cases of DF occur every year, including 500, 000 hospitalizations

for DHF (Guzmán et al., 2010).

Despite the expansion in geographic range of the virus over past four decades

(Beatty et al., 2012), there is no dengue vaccine licensed for use presently. Dengue

vaccine development is an area of active research: significant advances have occurred

in recent years and several vaccine candidates are showing promise in clinical studies

(Coller and Clements, 2011). The most advanced vaccine candidate showed efficacy

of 30% and protection against 3 of the 4 serotypes of dengue (Halstead, 2012). With

several dengue vaccine candidates progressing through clinical trials, a licensed dengue

vaccine is expected to be available in less than 10 years (Guzmán et al., 2010).

Once the vaccine becomes available, policy makers will have to decide how

to best allocate it. As a result, it is imperative to carefully examine the effects of

vaccine-allocation policies. Mathematical models of dengue transmission predict com-

plex temporal patterns in prevalence, driven by seasonality in mosquito abundance

(Reich et al., 2013), and may include a transient period immediately after vaccine

introduction where prevalence can spike higher than in the pre-vaccine period. An

increase in infections, however brief, can raise doubts about the vaccination program,

while the longer-term outcome may be highly favorable. A temporary increase in

infections might lead to public doubts and refusal to use the vaccine or even policy

makers’ ending the vaccination program altogether. Moreover, these spikes can also

pose serious problems by overwhelming resources like available hospital beds. Thus,

investigating short- and long-term effects of the vaccination introduction is important.

In the present study, we found that simple dengue transmission models fre-

quently predict large transient spikes in prevalence in the years after vaccination is

begun. These presence of these spikes was highly sensitive to the level of vaccination,

the efficacy of the vaccine, and the timing of the vaccination program. Despite the
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presence or absence of transient spikes, vaccination reduced dengue infections when

averaged over a the first 15 years after vaccine introduction and when averaged over

the very long term.

5.2 Methods and Approach

Here we briefly describe the mathematical models for dengue transmission that

we used in this study. See Appendices C.1–C.3 for detailed descriptions of the models.

We developed standard SIR-type deterministic dengue models to explore the

short- and long-term effects of vaccine introduction. In the models, the population was

divided into unvaccinated and vaccinated people, and then each of these was further

divided by infection history (Figure 5.1). In the main model, a person with no prior

dengue infection (state S1) can have a primary infection from any serotype of dengue

(I1), recovery from which provides him with life-long immunity to that serotype (S2).

He can then acquire infection from any of the remaining three serotypes, and enter

the secondary-infection class (I2). Third or fourth infection from dengue is very rare

(Halstead, 2003), so we assumed that an individual recovering from secondary infec-

tion becomes immune to all serotypes (R). Dengue mortality in humans is at most

1–2% (Rajapakse, 2011) and thus ignored in our model for simplicity. As we are only

interested in infections in humans, we did not model mosquito population explicitly

(Pandey et al., 2013). We used model parameters consistent with the literature, along

with a small level of seasonal forcing of transmission to capture seasonal oscillations

in mosquito population size (Nisalak et al., 2003).

We modeled the vaccine as having efficacy φ at preventing infection. The

vaccination program was modeled as having two possible components: one component

vaccinates a proportion p of infants, and the other component vaccinates people in

63



US1 UI1 US2 UI2 

VS1 VI1 VS2 VI2 

R 

λ 

(1-Φ)λ 

σλ 

σ(1-Φ)λ 

ϒ 

ϒ 

ϒ 

ϒ 

(1-p)B 

pB 

v v 

µ µ µ µ 

µ µ µ µ 

µ 

Figure 5.1: Diagram of the main model. U denotes unvaccinated people, while V de-
notes vaccinated. S1 and S2 are people susceptible to primary and secondary dengue
infection, respectively. I1 and I2 are people infected with primary and secondary
infection, respectively. R is people recovered from secondary infection and immune
to further infections. See Table C.1 for definition of the other symbols.

the general population at rate v. For simplicity, for the main results we used only

vaccination of infants (v = 0).

To simulate vaccine introduction, we computed a solution to the model with

no vaccine (p = 0) from arbitrary initial conditions until it converged to regular

periodic oscillations (a stable limit cycle, in mathematical terms (Strogatz, 1994)).

