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ABSTRACT 

 
In recent years, some by-products such as crumb rubber has been used to save 

money, protect the environment, and extend the life of asphalt pavements. In addition, the 

utilization of reclaimed asphalt pavement (RAP) is an acceptable practice in many states 

around the United States and many countries all over the world.  However, the use of 

RAP containing crumb rubber has not been investigated in great detail, so it is essential to 

explore whether these materials have a positive effect on the fatigue life of asphalt 

pavement.  In general, previous experience shows that the use of RAP has proven to be 

cost-effective, environmentally sound, and successful in improving some of the 

engineering properties of asphalt mixtures. Crumb rubber has also been used successfully 

in improving the mechanical characteristics of hot mix asphalt (HMA) mixtures in many 

parts of the world.  

Fatigue is considered to be one of the most significant distress modes in any 

flexible pavement which is subjected to repeated traffic loading or stress. Several 

researchers, for the last two decades, have developed some fatigue predictive models that 

predict the fatigue life of asphalt mixture in the laboratory and even in the field. However, 

there are no research studies in the area of developing prediction models for mixtures 

containing crumb rubber and RAP.  

 For this research study, A total of 39 mix designs, including two types of 

aggregate source, were made and tested to perform fatigue analysis and modeling. 

Superpave mix design procedures were used for preparation of fatigue testing specimens. 



 The major objective of this study was to develop a mathematical model to predict 

the fatigue life of rubberized asphalt concrete containing RAP and included: 1) evaluating 

the performance of the modified binder and mixture in the laboratory; 2) measuring the 

fatigue life, stiffness and dissipated energy of the fatigue specimens; 3) developing the 

mathematical model to predict the fatigue life of the modified composite using the 

conventional statistical regression analysis and artificial neural network (ANN) 

approaches; 4) validating the fatigue predictive models using modified mixtures made 

from a second aggregate source.  

The following conclusions were drawn based on the laboratory investigation: 1) 

the use of crumb rubber is effective in improving the aging resistance of rubberized 

asphalt concrete, 2) the addition of RAP decreased the virgin asphalt content and 

increased the ITS values, 3) the developed specific regression models predicted a 

reasonable fatigue response of mixture, and the measured and predicted fatigue values 

were found to be close regardless of the crumb rubber, RAP content, and even testing 

conditions, 4) ANN approach has been shown to be effective in performing fatigue 

testing data of mixture and the established ANN model was able to predict fatigue 

occurrence accurately.   
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CHAPTER I 
INTRODUCTION 

 

Fatigue, associated with repetitive traffic loading, is considered to be one of the 

most significant distress modes in flexible pavements. The fatigue life of an asphalt 

pavement is related to the various aspects of hot mix asphalt (HMA). Previous studies 

have been conducted to understand how fatigue life can occur and be extended under 

repetitive traffic loading (SHRP 1994; Daniel and Kim 2001; Benedetto et al. 1996; 

Anderson et al. 2001). When an asphalt mixture is subjected to a cyclic load or stress, the 

material response in tension and compression consists of three major strain components: 

elastic, viscoelastic, and plastic. The tensile plastic (permanent) strain or deformation is 

responsible for the fatigue damage and consequently results in fatigue failure of the 

pavement. A perfectly elastic material will never fail in fatigue regardless of the number 

of load applications (Khattak and Baladi 2001). 

An asphalt mixture is a composite material of graded aggregates bound with a 

mastic mortar. The physical properties and performance of HMA is governed by the 

properties of the aggregate (e.g., shape, surface texture, gradation, skeletal structure, 

modulus, etc.), properties of the asphalt binder (e.g., grade, complex modulus, relaxation 

characteristics, cohesion, etc.), and asphalt aggregate interaction (e.g., adhesion, 

absorption, physiochemical interactions, etc.).  As a result, the properties of asphalt 

mixtures are very complicated (You and Buttlar 2004). However, the properties of its 

constituents are relatively less complicated and easier to characterize. For example, 

aggregate can be considered as linearly elastic; the asphalt binder can be considered as 
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viscoelastic/viscoplastic. Therefore, if the microstructure of asphalt mix can be obtained, 

its properties can be evaluated from the properties of its constituents and microstructure 

(Wang et al. 2004). Abbas et al. (2004) considered that the behavior of aggregate, asphalt 

binder, and air voids in the asphalt mixture is defined by the interaction between these 

three phases and the complex viscoelastic behavior of the binder, which depends on 

temperature, loading frequency, and strain magnitude. Studying the behavior of the 

composite material requires modeling the viscoelastic behavior of the binder and 

incorporating these models into representations of the asphalt concrete microstructure.  

HMA mixture’s resistance to fatigue cracking thus consists of two components, 

resistance to fracture (both crack initiation and propagation) and the ability to heal. These 

two components change over time. Healing, defined as the closure of fracture surfaces 

that occurs during rest periods between loading cycles, is one of the principal components 

of the laboratory to field shift factor used in the traditional fatigue analysis. Prediction of 

fatigue life or the number of cycles to failure must account for this process that affects 

both the number of cycles for microcracks to coalesce to macrocrack initiation and the 

number of cycles for macrocrack propagation through the HMA layer that add to fatigue 

life. Both components of mixture fatigue resistance or the ability to dissipate energy that 

causes primarily fracture at temperatures below 25 °C (77 °F), called dissipated pseudo 

strain energy, can be directly measured in simple uniaxial tensile and compression tests 

(Kim et al. 2003). 

Accurate prediction of the fatigue life of asphalt mixtures is a difficult task due to 

the complex nature of fatigue phenomenon under various material, loading, and 

environmental conditions. For the past several decades, significant research efforts have 
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focused on developing reliable fatigue prediction models. There are two main approaches 

in the fatigue characterization of asphalt concrete: phenomenological and mechanistic. 

One of the most commonly used phenomenological fatigue models relates the initial 

response of an asphalt mixture to the fatigue life because only the mixture response at the 

initial stage of fatigue testing needs to be measured. In general, fracture mechanics or 

damage mechanics with or without viscoelsticity is adopted in the mechanistic approach 

to describe the fatigue damage growth in asphalt concrete mixtures (Lee et al. 2000).   

Understanding the ability of an asphalt pavement to resist fracture from repeated 

loads is essential for the design of HMA pavement. However, reaching a better 

understanding of this fatigue behavior of asphalt pavements continues to challenge 

researchers all over the world, particularly as newer materials with more complex 

properties are being used in HMA pavements. For example, a very few fatigue studies of 

modified asphalt mixtures, including crumb rubber or reclaimed asphalt pavements, have 

been performed in recent years (Raad et al. 2001; Reese Ron 1997). In addition, the 

modified asphalt mixtures containing two materials together are not yet studied in great 

detail. Many rubberized asphalt pavements are in need of recycling after 15-20 years of 

service. Therefore, it is important to obtain the fatigue behavior of these modified 

mixtures in the laboratory, so that the performance can be predicted in the field. In 

addition, the utilization of these materials will enable the engineers to find an 

environmental friendly method to deal with these materials, save money, energy, and 

furthermore, protecting the environment. 
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Background 

In 1960, Charles McDonald became the first engineer to use crumb rubber in 

asphalt mixtures to improve pavements in the United States. Since then, many 

experimental studies and field test sections have been constructed and tested.  The mixing 

of crumb rubber with conventional binders results in an improvement of the asphalt 

mixtures in the resistance to rutting, fatigue and thermal cracking (Way 2003; Sebaaly et 

al. 2003).  Antunes et al. (2003) pointed out; however, that the stiffness of the asphalt 

rubber is somewhat lower than the values generally obtained from the conventional 

asphalt mixture at the test temperatures (about 150 to 177°C).   

Most of the rubberized asphalt projects conducted in the United States use the wet 

process. In this process, the crumb rubber is being reacted with the virgin binder before 

mixing it with the aggregate. The research conducted and reported in this paper used this 

process.  There are many issues involved with the wet process that must be considered 

before the completion of the mix design including rubber size and percentage, rubber 

particle shape, etc. For example, the proportion of the crumb rubber changes significantly 

in the mixture since a rubber particle swells to 3 to 5 times its size (Mathias Leite et al. 

2003).  

The recycling of existing asphalt pavement materials produces new pavements 

with considerable savings in material, money, and energy.  Aggregate and binder from 

old asphalt pavements are still valuable even though these pavements have reached the 

end of their service lives.  The reclaimed materials have been used, for many years, with 

virgin aggregates and binders to produce new asphalt pavements, proving to be both 

economically feasible and effective in protecting the environment.  Furthermore, 
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mixtures containing reclaimed asphalt pavement (RAP) have been found, for the most 

part, to perform as well as the virgin mixtures with respect to rutting resistance.  The 

NCHRP (2001) report provides the basic concepts and recommendations concerning the 

components of mixtures, including new aggregate and RAP materials. The Superpave 

Mixtures Expert Task Group of the Federal Highway Administration (FHWA) developed 

interim guidelines for using RAP based on past experience (FHWA 1997a).  In NCHRP 

Project 9-12 (NCHRP 2001), use of the tiered approach for RAP was considered 

appropriate.  The recommendation conducted that the relatively low levels of RAP can be 

used without extensive testing of the binder, but when higher RAP contents are desirable, 

conventional Superpave binder tests must be used to determine how much RAP should be 

added or which virgin binder is recommended to be added to the mixture.  

Since the mid-1970’s, several million tons of RAP have been used to produce 

recycled HMA mixture around the country.  The use of RAP has evolved into routine 

practice in many areas around the world. In the United States, the Federal Highway 

Administration reported that 73 of the 91 million metric tons of asphalt pavement 

removed each year during resurfacing and widening projects are reused as part of new 

roads, roadbeds, shoulders and embankments (FHWA 2002). Meanwhile, in 2003, there 

were approximately 290 million scrap tires generated in the United States, where over 233 

million of which were recycled and reused (RMA 2003; Amirkhanian 2003).  In recent 

years, more and more states have begun to ban whole tires from landfills, and most states 

have laws specially dealing with scrap tires.  As a result, it is necessary to find safer and 

economical ways for disposing these tires.  The civil engineering market involves a wide 

range of uses for scrap tires, exemplified by the fact that currently 39 states have approved 
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the use of tire shreds in civil engineering applications (RMA 2003).  The market for crumb 

rubber has been growing over the past several years both in the United States and in other 

countries.  Rubberized asphalt, the largest single Civil engineering market for crumb rubber, 

is being used in increasingly large amounts by several Department of Transportations (e.g., 

Arizona, California, Florida, Texas, and South Carolina).   

Most laboratory and field experiments indicate that the rubberized asphalt concretes 

(RAC), in general, show an improvement in durability, crack reflection, fatigue resistance, 

skid resistance, and resistance to rutting not only in an overlay, but also in stress absorbing 

membrane (SMA) layers (Hicks et al. 1995). However, the influence of two by products 

(crumb rubber and RAP) mixed with virgin mixtures together is not yet identified clearly. 

The interaction of modified mixtures is not well understood from the stand point of 

binder properties to field performance.  For example, pavement engineers only know the 

aged binder will reduce the fatigue life, but the addition of crumb rubber makes this issue 

more complicated. Because of the complicated relationship of these two materials in the 

modified mixtures, more information will be beneficial in helping obtain an optimum 

balance in the use of these materials. The properties of the binder should be tested in the 

modified mixtures, containing RAP and crumb rubber, in order to study fatigue behavior 

of modified mixtures.  

 
Research Objectives 

 
The major objective of this research was to develop a mathematical model to predict the 

fatigue life and stiffness of rubberized asphalt concrete (RAC) containing RAP. The 

specific objectives of this study included: 

1. Conducting a literature review of the uses of RAC and RAP in the field and in the 
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laboratory. 

2. Evaluating the laboratory performance of crumb rubber modified asphalt binders 

in the HMA mixture. 

3. Evaluating the properties of the RAP in the laboratory. 

4. Measuring the properties of modified mixtures for the fatigue beams. 

5. Evaluating the fatigue life, stiffness and cumulative dissipated energy of the 

fatigue beams. 

6. Developing a mathematical model to predict the fatigue life of the modified 

composites through using the conventional statistical analysis and artificial neural 

network approaches.  

7. Validating the fatigue predictive model using another aggregate source. 

 

Scope of Research  

The objectives of this study were accomplished through the completion of the tasks 

described below. 

1. A literature review of the uses of RAC and RAP in the field and in the laboratory 

was conducted. 

2. The performance of crumb rubber modified asphalt binders including the rubber 

size, type, content and RAP content (aged binder) in the laboratory was evaluated. 

In addition, the following testing was conducted: 

a. Viscosity (modified binder) (AASHTO T 316)  

b. DSR: at intermediate temperature (AASHTO T 315)  

3. The properties of the RAP in the laboratory were investigated using the following 
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testing procedures: 

a. Extraction of RAP binder (AASHTO T170; AASHTO TP 2)  

b. RAP aggregate gradation (AASHTO T 27; AASHTO T 30)  

4. Laboratory mixtures testing used one aggregate source (L); two asphalt binder 

types (one used as a rejuvenator in the high RAP percentage); one type of the 

crumb rubber (-40 mesh); two types of rubber (ambient and cryogenic), and two 

types of RAP (sources L and C). Second aggregate source (C) was used to 

validate the developed models.  

5. The optimum modified binder of modified mixtures in the laboratory was 

obtained using Superpave mix design procedure. 

6. The fatigue strength and endurance for the modified composites at two different 

temperatures (5ºC, 20ºC) was evaluated using the following test procedures 

(AASHTO T321)  

a. Flexural Stiffness, Maximum Tensile Stress or Strain  

b. Fatigue Life  

c. Dissipated Energy  

7. A mathematical model was developed to predict the fatigue life of the modified 

composites and a comparison of results with conventional asphalt concrete 

mixtures was conducted. The following concepts were used to accomplish this 

task: 

a. Fracture Mechanics Method (conventional statistical models) 

b
f aN )/1( ε=  or                                        

(1-1) 

d
f cN )/1( σ=
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Where, 

MF = mode factor;  

Vo = initial air-void content, in percentage;  

ε, εo  = test and initial flexural strain, in m/m;  

σ, σo = test and initial flexural stress, in Newton;  

fN  = number of load application or crack initiation; 

So= initial mix stiffness, in Pa, respectively; and 

a, b, c, d , e  = experimentally determined coefficients  

b. Artificial Neural Network Method (ANN models) 

The network is trained and tested with the experimental database to 

approximate the following function: 

),,,,( pbf RRSVFAfN ε=                         (1-3) 
Where, 

Rb = the percentage of rubber in the binder, in N/N; and 

Rp = the percentage of RAP in the mixture, in N/N.  

VFA = voids filled with asphalt binder, and 

S = mix stiffness, in Pa 

 

Organization of the Dissertation 

Chapter II includes the background information of materials (e.g., crumb rubber 

and reclaimed asphalt pavement) used in this study, fatigue behavior and characteristics, 

the previous use of conventional statistical fatigue predictive models and artificial neural 

network models of fatigue life. Chapter III presents the materials used in this study, 

experimental design including the sample preparation, testing conditions, and related 

binder and mixture tests. Chapter IV presents the statistical and artificial neural network 

 



  10

(ANN) methods used to develop the fatigue prediction models. Chapter V includes the 

experimental results and discussions, such as conventional statistical and ANN fatigue 

prediction models. Finally, Chapter VI gives a summary of analysis results, indicates 

conclusions of this study, and provides some recommendations for future related research 

projects.    

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER II 
LITERATURE REVIEW 

 
 

Fatigue behavior and characteristics  
 

Fatigue cracking is often called alligator cracking because this closely spaced 

crack pattern is similar to the pattern on an alligator’s back. This type of failure generally 

occurs when the pavement has been stressed to the limit of its fatigue life by repetitive 

axle load applications. Fatigue cracking is often associated with loads which are too 

heavy for the pavement structure or more repetitions of a given traffic loading than 

provided for in design. The problem is often made worse when pavement layers become 

saturated and lose strength. The tensile stresses and strains develop at the bottom of the 

pavement structure, when tensile stresses can exceed the tensile strength of the asphalt 

mixture, which result in a crack at the bottom of the pavement structure (Figure 2.1). The 

HMA layers experience high strains when the underlying layers are weakened by excess 

moisture and fail prematurely in fatigue. Fatigue cracking is also often caused by 

repetitive loading with overweight trucks and/or inadequate pavement thickness due to 

poor quality control during construction.  

 

Figure 2.1 Initiation of fatigue cracking
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Fatigue cracking, a significant major structure distress, is a symptom of 

insufficient structural strength in the pavement, weak subgrade, or overloading of the 

pavement. It can lead to the development of potholes when the individual pieces of HMA 

physically separate from the adjacent material and are dislodged from the pavement 

surface by the action of traffic. Potholes generally occur when fatigue cracking is in the 

advance stages and when relatively thin layers of HMA comprise the bound portion of 

the pavement (Roberts et al. 1996). 

The severity of fatigue cracking can be rated in three main types (Lavin 2003): 

Low severity: Fine, longitudinal cracks running parallel to each other with none or 

only a few interconnecting cracks. The cracks are not spalled. Initially there may only be 

a single crack in the wheelpath or pavement loading area (Figure 2.2a). 

Medium severity: Further development of light alligator cracks into pattern or 

network of cracks. The cracks may also be slightly spalled (Figure 2.2b). 

High severity: The pattern of cracks has progressed so that the individual pieces 

are well defined and the cracks are spalled at the edges. Some of the pieces may move 

under traffic or loading. Pieces may begin to disintegrate, forming potholes. Pumping of 

the pavement may also exist (Figure 2.2c). 

(a)                                                  (b)                                              (c)                                

Figure 2.2 Images of fatigue cracking (Lavin 2003) 
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Fatigue cracking is measured in square meter of surface area. There are usually 

various degrees of severity within the same pavement section. If the different levels of 

severity can be easily distinguished from each other, they should be measured and 

recorded separately. If they cannot be easily identified, the entire area should be rated at 

the highest severity present (Local Road Research Board 1991; Lavin 2003) 

 

Fatigue Characteristics of Asphalt Binder 

 Asphalt concrete is a mixture of asphalt binder, aggregate and air avoids. The 

properties of asphalt concrete are related to the properties of these constituents and the 

interaction among them, which is related to the spatial location of the constituents or the 

microstructure of the mixture. The microstructure of asphalt concrete is complicated and 

is related to the gradation of aggregate, the properties of aggregate-binder interface, the 

void size distribution, and the interconnectivity of voids (Wang et al. 2004).  

Much research has indicated that some properties (e.g., G* sinδ) of asphalt binder 

are related to fatigue life of an asphalt pavement. The evaluation of the binders in a 

controlled laboratory mix “failure” test was considered a necessary tie between the binder 

properties and the filed performance data (Reese 1997; Anderson et al. 2001). For 

example, Dynamic shear rheometer (DSR) is used to characterize both viscous and elastic 

behavior by measuring the complex shear modulus (G*) and phase angle (δ) of an asphalt 

binder. Performing DSR measurements over a range of frequencies allows fitting 

mechanistic models to such binder rheological data. These models are well suited for 

implementation into numerical solutions of the microstructural behavior of asphalt 

concrete (Abbas et al. 2004). This parameter is based on the theory that as an asphalt 
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binder ages in a pavement, its G* and δ rise to a point where the combination of viscous 

and elastic components become so high that the binder can no longer relieve the stresses 

of repeated loading, and therefore crack (Hines et al. 1998). 

 However, comparing binder properties with the fatigue life of mixtures 

containing various binder, Reese (1997) indicated that fatigue models based on G* and 

sinδ from mix frequency sweeps at medium temperature are subject to the same 

shortcomings as the binder fatigue parameter; and the SHRP binder fatigue parameter 

(G*sinδ) does not correlate adequately with mix fatigue tendencies.  

The viscosity of  and asphalt binder is used to determine the flow characteristics 

of the binder to provide some assurance that it can be pumped and handled at the hot 

mixing facility; also to determine the mixing and compacting temperature of an asphalt 

mixture. This property is related to aging behavior of asphalt mixtures and even affects 

its fatigue life. Bending beam rheometer (BBR) is used to measure how much a binder 

deflects or creeps under a constant load at a constant temperature, which is related to a 

pavement’s lowest service temperature; also related to its fatigue life (e.g., stiffness). 

Furthermore, high pressure – gel permeation chromatography (HP-GPC) has also 

been used to test engineering properties of asphalt binders according to the ratio of 

different molecular sizes (e.g., large molecular size, medium molecular size, and small 

molecular size). It has been used to determine the molecular size distribution of an 

asphalt cement (Churchill et al. 1995; Shen et al. 2006). This technique has the potential 

of characterizing the strongly associating molecular components that play a major role in 

determining the rheological properties and aging characteristics of an asphalt binder 

related to the pavement performance (fatigue cracking) (Jennings 1980; Kim et al. 1995). 
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Crumb Ground Rubber  

In 1960s, Charles McDonald was the first engineer, in the United States, to use 

scrap tires in asphalt mixtures aimed at improving pavement performance. Since then, 

many other experimental studies and test sections have been conducted with ground tire 

rubber. Several states including Florida, Arizona and California use ground tire rubber in 

asphalt binder with contents ranging from 5% to 25% in dense, gap and open mixes (e.g. 

overlays, stress absorbing membranes, and stress absorbing membrane inter-layers). The 

completed projects show an improvement in durability, crack reflection, fatigue 

resistance, skidding resistance, and resistance to rutting (Hicks 1995; Xiao et al. 2006). 

In addition to rubber, tires comprise textile fibers and steel, where 50% to 60% of the 

weight can be recovered as rubber, corresponding to 4.5 to 5.5 kg per 9 kg of tire. Tire 

rubber, in general, is comprised of synthetic rubber, natural rubber, plasticizer, carbon 

black and mineral fillers. The natural rubber and the synthetic rubber content in tires vary 

depending on the type of vehicle. Truck tires, in most cases, have a greater percentage of 

natural rubber as compared with synthetic rubber. In general, automobile tires have 

around 16% natural rubber and 31% synthetic rubber, while truck tires have around 31% 

natural rubber and 16% synthetic rubber. In spite of these variations in the rubber 

composition, the composition of bulk ground rubber is quite uniform and the ground 

rubber industry is not based on a specific type of tire (Ruth 1997). 

The particle size and the surface texture of the ground rubber vary in accordance 

with the type of grinding, which can be either ambient or cryogenic. Each method has the 

ability to produce crumb rubber of similar particle size, but the major difference between 

them is the particle morphology. The ambient process often uses a conventional high 
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powered rubber cracker mill set with a close nip where vulcanized rubber is sheared and 

ground into a small particle. The process produces a material with an irregular jagged 

particle shape. However, the cryogenic grinding usually starts with chips or a fine crumb. 

This is cooled using a chiller and the rubber, while frozen, is put through a mill. The 

cryogenic process produces fairly smooth fracture surfaces. Previous research indicated 

that the engineering properties of two type rubbers are significantly different. The 

interaction effect (IE) and particle effect (PE) are affected by the method used to produce 

the crumb rubber (Putman 2005). Putman (2005) pointed out that the crumb rubber 

modifier binders (CRM), containing ambient rubber, resulted in higher IE and PE values 

than the CRM binders made with cryogenic rubber. This is due to the increased surface 

area and irregular shape of the ambient CRM. 

In general, crumb rubber-modified (CRM) asphalt can be divided into two 

categories, wet process and dry process. The wet process is a method that blends the 

crumb rubber with asphalt binder before incorporating the binder into the mix. The dry 

process involves any method that mixes the CRM with the aggregate before the mixture 

is charged with the asphalt binder. In the United States, the wet process is the one 

predominantly used today, where the high chromatic oil extender can either be used or 

not in the preparation of asphalt mixtures with tire rubber. The mixture is prepared at a 

temperature ranging from 150ºC to 190ºC for about one hour. However, Thompson and 

Xiao (2004) found that the mixing temperature at 177ºC and reaction time of 30 minutes 

are suited to blend CRM in the wet process for the mixtures tested in their project. Since 

the resulting asphalt rubber is not storage stable, the storage period is restricted to tanks 

provided with recirculation and agitation features. In the U.S. there are various 
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companies that mix ground tire rubber with asphalt in mobile units within asphalt plants 

or in asphalt modified industries (Hicks 1995; Ruth 1997). 

Polymers, including rubbers, are known to absorb liquids and swell with the amount 

being dependent on the nature, temperature and viscosity of the liquid/solvent and type of 

polymer (Treloar 1975). The swelling of rubber in organic solvents is a diffusion process. 

The rubber particle undergoes a swelling of 3 to 5 times in size when incorporated into 

the asphalt binder. Xiao et al. (2006) investigated the dimension changes of crumb rubber 

after extract from reacted modified binder.  The polymers existing in the rubber absorb 

the aromatic portion of the binder and in most cases the viscosity, at 135ºC, of the 

resulting binder increase up to ten times in relation to the original value. Interaction of the 

rubber with the asphalt cement can be affected by several factors (Mathias Leite et al. 

2003).  

 temperature, time, type of mixer 

 rubber size, texture and content 

 chemical composition of the asphalt binder 

 
Airey et al. (2003) also found that the initial rate of bitumen absorption is directly 

related to the viscosity as well as the chemical composition of the binders. The report 

indicated that with the softer and lower asphaltene content binder have the highest rate of 

absorption. In addition to the traditional oxidation of bitumen at high temperatures, the 

residual asphalt experienced further changes in their chemical constitution as a result of 

the crumb rubber-asphalt interaction and the absorption.  

Development of modified asphalt materials to improve the overall performance of 

pavement has been the focus of several research efforts over the past few decades. 

Several attempts were made in the past to modify asphalt mixtures using crumb rubber to 
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improve the performance of asphalt pavements. Many researchers found that the 

utilization of crumb rubber in pavement construction is effective and economical 

(McDonald 1966; Little 1986; Button et al. 1987; Bahia and Davies 1994; Raad and 

Saboundjian 1998; Hossain et al. 1999; Anderson et al. 2001; Amirkhanian 2003; Way 

2003; Airey et al. 2003; Shen et al. 2006; and Xiao et al. 2006).  

The results of some research projects indicated that fatigue behavior of rubberized 

mixtures significantly improved compared to conventional mixtures. At the same time, 

the crumb rubber improved the resistance to aging. The application of the fatigue results 

in the analysis of thin and thick pavement sections indicated that aging prolonged the 

fatigue life of the pavement structures (Raad et al 2001; Palit et al. 2004) and the 

improvement to fatigue life of rubberized asphalt mixture. At the same time, there are 

many other benefits. For example, it was found that the use of rubberized asphalt on 

highways resulted in an average 4 dB reduction in traffic noise levels as compared to the 

conventional asphalt overlay (Way 2003). Adding crumb rubber to asphalt binder 

increases the damping ratio of asphalt mixes. It has been reported that the CRM mixture 

is a viable material to use to achieve vibration attenuation of railway trackbeds (Zhong et 

al. 2002). Way (2003) and Xiao et al. (2007) indicated that the rubberized asphalt 

mixtures have many positive qualities including: they are highly resistance to rutting; 

they reduced the reflective cracking and improve durability of surface courses.   However, 

the increase of rubber content produces a decrease in the values of resilient modulus of 

the mixtures, therefore, an increase of the flexibility. The incorporation of the crumb 

rubber with conventional binders produces a slight reduction in the indirect tensile 

strength of modified mixture (Xiao et al. 2007).  
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Reclaimed Asphalt Pavement 

During the 1970’s, the milling machine became an integral part of many asphalt 

rehabilitation programs and millions of tons of RAP were generated annually. Some of 

these millings were trucked to HMA plants where they were hot recycled or stockpiled 

for future use. However, initially much of this RAP was merely used as fill material or 

even wasted. In 1981, the FHWA issued its policy statement that “Recycling should be 

one of the options considered at the design state on all rehabilitation projects” (Kearney 

1997).  

Many studies concluded that the use of RAP is economical and can help to offset 

the increased initial costs sometimes associated with Superpave binders and mixtures and 

conserves natural resources, avoids disposal problem and associated costs. Recycled 

materials have proven to be equal or even better than new materials in quality. Over years, 

recycling has become one of the most attractive pavement rehabilitation alternatives, and 

different recycling methods are now available to address specific pavement distress and 

structural needs (Kandhal 1997; Kearney 1997; Terrel 1997; Decker 1997; Gardiner and 

Wagner 1999). For the mixing of RAP with virgin materials, the NCHRP 9-12 report has 

developed guidelines for incorporating RAP in the Superpave system on a scientific basis 

and prepared a manual for RAP usage that can be used by laboratory and field 

technicians (NCHRP 2001; McDaniel et al. 2002).  

Recycling of RAP can produce new pavement materials resulting in considerable 

saving of material, money and energy. The continued use of RAP in Superpave 

pavements is desired due to the following specific benefits (Kandhal 1997; NCHRP 

2001):  
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 RAP can result in substantial savings over the use of new materials, and 

the cost of hauling can be avoided if recycling is performed in place. 

 Use of RAP is economical and can help in conservation of natural 

resources by reducing the need for new materials. 

 Use of RAP has been proven to be equal or even better than new 

materials in quality and also it avoids disposal problems and costs. 

 Recycling of RAP can save a considerable amount of energy compared to 

the conventional construction techniques.  

 
The asphalt recycling and reclaiming association defines five different types of 

recycling methods (Kandhal 1997):  

 Cold planning 

 Hot recycling 

 Hot in-place recycling 

 Cold in-place recycling 

 Full depth reclamation 

 
All of the different recycling techniques offer some advantages in dealing with 

RAP. However, the choice of a particular recycling method should be primarily on the 

basis of the type of distress shown in the existing pavement. This is because all of the 

recycling methods are not equally suited for treating different types of distress (e.g. 

rutting, pothole, fatigue, etc.), and the choice must be made for the specific method which 

is capable of rectifying the existing distress conditions. A comprehensive evaluation of 

the existing pavement is necessary before attempting any recycling process (Kearney 

1997). 

A subgroup of the FHWA Superpave Mixtures Expert Task Group developed 

interim guidance for the use of RAP based on past experience. These guidelines 

established a tiered approach for RAP usage. The three-tier approach gives guidance in 
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choosing the blending method for recycled mixture with first tier dealing with low 

percentage of RAP (0-15%). In this case, it is assumed that the aged binder has relatively 

no effect on the mixture performance and the RAP can be added without making any 

modification to the design virgin binder. The second tier, with a percentage range of RAP 

of 15%-25%, involves the use of new binder that is one grade softer (on both the high and 

low grade) than the specification grade to be used. And the third tier is using a high 

percentage (25% or greater) of RAP. For this case,   there is an extensive mixing of the 

aged RAP binder and the new virgin binder and the linear blending formulas can be used 

in determining performance grade of this modified binder and what softer binder is 

needed to be incorporated in the mixture (FHWA 1997a; FHWA 1997b).  

 

Fatigue Analysis Method  

The definition of fatigue life, especially in the controlled-strain mode, is a 

controversial issue. There are two approaches to develop a fatigue life prediction model: 

phenomenological and mechanistic. The phenomenological fatigue model is simple to 

use; however, it does not account for damage evolution throughout the fatigue process. 

On the other hand, mechanistic models are based on fracture mechanics or damage 

mechanics. This approach is inherently more complex than the phenomenological 

approach but is more widely accepted because it uses material properties based on stress-

strain relationships (Kim et al. 2003). 

Kim et al. (1997) described a mechanistic approach to viscoelastic constitutive 

modeling of asphalt concrete with damage evolution under realistic cyclic loading 

conditions. The most common and classical fatigue model is developed by correlating 
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fatigue life with initial strain or stress levels applied during tests. The limitation of this 

phenomenological model is that the damage evolution is not taken into consideration and 

hence it can only be applied to a given set of loading conditions (Kim et al. 2003). 

Recently, Lee et al. (2000) successfully developed a fatigue performance prediction 

model of asphalt concrete based on an elastic-viscoelastic correspondence principle and 

continuum damage mechanics. 

A series of studies by Lee (1996); Kim et al. (2000) suggested a new failure 

criterion using 50% loss in pseudo stiffness. The pseudo stiffness can be reasonably used 

to represent damage accumulation due to repeated fatigue loading, as it eliminates linear 

viscoelastic time-dependency, which does not induce damage. A 50% loss in stiffness or 

modulus from the initial value was used by Hicks et al. (1993); Williams (1998); Smith 

and Hesp (2000); and others. In particular, Reese (1997) proposed evaluation of changes 

in the phase angle during fatigue testing. According to his hypothesis, a point showing 

the maximum phase angle is a reasonable fatigue failure point, since the phase angle 

versus time curve shows a rapid loss of phase angle when asphalt mixtures stop 

accumulating distress (Kim et al. 2003). 

Schapery (1984) proposed the extended elastic-viscoelastic correspondence 

principle, which is applied to both linear and nonlinear viscoelastic materials. Torsional 

shear pseudo strain is defined as: 
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Where, 

)(tRγ = pseudo strain in the shear mode; 

RG = reference shear modulus that is an arbitrary constant; 

)(tG = shear relaxation modulus; and 
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γ =time-dependent shear strain 

And pseudo stiffness is expressed as: 

R
m

mRS
γ
τ

=                                                                                       (2-2) 

Where,   
RS = pseudo stiffness; 
R
mγ = peak pseudo strain in each physical stress-pseudo strain cycle;  and 

mτ = physical stress corresponding to  R
mγ

 

The fatigue characteristics of asphalt mixtures are usually expressed as 

relationships between the initial stress or strain and the number of load repetitions to 

failure-determined by using repeated flexure, direct tension, or diametral tests performed 

at several stress or strain levels. The fatigue behavior of a specific mixture can be 

characterized by the slope and relative level of the stress or strain versus the number of 

load repetitions to failure and can be defined in the following form (Monismith et al. 

