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Abstract

This thesis studies regularization models as a way to approximate a flow simulation at

a lower computational cost. The Leray model is more easily computed than the Navier-Stokes

equations (NSE), and it is more computationally attractive than the NS-α regularization because it

admits a natural linearization which decouples the mass/momentum system and the filter system,

allowing for efficient and stable computations. A major disadvantage of the Leray model lies in its

inaccuracy. Thus, we study herein several methods to improve the accuracy of the model, while still

retaining many of its attractive properties.

This thesis is arranged as follows. Chapter 2 gives notation and preliminary results to be

used in subsequent chapters. Chapter 3 investigates a nonlinear filtering scheme using the Vreman

and Q-criteria based indicator functions. We define these indicator functions, prove stability and

state convergence of the scheme to the NSE, and provide several numerical experiments which

demonstrate its effectiveness over NSE and Leray calculations on coarse meshes.

Chapter 4 investigates a deconvolution-based indicator function. We prove stability and

convergence of the resulting scheme, verify the predicted convergence rates, and provide numerical

experiments which demonstrate this scheme’s effectiveness. Chapter 5 then extends this scheme to

the magnetohydrodynamic equations. We prove stability and convergence of our algorithm, and

verify the predicted convergence rates.

Chapter 6 provides a study of the Leray-αβ model. We prove stability and convergence

for the fully nonlinear scheme, prove conditional stability for a linearized and decoupled scheme,

and provide a numerical experiment which compares our scheme with the usual Leray-α model.

Specifically, we show that choosing β < α does indeed improve accuracy in computations.

Chapter 7 investigates the Leray model with fine mesh filtering. We prove stability and

convergence of the algorithm, then verify the increased convergence rate associated with the finer
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mesh, as predicted by the analysis. Finally, we present a benchmark problem which demonstrates

the effectiveness of filtering on a finer mesh.
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Chapter 1

Introduction

Understanding and predicting fluid flow is an integral part of science and engineering. Mod-

eling fluids is essential to applications in climate modeling, blood flow in arteries, and nuclear

reactors. Despite having practical applications in many different areas and disciplines, it has been

primarily only in the last century that computational fluid dynamics (CFD) has become a field of

interest, and there is still much that has yet to be learned. Central to CFD are the Navier-Stokes

equations (NSE), which describe the evolution of incompressible, Newtonian flows, which include

water, oil, and air at low speeds. The NSE are given by

ut + u · ∇u+∇p− ν∆u = f (1.1)

∇ · u = 0, (1.2)

where u denotes velocity, p pressure, ν kinematic viscosity, and f body forces.

These equations were derived in the nineteenth century, but despite intense study since

that time, there still remain many difficulties surrounding them. Analytically, the NSE have an

incomplete solution theory. It is not known whether strong solutions exist, and although we know

weak solutions exist, we are still unable to prove their uniqueness. Computationally, simulating

the NSE remains difficult for many flows. The Reynolds number, denoted Re = 1
ν , is a parameter

that can be used to determine the smallest active length scale of a flow, which is O(Re−3/4) from

Kolmogorov’s 1941 theory [31]. Hence, the number of mesh points necessary to resolve a flow is

O(Re9/4). Since Re for a car is ≈ 106 and Re for a submarine is ≈ 108, the mesh points needed for
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a resolved simulation lead to a need to solve non-symmetric, ill-conditioned linear systems of size

1018 × 1018 at each time step, which will not be computationally feasible in the foreseeable future.

But even when it is, there will be bigger problems we wish to solve.

Regularization models are one way to approximate a flow simulation at a lower computa-

tional cost. In particular, we consider the Leray regularization model [39], which is given by:

ut + ū · ∇u+∇p− ν∆u = f (1.3)

∇ · u = 0 (1.4)

−α2∆ū+ ū+∇λ = u (1.5)

∇ · ū = 0, (1.6)

where α > 0 is considered to be the filtering radius, and λ is a Lagrange multiplier corresponding

to the divergence constraint. This model is known to be well-posed for positive α, and maintains

many attractive properties of the NSE. The Leray model was originally proposed by J. Leray in

1934 as a perturbation of the NSE that was well-posed [39]. In his model, the smoothing was

done by convolution with the Gaussian. Here, we follow [11] and use the α-filter, which is an O(α4)

approximation to the Gaussian [18], but still smooths enough to provide well-posedness, and is much

more attractive computationally. The Leray model conserves energy and enstrophy [25] and is more

easily computed than the NSE [11]; in particular, it can be resolved with O(Re7/8) mesh points.

Moreover, it is more computationally attractive than the NS-α regularization because it admits a

natural linearization which decouples the mass/momtentum system and the filter system, allowing

for efficient and stable computations.

A major disadvantage of the Leray model lies in its inaccuracy. At best, the model is O(α2)

accurate, and it has a tendency to over smooth solutions and distort laminar flows [5]. One common

fix is to add van Cittert approximate deconvolution to the regularization, to approximately unfilter

the filter. This has been shown to yield more accurate computations when used with the α-filter

[34, 5]. However, higher order elements are necessary to see gains in accuracy from deconvolution,

and it requires additional linear solves at each time step. Part of this thesis concerns improving this

model in computations by using an incompressible filter.

As an alternative to deconvolution, we also study nonlinear filtering. This is based on

indicator functions, with the idea being to filter “intelligently”, by leaving resolvable regions alone

2



(e.g. laminar areas and coherent structures), and smoothing un-resolved scales. We use the following

as a filter:

−α2∇ · (a(v)∇v) + v = v, (1.7)

where a(v) satisfies,

0 < a(v) ≤ 1 for any fluid velocity v(x, t),

a(v) ' 0 selects regions requiring no local filtering,

a(v) ' 1 selects regions requiring O(α) local filtering.

We formulate an a such that a ' 0 in smooth regions and coherent structures, and a ' 1 where

unresolvable scales exist. Our approach leads to unconditionally stable numerical algorithms that

lend themselves to natural linearizations, which allows us to decouple the filter operation, giving

efficient computations. Unlike deconvolution, we need not use higher order elements to see gains in

accuracy, and we show this through several numerical experiments.

We employ the concept of localized filtering in several ways. First, we consider an a(u) based

upon physical phenomenology. In particular, we adapt Vreman’s criteria [52] and the Q-criteria of

Hunt, Wray, and Moin [26] to fit our needs for such a function. Vreman found a gradient-based

formula, which he showed vanishes for 320 different type of laminar flows, and we transform it for

use as an indicator function. The Q-criteria is based upon the deformation and spin tensors, using

the assumption that spin dominates deformation in a coherent structure. The criteria gives an

operator which is positive where spin is dominant and filtering is not necessary. This is rescaled and

shifted using the arctan function to give a suitable indicator.

Although these functions are intuitively a good fit, and turn out to be computationally

promising, they present an analytical challenge. Thus, we also use the following as an indicator

function:

aDN
(u) = |u−Dh

N ũ
h|, (1.8)

where ũ is the discrete Helmholtz filter, and DN represents N -th order discrete van Cittert decon-

volution, defined by

DN =

N∑
n=0

(I − F )n, N = 0, 1, 2, . . .

3



where Fu := ũ. Here, the idea is that when u is smooth, we expect no regularization is necessary

and u ≈ Dh
N ũ

h. This indicator function does allow for mathematically rigorous analysis, though

proving optimal convergence of the numerical method is quite challenging.

The use of an indicator function also extends to coupled systems. The magnetohydrody-

namic equations (MHD) model the evolution of electrically conducting fluids. The equations are a

combination of the NSE and Maxwell’s equations. MHD can be regularized in a similar manner to

the NSE. The Leray-MHD model, studied in [53], is given by

ut + ū · ∇u− ν∆u− sB̄ · ∇B +∇p = f (1.9)

Bt +Re−1
m ∆B + ū · ∇B − B̄ · ∇u−∇λ = ∇× g (1.10)

∇ · ū = ∇ · B̄ = 0, (1.11)

where ∇× g is forcing on the magnetic field, B, Rem is the magnetic Reynolds number, and s is the

coupling number. We can use our local filtering approach to filter both u and B, and as before we

can linearize and decouple the system in an unconditionally stable way to allow for more efficient

computations, and the analysis which applies to the deconvolution-based indicator function can be

extended to MHD.

Another approach to improving the regularization models is through dissipation scale mod-

eling via the “β method”, introduced by Fried and Gurtin [16]. The model was proposed as a way

to capture the separation between the inertial range (modeled by α) and the dissipation range scales

(modeled by 0 < β < α). In other words, the model can better predict some “lost” subgrid scales.

The Leray-αβ-deconvolution model is given by

ut +DN ū · ∇u+∇p− ν(1− β2∆)∆ū = f (1.12)

∇ · u = 0 (1.13)

−α2∆ū+ ū+∇λ = u (1.14)

∇ · ū = 0. (1.15)

Here, DN represents N -th order van Cittert deconvolution, defined above. Note that when β = α,

this reduces to the Leray-α-deconvolution model.

At first glance this appears to be a fourth order model, which is unattractive because it
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would require C1 finite elements. However, we use the following identity to reduce the viscous term:

−ν(1− β2∆)∆ū = −ν
(

1− α2 − β2

α2

)
∆u− ν

(
α2 − β2

α2

)
∆ū. (1.16)

We thus have a second order system that can be linearized and decoupled in a stable way with a

mild timestep restriction for stability (which we prove).

Yet another method of improving the Leray model is through fine mesh filtering. Here, we

will filter on a finer mesh, which will cause less damping of coherent flow structures, and provide

a localized effect of the filtering. In contrast to deconvolution, our method avoids regularity issues

on the boundary, and does not introduce extra computational cost. As before, the filter system

is decoupled from the mass/momentum system, and even though it is solved on a finer mesh, the

filter solve can be considered as equivalent to a well conditioned (shifted) Stokes problem, and

moreover, we are using the same matrix at every timestep. Although our analysis shows that using

(P3, P2) elements on the coarse mesh is necessary for optimal accuracy, we are able to filter with

(P2, P1) elements and still achieve optimal error estimates. Our numerical method for the model is

unconditionally stable and optimally convergent, with element choice and filter radius guided by the

analysis.