From a new initial point on this periodic solution, we then computed the solution to

the model with vaccine introduced (p > 0).
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5.3 Results

The model prevalence converged to regular periodic oscillations, with or with-

out vaccination (e.g. Figure 5.2). Without vaccination, prevalence oscillates with a

period of 2 years. The perturbation caused by the introduction of vaccine results in a

transient period where the prevalence has not yet converged to periodic oscillations.

During this transient period, large spikes can occur, to levels above those present

before the vaccine was introduced, and this transient period may last many years.

For example, vaccinating 78% of infants at 30% vaccine efficacy results in an

initial period of about 60 years when prevalence can spike more than twice as high

as before vaccine introduction (Figure 5.2). After the transient period, prevalence

converges to annual oscillations with a smaller maximum than in the 2-year oscilla-

tions prior to vaccine introduction (Figure 5.2(C)). In contrast, vaccinating instead

90% of infants results in a transient period of about 70 years, where prevalence can

spike more than three times as high as before vaccine introduction, and prevalence

then settles down to 3-year oscillations with a higher maximum than before vaccine

introduction (Figure 5.3).

These two examples show that the effectiveness of a vaccination program may

differ depending on exactly what is evaluated. Effectiveness may consider individual

points in time (e.g. the height of the spikes in prevalence) or periods of time (e.g. total

number of infections in a fixed period). In addition, effectiveness may be evaluated

over the period just after vaccine introduction or, as is more convenient from a model-

ing perspective, the period after the prevalence has converged to periodic oscillations.

To capture the transient period over many simulations, we considered the transient

period to be the first 15 years after vaccine introduction. To quantify the severity of

transient spikes at any point in time, we calculated the maximum prevalence during
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Figure 5.2: Simulated dengue prevalence after vaccine introduction. Starting at year
t = 0, p = 78% of infants are vaccinated with a vaccine of efficacy φ = 30%. The
black curves are prevalence after vaccine introduction, while the gray curves are the
prevalence had vaccine not been introduced. (A) shows prevalence for 150 years after
vaccine introduction, while (B) & (C) show only the first and last 15 years of this
period. See subsection C.1 for model & parameter definitions.
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Figure 5.3: Simulated dengue prevalence after vaccine introduction. The model and
parameter values are as in Figure 5.2, but with p = 90% of infants vaccinated.
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first 15 years after introduction of the vaccine. To examine the effectiveness over

a period of time, we also calculated the total number of infections during the first

15 years after vaccine introduction. For the period after prevalence has converged

to periodic oscillations, we calculated both the maximum prevalence and the mean

prevalence per year.

To explore the transient spikes in prevalence, we varied vaccine coverage (p), for

low (φ = 30%) and high (φ = 70%) vaccine efficacy (Figure 5.4(A)). Large transient

spikes (i.e. above the pre-vaccine maximum of about 2 per thousand) were present

after vaccine introduction for both levels of vaccine efficacy. Moreover, for the higher

vaccine efficacy, large transient spikes appeared at lower vaccine coverage.

By varying vaccine efficacy, we found that large transient spikes occur partic-

ularly when vaccine efficacy is neither very low nor very high (Figure 5.5). For 80%

vaccine coverage, when vaccine efficacy is below 30%, the perturbation caused by vac-

cine introduction is insufficient to generate transient spikes. On the other hand, when

vaccine efficacy is higher than 97% at 80% vaccine coverage, vaccination quickly re-

duces prevalence without large transient spikes. Similarly, with 40% vaccine coverage,

there are no large transient spikes below 58% or above 96% vaccine efficacy.

Since prevalence oscillates with a period of 2 years without vaccination, we

varied the time of vaccine introduction over the 2-year period (Figure 5.6). The pres-

ence or absence of large transient spikes after vaccine introduction is highly sensitive

to the time of vaccine introduction.