1985). 

cb
f SaN )/1()/1( 00ε=   or                         (2-3) cb

f SaN )/1()/1( 00σ=

Where, 

fN  = number of load application or crack initiation; 

00 ,σε  = tensile strain and stress, respectively; and 

a, b, c = experimentally determined coefficients 

Several models have been proposed to predict the fatigue lives of pavement (Finn 

et al. 1977; Shell 1978; Asphalt Institute 1981; Tayebali et al. 1994). To develop these 

models, laboratory results have been calibrated by applying shift factors based on field 

observations to provide reasonable estimates of the in-service life cycle of a pavement 

based on limiting the amount of cracking due to repeated loadings.  
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The fatigue behavior of a specific mixture can be characterized by the slope and 

relative level of the stress or strain versus the number of load repetitions to failure and 

can be defined by a relationship of the following form (Tayebali et al. 1994):  

e
o

d
oo

cVbMF
f SoraN o )()(expexp σε=                                    (2-4) 

Where,  

fN  = Cycles to Failure; 

MF = mode factor;  

Vo = initial air-void content in percentage;  

0ε  = initial flexural strain;  

0σ   = initial flexural stress;  

So = initial mix stiffness; and 

a b, c, d, e = regression constants 

 
The fatigue models developed by Shell, the Asphalt Institute, and University of 

California at Berkeley (SHRP A-003A contractor) are shown in following forms:  

Shell Equation (Shell 1978):  

( )

5

36.0*08.1856.0
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⎣
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+

=
mixb

t
f SV

N
ε

                            (2-5) 

Where, 

fN = fatigue life; 

tε = tensile strain;  

bV = volume of asphalt binder; and 

mixS = mixture stiffness (flexural) 

Asphalt Institute Equation (Asphalt Institute 1981):  
( )[ ] 845.0291.369.084.4 **004325.0*10* −−−= mixt
VFA

ff SSN ε                           (2-6) 

Where, 

VFA= Volume of Voids filled with asphalt binder; and 
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fS =shift factor to convert lab test results to field 

SHRP A-003A Equation (Tayebali et al. 1994):  
720.2"

0
624.3

0
077.0 )(**exp*05738.2* −−= SESN VFA

ff ε                        (2-7) 

Where, 
"
0S = initial loss-stiffness;  

 

In recent years, the dissipated energy approach has been employed in predicting 

the fatigue lives of asphalt concrete that is based on the assumption that the number of 

cycles to failure is related mainly to the amount of energy dissipated during the test. A 

major advantage of this approach compared with the classical model is that predicting the 

fatigue behavior of a certain mix type over a wide range of conditions, from a few simple 

fatigue tests, is possible. Other criteria based on changes in dissipated energy including 

dissipated energy ratio or damage accumulation ratio were selected in studies by Rowe 

(1993) and Anderson et al. (2001). 

The dissipated energy per cycle, Wi, for a linear viscoelastic material is given by 

the following equation:                   

)sin( iiiiW δεπσ=                                        (2-8) 

Where, 

iW = dissipated energy at load cycle i; 

iσ  = stress amplitude at load cycle i; 

iε  = strain amplitude at load cycle i; and 

iδ  = phase shift between stress and strain at load cycle i 

The cumulative dissipated energy (WN) up to cycle n is defined as follows: 

∑
=

∑ =
n

i
iWW

n
1

                             (2-9) 

 



  26

Several researches (Van Dijk 1975; Van Dijk and Visser 1977; Pronk and 

Hopman 1990; Tayebali 1992; Read and Collop 1997; Hossain and Hoque 1999; 

Birgisson et al. 2004) have used the energy approach for predicting the fatigue behavior 

of the asphalt mixtures. Research has shown that the dissipated energy approach will 

make it possible to predict the fatigue behavior of mixtures in the laboratory over a wide 

range of conditions from the results of a few simple fatigue tests. Such a relationship can 

be characterized in the form of the following equation:  

Z
fN NAW )(=                                                  (2-10) 

Where, 

Nf = fatigue life;  

WN = cumulative dissipated energy to failure; and 

A, Z = experimentally determined coefficients. 

 

Statistical Analysis Models of Fatigue Life  

Previous research has indicated that the main purpose of the statistical analysis of 

test results was to determine the sensitivity of the fatigue test methods to mix and test 

variables in characterizing the fatigue response of the asphalt-aggregate mixtures and 

then build the statistical models of fatigue life through regression analysis (Tayebali et al. 

1994). They used the statistical analysis for each data set included the following sequence: 

 Test for correlation among the independent variables (Pearson); 

 Analysis of variance (ANOVA) of full models to determine the sensitivity 

of stiffness, fatigue life, and cumulative dissipated energy to mix and 

testing variables; 

 General linear modeling (GLM) to develop models for stiffness, fatigue 

life, and cumulative dissipated energy; and 
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 Summaries of the effects of the experimental variables included in the 

experiment on stiffness, fatigue life, and cumulative dissipated energy 

based on the results of GLM. 

One of the assumptions necessary for ANOVA and GLM is that the dependent and 

independent variables are normally distributed. Distribution for stress, strain, stiffness, 

cycles to failure, and cumulative dissipated energy were reviewed and found to be log-

normally distributed. Therefore, log transformations were used in ANOVA and GLM 

through regress analysis. 

The results of these research projects indicated that:  

 Fatigue life as a response variable is sensitive to asphalt binder type for 

all test types; 

 The flexural beam controlled-strain tests show an interaction between 

asphalt binder type and content; 

 Flexural beam tests exhibit sensitivity to aggregate type; 

 Asphalt binder content did not have a significant effect on fatigue life for 

any of the fatigue tests considered; 

 Air-void contents significantly influences fatigue life for all test types in 

that the fatigue is higher in the mixes with low voids than for mixes with 

high voids; and 

 Both temperature and stress or strain significantly influence fatigue life 

for all test types. 

The summary of the regression analysis is based on calibrations in which outliers, defined 

as cases where the absolute values of the residuals (natural log of fatigue life) exceeded 

1.1, were removed. Removal of outliers not only enhanced the accuracy of the models but, 

more importantly, improved their consistency and reasonableness.  
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Artificial Neural Network Analysis Models of Fatigue Life  

The application of neural networks is to help developing the fatigue predictive 

models of the asphalt mixtures and reduce the influence of complicated variables and 

incompleteness of the available data. Neural networks are composed of simple elements 

operating in parallel. These elements are inspired by biological nervous systems. It has 

been trained to perform complex functions in various fields, including pattern recognition, 

identification, classification, speech, vision, and control systems. Today, neural networks 

can be trained to solve problems that are difficult for conventional computers or human 

beings. Recently, some researchers have used neural networks as a new tool in solving 

complicated problems in the civil engineering area. In this research project, the neural 

network will be used to train the target parameters of models and to support the decision 

process and improve the efficiency of the models (Kim et al. 2004; Tarefder et al. 2005). 

The objective of the network training is to map the input to the output by determining the 

connection weights and biases through an error reduction process. 

An example of a three-layer neural network architecture used in this research is 

shown in Figure 2.3. This architecture consists of an input layer, a hidden layer, and an 

output layer. The input neurons are nodes that require no processing; the output neurons 

produce the output of the net; and the layer between the input and output layers is the 

hidden layer. 
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Figure 2.3  Example of a three-layer feedforward neural network architecture 

 
 

Each of the neurons in the hidden and output layers consists of two parts (shown 

in Figure 2.4). The first part simply aggregates the weighted inputs resulting in a quantity; 

the second is the transfer function, through which the combined signal flows. It can be 

expressed as:  

)( bWpfa +=                                                  (2-11) 

Where, 

a = output of the neuron; 

W = weight vector;  

b = bias; 

p = input vector of the neuron; and 

f = transfer function 

 

Commonly used transfer functions include hard limit function, liner function or 

sigmoidal function (shown in Figure 2.5). The logistic function, one of the sigmodial 

functions, is the most widely used transfer function. The equation of this function is 

expressed as following: 
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te
tf −+
=

1
1)(                         (2-12) 
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Figure 2.4  Schematic representation of an artificial neuron 
 
 

 
 

Figure 2.5  Transfer Function for Neurons: (a) Hardlimit transfer function, (b) 
Linear transfer function, (c) Logistic transfer function 

 

A popular training algorithm commonly adopted for training a feed-forward 

neural network is backpropagation. It is a systematic method for training multiple-layer 

artificial neural networks. In spite of its limitations, backpropagation has dramatically 

expanded the application range of neural networks due to its strong mathematical 

foundation. So the backpropagation will be used as a training multiple-layer artificial 

neural networks algorithm in this research. 

For the three-layer network shown in Figure 2.3, the output of the network Nf is 

calculated as follows:  

0 

1 

a 

(c) 
0

a a 

1 

0 (a) (b) 
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Where,  

Bo = bias at the output layer;  

Wk = weight of the connection between neuron k of the hidden layer and 

the single output layer neuron;  

BHK = bias at neuron k of the hidden layer;  

Wik = weight of the connection between input variable i and neuron k of 

the hidden layer;  

Pi = input parameter i; and 

fT = transfer function  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER III 
MATERIALS AND EXPERIMENTAL DESIGN AND TESTING 

 
 

Materials 
 

Asphalt Binder 
 

Two grades of virgin asphalt binders (PG 64-22 and PG 52-28) were used in this 

study. In order to reduce the effects of asphalt binder source, only one source of PG 64-

22 was utilized for all mix designs. The PG 52-28 was used as a softer binder in mixtures 

containing 30% RAP in accordance with the recommended guidelines of NCHRP 

subgroup expert group (NCHRP 2001). Some of the engineering properties of two 

binders are shown in Table 3.1.  

Table 3.1 Engineering properties of virgin asphalt binders 

Aging states Test properties PG64-22 PG52-28
Viscosity  @135oC (Pa-s) 0.430 0.213
G*/sin(δ) @64 oC (kPa) 1.279 0.398

RTFO G*/sin(δ) @64 oC (kPa) 2.810 0.825
G*sin(δ) @25 oC (kPa) 4074 821
Stiffness @-12 oC (MPa) 217 60.4
m-value @-12 oC 0.307 0.476

No aging

PAV

 

For a recycled mixture, it is important to determine the amount of aged asphalt 

binder present in the RAP material, so it can be accounted for in the mix design process. 

It is also important to know some physical properties of the RAP aggregate, such as the 

gradation and the angularity. These properties can be determined by extracting the 

asphalt binder from RAP to measure the binder content and test the aggregate properties. 
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Aged binders were extracted from two sources of RAP (L and C) according to ASTM D 

5402 (Standard Practice for Recovery of Asphalt from Solution Using the Rotary 

Evaporator) and AASHTO TP 2-01 (Standard Test Method for the Quantitative 

Extraction and Recovery of Asphalt Binder from Asphalt Mixtures). The base properties 

of the extracted binders from RAP were tested using the Superpave mix design method 

and the results are shown in Table 3.2. Table 3.2 shows that aged binder of source L has a 

higher viscosity value, G*/sin(δ) value in the virgin and RTFO aging states. For PAV 

aging states, source C has a better fatigue resistance (G*sin(δ)) and a smaller stiffness 

values than that of source C.  

Table 3.2 Engineering properties of aged binders 

Aging states Test properties Source L Source C
Viscosity  @135oC (Pa-s) 5.982 2.55
G*/sin(δ) @64 oC (kPa) 58.542 45.625

RTFO G*/sin(δ) @64 oC (kPa) 109.780 95.298
G*sin(δ) @25 oC (kPa) 8000 11000
Stiffness @-12 oC (MPa) 294 277
m-value @-12 oC 0.241 0.243

PAV

No aging

 

 

Crumb Rubber 

Two types of crumb rubber (ambient and cryogenic) were used in this study. 

Ambiently produced rubber, in general, has an irregular shape and therefore a greater 

surface area than cryogenically produced rubber due to the different manufacturing 

process. At the same time, different grinding processes also results in different gradations 

between ambient and cryogenic rubber particles. Previous research and field projects 

conducted in South Carolina indicated that the -40 mesh ambient rubber is effective in 
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improving the engineering properties of rubberized mixtures (Amirkhanian 2003). 

Therefore, the -40 mesh rubber is employed in this study.    

 The gradations of crumb rubber are shown in Table 3.3, which shows that -40 

mesh cryogenic rubber has a larger passing percentage for the 50 mesh and 80 mesh sizes, 

while ambient rubber has a greater amount of fine rubber (smaller than 75µm) than 

cryogenic. These various rubber particles absorb a various amount of aromatic and light 

oil from the asphalt binder and swell to different sizes due to influences of their surface 

shape and grinding method. This absorption process affects the performance of these 

modified binders in the mixture.  

Table 3.3 Gradations of -40 mesh crumb rubber  

Sieve No.(µm) Ambient Cryogenic
20 (850) 0 0
30 (600) 0 0.7
40 (425) 9.0 7.7
50 (300) 31.9 45.7
80 (180) 32.9 34.4
100 (150) 7.6 4.1
-100 (75) 18.6 7.4

%Passing

 

The surface areas of ambient and cryogenic rubbers are shown in Table 3.4, 

which indicates that the fine crumb rubber has greater average surface area than coarse 

one. At the same time, the average surface area of ambient rubber per gram at each 

particle size is greater than that of cryogenic. On the other hand, the fewer particles and 

smaller surface area exist in coarser rubber than fine at the same mass condition. Putman 

(2005) indicated that the surface area of the crumb rubber could be measured using a 

Coulter SA 3100 surface area and pore size analyzer. The SA 3100 uses the gas sorption 

method, in which gas molecules of known size are absorbed on sample surfaces. The 
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quantity of gas condensed and the resultant sample pressure are recorded at a constant 

temperature, which allows the construction of an isotherm (Coulter Corporation 1996). 

The isotherm data are then subjected to the BET (Brunauer, Emmett, and Teller) 

calculation for surface area of samples (Brunauer et al. 1938). 

Table 3.4 Average surface area of crumb rubber (-40 mesh)  

Average (m2/g) Std dev. C.V.(%) Average (m2/g) Std dev. C.V.(%)
30 (600) 0.040 0.0006 1 0.018 0.0017 10
40 (425) 0.047 0.0032 7 0.026 0.0122 47
50 (300) 0.064 0.0000 0 0.031 0.0059 19
80 (180) 0.103 0.0114 11 0.042 0.0078 19
100 (150) 0.152 0.0012 1 0.061 0.0021 3
-100 (75) 0.170 0.0053 3 0.105 0.0322 31

Ambient Rubber Cryogenic Rubber
Sieve No.(µm)

 

The microstructure analysis of crumb rubber particle is beneficial to understand 

the absorption and swell of the crumb binder during its reaction with a binder at a high 

temperature. Putman (2005) and Xiao et al. (2006) found that the surface morphology of 

crumb rubber particle can be evaluated using a scanning electron microscope (SEM). A 

Hitachi S3500N SEM was used to record images of individual crumb rubber particles at 

magnification levels of 60 and 2000. During the sample testing process, several crumb 

rubber particles were placed onto an aluminum specimen tab covered with double-sided 

carbon tape. These particles were not treated or coated prior to evaluation in the SEM. 

Then, the degree of each particle roughness of different types of crumb rubber from their 

micrographs was compared. The microstructure images of ambient and cryogenic are 

shown in Figures 3.1 and 3.2. These images also show that cryogenic crumb rubber has 

more smooth surface shape. Putman (2005) also indicated other crumb rubber particle 

sizes (e.g., 20 and 80 mesh) have similar properties as 40 mesh. 
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(a)      (b)  
Figure 3.1 Microstructure images of crumb rubber at 60x magnification (a) 40 mesh 

cryogenic (b) 40 mesh ambient (From Putman 2005) 
 

     

(a)      (b)  
Figure 3.2 Microstructure images of crumb rubber at 2000x magnification (a) 40 mesh 

cryogenic (b) 40 mesh ambient (From Putman 2005) 
 

Reclaimed Asphalt Pavement 

The sampling of RAP is a necessary process in order to reduce its variability that 

results in a loss of quality control for a recycling project.  RAP can be sampled from the 

roadway (by coring before the pavement is milled), from a stockpile, or from the haul 

trucks. The process for stockpile or haul-truck sampling is similar to the sampling process 

used for aggregates. It is important to get samples that accurately reflect the material that 

is available for use. For example, in a stockpile of RAP, some segregation may have 

occurred, and there may be parts of the pile that are coarser than the rest of the pile. 
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When sampling a pile, it is important to sample from several locations to avoid taking the 

entire sample from a segregated area (NCHRP 2001). The size of sample needed depends 

on the purpose of the sampling. To test the RAP for gradation and asphalt content or to 

monitor variability for quality-control testing, sample sizes of about 10 kg (22 lb) are 

usually adequate. Superpave specimens are much larger than Marshall or Hveem 

specimens, so more material will be needed when doing a Superpave mix design. 

Typically, a sample of at least 25 kg (55 lb) is needed (NCHRP 2001). 

RAP materials used in this study were taken from the same geographical area as 

the new aggregate sources (L and C) to ensure that the aggregate in the RAP had similar 

properties as the new one.  Both RAP sources satisfied the requirements of the South 

Carolina Department of Transportation (SCDOT).  

The ignition oven was used to obtain the asphalt content of the RAP and then the 

gradation analysis was conducted on the aggregate.  The NCHRP (2001) report indicated 

ignition ovens may cause degradation of some aggregates, so care should be used when 

analyzing the gradation of aggregates after the ignition oven. Experience with local 

aggregate can indicate whether the ignition oven is an appropriate method to use.  

The nominal maximum size of the aggregate used in this study was 9.5 mm. The 

RAP passed 12.5 mm (1/2 inch) sieve and retained on No. 4 sieve was referred to as +4 

RAP, while the RAP passed No. 4 sieve was referred to as -4 RAP. The analysis of the 

binder content and aggregate gradation was performed according to these two types (+4 

RAP and -4 RAP). The engineering properties of the aged binder and the gradation of the 

aggregate are shown in Tables 3.2 and Table 3.5; respectively.  

 

 



  38

Table 3.5 Component of two RAPs 

9.5 mm 4.75 mm 2.36 mm 0.60 mm 0.150 mm 0.075 mm
3/8" #4 #8 #30 #100 #200

+4 RAP 97 59 45 30 14 8 4.66
-4 RAP 100 100 88 57 24 14 6.96
+4 RAP 84 43 33 21 9 5.4 4.46
-4 RAP 100 100 90 56 16 8 5.66

Aggregate
Source

Type of
RAP

Asphalt
Binder (%)

L

C
 

 

Properties of Virgin Aggregates 

Two granite aggregate sources were selected (Sources C and L) for this study. 

The engineering properties of two aggregate sources were tested in accordance with test 

designation, as shown in Table 3.6, which gives the base sampling, testing procedure, and 

comparison limits information for the aggregates.  

The test results of base properties of aggregates are shown in Table 3.7, where the 

aggregate source C exhibits lower LA abrasion loss, absorption, and specific gravity 

values than that of source L, while the soundness percentage loss at 5 cycles is different 

at different sizes for two aggregate sources. At the same time, Source C shows a lower 

sand equivalent (clay content) and higher hardness than Source L. Obviously, when using 

aggregate source C, these physical properties should be beneficial in improving the 

workability of the asphalt mixture.  
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Table 3.6 Split sample aggregate tests (SC DOT Policy 2000) 

 

One main reason for selecting these particular aggregate sources was based on 

past experience. These quarries have been found to exhibit very consistent physical 

properties with regard to specific gravity, gradation and particle shape. Aggregate 

sampled from the quarry’s main stockpiles was designated as #789, Regular Screenings 

(RS), and Washed Screenings (WS), which coincide with the standard aggregate type 

designations as specified by AASHTO M43-88. The sampled aggregate was brought 

back to the laboratory where it was washed and oven dried, then sieved into the 

individual size fractions according to specification of AASHTO T96. The sieved 

gradations of two aggregate sources L and C are shown in Table 3.8, where aggregate 

source C exhibits a greater passing percentage of 0.75 mm material than source L. The 

distributions of two aggregate particle sizes are helpful in determining further blending of 

various aggregate types and achieve suitable gradation curves for the Superpave mix 

design.  

 



Table 3.7 Engineering properties of aggregate sources L and C 

Aggregate
Source

LA Abrasion
Loss (%)

Absorption
(%)

Sand
Equivalen Hardness

37.5 mm to
19.0 mm

19.0 mm
to 9.5 mm

9.5 mm
to 4.75

1 1/2" to
3/4"

3/4" to
3/8"

3/8" to
#4"

L 51 0.70 2.650 2.660 2.690 0.3 0.2 0.3 76 5
C 23 0.50 2.610 2.620 2.640 0.2 2.4 1.0 60 6

Specific Gravity Soundness % Loss at 5 Cycles

Dry (bulk) SSD (bulk) Apparent

 

 
Table 3.8 Gradations of aggregate Sources L and C 

37.5 mm 25.0 mm 19.0 mm 12.5 mm 9.5 mm 4.75 mm 2.36 mm 0.60 mm 0.150 mm 0.075 mm
1 1/2" 1" 3/4" 1/2" 3/8" #4 #8 #30 #100 #200
100 100 100 100 90 35 6.3 1.4 0.7 0.44
100 100 100 100 100 99.8 96 60.5 22.3 12
100 100 100 100 100 99.4 82.5 47.2 7.6 2.3
100 100 100 100 87.5 22.9 4.3 1.5 0.9 0.6
100 100 100 100 100 100 81.4 45.47 24.17 16.35
100 100 100 100 100 99.73 75.7 31.7 8.3 3.2

L

C

Aggregate
Source

Reg. Screenings

Type of Aggregate

#789 stone
Reg. Screenings

Man. Sand

Man. Sand

#789 stone
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Mixture Design 
 

Method 
 

 A vital component in the process of constructing an asphalt pavement is the 

design of the asphalt mixture that will be used for the pavement. Asphalt mixtures are 

different from most engineering materials in that the highest strength mixture design is 

not necessarily the best choice for the particular asphalt pavement application. The 

equivalent single axle loading (ESAL), desired surface texture, environmental conditions, 

and other factors are all considered in the designing of an asphalt mixture. The stability 

(resistance to deformation caused by traffic loading) and durability (resistance to 

weathering, cracking, and traffic abrasion) of the asphalt mixtures are also the two 

primary characteristics that are considered at the mix design stage. The workability of the 

mixture needs to be balanced with the stability and durability requirements of the 

particular pavement. It is important that the asphalt mixture is designed as an economical 

and practical mixture as possible (Lavin 2003).  

 

Asphalt Binder 

PG64-22 asphalt binder, most widely used in SC and many states all over the 

country, was used in this study. The base physical properties of the asphalt binder are 

shown in Table 3.1. The mix design was based on 0.3 to less than 3 million design 

ESALs,, where the average traffic speed ranges from 20 to 70 km/h.  However, it should 

be emphasized that proper or conservative binder selection does not guarantee total 

pavement performance. 
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 Fatigue cracking performance is greatly affected by the pavement structure and 

traffic. Permanent deformation or rutting is directly a function of the shear strength of the 

mixture, which is greatly influenced by aggregate properties. Low temperature cracking 

of a pavement correlates most significantly to the binder properties. So it is important for 

engineers to try to achieve a balance among the many factors affecting the the selection 

process of binders (Superpave mix design 2001). The use of RAP in this study should 

improve the performance of mixture at the high temperature but might reduce the 

cracking resistance at the low temperatures. However, a softer binder can decrease the 

ratios of these large molecular particles, increase the low temperature and fatigue 

resistance, and reduce the effect of the aged binder. Four RAP contents (0%, 15%, 25%, 

and 30% by weight of the modified mixture) were used in this study.  

 

Aggregate Structure 

In general, in Superpave mix design, the aggregate properties play a major role in 

overcoming permanent deformation. Fatigue and low-temperature cracking are less 

affected by aggregate characteristics. However, the effect of aggregate gradation is 

significant in determining the physical properties of the asphalt mixture. Selection of the 

design aggregate structure is accomplished by comparing the properties of a series of trial 

mixtures. Three trial blends are normally employed for this purpose. A trial blend is 

considered acceptable if it possesses suitable volumetric properties (based on traffic and 

environment conditions) at an appropriate design binder content. The 0.45-power 

gradation chart is used to define a permissible gradation that follows the requirement of 
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control points and restricted zone with respect to nominal maximum size of aggregate 

used in this study. The gradation curve is a combination of virgin and RAP aggregate.  

The distribution percentages of various aggregate sizes are determined in 

accordance with the aggregate specification of SC DOT. These combinations of the 

aggregate sources C and L are shown in Tables 3.9 and 3.10, respectively.  The passing 

percentage values of particle sizes of aggregate source C are close at various RAP 

percentages, as shown in Table 3.9. Table 3.10 shows that the design aggregate structures 

of the aggregate source L are the same when using different rubber types (ambient and 

cryogenic) at the same percentages of RAP, while these passing percentage values of 

aggregate structures are similar at different particle sizes regardless of the RAP 

percentages.  

Table 3.9 Design structure of aggregate source C 

0% RAP 15% RAP 30% RAP
 Sieve                                  Limits Ambient Ambient Ambient
12.5mm 98-100 100 100 100
9.5mm 90-100 94 93 92
4.75mm 54-70 61 59 56
2.36mm 32-48 41 41 40
0.6mm 14-26 20 21 22
0.15mm 5 --13 8.4 8.7 8.2
0.075mm 3 --9 5.04 5.20 4.77
Aggregate Blend
Stone 789 - 50 49 48
Regular Screenings - 18 15 7
Manufactured Screenings - 31 20 14
Lime - 1 1 1
-4RAP - 0 6 12
+4RAP - 0 9 18

Aggregate Size Specification
Type of  Superpave mixture

 

 



Table 3.10 Design structure of aggregate source L 

 Sieve                                  Limits Ambient Cryogenic Ambient Cryogenic Ambient Cryogenic Ambient Cryogenic
12.5mm 98-100 100 100 100 100 100 100 100 100
9.5mm 90-100 94 94 94.2 94.2 94.1 94.1 94 94
4.75mm 54-70 61 61 62.7 62.7 59.4 59.4 61 61
2.36mm 32-48 41 41 42 42 38.2 38.2 40 40
0.6mm 14-26 24 24 24.7 24.7 22.9 22.9 24 24
0.15mm 5 --13 7.7 7.7 8.3 8.3 8.9 8.9 9.8 9.8
0.075mm 3 --9 4.11 4.11 4.5 4.5 5.14 5.14 5.66 5.66
Aggregate Blend
Stone 789 - 59 59 53 53 56 56 53 53
Regular Screenings - 22 22 12 12 8 8 8 8
Manufactured Screenings - 18 18 19 19 10 10 8 8
Lime - 1 1 1 1 1 1 1 1
-4RAP - 0 0 9 9 15 15 18 18
+4RAP - 0 0 6 6 10 10 12 12

Aggregate Size Specification
Type of  Superpave mixture

0% RAP 15% RAP 25% RAP 30% RAP
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At the same time, the rubber percentage of the mixture did not change the 

aggregate gradation trends. On the other word, the mixture used the same gradation curve 

at different rubber percentages when using one type of RAP percentage (e.g., 0%, 15%, 

25% or 30% RAP). These similar gradation curves reduced the variability of mixture 

properties caused by the aggregate source. The 0.45-power gradation curves of the 

mixtures used in this study are shown in Figure 3.3. In order to achieve the Superpave 

volumetric requirements of the mixtures, these gradation curves were adjusted several 

times prior to selecting them as the design aggregate structures.  
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Figure 3.3 Gradations of 9.5 mm of all mixtures  
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Crumb Rubber 

The experimental design detailed in this study included the use of two rubber 

types (ambient and cryogenic), four rubber contents (0%, 5%, 10%, and 15% by weight 

of virgin binder), and one crumb rubber size (-40 mesh [-0.425 mm]). The wet process 

was used to make the modified binders, where the rubber was blended with the virgin 

asphalt binder at a high temperature (approximate 177oC) for 30 minutes.  

 

Volumetric Properties of the Mixture 

The volumetric proportion of asphalt mixture, playing a key role in Superpave 

mix design procedure, is an important factor that must be taken into account when 

considering asphalt mixture behavior. The volumetric properties of a paving mixture 

provide some indication of pavement service performance. However, these volumetric 

properties are only accompanied by the virgin binder and aggregate. The original 

Superpave mix design system did not address the volumetric analysis of RAP and crumb 

rubber materials and no guidelines on such analysis are available at this time. Recently, 

some researchers have conducted several studies to give some recommendation and 

guidelines for these materials (FHWA 1997b; NCHRP 2001; Xiao et al. 2006).   

A nominal maximum size 9.5mm Superpave mixture was used for the mix design 

in this experiment.  This particular mix design is used as a primary route surface course 

mix in many states including South Carolina.  The SCDOT 9.5 mm Superpave 

volumetric and compaction specifications, as shown in Table 3.11, were used.   
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Table 3.11 SCDOT 9.5 mm Superpave volumetric specifications 

% Max. Density at Ndes 96

% VMA >15.5
%Voids Filled 70 - 80
% Max. Density at Ni < 89
% Max. Density at Nm < 98

Dust to Asphalt Ratio 0.6-1.2

Superpave 9.5 mm Mix Specifications

 

The procedures described in AASHTO PP 19 (Volumetric Analysis of Compacted Hot 

Mix Asphalt) and AASHTO T312 (Preparing and Determining the Density of Hot Mix 

Asphalt Specimens by Means of the Superpave Gyratory Compactor) regarding the 

preparation of HMA specimens were followed.  

 

Sample Mixing 

A mechanical mixer was used to blend the rubber and the virgin binder, which 

were reacted in one quart cans. Each can was filled with 600 grams of virgin binder and 

sealed until it was blended with crumb rubber. The crumb rubber was added to the 

asphalt binder and reacted for 30 minutes at a reaction temperature of 177 °C (350 °F) 

and a reaction speed of 700 rpm. The reaction time of 30 minutes was considered suitable 

based on a preliminary study indicating that the mixing time did not significantly 

influence the binder properties (Thompson and Xiao 2004).  The reacted modified 

binders were allowed to cool at the room temperature and sealed prior to Superpave mix 

design. Previous research conducted by Asphalt Rubber Technology Services (ARTS) 

staff, Clemson University, has developed some detailed information regarding the 

behavior of asphalt binder reacting with crumb rubber (Xiao et al. 2006; Putman 2005).  
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 The aggregate was brought from the quarry and dried in the oven at a temperature 

of 110 °C. The dried aggregate was sieved to desired size prior to mixing. At the same 

time, the RAP materials were also oven-dried and sieved to obtain particles with target 

sizes. Each aggregate was weighed into a pan with the proper weights, a total weight of 

4500 grams, while the RAP material was separated into other pans. Hydrated lime, which 

is used as an anti-strip additive, was added at a rate of 1% by dry mass of virgin 

aggregate. The lime was blended uniformly to cover the dry aggregate surface, and then 

5% water by weight of the aggregate was added and mixed thoroughly before placing the 

sample in the oven. The experimental design flow chart, shown in Figure 3.4, will be 

used for this study. 

 

Figure 3.4 Experimental design flow chart 
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 Superpave mix design defines that the laboratory mixing and compaction 

temperatures can be determined by using a plot of viscosity versus temperature. The 

selection of mixing and compaction temperatures is corresponding with binder viscosity 

values of 0.17±0.02 Pa s and 0.28±0.02 Pa s; respectively. However, Superpave mix 

design does not mention that these viscosity ranges are valid for modified asphalt binders. 

It is necessary for the researchers to consider the manufacture’s recommendations. 

Especially, in this study, due to the complexity of the mixtures (crumb rubber and RAP in 

the mixture), it is difficult to determine the appropriate mixing and compaction 

temperatures. Previous research has given the guidelines of the mixing containing crumb 

rubber or RAP to select the temperatures (FHWA 1997a, 1997b; NCHRP 2001; Xiao et 

al. 2006). 

 The Superpave gyratory compactor (SGC) was used to compact the specimens, 

which has a diameter of 150 mm. The 0.3 to < 3 millions ESALs was selected as the 

design number of ESALs for all mixtures. The Nini, Ndes, and Nmax values used for this 

study were 7, 75, and 115; respectively.   

The oven-dried RAP materials, at the room temperature, were blended with the 

virgin aggregate at the specified (target) mixing temperatures.  The blended mixture was 

heated for about one hour in order to maintain the target mixing temperature before the 

modified binder (rubber and virgin binder) was added to the mixtures, and then the 

component was blended until the aggregate was thoroughly coated by the binder. Finally, 

the mixed mixture was heated for two hours as short term aging prior to compaction. The 

detailed information and volumetric result data set of the Superpave mix design for each 

mixture are given in Appendix A.  
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Moisture Sensitivity 

The AASHTO T283 (Resistance of a Compacted Bituminous Mixture to Moisture 

Induced Damage) was used to test the moisture susceptibility of mixture. Six specimens 

from each mixture were made at the optimum asphalt binder contents, and then 

compacted to 7 ± 1 percentage air voids.  One subset, consisting of three specimens, is 

considered the control set (dry samples). Other subset of three specimens is wet 

conditioned, where the specimens are subjected to a partial vacuum with water to 70-80 

percent of the air void volume, followed by a 24-hour moisture curing at 60oC. The wet 

subset specimens are then placed in a 25oC bath for 2 hours prior to determining their 

indirect tensile strength (ITS). Then, tensile strength ratio (TSR) of each mixture is 

determined as a ratio of the average tensile strengths of the conditioned subset divided by 

the average tensile strengths of the control subset. SCDOT requires that the TSR values 

should be greater than 85% and minimum wet ITS value to be 65 psi (449 kPa).  