This thesis is arranged as follows. Chapter 2 gives notation and preliminary results to be

used in subsequent chapters. Chapter 3 investigates a nonlinear filtering scheme using the Vreman

and Q-criteria based indicator functions. We define these indicator functions, prove stability, and

state convergence of our scheme to the NSE, and provide several numerical experiments which

demonstrate its effectiveness over NSE and Leray computations on the same meshes.

Chapter 4 investigates the deconvolution-based indicator function. We prove stability and

convergence of our scheme, verify the predicted convergence rate, and provide numerical experiments

which demonstrate this scheme’s effectiveness. Chapter 5 then extends this scheme to the MHD

equations. We prove stability and convergence of our algorithm, and verify the convergence rate

predicted by the analysis.

Chapter 6 provides a numerical study of the Leray-αβ model. We prove stability and

convergence for the fully nonlinear scheme, prove conditional stability for a linearized and decoupled

scheme, and provide a numerical experiment which compares our scheme with the usual Leray-α

model. Specifically, we show that choosing β < α does indeed improve accuracy in computations.
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Chapter 7 investigates the Leray model with fine mesh filtering. We prove stability and

convergence of the algorithm, then verify the increased convergence rate associated with the finer

mesh, as predicted by the analysis. We then present a benchmark problem which demonstrates the

effectiveness of filtering on a finer mesh.

Finally, chapter 8 provides a summary of the work presented in this thesis.
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Chapter 2

Preliminaries

We denote by Ω ⊂ Rd (d=2 or 3) an open, simply connected domain with piecewise smooth

boundary. The L2(Ω) norm and inner product will be denoted by ‖·‖ and (·, ·). For simplicity of

the presentation, we assume no-slip boundary conditions, but extension to other common boundary

conditions would be done in the usual way. In this setting, the appropriate velocity and pressure

spaces are defined as

X := (H1
0 (Ω))d, Q := L2

0(Ω).

Note that the Poincare inequality holds in X: For v ∈ X,

‖v‖ ≤ CP ‖∇v‖, (2.1)

where CP depends only on the size of the domain. We use as the norm on X , ‖v‖X := ‖∇v‖L2 ,

and denote the dual space of X by X?, with the norm ‖ · ‖?. The space of weakly divergence free

functions is given by

V := {v ∈ X : (∇ · v, q) = 0 ∀q ∈ Q} .

We denote conforming velocity, pressure finite element spaces based on edge to edge trian-

gulations (tetrahedralizations) of Ω (with maximum element diameter h) by

Xh ⊂ X, Qh ⊂ Q.
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We assume that Xh, Qh satisfy the usual inf-sup stability condition [21]. The discretely divergence-

free subspace of Xh, is given by

Vh := {vh ∈ Xh, (∇ · vh, qh) = 0 ∀qh ∈ Qh}.

For our computations, we use Taylor-Hood (TH) and Scott-Vogelius (SV) element pairs (in

the appropriate setting), both of which are known to satisfy the inf-sup condition [8, 54, 2].

On a triangular (tetrahedral) mesh τh, TH elements are defined to be the mixed pair

((Pk)d, Pk−1) and SV elements ((Pk)d, P disc
k−1), where Pk denotes element-wise polynomials of de-

gree k. SV elements provide ∇ ·Xh ⊂ Qh, and thus Vh contains only functions which are pointwise

divergence free (choose qh = ∇ · vh). SV elements have recently been used to successfully compute

approximations to the NSE and related models [9, 40, 10, 42, 29]. The LBB stability of SV elements

requires some restrictions on the mesh and polynomial degree, as without any, LBB requires k = 4

in 2D and k = 6 in 3D [51, 50, 56]. If a barycenter-refined mesh is used, for example, then only

k = d is required [45, 54] for LBB. Requiring a mesh be a barycenter refinement of a regular mesh

is only a mild restriction, and we use this mesh condition for our computations. Even lower order

elements can be LBB stable, but at the expense of using more complex mesh structures [55, 57].

Both element pairs satisfy the following approximation properties [8, 19, 54]:

inf
vh∈Xh

‖u− vh‖ ≤ Chk+1|u|k+1, u ∈ (Hk+1(Ω))d, (2.2)

inf
vh∈Vh

‖u− vh‖1 ≤ Chk|u|k+1, u ∈ (Hk+1(Ω))d, (2.3)

inf
rh∈Qh

‖p− rh‖ ≤ Chk|p|k, p ∈ Hk(Ω). (2.4)

We will assume the mesh is sufficiently regular for the inverse inequality to hold with Ci ≈

O(1):

‖∇uh‖ ≤ Cih−1‖uh‖ ∀uh ∈ Xh.

It will be notationally convenient to define a discrete divergence-free Laplace operator (i.e.,

a discrete Stokes operator) ∆h : X → Vh: Given φh ∈ Vh, find ∆hφ ∈ Vh satisfying (∆hφ, vh) =

−(∇φ,∇vh) ∀vh ∈ Vh [22].
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Lemma 2.0.1. For φ ∈ H2(Ω) ∩X,

‖∆hφ‖ ≤ ‖∆φ‖. (2.5)

Proof. We start by writing

‖∆hφ‖2 = (∆hφ,∆hφ).

By the definition of ∆h, Green’s theorem, and Cauchy-Schwarz, we have

(∆hφ,∆hφ) = −(∇φ,∇∆hφ)

= (∆φ,∆hφ)

≤ ‖∆φ‖‖∆hφ‖,

which implies the result.

Denote u(tn+1/2) = u((tn+1 + tn)/2) for continuous variables and un+1/2 = (un+1 + un)/2

for both continuous and discrete variables.

We use the skew-symmetric trilinear form to ensure stability of the numerical method.

Definition 2.0.2 (Skew Symmetric operator b∗). Define the skew-symmetric trilinear form b∗ :

X ×X ×X → R as

b∗(u, v, w) :=
1

2
(u · ∇v, w)− 1

2
(u · ∇w, v) (2.6)

There are several important estimates for the b∗ operator that we will employ in subsequent

sections.

Lemma 2.0.3. For u, v, w ∈ X, and also v ∈ L∞(Ω) for the first estimate, the trilinear term

b∗(u, v, w) can be bounded by

b∗(u, v, w) ≤ 1

2
(‖u‖‖∇v‖∞‖w‖+ ‖u‖‖v‖∞‖∇w‖) , (2.7)

b∗(u, v, w) ≤ C(Ω)‖u‖1/2‖∇u‖1/2‖∇v‖‖∇w‖, (2.8)

b∗(u, v, w) ≤ C(Ω)‖∇u‖‖∇v‖‖∇w‖. (2.9)

Proof. The result of the first bound follows immediately from the definition of b∗ and Holder’s
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inequality. The second follows from Holder’s inequality, Ladyzhenskaya inequalities, and the Sobolev

Embedding Theorem [33]. The third follows immediately from the second, due to the Poincare

inequality.

Lemma 2.0.4 (Discrete Gronwall Lemma). Let ∆t, H, and an, bn, cn, dn (for integers n ≥ 0) be

nonnegative numbers such that

al + ∆t

l∑
n=0

bn ≤ ∆t

l−1∑
n=0

dnan + ∆t

l∑
n=0

cn +H for l ≥ 0. (2.10)

Then for all ∆t > 0,

al + ∆t

l∑
n=0

bn ≤ exp

(
∆t

l−1∑
n=0

dn

)(
∆t

l∑
n=0

cn +H

)
for l ≥ 0. (2.11)

Proof. The result can be found in [23].

2.1 Filtering and deconvolution

We define the discrete incompressible α-filter with a standard finite element implementation

of (1.5)-(1.6), as in [43, 41, 12, 5]. We will assume the following definition of the filter unless otherwise

noted:

Definition 2.1.1 (Discrete differential filter). Given u ∈ (L2(Ω))d, for a given filtering radius

α > 0, ūh = Fhu is the unique solution in Xh of: Find (ūh, λh) ∈ (Xh, Qh) satisfying

α2(∇ūh,∇vh) + (ūh, vh)− (λh,∇ · vh) + (∇ · ūh, rh) = (u, vh) ∀(vh, rh) ∈ (Xh, Qh). (2.12)

Although mathematically the filtering radius α needs only to be chosen positive for the

continuous model to be well-posed, in the discrete setting choosing α << O(h) leads to negligible

effects of the filter, and thus the choice of α = O(h) is much more common, and we will make this

choice throughout this work. Recall also that Fh is both a self-adjoint and positive operator [47].
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We define the norms ‖ · ‖E and ‖ · ‖ε by

‖φ‖E := (φ, φ
h
)1/2, (2.13)

‖φ‖ε := (∇φ,∇φh)1/2. (2.14)

That these operators are norms follows from the operator Fh being positive and self adjoint. The

following result proves norm equivalences and inequalities for these norms. These results are proven

in [29], and are important in the convergence analysis.

Lemma 2.1.2. For φ ∈ X, we have the following inequalities

‖φh‖ ≤ ‖φ‖E ≤ ‖φ‖, (2.15)

‖∇φh‖ ≤ ‖φ‖ε ≤ ‖∇φ‖. (2.16)

Furthermore, with α ≤ O(h) and φh ∈ Vh, the reverse inequalities hold up to a constant which is

independent of h. Thus the the following norms are equivalent in Vh:

i) ‖φh‖, ‖φh
h‖, and ‖φh‖E

ii) ‖∇φh‖, ‖∇φh
h‖, and ‖φ‖ε

The following lemma describes the filtering error, and is proven in [34].