Despite the presence of large transient spikes in prevalence, the total number

of infections over the first 15 years was lower with vaccine than without in all of

the simulations we performed (Figure 5.4(B)). However, we cannot rule out that the

initial burden may be higher in some cases, especially over shorter time spans than

15 years. Moreover, higher vaccine efficacy yields higher drop in the initial burden at
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Figure 5.4: Effectiveness of the vaccination program at different levels of coverage.
(A) Maximum prevalence in the first 15 years after vaccine introduction. (B) Total
number of infections over the first 15 years after vaccine introduction. (C) Long-term
mean annual incidence.
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Figure 5.5: Maximum prevalence over the 15 years after vaccine introduction for vary-
ing vaccine efficacy. p = 80% (cyan) and p = 40% (magenta) of infants are vaccinated.
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Figure 5.6: Maximum prevalence over the 15 years after vaccine introduction for
varying time of vaccine introduction. p = 80% of infants are vaccinated with a
vaccine of efficacy φ = 30% (blue) and φ = 70% (red). The time that the vaccination
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maximum prevalence prior to vaccine introduction.
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constant vaccine rates. Thus, although the presence of large transient spikes may pose

immediate problems by overwhelming the resources, over a 15-year period, vaccination

reduces infections.

After the transient period caused by vaccine introduction, prevalence con-

verges again to a regular periodic oscillation, but the oscillation may have a different

period and the maximum prevalence may be lower or higher than prior to vaccine

introduction (e.g. Figures 5.2(C) & 5.3(C)). In all of our simulations, we found that

in the long-term, the mean annual incidence decreased as vaccine coverage increased

(Figure 5.4(C)). Although some vaccine introductions did lead to long-term preva-

lence with a higher maximum, their period was longer, so that the mean over many

years was always lower than without vaccine. Moreover, as expected, long-term mean

annual incidence was lower for higher vaccine efficacy.

The model also showed large transient spikes in prevalence when we modeled

vaccination programs in the whole population rather than just infants (p = 0 & v > 0)

and vaccination programs that combine the two (p > 0 & v > 0). We also tested

simpler and more-complex dengue models. The simpler model assumed that there are

no secondary infections, so that and individuals who recover from their first infections

move directly to recovered class (subsection C.2). Our more-complex model included

a period of short-term cross-protection after primary infection (Wearing and Rohani,

2006) (subsection C.3). Both models exhibited the potential for large transient spikes

(Figure 5.7).

5.4 Discussion

Using mathematical models of dengue transmission, we found that vaccine

introduction may lead to a transient period when infection prevalences spike higher
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Figure 5.7: Transient prevalence spikes in simpler (A) and more complex (B) dengue
models. (A) p = 80% of infants are vaccinated and the remainder of the population
is vaccinated at a per-capita rate of v = 0.6 per year. See subsection C.2 for model
& parameter definitions. (B) p = 60% of infants are vaccinated and the remainder of
the population is vaccinated at a per-capita rate of v = 0.9 per year. Vaccine efficacy
is φ = 70% in both models. See subsection C.3 for model & parameter definitions.
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than in the pre-vaccine period. These spikes in infection prevalence may pose serious

problems by overwhelming health resources like hospital beds, as well as create doubt

about the efficacy of the vaccination program. In our models, the presence of large

spikes required that vaccine coverage and vaccination efficacy were not both very

low or both very high. The occurrence of large transient spikes for lower vaccine

coverage and higher vaccine efficacy suggests that a sufficiently large perturbation to

the system is required in order for large transient spikes. These perturbations are

generated by the combination of vaccine coverage and vaccine efficacy. When vaccine

coverage and efficacy are both very high, the vaccination program reduces prevalence

so quickly that no spikes appear.

We also found that the presence or absence of large transient spikes was highly

sensitive to the time when the vaccine program is first begun. Indeed, the results are

so sensitive to introduction time, and likely also to changes in parameter values or

model structure, that we do not believe that model results can be used to minimize

the chance of large transient spikes.

Despite the presence of large transient spikes in prevalence, the total number

of infections over the first 15 years after vaccine introduction was always less than in

the 15 years prior to vaccine introduction. The decrease in infections was higher for

higher efficacy as well as for higher vaccine coverage. Likewise, in the long term, the

mean number of infection per year was always smaller than during the pre-vaccine

period and decreases with increasing vaccine coverage and vaccine efficacy.

Vaccination reduces the susceptibility of the population, but the short-term

interaction of the change in susceptibility with the seasonal forcing of the mosquito

population causes complex results, including large transient spikes. When averaged

over longer times, the impact is as expected: both the number of infections in the

15-years following vaccine introduction and the long-term mean annual were always
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found to be lower after vaccine introduction than before.