 

Fatigue Test Procedures 

Beam Fabrication 

Fatigue beams were made in the laboratory. The total aggregate weight of 10,800 

grams was used for making one big beam. The mix was placed in an oven for two hours 

to simulate the short term aging. The vibratory compactor equipment, as shown in Figure 

3.5, was used to compact the flexural bending fatigue beams used in this study. The 

compaction time was dependent on the types of the mixture (i. e., the percentage of 

rubber and RAP). The compacted beam was sawn into two small test fatigue beams after 

bulk specific gravity testing. A compacted beam and a sawed small beam are shown in 
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Figure 3.6. Test specimens were sawn to a 380 mm (15 inches) length by 63 mm (2.5 

inches) width and 50 mm (2 inches) thickness. Figure 3.7 gives the dimensions of the 

final test specimens.  

 

Figure 3.5 Vibratory compactor 

 

 

Figure 3.6 Fatigue beams of the mixture 
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Figure 3.7 Fatigue beam size of the mixture 

After the specimens were sawn, volumetric analysis was conducted on various 

mixtures. The beams were placed in a temperature-controlled room at approximately 25 

°C (77 °F) for a week before obtaining their specific gravities and air voids.  

 

Fatigue Beam Testing 

Beam specimens ready for testing were stored at the room temperature. All tests 

were performed in two controlled-temperature rooms at 20.0 ± 0.5°C (68 ± 32.9°F) and 

5.0 ± 0.5°C (41 ± 32.9°F). In order to maintain the testing temperature, each beam 

specimen was placed in the environmental chamber of the fatigue testing equipment for 

two hours prior to beginning the test. The test apparatus, as shown in Figure 3.8, 

developed as part of SHRP A-003A and described in SHRP Report A-404 and other 

references (Tayebali et al., 1994a and 1994b), subjects beam specimens to four-point 

bending with free rotation and horizontal translation at all load and reaction points and 

forces the specimen back to its original position at the end of each load pulse, as shown in 

Figure 3.9. 

In this study, a repeated sinusoidal loading at a frequency of 5 Hz was used. The 

control and data acquisition software measured the deflection of the beam specimen, 

computed the strain in the specimen and adjusted the load applied by the loading device 
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such that the specimen experienced a constant level of strain on each load cycle.  

           

(a)      (b) 

           

(c)      (d) 

Figure 3.8 Fatigue beam test apparatus (a) test head, (b) beam installation,  
(c) beam testing, (d) tested beam  

 

 

 

Figure 3.9 Simulation loading of fatigue beam  
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In addition, test apparatus recorded load cycles, applied load, and beam 

deflections. Failure is assumed to occur when the stiffness reaches half of its initial value, 

which is determined from the load at approximately 50 repetitions; the test is terminated 

automatically when this load has diminished by 50 percent. Maximum stress, strain, and 

other variables are determined as follows: 

1. Maximum tensile stress (Pa): 

2

3
bh
aP

=σ                       (3-1) 

where,  

P = applied peak-to-peak load, in Newton; 

b = average beam width, in meters; 

h = average beam height, in meters; and 

a = space between inside clamps, in meters 

2. Maximum tensile strain (m/m): 

22 43
12

al
hd
−

=ε                      (3-2) 

where,  

δ = beam deflection at neutral axis, in meters; and 

l  = length of beam between outside clamps, in meters 

3. Flexural stiffness (Pa): 

εσ /=S              (3-3) 

 
4. Phase angle (deg.): 

θϕ f360=            (3-4) 
  

where,  

f = load frequency, in Hz; and 

θ  = time lag between and maxP maxδ , in second 

5. Dissipated energy (J/m3) per cycle: 

)sin(ϕπσε=D           (3-5) 
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6. Cumulative dissipated energy, J/m3

 

∑
=

=

ni

i
iD

1
            (3-6) 

where,  

Di = D for the ith load cycle 
 

A detailed description of the test method is described as AASHTO Designation T 321-03.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER IV 
EXPERIMENTAL STATISTICAL METHODS 

 
 

Previous research indicated that the stiffness, fatigue life, and cumulative 

dissipated energy are associated with various variables (Tayebali et al. 1994). The 

statistical analysis for stiffness shows that asphalt and aggregate types, temperature, and 

air void content significantly influence the stiffness for all test types, while the asphalt 

content and stress/strain do not appear to be a big influence on the stiffness for flexural 

beam tests. In general, the ranking observed for the cumulative dissipated energy is 

similar to that observed for fatigue life. Previous research also showed that the mode of 

loading for fatigue life is related to various variables that involve air void content, stress 

or strain, and stiffness (Tayebali et al. 1994).  

In this study, on the basis of the effects of crumb rubber and RAP, two additional 

variables, percentages of rubber and RAP, were employed in creating a group of the 

fatigue predictive models. The generalized linear modeling (GLM) and artificial neural 

network (ANN) were used for development of models predicting fatigue life of asphalt 

mixture.  

 

Generalized Linear Model 

Regression analysis is a collection of statistical techniques for modeling and 

investigating the relationship between a response variable and a set of regressor or 

predictor variables. Applications of regression are numerous and occur in almost every 
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applied field including engineering, the chemical/physical, and other sciences (Myers et 

al. 2001). In this study, the software Microsoft Excel and Statistical Analysis System 

(SAS) were used to perform statistical regression analysis of the fatigue prediction 

models on the research data. The multiple linear regression analysis plays a key role in 

constructing fatigue predictive models of the mixture. The air void content or VFA, 

stiffness, dissipated energy per cycles, and strain or stress were considered independent 

variables and the fatigue life was considered the dependent variable.  The use of the 

general linear models was accomplished in accordance with the following process.  

The following regression model was used in this study (Mendenhall and Sincich 

1994): 

εββββ +++++= kk xxxy ............22110          (4-1) 

 where, 

  y = response or dependent variable; 

   = regressor or independent variables; and kxxx ,......, 21

  kββββ ,......,, 210  = regression coefficients or model parameters 

Typically, the method of least squares is used to estimate the regression 

coefficient in a multiple linear regression model, which is presented in Table 4.1.  

Table 4.1 Data for multiple linear regression 

Y X1 X2 … Xk

Y1 X11 X12 … X1k

Y1 X21 X22 … X2k

… … … …

Yn Xn1 Xn2 … Xnk  

The equation 4-1 can be rewritten in terms of the observation in Table 4.1 as  

iikkii xxxy εββββ +++++= ............22110  
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    or  

nixy iij

k

j
J ,...,2,1,

1
0 =++= ∑

=

εββ          (4-2) 

The least square function is shown as 
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The function S is to be minimized with respect to kββββ ,......,, 210 . The least square 

estimators, say  must satisfy kbbbb ,......,, 210
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Simplifying Equation 4-4, it is easy to obtain the following equations: 
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These equations are called the least squares normal equations. The solution to the normal 

equations will be the least squares estimators of the regression coefficients 

. It is simpler to solve the normal equations if they are expressed in a 

matrix notation. The model in terms of the observation, Equation 4-2, may be written in 

matrix notation as  

kbbbb ,......,, 210
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εβ += Xy  
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In general, y is an (n×1) vector of the observations, X is an (n×p) matrix of the level of 

the independent variables, β  is a (p×1) vector of the regression coefficients, the ε  is an 

(n×1) vector of random errors. The least squares estimator of β  is  

yXXXboryXXbX '1''' )( −==          (4-6) 

where b is the ordinary least squares estimator of β  to distinguish it from other 

estimators based on the least squares idea. It is easy to see that the matrix form of the 

normal equation is identical to the scalar form. The equation (4-6) can be written as 

following matrix equation:  
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The fitted regression model is  

Xby =ˆ             (4-7) 

In scalar notion, the fitted model is  
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In multiple linear regression problems, certain tests of hypotheses about the model 

parameters are helpful in measuring the usefulness of the model. The test for significance 

of regression is a test to determine if there is a linear relationship between the response 

variables and subset of the regressor variables. The analysis of variance (ANOVA) for 

significance of regression model is shown in Table 4.2.  

Table 4.2 ANOVA for significance of regression in multiple regression models 

Source of Variation Sum of Squares Degrees of Freedom Mean Square F0

Regression SS R k MS R MS R /MS E

Error or residual SS E n-k-1 MS E

Total SS T n-1  

2

1
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Where, 

iŷ  = the predicted value of  iy

y  = mean value of  iy

Moreover, in order to find a measure of how well a multiple regression model fits 

a set of data, it is necessary to use the multiple regression equivalent of R2, the coefficient 

of determination for the straight line model. It is defined as following: 
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R2 is a sample statistic that represents the fraction of the sample variation of the y values 

that is attributed to the regression model. Thus, R2=0 implies a complete lack of fit of the 

model to the data, where R2=1 exhibits a perfect fit, with the model passing through 

every data point. In general, the lager the value of R2, the better the model fits the data.  
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Previous research indicated that one of the assumptions necessary for ANOVA 

and GLM is that the dependent and independent variables are normally distributed. 

Distribution for stress, strain, stiffness, cycles to failure, and cumulative dissipated 

energy were reviewed and found to be log-normally distributed. Therefore, log 

transformations (using natural logarithm, base e) were used in ANOVA and GLM 

through the regression analysis (Tayebali et al. 1994). This analysis method was also 

employed in this study. Since some replicates (2-6) were included in the experimental 

design, it was possible to estimate the variance associated with specimen preparation and 

testing. The coefficient of variation for log-normally distributed data may be computed 

using the following relationship: 

5.0)1(*100 −= VAReCV                                  (4-9) 

where, 

CV = coefficient of variation in percentage; 

VAR = variance of log-transformed data or MSE from GLM; 

e = base of natural logarithms; and 

MSE = mean square error 

 

Artificial Neural Network 

Chapters I and II have given some basic concepts for an artificial neural network 

(ANN), while the detailed analysis process will be discussed here. Artificial neural 

networks are adaptive model-free estimators. An artificial neural network can be 

presented by the following properties in mathematical terms (Müller and Reinhardt 1990; 

Rumelhart et al. 1986; Juang and Chen 1999; Chen 1999): 

1. Each neuron or node consists of a simple processing unit 

2. A state variable is associated with each node 
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3. A real-valued weight wij is associated with each link between nodes i and j  

4. A real-valued bias bi is associated with each node i 

5. A transfer function, fi, is defined for each node, i, which determines the state 

of the node as a function of its bias, the weights of its incoming links, and the 

states of the nodes connected to it by the links 

6. A pattern of connectivity among the nodes is defined 

7. A propagation rule is defined 

8. A learning rule is defined 

Backpropagation, a popular training algorithm, is commonly adopted for training 

a feed-forward neural network and is a systematic method for training multiple-layer 

artificial neural networks. It played a critically important role in the resurgence of the 

neural network field in the mid-1980s (Chen 1999). Backpropagation algorithm, used in 

this study, was created by generalizing the Widrow-Hoff learning rule (Tsoukalas and 

Uhrig 1996) to multiple-layer networks and using nonlinear differentiable transfer 

functions. Properly trained backpropagation networks tend to give reasonable answers 

when presented with input they have never seen. This generalization property makes it 

possible to train a network on a representative set of input/target pairs and obtain good 

results without training the network with all possible input/output pairs (Chen 1999).  

Backpropagation is a supervised learning algorithm because the network is trained 

and adjusted by comparing the network output and the targeted output. The neural 

network training starts with the initiation of all of the weights and biases with random 

numbers. The input vector is presented to the network and intermediate results propagate 

forward to yield the output vector. The difference between the target output and the 

network output represents the error. The error is then propagated backward through the 

network, and the weights and biases are adjusted to minimize the error in the next round 
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of prediction. The iteration continues until the error goal is reached. The iterative process 

is shown in Figure 4.1. 

Scaling Input/Output Vectors

Assigning Initial Weights 

Calculating Output

Out_err = Target- Prediction 

 

Figure 4.1 Flowchart illustrating backpropagation training algorithm (Chen 1999) 
 
 

Backpropagation training involves two passes. In the forward pass, the input 

propagates through the network to produce an output. In the reverse pass, the calculated 

Update Weights for Output-Layer Neurons 

Update Weights for Hidden-Layer Neurons 

Backpropagation Training Completed 

Out_err < Goal_err (?) YES

NO
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network errors propagate backward through the network where they are used to adjust the 

weights. The weights from a node i to a node j at iteration k is updated using the 

following equation: 

 
)1()()1( +∆+=+ kwkwkw ijijij        (4-10) 

)()()1( kkokw jpipij δη∑=+∆                   (4-11) 

where,  

η  = learning rate; 

P = training set; 

ipo  = output of node i in a previous layer; and  

jpδ =an associated error for node j 

jpδ  is defined as follows: 

))(1( jjjjj otoo −−=δ  for output layer nodes 

mjmjjj woo δδ ∑−= )1(  for hidden layer nodes                 (4-12) 

where,  

jt  = target value for node j if is in the output layer; and 

m = nodes in the layer following the layer where node j resides.  

 
The bias term is updated in a similar way as follows: 

∑+=+ jpijij kbkb δη)()1(                               (4-13) 

Several techniques such as adding a momentum term, adjusting learning rate, and 

adjusting the exponential decay constant in the sigmoid function, are often used to 

improve the effectiveness and efficiency of backpropagation training. To prevent the 

network from taking steps that are too large in the weight space, choosing an appropriate 

learning rate is particularly important in backpropagation.  
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Backpropagation training algorithm may be implemented in a program written in 

C/C++, and the neural network toolbox of MATLAB. The source codes of the ANN 

toolbox of MATLAB are available and can be modified easily to adapt to different 

situations. Another incentive to use the ANN toolbox of MATLAB is that is can be used 

with data sets formatted on popular spreadsheet software such as Excel through a macro 

called ExcelLink (Math Works Inc. 1999). The ExcelLink macro allows MATLAB 

commands to be issued from within Excel. This feature greatly simplifies data 

manipulation and sharing between programs (Juang and Chen 1999; Chen 1999).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER V 
EXPERIMENTAL RESULTS AND DISCUSSIONS 

 
 

In this study, the experimental tests were performed in accordance with the 

requirements and specifications of related AASHTO and/or ASTM specifications. The 

data were analyzed using statistical and artificial neural network (ANN) methods. The 

results and discussions included in this chapter are as follows:  

1. Hypothesis and assumptions  

2. Binder property analysis 

3. Superpave result analysis 

4. Fatigue predictive models  

 

Hypothesis and Assumptions 

In general, experimental process and data will be influenced by a series of 

assumptions. Previous researchers had presented some hypothesis for the fatigue 

behavior of asphalt-aggregate mixes both as tested in the laboratory and as reflected 

within analytical pavement models. Some of hypothesis became targets for detailed 

investigation because of their strong links to fatigue performance testing and mix analysis 

(Tayebali et al. 1994). Further insights regarding this hypothesis, developed as the 

investigation progressed, are shown blow. 

1. Fatigue cracking is caused by the repetitive application of traffic loads. For a typical 

heavy-duty pavement, fatigue results from tensile stresses or strains at the underside 
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of the asphalt aggregate layers. The maximum principal tensile strain is considered 

the primary reason of fatigue cracking. 

2. For the purpose of fatigue analysis, the critical stress or strain state in the pavement 

structure can be estimated with reasonable accuracy by the theory of linear elasticity. 

3. In the laboratory fatigue testing, pulsed loading is preferred to sinusoidal loading 

because the rest period permits stress relaxation similar to that happening under in-

service traffic loading. 

4. Although pavements become fatigued in response to repeated flexure, fatigue is 

basically a tensile phenomenon, and test specimens can be evaluated equally well 

under either tensile or flexural loading. 

5. Fatigue tests accelerated by the application of large stress or strain levels are 

satisfactory for mix analysis and design. 

6. Under simple loading, cracking initiation in a given mix is related to strain or stress 

level as follows: 

b
f aN )/1( ε=  or          (5-1) d

f cN )/1( σ=

Where, 

fN   = number of load application or crack initiation; 

σε ,   = tensile strain and stress, respectively; 

a, b, c, d  = experimentally determined coefficients  

7. During mixing and compacting procedures, the virgin aggregate would be combined 

with RAP uniformly in the modified mixtures.  

8. The air void of fatigue beams will be considered to be consistent. In addition, it is 

assumed that every part of fatigue beam under the pulse loadings uniform.  

9. The percentage level of RAP (Rp) and crumb rubber (Rb) will be assumed the 
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following relationships with fatigue life (Nf) and initial stiffness of asphalt pavement 

(So), respectively. 

(1/ ) , ( )b d
f p oN a R S c R= = p           (5-2) 

( ) , ( )f h
f b o bN e R S g R= =           (5-3) 

a, b, c, d, e, f, g, h = experimentally determined coefficients 

10. The aged binder in RAP and virgin binder will surround a uniform film outside of the 

aggregate during and after high temperature mixing process and reach a consistency, 

which will make the aged and virgin binder work homogeneously in the asphalt 

mixtures. 

 

Binder Property Analysis 

The rheological properties and Superpave performance grade of the reclaimed and 

virgin asphalt binders were tested and discussed in accordance with AASHTO standards 

in previous chapters. However, the related fatigue rheological properties (e.g., viscosity 

and G*sinδ) of the binders were not presented and are discussed in the following sections.  

Viscosity values of various modified binders are shown in Figures 5.1 to 5.4 and 

Appendix B. Figure 5.1 shows that the viscosity of the modified binder, composed of two 

type of aged binders (L and C) and ambient crumb rubber, increases as the percentage of 

crumb rubber increases regardless of the RAP types (L and C). For the modified binder 

containing the same percentage of crumb rubber, as expected, increasing the percentage 

of aged binder also results in an increase in viscosity of modified binder. The same trends 

were observed for all mixtures regardless of the aged binders of sources L and C. 

However, the statistical analysis shows that, in most cases, the modified binder used with 

RAP C has a significantly lower viscosity value than one used with RAP L at the 95% 
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level of confidence. Moreover, the viscosity of the binder blended with a binder graded as 

PG 64-22 shows a higher value than the binder blended with the soft binder (PG 52-28). 

From Figure 5.2, the same trends were evident when using cryogenic rubber. Figures 5.3 

and 5.4 exhibit the effects of two types of crumb rubber (ambient and cryogenic) using 

RAP L and C, respectively. In most cases, statistical analysis of viscosity values, as 

shown in these figures, indicates that there are no significant differences in the viscosity 

values between the ambient and cryogenic rubber produced binder.  
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Figure 5.1 Viscosity comparison of the modified binder with aged binder extracted 

from RAPs L and C containing ambient rubber 
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Figure 5.2 Viscosity comparison of the modified binder with aged binder extracted 

from RAPs L and C containing cryogenic rubber 
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Figure 5.3 Viscosity comparison of the modified binder with ambient and cryogenic 

rubber containing aged binder extracted from RAP L 
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Figure 5.4 Viscosity comparison of the modified binder with ambient and cryogenic 
rubber containing aged binder extracted for RAP C 

 
 

 There are no previous specifications available for specific components in 

Superpave mix design regarding the mixing and compaction temperatures of modified 

binders. However, some researchers have developed some guidelines for mixing and 

compaction temperatures when using RAP or rubber (Raad et al. 2001; Way 2003). The 

temperature study, shown in Tables 5.1 and 5.2, were determined in accordance with 

previous research projects. These temperatures, which were provided by the asphalt 

producers, correspond to the temperature at which the binder viscosity is 0.17 ± 0.02 Pa.s 

for mixing and 0.28 ± 0.03 Pa.s for compacting as required by AASHTO TP4 (Lavin 

2003). 
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Table 5.1 Mixing temperatures of modified mixtures 

0 5 10 15
148 150 152 155
155 160 165 172
173 175 177 177

15% 175 176 177 177
25% 176 177 178 179
30% 176 177 178 179

Rubber (%)

Virgin Aggregate 
Binder (PG64-22)
Binder (PG52-28)

Temperature (oC)

RAP

 
 
 

Table 5.2 Compacting temperatures of modified mixtures 

0 15 25 30 30 (52-28)
0 150 155 160 162 140
5 153 158 163 165 143

10 156 161 165 167 146
15 159 164 165 167 150R

ub
be

r(
%

)

Temperature (oC)
RAP (%)

 

 
 Both mixing and compacting temperatures increase as the percentages of RAP or 

crumb rubber increase regardless of the types of RAP and rubber.  The increase in 

temperature, coming from the increase of viscosity values, is caused by aged binder and 

the addition of crumb rubber in order to produce modified binders. 

 Previous research indicated that, for a given aggregate source and air-void content, 

it could be seen that mix fatigue life correlates quite well with the loss stiffness (G* sinδ) 

value of the aged binder. Increases in loss stiffness were accompanied by rather 

significant decrease in fatigue resistance. The binder loss stiffness seemed to be a logical 

candidate for inclusion in binder specification. However, it was generally not a sufficient 

indicator of the relative fatigue resistance of the mixtures (Tayebali et al. 1994). 

 Figure 5.5 and Table C.1 (Appendix C) present G*sinδ values of the modified 

binder with ambient and cryogenic rubber containing aged binder L. The loss strength 
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values were attained at a temperature of 25 ºC using specimens that were aged using a 

long term aging (RTFO+PAV). The aging process simulates the performance of asphalt 

mixture in the field for 15 to 20 years. G*sinδ is strongly associated with fatigue life of 

the mixture and has become a basic parameter to describe fatigue characteristics of 

asphalt binder, so the study of loss strength is beneficial for researchers and engineers to 

analyze fatigue behavior of asphalt pavements. Superpave mix design has a specification 

requirement for G*sinδ which indicated that this value must be less than 5000 kPa, which 

is depicted on the charts as a bold dash horizontal line.  If the loss strength value is 

greater than 5000 kPa, the fatigue life of the asphalt pavement cannot meet the 

requirements of Superpave mix design. Figure 5.5 shows that the G*sinδ value increases 

as the RAP content increases, while the increase of rubber content decreases this value. 

The results indicate that the mixtures with a high percentage RAP have the higher loss 

strength, while the rubber is helpful in improving the fatigue resistance of the binder.  

The G*sinδ value of modified binder, containing PG64-22 virgin binder with 30% 

RAP, is greater than 5000 kPa in a low percentage rubber (0 and 5%), while this value is 

less than 3000 kPa when using a softer binder (PG52-28). Obviously, the softer binder 

plays a key role in improving the fatigue resistance of asphalt binder and extending the 

aging performance of the binder. There were no statistical differences between G*sinδ 

values of the modified binders made with either ambient or cryogenic rubber. 

Figure 5.6 and Table C.2 (Appendix C) show G*sinδ values of the modified 

binder made with ambient and cryogenic rubber and containing aged binder C. The 

results indicated that, in general, the same trends existed for RAP source C as source L. 

 

 



 74

0

1

2

3

4

5

6

7

0 5 10 15

Percentage of Rubber

G
*S

in
( δ

) M
Pa

PG52-28 Ambi(30%RAP) PG64-22 Ambi(0%RAP) PG64-22 Ambi(15%RAP) PG64-22 Ambi(25%RAP) PG64-22 Ambi(30%RAP)

PG52-28 Cryo(30%RAP) PG64-22 Cryo(0%RAP) PG64-22 Cryo(15%RAP) PG64-22 Cryo(25%RAP) PG64-22 Cryo(30%RAP)

 

Figure 5.5 G*sin δ comparison of the modified binder with ambient and cryogenic 
rubber containing aged binder extracted from RAP L 
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Figure 5.6 G*sin δ comparison of the modified binder with ambient and cryogenic 
rubber containing aged binder extracted from RAP C 
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Superpave Mix Design Analysis 

Optimum Binder Content Analysis 

In this study, the optimum asphalt binder content (OBC) was defined as the 

amount required to achieve 4.0% air voids at a given number of design gyrations (Ndesign= 

75).  Table 5.3 and Figure 5.7 show the OBC for mixtures with various percentages of 

RAP, rubber, and rubber types.  Table 5.3 shows that the OBCs of the mixtures decrease 

slightly as the percentage of RAP increases for both rubber types (cryogenic and ambient) 

and source of RAP.  The OBCs of the cryogenic modified binder were found to be 

slightly higher than those of the ambient binder at the same percentage of RAP when 

using aggregate L.  

As the percentage of crumb rubber increases, the OBCs in the mixtures also 

slightly increase. There was not a trend between OBC values of mixtures containing 

30%RAP and made with PG64-22 asphalt binder compared to mixtures used the softer 

binder (PG52-28). The OBC values of mixture using aggregate L are slightly higher that 

those of mixtures made with aggregate C. At the same time, previous research indicated 

that a high amount of rubber particles swell in the asphalt due to greater absorption of 

some of the lighter fraction (aromatic oils) from the binder. These crumb rubber particles 

form a viscous gel with an increase in the overall viscosity of the modified binder. Due to 

the increased viscosity, more modified binder is needed to achieve the target air void of 

the mixture at the specified mixing and compacting temperatures (Airey et al. 2003; 

Green and Tonlonen 1997; Heitzman 1992; Bahia and Davis 1994; Zanzotto and 

Kennepohl 1996; Kim et al. 2001).  
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Table 5.3 Optimum binder content of the mixtures  

RAP 0% 5% 10% 15% 5% 10% 15% 0% 10%
0% (64) 5.40 5.60 5.85 6.35 5.25 6.08 6.11 5.00 5.75
15% (64) 5.25 5.45 5.75 5.90 5.25 5.85 5.30 5.10 5.53
25% (64) 4.70 5.02 5.08 5.65 5.02 5.18 5.10 N/A N/A
30% (64) 4.82 4.59 5.12 5.25 4.80 5.30 5.08 N/A 5.10
30% (52) 4.65 4.95 4.90 5.05 N/A N/A N/A 4.85 5.00

Ambient Rubber (%) Cryogenic Rubber (%) Ambient Rubber (%)
Aggregate L Aggregate C

 

Note:   
(64):  PG 64-22 asphalt binder; (52): PG52-28 asphalt binder  

             N/A:  Not be tested in this study 
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Figure 5.7 Optimum binder contents of the mix designs using aggregate L 

 

 

 

 



 77

Indirect Tensile Strength  

 The ITS test is often used to evaluate the moisture susceptibility of an asphalt 

mixture in Superpave mix design process. A high wet ITS value typically indicates that 

the mixture will perform well with a good resistance to moisture damage. At the same 

time, mixtures that are able to tolerate high strain prior to failure are more likely to resist 

cracking than those unable to tolerate high strains. The detrimental influences of moisture 

are called stripping, which produces a loss of strength through weakening the bond 

between the asphalt binder and the aggregate. The loss of strength can be sudden and 

catastrophic where the asphalt peels off the aggregate, the cohesion of the mixture is lost, 

and distresses develop rapidly. The more typical issue is that there is a gradual loss of 

strength over a period of years which contribute to the development of many distresses 

including rutting and shoving in the wheel paths. The use of the anti-stripping additive is 

inevitable and helpful to reduce the moisture damage during a long term performance of 

the asphalt pavement if the mixtures are susceptible to moisture damage.  

 In this study, AASHTO T283 test procedures were performed to 

determine the moisture susceptibility of the mixture. Three dry and wet specimen subsets 

were tested. The mean and standard deviation of ITS values are shown in Appendix D. 

The ITS and TSR values of specimens, containing different percentages of ambient 

rubber and RAP L, are shown in Figure 5.8 and Table 5.4. SCDOT’s requirement are that 

all mixture must have at least 448 kPa (65 psi) wet ITS value and a minimum of 85% 

TSR values. With respect to the effect of rubber percentage, it can be seen that the 

increase of rubber content results in the decrease of ITS values at same percentage of 

RAP regardless of specimen types (dry or wet). The mixture containing 15% ambient 
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rubber used 0% and 15% RAP have the TSR values less than 85%. The ITS values of all 

wet specimens are higher than 448 kPa (65 psi). With respect to the effect of RAP 

percentage, Figure 5.8 and Table 5.4 shows that, in general, the increase of RAP content, 

from 0 to 30%, leads to an increase of ITS values at the same percentage rubber. 

Table 5.4 TSR values of mixture made with aggregate L 

TSR
RAP 0% 5% 10% 15% 5% 10% 15%

0% (64) 86 97 85 78 90 93 61
15% (64) 86 102 96 76 86 94 69
25% (64) 88 92 93 90 85 113 80
30% (64) 94 100 100 90 94 97 97
30% (52) 86 86 89 90 N/A N/A N/A

Ambient Rubber (%) Cryogenic Rubber (%)

 

Note:   
(64):  PG 64-22 asphalt binder; (52): PG52-28 asphalt binder  

             N/A:  Not be tested in this study 

 

The statistical analysis show that the ITS values of specimens made with 

30%RAP and the softer binder (PG52-28) are significantly less than those of specimens 

using PG64-22 binder. Similar to PG64-22 binder, the increase of rubber content results 

in a decrease of ITS values of mixtures made with PG52-28 binder, in addition, TSR 

values of these mixtures are higher than 85%. Figure 5.8, Tables D.1 and D.2 also 

indicate that, in most cases, the standard deviations of ITS values are relatively high. The 

variability of test results of specimens containing RAP and crumb rubber may be a 

potential cause in contributing to the high standard deviation.  

The ITS values of specimens containing cryogenic rubber can be seen in Figure 

5.9 and Table D.3. Similar to results obtained with the ambient rubber, the ITS values of 
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specimens containing cryogenic rubber were decreased as the rubber contents increased. 

When using 15% rubber, the TSR values were less than 85% except for the specimens 

using 30%RAP. During ITS testing, cryogenic rubber shows similar moisture 

susceptibility with ambient rubber at the same percentage (15%) of rubber. The increase 

of RAP content not only increased the ITS values but also improved the potential 

moisture resistance of the mixture. In order to reduce the effect of rubber content in ITS, 

previous research also gave some recommendations that some additional anti-stripping 

additives were used to increase the cohesion of rubberized mixture (Hicks et al. 1995). 
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Figure 5.8  ITS values of the mixtures containing ambient rubber using aggregate L 

 

 



 80

0

200

400

600

800

1000

1200

1400

1600

1800

0 5 10 15

Percentage of Rubber (%)

IT
S 

V
al

ue
s (

kP
a)

0%RAP (Dry) 0%RAP (Wet) 15%RAP (Dry) 15%RAP (Wet)
25%RAP (Dry) 25%RAP (Wet) 30%RAP (Dry) 30%RAP (Wet)

 
Figure 5.9 ITS values of the mixtures containing cryogenic rubber using aggregate L 

 

The results shown in Figure 5.10 and Table D.4 indicate that the ITS values of 

specimens used aggregate C have similar trend to those of specimens used aggregate L. 

The differences in ITS values of specimens made with a softer binder (PG52-28) and 

PG64-22 were found to be statistically significant. Moreover, the wet and dry ITS values 

of specimens made with the softer binders had a significant decrease.  
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Figure 5.10 ITS and TSR values of the mixtures using aggregate C 

 

Fatigue Prediction Models 

Analysis of Fatigue Test Results 

Testing data were analyzed using the equations presented in Chapter III to 

compute the stress, strain, stiffness, phase angle, and dissipated energy per cycle as the 

function of the number of load cycles, and the cumulative dissipated energy to a given 

load cycle. In this study, fatigue life was defined as the number of repeated cycles 

corresponding to a 50 percent reduction in initial stiffness, which was measured at the 

50th load cycle. Several fatigue beam specimens were utilized to characterize the fatigue 

behavior of a mixture in order to avoid too fast or slow loss in stiffness during a period of 

24 hours. This procedure involved testing control specimen (0% rubber and 0%RAP) and 

the highest percent of rubber and RAP specimen (15% rubber and 30%RAP) at a 500 
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micro strain level with the controlled strain mode of loading at 5 Hz frequency. The 

additional RAP and rubber increased the complex level of fatigue life. The test results 

indicated that the 5 Hz was suitable to use at a 500 micro strain level, where the repeated 

cycles of mixture was generally more than 10,000 cycles. An example of some of the raw 

data is shown in Table 5.5. The Loads 1 and 2 are the peak to peak forces and LVDT 1 is 

the beam deflection at the neutral axis. The stress and strain values of specimens then be 

computed from these data. 

Table 5.5 Typical raw data file fatigue test results (only some data shown) 

Type of Collection Schedule
Cycle Vert Load 1 Vert Load 2 Vert LVDT1
4.00 -1.9239314 -3.6115668 -0.2440772
4.01 -1.9163122 -3.6269119 -0.2457249
4.02 -1.9163122 -3.6283069 -0.2465488
4.03 -1.9086931 -3.6122644 -0.2466732
4.04 -1.9086931 -3.5990117 -0.246953
4.05 -1.9125026 -3.5794816 -0.2475748
4.06 -1.9163122 -3.5515811 -0.2482588
4.07 -1.9239314 -3.5104277 -0.24815
4.08 -1.9239314 -3.4134719 -0.2452275
4.09 -1.9239314 -3.3193042 -0.2418389
4.10 -1.9353601 -3.2021155 -0.2379531
4.11 -1.9125026 -3.065392 -0.234052

Logarithmic

 

 Table 5.6 presents a typical analyzed fatigue test results which are computed in 

various periods from the raw data. Some of these variables will be directly used as the 

independent variables as they are associated with fatigue prediction models. As shown in 

Table 5.6, the stress value and dissipated energy per cycle decrease as the number of 

cycle increases. That is, at the same strain level, a lager stress level is needed to reach the 

desired strain values at the beginning of fatigue test than at the end of the test. At the 
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same time, the dissipated energy per cycle at the first 50 cycles is remarkably greater than 

those at the final cycles (50% loss of initial stiffness).  