Lemma 2.1.3. For φ ∈ X and 4φ ∈ L2(Ω),

α2||∇(φ− φ̄h)||2 + ||φ− φ̄h||2 ≤ C{α2h2k|φ|2k+1 + h2k+2|φ|2k+1}+ Cα4||4φ||2. (2.17)

The next lemma is fundamental to establishing convergence rates.

Lemma 2.1.4. For φ ∈ X ∩H2(Ω), and any vh ∈ Vh,

(∇(φ
h − φ),∇vh) = (∆hφ

h −∆hφ, vh). (2.18)

Proof. We begin by noting that the continuous Laplacian commutes with the discrete filter, in a

weak sense, due to Green’s theorem, the definition of the discrete Laplacian, and the commutation
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of the discrete Laplacian with the discrete filter, via

(∆φ
h
, vh) = (∆hφ

h
, vh)

= (∆hφ
h
, vh)

= (∆hφ, vh
h)

= (∆φ, vh
h)

= (∆φ
h
, vh) ∀vh ∈ Vh. (2.19)

For (4.1.7), use the definition of the discrete Laplacian followed by the fact that discrete filtering

commutes with the discrete Laplacian to get

(∇(φ
h − φ),∇vh) = (∆hφ

h −∆hφ, vh)

= (∆hφ
h −∆hφ, vh).

Lemma 2.1.5. Given a filtering radius α > 0, and β ≤ α,

−ν(1− β2∆)∆ū = −ν
((

1− α2 − β2

α2

)
∆u+

α2 − β2

α2
∆ū

)
. (2.20)

Proof. This is shown in [29].

We now define the continuous and discrete Helmholtz filter.

Definition 2.1.6 (Continuous Helmholtz filter). Let φ ∈ L2(Ω). Then the Helmholtz filter of φ is

the solution φ̃ ∈ X of

α2(∇φ̃,∇v) + (φ̃, v) = (φ, v) ∀v ∈ X. (2.21)

It will be notationally convenient to denote this filter also with F , with Fφ := φ̃. Discrete

Helmholtz filtering is defined in an analogous manner.

Definition 2.1.7. [Discrete Helmholtz filter] Let φ ∈ L2(Ω). Then the discrete Helmholtz filter of

φ is the solution φ̃h ∈ Xh of

α2(∇φ̃h,∇χh) + (φ̃h, χh) = (φ, χh) ∀χh ∈ Xh. (2.22)
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We will also use the notation Fh to denote this filter, and define it by Fhφ := φ̃h.

Next, we define discrete and continuous van Cittert deconvolution.

Definition 2.1.8. The continuous and discrete van Cittert deconvolution operators DN and Dh
N

are defined by

DN :=

N∑
n=0

(I − F )n , Dh
N :=

N∑
n=0

(I − Fh)n. (2.23)

From [13], we know that DN acts as an approximate inverse to the filter F in the following

sense:

φ−DN φ̃ = (−1)N+1α2N+2∆N+1FN+1φ. (2.24)

For the discrete deconvolution accuracy, we will utilize the following result from [34]:

Lemma 2.1.9. For φ ∈ X ∩H2N+2(Ω) ∩Hk+1(Ω),

‖φ−Dh
N φ̃

h‖ ≤ C

(
(αhk + hk+1)

(
N∑
n=0

|Fnφ̃|k+1

)
+ α2N+2‖FN+1∆N+1φ‖

)
. (2.25)

Remark 2.1.10. The dependence of the terms |Fnφ̃|k+1 on the right side of (2.25) on α is partially

an open question. However, it is known from [34, 37] that in the periodic setting or if ∆jφ = 0 on

∂Ω for 0 ≤ j ≤ dm2 e − 1, they are independent of α. Otherwise, there exist Ci’s independent of α

satisfying

‖Fφ‖m ≤ C1‖φ‖m m = 0, 1, 2

‖F 2φ‖m ≤ C2‖Fφ‖m m = 0, 1, 2, 3, 4

‖F 3φ‖m ≤ C3‖F 2φ‖m m = 0, 1, 2, 3, 4, 5, 6

and so on. Thus for k ≥ 2 and for any N ≥ 0, the loss of a power of α cannot be ruled out.
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Chapter 3

Improving accuracy in

regularization models via adaptive

nonlinear filtering

This chapter is a result of the work in [7]. We study a modification of the Leray−α model

that employs a nonlinear filter. The filter we consider herein was first proposed in [38], and is based

on the phenomenological idea that in laminar regions or where coherent structures persist, little or

no filtering is needed because these regions are resolvable. This idea is implemented as the nonlinear

filter (1.7).

The function a(u) is meant to indicate where filtering should be applied, and thus we

will refer to it as an indicator function. Herein we will study several possible choices of indicator

functions, which were mentioned in the introduction, but will be precisely defined in this chapter. In

[38], nonlinear filtering was used as part of an ‘evolve, then filter, then relax’ approach to evolution

equations, and successful numerical results were shown for some small 2D problems. We extend

the use of this type of filtering for use with the Leray regularization, and give several 2D numerical
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examples to demonstrate its effectiveness. The system we study takes the form

vt + v · ∇v +∇p− ν∆v = f (3.1)

∇ · v = 0 (3.2)

−α2∇ · (a(v)∇v) + v +∇λ = v (3.3)

∇ · v = 0 (3.4)

We will present a numerical algorithm for the system (3.1)-(3.4) that decouples the conser-

vation system (3.1)-(3.2) from the incompressible filter system (3.3)-(3.4), and provides an efficiently

computable, well-posed, discrete system.

3.1 Indicator functions

Given an indicator function a(·), a fluid velocity u ∈ X, an averaging radius α (possibly

varying with x), we redefine the filtered velocity uh using a selected indicator function, a(·), as the

solution of: Find (uh, λh) ∈ Xh ×Qh satisfying

α2(a(u)∇uh,∇vh) + (uh, vh)− (λh,∇ · vh) = (u, vh) ∀vh ∈ Xh , (3.5)

(∇ · uh, q) = 0 ∀q ∈ Qh. (3.6)

As discussed in the introduction for the continuous case, the Lagrange multiplier term λh

allows the solenoidal constraint to be enforced. Note that if the chosen element pair is used whose

weak enforcement of mass conservation does not provide ‘good’ mass conservation, e.g. Taylor-Hood

elements [10], then grad-div stabilization should be added to (3.5) to improve mass conservation and

overall accuracy [36]. Consideration of mass conservation is particularly important in regularization

models, where coarse meshes are used, and thus relying on global mass conservation may not be

sufficient to provide physically relevant solutions.

When u ∈ X is given input for the filter system (3.5)-(3.6), nonlinear filtering is made a

linear problem. It is shown in [38] that solutions exist uniquely, and satisfy

2

∫
Ω

α2a(u)|∇uh|2dx+ ||uh||2 ≤ ||u||2. (3.7)
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Error in discrete filtering is also considered in [38] and the following result is proven, which shows

that what is lost through this discrete filtering is due only to discretization error and the filtering

radius.

Theorem 3.1.1. Consider the discrete nonlinear filter uh given by (3.5), with u ∈ X. We have

∫
Ω

α2a(u)|∇(u− uh)|2dx+ ||u− uh||2

≤ C inf
ũ∈Xh

{∫
Ω

α2a(u)|∇(u− ũ)|2dx+ ||u− ũ||2
}

+ Cα4||∇ · (a(u)∇u)||2.

We consider the following indicator functions, for use with the filter (3.5)-(3.6).

1. The Q-criterion based indicator

The most popular method for eduction of coherent vortices is the Q criterion, which was

developed in [26], and is defined as follows. Define deformation and spin tensors by

∇su :=
1

2

(
∇u+∇utr

)
and ∇ssu :=

1

2

(
∇u−∇utr

)
.

A persistent and coherent vortex is found at regions where spin (local rigid body rotation)

dominates deformation, i.e. where

Q(u, u) :=
1

2
(∇ssu : ∇ssu−∇su : ∇su) > 0.

It is a necessary condition (in 3D) and both necessary and sufficient (in 2D) for slower than

exponential local separation of trajectories.

We define a Q-criterion based indicator function so that Q(u, u) > 0 implies a(u) ' 0 (we note

there are many ways to do this, and this way is certainly improvable), and is given by

aQ(u) :=
1

2
− 1

π
arctan

(
α−1 Q(u, u)

|Q(u, u)|+ α2

)
.

2. Vreman’s eddy viscosity based indicator
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In [52], using only the gradient tensor, Vreman constructs an eddy viscosity coefficient formula

that vanishes identically for 320 types of flow structures that are known to be coherent (non

turbulent). Define

|∇u|2F =
∑

i,j=1,2,3

(
∂uj
∂xi

)2, βij :=
∑

m=1,2,3

∂ui
∂xm

∂uj
∂xm

, and

B(u) : = β11β22 − β2
12 + β11β33 − β2

13 + β22β33 − β2
23.

By construction, B(u) = 0 for different laminar flows. Since 0 ≤ B(u)/|∇u|4F ≤ 1 we take as

an indicator function,

aV (u) =

√
B(u)

|∇u|4F
.

3. Synthesized methods

Given indicator functions ai, constructing synthesized indicator functions can be easily done

via

aij(u) := (ai(u)aj(u))
1/2

. (3.8)

With this method, combining two indicator functions that have different selection criteria can

produce a better indicator. In our numerical experiments, best results are usually obtained

with a synthesized indicator. We note this was an idea of John Burkardt.

3.2 Numerical algorithm for nonlinear Leray model

We propose the following finite element algorithm to compute solutions to the Leray regu-

larization model with adaptive nonlinear filtering.