Large transient spikes after vaccine introduction were frequent for our main

model, along with simpler and more-complex models that we also tested. In general,

we believe that the occurrence of large transient spikes in response to perturbation is

a robust phenomenon of seasonally forced epidemic models. We are unaware of any

theoretical research on the short-time transient behavior of seasonally forced epidemic

models, however there is a rich literature on the long-time behavior of such models

(Grenfell et al., 2001; Keeling and Grenfell, 1997; King and Schaffer, 1999; King et al.,

1996).

In our models, we have used generic parameter values rather than those for a

specific location. In particular, different parameter values may change the period and

maximum amplitude of the pre-vaccine oscillation (King and Schaffer, 1999; Nagao

and Koelle, 2008). However, because of the robustness of the appearance of large

transient spikes in prevalence, we expect that these spikes would continue to appear

for different parameter values. Similarly, we expect large transient spikes would also

be present 1.) if the vaccination program were modeled as starting gradually rather

than instantaneously, 2.) if the human population were growing rather than remaining

constant size and 3.) if the vaccine were introduced at a state other than regular

periodic oscillation.

We used mathematical models to evaluate the short- and long-term effects

of introducing a dengue vaccine. We found that vaccine introduction may lead to

a transient period when infection prevalences spike higher than in the pre-vaccine

period. We believe such transient spikes are robust to changes in parameters and

model structure, and thus must be accounted for in planning vaccination programs

because they may overwhelm health resources. Despite the presence of transient

spikes, the vaccination program is likely to be effective at reducing the total number of
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infections during the first few years after introduction, as well as decreasing infections

in the long term. Policy makers should be prepared for transient spikes to mitigate

their burden and to accurately understand the effectiveness of the vaccine program.
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Chapter 6

Conclusions

In this dissertation, I studied different aspects of the mathematical modeling

of dengue transmission and vector–borne disease transmission in general. I developed

a novel method of Bayesian MCMC estimation for fitting disease models to observed

data. The Bayesian MCMC estimation is easy to implement and has the advantage

of giving a complete distribution for the parameters instead of point estimates, which

enables easy analysis of model parameters and functions.

Two distinct modeling approaches that have been extensively used to explain

dengue transmission were compared in order to explore how well dengue models under

different modeling assumptions explain observed incidence. I fitted the monthly DHF

cases of the year 1984 in Thailand to simple dengue models with and without explicitly

modeling mosquitoes using Bayesian MCMC estimation and compared their goodness

of fit by applying AIC model selection. Both models agreed with the data equally

well, so the model with implicit modeling of mosquitoes being simpler, was strongly

selected by AIC. Thus, incorporating mosquito population explicitly in dengue models

may not be necessary to explain the incidence data. The fitting of dengue transmission

data from Thailand to dengue models also provided estimates of model parameters like
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duration of dengue infection in human and probability of DHF that were consistent

with their corresponding estimates from the literature.

Based on results from my fitting of dengue models to observed incidence, as

well as other studies in literature, I found significant variability in the estimates of the

basic reproduction number (R0) for dengue transmission in Thailand. I investigated

this variability in R0 estimates among studies by fitting a standard dengue model to

dengue incidence for varying values of R0 and found a logarithmic type relationship

between the level of population immunity and the basic reproduction number. Par-

ticularly, choosing low levels of population immunity resulted in small R0 estimates

between 1 to 3, while larger R0 estimates (> 11) were obtained for high levels of pop-

ulation immunity. The variability in rest of the parameters of the model for varying

R0 values was not very large and their estimates were consistent with those in the

literature. I concluded that in order to estimate model parameters, particularly the

basic reproduction number, for dengue in Thailand accurately, it is necessary to use

appropriate estimates for the population immunity obtained from different data.

In consideration of a new dengue vaccine being expected within next 10 years,

I considered the short- and long-term impacts of vaccine introduction in a population.