Table 5.6 Typical analyzed fatigue test results 

Period Number Stress Strain Dynamic Stiffness Phase Angle Dissipated EnergyCumulative Engergy
Cycles Pa m/m Pa Degree J/m3 J/m3

50 4542.32 2.50E-04 6.04E+07 54 1046.65 1046.65
100 4308.69 2.45E-04 1.13E+09 90 352.78 1399.43
250 4244.48 2.43E-04 2.95E+08 72 732.06 2131.49
500 4209.59 2.45E-04 3.37E+08 72 447.51 2579.00

1000 4165.67 2.44E-04 4.23E+08 90 335.99 2914.99
1600 4186.22 2.44E-04 7.07E+08 54 526.29 3441.27
2000 4131.99 2.42E-04 1.59E+08 72 425.99 3867.26
4000 4086.26 2.46E-04 5.19E+08 72 323.98 4191.24
8000 3963.91 2.44E-04 1.37E+08 72 430.71 4621.94

10000 3945.67 2.46E-04 1.99E+08 72 137.80 4759.74
15850 3839.18 2.46E-04 1.22E+08 72 275.40 5035.14
19954 3808.18 2.44E-04 1.33E+08 90 163.15 5198.29
25120 3598.19 2.44E-04 1.13E+08 72 131.30 5329.58
31624 3346.60 2.42E-04 5.47E+08 72 112.95 5442.54
39812 3009.54 2.45E-04 1.77E+08 72 104.26 5546.80
50120 2490.61 2.44E-04 1.56E+08 72 84.85 5631.64  

 Previous research indicated that the stiffness at any number of load repetitions is 

computed from the tensile stress and strain at that specific value (Monismith et al. 1985; 

Hicks et al. 1993; Tayebali et al. 1994; Kim et al. 2003; Williams 1998). Figure 5.11 

shows a typical plot of stiffness ratio (defined as quotient of stiffness at the ith load 

repetition to the initial stiffness) versus the number of load repetitions for flexural beam 

fatigue tests in both controlled-stress and controlled-strain modes of loading. The fatigue 

life to failure is dependent on the mode of loading condition. The use of modes will 

influence the test results. For controlled-stress tests, failure is well defined since 

specimens are cracked through at the end of the test. However, in controlled-strain testing, 
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failure is not readily apparent and the specimen is considered to have failed when its 

initial stiffness is reduced by 50 percent (Tayebali et al. 1994).  
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Figure 5.11 Stiffness ratio versus number of cycles, flexural beam fatigue controlled-
stress and controlled-strain (after Tayebali et al. 1994) 

 

Dissipated energy per cycle for a beam specimen tested under pulsed loading is 

computed as the area with the stress-strain hysteresis loop and detailed energy equations 

which were discussed in Chapter III. Figure 5.12 shows a typical stress-strain hysteresis 

loop for the controlled-strain mode of loading.  
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Figure 5.12 Stress-stress hysteresis loop, flexural bema fatigue controlled-strain test (after 
Tayebali et al. 1994) 

 

The variation of dissipated energy per cycle with number of load repetitions is 

shown in Figure 5.13. The dissipated energy per cycle decreases with an increasing 

number of load repetition in the controlled-strain fatigue test; whereas, for the controlled-

stress tests, the dissipated energy per cycle increases as the number of load repetitions 

increases. The cumulative dissipated energy to failure for a flexural beam fatigue test is 

the area under the curve between dissipated energy and number of cycles. In this study, 

since the flexural beam fatigue test used the controlled-strain test, the number of cycles 

has a greater increase than the controlled-stress test.  
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Figure 5.13 Dissipated energy per cycle versus number of cycles, flexural beam fatigue 
controlled-stress and controlled-strain tests (after Tayebali et al. 1994) 

 

 Statistical Regression Fatigue Prediction Models 

Modeling the laboratory fatigue response was of great interest not only because of 

insights developed during the model-building process and in interpreting its results but 

also because of the possibility that a sufficiently accurate model, one that captured the 

essential effects of mix properties on fatigue behavior, would lessen the requirements for 

laboratory fatigue testing in the mix design process and even help estimate the pavement 

performance in the field (Tayebali et al. 1994). In order to simplify the fatigue models, 

previous research found that: 1) the effects of initial mix stiffness and phase angle on 

cycles to failure can be expressed with equal accuracy by an initial mix loss modulus; 2) 

the effect of mix voids on cycles to failure can be expressed with equal accuracy by either 

the air-void content or the VFA; 3) the effects of initial strain level, mix stiffness, and 

phase angle can be expressed with equal accuracy by the initial dissipated energy per 
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cycle (Tayebali et al. 1994). The typical fatigue prediction models, being used by many 

researchers, have been presented in Chapter II. The Equations 2-4 and 2-7 have addressed 

the strain-based and energy-based approaches, respectively. All the surrogate fatigue 

models were developed on the basis of these equations.  

The test results of fatigue life and stiffness value of modified mixture, containing 

ambient rubber used RAP L at a testing temperature of 5oC are shown Tables E.1 to E.2. 

The mean values of test results, adjusted statistically without affecting the model 

coefficients, can be seen in Table F.1 to F.3. Distributions for fatigue life (Nf), initial 

stiffness (S0), dissipated energy (w0) and initial strain (ε0) were reviewed and found to be 

lognormally distributed. Therefore, log transformations (using natural logarithm) were 

used in ANOVA and GLM through regression analysis.  

The experimental design selected in this study includes two types of methods, one 

is traditional prediction models which use the main experimental independent variables 

as shown in Equations 5-4 and 5-5, and the other one is specific models which permit the 

estimation of the main effects of the experimental factors and some of two-factor 

interactions, as shown in Equations 5-6 and 5-7.  

According to the traditional mixture models, for ANOVA and GLM, the log-

linear models of the following type were utilized. 

)(**)(*)( 000 SLndVorVFAcLnbaNLn f +++= ε        (5-4) 

00 *)(*)( VorVFAgwLnfeNLn f ++=                     (5-5) 

Where, 
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fN       = number of load application or crack initiation; 

0S  = initial stiffness, in Pa; 

0ε        = initial tensile strain, in m/m;  

VFA  = volume of voids filled with asphalt, in m3/m3; 

0V  = initial air-void content in percentage, in m3/m3; 

0w  = initial energy dissipated per cycle, in J/m3; 

a, b, c, d, e, f, g    = experimentally determined coefficients  

 
With respect to specific mixtures in this study, some additional independent variables 

were used for the log-linear models.  

VFAhLngRfReRRdRcRbaNLn bbpbpbf (*)(*******)( 0
32 +++++++= ε

)(*)(**)(**) 0000 SLnkVorVFARjVorVFARiVor pb +++       (5-6) 

)(*******)( 0
32 VorVFAgRfReRRdRcRbaNLn bbpbpbf ++++++=

)(*)(**)(** 000 wLnjVorVFARiVorVFARh pb +++                            (5-7) 

Where, 

bR  = percentage of rubber, in kg/kg; 

pR  = percentage of RAP, in kg/kg; 

h, I, j, k  = experimentally determined coefficients 

 

Strain Dependent Models 

Models of Using Ambient Rubber at 5ºC 

The Pearson correlation of dependent and independent variables of mixture is 

presented in Table 5.7. Considering the correlation values in Table 5.7, it can be seen that 

VFA and percentage of RAP have the higher values than the other variables. That is VFA 

and percentage of RAP play a key role in determining the fatigue life and establishing 
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strain dependent predictive models of mixture which is containing ambient rubber and 

RAP L and tested at 5ºC.    

Table 5.7 Pearson correlation matrix for the dependent and independent variables of 
mixture containing ambient rubber and RAP L at 5ºC 

Ln(Nf) Ln(S0) Ln(w0) Ln(ε0) VFA V0 Rb RP

Ln(Nf) 1.000
Ln(S0) 0.176 1.000
Ln(w0) -0.091 -0.006 1.000
Ln(ε0) -0.122 -0.231 0.444 1.000
VFA 0.471 -0.268 -0.217 -0.412 1.000
V0 -0.264 -0.131 -0.266 0.235 -0.631 1.000
Rb 0.473 -0.600 -0.123 -0.086 0.554 -0.073 1.000
RP -0.067 -0.078 0.252 0.521 -0.601 0.661 0.000 1.000  

 Tables 5.8 and 5.9 show typical results of ANOVA and GLM for the traditional 

and specific VFA models, respectively. The results are derived from using regression 

analysis technique. The Microsoft Excel software package and SAS were used to analyze 

the data. The statistical results show a poor fit for the fatigue life of traditional VFA 

models with an R2 less than 0.4. The coefficient of variation based on the actual data is 

60 percent. However, the statistical results of specific VFA models show a R2 value of 

0.95 which exhibits a good fit for the fatigue life prediction. The coefficient of variation 

of this GLM is 53 percent.  

 The traditional strain dependent VFA fatigue prediction model of the modified 

mixture, drawn from Table 5.8, is shown in Equation 5-8. 

)(*2.2*2.20)(*6.19.29)( 00 SLnVFALnNLn f +++−= ε                   (5-8) 

 

 



 90

The Equation 5-8 can be rewritten into 

%61..37.0***)13(0.1 22.2
0

*2.206.1
0 ==−= VCRSeEN VFA

f ε        (5-9) 

As using the specific strain dependent VFA fatigue prediction model, GLM model 

can be drawn from Table 5.9, as shown in Equation 5-10. 

32 *5.2382*5.470**6.98*4.187*8.4263.57)( bbpbpbf RRRRRRNLn −+++−−=  
)(*9.2**3.255**519*5.48)(*3.2 00 SLnVFARVFARVFALn pb +−+++ ε                          

                                                                                                                                      (5-10)              

The Equation 5-10 can be rewritten into 

9.2
0

**3.255**519*5.483.2
0

*5.2382*5.470**6.98*4.187*8.426 ****)25(3.1
32

SeeEN VFARVFARVFARRRRRR
f

pbbbpbpb −+−+++−−= ε

             (5-11) %52..95.02 == VCR

Table 5.8 ANOVA and GLM of log fatigue life for mixture containing ambient rubber 
and RAP L tested at 5ºC (traditional strain dependent VFA method) 

Dep. Variable Multiple R R Square Adjusted R Square Standard Error
Ln (Nf) 0.607 0.368 0.210 0.368
Analysis of Varance (ANOVA)

df Sum of Square Mean Square F Ratio Significance F C.V.
Regression 3 0.945 0.315 2.328 0.126 60.848
Residual 12 1.624 0.135
Total 15 2.569

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept -29.853 22.701 -1.315 0.213 -79.314 19.608
Ln (ε0) 1.558 1.637 0.952 0.360 -2.008 5.124
VFA 20.173 8.062 2.502 0.028 2.607 37.739
Ln (S0) 2.180 1.337 1.630 0.129 -0.733 5.094

Number of Samples
16*(4 repetition)
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Table 5.9 ANOVA and GLM of log fatigue life for mixture containing ambient rubber 
and RAP L tested at 5ºC (specific strain dependent VFA method) 

Dep. Variable Multiple R R Square Adjusted R Square Standard Error
Ln (Nf) 0.976 0.952 0.857 0.156
Analysis of Varance (ANOVA)

df Sum of Square Mean Square F Ratio Significance F C.V.
Regression 10 2.447 0.245 10.006 0.010 52.649
Residual 5 0.122 0.024
Total 15 2.569

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept -57.325 18.539 -3.092 0.027 -104.981 -9.669
Rb -426.836 102.382 -4.169 0.009 -690.017 -163.655
Rp 187.429 74.453 2.517 0.053 -3.957 378.815
Rb*Rp 98.648 25.884 3.811 0.012 32.111 165.186

Rb
2 470.535 130.612 3.603 0.016 134.786 806.284

Rb
3 -2382.455 606.366 -3.929 0.011 -3941.167 -823.744

Ln (ε0) 2.323 0.961 2.416 0.060 -0.148 4.795
VFA 48.509 22.545 2.152 0.084 -9.446 106.463
Rb*VFA 518.987 130.015 3.992 0.010 184.774 853.199
Rp*VFA -255.336 100.801 -2.533 0.052 -514.453 3.782
Ln (S0) 2.917 0.750 3.888 0.012 0.989 4.846

Number of Samples
16*(4 repetition)

 

As using air voids to establish the fatigue prediction models of the modified 

mixtures, this predictive model is similar to the VFA model. The ANOVA and GLM 

analysis of log fatigue life for air voids are shown in Tables 5.10 and 5.11. It can be seen 

that a value of R2 using traditional air void model is less than 0.1. This value shows a 

very poor fit for fatigue predictive model, which would not be suitable to predict the 

fatigue life of the specimen. However, when using specific air void model, the R2 of 

GLM is approximate 0.8. This value shows a reasonable fit for fatigue life. When 

analyzing the coefficient of variation values of two types of model, they are 28% and 

47%, respectively.  
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Similarly, the traditional strain dependent air void model derived from Table 5.10 

is summarized in Equation 5-12: 

%28..09.0***048.0 27.0
0

*1.02.0
0

0 === −− VCRSeN V
f ε      (5-12) 

When using the specific strain dependent air void fatigue predictive model of the 

modified mixture, GLM model can be drawn from Table 5.11, as shown in Equation 5-13. 

5.3
0

**0.1**0.4*2.02.1
0

*3.831*4.204**1.30*5.7*3.7 ****)18(9.1 000
32

SeeEN VRVRVRRRRRR
f

pbbbpbpb +−−++−−= ε  

             (5-13) %47..77.02 == VCR

 

Table 5.10 ANOVA and GLM of log fatigue life for mixture containing ambient rubber 
and RAP L tested at 5ºC (traditional strain dependent air void method) 

Dep. Variable Multiple R R Square Adjusted R Square Standard Error
Ln (Nf) 0.302 0.091 -0.136 0.441
Analysis of Varance (ANOVA)

df Sum of Square Mean Square F Ratio Significance F C.V.
Regression 3 0.234 0.078 0.401 0.755 28.491
Residual 12 2.335 0.195
Total 15 2.569

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept -3.035 25.576 -0.119 0.907 -58.761 52.690
Ln (ε0) -0.205 1.733 -0.118 0.908 -3.980 3.570
V0 -0.090 0.108 -0.837 0.419 -0.325 0.144
Ln (S0) 0.711 1.468 0.484 0.637 -2.487 3.909

Number of Samples
16*(4 repetition)
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Table 5.11 ANOVA and GLM of log fatigue life for mixture containing ambient rubber 
and RAP L tested at 5ºC (specific strain dependent air void method) 

Dep. Variable Multiple R R Square Adjusted R Square Standard Error
Ln (Nf) 0.877 0.770 0.310 0.344
Analysis of Varance (ANOVA)

df Sum of Square Mean Square F Ratio Significance F C.V.
Regression 10 1.978 0.198 1.672 0.297 46.762
Residual 5 0.591 0.118
Total 15 2.569

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept -40.767 31.529 -1.293 0.253 -121.814 40.280
Rb 7.254 17.700 0.410 0.699 -38.244 52.753
Rp -7.452 8.661 -0.860 0.429 -29.715 14.810
Rb*Rp 30.087 20.930 1.437 0.210 -23.716 83.890
Rb

2 204.405 259.754 0.787 0.467 -463.312 872.122
Rb

3 -831.345 1139.153 -0.730 0.498 -3759.626 2096.936
Ln (ε0) 1.208 1.948 0.620 0.563 -3.801 6.216
V0 0.158 0.607 0.260 0.805 -1.403 1.719
Rb*V0 -4.020 2.774 -1.449 0.207 -11.150 3.111
Rp*V0 1.001 1.914 0.523 0.623 -3.919 5.922
Ln (S0) 3.526 1.790 1.970 0.106 -1.075 8.126

Number of Samples
16*(4 repetition)

 
 

The measured and predicted results of fatigue life, derived from traditional and 

specific predictive model, are shown in Figures 5.14 and 5.15, respectively.  As discussed 

earlier in this section, the specific predictive model; where the measured and predicted 

results are close to a perfect-match line, in most cases, as shown in Figure 5.15, model 

shows a more reasonable relationship between measured and predicted results than the 

traditional model. The VFA model has a greater R2 value than air void model in 

predicting fatigue life. Similarly, the predicted results from VFA model are closer to 

perfect-match line than air void model.  
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Figure 5.14 Comparison of fatigue lives between predicted and measured results using 
traditional strain dependent method at 5oC (containing ambient rubber and RAP L) 
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Figure 5.15 Comparison of fatigue lives between predicted and measured results using 
specific strain dependent method at 5oC (containing ambient rubber and RAP L) 
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Tables G.1 to G.3 show the Pearson correlation of dependent and independent 

variables of various mixtures at the different testing temperatures. The established 

traditional and specific models have been shown in Table 5.12, where, obviously, the 

specific prediction models have the higher R2 values than the traditional models, thus, 

this also indicates that the additional independent variables are beneficial in improving 

the precision of prediction model. 

Table 5.12 also shows that R2 values of the mixtures containing ambient rubber 

are higher than those of cryogenic rubber. A probably potential cause is that four repeated 

specimens for each mixture containing ambient rubber had been accomplished while only 

two or four repeated specimens for each cryogenic rubber mixture.   

The typically statistical results of ANOVA and GLM for two models are shown in 

Tables G.4 to G.15. The summary statistics show a poor fit for the fatigue life of 

traditional models, in most cases, the coefficient of determination values are less than 0.5, 

however, when using specific models to predict the fatigue life, R2 values are higher than 

0.65, the specific models exhibits a good fit for the fatigue life prediction. The predicted 

and measured fatigue lives of the modified mixture are shown in Figures G.1 to G.6. 

These measured and predicted results are closer to perfect-match line when using specific 

models. 
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Table 5.12 Stress dependent prediction models of the mixtures using aggregate source L 

Ambient Traditional Predicted Model R2 C.V.

VFA (20oC) 
9.1

0
*9.205.6

0 ***)5(3.3 SeEN VFA
f ε=   0.36 82 

A.V. (20oC) 
2.0

0
*4.08.6

0 ***)26(9.1 0 SeEN V
f

−= ε   0.53 106
Cryogenic     

VFA (5oC) 
9.2

0
*1.07.6

0 ***)5(3.1 SeEN VFA
f

−= ε   0.13 47 

A.V. (5oC) 
3.2

0
*2.02.7

0 ***)11(6.3 0 SeEN V
f

−= ε   0.32 78 

VFA (20oC) 
02.0

0
*5.01.9

0 ***)34(7.1 SeEN VFA
f

−= ε   0.27 51 

A.V. (20oC) 
6.0

0
*2.04.3

0 ***)20(9.3 0 SeEN V
f

−= ε   0.36 61 
      
Ambient Specific Predicted Model R2 C.V.

VFA (20oC) 
4.2

0
**9.443**69*5.1042.6

0

*1.58*8.37**7.70*1.327*3.77

***

*)27(2.7
32

Se

eEN
VFARVFARVFA

RRRRRR
f

pb

bbpbpb

−+

++++−−=

ε
 

0.84 66 

A.V. (20oC) 
9.3

0
**3.0**2.4*3.02.8

0

*9.862*2.135**1.19*5.0*3.32

***

*)3(7.2
000

32

Se

eEN
VRVRV

RRRRRR
f

pb

bbpbpb

−−

−−−=

ε
  

0.91 69 
Cryogenic     

VFA (5oC) 
2.2

0
**2.19**471*5.72.9

0

*3.671*5.114**5.69*4.16*5.312

***

*)16(4.1
32

Se

eEN
VFARVFARVFA

RRRRRR
f

pb

bbpbpb

+−

−++−=

ε
  

0.65 58 

A.V. (5oC) 
9.6

0
**4.0**9.6*4.02.4

0

*1.3545*7.853**4.83*1.0*2.71

***

*)32(0.2
000

32

Se

eEN
VRVRV

RRRRRR
f

pb

bbpbpb

−+−

−+−+−−=

ε
 

0.65 58 

VFA (20oC) 
2.0

0
**2.66**3.213*2.69.2

0

*1.1982*1.510**4.43*47*178

***

*)15(1.1
32

Se

eEN
VFARVFARVFA

RRRRRR
f

pb

bbpbpb

−+−

+−+−=

ε
  

0.73 46 

A.V. (20oC) 
2.0

0
**4.1**3.1*1.03.1

0

*2.1553*5.364**6.22*2.7*7.25

***

*11
000

32

Se

eN
VRVRV

RRRRRR
f

pb

bbpbpb

−+−−

−+−+−=

ε
  

0.73 46 
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Energy Dependent Models 

Similar to the strain dependent model analysis method, the Pearson correlation of 

dependent and independent variables of energy dependent models have been presented in 

Tables 5.7 and G.1 to G.3. The summary statistical results of ANOVA and GLM for the 

traditional and specific VFA models are shown in Tables G.16 through G.31. The 

traditional and specific fatigue predictive models of the modified mixture, drawn from 

these tables, are shown in Table 5.13. In general, the energy dependent prediction models 

show similar trends with strain dependent models although there are several different 

independent variables. 

The measured and predicted results of fatigue lives, derived from traditional and 

specific energy dependent predictive model, are shown in Figures G.7 through G.14.  As 

discussed earlier in this chapter, the measured and predicted results of specific prediction 

models are close to a perfect-match line. 

 When using the softer binder, the predicted fatigue lives of various mixtures are 

shown in Table 5. 14. It can be seen that the predicted results are lower than the measured 

results in most cases, and thus the fatigue prediction model of mixture is not suitable to 

predict the fatigue lives of mixtures, used in this project, made with the softer binder 

prior to modification. As shown in Appendix E, the measured results of mixtures 

containing softer binder do not show higher values than those of mixtures made with PG 

64-22 binder. This also shows that the softer binder does not improve fatigue resistance 

of rubberized mixtures used in this research study as using a high percentage of RAP (i.e., 

30%). 
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Table 5.13 Energy dependent prediction models of the mixtures using aggregate source L 

Ambient Traditional Predicted Model R2 C.V.

VFA (5oC) 
01.0

0
*8.13 **74.0 εVFA

f eN =   0.22 57 

A.V. (5oC) 
2.0

0
*1.0 **)4(9.4 0 −−= εV

f eEN   0.09 37 

VFA (20oC) 
6.2

0
*6.21 **)4(1.4 εVFA

f eEN −=   0.49 135

A.V. (20oC) 
0.1

0
*3.0 **)5(1.1 0 εV

f eEN −=   0.42 121
Cryogenic     

VFA (5oC) 
5.0

0
*2.0 **)4(1.1 εVFA

f eEN −=   0.04 31 

A.V. (5oC) 
4.0

0
*2.0 **)4(4.2 0 εV

f eEN =   0.21 78 

VFA (20oC) 
9.0

0
*2.0 **)4(0.4 εVFA

f eEN −=   0.40 84 

A.V. (20oC) 
0.1

0
*5.2 **)4(1.8 0 εV

f eEN −=   0.27 66 
      
Ambient Specific Predicted Model   

VFA (5oC) 
02.0

0
**9.224**9.665*1.30

*9.2039*6.374**4.106*6.164*9.533

**

*)6(6.5
32

εVFARVFARVFA

RRRRRR
f

pb

bbpbpb

e

eEN
−+

−+++−−=
 

0.79 50 

A.V. (5oC) 
6.0

0
**5.0**8.3*02.0

*8.1576*365**47*1.4*9.7

**

*)4(4.4
000

32

−+−

−++−−=

εVRVRV

RRRRRR
f

pb

bbpbpb

e

eEN
  

0.66 46 

VFA (20oC) 
23.0

0
**1.680**2.433*8.141

*4.1974*8.403**6.155*8.500*5.382

**

*)41(1.1
32

εVFARVFARVFA

RRRRRR
f

pb

bbpbpb

e

eEN
−+

−+++−−=
 

0.81 68 

A.V. (20oC) 
53.2

0
**0.2**5.1*4.0

*1183*7.287**5*3.9*5.4

**

*602
000

32

εVRVRV

RRRRRR
f

pb

bbpbpb

e

eN
−−

−+−+−=
  

0.78 67 
Cryogenic     

VFA (5oC) 
09.0

0
**2.26**7.420*9.12

*1.1104*9.163**3.48*6.20*284

**

*84.1
32

−+−

−++−=

εVFARVFARVFA

RRRRRR
f

pb

bbpbpb

e

eN
  

0.52 54 

A.V. (5oC) 
22.0

0
**7.1**5.7*46.1

*9.1370*9.244**3.52*7.1*38

**

*)6(3.7
000

32

−++−

−+−−−=

εVRVRV

RRRRRR
f

pb

bbpbpb

e

eEN
  

0.56 57 

VFA (20oC) 
  

01.0
0

**4.63**7.204*9.7

*8.2381*9.606**3.39*7.44*7.180

**

*)7(0.2
32

−−+−

−+−+−=

εVFARVFARVFA

RRRRRR
f

pb

bbpbpb

e

eEN

0.73 49 

A.V. (20oC) 
  

18.0
0

**3.1**2.1*1.0

*7.1067*5.261**19*5.6*7.20

**

*)4(7.2
000

32

εVRVRV

RRRRRR
f

pb

bbpbpb

e

eEN
−+

−+−+−=

0.73 49 

 



Table 5.14 Comparison of fatigue lives between predicted and measured results of regression models using softer binder (PG52-28) 
with 30% RAP L at 5oC and 20oC (ambient rubber) 

 

Measured
Fatigue life

5ºC Rb (%) RP (%) Nf VFA Air Void VFA Air Void VFA Air Void VFA Air Void
0.00 0.30 23785 10601 20271 21349 18003 14888 19838 34756 21284
0.05 0.30 29144 8319 20472 15197 12738 12858 20049 21938 14327
0.10 0.30 20436 7044 19415 11322 17358 12681 19677 12460 25481
0.15 0.30 40299 4138 15770 1321 10076 11699 21030 1546 31832

20ºC 
0.00 0.30 22518 16469 14937 45749 38075 8380 14873 89694 8368
0.05 0.30 20159 13061 22872 45029 18503 6554 18254 87136 7043
0.10 0.30 21383 6935 14435 21624 3295 9682 17780 77405 11385
0.15 0.30 24335 8916 21664 45945 8786 6736 20182 23893 10568

Energy Dependent Predictive Model
Traditional Specific

A
m

bi
en

t
A

m
bi

en
t

Traditional Specific
Strain Dependent Predictive Model
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Artificial Neural Network Fatigue Prediction Model 

 Training an artificial neural network to approximate a highly-nonlinear 

relationship for predicting the occurrence of pavement fatigue is a new method that has 

not be broadly used in asphalt pavement technology. Although this analysis method is 

generally used for predicting the liquefaction/non-liquefaction by various researchers 

(Agrawal et al. 1995; Goh 1994; Juang and Chen 1999), it is still likely to be used in 

predicting the fatigue life of asphalt pavements. In this study, a three-layer, feed-forward 

network topology is used, as shown in Figure 2.3. This network is trained and tested with 

the database of 16 case records, including 2 to 4 replicated samples of each case, to 

approximate the following function: 

),,,,,,,,(

),,,,,,,,,(

0540321

00540321

wppVorVFApppRRfNor

SppVorVFApppRRfN

pbf

pbf

=

= ε
                                     (5-14) 

Where, 

Nf = fatigue life (strain dependent or dissipated energy method);  

VFA = the voids filled with the asphalt binder; 

V0 = the percentage of air void; 

ε = tensile strain; 

S = flexural stiffness;  

Rb = the percentage of rubber in the binder;  

Rp = the percentage of RAP in the mixture; and 

P1 = Rb*Rp; P2 = Rb
2; P3 = Rb

3; P4 = Rb*VFA or V0; P5 = Rp*VFA or V0

 

 The ten variables in Equation 5-14 are simplified in a rearrangement of the ten 

basic input variables of each record in the database. Among the 16 case records in the 

database, 11 records were used as the training data set, and other 5 cases were used as the 
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testing set. Roughly two thirds of the entire database was selected for training and the 

other one third was selected for testing (Chen 1999). The network is first trained using 

the training data subset. The objective of the network training is to map the input to the 

output by determining the connection weights and biases through an error reduction 

process. For the three-layer network shown in Figure 2.3, the output of the network is 

calculated using Equation 2-13.   

 The number of hidden neurons is determined through a trial-and-error process; 

normally, the smallest number of neurons that yields satisfactory results (judged by the 

network performance) should be used. Note that all input variables are scaled into values 

in the range of 0.1 to 0.9, as is normally done in neural network training. Scaling of a 

variable X is carried out with the following equation (Juang and Chen 1999): 

baXX s /)( +=                                                    (5-15) 

 Where, 

  Xs = Scaled variables; 

  a = (Xmax-9Xmin)/8; 

  b = (Xmax-Xmin)/0.8; and 

Xmax and Xmin are the maximum and minimum valuesof X in the database, 

respectively.  

This scaling Equation 5-15 is employed to scale all ten variables. The transfer 

function adopted in this study is a sigmoidal logistic function shown in Equation 2-12. 

The Levenberg-Marquart algorithm (Demuth and Beale 1998) is adopted for its 

efficiency in training networks. The connection weights and biases are determined by 
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gradually reducing the root mean square of errors in the predictions to within an error 

goal of 0.005.  

 The weights and biases of the trained network for strain dependent method are 

shown in Tables 5.15 and 5.16. Sixteen case records, each one including four repeated 

testing data, are used to develop the ANN models, 11 case records of them are employed 

for the training data set, and the other 5 case records are tested against the data in the 

testing subset. The overall success rate of the developed network in predicting the 

occurrence of fatigue behavior for mixtures containing ambient rubberized tested at 5oC 

are 97% and 95% for specific VFA and air void strain dependent methods, respectively. 

At 20oC, these values of success rate are the same as those at 5oC, as shown in Table 5.15. 

However, when using cryogenic rubber at 5oC, the overall success rate of the ANN 

models were 91% and 84% for two types of methods, respectively, and at 20oC these 

values increased to 92% and 97%, as shown in Table 5.16. The measured and predicted 

fatigue lives using ANN models and strain dependent method are presented in Figures 

5.16 to 5.19.    

 Tables 5.17 and 5.18 show the weights and biases of the trained network for 

energy dependent method. Only 9 input variables are used to develop the ANN model. As 

shown in Tables 5.17 and 5.18, the overall success rate of fatigue predictive ANN models 

are greater than 86% regardless of the rubber types, analysis method (VFA or air void) 

and testing temperature. Figures 5.20 and 5.23 provide the measured and predicted 

fatigue values. Similar to the conventional regression model, the fatigue lives of mixtures 

used softer binder from ANN model are shown in Table 5.19.  
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 These results, either from strain dependent or dissipated energy method, show that 

the developed ANN models, represented by Equation 2-13 and the associated coefficients 

presented in Tables 5.15 through 5.18, serve the intended purpose well. That is, the 

model is able to predict accurately fatigue life of the modified mixture.  

 

Validation of Fatigue Predictive Models 

The basic mathematic fatigue predictive models, obtained from the laboratory 

testing data through conventional regression and ANN analysis method with traditionally 

empirical strain dependent and energy dependent models, are presented in previous 

paragraphs. The calibration of these models is required to utilize the developed system 

with other type of sources to perform fatigue testing when the coefficients of the equation 

for different sources are not widely known. So it is necessary to calibrate these predictive 

models through analyzing the other available fatigue data.  

In this study, a second aggregate source L is utilized to calibrate these fatigue 

predictive models. In order to simplify the fatigue testing, only seven mixtures were 

tested with the second aggregate source.  Ambient rubber in 0% and 10% were used in 

fabricating the four repeated fatigue beams. The measured and predicted results drawn 

from the regression models at 5oC and 20oC are shown in Figures 5.24 and 5.25, 

respectively, while Figures 5.26 and 5.27 present the measured and predicted results draw 

from ANN models at 5oC and 20oC, respectively. From Figures 5.24 to 5.27, it can be 

seen that the measured and predicted values are significantly different. In other words, 

the predictive models could not be directly utilized to predict fatigue life of the mixture 

where a second aggregate source was used prior to modification.  
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Past research indicated that the addition of RAP increase the variability of the test 

results regardless of at low or intermediate temperatures (Sondag et al. 2002; 

FHWA1997a). Solaimanian and Tahmoressi (1996) also found that as RAP content 

increased, the variability in asphalt content, gradation, and air voids also increased. This 

was also observed in this study. The increase in variability with the addition of RAP is 

most likely due to the variability of the RAP itself. Because RAP is removed from an old 

roadway, it may include the original pavement materials, plus patches, chip seals, and 

other maintenance treatments. Base, intermediate, and surface courses from the old 

roadway may all be mixed together in the RAP. In addition, RAP from several projects 

may be mixed in a single stockpile. Mixed stockpiles may also include materials from 

private work that may not have been built to the same standards. Furthermore, the 

collection process of RAP from different locations leads inevitably to more variability. It 

is worth mentioning that it was very difficult to obtain consistent engineering properties 

using the RAP as the virgin material, even when the asphalt content was held constant 

during the compaction of the test samples. Especially, as using the second RAP, the 

variability of modified mixture shows a more significant increase.   

The presence of crumb rubber also increases the complicated level of the 

variability of mixture, which makes the fatigue life prediction difficult specially when 

testing only limited numbers of repeated specimens are used for testing. A large number 

of repeated samples from each mixture should be compacted and tested. This should help 

to reduce the variability and make the data more reliable, especially in establishing the 

effectiveness of the predictive models. 
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Nf  is the expected pavement fatigue life, which is representative of the actual 

applied traffic loading. It is a function of the total traffic ESALs summed over the entire 

pavement design life. However, with respect to the effect of variability during calibrating 

process, fatigue life prediction can be expressed by Equation 5-16.  

)(*)( initialNMfinalN ff =                    (5-16) 

 Where, 

)( finalN f   = calibrated fatigue lives of models; 

)(initialN f  = calculated fatigue lives of models; and 

M  = reliability multiplier (for RAP and rubber variability) 

 
During laboratory fatigue data analysis process, M value is dependent on RAP 

and rubber variability and also associated with aggregate sources. 

Nf  is the design HMA mixture fatigue resistance that was statistically determined 

as a function of the design and the laboratory determined empirical fatigue equations. 

While Nf represents laboratory fatigue life, the final field fatigue life for this approach in 

this study was obtained as expressed by Equation 5-17. 