Algorithm 3.2.1. Given a forcing function f ∈ L∞(0, T ;H−1(Ω)), initial velocity u0 ∈ V , timestep

∆t > 0, endtime T and integer M satisfying T = M∆t, define u−1
h = u0

h to be the L2 projection into

Vh of u0. Then for a fixed constant α chosen of the order of the mesh width, and given indicator
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function 0 ≤ a(·) ≤ 1, find (unh, p
n
h) ∈ (Xh, Qh), n = 1, 2, ...,M satisfying, ∀(vh, qh) ∈ (Xh, Qh),

1

∆t
(vn+1
h − vnh , χh) +

(
Unh

h · ∇vn+ 1
2

h , χh

)
−(p

n+1/2
h ,∇ · χh) + ν(∇vn+ 1

2

h ,∇χh) = (f(tn+ 1
2 ), χh) (3.9)

(∇ · vn+1
h , qh) = 0 (3.10)

where Unh := 3
2v
n
h − 1

2v
n−1
h and ·h is defined by (3.5)-(3.6).

Remark 3.2.2. An initial pressure is not needed, provided the first step is taken using a backward

Euler type temporal discretization. Otherwise, pressure is solved for at half-time levels.

Remark 3.2.3. If a choice of (Xh, Qh) is used that does not provide pointwise divergence-free

solutions to the filtering problem (e.g. Taylor-Hood), then the nonlinear term in (3.9) should be

skew-symmetrized as in [34], and grad-div stabilization should also be added to (3.9).

There are several important properties of this discretization. By using a Crank-Nicolson

temporal discretization and linear extrapolation of the filtered term, formal second order temporal

accuracy is retained while decoupling the filter from the conservation law system and linearizing

filter computations; hence at each timestep, two linear solves are needed. Moreover, this scheme is

unconditionally stable with respect to timestep, as stated in the next lemma.

Lemma 3.2.4. For any choice of time step ∆t > 0, solutions to Algorithm 3.2.1 satisfy

‖vMh ‖2 + ν∆t

M−1∑
n=0

‖∇vn+1/2
h ‖2 ≤ C(data). (3.11)

Proof. Choose χh = v
n+1/2
h . The nonlinear term(s) vanishes, due to skew symmetrization or directly,

if the filtered extrapolated velocity is pointwise divergence-free. The pressure term vanishes since

we can choose qh = pn+1
h in (3.10). This leaves

1

2∆t

(
‖vn+1
h ‖2 − ‖vnh‖2

)
+ ν‖∇vn+1/2

h ‖2 = (f(tn+ 1
2 ), v

n+ 1
2

h ).

Applying Cauchy-Schwarz and Young’s inequalities to the right-hand side, multiplying through by

∆t, summing over time steps, and using the smoothness assumptions on the problem data gives the

result.
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Remark 3.2.5. Since the filter system is linear (since unh, un−1
h are known) and stable, the result

(3.11) is sufficient to show that Algorithm 3.2.1 is well-posed.

For simplicity in stating the following convergence theorem, we summarize here the necessary

regularity assumptions for the solution (u(x, t), p(x, t)) to the NSE

u ∈ L∞(0, T ;Hk+1(Ω)) ∩ L∞(0, T ;H4(Ω)) (3.12)

utt ∈ L2(0, T ;H1(Ω)) (3.13)

uttt ∈ L2(0, T ;L2(Ω)) (3.14)

∆utt ∈ L2(0, T ;L2(Ω)). (3.15)

Since the adaptive filter differs from the α-filter only by the indicator function which satisfies

0 < a(·) ≤ q, solutions from Algorithm 3.2.1 must have consistency to the NSE at least as good as

Leray-α solutions (i.e. when a(·) = 1). We have the following convergence result for the algorithm:

Theorem 3.2.6. Let (u, p) ∈ (V,Q) be a smooth NSE solution on Ω × (0, T ] for a given set of

data f, u0, ν. Then if (un, pn), n = 0, 1, ...,M is the solution to Algorithm 3.2.1 using (Pk, P
disc
k−1 )

Scott-Vogelius elements, for ∆t > 0, the velocity error satisfies

‖u(T )− uMh ‖2 + ν∆t

M−1∑
n=0

‖∇(u(tn+1/2)− un+1/2
h )‖2 ≤ C

(
∆t4 + h2k + α4

)
, (3.16)

where C is a constant dependent on data and the true solution.

Proof. This result follows the convergence proof for the usual Leray-α model given in [34, 5], but

using the filter error result from Theorem 3.1.1.

3.3 Numerical Experiments

In this section, we present several numerical experiments that illustrate the effectiveness of

our proposed approach, in giving good coarse mesh approximations of incompressible flows. In par-

ticular, we will show this approach gives much better results than for the usual Leray-α model, and

gives good approximations on meshes where the NSE is significantly underresolved when computed

directly.
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3.3.1 2D channel flow over a step

NSE, Mesh 1 (1,762 dof)
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NSE, Mesh 2 (4,989 dof)
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NSE, Mesh 3 (7,785 dof)
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NSE, Mesh 4 (16,600 dof)
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NSE, Mesh 5 (21,593 dof)
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Figure 3.1: Shown above are the velocity solutions at T = 40 for 2D flow over a step, found by
directly computing the Navier-Stokes equations (i.e. no filtering), on different meshes. Only the
finest mesh correctly predicts the true solution.

Our first experiment is for two-dimensional flow over a forward and backward facing step.

The domain is a 40 x 10 rectangular channel with a 1 x 1 step five units into the channel at the

bottom. We assume no-slip boundary conditions on the top and bottom boundaries, a parabolic

inflow profile given by (y(10 − y)/25, 0)T , and a zero-traction (do-nothing) outflow. The correct
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behavior is a smooth velocity field away from the step, and for eddies to periodically form and shed

behind the step.

We first present the results of computing the NSE directly. Computations were made on

five successively finer meshes, using ∆t = 0.01 and ν = 1/600, and Taylor-Hood elements. Solutions

at T = 40 are shown in Figure 3.1 as velocity streamlines over speed contours, and we observe only

the finest mesh gets the correct solution, comparing to [34]. The solution is very under-resolved on

the coarsest two meshes, and on meshes 3 and 4, the predicted solution captures the eddy formation

and detachment, but oscillations are still observed in the speed contours.

We test the proposed model with Algorithm 3.2.1 on the two coarsest meshes, using the same

parameters as for the coarse mesh NSE computation, and using indicator functions a(u) = 1, aV , aQ,

and aV Q. Results for Mesh 2 (which provides 4,989 dof) at T = 40 are shown in Figure 3.2. All

four filters found a smooth flow field, but the Vreman filter and VQ-filter also capture the correct

eddy detachment behind the step. Contour plots of the different indicator functions at T = 40 are

shown for these computations in Figure 3.3. For this example, we see the V and V Q indicators have

expected behavior in that little or no filtering is required away from the step. These two indicators

suggest filtering is needed near the center of the channel, and we believe this to be a result of the

laminar profiles predicted by NSE and regularization models to be slightly different [5], and so a

mixing of the two could cause numerical artifacts. The Q indicator plot is quite different. It finds

near the step areas to filter and not to filter, which is expected, but throughout the rest of the

channel it gives values near 0.5. From the definition of our filter, the values near 0.5 correspond

to Q(u, u) = 0, and so this suggests additional tuning of aQ could be helpful (for this particular

problem). We also present a plot of the velocity solution obtained using the VQ-filter on Mesh 1,

in Figure 3.4. Here, with only 1,762 dof, a good approximation that predicts eddy detachment is

found.

3.3.2 2D Flow around a cylinder

Our next numerical experiment is for two dimensional under-resolved channel flow around

a cylinder, a well known benchmark problem taken from Shäfer and Turek [48] and John [27]. The

flow patterns are driven by the interaction of a fluid with a wall which is an important scenario for

many industrial flows. This simple flow is actually quite difficult to simulate successfully by a model

with sufficient regularization to handle higher Reynolds number problems.
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Leray, a(u) = 1 Mesh 2 (4,989 dof)
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Leray, a(u) = aV (u) Mesh 2 (4,989 dof)
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Leray, a(u) = aQ(u) Mesh 2 (4,989 dof)
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Leray, a(u) = aV Q(u) Mesh 2 (4,989 dof)
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Figure 3.2: Shown above are the velocity solutions for T = 40 for 2D flow over a step, for the Leray
model with the usual Leray-α model (top) and several choices of indicator functions, on mesh level
2.

The domain for the problem, illustrated in figure 3.5 is a 2.2×0.41 rectangular channel with

a cylinder of radius 0.05 centered at (0.2, 0.2) (taking the bottom left corner of the rectangle as the

origin). The cylinder, top and bottom of the channel are prescribed no slip boundary conditions,

and the time dependent inflow and outflow profile are

u1(0, y, t) = u1(2.2, y, t) =
6

0.412
sin(π t/8)y(0.41− y) ,

u2(0, y, t) = u2(2.2, y, t) = 0.

The viscosity is set as ν = 10−3 and the external force f = 0. From time t = 2 to t = 4, the correct

behavior is for two vortices to start to develop behind the cylinder. They then separate into the
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Figure 3.3: Contour plots of the Vreman Filter (top), Q-Filter (middle) and VQ-Filter (bottom),
mesh 1, T = 40.

Leray, a(u) = aV Q(u), Mesh 1 (1,762 dof)
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Figure 3.4: Shown above are the velocity solutions at T = 40 for 2D flow over a step, for the Leray
model with the V Q indicator function, on mesh level 1.

flow, and soon after a vortex street forms which can be visible through the final time T = 8. A plot

of the resolved t = 6 solution is shown in Figure 3.6.