Our particular focus was on the possibility of large transient spikes in prevalence im-

mediately after vaccine introduction, driven by the perturbation to disease dynamics

due to vaccine introduction and seasonality in mosquito abundance. Using a simple

dengue transmission model, I found large transient spikes in prevalence to be a ro-

bust phenomenon that occurs as long as vaccine efficacy and coverage are not both

very high or very low. Although these spikes could lead to doubts about the vaccine

program in the public and decision makers and may overburden health resources like

hospital beds, the models predicted that vaccination does always reduce the total

number of infections in the 15 years after vaccine introduction. Thus policy makers
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should consider the possibility of transient spikes while making vaccine program and

to mitigate the burden of large spikes in prevalence and to accurately measure the

effectiveness of the vaccine program.

I outlined and demonstrated the method of Bayesian MCMC estimation to

estimate parameters of disease models. To explore how well dengue models under

different modeling assumptions explain observed incidence and to find good model

parameter estimates, I fitted the monthly DHF cases in Thailand to simple dengue

models with and without explicitly modeling mosquitoes using Bayesian MCMC es-

timation. Both models fitted the data well and so the simpler model was selected

strongly by AIC model selection. Thus I concluded that incorporating mosquito popu-

lation explicitly in dengue models may not be necessary to explain the incidence data.

I investigated the wide variability in the basic reproduction number’s estimates for

dengue transmission in Thailand among studies by fitting a SIR-type dengue model

to dengue incidence for varying values of R0. I found a logarithmic type relationship

between the level of population immunity and the basic reproduction number and

concluded that in order to estimate model parameters, particularly the basic repro-

duction number accurately, reasonable estimate of population immunity from another

source is necessary. Finally, using a simple dengue transmission model, I found that

introducing dengue vaccine may temporarily cause large spikes in prevalence when

vaccine efficacy and coverage are not both very high or very low. Despite the pres-

ence of these spikes, vaccination always reduced the total number of infections over

a period of 15 years after vaccine introduction, suggesting that vaccine is likely to

be effective. As these spikes can pose immediate problems by overburdening the re-

sources, policy makers should consider the possibility of transient spikes and prepare

to mitigate the burden of these spikes while making vaccination program.
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Appendix A Stability analysis

A.1 Stability analysis of the vector–host model

For the vector–host model (3.1), scaling the state variables by their respective

population sizes, to the proportions hS = HS/H, hI = HI/H, hR = HR/H, vS =

VS/V and vI = VI/V , gives the system of differential equations

dhS
dt

= µH − βaHvIhS − µHhS,

dhI
dt

= βaHvIhS − γHhI − µHhI ,

dhR
dt

= γHhI − µHhR,

dvS
dt

= µV − βaV hIvS − µV vS,

dvI
dt

= βaV hIvS − µV vI .

(1)

Using the next-generation method (Diekmann et al., 2010), the basic reproductive

number is

R0 =
βaHβaV

µV (µH + γH)
. (2)

Because hS + hI + hR = 1 and vS + vI = 1, the reduced system

dhS
dt

= µH − βaHvIhS − µHhS,

dhI
dt

= βaHvIhS − γHhI − µHhI ,

dvI
dt

= βaV hIvS − µV vI ,

(3)

is equivalent to the full system (1). This system is defined on the domain

Ω = {(hS, hI , vI) : 0 ≤ vI ≤ 1, 0 ≤ hS, 0 ≤ hI , hS + hI ≤ 1}. (4)
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A simple check shows that the vector field defined by model (3) on the boundary of Ω

does not point to the exterior of Ω, so Ω is positively invariant under the flow induced

by system (3). This guarantees that the model numbers of humans and mosquitoes in

the various epidemiological compartments never become negative, which is an obvious

biological constraint.

The equilibrium points of system (3) are

E0 = (1, 0, 0) and Ee = (h∗S, h
∗
I , v
∗
I ), (5)

where

h∗S =
δ +M

δ +MR0

, h∗I =
R0 − 1

δ +MR0

, v∗I =
δ(R0 − 1)

(δ +M)R0

, (6)

with

δ =
βaV
µV

and M =
µH + γH
µH

. (7)

E0 is the disease-free equilibrium and Ee is the endemic equilibrium. For R0 < 1, E0

is the only equilibrium in Ω but the endemic equilibrium Ee also lies in Ω for R0 ≥ 1.