TF
finalNSF

fieldN f
f

)(*
)( =                  (5-17) 

Where, 
)( fieldN f  = fatigue life in the field; 
)( finalN f       = calibrated fatigue life of all models; 

SF   = shift factor; and 
TF         = temperature conversion factor  

 
Previous research indicated that the shift factor is a result of such factors as traffic 

wander, crack propagation rate, construction variability, different frequencies of loading, 

etc., highway pavements have been found to sustain from less than 10 to perhaps as many 
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as 100 times the number of load applications that are estimated by procedures similar to 

those used herein before pavements become seriously distressed (Deacon et al. 1994; 

Kim et al. 2003). As a result, laboratory estimates of fatigue life can be compared with 

service estimates of ESALs only after applying a suitable shift factor. Using AASHTO 

design guidelines as a basis, SHRP A-003A studies led to the recommendation of shift 

factors ranging from 10 to 14 depending on the amount of surface cracking considered to 

be tolerable (Deacon et al. 1994). The most accurate way to develop shift factors is 

probably by observing the fatigue performance of full-scale pavements in test tracks or in 

accelerated pavement loading experiments. Determination of these parameters generally 

requires local calibration to field conditions, which was beyond the scope of this study. 

 



 Table 5.15 Connection weights and biases of ANN model defined in Equation 2-13  

(specific strain dependent method for ambient rubber) 

Wk Bk Bo

5oC 1 2 3 4 5 6 7 8 9 10 Output Hidden Layer Output Layer
1 -2.925 -5.434 -2.059 2.048 2.177 -1.078 -7.008 0.783 0.250 0.350 -3.837 8.508 4.067
2 3.778 2.238 3.934 3.400 3.496 3.166 -0.516 -1.497 2.099 3.671 2.812 -9.714
3 0.218 1.568 3.622 -0.129 -5.613 1.707 2.257 2.871 3.637 -3.836 -4.379 -2.960
4 -2.584 -4.476 0.229 2.490 4.026 -1.501 -1.663 2.337 -3.444 -0.368 -4.172 -1.944
1 -1.801 3.769 2.434 -4.074 -1.826 -5.441 3.483 1.801 2.218 -0.364 -1.826 3.118 1.559
2 3.337 -1.398 -2.451 -2.010 1.020 -0.805 -2.913 -3.831 -3.104 0.368 1.923 5.457
3 0.489 -0.363 -2.371 -0.304 -1.431 -0.221 -1.107 -4.007 -1.070 -6.857 -3.856 7.442
4 -0.084 4.239 2.377 1.640 -4.917 -2.808 2.189 -2.146 1.886 -2.124 3.063 -3.418

20oC
1 -2.258 -3.126 -1.167 2.527 -1.756 3.087 -2.511 -2.950 -1.002 1.431 -0.710 10.678 -6.557
2 -2.430 2.601 -3.342 2.095 4.340 -1.673 3.735 -1.105 1.891 3.324 3.235 -3.537
3 0.071 -5.937 1.762 0.729 3.116 0.045 -5.613 4.698 -3.091 6.293 7.194 -3.598
4 -1.420 -1.817 -4.479 0.334 -5.405 3.237 2.215 3.909 0.228 4.600 5.253 -0.688
1 -1.632 -2.254 -0.309 3.164 -1.111 3.096 -1.193 -2.113 0.258 1.774 1.333 11.364 -0.947
2 0.293 3.440 -0.850 4.365 5.552 2.655 -0.104 -0.881 0.913 -1.023 0.088 -2.512
3 -3.292 -1.799 3.786 -4.159 -2.565 5.789 2.957 3.776 3.263 0.774 -3.911 -2.328
4 -3.207 -2.890 -3.432 1.267 -2.977 6.080 0.964 3.231 0.801 4.472 4.060 -2.433
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Table 5.16 Connection weights and biases of ANN model defined in Equation 2-13  

(specific strain dependent method for cryogenic rubber) 

Wk Bk Bo

5oC 1 2 3 4 5 6 7 8 9 10 Output Hidden Layer Output Layer
1 -2.151 -1.827 -4.803 3.076 2.370 -4.542 -3.402 3.822 -2.305 3.652 5.478 8.389 -3.225
2 1.647 4.363 1.029 3.361 4.178 -1.261 5.715 2.574 -1.068 -0.499 -6.597 -11.996
3 3.346 -2.808 -0.673 -1.393 -3.318 -3.495 -3.240 0.547 -4.716 -0.839 -5.081 9.703
4 3.972 -2.726 1.065 -2.965 4.864 -0.165 3.665 -0.900 -2.072 -0.945 5.506 -0.329
1 -6.997 -0.085 1.903 -3.036 -10.068 -2.496 8.947 5.690 13.290 -5.861 3.995 7.011 -3.325
2 -3.313 -5.394 -4.678 4.724 2.154 5.525 -3.528 -4.450 -6.734 -2.037 6.607 0.250
3 -0.937 3.652 1.118 -1.696 5.275 -0.240 -4.450 0.579 -1.441 5.367 3.425 -1.521
4 6.487 -4.834 4.218 1.115 7.208 0.786 5.931 4.703 -0.306 -6.258 -3.586 1.221

20oC
1 -2.510 -2.950 -6.189 0.740 -1.177 -2.953 -4.031 3.862 -3.112 8.852 4.395 4.980 -4.103
2 2.458 2.851 0.314 3.773 4.292 -3.109 -0.182 2.729 -2.974 1.017 -2.608 -9.984
3 2.399 -0.266 0.092 -1.902 -3.471 -2.444 -2.823 -0.548 -2.449 -0.771 -0.636 12.078
4 3.525 0.656 1.154 -4.094 3.874 0.858 2.691 -1.155 0.883 -3.300 4.620 -1.520
1 -6.472 0.968 -5.004 -5.665 1.058 -0.531 -1.429 -1.685 4.149 5.205 4.829 -2.126 3.618
2 0.589 -1.694 -2.875 1.870 -0.794 -0.310 0.731 -2.301 6.448 2.075 -7.221 -2.044
3 6.053 -0.885 4.383 3.027 -1.060 0.413 -1.170 -2.670 2.019 2.817 -0.296 1.642
4 -1.915 -0.431 -4.447 0.261 -2.920 -1.874 2.509 1.103 -5.156 -1.091 1.716 -1.718

V
FA

R
2 =0

.9
2

A
ir

V
oi

ds
R

2 =0
.9

7
V

FA
R

2 =0
.9

1

A
ir

V
oi

ds
R

2 =0
.8

4

Hidden

neuron

Weight Bias
Wik (Input Variables)

 
 
 
 
 
 
 
 108



Table 5.17 Connection weights and biases of ANN model defined in Equation 2-13  

(specific energy dependent method for ambient rubber) 

Wk Bk Bo

5oC 1 2 3 4 5 6 7 8 9 Output Hidden Layer Output Layer
1 0.068 3.508 0.132 -0.951 3.570 2.851 -2.947 -0.719 -4.606 2.268 7.281 4.169
2 -5.848 1.720 -0.279 5.714 4.846 -9.356 -7.355 -2.472 -1.138 -6.569 10.061
3 8.197 10.585 -2.768 3.523 -0.058 -5.432 5.782 5.612 -13.904 -5.387 -0.674
4 -3.154 6.450 2.190 -2.066 1.865 -0.281 2.427 -0.584 -5.017 5.555 -1.275
1 -2.051 -5.147 -1.833 0.858 -1.261 -1.553 -1.232 -3.238 -7.273 3.456 12.499 -10.714
2 -4.374 0.946 4.944 4.133 -0.260 3.034 -0.064 2.215 5.764 3.675 -4.531
3 -2.356 2.109 -5.007 -0.717 2.393 -3.327 -0.413 0.181 3.861 0.082 1.186
4 -2.621 -5.684 0.051 3.265 8.573 2.296 2.990 1.416 -2.215 6.853 2.266

20oC
1 1.887 0.933 -3.835 1.874 -4.457 -1.811 1.050 2.825 3.212 -2.804 -6.361 -5.662
2 -3.940 -3.388 -3.429 4.313 1.403 3.505 -3.078 -6.339 -0.284 2.707 3.366
3 -3.038 -1.166 -1.738 3.996 3.911 -1.294 -2.411 -5.519 1.882 -3.786 0.336
4 4.729 -1.807 -2.613 0.812 0.219 -0.421 0.862 0.253 12.605 6.384 -3.548
1 4.847 0.288 5.511 2.016 -0.779 -1.335 -1.904 2.530 -4.656 -4.596 -2.404 2.058
2 4.115 -1.403 -2.781 3.122 -0.584 -9.131 2.874 -0.369 7.176 2.562 -2.042
3 1.206 -8.253 -0.951 -1.170 1.950 -4.973 -0.702 -7.083 5.400 3.764 6.547
4 -2.028 -2.466 0.118 2.909 1.022 -2.146 -5.372 -3.190 4.001 -6.894 2.607
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Table 5.18 Connection weights and biases of ANN model defined in Equation 2-13  

(specific energy dependent method for cryogenic rubber) 

 

Wk Bk Bo

5oC 1 2 3 4 5 6 7 8 9 Output Hidden Layer Output Layer
1 0.812 5.905 -0.071 -6.454 -5.752 -4.463 3.299 3.032 -3.633 -6.873 0.905 10.507
2 3.022 -8.723 -3.422 2.053 -3.600 3.491 -4.031 -4.296 3.615 -7.798 8.462
3 -1.860 1.511 4.975 2.830 3.968 4.843 2.693 3.547 -2.762 -9.756 -12.852
4 -0.411 -3.088 2.953 4.245 3.070 -3.823 -2.974 -0.448 1.855 -5.144 -4.399
1 0.211 -9.264 1.544 -4.969 -2.286 -0.373 -5.083 -1.613 7.374 2.800 1.013 -3.897
2 -0.386 -2.068 3.096 -2.957 7.948 0.707 1.644 5.591 8.321 -7.334 -11.068
3 0.221 8.820 -6.001 3.546 7.521 -4.471 -1.099 1.589 6.841 5.044 -3.042
4 0.217 1.630 3.917 4.562 -1.368 0.569 6.255 -0.307 2.554 6.609 -12.556

20oC
1 -5.506 -4.995 -7.335 -0.917 8.519 3.088 -2.504 -6.913 7.308 4.549 9.472 -7.034
2 -7.447 3.083 1.339 -1.221 -1.198 9.298 -3.573 -0.094 0.866 5.515 -5.595
3 -4.918 -4.865 2.455 -4.158 2.272 7.851 -4.540 -1.855 -2.216 -5.244 2.017
4 7.741 -7.647 9.945 0.493 -13.721 9.359 6.571 -2.840 -5.873 4.830 1.071
1 -0.102 3.182 0.223 1.609 6.234 -0.191 -3.348 0.999 -9.850 11.005 3.870 0.640
2 1.621 2.372 4.035 5.901 0.023 -2.770 -0.015 -0.091 -8.231 -11.534 0.211
3 -2.325 8.846 -4.159 -2.652 -3.609 7.476 -3.101 4.776 -4.354 -7.407 -5.076
4 -4.906 2.480 0.969 -1.205 3.590 1.052 0.783 -4.406 -0.734 1.239 -2.971
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Table 5.19 Comparison of fatigue lives between predicted and measured results of ANN 
model using soft binder (PG52-28) with 30% RAP L at 5oC and 20oC (ambient rubber) 

 
Measured

Fatigue life
5ºC Rb (%) RP (%) Nf VFA Air Void VFA Air Void

0.00 0.30 23785 10022 12279 18623 18910
0.05 0.30 29144 11203 10817 14047 8914
0.10 0.30 20436 12719 11584 14971 18096
0.15 0.30 40299 12241 9959 22692 29887

20ºC 
0.00 0.30 22518 24531 28393 8805 22584
0.05 0.30 20159 9085 18819 8812 11078
0.10 0.30 21383 8754 9604 12023 10650
0.15 0.30 24335 27776 10298 10105 10660
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Figure 5.16 Performance of ANN modes used specific strain dependent method for 

ambient rubber at 5oC  

 

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 10000 20000 30000 40000 50000 60000 70000 80000 90000
Measured Fatigue Life (Cycles)

Pr
ed

ic
te

d 
Fa

tig
ue

 L
ife

 (C
yc

le
s)

VFA Predicted (Training)
Air Voids Predicted (Training)
VFA Predicted (Testing)
Air Voids Predicted (Testing)

 
Figure 5.17 Performance of ANN modes used specific strain dependent method for 

ambient rubber at 20oC  
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Figure 5.18 Performance of ANN modes used specific strain dependent method for 

cryogenic rubber at 5oC  
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Figure 5.19 Performance of ANN modes used specific strain dependent method for 

cryogenic rubber at 20oC  
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Figure 5.20 Performance of ANN modes used specific energy dependent method for 

ambient rubber at 5oC  
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Figure 5.21 Performance of ANN modes used specific energy dependent method for 

ambient rubber at 20oC  
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Figure 5.22 Performance of ANN modes used specific energy dependent method for 

cryogenic rubber at 5oC  
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Figure 5.23 Performance of ANN modes used specific energy dependent method for 

cryogenic rubber at 20oC  
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Figure 5.24 Comparison of fatigue lives between predicted and measured results used 

second aggregate source at 5oC (regression models) 
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Figure 5.25 Comparison of fatigue lives between predicted and measured results used 

second aggregate source at 20oC (regression models) 
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Figure 5.26 Comparison of fatigue lives between predicted and measured results used 

second aggregate source at 5oC (ANN models) 
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Figure 5.27 Comparison of fatigue lives between predicted and measured results used 

second aggregate source at 20oC (ANN models) 

 



CHAPTER VI 
SUMMARY, CONCLUSIONS, AND RECOMMEDATIONS 

 
 

Summary 
 

 Fatigue behavior of asphalt mixtures is considered to be one of the most 

significant distress modes in a pavement that is subjected to repeated traffic loading or 

stress. With respect to the complexity of an asphalt mixture, fatigue is related to the 

properties of aggregate, asphalt, and asphalt aggregate interaction. For the last two 

decades, some fatigue predictive models have been developed to predict the fatigue life 

of asphalt mixtures in the laboratory and even in the field. They are broadly being 

employed in research and industry area.  

The recycled material, such as crumb rubber and reclaimed asphalt pavement, are 

used in new HMA mixtures in order to protect the environment, save energy and money. 

The fatigue study of the modified HMA is helpful in understanding many factors 

affecting the new mixtures. Although modeling the modified HMA fatigue life has not 

previously been accomplished, the past fatigue predictive models and sophisticated 

analysis methods were utilized to make this fatigue study possible.  

 For this study, one aggregate source, two asphalt grades, one rubber size, two 

types of rubber, and one type of RAP were used to develop the predictive models. A 

second aggregate source was utilized to validate the model of modified mixtures. A total 

of 39 mix designs were accomplished to perform fatigue testing and modeling.  

 Superpave mix design was used for preparation of fatigue testing specimens. The 

related property testing of modified asphalt binders and mixtures such as, viscosity, 
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dynamic shear rheometer (DSR), and indirect tensile strength (ITS) were accomplished 

prior to beam fabrication, which includes two or four repeated beam specimens at each 

testing temperature (5oC or 20oC).  

 The conventional GLM analysis method used in previous fatigue predictive 

models was also employed in predicting the fatigue life of mixtures in this study. The 

regression analysis were performed in accordance with strain dependent or dissipated 

energy dependent method based on traditional or specific variables for various mixture 

types. Conventional statistical analysis was utilized to verify the effectiveness of the 

models.  

 Artificial Neural Network (ANN) modeling is the second analysis method that 

was used to develop the fatigue predictive model in this study. Although, in most cases, 

the ANN model is only employed in geotechnical data analysis in Civil Engineering field, 

it is still likely to become an important tool to predict fatigue life of asphalt mixtures.   

 Additionally, validation and calibration of models are necessary and helpful in 

expanding the use range, in the laboratory or the field, of fatigue model in various areas. 

The model modification was performed by using a second aggregate source. 

 

Conclusions 

The following conclusions were reached based on the experimental data and in 

accordance with the related fatigue life properties of the mixtures, including asphalt 

modified binders and mixtures:  

 Viscosity of modified binder increases as the percentage of crumb rubber and 

RAP content increase regardless of the types of rubber and RAP. The use of 
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softer binder significantly decreases the viscosity value when using a high 

percentage RAP.  

 The G*sinδ value increases as the RAP increases, and the occurrence of crumb 

rubber is helpful in reducing G*sinδ value during a long term aging regardless of 

the types of rubber and RAP.  

 The mixing and compacting temperatures increase due to the occurrence of 

crumb rubber and RAP, and the lager percentage of crumb rubber and RAP 

content result in a higher temperature.  

 According to Superpave mix design, the use of RAP benefits in decreasing the 

virgin asphalt binder content, while the use of crumb rubber would be able to 

increase the optimum binder content. Although the crumb rubber is able to 

reduce the bond of binder and aggregate and result in a decrease of ITS value, the 

additional use of RAP in the mixture is beneficial in improving this bond.  

The fatigue predictive model of mixture, including strain and energy dependent 

method used conventional regression and ANN model, is summarized as follows: 

 The traditional regression model is not able to predict the fatigue life of modified 

mixture accurately, and additional independent variables are indispensably 

employed in developing fatigue predictive models. 

 Specific regression model can predict the reasonable fatigue response of mixture, 

and measured and predicted fatigue values are close regardless of the crumb 

rubber, RAP content, and even testing conditions. In additional, statistical 

analysis shows that coefficient of determination value of model is large in strain 

dependent and dissipated energy dependent methods. 
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 ANN approach, as a new fatigue modeling method in this study, has been shown 

to be effective in performing fatigue testing data of mixture. The established 

ANN model is able to predicting fatigue occurrence accurately. Moreover, it 

produces an overall success rate of larger than 84%, and, in most cases, this 

values is larger than 90% in predicting fatigue life. It is more effective than the 

conventional regression model. 

 The validation and calibration are proved possible after the reliability multiple 

and shift factor are employed in modifying the fatigue models due to the use of a 

second aggregate source.  

 

Recommendations 

 The methodology for fatigue life evaluation developed in the present study may 

be applied to the study of other similar conditions. On the other hand, the methods 

established in this study need further validation, calibration, and improvement. The 

recommendations for further study are summarized below: 

 Evaluating a larger number of repeated testing specimens for each mixture and 

increasing the designed number of crumb rubber and RAP contents are effective 

in order to improve the precision of fatigue predictive models. 

 Increasing the types of aggregate and RAP source and diminishing the variability 

of RAP will warrant for further validation of the established models.  

 Collecting the field data and building the experimental pavement in the field are 

very beneficial in accurately calibrating the shift factor of fatigue models from 

the laboratory to the field. 
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 Developing simplified models for predicting fatigue life of mixture is attractive 

for most practicing engineers. Whereas these fatigue predictive models provide 

an accurate estimate of fatigue life, they are by no means simply models.  

 Comparing the cost of these recycled materials with virgin ones used in asphalt 

pavement associated with fatigue life will be a very interesting issue for 

engineers.  
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Volumetric Properties of Superpave Mix Design 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 



Table A.1 Volumetric properties of Superpave mix design with 0% rubber using aggregate source L 
 

Specific Gravity
Bulk Rice

4.5 2.342 2.483 10.2 5.7 15.9 64.3
5.0 2.327 2.465 11.3 5.6 16.8 66.9
5.5 2.349 2.447 12.5 4.0 16.5 75.8
6.0 2.373 2.429 13.8 2.3 16.1 85.6

O.A.C. (5.40) 2.352 2.450 12.2 4.1 16.7 73.5
4.5 2.323 2.487 10.1 6.6 16.7 60.5
5.0 2.347 2.469 11.4 4.9 16.3 69.7
5.5 2.375 2.451 12.6 3.1 15.7 80.3
6.0 2.393 2.434 13.9 1.7 15.6 89.2

O.A.C. (5.25) 2.362 2.460 11.8 4.0 17.4 68.0
4.5 2.362 2.460 10.3 4.0 14.3 72.0
5.0 2.367 2.443 11.5 3.1 14.6 78.9
5.5 2.393 2.425 12.7 1.3 14.1 90.5
6.0 2.393 2.408 13.9 0.6 14.5 95.8

O.A.C. (4.70) 2.368 2.453 10.7 3.9 14.5 74.3
4.5 2.360 2.485 10.3 5.0 15.3 67.1
5.0 2.380 2.467 11.5 3.5 15.1 76.5
5.5 2.402 2.449 12.8 1.9 14.7 87.0
6.0 2.423 2.432 14.1 0.4 14.4 97.6

O.A.C. (4.82) 2.373 2.474 11.0 4.1 15.6 70.6
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Table A.2 Volumetric properties of Superpave mix design with 5% ambient rubber (-40mesh) using aggregate source L 
 

Specific Gravity
Bulk Rice

4.5 2.294 2.473 10.0 7.3 17.2 57.9
5.0 2.302 2.455 11.1 6.3 17.4 64.0
5.5 2.331 2.438 12.4 4.4 16.8 73.9
6.0 2.356 2.420 13.7 2.7 16.3 83.7

O.A.C. (5.60) 2.337 2.434 12.4 4.0 18.2 68.3
4.5 2.318 2.487 10.1 6.8 16.9 59.8
5.0 2.332 2.469 11.3 5.6 16.8 67.0
5.5 2.354 2.451 12.5 3.9 16.5 76.1
6.0 2.380 2.433 13.8 2.2 16.0 86.3

O.A.C. (5.45) 2.355 2.453 12.2 4.0 17.7 69.0
4.5 2.344 2.468 10.2 5.0 15.2 67.1
5.0 2.350 2.450 11.4 4.1 15.5 73.7
5.5 2.350 2.432 12.5 3.4 15.9 78.7
6.0 2.377 2.415 13.8 1.6 15.4 89.9

O.A.C. (5.02) 2.351 2.449 11.4 4.0 15.7 72.7
4.5 2.352 2.491 10.2 5.6 15.8 64.7
5.0 2.377 2.473 11.5 3.9 15.4 74.9
5.5 2.397 2.455 12.8 2.4 15.1 84.4
6.0 2.408 2.437 14.0 1.2 15.2 92.1

O.A.C. (4.99) 2.377 2.473 11.5 4.0 15.4 74.9
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Table A.3 Volumetric properties of Superpave mix design with 10% ambient rubber (-40mesh) using aggregate source L 

 
Specific Gravity

Bulk Rice
4.5 2.256 2.467 9.8 8.5 18.4 53.5
5.0 2.276 2.449 11.0 7.0 18.1 61.0
5.5 2.311 2.431 12.3 4.9 17.2 71.4
6.0 2.326 2.414 13.5 3.6 17.2 78.8

O.A.C. (5.85) 2.323 2.419 12.8 4.0 19.5 65.5
4.5 2.300 2.473 10.0 7.0 17.0 59.0
5.0 2.320 2.455 11.2 5.5 16.7 67.1
5.5 2.325 2.437 12.4 4.6 17.0 73.0
6.0 2.334 2.420 13.6 3.5 17.1 79.4

O.A.C. (5.75) 2.343 2.428 12.8 4.0 18.1 70.8
4.5 2.323 2.449 10.1 5.1 15.2 66.4
5.0 2.320 2.432 11.2 4.6 15.8 71.1
5.5 2.345 2.414 12.5 2.9 15.3 81.4
6.0 2.353 2.397 13.7 1.9 15.5 88.1

O.A.C. (5.08) 2.332 2.429 11.4 4.0 15.8 72.5
4.5 2.333 2.484 10.2 6.1 16.2 62.6
5.0 2.358 2.466 11.4 4.4 15.8 72.3
5.5 2.379 2.448 12.7 2.8 15.5 81.8
6.0 2.399 2.430 13.9 1.3 15.2 91.5

O.A.C. (5.12) 2.367 2.461 11.6 4.0 16.8 68.9
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Table A.4 Volumetric properties of Superpave mix design with 15% ambient rubber (-40mesh)using aggregate source L 
 

Specific Gravity
Bulk Rice

4.5 2.216 2.463 9.7 10.0 19.7 49.2
5.0 2.241 2.445 10.8 8.4 19.2 56.6
5.5 2.277 2.428 12.1 6.2 18.3 66.2
6.0 2.300 2.410 13.4 4.6 18.0 74.4

O.A.C. (6.35) 2.299 2.393 14.5 4.0 18.4 78.6
4.5 2.253 2.471 9.8 8.8 18.6 52.8
5.0 2.265 2.453 11.0 7.7 18.6 58.9
5.5 2.298 2.436 12.2 5.6 17.9 68.5
6.0 2.334 2.418 13.6 3.5 17.0 79.6

O.A.C. (5.90) 2.325 2.422 12.9 4.0 19.8 65.0
4.5 2.302 2.462 10.0 6.5 16.5 60.9
5.0 2.303 2.444 11.1 5.8 16.9 66.2
5.5 2.309 2.427 12.3 4.8 17.1 71.8
6.0 2.341 2.409 13.6 2.8 16.4 82.8

O.A.C. (5.65) 2.324 2.421 12.6 4.0 17.5 72.1
4.5 2.328 2.482 10.1 6.2 16.3 62.1
5.0 2.339 2.464 11.3 5.1 16.4 69.2
5.5 2.369 2.446 12.6 3.2 15.8 80.0
6.0 2.387 2.429 13.9 1.7 15.6 89.0

O.A.C. (5.25) 2.357 2.455 11.8 4.0 17.0 69.6

30
%

R
A

P
% VFM

0%
R

A
P

15
%

R
A

P
25

%
R

A
P

15%40m Ambient % AC by Vol. Air Voids VMA

 
 
 
 
 
 

 

128



Table A.5 Volumetric properties of Superpave mix design with 5% cryogenic rubber (-40mesh) using aggregate source L 
 

Specific Gravity
Bulk Rice

4.5 2.294 2.462 10.0 6.8 16.8 59.4
5.0 2.330 2.444 11.3 4.7 16.0 70.7
5.5 2.353 2.427 12.5 3.1 15.6 80.4
6.0 2.378 2.410 13.8 1.3 15.1 91.4

O.A.C. (5.25) 2.339 2.436 11.7 4.0 17.5 66.7
4.5 2.312 2.469 10.1 6.4 16.5 61.2
5.0 2.334 2.451 11.3 4.8 16.1 70.3
5.5 2.352 2.434 12.5 3.4 15.9 78.7
6.0 2.372 2.417 13.8 1.8 15.6 88.2

O.A.C. (5.25) 2.344 2.443 11.7 4.0 17.1 68.7
4.5 2.344 2.484 10.2 5.6 15.8 64.5
5.0 2.366 2.466 11.5 4.1 15.5 73.8
5.5 2.386 2.448 12.7 2.5 15.2 83.3
6.0 2.397 2.431 13.9 1.4 15.3 91.1

O.A.C. (5.02) 2.365 2.465 11.4 4.0 16.3 69.9
4.5 2.363 2.484 10.3 4.9 15.2 67.9
5.0 2.379 2.466 11.5 3.5 15.0 76.6
5.5 2.398 2.448 12.8 2.0 14.8 86.3
6.0 2.410 2.430 14.0 0.8 14.8 94.4

O.A.C. (4.80) 2.374 2.473 11.0 4.0 15.4 71.1
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Table A.6 Volumetric properties of Superpave mix design with 10% cryogenic rubber (-40mesh) using aggregate source L 
 

Specific Gravity
Bulk Rice

4.5 2.247 2.452 9.8 8.4 18.2 53.9
5.0 2.260 2.434 10.9 7.2 18.1 60.4
5.5 2.261 2.417 12.0 6.4 18.5 65.1
6.0 2.291 2.400 13.3 4.6 17.9 74.5

O.A.C. (6.08) 2.301 2.398 13.2 4.0 19.5 67.5
4.5 2.268 2.461 9.9 7.9 17.7 55.7
5.0 2.264 2.443 11.0 7.3 18.3 59.9
5.5 2.284 2.426 12.2 5.8 18.0 67.5
6.0 2.333 2.408 13.5 3.2 16.7 81.1

O.A.C. (5.90) 2.314 2.412 13.0 4.0 18.9 68.4
4.5 2.319 2.456 10.1 5.6 15.7 64.3
5.0 2.329 2.439 11.3 4.5 15.8 71.4
5.5 2.339 2.421 12.5 3.4 15.9 78.5
6.0 2.355 2.404 13.7 2.1 15.7 87.0

O.A.C. (5.18) 2.336 2.433 11.6 4.0 16.3 71.3
4.5 2.336 2.472 10.2 5.5 15.7 64.9
5.0 2.341 2.455 11.3 4.6 16.0 71.0
5.5 2.358 2.437 12.6 3.2 15.8 79.4
6.0 2.343 2.420 13.6 3.1 16.8 81.3

O.A.C. (5.30) 2.346 2.443 12.0 4.0 16.4 73.3
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Table A.7 Volumetric properties of Superpave mix design with 15% cryogenic rubber (-40mesh) using aggregate source L 
 

Specific Gravity
Bulk Rice

5.0 2.260 2.442 10.9 7.5 18.4 59.6
5.5 2.243 2.424 11.9 7.5 19.4 61.4
6.0 2.292 2.407 13.3 4.8 18.1 73.8
6.5 2.353 2.390 14.8 1.6 16.4 90.4

O.A.C. (6.10) 2.308 2.405 13.2 4.0 19.9 66.2
4.5 2.288 2.437 10.0 6.1 16.1 62.1
5.0 2.302 2.420 11.1 4.9 16.0 69.8
5.5 2.304 2.403 12.3 4.1 16.4 75.0
6.0 2.348 2.386 13.6 1.6 15.2 89.5

O.A.C. (5.30) 2.313 2.409 11.7 4.0 16.8 70.0
4.5 2.330 2.472 10.2 5.7 15.9 64.0
5.0 2.348 2.454 11.4 4.3 15.7 72.4
5.5 2.366 2.437 12.6 2.9 15.5 81.3
6.0 2.391 2.419 13.9 1.1 15.0 92.4

O.A.C. (5.10) 2.353 2.451 11.5 4.0 16.4 70.1
4.5 2.347 2.482 10.2 5.4 15.7 65.3
5.0 2.367 2.464 11.5 3.9 15.4 74.4
5.5 2.364 2.446 12.6 3.3 15.9 79.0
6.0 2.386 2.428 13.9 1.7 15.6 88.9

O.A.C. (5.08) 2.364 2.462 11.5 4.0 16.2 71.1
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Table A.8 Volumetric properties of Superpave mix design with 30%RAP (PG52-28) using aggregate source L 
 

Specific Gravity
Bulk Rice

4.5 2.384 2.494 10.4 4.4 14.8 70.1
5.0 2.396 2.476 11.6 3.2 14.8 78.2
5.5 2.419 2.458 12.9 1.6 14.5 88.9
6.0 2.424 2.440 14.1 0.7 14.7 95.5

O.A.C. (6.35) 2.389 2.489 10.7 4.0 15.0 71.8
4.5 2.355 2.489 10.3 5.4 15.6 65.7
5.0 2.373 2.471 11.5 4.0 15.4 74.4
5.5 2.395 2.453 12.8 2.4 15.1 84.4
6.0 2.406 2.435 14.0 1.2 15.2 92.0

O.A.C. (5.90) 2.373 2.472 11.4 4.0 16.1 70.7
4.5 2.356 2.485 10.3 5.2 15.5 66.3
5.0 2.375 2.467 11.5 3.7 15.2 75.5
5.5 2.394 2.449 12.7 2.2 15.0 85.0
6.0 2.404 2.432 14.0 1.1 15.1 92.5

O.A.C. (5.65) 2.372 2.471 11.2 4.0 15.8 70.6
4.5 2.348 2.489 10.2 5.7 15.9 64.4
5.0 2.367 2.471 11.5 4.2 15.7 73.2
5.5 2.396 2.453 12.8 2.3 15.1 84.5
6.0 2.404 2.435 14.0 1.3 15.3 91.5

O.A.C. (5.25) 2.371 2.469 11.5 4.0 16.4 70.115
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Table A.9 Volumetric properties of Superpave mix design with 0% rubber using aggregate source C 
 

Specific Gravity
Bulk Rice

4.5 2.324 2.448 10.1 5.1 15.2 66.6
5.0 2.323 2.430 11.2 4.4 15.7 71.7
5.5 2.357 2.413 12.6 2.3 14.9 84.4
6.0 2.357 2.396 13.7 1.6 15.3 89.4

O.A.C. (5.00) 2.324 2.431 11.2 4.0 15.6 71.7
4.5 2.312 2.455 10.1 5.8 15.9 63.3
5.0 2.348 2.438 11.4 3.7 15.1 75.4
5.5 2.345 2.421 12.5 3.1 15.6 80.1
6.0 2.381 2.403 13.8 1.0 14.8 93.6

O.A.C. (5.10) 2.339 2.436 11.3 4.0 16.4 69.0
4.0 2.302 2.477 8.9 7.0 16.0 55.9
4.5 2.333 2.459 10.2 5.1 15.3 66.6
5.0 2.349 2.441 11.4 3.8 15.1 75.1
5.5 2.381 2.424 12.7 1.8 14.4 87.8

O.A.C. (4.85) 2.348 2.446 10.8 4.0 16.7 64.7
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Table A.10 Volumetric properties of Superpave mix design with 10% ambient rubber (-40mesh) using aggregate source C 
 

Specific Gravity
Bulk Rice

4.5 2.242 2.443 9.8 8.2 18.0 54.3
5.0 2.267 2.425 11.0 6.6 17.5 62.6
5.5 2.302 2.408 12.3 4.4 16.7 73.4
6.0 2.305 2.391 13.4 3.6 17.0 78.7

O.A.C. (5.75) 2.304 2.400 12.5 4.0 19.1 65.5
4.5 2.278 2.452 9.9 7.1 17.0 58.4
5.0 2.323 2.434 11.2 4.6 15.8 71.1
5.5 2.314 2.417 12.3 4.3 16.6 74.2
6.0 2.329 2.400 13.5 3.0 16.5 82.0