We compute solutions to Algorithm 3.2.1 with Taylor-Hood elements on a triangular mesh

providing 14,446 total degrees of freedom, with time step ∆t = 0.001, and filtering radius α chosen

to be the average mesh width, with varying indicator functions. These simulations are all under-

resolved; fully resolved computations of the Navier-Stokes equations use upwards of 100,000 degrees

of freedom and even smaller time steps. Thus we do not expect exact agreement with solutions of

Algorithm 3.2.1 with the true solution or lift and drag reference values. However, we do expect

answers to be close, if this model/algorithm is to be considered useful.

To evaluate the solutions, we compute values for the maximal drag cd,max and lift cl,max
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Figure 3.5: Domain for the 2D flow past an obstacle.

coefficients at the cylinder, and for the pressure difference ∆p(t) between the front and back of

the cylinder at the final time T = 8. Lift and drag coefficients (using the one dimensional method

described by V. John [27]) for fully resolved flows will lie in the reference intervals ([48])

crefd,max ∈ [2.93, 2.97], crefl,max ∈ [0.47, 0.49], ∆pref ∈ [−0.115, −0.105]

We test Algorithm 3.2.1 with indicator functions a(u) = 1, aV , aQ, and aV Q. The plots

of velocity field and speed contour, figure 3.7, show that using a(u) = 1 does not capture the wake

expected behind the cylinder, but a(u) = aV Q(u) does. We saw very similar results for aQ and aV

(not pictured). The maximum lift and drag coefficients and pressure drop for the simulations are

given in Table 3.1, and we see that our algorithm performs well with all three nonlinear filters, but

is much less accurate when the linear filter is used. Even on a finer mesh with 56,477 the linear filter

(i.e. usual α-filter) still does not perform as well as the nonlinear filters on the coarser mesh (Table

3.1).

Indicator dof cd,max cl,max ∆p
a(u) = 1 14,446 2.2844 0.0176 -0.1267
aV (u) 14,446 2.8472 0.4010 -0.1138
aQ(u) 14,446 2.8574 0.4019 -0.1134
aV Q(u) 14,446 2.8628 0.4051 -0.1135
a(u) = 1 56,477 2.6682 0.2879 -0.1067

DNS Reference Values >100,000 [2.93,2.97] [0.47,0.49] [-0.115,-0.105]

Table 3.1: Lift, drag and pressure drop for the flow around a cylinder experiment with varying
indicator functions used in the filtering.
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Resolved NSE solution at t=6

     
 

 

 

 

 

     
 

 

 

 

 

     
 

 

 

 

 

Figure 3.6: Shown above are the (top) velocity field, (middle) speed countours, and (bottom)
pressure contours for the resolved t = 6 solution to the 2D channel flow around a cylinder problem.
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Leray, a(u) = 1, 14,446 dof
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Figure 3.7: Shown above are the velocity field and speed contours for the Leray model with a(u) = 1
(top) and a(u) = aV Q(u) (bottom).
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Chapter 4

Numerical study of a regularization

model for incompressible flow with

deconvolution-based adaptive

nonlinear filtering

This chapter is a result of the work in [6]. We consider deconvolution-based indicator func-

tions together with adaptive Leray regularization models, which were originally proposed and tested

in [7], as stated in Chapter 3. These models use nonlinear filtering with indicator functions to

identify regions where regularization is needed, and locally vary the spatial filtering radius accord-

ingly. It is the purpose of this work to extend this methodology by i) developing a better indicator

function which is based on mathematics instead of physical phenomenology, ii) providing a rigorous

convergence theory to verify the robustness of the method, and iii) further numerical testing.

The purpose of a theory for any numerical method (i.e. proofs of stability and convergence

rates) is to provide some sense of robustness for the method, and thus an expectation that it will

work in more than only some specific, well-chosen, situations. In [7], simulations with (3.1)-(3.4)

using physical phenomenology-based indicator functions were found to be quite successful, however

it does not seem that any of those indicator function are able to be rigorously analyzed. This is not
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to say that physical-phenomenology-based models are not good or accurate, instead we are simply

saying that it is preferable to have a rigorous mathematical proof of accuracy. With this in mind,

we propose herein a new indicator function defined by

aDN
(u) := |u−Dh

N ũ
h|,

where ũh denotes discrete linear Helmholtz filtering of u and Dh
N denotes order N van Cittert

approximate deconvolution with the discrete linear Helmholtz filter (Definition 2.1.7). The accuracy

of this indicator function is rooted in the accuracy of Richardson extrapolation, and we note the

idea of using van Cittert approximate deconvolution in fluid models to increase accuracy is well

established and mathematically grounded [1, 49, 13]. The main idea behind this indicator function

is that, for continuous-level filtering and deconvolution, φ ≈ DN φ̃ where φ is smooth. Hence, if we

consider φ as a velocity field, then if φ is smooth, we expect no regularization is necessary in regions

where φ ≈ DN φ̃. However, an implementation of this idea must use discrete filtering and discrete

approximate deconvolution, and so it turns out the analysis to prove convergence of the resulting

numerical method is quite challenging.

4.1 Preliminaries

Definition 4.1.1. We define as an indicator function

aDN
(u)(x) := |u(x)−Dh

N ũ
h(x)|. (4.1)

Remark 4.1.2. The function aDN
cannot be expected to exactly satisfy aDN

(x) ≤ 1, although in

our experience, for flows which are normalized to have a characteristic velocity of 1, this relation has

always been true. Due to the imprecision of α, it is not problematic for a flow to have a maximum

aDN
(u)(x) slightly larger than one. Still, if it is not, an indicator of the form

âDN
(u)(x) :=

aDN
(u)(x)

max{1, 2‖u‖L∞(0,T ;L∞)}

could be used instead, and all the theory provided herein will still hold. Hence, without loss of

generality, we will assume aDN
(x) ≤ 1.
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Adaptive filtering with the deconvolution based indicator function is defined as follows.

Definition 4.1.3 (Adaptive filtering using the deconvolution-based indicator function). Given u ∈

L2(Ω) and an averaging radius α > 0, we define the adaptively filtered velocity uh ∈ Vh to be the

solution of

α2(aDN
(u)∇uh,∇vh) + (uh, vh) = (u, vh) ∀vh ∈ Vh. (4.2)

The next lemmas prove bounds on adaptively filtered variables.

Lemma 4.1.4. For u ∈ X,

1.

2α2‖
√
aDN

(u)∇uh‖2 + ‖uh‖ ≤ ‖u‖. (4.3)

2. If L : X → Vh is a linear operator such that

(Lw, vh) = −(aDN
(u)∇w,∇vh) ∀vh ∈ Vh, (4.4)

then

2α2‖Luh‖2 + ‖
√
aDN

(u)∇uh‖2 ≤ ‖∇u‖2. (4.5)

Proof. For the first inequality, let vh = uh in (4.2), then apply Cauchy-Schwarz and Young’s in-

equalities on the right hand side.

For the second estimate, in (4.2), choose vh = Luh to get

α2(aDN
(u)∇uh,∇Luh) + (uh, Luh) = (PL

2

Xh
u, Luh). (4.6)

Simplifying and using (4.4), we have

−α2‖Luh‖2 − (aDN
(u)∇uh,∇uh) = (∇PL

2

Xh
u, aDN

(u)∇uh), (4.7)

and thus

α2‖Luh‖2 + ‖
√
aDN

(u)∇uh‖2 ≤ |aDN
(u)∇PL

2

Xh
u,∇uh|. (4.8)
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Now using Cauchy-Schwarz, we get

2α2‖Luh‖2 + ‖
√
aDN

(u)∇uh‖2 ≤ ‖
√
aDN

(u)∇PL
2

Xh
u‖2

≤ ‖∇PL
2

Xh
u‖2

≤ C‖∇u‖2. (4.9)

A key step in the convergence analysis of the method we propose in Section 4 is to bound

‖u− uhh‖. The next two lemmas accomplish this, but in two separate steps, then bring the results

together with the triangle inequality. First, we define an intermediate filtering procedure ‘between’

the function and its adaptively filtered representation, to make for a cleaner analysis.

Definition 4.1.5. For φ ∈ L2(Ω), uh ∈ Vh, φ̂uh ∈ Vh is defined to be the solution of, ∀vh ∈ Vh,

α2(aDN
(uh)∇φ̂uh ,∇vh) + (φ̂uh , vh) = (φ, vh). (4.10)

Lemma 4.1.6. For u ∈ V ∩Hk+1(Ω)∩H3(Ω), and ûh,uh satisfying (4.10) with α = O(h), we have

α2‖
√
aDN

(uh)∇(u−ûuh)‖2+‖u−ûuh‖2 ≤ C(α2h2k+α2‖aDN
(u)‖2+h2k+2)+Cα2‖u−uh‖2. (4.11)

Proof. Let ûuh satisfy (4.10). Add α2(aDN
(uh)∇u,∇vh) to both sides, and denote e := u− ûuh to

get

α2(aDN
(uh)∇e,∇vh) + (e, vh) = α2(aDN

(uh)∇u,∇vh). (4.12)
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For arbitrary Uh ∈ Vh, denote e = u− Uh + Uh − ûuh := η + φh. Choosing vh = φh gives

α2‖
√
aDN

(uh)∇φh‖2 + ‖φh‖2 = (α2aDN
(uh)∇η,∇φh) + (η, φh) + α2(aDN

(uh)∇u,∇φh)

≤ α2‖
√
aDN

(uh)∇η‖‖
√
aDN

(uh)∇φh‖+ ‖η‖‖φh‖

+α2‖aDN
(uh)∇u‖‖∇φh‖

≤ α2

2
‖
√
aDN

(uh)∇η‖2 +
α2

2
‖
√
aDN

(uh)∇φh‖2 +
1

2
‖η‖2

+
1

2
‖φh‖2 + α2‖aDN

(uh)∇u‖‖∇φh‖. (4.13)

Next, we reduce, and for the last term on the right hand side, we apply the inverse inequality and

that α = O(h) to get

α2

2
‖
√
aDN

(uh)∇φh‖2 +
1

2
‖φh‖2 ≤

α2

2
‖
√
aDN

(uh)∇η‖2

+
1

2
‖η‖2 + Cα2‖aDN

(uh)∇u‖2 +
1

4
‖φh‖2. (4.14)

This reduces further using that aDN
(·) ≤ 1 and the assumptions on the smoothness of u, yielding

α2‖
√
aDN

(u)∇φh‖2 + ‖φh‖2 ≤ α2‖
√
aDN

(uh)∇η‖2 + ‖η‖2 + α2‖aDN
(uh)∇u‖2

≤ Cα2‖aDN
(uh)‖2∞‖∇η‖2 + ‖η‖2 + Cα2‖aDN

(uh)‖2‖∇u‖2∞

≤ α2‖∇η‖2 + ‖η‖2 + Cα2‖aDN
(uh)‖2.