The local stability of the equilibrium points is governed by the Jacobian matrix

DF =


−βaHvI − µH 0 −βaHhS

βaHvI −(µH + γH) βaHhS

0 βaV − βaV vI −βaV hI − µV

 . (8)
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A.1.1 Disease-free equilibrium

The Jacobian matrix (8) at E0 is

DF (E0) =


−µH 0 −βaH

0 −(µH + γH) βaH

0 βaV −µV

 , (9)

which has eigenvalues

−µH and
−(µH + γH + µV )±

√
(µH + γH + µV )2 − 4µV (µH + γH)(1−R0)

2
.

(10)

All of the eigenvalues have negative real part for R0 < 1 and so E0 is locally asymp-

totically stable for R0 < 1.

To show global stability of E0, we consider the Lyapunov function on interior

of Ω

Λ =
βaH
µV

vI + hI (11)

which has orbital derivative

dΛ

dt
=
βaH
µV

dvI
dt

+
dhI
dt

= −βaH(1− hS)vI − (µH + γH)[1−R0(1− vI)]hI .
(12)

For R0 ≤ 1, the orbital derivative dΛ
dt
≤ 0 in Ω and the subset of Ω where dΛ

dt
= 0 is

given by

(1− hS)vI = 0 (13)
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and

hI = 0 if R0 < 1,

hIvI = 0 if R0 = 1.

(14)

Thus {E0} is the only invariant set contained in dΛ
dt

= 0. Also, the interior of Ω is

bounded. Therefore, E0 is locally stable and all trajectories starting in Ω approach E0

as t→ +∞ (Hale, 1969, p. 317, Corollary 1.1). This establishes the global asymptotic

stability of E0 for R0 ≤ 1.

For R0 > 1, the eigenvalue

−(µH + γH + µV ) +
√

(µH + γH + µV )2 − 4µV (µH + γH)(1−R0)

2
> 0, (15)

so E0 is unstable.

A.1.2 Endemic equilibrium

As R0 increases through 1, the disease-free equilibrium E0 becomes unstable

and the endemic equilibrium Ee moves from outside to inside Ω. The Jacobian matrix

at Ee is

DF (Ee) =


−µH δ+MR0

δ+M
0 −µHMR0

δ
δ+M
δ+MR0

µHM(R0−1)
δ+M

−µHM µHMR0

δ
δ+M
δ+MR0

0 µV δ
R0

δ+MR0

δ+M
−µVR0

δ+M
δ+MR0

 . (16)

The characteristic polynomial of matrix (16) is

p(λ) = λ3 + Aλ2 +Bλ+ C, (17)

84



where

A = µH
δ +MR0

δ +M
+ µHM + µVR0

δ +M

δ +MR0

B = µ2
HM

δ +MR0

δ +M
+ µV µHR0 +

µHµVM(R0 − 1)δ

δ +MR0

C = µ2
HµVM(R0 − 1).

(18)

For R0 > 1, the coefficients A, B, and C are positive and

AB > µ2
HµVMR0 > C, (19)

so the characteristic polynomial (17) satisfies the Routh–Hurwithz conditions (Brauer

and Castillo-Chávez, 2001). Therefore, Ee is locally asymptotically stable.

A.2 Comparing equilibria of the vector–host and SIR model

The endemic equilibrium (6) for the vector–host model has

h∗S =
δ +M

δ +MR0

=
1 + µH

βaH
R0

R0 + µH
βaH

R0

,

h∗I =
R0 − 1

δ +MR0

= (R0 − 1)
µH

(µH + γH)
(
R0 + µH

βaH
R0

) . (20)

If

µH
βaH

R0 � 1, (21)

as is true of our ML estimates, then since R0 > 1,

h∗S ≈
1

R0

,

h∗I ≈ (R0 − 1)
µH

(µH + γH)R0

= (R0 − 1)
µH
β
,

(22)
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where

β =
βaV βaH
µV

, (23)

which is exactly the endemic equilibrium of the SIR model (3.3).
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Appendix B Steady-state solution

Rewriting the model (4.1) in proportion form by scaling the state variables by

their respective population sizes, to the proportions hS = HS/H, hI = HI/H and

hR = HR/H, gives

dhS
dt

= µH − βhShI − µHhS,

dhI
dt

= βhShI − (γH + µH)hI

dhR
dt

= γHhI − µHhR,

(24)

The endemic steady-state solution of model (24) is

h∗S =
γH + µH

β
, h∗I =

µH(β − γH − µH)

β(µH + γH)
, h∗R =

γH(β − γH − µH)

β(µH + γH)
. (25)

The endemic steady-state solution can be re-written as

h∗S =
1

R0

, h∗I =
µH(R0 − 1)

R0(µH + γH)
, h∗R =

γH(R0 − 1)

R0(µH + γH)
. (26)

where R0 = β/(γH + µH) is the basic reproduction number.