O.A.C. (5.53) 2.318 2.416 12.2 4.0 17.9 68.1
4.5 2.325 2.456 10.1 5.3 15.5 65.5
5.0 2.336 2.438 11.3 4.2 15.5 72.9
5.5 2.350 2.421 12.5 2.9 15.4 81.0
6.0 2.358 2.404 13.7 1.9 15.6 87.8

O.A.C. (5.10) 2.338 2.436 11.4 4.0 16.0 71.5
4.5 2.326 2.456 10.1 5.3 15.4 65.7
5.0 2.338 2.438 11.3 4.1 15.4 73.5
5.5 2.348 2.421 12.5 3.0 15.5 80.6
6.0 2.369 2.404 13.8 1.5 15.2 90.4

O.A.C. (5.00) 2.339 2.436 11.4 4.0 15.9 71.4
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Appendix B 
 

Viscosity of the Modified Binder 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table B.1 Viscosity of modified binders containing ambient rubber (-40mesh) with aged binder L 
 

PG64-22 Mean Stdv.
0% Rubber 0%RAP 425 425 425 422.5 422.5 422.5 420 420 420 423 2
5% Ambi 0%RAP 662.5 662.5 650 625 625 612.5 612.5 612.5 625 632 20
10% Ambi 0%RAP 1275 1270 1270 1260 1255 1250 1295 1285 1285 1272 14
15% Ambi 0%RAP 2630 2625 2615 2700 2690 2680 2670 2665 2665 2660 28

0% Rubber 15%RAP 575 575 575 575 575 575 575 575 575 575 0
5% Ambi 15%RAP 1038 1050 1050 1040 1040 1050 1045 1040 1050 1045 5
10% Ambi 15%RAP 1650 1650 1650 1612 1612 1625 1725 1725 1725 1664 46
15% Ambi 15%RAP 3200 3200 3200 3513 3513 3513 3500 3500 3500 3404 145

0% Rubber 25%RAP 750 750 740 825 800 800 825 800 775 785 31
5% Ambi 25%RAP 1300 1300 1300 1200 1200 1200 1175 1175 1175 1225 54
10% Ambi 25%RAP 1850 1850 1837 1788 1788 1788 1825 1813 1825 1818 24
15% Ambi 25%RAP 3060 3060 3050 3013 3013 3000 2987 2975 2975 3015 32

0% Rubber 30%RAP 875 875 875 862.5 875 875 850 850 850 865 11
5% Ambi 30%RAP 1438 1438 1438 1450 1450 1450 1450 1450 1450 1446 6
10% Ambi 30%RAP 2088 2075 2075 2050 2050 2050 1900 1913 1913 2013 75
15% Ambi 30%RAP 3037 3025 3025 3150 3150 3150 3050 3050 3050 3076 53

PG52-28 Mean Stdv.
0% Rubber 0%RAP 212.5 212.5 212.5 212.5 212.5 212.5 212.5 212.5 212.5 213 0
0% Rubber 30%RAP 537 537 537 513 513 525 525 525 525 526 9
5% Ambi 30%RAP 962 962 962 975 975 975 950 950 950 962 10
10% Ambi 30%RAP 1525 1525 1525 1500 1500 1500 1525 1525 1525 1517 12
15% Ambi 30%RAP 2475 2475 2475 2625 2625 2612 2575 2588 2575 2558 61

Aged binder (Source L) 5738 5750 5738 6375 6387 6375 5825 5825 5825 5982 283  
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Table B.2 Viscosity of modified binder containing cryogenic rubber with aged binder L 
 

PG64-22 Mean Stdv.
0% Rubber 0%RAP 425 425 425 422.5 422.5 422.5 420 420 420 423 2
5% Cryo 0%RAP 587.5 600 587.5 600 600 600 587.5 587.5 587.5 593 6
10% Cryo 0%RAP 1145 1145 1145 1140 1135 1135 1145 1145 1145 1142 4
15% Cryo 0%RAP 1910 1900 1900 1930 1925 1920 1910 1905 1895 1911 11

0% Rubber 15%RAP 575 575 575 575 575 575 575 575 575 575 0
5% Cryo 15%RAP 1075 1075 1075 987.5 987.5 987.5 1075 1075 1075 1046 41
10% Cryo 15%RAP 1600 1600 1612 1638 1638 1638 1638 1650 1650 1629 19
15% Cryo 15%RAP 2475 2463 2463 2313 2313 2300 2275 2275 2287 2352 83

0% Rubber 25%RAP 750 750 740 825 800 800 825 800 775 785 31
5% Cryo 25%RAP 1487 1487 1487 1462 1462 1462 1483 1483 1483 1477 11
10% Cryo 25%RAP 1925 1925 1925 1950 1950 1938 1945 1945 1945 1939 10
15% Cryo 25%RAP 2737 2737 2725 2775 2775 2775 2760 2760 2760 2756 18

0% Rubber 30%RAP 875 875 875 862.5 875 875 850 850 850 865 11
5% Cryo 30%RAP 1413 1413 1413 1388 1400 1400 1425 1425 1425 1411 12
10% Cryo 30%RAP 2200 2200 2200 2237 2237 2237 2225 2225 2225 2221 15
15% Cryo 30%RAP 2650 2650 2650 2700 2700 2700 2675 2675 2675 2675 20

PG52-28 Mean Stdv.
0% Rubber 0%RAP 212.5 212.5 212.5 212.5 212.5 212.5 212.5 212.5 212.5 213 0
0% Rubber 30%RAP 537 537 537 513 513 525 525 525 525 526 9
5% Cryo 30%RAP 1000 1000 1000 962.5 962.5 962.5 950 950 950 971 21
10% Cryo 30%RAP 1325 1325 1325 1300 1300 1300 1263 1263 1263 1296 25
15% Cryo 30%RAP 2388 2388 2388 2388 2388 2388 2438 2425 2425 2402 20

Aged binder (Source L) 5738 5750 5738 6375 6387 6375 5825 5825 5825 5982 283  
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Table B.3 Viscosity of modified binder containing ambient rubber with aged binder C 
 

PG64-22 Mean Stdv.
0% Rubber 0%RAP 425 425 425 422.5 422.5 422.5 420 420 420 423 2
5% Ambi 0%RAP 662.5 662.5 650 625 625 612.5 612.5 612.5 625 632 20
10% Ambi 0%RAP 1275 1270 1270 1260 1255 1250 1295 1285 1285 1272 14
15% Ambi 0%RAP 2630 2625 2615 2700 2690 2680 2670 2665 2665 2660 28

0% Rubber 15%RAP 550 550 550 550 550 550 560 560 560 553 5
5% Ambi 15%RAP 987.5 987.5 987.5 950 950 950 950 950 950 963 18
10% Ambi 15%RAP 1400 1400 1400 1425 1425 1425 1375 1375 1375 1400 20
15% Ambi 15%RAP 2780 2780 2780 2825 2825 2825 2850 2850 2850 2818 29

0% Rubber 25%RAP 637.5 637.5 637.5 637.5 637.5 637.5 637.5 637.5 637.5 638 0
5% Ambi 25%RAP 1175 1175 1175 1175 1175 1175 1163 1163 1150 1170 8
10% Ambi 25%RAP 1788 1788 1788 1750 1750 1750 1775 1775 1775 1771 16
15% Ambi 25%RAP 3075 3075 3075 3088 3088 3075 3050 3050 3050 3070 15

0% Rubber 30%RAP 712.5 712.5 712.5 750 737.5 737.5 725 725 725 726 12
5% Ambi 30%RAP 1225 1225 1225 1175 1175 1175 1200 1200 1200 1200 20
10% Ambi 30%RAP 1888 1888 1888 1862 1862 1862 1875 1875 1875 1875 11
15% Ambi 30%RAP 2675 2675 2675 2688 2688 2688 2680 2680 2680 2681 5

PG52-28 Mean Stdv.
0% Rubber 0%RAP 212.5 212.5 212.5 212.5 212.5 212.5 212.5 212.5 212.5 213 0
0% Rubber 30%RAP 425 425 425 437.5 437.5 437.5 475 475 475 446 21
5% Ambi 30%RAP 775 775 775 787.5 787.5 787.5 775 775 775 779 6
10% Ambi 30%RAP 1263 1263 1263 1200 1212 1212 1225 1225 1225 1232 23
15% Ambi 30%RAP 1813 1813 1813 1825 1825 1825 1825 1825 1825 1821 6

Aged binder (Source C) 2475 2475 2475 2563 2563 2563 2612 2612 2612 2550 57  
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Table B.4 Viscosity of modified binder containing cryogenic rubber with aged binder C 
 

PG64-22 Mean Stdv.
0% Rubber 0%RAP 425 425 425 422.5 422.5 422.5 420 420 420 423 2
5% Cryo 0%RAP 587.5 600 587.5 600 600 600 587.5 587.5 587.5 593 6
10% Cryo 0%RAP 1145 1145 1145 1140 1135 1135 1145 1145 1145 1142 4
15% Cryo 0%RAP 1910 1900 1900 1930 1925 1920 1910 1905 1895 1911 11

0% Rubber 15%RAP 550 550 550 550 550 550 560 560 560 553 5
5% Cryo 15%RAP 1025 1025 1025 1112 1112 1100 1000 1000 1000 1044 46
10% Cryo 15%RAP 2088 2088 2325 2325 2313 2362 2338 2325 2075 2249 117
15% Cryo 15%RAP 3263 3250 3237 3550 3537 3525 3525 3525 3525 3437 133

0% Rubber 25%RAP 637.5 637.5 637.5 637.5 637.5 637.5 637.5 637.5 637.5 638 0
5% Cryo 25%RAP 1200 1200 1200 1125 1138 1125 1125 1138 1125 1153 34
10% Cryo 25%RAP 1712 1712 1712 1750 1735 1750 1725 1725 1725 1727 14
15% Cryo 25%RAP 2550 2550 2550 2662 2662 2675 2650 2650 2650 2622 52

0% Rubber 30%RAP 712.5 712.5 712.5 750 737.5 737.5 725 725 725 726 12
5% Cryo 30%RAP 1250 1250 1250 1250 1250 1250 1225 1225 1225 1242 12
10% Cryo 30%RAP 1825 1825 1825 1925 1925 1938 1900 1900 1900 1885 44
15% Cryo 30%RAP 2338 2338 2338 2325 2325 2325 2388 2388 2388 2350 27

PG52-28 Mean Stdv.
0% Rubber 0%RAP 212.5 212.5 212.5 212.5 212.5 212.5 212.5 212.5 212.5 213 0
0% Rubber 30%RAP 425 425 425 437.5 437.5 437.5 475 475 475 446 21
5% Cryo 30%RAP 750 750 750 750 750 750 750 750 750 750 0
10% Cryo 30%RAP 1100 1100 1100 1087 1087 1087 1100 1100 1100 1096 6
15% Cryo 30%RAP 1663 1663 1663 1750 1750 1750 1700 1700 1700 1704 36

Aged binder (Source C) 2475 2475 2475 2563 2563 2563 2612 2612 2612 2550 57  
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Table C.1 G* sin δ of modified binder containing ambient rubber (-40mesh) using aged binder L 
 

PG64-22 Mean Stdv. PG64-22 Mean Stdv.
0% Rubber 0%RAP 2.57 3.48 3.02 0.64 0% Rubber 0%RAP 2.57 3.48 3.02 0.64
5% Ambi 0%RAP 3.92 3.65 3.78 0.19 5% 40Cryo 0%RAP 3.92 3.00 3.46 0.65
10% Ambi 0%RAP 2.31 2.21 2.26 0.07 10% 40Cryo 0%RAP 2.02 2.36 2.19 0.24
15% Ambi 0%RAP 1.51 1.21 1.36 0.21 15% 40Cryo 0%RAP 1.07 1.58 1.33 0.37

0% Rubber 15%RAP 5.07 4.96 5.02 0.08 0% Rubber 15%RAP 5.07 4.96 5.02 0.08
5% Ambi 15%RAP 4.61 4.28 4.45 0.23 5% 40Cryo 15%RAP 4.30 4.77 4.54 0.34
10% Ambi 15%RAP 4.02 3.74 3.88 0.20 10% 40Cryo 15%RAP 3.12 3.61 3.36 0.35
15% Ambi 15%RAP 2.78 2.21 2.49 0.40 15% 40Cryo 15%RAP 3.20 3.30 3.25 0.07

0% Rubber 25%RAP 4.69 5.14 4.92 0.31 0% Rubber 25%RAP 4.69 5.14 4.92 0.31
5% Ambi 25%RAP 5.38 5.46 5.42 0.06 5% 40Cryo 25%RAP 4.04 5.00 4.52 0.68
10% Ambi 25%RAP 4.25 4.34 4.29 0.06 10% 40Cryo 25%RAP 4.07 3.88 3.98 0.14
15% Ambi 25%RAP 3.46 3.37 3.41 0.06 15% 40Cryo 25%RAP 3.63 3.90 3.77 0.19

0% Rubber 30%RAP 6.21 5.99 6.10 0.15 0% Rubber 30%RAP 6.21 5.99 6.10 0.15
5% Ambi 30%RAP 6.04 6.01 6.03 0.02 5% 40Cryo 30%RAP 5.20 5.36 5.28 0.12
10% Ambi 30%RAP 4.06 4.60 4.33 0.38 10% 40Cryo 30%RAP 3.88 3.88 3.88 0.00
15% Ambi 30%RAP 3.98 3.76 3.87 0.16 15% 40Cryo 30%RAP 3.73 3.25 3.49 0.34

PG52-28 Mean Stdv. PG52-28 Mean Stdv.
0% Rubber 30%RAP 2.70 2.26 2.48 0.31 0% Rubber 30%RAP 2.70 2.26 2.48 0.31
5% Ambi 30%RAP 2.51 2.81 2.66 0.21 5% 40Cryo 30%RAP 2.68 2.74 2.71 0.05
10% Ambi 30%RAP 2.23 2.15 2.19 0.06 10% 40Cryo 30%RAP 2.22 2.13 2.17 0.06
15% Ambi 30%RAP 1.89 1.73 1.81 0.11 15% 40Cryo 30%RAP 2.00 1.75 1.88 0.18  
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Table C.2 G* sin δ of modified binder containing ambient rubber (-40mesh) using aged binder C 
 

PG64-22 Mean Stdv. PG64-22 Mean Stdv.
0% Rubber 0%RAP 2.57 3.48 3.02 0.64 0% Rubber 0%RAP 2.57 3.48 3.02 0.64
5% Ambi 0%RAP 3.92 3.65 3.78 0.19 5% 40Cryo 0%RAP 3.92 3.00 3.46 0.65
10% Ambi 0%RAP 2.31 2.21 2.26 0.07 10% 40Cryo 0%RAP 2.02 2.36 2.19 0.24
15% Ambi 0%RAP 1.51 1.21 1.36 0.21 15% 40Cryo 0%RAP 1.07 1.58 1.33 0.37

0% Rubber 15%RAP 4.04 4.28 4.16 0.17 0% Rubber 15%RAP 4.04 4.28 4.16 0.17
5% Ambi 15%RAP 3.93 4.14 4.03 0.15 5% 40Cryo 15%RAP 4.07 3.69 3.88 0.27
10% Ambi 15%RAP 3.20 3.02 3.11 0.13 10% 40Cryo 15%RAP 3.19 3.34 3.26 0.11
15% Ambi 15%RAP 2.47 2.35 2.41 0.08 15% 40Cryo 15%RAP 2.68 2.40 2.54 0.19

0% Rubber 25%RAP 4.78 5.08 4.93 0.22 0% Rubber 25%RAP 4.78 5.08 4.93 0.22
5% Ambi 25%RAP 5.17 4.22 4.70 0.67 5% 40Cryo 25%RAP 5.41 5.26 5.33 0.10
10% Ambi 25%RAP 4.43 4.26 4.34 0.12 10% 40Cryo 25%RAP 3.89 4.08 3.98 0.13
15% Ambi 25%RAP 3.30 3.35 3.32 0.04 15% 40Cryo 25%RAP 3.21 3.51 3.36 0.21

0% Rubber 30%RAP 5.94 5.71 5.82 0.16 0% Rubber 30%RAP 5.94 5.71 5.82 0.16
5% Ambi 30%RAP 4.82 5.36 5.09 0.38 5% 40Cryo 30%RAP 5.59 5.13 5.36 0.32
10% Ambi 30%RAP 4.98 5.37 5.18 0.28 10% 40Cryo 30%RAP 4.25 4.80 4.52 0.39
15% Ambi 30%RAP 3.84 3.32 3.58 0.36 15% 40Cryo 30%RAP 3.96 4.29 4.13 0.23

PG52-28 Mean Stdv. PG52-28 Mean Stdv.
0% Rubber 30%RAP 2.09 1.90 2.00 0.14 0% Rubber 30%RAP 2.09 1.90 2.00 0.14
5% Ambi 30%RAP 2.10 2.03 2.07 0.05 5% 40Cryo 30%RAP 2.10 2.20 2.15 0.07
10% Ambi 30%RAP 1.95 1.98 1.96 0.02 10% 40Cryo 30%RAP 2.10 1.99 2.04 0.08
15% Ambi 30%RAP 1.67 1.55 1.61 0.09 15% 40Cryo 30%RAP 1.70 1.82 1.76 0.09  
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Table D.1 ITS values of mixtures using 0-5% ambient rubber (-40mesh) with aggregate L 
 

PG64-22 (0% Rub) Dry Wet PG64-22 (5%Ambi) Dry Wet
0%RAP 1100.59 933.86 0%RAP 1002.88 916.50

1078.25 922.52 937.57 921.77
1034.17 912.20 939.68 948.10

Mean (kPa) 1071.00 922.86 Mean (kPa) 960.04 928.79
Stdv. (kPa) 33.80 10.83 Stdv. (kPa) 37.12 16.93
TSR (%) TSR (%)

15%RAP 1394.15 1115.45 15%RAP 1188.29 1135.62
1365.75 1136.24 1185.13 1237.80
1303.64 1245.50 1158.79 1237.80

Mean (kPa) 1354.51 1165.73 Mean (kPa) 1177.40 1203.74
Stdv. (kPa) 46.29 69.86 Stdv. (kPa) 16.19 59.00
TSR (%) TSR (%)

25%RAP 1331.95 1321.08 25%RAP 1295.86 1192.32
1461.96 1122.99 1349.75 962.30
1361.49 1210.84 1214.47 1399.45

Mean (kPa) 1385.13 1218.30 Mean (kPa) 1286.69 1184.69
Stdv. (kPa) 68.16 99.26 Stdv. (kPa) 68.10 218.67
TSR (%) TSR (%)

30%RAP 1533.89 1408.92 30%RAP 1235.69 1284.94
1521.39 1342.27 1259.20 1262.56
1342.65 1295.02 1231.22

Mean (kPa) 1465.98 1375.60 Mean (kPa) 1263.30 1259.57
Stdv. (kPa) 106.99 47.13 Stdv. (kPa) 29.87 26.99
TSR (%) TSR (%)

PG52-28 (0% Rub) Dry Wet PG52-28 (5%Ambi) Dry Wet
30%RAP 1180.37 961.49 30%RAP 1139.68 939.88

1197.23 1059.98 1134.24 957.86
1251.49 1084.15 1100.45 989.56

Mean (kPa) 1209.70 1035.21 Mean (kPa) 1124.79 962.43
Stdv. (kPa) 37.17 64.98 Stdv. (kPa) 21.25 25.15
TSR (%) TSR (%)86 86

97

102

92

100

86

86

88

94
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Table D.2 ITS values of mixtures using 10-15% ambient rubber (-40mesh) with 
aggregate L 

 
PG64-22 (10%Ambi) Dry Wet PG64-22 (15%Ambi) Dry Wet

0%RAP 928.14 733.96 0%RAP 900.74 645.71
1021.14 764.77 902.22 736.76
982.86 988.13 908.45 745.78

Mean (kPa) 977.38 828.95 Mean (kPa) 903.80 709.42
Stdv. (kPa) 46.74 138.71 Stdv. (kPa) 4.09 55.36
TSR (%) TSR (%)

15%RAP 1033.93 962.36 15%RAP 1005.11 764.91
944.86 1004.21 1075.43 812.65

1030.78 927.13 1087.32 823.76
Mean (kPa) 1003.19 964.57 Mean (kPa) 1055.95 800.44
Stdv. (kPa) 50.54 38.59 Stdv. (kPa) 44.43 31.27
TSR (%) TSR (%)

25%RAP 1264.48 1125.67 25%RAP 1154.18 1158.29
1247.32 1063.23 1233.97 1005.38
1094.90 1150.06 1045.67

Mean (kPa) 1202.23 1112.99 Mean (kPa) 1194.08 1069.78
Stdv. (kPa) 93.35 44.79 Stdv. (kPa) 56.42 79.25
TSR (%) TSR (%)

30%RAP 1227.14 1132.97 30%RAP 1412.36 1145.44
1326.98 1271.93 1269.61 1213.47
1013.33 1161.62 1266.45

Mean (kPa) 1189.15 1188.84 Mean (kPa) 1316.14 1179.46
Stdv. (kPa) 160.24 73.37 Stdv. (kPa) 83.34 48.10
TSR (%) TSR (%)

PG52-28 (10%Ambi) Dry Wet PG52-28 (15%Ambi) Dry Wet
30%RAP 1129.67 1070.58 30%RAP 1073.36 882.83

1076.89 971.77 887.74 752.08
1109.36 916.78 1006.88 1037.22

Mean (kPa) 1105.31 986.38 Mean (kPa) 989.33 890.71
Stdv. (kPa) 26.62 77.94 Stdv. (kPa) 94.05 142.74
TSR (%) TSR (%)89 90

78

76

90

90

85

96

93

100

 
 

 

 



Table D.3 ITS values of mixtures using 5-15% cryogenic rubber (-40mesh) with aggregate L 
 

PG64-22 (5%Cryo) Dry Wet PG64-22 (10%Cryo) Dry Wet PG64-22 (15%Cryo) Dry Wet
0%RAP 1044.57 928.04 0%RAP 914.93 870.20 0%RAP 846.70 488.00

1105.18 1003.56 1011.74 852.34 968.10 613.50
1023.45 935.67 886.61 905.05

Mean (kPa) 1057.73 955.76 Mean (kPa) 937.76 875.86 Mean (kPa) 907.40 550.75
Stdv. (kPa) 42.43 41.57 Stdv. (kPa) 65.61 26.81 Stdv. (kPa) 85.84 88.74
TSR (%) TSR (%) TSR (%)

15%RAP 1061.24 993.81 15%RAP 1000.57 931.32 15%RAP 837.81 558.71
1199.87 959.72 914.39 897.23 751.94 483.56
1100.34 945.56 997.53 906.90 965.87 730.84

Mean (kPa) 1120.48 966.36 Mean (kPa) 970.83 911.81 Mean (kPa) 851.87 591.04
Stdv. (kPa) 71.48 24.80 Stdv. (kPa) 48.90 17.57 Stdv. (kPa) 107.66 126.77
TSR (%) TSR (%) TSR (%)

25%RAP 1329.01 1208.96 25%RAP 1297.70 1352.94 25%RAP 1258.22 1056.47
1334.69 1159.34 1018.17 1292.89 1200.85 903.93
1615.68 1263.49 1120.05 1251.21 1153.51 918.11

Mean (kPa) 1426.46 1210.60 Mean (kPa) 1145.31 1299.02 Mean (kPa) 1204.19 959.50
Stdv. (kPa) 163.89 52.09 Stdv. (kPa) 141.47 51.14 Stdv. (kPa) 52.44 84.27
TSR (%) TSR (%) TSR (%)

30%RAP 1375.59 1424.83 30%RAP 1227.14 1326.99 30%RAP 1118.38 1184.39
1655.82 1449.82 1155.31 1013.34 1137.78 1071.39
1311.59 1196.46 1189.47 1135.88 1179.91 1061.32

Mean (kPa) 1447.67 1357.04 Mean (kPa) 1190.64 1158.74 Mean (kPa) 1145.36 1105.70
Stdv. (kPa) 183.08 139.62 Stdv. (kPa) 35.93 158.07 Stdv. (kPa) 31.46 68.33
TSR (%) TSR (%) TSR (%)

61

69

80

97

90

86

85

94 97

113

94

93
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Table D.4 ITS values of mixtures using 0-15% ambient rubber (-40mesh) with aggregate 
C 
 

PG64-22 (0%Rub) Dry Wet PG64-22 (10%Ambi) Dry Wet
 0%RAP 1110.48 1096.85 0%RAP 1151.86 1101.50

1059.73 1074.50 1056.77 958.32
975.26 1028.29 1050.01 1034.60

Mean (kPa) 1048.49 1066.55 Mean (kPa) 1086.21 1031.47
Stdv. (kPa) 68.31 34.97 Stdv. (kPa) 56.95 71.64
TSR (%) TSR (%)

 15%RAP 1377.87 1275.63 15%RAP 1304.80 1334.12
1176.76 1319.93 1227.20 1294.67
1319.93 1418.77 1115.78 1127.43

Mean (kPa) 1291.52 1338.11 Mean (kPa) 1215.93 1252.07
Stdv. (kPa) 103.52 73.28 Stdv. (kPa) 95.01 109.73
TSR (%) TSR (%)

30%RAP 1413.41 1256.71
1538.16 1418.29
1394.99 1472.77

Mean (kPa) 1448.85 1382.59
Stdv. (kPa) 77.89 112.37
TSR (%)

PG52-28 (0%Rub) Dry Wet PG52-28 (10%Ambi) Dry Wet
30%RAP 1150.25 961.65 30%RAP 1100.63 949.22

957.83 934.89 1207.44 1021.98
945.33 933.38 870.04

Mean (kPa) 1017.80 943.31 Mean (kPa) 1059.37 985.60
Stdv. (kPa) 114.87 15.90 Stdv. (kPa) 172.44 51.45
TSR (%) TSR (%)

102 95

103104

95

93 93  
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Table E.1 Fatigue life and stiffness values of modified mixtures containing 0-5% ambient rubber using RAP L at 5ºC 
 

Sample Size Fatigue Life Air Voids Initial Stiffness Sample Size Fatigue Life Air Voids Initial Stiffness
PG64-22 (0%Rub) No. (mmxmm) Cycles  (%) (Pa) PG64-22 (5%Ambi) No. (mmxmm) Cycles  (%) (Pa)

0%RAP 1A 52.19x64.64 58590 3.70 2.39E+07 0%RAP 1A 51.29x63.59 8005
24130

9320
12295

82720
33995

7090
-

3430
20440

5.55 1.82E+07
1B 51.82x63.11 61495 3.08 2.25E+07 1B 52.81x64.15 4.33 2.02E+07
2A 52.21x62.93 4.21 2.10E+07 2A 51.67x63.95 14640 4.86 1.98E+07
2B 51.71x63.24 3.92 2.15E+07 2B 51.36x64.99 14930 3.83 1.89E+07

Mean 35425 3.73 2.22E+07 Mean 15426 4.64 1.93E+07
Stdv. 28476 0.48 1.27E+06 Stdv. 6626 0.74 8.90E+05

15%RAP 1A 51.12x63.78 17190 4.57 2.34E+07 15%RAP 1A 51.37x63.83 15865 4.46 2.10E+07
1B 50.48x62.38 25120 3.39 2.44E+07 1B 50.78x63.55 5.14 1.86E+07
2A 51.37x63.98 36025 4.76 2.22E+07 2A 50.56x63.73 2.99 2.10E+07
2B 50.54x61.82 41310 5.57 2.10E+07 2B 50.16x62.96 17575 4.10 2.22E+07

Mean 29911 4.57 2.28E+07 Mean 37539 4.17 2.07E+07
Stdv. 10834 0.90 1.48E+06 Stdv. 31210 0.90 1.51E+06

25%RAP 1A 50.67x63.05 10680 4.78 1.97E+07 25%RAP 1A 51.76x64.48 22125 4.36 2.09E+07
1B 51.11x62.19 - 3.56 2.17E+07 1B 50.32x62.76 17020 3.12 2.13E+07
2A 50.00x62.60 9430 6.47 1.81E+07 2A 50.39x63.01 6.05 2.08E+07
2B 51.57x63.27 - 4.87 2.30E+07 2B 50.43x61.77 4.44 1.87E+07

Mean 10055 4.92 2.06E+07 Mean 15412 4.49 2.04E+07
Stdv. 5828 1.19 2.15E+06 Stdv. 9917 1.20 1.20E+06

30%RAP 1A 50.21x62.74 23270 5.82 2.10E+07 0%RAP 1A 50.11x63.49 33800 6.49 2.01E+07
1B 50.28x62.99 26495 4.36 2.42E+07 1B 50.82x62.56 19490 4.94 1.86E+07
2A 50.31x63.61 29510 7.05 2.15E+07 2A 50.61x63.5 6.75 1.96E+07
2B 50.53x63.07 10785 5.52 2.08E+07 2B 51.49x63.34 5.47 1.70E+07

Mean 22515 5.69 2.19E+07 Mean 19290 5.91 1.88E+07
Stdv. 8225 1.11 1.56E+06 Stdv. 12429 0.85 1.39E+06

30%RAP 1A 51.65x64.37 12610 6.54 1.81E+07  30%RAP 1A 51.43x63.57 44215 4.47 1.99E+07
PG52-28 (0%Rub) 1B 51.83x62.72 19690 5.28 1.94E+07 PG52-28 (5%Ambi) 1B 51.61x63.86 20360 5.95 1.68E+07

2A 52.43x64.05 27315 6.22 1.78E+07 2A 50.09x63.42 14065 6.02 1.79E+07
2B 51.93x63.73 35525 6.82 2.12E+07 2B 50.89x63.22 37935 5.49 1.74E+07

Mean 23785 6.22 1.91E+07 Mean 29144 5.48 1.80E+07
Stdv. 9865 0.67 1.56E+06 Stdv. 14247 0.71 1.35E+06  149



Table E.2 Fatigue life and stiffness values of modified mixtures containing 10-15% ambient rubber using RAP L at 5ºC 
 

Sample Size Fatigue Life Air Voids Initial Stiffness Sample Size Fatigue Life Air Voids Initial Stiffness
PG64-22 (10%Ambi) No. (mmxmm) Cycles  (%) (Pa) PG64-22 (15%Ambi) No. (mmxmm) Cycles  (%) (Pa)

0%RAP 1A 51.70x63.43 26830 4.23 1.92E+07 0%RAP 1A 51.62x64.2 18410 4.90 1.71E+07
1B 51.11x63.40 12800

22050

101110
61871

1.37E+07
1.90E+07

8010
23010

3.97 2.26E+07 1B 51.77x62.66 12690 3.64 1.63E+07
2A 50.97x63.47 3.72 2.11E+07 2A 51.43x64.50 21690 3.49 1.89E+07
2B 51.28x63.13 31660 3.36 2.17E+07 2B 53.43x64.50 38440 4.24 1.74E+07

Mean 23335 3.82 2.12E+07 Mean 22808 4.07 1.74E+07
Stdv. 8045 0.37 1.43E+06 Stdv. 11065 0.64 1.11E+06

15%RAP 1A 52.53x64.32 49265 3.71 2.15E+07 15%RAP 1A 52.76x64.10 66750 4.16 1.94E+07
1B 52.91x63.38 66540 2.73 2.29E+07 1B 52.80x62.87 35910 2.88 2.02E+07
2A 52.93x64.92 30570 4.85 2.16E+07 2A 51.33x62.26 78360 3.42 2.00E+07
2B 53.09x64.06 3.63 2.19E+07 2B 51.54x63.74 56580 2.38 2.02E+07

Mean 3.73 2.20E+07 Mean 59400 3.21 2.00E+07
Stdv. 30001 0.87 6.48E+05 Stdv. 18011 0.76 3.91E+05

25%RAP 1A 53.03x64.32 11795 5.28 1.98E+07 25%RAP 1A 51.68x63.96 33980 3.68 1.76E+07
1B 52.87x62.85 - 3.77 1B 53.38x63.30 28060 4.84 1.74E+07
2A 51.94x63.46 30875 4.85 2A 51.58x64.37 35400 2.83 1.98E+07
2B 52.83x63.33 10015 6.24 1.88E+07 2B 51.17x63.94 38000 3.74 1.87E+07

Mean 17562 5.04 1.78E+07 Mean 33860 3.77 1.84E+07
Stdv. 12894 1.02 2.79E+06 Stdv. 4210 0.82 1.09E+06

30%RAP 1A 51.75x64.81 6.39 2.14E+07 0%RAP 1A 52.91x65.29 12500 8.19 1.70E+07
1B 52.72x63.93 5.51 2.05E+07 1B 52.01x64.05 28935 6.50 2.16E+07
2A 54.79x64.25 44510 7.34 1.79E+07 2A 52.60x64.67 23055 7.06 1.73E+07
2B 52.67x63.11 33715 7.49 1.72E+07 2B 52.63x64.63 - 5.88 1.99E+07

Mean 27311 6.68 1.92E+07 Mean 21497 6.91 1.90E+07
Stdv. 15576 0.92 2.03E+06 Stdv. 12718 0.98 2.18E+06

30%RAP 1A 51.69x64.52 17260 3.82 1.93E+07  30%RAP 1A 51.52x63.88 40830 6.05 1.63E+07
PG52-28 (10%Ambi) 1B 51.67x64.01 23520 5.46 1.62E+07 PG52-28 (15%Ambi) 1B 52.55x63.56 71915 5.26 1.57E+06

2A 52.07x63.57 15610 6.97 1.66E+07 2A 51.90x63.51 31635 8.06 1.42E+07
2B 51.33x63.71 25355 6.36 1.60E+07 2B 51.44x63.62 16815 6.69 1.35E+07

Mean 20436 5.65 1.70E+07 Mean 40299 6.52 1.14E+07
Stdv. 4729 1.37 1.54E+06 Stdv. 23284 1.18 6.65E+06  150