Finally, we write aDN
(uh) = aDN

(u) + aDN
(e), and using that ‖aDN

(e)‖ ≤ C‖e‖ [37], we obtain

α2‖
√
aDN

(u)∇φh‖2 + ‖φh‖2 ≤ α2‖∇η‖2 + ‖η‖2 + Cα2‖aDN
(u)‖2 + Cα2‖aDN

(e)‖2

≤ C(α2h2k + h2k+2 + α2‖aDN
(u)‖2) + Cα2‖u− uh‖2. (4.15)

Reducing and applying the triangle inequality finishes the proof.

Lemma 4.1.7. For u ∈ V and uh ∈ Vh,

‖ûuh − uhh‖ ≤ ‖u− uh‖. (4.16)

Proof. Let ûuh satisfy (4.10). Then for uh
h defined by (4.2), subtract the filter equation and denote
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e = u− uh to get, ∀vh ∈ Vh,

α2(aDN
(uh)∇(ûuh − uhh),∇vh) + (ûuh − uhh, vh) = (e, vh). (4.17)

Choosing vh = ûuh − uhh gives

α2‖
√
aDN

(uh)∇(ûuh − uhh)‖2 + ‖ûuh − uhh‖2 = (e, ûuh − uhh). (4.18)

This implies

‖ûuh − uhh‖2 ≤ (e, ûuh − uhh)

≤ ‖e‖‖ûuh − uhh‖, (4.19)

which proves the result after reducing and substituting in the definition of e.

Remark 4.1.8. Combining lemmas 4.1.6 and 4.1.7 provides the result: For u ∈ V ∩ Hk+1(Ω) ∩

H3(Ω), uh ∈ Vh, and assuming α = O(h),

‖u− uhh‖ ≤ ‖u− ûuh‖+ ‖uhh − ûuh‖ ≤ C
(
‖u− uh‖+ αhk + α‖aDN

(u)‖
)
. (4.20)

4.2 Scheme and Stability

We now define the numerical scheme studied herein, and prove it is well-posed.

Algorithm 4.2.1. Given a kinematic viscosity ν > 0, an end-time T > 0, a timestep ∆t chosen

so that ∆t < T = M∆t, f ∈ L∞(0, T ;H−1(Ω)), initial conditions u−1
h = u0

h ∈ Vh, filtering radius

α ≤ O(h), find (unh, p
n
h) ∈ (Xh, Qh) for n = 1, 2, ...,M satisfying, ∀(vh, qh) ∈ (Xh, Qh),

1

∆t
(un+1
h − unh, vh) + b∗

(
3

2
unh −

1

2
un−1
h

h

, u
n+1/2
h , vh

)
− (p

n+1/2
h ,∇ · vh)

+ν(∇un+1/2
h ,∇vh) = (fn+1/2, vh),(4.21)

(∇ · un+1
h , qh) = 0. (4.22)
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Remark 4.2.2. The filtered terms are treated explicitly in this timestepping scheme, so at each

timestep one needs to perform one adaptive filter solve and one mass/momentum system solve.

Note also that, in practice, one solves directly for p
n+1/2
h , and so no initial pressure is required.

Lemma 4.2.3. Solutions to Algorithm 4.2.1 exist uniquely.

Proof. Observe that at each timestep we solve two finite dimensional and linear problems. It is clear

that the filter system is well-posed, and so we consider only the momentum mass system. Assuming

two solutions at timelevel n+ 1, (u1, p1) and (u2, p2), if we define e := u1 − u2 we have that

1

∆t
(e, vh) +

1

2
b∗

(
3

2
unh −

1

2
un−1
h

h

, e, vh

)
− (p1 − p2,∇ · vh) +

ν

2
(∇e,∇vh) = 0. (4.23)

Now choosing vh = e vanishes the pressure and trilinear terms, which yields

1

∆t
‖e‖2 +

ν

2
‖∇e‖2 = 0.

Thus ‖∇e‖ = ‖e‖ = 0, and since e is finite dimensional, u1 = u2. Using this and the LBB assumption

immediately shows p1 = p2. We have proven that solutions are unique at each time step, and since

the problem is finite dimensional and linear, this implies solutions must exist as well. Since the

chosen timestep level was arbitrary, and we started with a unique initial condition, the stated result

follows.

Next, we prove that these solutions are bounded by the problem data.

Lemma 4.2.4. Solutions to Algorithm 4.2.1 satisfy

‖uMh ‖2 + ∆tν

M−1∑
n=0

‖∇un+1/2
h ‖2 ≤ C(ν, f, u0, T ). (4.24)

Proof. Choose vh = u
n+1/2
h in (7.1). The trilinear and pressure terms vanish, leaving

1

2∆t
(‖un+1

h ‖2 − ‖unh‖2) + ν‖∇un+1/2
h ‖2 = (fn+1/2, u

n+1/2
h )

≤ 1

2ν
‖fn+1/2‖2−1 +

ν

2
‖∇un+1/2

h ‖2, (4.25)
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which reduces to

1

2∆t
(‖un+1

h ‖2 − ‖unh‖2) +
ν

2
‖∇un+1/2

h ‖2 ≤ 1

2ν
‖fn+1/2‖2−1. (4.26)

Summing over timesteps and multiplying by 2∆t gives

‖uMh ‖2 + ∆tν

M−1∑
n=0

‖∇un+1/2
h ‖2 ≤ ν−1∆t

M−1∑
n=0

‖fn+1/2‖2−1 + ‖u0
h‖2, (4.27)

which finishes the proof.

4.3 Convergence

This section is devoted to proving convergence of the numerical scheme. For simplic-

ity in stating the following theorem, we state here the regularity assumptions on the solution

(u(x, t), p(x, t)) of the true Navier-Stokes solution, which we denote (u, p):

u ∈ L∞(0, T ;Hk+1(Ω) ∩H3(Ω) ∩ V ) (4.28)

utt ∈ L4(0, T ;H1(Ω)) (4.29)

uttt ∈ L2(0, T ;L2(Ω)) (4.30)

p ∈ L∞(0, T ;Hk(Ω)). (4.31)

We will denote Unh := 3
2u

n
h − 1

2u
n−1
h and Un := 3

2u(tn)− 1
2u(tn−1).

Theorem 4.3.1. Let (u(t), p(t)) be a solution of the NSE satisfying no-slip boundary conditions,

and (4.28)-(4.31), with given f ∈ L∞(0, T ;H−1(Ω)) and u0 ∈ Vh. Let (unh, p
n
h), n = 1, . . .M be the

solution of Algorithm 4.2.1, using (Pk, Pk−1) Taylor-Hood or (Pk, P
disc
k−1 ) Scott-Vogelius elements in

a setting where they are LBB stable, and α ≤ O(h), and without loss of generality α < 1. Then for

any ∆t > 0, the error in the discrete solution satisfies

‖u(T )− uMh ‖2 + ∆t

M−1∑
n=0

ν‖∇(un+1/2 − un+1/2
h )‖2 ≤ C(∆t4 + α2h2k + α2‖aDN

(u)‖2 + h2k),

where C is independent of h, α, ∆t, but depends on the data and NSE solution.
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Remark 4.3.2. If we assume ∆ju = 0 on ∂Ω for 0 ≤ j ≤ dm2 e−1, or periodic boundary conditions,

then the result becomes

‖u(T )− uMh ‖2 + ∆t

M−1∑
n=0

ν‖∇(un+1/2 − un+1/2
h )‖2 ≤ C(∆t4 + α2h2k + α4N+6 + h2k).

Proof. The NSE at time t = tn+1/2, after denoting un+1/2 := u(tn+1)+u(tn)
2 , satisfies for all vh ∈ Vh:

(
u(tn+1)− u(tn)

∆t
, vh

)
+ ν(∇un+1/2,∇vh) + b∗

(
Ûn

Un
h
, un+1/2, vh

)
− (p(tn+1/2),∇ · vh) = (f(tn+1/2), vh) +G(u, n, vh), (4.32)

where

G(u, n, vh) :=

(
u(tn+1)− u(tn)

∆t
− ut(tn+1/2), vh

)
+ ν(∇(un+1/2 − u(tn+1/2)), vh) (4.33)

+ b∗
(
Ûn

Un
h
, un+1/2, vh

)
− b∗(u(tn+1/2), u(tn+1/2), vh). (4.34)

Take vh ∈ Vh in (4.21), which vanishes the pressure term, and subtract the equation from (4.32) to

get

1

∆t
(en+1 − en, vh) + b∗

(
Unh

h
, u
n+1/2
h , vh

)
− b∗

(
Ûn

Un
h
, un+1/2, vh

)
+ ν(∇en+1/2,∇vh) = (p(tn+1/2),∇ · vh) +G(u, n, vh).

Rewriting the nonlinearity gives

1

∆t
(en+1 − en, vh) + b∗

(
Unh

h
, en+1/2, vh

)
+ b∗

(
Unh

h − Ûn
Un

h
, un+1/2, vh

)
+ ν(∇en+1/2,∇vh) = (p(tn+1/2),∇ · vh) +G(u, n, vh).