The cumulative class hC in proportion form is

dhC
dt

= pβhShI , (27)

and when system is in steady-state, the force of infection is hS = h∗S and hI = h∗I .

So, integrating (27) when system is in steady-state gives, hC(t) = pβh∗Sh
∗
It + C and
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by plugging t = 1 year, we get

hC(1) =
pµH(R0 − 1)

R0

+ hC(0). (28)

and thus

R0 − 1

R0

=
hC(1)− hC(0)

pµH
(29)

Substituting (29) in the expression for h∗R in (26), we get a relation between the

population immunity and the cumulative DHF after one year:

h∗R =
(HC(1)−HC(0))γH

(µH + γH)pµHH
. (30)

where HC(0) is cumulative DHF incidence in the beginning of epidemic and HC(0) is

cumulative DHF incidence over one year. H is total population.
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Appendix C Dengue vaccination models

C.1 Main model

We developed a simple deterministic model for dengue to explore the short-

and long-term effects of vaccine introduction. The model consists of four unvacci-

nated (U), four vaccinated (V ) and one recovered (R) compartment, the variables for

which represent the number of people in that compartment over time (Figure 5.1). An

individual with no prior dengue infection (subscript S) can have a primary infection

from any serotype of dengue (I1), recovery from which provides him with life-long

immunity to that serotype (S2). He can then acquire infection from any of the re-

maining three serotypes, and enter the secondary-infection class (I2). Third or fourth

infection from dengue is very rare (Halstead, 2003), so we assume that an individual

recovering from secondary infection becomes immune to all serotypes (R). Individ-

uals in both primary- and secondary-infection class recover at rate γ = 7/365 y−1 so

that the mean infectious period is 7 days (Gubler, 1998a). The parameters B and

µ are natural birth and death rates in humans respectively, which were chosen to be

B = µ = 1/50 y−1 so that the mean human lifespan is 50 years and the population size

is constant. Dengue-induced mortality in humans is around 1–2% (Rajapakse, 2011)

and thus ignored in our model for simplicity. We were only interested in infections in

humans, so we did not model mosquito population explicitly (Pandey et al., 2013).

Infection occurs when a susceptible individual comes in contact with individuals from

any of the infectious classes through mosquito bites at the rate given by the force of

infection

λ(t) = [1 + ε cos(2πt)]
βI(t)

N
, (31)
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where the total number of people currently infected is

I(t) = UI1(t) + UI2(t) + VI1(t) + VI2(t), (32)

N is the total human population size and β is a composite transmission parameter

(Pandey et al., 2013), taken to be β = 400 y−1 (Cummings et al., 2005). Seasonality

in the mosquito population was captured by the cosine term in the force of infection,

where t is units of years, making transmission most intense at the beginning of a year

(i.e. when t is near an integer 0, 1, 2, ...) and least intense in the middle of a year (t

near 0.5, 1.5, 2.5, ...). We used a small amplitude of seasonal forcing, ε = 0.1. The

force of infection for secondary infection was reduced by the factor σ = 3
4

since they

are only susceptible to 3 of the 4 serotypes.

The vaccination program with two components was modeled: a proportion p

of newborns are vaccinated and rest of the susceptible population is vaccinated at

rate v. The vaccine of efficacy φ was modeled as reducing the force of infection by

the factor 1− φ.
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Parameter Definition Values
β transmission parameter (y−1) 400
ε seasonal-forcing amplitude 0.1
B constant birth rate (y−1) 20/1000
µ natural mortality rate (y−1) 20/1000
γ recovery rate (y−1) 365/7
σ susceptibility reduction for secondary infection 3/4
p proportion of newborns vaccinated (0–1)
v vaccination rate for rest of population (≥ 0)
φ vaccine efficacy (0–1)

Table C.1: Parameters of the dengue vaccination models.