Table E.3 Fatigue life and stiffness values of modified mixtures containing 0-5% cryogenic rubber using RAP L at 5ºC 
 

Sample Size Fatigue Life Air Voids Initial Stiffness Sample Size Fatigue Life Air Voids Initial Stiffness
PG64-22 (0%Rub) No. (mmxmm) Cycles  (%) (Pa) PG64-22 (5%Cryo) No. (mmxmm) Cycles  (%) (Pa)

0%RAP 1A 52.19x64.64 58590 3.70 2.39E+07 0%RAP 1A 52.00x63.5 14620 4.10 2.38E+07
1B 51.82x63.11 61495 3.08 2.25E+07 1B 51.78x63.73 14705 3.71 2.63E+07
2A 52.21x62.93 9320

12295
4.21 2.10E+07

2B 51.71x63.24 3.92 2.15E+07
Mean 35425 3.73 2.22E+07 Mean 14663 3.91 2.51E+07
Stdv. 28476 0.48 1.27E+06 Stdv. 60 0.28 1.75E+06

15%RAP 1A 51.12x63.78 17190 4.57 2.34E+07 15%RAP 1A 51.48x64.36 26530 5.59 2.25E+07
1B 50.48x62.38 25120 3.39 2.44E+07 1B 52.68x63.53 3215 4.73 2.20E+07
2A 51.37x63.98 36025 4.76 2.22E+07
2B 50.54x61.82 41310 5.57 2.10E+07

Mean 29911 4.57 2.28E+07 Mean 14873 5.16 2.22E+07
Stdv. 10834 0.90 1.48E+06 Stdv. 16486 0.61 3.52E+05

25%RAP 1A 50.67x63.05 10680 4.78 1.97E+07 25%RAP 1A 53.13x63.70 9345 7.58 1.99E+07
1B 51.11x62.19 - 3.56 2.17E+07 1B 51.82x64.18 7555 5.03 2.74E+07
2A 50.00x62.60 9430 6.47 1.81E+07
2B 51.57x63.27 - 4.87 2.30E+07

Mean 10055 4.92 2.06E+07 Mean 8450 6.31 2.36E+07
Stdv. 5828 1.19 2.15E+06 Stdv. 1266 1.80 5.32E+06

30%RAP 1A 50.21x62.74 23270 5.82 2.10E+07 30%RAP 1A 52.53x63.28 7820 5.29 2.58E+07
1B 50.28x62.99 26495 4.36 2.42E+07 1B 52.30x64.63 68745 5.51 2.59E+07
2A 50.31x63.61 29510 7.05 2.15E+07
2B 50.53x63.07 10785 5.52 2.08E+07

Mean 22515 5.69 2.19E+07 Mean 38283 5.40 2.58E+07
Stdv. 8225 1.11 1.56E+06 Stdv. 43080 0.16 9.76E+04  
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Table E.4 Fatigue life and stiffness values of modified mixtures containing 10-15% cryogenic rubber using RAP L at 5ºC 
 

Sample Size Fatigue Life Air Voids Initial Stiffness Sample Size Fatigue Life Air Voids Initial Stiffness
PG64-22 (5%Cryo) No. (mmxmm) Cycles  (%) (Pa) PG64-22 (15%Cryo) No. (mmxmm) Cycles  (%) (Pa)

0%RAP 1A 51.64x62.06 63290 3.56 1.87E+07 0%RAP 1A 51.89x64.51 157060 2.42 2.36E+07
1B 51.70x62.89 12155 4.69 2.02E+07 1B 54.14x64.32 100015 3.72 1.97E+07

Mean 37723 4.13 1.94E+07 Mean 128538 3.07 2.16E+07
Stdv. 36158 0.80 1.08E+06 Stdv. 40337 0.92 2.72E+06

15%RAP 1A 51.51x62.24 7890 4.27 2.25E+07 15%RAP 1A 51.85x63.72 7745 4.63 2.05E+07
1B 51.94x60.94 25695 5.07 2.15E+07 1B 52.64x63.56 4400 5.40 1.94E+07

Mean 16793 4.67 2.20E+07 Mean 6073 5.02 1.99E+07
Stdv. 12590 0.57 7.47E+05 Stdv. 2365 0.54 7.22E+05

25%RAP 1A 51.02x63.48 21615 6.20 2.08E+07 25%RAP 1A 51.73x64.03 15130 4.28 2.53E+07
1B 51.53x62.83 13665 6.84 1.91E+07 1B 51.16x64.06 2830 5.40 2.33E+07

Mean 17640 6.52 2.00E+07 Mean 8980 4.84 2.43E+07
Stdv. 5621 0.45 1.23E+06 Stdv. 8697 0.79 1.42E+06

30%RAP 1A 51.30x64.00 10015 8.11 1.95E+07 30%RAP 1A 52.09x63.81 7845 6.73 2.07E+07
1B 50.87x63.20 3430 7.05 2.04E+07 1B 51.90x64.04 22895 7.84 2.05E+07

Mean 6723 7.58 2.00E+07 Mean 15370 7.29 2.06E+07
Stdv. 4656 0.75 5.85E+05 Stdv. 10642 0.78 1.65E+05  
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Table E.5 Fatigue life and stiffness values of modified mixtures containing 0-5% ambient rubber using RAP L at 20ºC 
 

Sample Size Fatigue Life Air Voids Initial Stiffness Sample Size Fatigue Life Air Voids Initial Stiffness
PG64-22 (0%Rub) No. (mmxmm) Cycles  (%) (Pa) PG64-22 (5%Ambi) No. (mmxmm) Cycles  (%) (Pa)

0%RAP 1A 50.75x63.83 31840 7.54 1.10E+07 0%RAP 1A 51.51x62.58 71645 4.81 1.40E+07
1B 51.49x63.76 64975 6.32 1.29E+07 1B 50.60x62.70 215240

63325

110195
52755

3.67 1.43E+07
2A 50.91x62.60 79220 4.43 1.32E+07 2A 50.89x63.37 6.50 1.13E+07
2B 50.36x63.10 35920 3.45 1.42E+07 2B 51.19x62.69 26800 5.37 1.37E+07

Mean 52989 5.44 1.28E+07 Mean 94253 5.09 1.33E+07
Stdv. 22879 1.84 1.35E+06 Stdv. 82977 1.18 1.38E+06

15%RAP 1A 51.73x64.21 28065 6.07 1.28E+07 15%RAP 1A 51.13x63.11 51530 7.40 1.28E+07
1B 51.84x63.70 38680 4.90 1.43E+07 1B 50.25x62.66 32590 6.37 1.37E+07
2A 51.56x63.75 5.63 1.33E+07 2A 50.98x63.94 45970 8.47 1.20E+07
2B 50.98x63.08 4.16 1.43E+07 2B 50.49x63.20 45110 6.88 1.33E+07

Mean 57424 5.19 1.37E+07 Mean 43800 7.28 1.30E+07
Stdv. 36605 0.84 7.50E+05 Stdv. 7997 0.90 7.33E+05

25%RAP 1A 52.44x64.74 26570 5.98 1.04E+07 25%RAP 1A 50.11x64.22 8000 6.48 1.31E+07
1B 51.91x64.08 11415 6.78 1.04E+07 1B 50.93x63.61 12600 5.16 1.39E+07
2A 52.04x64.70 21335 6.34 1.02E+07 2A 51.84x64.42 39825 7.23 1.32E+07
2B 51.77x64.88 33565 6.16 1.10E+07 2B 51.82x64.34 25120 7.15 1.34E+07

Mean 23221 6.32 1.05E+07 Mean 21386 6.51 1.34E+07
Stdv. 9330 0.34 3.46E+05 Stdv. 14263 0.96 3.56E+05

30%RAP 1A 51.10x63.72 35085 6.72 1.37E+07 0%RAP 1A 51.51X64.20 26685 4.54 1.44E+07
1B 49.91x62.60 19960(*) 6.50 1.44E+07 1B 50.45X62.86 51130 5.64 1.43E+07
2A 50.60x64.08 46255 7.27 1.38E+07 2A 51.29X64.54 54345 4.87 1.52E+07
2B 51.29x63.74 80375 5.53 1.39E+07 2B 51.90X64.07 22685 6.10 1.44E+07

Mean 53905 6.51 1.40E+07 Mean 38711 5.29 1.46E+07
Stdv. 33129 0.73 3.11E+05 Stdv. 16331 0.71 4.19E+05

30%RAP 1A 51.13x62.39 40850 7.13 1.09E+07  30%RAP 1A 52.31x63.85 24540 6.67 1.28E+07
PG52-28 (0%Rub) 1B 51.80x63.39 30980 8.89 9.93E+06 PG52-28 (5%Ambi) 1B 52.23x64.60 16540 8.14 1.29E+07

2A 51.06x64.18 8680 7.30 1.64E+07 2A 51.15x64.43 11665 6.78 1.07E+07
2B 51.35x62.23 9560 8.55 1.58E+07 2B 50.78x63.03 27890 7.67 1.17E+07

Mean 22518 7.97 1.33E+07 Mean 20159 7.32 1.20E+07
Stdv. 15990 0.88 3.32E+06 Stdv. 7398 0.71 1.04E+06  
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Table E.6 Fatigue life and stiffness values of modified mixtures containing 10-15% ambient rubber using RAP L at 20ºC 
 

Sample Size Fatigue Life Air Voids Initial Stiffness Sample Size Fatigue Life Air Voids Initial Stiffness
PG64-22 (10%Ambi) No. (mmxmm) Cycles  (%) (Pa) PG64-22 (15%Ambi) No. (mmxmm) Cycles  (%) (Pa)

0%RAP 1A 51.00x63.22 239885 5.88 1.17E+07 0%RAP 1A 51.71x64.4 102550
21235

110975
66760

6325
39815

6.57 8.86E+06
1B 50.93x62.7 125110 6.55 1.22E+07 1B 52.02x64.33 4.95 9.47E+06
2A 52.16x63.56 81275 4.96 1.27E+07 2A 51.86x63.68 40185 5.52 1.09E+07
2B 52.30x63.39 91850 5.49 1.22E+07 2B

Mean 134530 5.72 1.22E+07 Mean 54657 5.68 9.74E+06
Stdv. 72678 0.67 4.12E+05 Stdv. 42545 0.82 1.05E+06

15%RAP 1A 50.44x62.92 69825 7.32 1.18E+07 15%RAP 1A 52.05x64.18 5.67 1.25E+07
1B 50.93x63.79 23595 7.20 1.23E+07 1B 52.35x60.93 4.94 1.28E+07
2A 50.49x62.74 42200 6.19 1.49E+07 2A 51.75x64.25 41635 6.91 1.17E+07
2B 52.17x64.57 52950 6.72 1.22E+07 2B 51.57x63.51 19955 5.44 1.23E+07

Mean 47143 6.86 1.28E+07 Mean 59831 5.74 1.23E+07
Stdv. 19383 0.52 1.43E+06 Stdv. 39094 0.84 4.57E+05

25%RAP 1A 51.62x61.77 6.14 1.28E+07 25%RAP 1A 52.17x63.17 12590 6.67 1.28E+07
1B 50.39x62.21 5.92 1.26E+07 1B 51.29x62.11 10015 5.77 1.30E+07
2A 50.47x63.01 25125 6.59 1.32E+07 2A 50.89x61.74 8050 9.52 1.23E+07
2B 52.64x62.01 15800 6.15 1.34E+07 2B 51.25x63.01 15865 10.06 1.25E+07

Mean 21766 6.20 1.30E+07 Mean 11630 8.01 1.26E+07
Stdv. 14272 0.28 3.98E+05 Stdv. 3380 2.11 3.02E+05

30%RAP 1A 51.48x63.99 28680 7.04 1.30E+07 0%RAP 1A 51.31x63.49 49220 5.57 1.43E+07
1B 50.86x63.56 23655 7.50 1.36E+07 1B 50.05x63.63 - 4.80 -
2A 50.91x61.48 42290 6.86 1.42E+07 2A 52.43x63.65 34365 4.44 1.32E+07
2B 50.52x63.50 44650 6.51 1.49E+07 2B 50.19x64.06 35870 5.98 1.37E+07

Mean 34819 6.98 1.39E+07 Mean 39818 5.20 1.37E+07
Stdv. 10243 0.41 8.03E+05 Stdv. 20999 0.70 6.88E+06

30%RAP 1A 52.04x63.42 31635 6.73 9.92E+06  30%RAP 1A 51.65X62.74 31565 6.65 1.11E+07
PG52-28 (10%Ambi) 1B 51.34x63.5 20690 7.60 9.47E+06 PG52-28 (15%Ambi) 1B 49.28x62.61 35150 7.56 1.14E+07

2A 50.96x63.28 13700 8.65 9.34E+06 2A 50.88x63.83 17970 7.71 1.03E+07
2B 51.46x62.57 19505 8.65 9.37E+06 2B 52.07x62.7 12655 6.87 1.09E+07

Mean 21383 7.91 9.53E+06 Mean 24335 7.20 1.09E+07
Stdv. 7486 0.93 2.69E+05 Stdv. 10742 0.52 4.51E+05  
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Table E.7 Fatigue life and stiffness values of modified mixtures containing 0-5% cryogenic rubber using RAP L at 20ºC 
 

Sample Size Fatigue Life Air Voids Initial Stiffness Sample Size Fatigue Life Air Voids Initial Stiffness
PG64-22 (0%Rub) No. (mmxmm) Cycles  (%) (Pa) PG64-22 (5%Cryo) No. (mmxmm) Cycles  (%) (Pa)

0%RAP 1A 50.75x63.83 31840 7.54 1.10E+07 0%RAP 1A 52.10x64.50 28270 5.08 1.30E+07
1B 51.49x63.76 64975 6.32 1.29E+07 1B 52.51x63.74 52600 5.31 1.35E+07
2A 50.91x62.60 79220 4.43 1.32E+07
2B 50.36x63.10 35920 3.45 1.42E+07

Mean 52989 5.44 1.28E+07 Mean 40435 5.20 1.32E+07
Stdv. 22879 1.84 1.35E+06 Stdv. 17204 0.16 3.84E+05

15%RAP 1A 51.73x64.21 28065 6.07 1.28E+07 15%RAP 1A 52.30x63.14 39890 4.31 1.35E+07
1B 51.84x63.70 38680 4.90 1.43E+07 1B 52.94x64.37 38545 3.77 1.46E+07
2A 51.56x63.75 110195

52755
5.63 1.33E+07

2B 50.98x63.08 4.16 1.43E+07
Mean 57424 5.19 1.37E+07 Mean 39218 4.04 1.40E+07
Stdv. 36605 0.84 7.50E+05 Stdv. 951 0.38 7.15E+05

25%RAP 1A 52.44x64.74 26570 5.98 1.04E+07 25%RAP 1A 53.19x64.26 12130 6.37 1.58E+07
1B 51.91x64.08 11415 6.78 1.04E+07 1B 52.13x64.61 33690 4.43 1.51E+07
2A 52.04x64.70 21335 6.34 1.02E+07
2B 51.77x64.88 33565 6.16 1.10E+07

Mean 23221 6.32 1.05E+07 Mean 22910 5.40 1.55E+07
Stdv. 9330 0.34 3.46E+05 Stdv. 15245 1.37 4.95E+05

30%RAP 1A 51.10x63.72 35085 6.72 1.37E+07 30%RAP 1A 51.85x64.27 15735 6.65 1.41E+07
1B 49.91x62.60 19960(*) 6.50 1.44E+07 1B 51.97x62.24 39000 6.16 1.63E+07
2A 50.60x64.08 46255 7.27 1.38E+07
2B 51.29x63.74 80375 5.53 1.39E+07

Mean 53905 6.51 1.40E+07 Mean 27368 6.41 1.52E+07
Stdv. 33129 0.73 3.11E+05 Stdv. 16451 0.35 1.54E+06  
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Table E.8 Fatigue life and stiffness values of modified mixtures containing 10-15% cryogenic rubber using RAP L at 20ºC 
 

Sample Size Fatigue Life Air Voids Initial Stiffness Sample Size Fatigue Life Air Voids Initial Stiffness
PG64-22 (5%Cryo) No. (mmxmm) Cycles  (%) (Pa) PG64-22 (15%Cryo) No. (mmxmm) Cycles  (%) (Pa)

0%RAP 1A 51.90x64.32 37680 6.19 9.96E+06 0%RAP 1A 52.45x63.05 279365 3.46 1.24E+07
1B 63.80x50.65 43270 5.38 9.94E+06 1B 52.41x64.01 3225 3.27 1.36E+07
2A 51.17x63.81 91520 4.91 9.74E+06
2B 52.17x63.60 58255 5.06 9.64E+06

Mean 57681 5.39 9.82E+06 Mean 141295 3.37 1.30E+07
Stdv. 24174 0.57 1.56E+05 Stdv. 195260 0.13 8.44E+05

15%RAP 1A 50.16x62.92 60925 6.31 9.56E+06 15%RAP 1A 52.72x64.90 36465 5.00 1.28E+07
1B 50.11x63.16 90230 4.65 9.60E+06 1B 51.49x63.65 34645 5.60 1.25E+07
2A 63.88x50.14 82290 4.76 1.96E+07
2B 50.64x62.40 84195 4.35 1.99E+07

Mean 79410 5.02 1.47E+07 Mean 35555 5.30 1.27E+07
Stdv. 12780 0.88 5.87E+06 Stdv. 1287 0.42 2.18E+05

25%RAP 1A 50.04x63.40 21150 5.68 1.33E+07 25%RAP 1A 52.00x64.15 32995 5.67 1.42E+07
1B 50.95x63.83 24965 6.64 1.37E+07 1B 52.60x63.80 18590 4.49 1.67E+07
2A 51.75x64.11 10015 5.57 1.19E+07
2B 52.25x63.32 27450 5.39 1.19E+07

Mean 20895 5.82 1.27E+07 Mean 25793 5.08 1.55E+07
Stdv. 7702 0.56 9.38E+05 Stdv. 10186 0.83 1.76E+06

30%RAP 1A 51.63x63.55 32660 6.39 1.04E+07 30%RAP 1A 51.25x64.31 - 6.69 -
1B 51.75x64.04 9670

41455
6.87 1.08E+07 1B 51.51x63.18 4115 8.63 1.41E+07

2A 50.81x64.43 5.97 1.04E+07
2B 50.78x63.40 24215 6.25 1.01E+07

Mean 27000 6.37 1.04E+07 Mean 4115 7.66 1.41E+07
Stdv. 13529 0.38 2.87E+05 Stdv. - 1.37 -  
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Table E.9 Fatigue life and stiffness values of modified mixtures using RAP C at 5ºC 
 

Sample Size Fatigue Life Air Voids Initial Stiffness Sample Size Fatigue Life Air Voids Initial Stiffness
PG64-22 (0%Rub) No. (mmxmm) Cycles  (%) (Pa) PG64-22 (10%Ambi) No. (mmxmm) Cycles  (%) (Pa)

0%RAP 1A 52.36x63.93 29005 6.64 2.50E+07 0%RAP 1A 51.59x62.46 19235 6.20 2.41E+07
1B 50.70x62.84 8.27 1.87E+07 1B 51.72x63.21 39825 5.06 2.28E+07
2A 52.32x62.29 6890 7.38 2.08E+07 2A 51.53x60.60 11735 8.65 1.99E+07
2B 51.55x61.54 28060 8.73 2.10E+07 2B 52.00x62.02 28375 9.77 1.98E+07

Mean 21318 7.76 2.14E+07 Mean 24793 7.42 2.17E+07
Stdv. 12504 0.93 2.63E+06 Stdv. 12113 2.17 2.14E+06

15%RAP 1A 50.76x63.88 32710 8.15 2.40E+07 15%RAP 1A 51.46x62.45 32190 7.72 2.24E+07
1B 51.36x62.22 37090 7.93 2.52E+07 1B 51.40x61.84 22865 7.87 2.20E+07
2A 51.36x62.76 16150 8.22 2.37E+07 2A 51.81x62.29 27650 7.06 2.34E+07
2B 50.56x63.44 17075 8.14 2.39E+07 2B 51.00x63.85 61910 8.11 2.25E+07

Mean 25756 8.11 2.42E+07 Mean 36154 7.69 2.26E+07
Stdv. 10715 0.13 6.71E+05 Stdv. 17588 0.45 5.70E+05

30%RAP 1A 51.50x64.00 27380 8.94 2.18E+07
1B 51.82x63.27 34345 5.79 2.68E+07
2A 50.44x63.32 18480 7.12 2.49E+07
2B 51.22x62.91 33045 7.98 2.25E+07

Mean 28313 7.46 2.40E+07
Stdv. 7219 1.34 2.29E+06

30%RAP 1A 51.73x61.60 43175 6.79 2.19E+07 30%RAP 1A 51.74x61.95 15750 7.92 1.97E+07
PG52-28 (0%Rub) 1B 50.98x61.60 13470 6.96 2.42E+07 PG52-28 (10%Ambi) 1B 50.98x61.60 62935 7.44 1.97E+07

2A 51.56x62.87 50440 8.85 1.78E+07 2A 51.65x62.87 11780 6.80 1.96E+07
2B 51.40x61.51 42730 7.01 2.21E+07 2B 51.40x61.50 28965 7.57 1.92E+07

Mean 37454 7.40 2.15E+07 Mean 29858 7.43 1.96E+07
Stdv. 16375 0.97 2.66E+06 Stdv. 23243 0.47 2.21E+05  
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Table E.10 Fatigue life and stiffness values of modified mixtures using RAP C at 20ºC 
 

Sample Size Fatigue Life Air Voids Initial Stiffness Sample Size Fatigue Life Air Voids Initial Stiffness
PG64-22 (0%Rub) No. (mmxmm) Cycles  (%) (Pa) PG64-22 (10%Ambi) No. (mmxmm) Cycles  (%) (Pa)

0%RAP 1A 53.53x60.79 91140 7.32 1.11E+07 0%RAP 1A 51.02x60.43 4700 7.20 9.64E+06
1B 51.93x61.90 78720 7.45 1.23E+07 1B 52.02x61.00 52240 7.22 9.83E+06
2A 52.36x60.84 23585 6.44 1.04E+07 2A 50.88x61.29 113610 7.75 8.77E+06
2B 51.55x61.84 70960 7.15 1.17E+07 2B 50.69x62.20 55035 8.51 8.48E+06

Mean 66101 7.09 1.14E+07 Mean 56396 7.67 9.18E+06
Stdv. 29538 0.45 8.05E+05 Stdv. 44591 0.62 6.58E+05

15%RAP 1A 52.10x60.66 64800 7.21 1.19E+07 15%RAP 1A 51.56x62.38 52460 6.81 1.08E+07
1B 51.36x62.00 45420 7.88 1.20E+07 1B 51.72x62.08 36255 6.81 1.06E+07
2A 51.16x62.76 28855 7.35 1.22E+07 2A 51.03x60.75 146225 6.05 1.06E+07
2B 50.56x63.44 42650 6.65 1.27E+07 2B 52.28x60.92 82630 9.29 1.07E+07

Mean 45431 7.27 1.22E+07 Mean 79393 7.24 1.07E+07
Stdv. 14806 0.51 3.61E+05 Stdv. 48522 1.41 1.01E+05

30%RAP 1A 52.32x61.68 47320 8.09 1.20E+07
1B 51.44x60.44 59150 7.13 1.21E+07
2A 51.92x61.05 34275 8.09 1.14E+07
2B 51.55x61.98 41495 7.16 1.33E+07

Mean 45560 7.62 1.22E+07
Stdv. 10514 0.55 7.74E+05

30%RAP 1A 50.33x61.94 42520 7.21 9.85E+06 30%RAP 1A 50.33x61.94 56890 7.13 8.46E+06
PG52-28 (0%Rub) 1B 51.56x61.27 68860 8.57 8.55E+06 PG52-28 (10%Ambi) 1B 51.56x61.27 79710 6.69 8.42E+06

2A 50.72x62.28 50440 7.52 8.06E+06 2A 50.71x62.28 95860 6.00 9.82E+06
2B 53.00x62.28 42730 8.58 7.27E+06 2B 52.99x62.28 69765 7.19 8.01E+06

Mean 51138 7.97 8.43E+06 Mean 75556 6.75 8.68E+06
Stdv. 12376 0.71 1.08E+06 Stdv. 16447 0.55 7.89E+05  
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Average Values of Independent and Dependent Variables of Modified Mixture 
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Table F.1 Average values of independent and dependent variables of modified mixtures 
using RAP L tested at 5ºC 

Dependent
5ºC Rb (%) RP (%) Ln(ε0) VFA V0 Ln(w0) Ln(S0) Ln(Nf)

0.00 0.00 -7.642 0.739 3.73 0.790 16.916 10.140

0.00 0.15 -7.625 0.749 4.57 1.200 16.939 10.251
0.00 0.25 -7.591 0.744 4.92 1.246 16.755 9.214
0.00 0.30 -7.607 0.733 5.69 0.458 16.899 9.955
0.05 0.00 -7.647 0.758 4.62 0.547 16.791 9.765
0.05 0.15 -7.690 0.757 4.17 0.676 16.879 9.960
0.05 0.25 -7.576 0.738 4.49 0.797 16.825 9.652
0.05 0.30 -7.589 0.733 5.91 0.744 16.899 9.955

0.10 0.00 -7.869 0.765 3.82 0.393 16.866 10.005
0.10 0.15 -7.631 0.762 3.73 0.974 16.906 10.746
0.10 0.25 -7.579 0.731 5.04 1.613 16.771 9.642
0.10 0.30 -7.646 0.743 6.68 0.499 16.730 10.391
0.15 0.00 -7.609 0.773 4.07 0.388 16.673 9.953
0.15 0.15 -7.628 0.773 3.21 0.881 16.809 10.847
0.15 0.25 -7.595 0.760 3.77 1.276 16.725 10.424
0.15 0.30 -7.628 0.744 6.91 0.382 16.788 10.113
0.00 0.00 -7.642 0.739 3.73 0.790 16.916 10.140

0.00 0.15 -7.626 0.749 4.57 1.200 16.939 10.251
0.00 0.25 -7.592 0.744 4.92 1.246 16.838 9.268
0.00 0.30 -7.607 0.733 5.69 0.458 16.899 9.955
0.05 0.00 -7.681 0.667 3.91 0.692 17.036 9.593
0.05 0.15 -7.620 0.687 5.16 0.446 16.917 9.131
0.05 0.25 -7.699 0.699 6.31 0.849 16.965 9.036
0.05 0.30 -7.608 0.711 5.40 0.899 17.067 10.051

0.10 0.00 -7.556 0.675 4.13 0.997 16.782 10.230
0.10 0.15 -7.619 0.684 4.67 0.887 16.907 9.564
0.10 0.25 -7.590 0.713 6.52 0.661 16.809 9.752
0.10 0.30 -7.577 0.733 7.58 0.784 16.809 8.676
0.15 0.00 -7.651 0.662 3.07 0.662 16.886 9.838
0.15 0.15 -7.599 0.700 5.02 0.752 16.808 8.672
0.15 0.25 -7.678 0.701 4.84 0.716 17.004 8.786
0.15 0.30 -7.627 0.711 7.29 0.909 16.841 9.503

Traditional IndependentSpecific Independent
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Table F.2 Average values of independent and dependent variables of modified mixtures 
using RAP L tested at 20ºC 

 
Dependent

20ºC Rb (%) RP (%) Ln(ε0) VFA V0 Ln(w0) Ln(S0) Ln(Nf)

0.00 0.00 -7.508 0.739 5.44 0.899 16.364 10.805
0.00 0.15 -7.521 0.749 5.19 0.863 16.430 10.822
0.00 0.25 -7.509 0.744 6.32 0.913 16.166 9.980
0.00 0.30 -7.532 0.733 6.51 0.906 16.451 10.601
0.05 0.00 -7.532 0.758 5.09 1.127 16.402 11.178
0.05 0.15 -7.533 0.757 7.28 0.819 16.375 10.674
0.05 0.25 -7.592 0.738 6.51 0.787 16.411 9.788
0.05 0.30 -7.546 0.733 5.29 0.944 16.495 10.492
0.10 0.00 -7.517 0.765 5.72 0.752 16.315 11.367
0.10 0.15 -7.481 0.762 6.86 0.872 16.361 10.687
0.10 0.25 -7.525 0.731 6.20 0.702 16.381 9.786
0.10 0.30 -7.496 0.743 6.98 0.899 16.448 10.424
0.15 0.00 -7.547 0.773 5.68 0.651 16.088 10.701
0.15 0.15 -7.536 0.773 5.74 0.729 16.324 10.816
0.15 0.25 -7.575 0.760 8.01 0.590 16.351 9.329
0.15 0.30 -7.595 0.744 5.20 0.762 16.435 10.579
0.00 0.00 -7.508 0.739 5.435 0.899 16.364 10.805

0.00 0.15 -7.521 0.749 5.190 0.863 16.430 10.822
0.00 0.25 -7.509 0.744 6.315 0.913 16.166 9.980
0.00 0.30 -7.532 0.733 6.505 0.906 16.451 10.601
0.05 0.00 -7.509 0.667 5.195 0.994 16.399 10.560
0.05 0.15 -7.519 0.687 4.040 0.978 16.457 10.577
0.05 0.25 -7.559 0.699 5.400 0.931 16.553 9.914
0.05 0.30 -7.573 0.711 6.405 0.794 16.535 10.117

0.10 0.00 -7.491 0.675 5.385 0.875 16.100 10.902
0.10 0.15 -7.493 0.684 5.623 0.947 16.086 10.862
0.10 0.25 -7.510 0.713 5.820 0.776 16.355 9.879
0.10 0.30 -7.513 0.733 6.370 0.952 16.159 10.074
0.15 0.00 -7.505 0.662 3.365 0.649 16.380 10.309
0.15 0.15 -7.537 0.700 5.300 1.069 16.355 10.479
0.15 0.25 -7.507 0.701 5.080 0.250 16.551 10.117
0.15 0.30 -7.554 0.711 7.660 0.412 16.459 9.482
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Table F.3 Average values of independent and dependent variables of modified mixtures 
using soft binder (PG52-28) and RAP L tested at 5ºC and 20ºC 

 
Dependent

5ºC Rb (%) RP (%) Ln(ε0) VFA V0 Ln(w0) Ln(S0) Ln(Nf)
0.00 0.30 -7.636 0.718 6.22 0.751 16.765 10.077
0.05 0.30 -7.566 0.707 5.48 1.148 16.706 10.280
0.10 0.30 -7.580 0.706 5.65 1.142 16.649 9.925
0.15 0.30 -7.595 0.701 6.52 0.265 16.462 10.604

20ºC 
0.00 0.30 -7.562 0.718 7.97 0.522 16.403 10.022
0.05 0.30 -7.532 0.707 7.32 0.519 16.300 9.911
0.10 0.30 -7.558 0.706 7.91 0.680 16.070 9.970
0.15 0.30 -7.543 0.701 7.20 0.581 16.204 10.100A

m
bi

en
t

Specific Independent Traditional Independent
A

m
bi
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t

 
 
 

Table F.4 Average values of independent and dependent variables of modified mixtures 
using RAP C  

 
Dependent

5ºC Rb (%) RP (%) Ln(ε0) VFA V0 Ln(w0) Ln(S0) Ln(Nf)
0.00 0.00 -7.612 0.717 7.76 2.255 16.872 9.785
0.00 0.15 -7.609 0.690 8.11 2.399 17.002 10.088
0.10 0.00 -7.578 0.655 7.42 2.289 16.887 10.020
0.10 0.15 -7.692 0.681 7.69 1.371 16.932 10.419
0.10 0.30 -7.621 0.715 7.46 1.823 16.990 10.223
0.00 0.30 -7.569 0.647 7.40 2.464 16.877 10.418
0.10 0.30 -7.615 0.714 7.43 2.408 16.788 10.091

20ºC
0.00 0.00 -7.509 0.717 7.09 0.798 16.245 10.983
0.00 0.15 -7.507 0.690 7.27 0.986 16.317 10.683
0.10 0.00 -7.486 0.655 7.67 1.036 16.031 10.469
0.10 0.15 -7.513 0.681 7.24 0.971 16.183 11.145
0.10 0.30 -7.503 0.715 7.62 1.155 16.315 10.707
0.00 0.30 -7.481 0.647 7.97 0.920 15.942 10.822
0.10 0.30 -7.488 0.714 6.75 0.870 15.973 11.215

PG
64

PG
52

Specific Independent Traditional Independent

PG
64

PG
52
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Fatigue Model Analysis of the Modified Mixtures 
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Table G.1 Pearson correlation matrix for the dependent and independent variables of 
mixture containing ambient rubber and RAP L tested at 20ºC 

Ln(Nf) Ln(S0) Ln(w0) Ln(ε0) VFA V0 Rb RP

Ln(Nf) 1.000
Ln(S0) 0.021 1.000
Ln(w0) 0.439 0.368 1.000
Ln(ε0) 0.383 -0.116 0.405 1.000
VFA 0.372 -0.557 -0.322 0.071 1.000
V0 -0.606 -0.034 -0.374 0.030 0.065 1.000
Rb -0.120 -0.225 -0.665 -0.333 0.554 0.173 1.000
RP -0.638 0.457 -0.081 -0.289 -0.601 0.369 0.000 1.000  

 

Table G.2 Pearson correlation matrix for the dependent and independent variables of 
mixture containing cryogenic rubber and RAP L tested at 5ºC 

Ln(Nf) Ln(S0) Ln(w0) Ln(ε0) VFA V0 Rb RP

Ln(Nf) 1.000
Ln(S0) 0.119 1.000
Ln(w0) 0.202 -0.106 1.000
Ln(ε0) 0.165 -0.694 0.202 1.000
VFA 0.066 -0.131 0.371 0.271 1.000
V0 -0.425 -0.264 -0.052 0.229 0.378 1.000
Rb -0.425 -0.282 -0.200 0.001 -0.559 0.139 1.000
RP -0.381 0.005 0.025 0.145 0.507 0.833 0.000 1.000  