Decompose the velocity error term as

en = (u(tn)− PL
2

Vh
(u(tn)))− (unh − PL

2

Vh
(u(tn))) =: ηn − φnh,
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then choose vh = φ
n+ 1

2

h to get, ∀qh ∈ Qh,

1

2∆t
(‖φn+1

h ‖2 − ‖φnh‖2) + ν‖∇φn+1/2
h ‖2 = (∇ηn+1/2,∇φn+1/2

h )− b∗
(
Unh

h
, ηn+1/2, φ

n+1/2
h

)
− b∗

(
Unh

h − Ûn
Un

h
, un+1/2, φ

n+1/2
h

)
+ (p(tn+1/2)− qh,∇ · φn+1/2

h ) +G(u, n, φ
n+1/2
h ).

Applying Cauchy-Schwarz and Young inequalities yields

1

2∆t
(‖φn+1

h ‖2 − ‖φnh‖2) +
ν

2
‖∇φn+1/2

h ‖2 ≤ Cν‖∇ηn+1/2‖2 + Cν−1 inf
qh∈Qh

‖p− qh‖2

+ b∗
(
Unh

h
, ηn+1/2, φ

n+1/2
h

)
+ b∗

(
Unh

h − Ûn
Un

h
, un+1/2, φ

n+1/2
h

)
+G(u, n, φ

n+1/2
h ). (4.35)

We now bound the first trilinear term, using Lemmas 4.2.4 and 4.1.7, Poincare’s inequality, and

decomposing Unh and Un.

b∗
(
Unh

h − Ûn
Un

h
, un+1/2, φ

n+1/2
h

)
≤ C‖Unh

h − Ûn
Un

h ‖‖∇un+1/2‖∞‖φn+1/2
h ‖

≤ C‖Unh − Un‖‖un+1/2‖3‖∇φn+1/2
h ‖

≤ ν

8
‖∇φn+1/2

h ‖2 + Cν−1‖un+1/2‖23(‖ηn‖2 + ‖ηn−1‖2 + ‖φnh‖2 + ‖φn−1
h ‖2). (4.36)

We bound the remaining term using Remark 4.1.8 as follows:

b∗
(
Unh

h
, ηn+1/2, φ

n+1/2
h

)
= b∗

(
Unh

h − Un, ηn+1/2, φ
n+1/2
h

)
+ b∗

(
Un, ηn+1/2, φ

n+1/2
h

)
≤ C‖Unh

h − Un‖(‖∇ηn+1/2‖‖φn+1/2
h ‖∞ + ‖ηn+1/2‖‖∇φn+1/2

h ‖∞)

+C‖∇Un‖‖∇ηn+1/2‖‖∇φn+1/2
h ‖

≤ C‖Unh
h − Un‖(h−1/2‖∇ηn+1/2‖‖∇φn+1/2

h ‖+ h−3/2‖ηn+1/2‖‖∇φn+1/2
h ‖)

+
ν

32
‖∇φn+1/2

h ‖2 + Cν−1‖∇Un‖2‖∇ηn+1/2‖2

≤ ν

16
‖∇φn+1/2

h ‖2 + Cν−1‖Unh
h − Un‖2(h2k−1|u|2k+1) + Cν−1‖∇ηn+1/2‖2

≤ ν

16
‖∇φn+1/2

h ‖2 + Cν−1h2k−1(‖ηn−1‖2 + ‖ηn‖2 + ‖φn−1
h ‖2 + ‖φnh‖2

+α2h2k + α2‖aDN
(u)‖2) + Cν−1‖∇ηn+1/2‖2. (4.37)

We next bound the terms inG(u, n, φ
n+1/2
h ) following [33]. For the last two terms, we add b∗

(
Un, un+1/2, φ

n+1/2
h

)

36



to the first one and subtract it from the second one. The second term is then bounded using Cauchy-

Schwarz and Young inequalities and Lemma 4.1.6,

b∗(Ûn
Un

h − Un, un+1/2, φ
n+1/2
h )

≤ C‖Ûn
Un

h − Un‖‖∇un+1/2‖∞‖φn+1/2
h ‖

≤ ν

16
‖∇φn+1/2

h ‖2 + Cν−1‖un+1/2‖23‖Ûn
Un

h − Un‖2

≤ ν

16
‖∇φn+1/2

h ‖2

+Cν−1‖un+1/2‖23(α2h2k + α2‖aDN
(u)‖2 + h2k+2 + α2(‖ηn−1‖2 + ‖ηn‖2 + ‖φn−1

h ‖2 + ‖φnh‖2)).

Combining the above estimates, summing over timesteps, multiplying by ∆t, noting that ‖φ0
h‖ = 0,

and applying regularity assumptions (4.28)-(4.31) yields

‖φMh ‖2 + ∆t

M−1∑
n=0

ν‖∇φn+1/2
h ‖2 ≤ C

(
(1 + α2)∆t

M−1∑
n=0

ν−1‖φnh‖2 + ∆t

M−1∑
n=0

ν−1‖∇ηn‖2

+ ∆t4 + α2h2k + α2‖aDN
(u)‖2 + h2k+2

)
. (4.38)

Assuming (Pk, Pk−1) Taylor-Hood elements or (Pk, P
disc
k−1 ) Scott-Vogelius elements, and applying

Gronwall’s Lemma, for any ∆t > 0 we get

‖φMh ‖2 + ∆t

M−1∑
n=0

ν‖∇φn+1/2
h ‖2 ≤ C(∆t4 + α2h2k + α2‖aDN

(u)‖2 + h2k). (4.39)

Applying the triangle inequality to (4.39), we get the stated result.

4.4 Numerical Experiments

In this section we present numerical experiments which demonstrate the effectiveness of our

approach. The first experiment confirms the convergence rates predicted by our analysis in the

previous section. In our second two experiments, channel flow around a step and channel flow with

two outlets and a contraction, we show our results are a significant improvement over those of the

usual Leray-α model and give much more accurate results on coarse meshes than computing the

NSE directly.
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4.4.1 Convergence rate verification

Our first numerical experiment is to verify the rates predicted in the previous section for

Algorithm 4.2.1. We compute approximations to the chosen solution

u1(x, y, t) = (1 + 0.01t) sin(2πy)

u2(x, y, t) = (1 + 0.01t) cos(2πx)

p(x, y, t) = x+ y

on Ω = [0, 1]2, T = 0.01, and ∆t = 0.001. Here, the question we address is whether the spatial

convergence is of order hk−1/2 or hk. To isolate the spatial error, we take a small end time and time

steps to make the temporal effect on the error small.

We choose ν = 1, calculate f from the NSE and the chosen solution, and choose u0
h to be the

L2 projection of u(0) into Vh. Then, using Algorithm 4.2.1 with both (P3, P2) and (P2, P1) elements,

we compute solutions on five successive mesh refinements using α = h and N=0 (our analysis shows

that for these element choices, choosing N > 0 does not improve asymptotic accuracy over the N=0

case). Our analytical results predict, with a(u) = aD0 , a rate of 2 for (P2, P1) elements, and 3 for

(P3, P2). Table 4.4.1 shows our calculated errors and rates, and we do observe optimal convergence.

h ‖u− uP2
h ‖2,1 Rate ‖u− uP3

h ‖2,1 Rate
1/4 5.58e-02 - 5.63e-03 -
1/8 1.43e-02 1.962 8.06e-04 2.805
1/16 3.60e-03 1.990 1.17e-04 2.783
1/32 9.02e-04 1.998 1.42e-05 3.042
1/64 2.26e-04 1.999 1.72e-06 3.044

Table 4.1: L2(0, T ;H1(Ω)) errors and rates found with a(u) = aD0
(u). With (P2, P1) elements

(LEFT), we observe a rate of 2, and with (P3, P2) elements (RIGHT), we observe a rate of 3.

4.4.2 2D Channel Flow

Our next numerical experiment is the benchmark 2D channel flow problem over a forward-

backward facing step. The domain is a 40x10 rectangle with a 1x1 step five units into the channel

at the bottom. We assume no slip, no penetration boundary conditions on the top and bottom, and

parabolic inflow and outflow conditions given by (y(10− y)/25, 0)T . The correct physical behavior

with f = 0 and ν = 1/600 is well known to be a smooth velocity profile with eddies forming and
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shedding behind the step [34]. A resolved NSE solution is shown in figure 4.1, which requires 21,593

degrees of freedom to fully resolve with (P2, P1) Taylor-Hood elements.
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0

1

2

3

4

5

6

7

8

9

10

Figure 4.1: NSE fine mesh solution.

Figure 4.2: Coarse mesh used in computations for experiment 2.

Coarse mesh computations were made for the NSE (i.e. no model), Leray-α (i.e. a(u)(x) :=

1), and Leray with nonlinear filtering and indicator functions aD0 and aD1 . Due to the success of

the proposed model with the Vreman-based indicator function in [7] (which is based on an idea of

A. Vreman from [52]), we also compare solutions to Leray with nonlinear filtering and indicator

function aV defined by

aV (u) =

√
B(u)

|∇u|4F
,

where | · |F denotes the Frobenius norm, and B is defined by

βij :=
∑

m=1,2,3

∂ui
∂xm

∂uj
∂xm

B(u) : = β11β22 − β2
12 + β11β33 − β2

13 + β22β33 − β2
23.

On a coarse mesh that provides 4,603 degrees of freedom (dof) using (P2, P1) Taylor-Hood

elements, using no numerical stabilization, ν = 1/600, ∆t = 0.01, f = 0, and α = 0.365, we compute

solutions using the proposed algorithm (and appropriate modifications for NSE (i.e. no filtering step

reduces the algorithm to the well known linear extrapolated Crank-Nicolson method). Solutions at
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Leray with a = aD1
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Leray with a = aV
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Figure 4.3: Velocity solutions of coarse mesh simulations for 2D flow over a step at T=40, from
top to bottom, for NSE (no model), Leray-α, and Leray with nonlinear filter that used indicator
function aD0

, aD1
, and aV .