The model equations are

dUS1

dt
= (1− p)BN − (λ+ v + µ)US1,

dUI1
dt

= λUS1 − (γ + µ)UI1,

dUS2

dt
= γUI1 − (σλ+ v + µ)US2,

dUI2
dt

= σλUS2 − (γ + µ)UI2,

dVS1

dt
= pBN + vUS1 − [(1− φ)λ+ µ]VS1,

dVI1
dt

= (1− φ)λVS1 − (γ + µ)VI1,

dVS2

dt
= γVI1 + vUS2 − [σ(1− φ)λ+ µ]US2,

dVI2
dt

= σ(1− φ)λVS2 − (γ + µ)VI2,

dR

dt
= γ(UI2 + VI2)− µR.

(33)

The parameters of the model are also shown in Table C.1.

For the pre-vaccine state, using parameter values in Table C.1, setting both

vaccination rates p and v to 0, setting the initial conditions for unvaccinated suscep-

tible individuals with no prior infection, unvaccinated infected individuals with no
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prior infection and permanently recovered individuals to be 0.09, 0.01 and 0.9, with

all other initial conditions to be zero, we simulated the dengue model (33) until it

reached a limit cycle, a regular periodic oscillation. With the parameter values used,

the model (33) converged to a 2-year cycle (Figure 5.2 and 5.3). We defined t = 0

to be just before the year with the larger peak in prevalence (e.g. see Figure 5.2(A)).

In most of the simulations, vaccination was begun at tv = 0, but we also varied the

start time tv ∈ [0, 2) (Figure 5.6).

To measure effectiveness of the vaccination program, we used 15-year maxi-

mum prevalence

max
t∈[tv ,tv+15]

I(t), (34)

15-year total infections

γ

∫ tv+15

tv

I(t) dt (35)

and long-term annual incidence

γ

P

∫ tc+P

tc

I(t) dt, (36)

where tc is a time after the system has converged to the post-vaccine limit cycle and

P is the period of that limit cycle.

C.2 Simpler model

For our simpler dengue model, we assumed that there is no secondary infec-

tion so that an individual after recovering from a dengue infection is immune to all
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serotypes. This reduces our original dengue model (33) to

dUS1

dt
= (1− p)BN − (λ+ v + µ)US1,

dUI1
dt

= λUS1 − (γ + µ)UI1,

dVS1

dt
= pBN + vUS1 − [(1− φ)λ+ µ]VS1,

dVI1
dt

= (1− φ)λVS1 − (γ + µ)VI1,

dR

dt
= γ(UI1 + VI1)− µR,

(37)

with the same force of infection (31), but with total number infected

I(t) = UI1(t) + VI1(t). (38)

C.3 More complex model

A more complex model compared to the model (33) was obtained by adding

the hypothesis of short-term cross-protection after primary infection. Wearing and

Rohani (2006) hypothesized that after recovering from primary infection, an individ-

ual has short-term cross-protection to the other serotypes for about 9 months, after

which he becomes susceptible to the remaining three serotypes. We added two classes

of people temporarily immune to all serotypes, one for unvaccinated (UT ) and one

for vaccinated (VT ) people, to our existing model. After primary infection, people

now enter these temporary immune classes, and before moving on to be susceptible
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to secondary infection. The model equations for this new model are

dUS1

dt
= (1− p)BN − (λ+ v + µ)US1,

dUI1
dt

= λUS1 − (γ + µ)UI1,

dUT
dt

= γUI1 − (ρ+ µ)UT ,

dUS2

dt
= ρUT − (σλ+ v + µ)US2,

dUI2
dt

= σλUS2 − (γ + µ)UI2,

dVS1

dt
= pBN + vUS1 − [(1− φ)λ+ µ]VS1,

dVI1
dt

= (1− φ)λVS1 − (γ + µ)VI1,

dVT
dt

= γVI1 − (ρ+ µ)VT ,

dVS2

dt
= ρVT + vUS2 − [σ(1− φ)λ+ µ]US2,

dVI2
dt

= σ(1− φ)λVS2 − (γ + µ)VI2,

dR

dt
= γ(UI2 + VI2)− µR,

(39)

where 1
ρ

= 0.75 y is the average duration of short-term cross protection against all

serotypes. With the same force of infection and total number infected as before, (31)

& (32).
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