 

Table G.3 Pearson correlation matrix for the dependent and independent variables of 
mixture containing cryogenic rubber and RAP L tested at 20ºC 

Ln(Nf) Ln(S0) Ln(w0) Ln(ε0) VFA V0 Rb RP

Ln(Nf) 1.000
Ln(S0) -0.331 1.000
Ln(w0) 0.494 -0.390 1.000
Ln(ε0) 0.514 -0.660 0.068 1.000
VFA -0.136 0.025 0.058 -0.203 1.000
V0 -0.456 -0.083 -0.121 -0.420 0.536 1.000
Rb -0.337 -0.045 -0.497 0.063 -0.559 -0.114 1.000
RP -0.660 0.262 -0.248 -0.570 0.507 0.656 0.000 1.000  
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Table G.4 ANOVA and GLM of log fatigue life for mixture containing ambient rubber 
and RAP L tested at 20ºC (traditional strain dependent VFA method) 

Dep. Variable Multiple R R Square Adjusted R Square Standard Error
Ln (Nf) 0.601 0.362 0.202 0.478
Analysis of Varance (ANOVA)

df Sum of Square Mean Square F Ratio Significance F C.V.
Regression 3 1.553 0.518 2.267 0.133 82.336
Residual 12 2.740 0.228
Total 15 4.293

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 12.711 39.412 0.323 0.753 -73.161 98.584
Ln (ε0) 6.520 3.909 1.668 0.121 -1.997 15.036
VFA 20.854 10.483 1.989 0.070 -1.986 43.694
Ln (S0) 1.911 1.426 1.340 0.205 -1.196 5.018

Number of Samples
16*(4 repetition)

 
 
 

Table G.5 ANOVA and GLM of log fatigue life for mixture containing ambient rubber 
and RAP L tested at 20ºC (specific strain dependent VFA method) 

Dep. Variable Multiple R R Square Adjusted R Square Standard Error
Ln (Nf) 0.918 0.843 0.530 0.367
Analysis of Varance (ANOVA)

df Sum of Square Mean Square F Ratio Significance F C.V.
Regression 10 3.620 0.362 2.692 0.143 66.047
Residual 5 0.672 0.134
Total 15 4.293

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept -60.237 66.009 -0.913 0.403 -229.918 109.445
Rb -77.258 368.276 -0.210 0.842 -1023.939 869.424
Rp 327.099 243.613 1.343 0.237 -299.126 953.324
Rb*Rp 70.662 102.661 0.688 0.522 -193.236 334.560

Rb
2 37.751 502.622 0.075 0.943 -1254.278 1329.781

Rb
3 58.086 2516.602 0.023 0.982 -6411.035 6527.206

Ln (ε0) 6.156 7.284 0.845 0.437 -12.567 24.880
VFA 104.538 60.837 1.718 0.146 -51.849 260.925
Rb*VFA 68.971 452.400 0.152 0.885 -1093.958 1231.899
Rp*VFA -443.894 330.341 -1.344 0.237 -1293.061 405.273
Ln (S0) 2.437 2.397 1.017 0.356 -3.725 8.599

Number of Samples
16*(4 repetition)
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Table G.6 ANOVA and GLM of log fatigue life for mixture containing ambient rubber 
and RAP L tested at 20ºC (traditional strain dependent air void method) 

Dep. Variable Multiple R R Square Adjusted R Square Standard Error
Ln (Nf) 0.728 0.530 0.413 0.410
Analysis of Varance (ANOVA)

df Sum of Square Mean Square F Ratio Significance F C.V.
Regression 3 2.277 0.759 4.517 0.024 106.577
Residual 12 2.016 0.168
Total 15 4.293

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 60.501 28.663 2.111 0.056 -1.950 122.952
Ln (ε0) 6.851 3.354 2.043 0.064 -0.456 14.159
V0 -0.386 0.124 -3.113 0.009 -0.656 -0.116
Ln (S0) 0.243 1.019 0.239 0.815 -1.977 2.463

Number of Samples
16*(4 repetition)

 
 

Table G.7 ANOVA and GLM of log fatigue life for mixture containing ambient rubber 
and RAP L tested at 20ºC (specific strain dependent air void method) 

Dep. Variable Multiple R R Square Adjusted R Square Standard Error
Ln (Nf) 0.954 0.911 0.733 0.276
Analysis of Varance (ANOVA)

df Sum of Square Mean Square F Ratio Significance F C.V.
Regression 10 3.911 0.391 5.122 0.043 69.180
Residual 5 0.382 0.076
Total 15 4.293

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 7.857 35.787 0.220 0.835 -84.135 99.849
Rb 32.289 19.434 1.662 0.158 -17.667 82.245
Rp -0.497 7.690 -0.065 0.951 -20.264 19.270
Rb*Rp -19.136 14.297 -1.338 0.238 -55.887 17.615
Rb

2 -135.185 287.404 -0.470 0.658 -873.980 603.609
Rb

3 862.910 1297.467 0.665 0.535 -2472.331 4198.151
Ln (ε0) 8.228 4.106 2.004 0.101 -2.326 18.782
V0 0.275 0.299 0.917 0.401 -0.495 1.044
Rb*V0 -4.221 2.008 -2.102 0.089 -9.381 0.940
Rp*V0 -0.299 1.326 -0.225 0.831 -3.708 3.111
Ln (S0) 3.874 1.194 3.243 0.023 0.803 6.944

Number of Samples
16*(4 repetition)
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Table G.8 ANOVA and GLM of log fatigue life for mixture containing cryogenic rubber 
and RAP L tested at 5ºC (traditional strain dependent VFA method) 

Dep. Variable Multiple R R Square Adjusted R Square Standard Error
Ln (Nf) 0.365 0.133 -0.084 0.569
Analysis of Varance (ANOVA)

df Sum of Square Mean Square F Ratio Significance F C.V.
Regression 3 0.595 0.198 0.614 0.619 46.858
Residual 12 3.880 0.323
Total 15 4.475

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 11.828 33.115 0.357 0.727 -60.324 83.980
Ln (ε0) 6.693 5.375 1.245 0.237 -5.017 18.403
VFA -0.095 5.587 -0.017 0.987 -12.267 12.077
Ln (S0) 2.887 2.392 1.207 0.251 -2.326 8.099

Number of Samples
16*(2 or 4 repetition)

 
 

Table G.9 ANOVA and GLM of log fatigue life for mixture containing cryogenic rubber 
and RAP L tested at 5ºC (specific strain dependent VFA method) 

Dep. Variable Multiple R R Square Adjusted R Square Standard Error
Ln (Nf) 0.805 0.648 -0.056 0.561
Analysis of Varance (ANOVA)

df Sum of Square Mean Square F Ratio Significance F C.V.
Regression 10 2.900 0.290 0.920 0.576 58.003
Residual 5 1.575 0.315
Total 15 4.475

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 37.210 62.432 0.596 0.577 -123.276 197.697
Rb 312.472 297.234 1.051 0.341 -451.591 1076.535
Rp -16.408 53.343 -0.308 0.771 -153.531 120.715
Rb*Rp 69.539 64.538 1.077 0.330 -96.362 235.440

Rb
2 114.458 844.960 0.135 0.898 -2057.577 2286.493

Rb
3 -671.276 3337.113 -0.201 0.849 -9249.584 7907.032

Ln (ε0) 9.202 6.768 1.360 0.232 -8.195 26.598
VFA 7.478 24.377 0.307 0.771 -55.186 70.141
Rb*VFA -471.001 377.966 -1.246 0.268 -1442.593 500.590
Rp*VFA 19.222 73.030 0.263 0.803 -168.507 206.952
Ln (S0) 2.226 3.242 0.687 0.523 -6.107 10.559

Number of Samples
16*(2 or 4 repetition)
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Table G.10 ANOVA and GLM of log fatigue life for mixture containing cryogenic 
rubber and RAP L tested at 5ºC (traditional strain dependent air void method) 

Dep. Variable Multiple R R Square Adjusted R Square Standard Error
Ln (Nf) 0.565 0.319 0.149 0.504
Analysis of Varance (ANOVA)

df Sum of Square Mean Square F Ratio Significance F C.V.
Regression 3 1.428 0.476 1.874 0.188 78.069
Residual 12 3.048 0.254
Total 15 4.475

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 26.626 28.907 0.921 0.375 -36.357 89.608
Ln (ε0) 7.215 4.618 1.562 0.144 -2.847 17.278
V0 -0.195 0.108 -1.810 0.095 -0.429 0.040
Ln (S0) 2.302 2.137 1.077 0.303 -2.354 6.959

Number of Samples
16*(2 or 4 repetition)

 
 

Table G.11 ANOVA and GLM of log fatigue life for mixture containing cryogenic 
rubber and RAP L tested at 5ºC (specific strain dependent air void method) 

Dep. Variable Multiple R R Square Adjusted R Square Standard Error
Ln (Nf) 0.804 0.647 -0.060 0.562
Analysis of Varance (ANOVA)

df Sum of Square Mean Square F Ratio Significance F C.V.
Regression 10 2.894 0.289 0.915 0.579 57.930
Residual 5 1.582 0.316
Total 15 4.475

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept -73.065 92.876 -0.787 0.467 -311.809 165.680
Rb -71.290 51.934 -1.373 0.228 -204.790 62.211
Rp 0.119 10.131 0.012 0.991 -25.922 26.161
Rb*Rp -83.436 78.208 -1.067 0.335 -284.476 117.604

Rb
2 853.669 765.270 1.116 0.315 -1113.517 2820.856

Rb
3 -3545.121 3132.554 -1.132 0.309 -11597.593 4507.351

Ln (ε0) 4.179 8.374 0.499 0.639 -17.347 25.704
V0 -0.414 1.282 -0.323 0.760 -3.711 2.882
Rb*V0 6.870 7.867 0.873 0.422 -13.353 27.093
Rp*V0 0.367 2.068 0.178 0.866 -4.949 5.684
Ln (S0) 6.888 6.173 1.116 0.315 -8.980 22.757

Number of Samples
16*(2 or 4 repetition)
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Table G.12 ANOVA and GLM of log fatigue life for mixture containing cryogenic 
rubber and RAP L tested at 20ºC (traditional strain dependent VFA method) 

Dep. Variable Multiple R R Square Adjusted R Square Standard Error
Ln (Nf) 0.515 0.265 0.081 0.404
Analysis of Varance (ANOVA)

df Sum of Square Mean Square F Ratio Significance F C.V.
Regression 3 0.705 0.235 1.443 0.279 51.482
Residual 12 1.955 0.163
Total 15 2.660

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 78.758 36.526 2.156 0.052 -0.825 158.340
Ln (ε0) 9.102 6.029 1.510 0.157 -4.035 22.238
VFA -0.490 3.928 -0.125 0.903 -9.048 8.068
Ln (S0) 0.024 0.906 0.026 0.980 -1.951 1.998

Number of Samples
16*(2 or 4 repetition)

 
 

Table G.13 ANOVA and GLM of log fatigue life for mixture containing cryogenic 
rubber and RAP L tested at 20ºC (specific strain dependent VFA method) 

Dep. Variable Multiple R R Square Adjusted R Square Standard Error
Ln (Nf) 0.857 0.734 0.202 0.376
Analysis of Varance (ANOVA)

df Sum of Square Mean Square F Ratio Significance F C.V.
Regression 10 1.952 0.195 1.380 0.380 46.434
Residual 5 0.707 0.141
Total 15 2.660

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 34.566 59.974 0.576 0.589 -119.601 188.733
Rb -179.951 172.024 -1.046 0.343 -622.154 262.251
Rp 47.035 37.374 1.259 0.264 -49.038 143.108
Rb*Rp -43.393 36.804 -1.179 0.291 -137.999 51.214

Rb
2 510.063 693.745 0.735 0.495 -1273.261 2293.388

Rb
3 -1982.051 2887.692 -0.686 0.523 -9405.087 5440.985

Ln (ε0) 2.927 8.394 0.349 0.741 -18.650 24.505
VFA -6.216 17.179 -0.362 0.732 -50.375 37.942
Rb*VFA 213.330 218.434 0.977 0.374 -348.173 774.832
Rp*VFA -66.247 50.968 -1.300 0.250 -197.263 64.769
Ln (S0) 0.181 1.241 0.145 0.890 -3.009 3.370

Number of Samples
16*(2 or 4 repetition)
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Table G.14 ANOVA and GLM of log fatigue life for mixture containing cryogenic 
rubber and RAP L tested at 20ºC (traditional air void models) 

Dep. Variable Multiple R R Square Adjusted R Square Standard Error
Ln (Nf) 0.598 0.357 0.196 0.378
Analysis of Varance (ANOVA)

df Sum of Square Mean Square F Ratio Significance F C.V.
Regression 3 0.950 0.317 2.222 0.138 61.029
Residual 12 1.710 0.143
Total 15 2.660

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 47.360 41.594 1.139 0.277 -43.266 137.986
Ln (ε0) 3.393 7.063 0.480 0.640 -11.997 18.782
V0 -0.166 0.126 -1.317 0.213 -0.441 0.109
Ln (S0) -0.646 0.987 -0.655 0.525 -2.798 1.505

Number of Samples
16*(2 or 4 repetition)

 
 

Table G.15 ANOVA and GLM of log fatigue life for mixture containing cryogenic 
rubber and RAP L tested at 20ºC (specific strain dependent air void method) 

Dep. Variable Multiple R R Square Adjusted R Square Standard Error
Ln (Nf) 0.853 0.727 0.182 0.381
Analysis of Varance (ANOVA)

df Sum of Square Mean Square F Ratio Significance F C.V.
Regression 10 1.935 0.193 1.334 0.395 46.202
Residual 5 0.725 0.145
Total 15 2.660

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept -2.371 66.923 -0.035 0.973 -174.403 169.661
Rb -25.684 31.598 -0.813 0.453 -106.910 55.541
Rp 7.151 7.266 0.984 0.370 -11.527 25.829
Rb*Rp -22.607 31.090 -0.727 0.500 -102.525 57.311
Rb

2 364.481 505.337 0.721 0.503 -934.526 1663.488
Rb

3 -1553.172 2269.034 -0.685 0.524 -7385.901 4279.556
Ln (ε0) -1.275 9.986 -0.128 0.903 -26.946 24.396
V0 0.090 0.418 0.215 0.838 -0.984 1.164
Rb*V0 1.334 3.028 0.441 0.678 -6.449 9.116
Rp*V0 -1.431 1.174 -1.219 0.277 -4.450 1.587
Ln (S0) 0.190 1.454 0.130 0.901 -3.548 3.927

Number of Samples
16*(2 or 4 repetition)
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Figure G.1 Comparison of fatigue lives between predicted and measured results using 
traditional strain dependent method at 20oC (containing ambient rubber and RAP L) 
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Figure G.2 Comparison of fatigue lives between predicted and measured results using 

specific strain dependent method at 20oC (containing ambient rubber and RAP L) 
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Figure G.3 Comparison of fatigue lives between predicted and measured results using 
traditional strain dependent method at 5oC (containing cryogenic rubber and RAP L) 
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Figure G.4 Comparison of fatigue lives between predicted and measured results using 

specific strain dependent method at 5oC (containing cryogenic rubber and RAP L) 
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Figure G.5 Comparison of fatigue lives between predicted and measured results using 
traditional strain dependent method at 20oC (containing cryogenic rubber and RAP L) 
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Figure G.6 Comparison of fatigue lives between predicted and measured results using 
specific strain dependent method at 20oC (containing cryogenic rubber and RAP L) 
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Table G.16 ANOVA and GLM of log fatigue life for mixture containing ambient rubber 
and RAP L tested at 5ºC (traditional energy dependent VFA method) 

Dep. Variable Multiple R R Square Adjusted R Square Standard Error
Ln (Nf) 0.471 0.222 0.102 0.392
Analysis of Varance (ANOVA)

df Sum of Square Mean Square F Ratio Significance F C.V.
Regression 2 0.569 0.285 1.851 0.196 57.393
Residual 13 1.999 0.154
Total 15 2.569

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept -0.313 5.544 -0.057 0.956 -12.291 11.664
VFA 13.819 7.320 1.888 0.082 -1.994 29.632
Ln (w0) 0.013 0.278 0.047 0.963 -0.588 0.615

Number of Samples
16*(4 repetition)

 

Table G.17 ANOVA and GLM of log fatigue life for mixture containing ambient rubber 
and RAP L tested at 5ºC (specific energy dependent VFA method) 

Dep. Variable Multiple R R Square Adjusted R Square Standard Error
Ln (Nf) 0.891 0.794 0.484 0.297
Analysis of Varance (ANOVA)

df Sum of Square Mean Square F Ratio Significance F C.V.
Regression 9 2.039 0.227 2.565 0.132 50.424
Residual 6 0.530 0.088
Total 15 2.569

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept -12.103 34.952 -0.346 0.741 -97.628 73.422
Rb -533.901 211.889 -2.520 0.045 -1052.375 -15.426
Rp 164.648 177.014 0.930 0.388 -268.491 597.787
Rb*Rp 106.369 57.163 1.861 0.112 -33.504 246.241
Rb

2 374.595 217.368 1.723 0.136 -157.285 906.475

Rb
3 -2039.898 986.201 -2.068 0.084 -4453.046 373.250

VFA 30.095 46.925 0.641 0.545 -84.726 144.916
Rb*VFA 665.870 268.427 2.481 0.048 9.053 1322.688
Rp*VFA -224.969 239.520 -0.939 0.384 -811.054 361.117
Ln (w0) 0.021 0.315 0.068 0.948 -0.749 0.792

Number of Samples
16*(4 repetition)
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Table G.18 ANOVA and GLM of log fatigue life for mixture containing ambient rubber 
and RAP L tested at 5ºC (traditional energy dependent air void method) 

Dep. Variable Multiple R R Square Adjusted R Square Standard Error
Ln (Nf) 0.312 0.097 -0.041 0.422
Analysis of Varance (ANOVA)

df Sum of Square Mean Square F Ratio Significance F C.V.
Regression 2 0.250 0.125 0.702 0.513 36.521
Residual 13 2.318 0.178
Total 15 2.569

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 10.771 0.610 17.669 0.000 9.454 12.087
V0 -0.117 0.104 -1.134 0.277 -0.341 0.106
Ln (w0) -0.192 0.304 -0.634 0.537 -0.848 0.463

Number of Samples
16*(4 repetition)

 
 

Table G.19 ANOVA and GLM of log fatigue life for mixture containing ambient rubber 
and RAP L tested at 5ºC (specific energy dependent air void method) 

Dep. Variable Multiple R R Square Adjusted R Square Standard Error
Ln (Nf) 0.814 0.663 0.157 0.380
Analysis of Varance (ANOVA)

df Sum of Square Mean Square F Ratio Significance F C.V.
Regression 9 1.703 0.189 1.311 0.383 45.639
Residual 6 0.866 0.144
Total 15 2.569

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 10.690 2.432 4.395 0.005 4.739 16.641
Rb -7.941 24.979 -0.318 0.761 -69.064 53.181
Rp -4.052 11.472 -0.353 0.736 -32.123 24.018
Rb*Rp 47.008 24.070 1.953 0.099 -11.889 105.905
Rb

2 365.008 364.356 1.002 0.355 -526.539 1256.555

Rb
3 -1576.814 1577.968 -0.999 0.356 -5437.964 2284.337

V0 0.018 0.649 0.027 0.979 -1.571 1.606
Rb*V0 -3.849 3.072 -1.253 0.257 -11.367 3.669
Rp*V0 0.450 2.495 0.180 0.863 -5.655 6.556
Ln (w0) -0.630 0.555 -1.136 0.299 -1.988 0.727

Number of Samples

16*(4 repetition)
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Table G.20 ANOVA and GLM of log fatigue life for mixture containing ambient rubber 
and RAP L tested at 20ºC (traditional energy dependent VFA method) 

Dep. Variable Multiple R R Square Adjusted R Square Standard Error
Ln (Nf) 0.697 0.486 0.407 0.412
Analysis of Varance (ANOVA)

df Sum of Square Mean Square F Ratio Significance F C.V.
Regression 2 2.087 1.044 6.151 0.013 135.623
Residual 13 2.205 0.170
Total 15 4.293

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept -7.819 6.212 -1.259 0.230 -21.239 5.601
VFA 21.609 7.926 2.726 0.017 4.485 38.732
Ln (w0) 2.557 0.862 2.967 0.011 0.695 4.419

Number of Samples
16*(4 repetition)

 
 

Table G.21 ANOVA and GLM of log fatigue life for mixture containing ambient rubber 
and RAP L tested at 20ºC (specific energy dependent VFA method) 

Dep. Variable Multiple R R Square Adjusted R Square Standard Error
Ln (Nf) 0.897 0.805 0.513 0.373
Analysis of Varance (ANOVA)

df Sum of Square Mean Square F Ratio Significance F C.V.
Regression 9 3.456 0.384 2.756 0.115 68.426
Residual 6 0.836 0.139
Total 15 4.293

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept -94.262 46.429 -2.030 0.089 -207.869 19.345
Rb -382.459 260.887 -1.466 0.193 -1020.828 255.910
Rp 500.844 224.395 2.232 0.067 -48.232 1049.920
Rb*Rp 155.552 78.638 1.978 0.095 -36.867 347.971
Rb

2 403.843 273.702 1.475 0.191 -265.882 1073.568
Rb

3 -1974.415 1259.409 -1.568 0.168 -5056.081 1107.250
VFA 141.750 63.994 2.215 0.069 -14.839 298.339
Rb*VFA 433.204 327.652 1.322 0.234 -368.533 1234.940
Rp*VFA -680.062 303.800 -2.239 0.066 -1423.435 63.312
Ln (w0) 0.232 1.588 0.146 0.888 -3.654 4.118

Number of Samples
16*(4 repetition)
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Table G.22 ANOVA and GLM of log fatigue life for mixture containing ambient rubber 
and RAP L tested at 20ºC (traditional energy dependent air void method) 

Dep. Variable Multiple R R Square Adjusted R Square Standard Error
Ln (Nf) 0.648 0.419 0.330 0.438
Analysis of Varance (ANOVA)

df Sum of Square Mean Square F Ratio Significance F C.V.
Regression 2 1.801 0.900 4.696 0.029 120.840
Residual 13 2.492 0.192
Total 15 4.293

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 11.633 1.369 8.497 0.000 8.676 14.591
V0 -0.321 0.143 -2.254 0.042 -0.629 -0.013
Ln (w0) 1.013 0.935 1.083 0.298 -1.007 3.033

Number of Samples
16*(4 repetition)

 
 

Table G.23 ANOVA and GLM of log fatigue life for mixture containing ambient rubber 
and RAP L tested at 20ºC (specific energy dependent air void method) 

Dep. Variable Multiple R R Square Adjusted R Square Standard Error
Ln (Nf) 0.885 0.783 0.457 0.394
Analysis of Varance (ANOVA)

df Sum of Square Mean Square F Ratio Significance F C.V.
Regression 9 3.361 0.373 2.404 0.149 67.280
Residual 6 0.932 0.155
Total 15 4.293

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 6.373 3.190 1.998 0.093 -1.433 14.179
Rb -4.507 23.077 -0.195 0.852 -60.973 51.960
Rp 9.265 11.925 0.777 0.467 -19.915 38.446
Rb*Rp -5.021 17.774 -0.282 0.787 -48.513 38.470
Rb

2 287.657 280.087 1.027 0.344 -397.691 973.004
Rb

3 -1183.049 1208.610 -0.979 0.365 -4140.412 1774.315
V0 0.414 0.446 0.927 0.390 -0.678 1.505
Rb*V0 -1.510 2.869 -0.526 0.618 -8.532 5.511
Rp*V0 -1.983 2.037 -0.973 0.368 -6.966 3.001
Ln (w0) 2.533 1.417 1.787 0.124 -0.935 6.001

Number of Samples
16*(4 repetition)
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Table G.24 ANOVA and GLM of log fatigue life for mixture containing cryogenic 
rubber and RAP L tested at 5ºC (traditional energy dependent VFA method) 

Dep. Variable Multiple R R Square Adjusted R Square Standard Error
Ln (Nf) 0.202 0.041 -0.107 0.575
Analysis of Varance (ANOVA)

df Sum of Square Mean Square F Ratio Significance F C.V.
Regression 2 0.182 0.091 0.276 0.763 30.900
Residual 13 4.293 0.330
Total 15 4.475

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 9.253 3.944 2.346 0.036 0.731 17.774
VFA -0.192 5.831 -0.033 0.974 -12.789 12.405
Ln (w0) 0.508 0.724 0.702 0.495 -1.056 2.073

Number of Samples
16*(4 repetition)

 
 

Table G.25 ANOVA and GLM of log fatigue life for mixture containing cryogenic 
rubber and RAP L tested at 5ºC (specific energy dependent VFA method) 

Dep. Variable Multiple R R Square Adjusted R Square Standard Error
Ln (Nf) 0.717 0.515 -0.213 0.602
Analysis of Varance (ANOVA)

df Sum of Square Mean Square F Ratio Significance F C.V.
Regression 9 2.304 0.256 0.707 0.693 54.013
Residual 6 2.171 0.362
Total 15 4.475

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 0.612 20.938 0.029 0.978 -50.622 51.846
Rb 284.009 300.068 0.946 0.380 -450.231 1018.250
Rp -20.606 58.878 -0.350 0.738 -164.675 123.463
Rb*Rp 48.265 57.949 0.833 0.437 -93.532 190.062
Rb

2 163.872 765.452 0.214 0.838 -1709.123 2036.868

Rb
3 -1104.147 2910.792 -0.379 0.718 -8226.604 6018.310

VFA 12.935 28.972 0.446 0.671 -57.956 83.826
Rb*VFA -420.703 383.143 -1.098 0.314 -1358.220 516.814
Rp*VFA 26.151 80.467 0.325 0.756 -170.744 223.047
Ln (w0) -0.085 0.885 -0.097 0.926 -2.251 2.080

Number of Samples
16*(4 repetition)
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Table G.26 ANOVA and GLM of log fatigue life for mixture containing cryogenic 
rubber and RAP L tested at 5ºC (traditional energy dependent air void method) 

Dep. Variable Multiple R R Square Adjusted R Square Standard Error
Ln (Nf) 0.461 0.213 0.092 0.521
Analysis of Varance (ANOVA)

df Sum of Square Mean Square F Ratio Significance F C.V.
Regression 2 0.952 0.476 1.756 0.211 78.070
Residual 13 3.524 0.271
Total 15 4.475

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 10.101 0.772 13.078 0.000 8.433 11.770
V0 -0.180 0.107 -1.685 0.116 -0.412 0.051
Ln (w0) 0.445 0.610 0.730 0.478 -0.873 1.764

Number of Samples
16*(4 repetition)

 
 

Table G.27 ANOVA and GLM of log fatigue life for mixture containing cryogenic 
rubber and RAP L tested at 5ºC (specific energy dependent air void method) 

Dep. Variable Multiple R R Square Adjusted R Square Standard Error
Ln (Nf) 0.751 0.563 -0.091 0.571
Analysis of Varance (ANOVA)

df Sum of Square Mean Square F Ratio Significance F C.V.
Regression 9 2.522 0.280 0.860 0.597 56.866
Residual 6 1.954 0.326
Total 15 4.475

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 15.772 4.027 3.916 0.008 5.918 25.626
Rb -38.032 31.126 -1.222 0.268 -114.196 38.131
Rp -1.734 8.653 -0.200 0.848 -22.908 19.439
Rb*Rp -52.321 56.254 -0.930 0.388 -189.970 85.328
Rb

2 244.875 418.107 0.586 0.579 -778.196 1267.946

Rb
3 -1370.799 1856.723 -0.738 0.488 -5914.038 3172.441

V0 -1.463 0.976 -1.498 0.185 -3.852 0.926
Rb*V0 7.528 7.037 1.070 0.326 -9.692 24.748
Rp*V0 1.716 1.651 1.039 0.339 -2.325 5.757
Ln (w0) -0.221 0.842 -0.262 0.802 -2.280 1.839

Number of Samples

16*(4 repetition)
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Table G.28 ANOVA and GLM of log fatigue life for mixture containing cryogenic 
rubber and RAP L tested at 20ºC (traditional energy dependent VFA method) 

Dep. Variable Multiple R R Square Adjusted R Square Standard Error
Ln (Nf) 0.635 0.403 0.311 0.349
Analysis of Varance (ANOVA)

df Sum of Square Mean Square F Ratio Significance F C.V.
Regression 2 1.072 0.536 4.389 0.035 84.219
Residual 13 1.588 0.122
Total 15 2.660

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 10.574 0.650 16.262 0.000 9.169 11.978
VFA -0.169 0.091 -1.863 0.085 -0.365 0.027
Ln (w0) 0.859 0.417 2.062 0.060 -0.041 1.759

Number of Samples
16*(4 repetition)

 
 

Table G.29 ANOVA and GLM of log fatigue life for mixture containing cryogenic 
rubber and RAP L tested at 20ºC (specific energy dependent VFA method) 

Dep. Variable Multiple R R Square Adjusted R Square Standard Error
Ln (Nf) 0.853 0.727 0.318 0.348
Analysis of Varance (ANOVA)

df Sum of Square Mean Square F Ratio Significance F C.V.
Regression 9 1.934 0.215 1.776 0.249 48.961
Residual 6 0.726 0.121
Total 15 2.660

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 16.834 11.274 1.493 0.186 -10.752 44.420
Rb -180.699 216.537 -0.834 0.436 -710.545 349.148
Rp 44.740 37.624 1.189 0.279 -47.323 136.803
Rb*Rp -39.302 53.280 -0.738 0.489 -169.674 91.070
Rb

2 606.924 429.718 1.412 0.208 -444.560 1658.408
Rb

3 -2381.804 1656.987 -1.437 0.201 -6436.308 1672.700
VFA -7.936 15.087 -0.526 0.618 -44.854 28.981
Rb*VFA 204.654 295.878 0.692 0.515 -519.335 928.642
Rp*VFA -63.445 51.451 -1.233 0.264 -189.342 62.452
Ln (w0) -0.010 0.954 -0.010 0.992 -2.343 2.323

Number of Samples
16*(4 repetition)
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Table G.30 ANOVA and GLM of log fatigue life for mixture containing cryogenic 
rubber and RAP L tested at 20ºC (traditional energy dependent air void method) 

Dep. Variable Multiple R R Square Adjusted R Square Standard Error
Ln (Nf) 0.520 0.271 0.159 0.386
Analysis of Varance (ANOVA)

df Sum of Square Mean Square F Ratio Significance F C.V.
Regression 2 0.720 0.360 2.414 0.128 65.846
Residual 13 1.940 0.149
Total 15 2.660

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 11.331 2.585 4.384 0.001 5.747 16.915
V0 -2.533 3.646 -0.695 0.499 -10.410 5.343
Ln (w0) 0.971 0.458 2.121 0.054 -0.018 1.960

Number of Samples
16*(4 repetition)

 
 

Table G.31 ANOVA and GLM of log fatigue life for mixture containing cryogenic 
rubber and RAP L tested at 20ºC (specific energy dependent air void method) 

Dep. Variable Multiple R R Square Adjusted R Square Standard Error
Ln (Nf) 0.853 0.728 0.319 0.348
Analysis of Varance (ANOVA)

df Sum of Square Mean Square F Ratio Significance F C.V.
Regression 9 1.935 0.215 1.781 0.248 48.981
Residual 6 0.725 0.121
Total 15 2.660

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 10.215 2.044 4.996 0.002 5.212 15.217
Rb -20.660 23.021 -0.897 0.404 -76.990 35.670
Rp 6.533 6.890 0.948 0.380 -10.325 23.391
Rb*Rp -19.009 26.534 -0.716 0.501 -83.936 45.918
Rb

2 261.512 269.059 0.972 0.369 -396.851 919.875
Rb

3 -1067.697 1183.503 -0.902 0.402 -3963.626 1828.233
V0 0.076 0.375 0.202 0.846 -0.843 0.995
Rb*V0 1.211 2.709 0.447 0.670 -5.418 7.840
Rp*V0 -1.310 1.113 -1.176 0.284 -4.034 1.415
Ln (w0) 0.178 0.627 0.284 0.786 -1.357 1.713

Number of Samples
16*(4 repetition)
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Figure G.7 Comparison of fatigue lives between predicted and measured results using 
traditional energy dependent method at 5oC (containing ambient rubber and RAP L) 
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Figure G.8 Comparison of fatigue lives between predicted and measured results using 

specific energy dependent method at 5oC (containing ambient rubber and RAP L) 
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Figure G.9 Comparison of fatigue lives between predicted and measured results using 
traditional energy dependent method at 20oC (containing ambient rubber and RAP L) 
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Figure G.10 Comparison of fatigue lives between predicted and measured results using 

specific energy dependent method at 20oC (containing ambient rubber and RAP L) 

 



 184

0

10000

20000

30000

0 10000 20000 30000

Measured Fatigue Life (Cycles)

Pr
ed

ic
te

d 
Fa

tig
ue

 L
ife

 (C
yc

le
s)

VFA Predicted
Air Voids Predicted

 
Figure G.11 Comparison of fatigue lives between predicted and measured results using 
traditional energy dependent method at 5oC (containing cryogenic rubber and RAP L) 
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Figure G.12 Comparison of fatigue lives between predicted and measured results using 

specific energy dependent method at 5oC (containing cryogenic rubber and RAP L) 
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Figure G.13 Comparison of fatigue lives between predicted and measured results using 
traditional energy dependent method at 20oC (containing cryogenic rubber and RAP L) 
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Figure G.14 Comparison of fatigue lives between predicted and measured results using 
specific energy dependent method at 20oC (containing cryogenic rubber and RAP L) 
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