T=40 for each of the models is shown in figure 4.3 as velocity streamlines over speed contours. We

observe the NSE solution (i.e. no model) is incorrect, as it exhibits significant oscillations. The

40



a = aD0
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Figure 4.4: Contour plots of the indicator functions a(u) for the 2D flow over a step test problem,
at T=40.

usual Leray-α solution finds smooth channel flow but fails to capture eddy detachment. However,

when our nonlinear filtering scheme is used, both with N = 0 and N = 1, we find smooth channel

flow and eddy detachment. The nonlinear filter scheme with the Vreman indicator also correctly

predicts smooth channel flow and eddy detachment. Figure 4.4 shows contour plots of aD0
, aD1

, and

aV at T=40 in their respective simulations. We observe each indicator provides a ≈ 0 in most of the

channel away from the step, which is what is desired. However, the aV indicator gives large values

of a near the center of the channel, which does not fit the intent of the indicator function, since

the flow is laminar there. The deconvolution-based indicator functions are nonzero mainly near the

step, which is exactly what is desired.

4.4.3 Channel flow with two outlets and a contraction

Our next numerical test is for a benchmark channel flow problem with a contraction, one

inlet on the left hand side, and two outlets, at the top and at the right hand side. A diagram of the
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Figure 4.5: Shown above is a diagram of the domain for test problem 2.

flow domain is shown in Figure 4.5.

This problem was first studied by Turek et. al. in [24], and subsequently in [32]. We enforce

no slip boundary conditions on all walls, a parabolic inflow profile with max velocity umaxinlet = 1 at

the center, and for the outflows, zero traction is enforced (with the ‘do-nothing’ condition). This

flow has no external forcing (f=0), we set the kinematic viscosity ν = 0.001, start the flow from rest,

and ran the simulation to T=4.

Plots of the resolved NSE solution’s speed contours are shown in figure 4.6 for T=1, 2, 3,

and 4. This solution was found by computing the NSE directly using a timestep of ∆t = 0.01 and

grad-div stabilized (P2, P1) Taylor-Hood elements (see, e.g. [44])on a triangular mesh that provided

260,378 degrees of freedom.

We next test the NSE and the proposed method on a much coarser mesh that provides 18,076

velocity degrees of freedom, α = 0.075, now using Taylor-Hood elements without any stabilization.

Velocity solutions for each of the models is shown in Figure 4.7. The NSE coarse mesh solution is

clearly incorrect. With the Leray-α model, we see a smooth solution, but appears to be oversmoothed

and delayed in its development compared to the true solution. The solutions using the deconvolution-

based indicator function nonlinear filtering performed better, yielding results quite similar to the

DNS solution. The model with the Vreman based indicator also finds a good solution.

Figure 4.8 shows the contour plots of the indicator functions at T=4. The results are as we

would hope for the deconvolution based indicators, in that aDN
(u)(x) ≈ 0 in the smooth flow regions,

and aDN
(u)(x) > 0 in the regions which appear less smooth, particularly near the contraction. The

Vreman based indicator finds large a values in the middle of the channel, before the contraction,

which is not a region we would expect to need filtering.
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The fine mesh used for DNS

Figure 4.6: Shown above are contour plots of the speed of the resolved Navier-Stokes velocity
solution at T=1,2,3,4, order from top to bottom.
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Figure 4.7: Velocity solutions of coarse mesh simulations for 2D flow with two outlets and a contrac-
tion at T=4, from top to bottom, for NSE (no model), Leray-α, and Leray with nonlinear filtering
that use indicator functions aD0 , aD1 , and aV .

44



a(u) = aD0

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a(u) = aD1

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a(u) = aV

 

 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Figure 4.8: Contour plots of a(u) in coarse mesh simulations for 2D flow with two outlets and a
contraction at T = 4.
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Chapter 5

Improving accuracy in the Leray

model for the incompressible

magnetohydrodynamic equations

via adaptive deconvolution-based

nonlinear filtering

Computations with the MHD equations can be very difficult. They are derived by coupling

the Navier-Stokes equations (NSE) with Maxwell’s equation. The NSE are currently unable to be

resolved using direct numerical simulation (DNS) for complex flows, so the nonlinear coupling with

Maxwell’s equation makes DNS of the MHD equations even harder.

Regularization models are one way to approximate these equations at a lower computational
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cost. The Leray-MHD equations are given by

ut + u · ∇u− sB · ∇B −Re−1∆u+∇p = f, (5.1)

Bt −Re−1
m ∆B + u · ∇B −B · ∇u = ∇× g, (5.2)

∇ · u = ∇ ·B = 0, (5.3)

where u and B solve

−α2∆u+ u = u, −α2∆B +B = B, (5.4)

and α > 0 is the filtering radius. This model has been studied by Yu and Li [53], and shown to be

well-posed, and convergent to the MHD, analogous to Leray’s original result in 1934 [39].

We extend the work from the previous chapter by applying the nonlinear filter to the Leray-

MHD model. The analysis performed on this indicator function with the Leray model can be easily

extended to the MHD case.

5.1 Numerical Scheme

We now define the numerical scheme studied herein, and prove it is well-posed.

Algorithm 5.1.1. Given an end-time T > 0, a timestep ∆t chosen so that ∆t < T = M∆t, f ∈

L∞(0, T ;H−1(Ω)), initial conditions u0
h, B

0
h ∈ Vh, filtering radius α ≤ O(h), find (unh, p

n
h, B

n
h , λ

n
h) ∈

(Xh, Qh, Xh, Qh) for n = 1, 2, ...,M satisfying, ∀(vh, qh, χh, rh) ∈ (Xh, Qh, Xh, Qh),

1

∆t
(un+1
h − unh, vh) +Re−1(∇un+1/2

h ,∇vh)− (p
n+1/2
h ,∇ · vh)

+b∗

(
3

2
unh −

1

2
un−1
h

h

, u
n+1/2
h , vh

)
− sb∗

(
3

2
Bnh −

1

2
Bn−1
h

h

, B
n+1/2
h , vh

)
= (fn+1/2, vh), (5.5)

(∇ · un+1
h , qh) = 0. (5.6)

1

∆t
(Bn+1

h −Bnh , χh) +Re−1
m (∇Bn+1/2

h ,∇χh) + (λ
n+1/2
h ,∇ · χh)

−b∗
(

3

2
Bnh −

1

2
Bn−1
h

h

, u
n+1/2
h , χh

)
+ b∗

(
3

2
unh −

1

2
un−1
h

h

, B
n+1/2
h , χh

)
= (∇× gn+1/2, χh)(5.7)

(∇ ·Bn+1
h , rh) = 0 (5.8)
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Lemma 5.1.2. Solutions to Algorithm 5.1.1 satisfy

‖uMh ‖2 + ∆tRe−1
M−1∑
n=0

‖∇un+1/2
h ‖2 + s‖BMh ‖2 + ∆tsRe−1

m

M−1∑
n=0

‖∇Bn+1/2
h ‖2

≤ Re∆t

M−1∑
n=0

‖fn+1/2‖2−1 + sRem∆t

M−1∑
n=0

‖∇ × gn+1/2‖2−1 + ‖u0
h‖2 + s‖B0

h‖2

≤ C(Re,Rem, f, u0, B0, T ). (5.9)

Proof. In (5.5), choose vh = u
n+1/2
h and in (5.7), choose χh = sB

n+1/2
h . Several trilinear terms and

the pressure terms vanish, leaving

1

2∆t
(‖un+1

h ‖2 − ‖unh‖2) +Re−1‖∇un+1/2
h ‖2

−sb

(
3

2
Bnh −

1

2
Bn−1
h

h

, B
n+1/2
h , u

n+1/2
h

)
= (fn+1/2, u

n+1/2
h ) (5.10)

s

2∆t
(‖Bn+1

h ‖2 − ‖Bnh‖2) + sRe−1
m ‖∇B

n+1/2
h ‖2

−sb

(
3

2
Bnh −

1

2
Bn−1
h

h

, u
n+1/2
h , B

n+1/2
h

)
= s(∇× gn+1/2, B

n+1/2
h ). (5.11)

Adding these together, we get

1

2∆t
(‖un+1

h ‖2 − ‖unh‖2) +Re−1‖∇un+1/2
h ‖2 +

s

2∆t
(‖Bn+1

h ‖2 − ‖Bnh‖2) + sRe−1
m ‖∇B

n+1/2
h ‖2

= (fn+1/2, u
n+1/2
h ) + s(∇× gn+1/2, B

n+1/2
h ). (5.12)

Using Cauchy-Schwarz and Young’s inequalities we have

1

2∆t
(‖un+1

h ‖2 − ‖unh‖2) +
Re−1

2
‖∇un+1/2

h ‖2 +
s

2∆t
(‖Bn+1

h ‖2 − ‖Bnh‖2) +
sRe−1

m

2
‖∇Bn+1/2

h ‖2

≤ Re

2
‖fn+1/2‖2−1 +

sRem
2
‖∇ × gn+1/2‖2−1. (5.13)

Summing over time steps and multiplying by ∆t yields

‖uMh ‖2 + s‖BMh ‖2 + ∆tRe−1
M−1∑
n=0

‖∇un+1/2
h ‖2 + ∆tsRe−1

m

M−1∑
n=0

‖∇Bn+1/2
h ‖2

≤ Re∆t
M−1∑
n=0

‖fn+1/2‖2−1 + sRem∆t

M−1∑
n=0

‖∇ × gn+1/2‖2−1 + ‖u0
h‖2 + s‖B0

h‖2. (5.14)
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Lemma 5.1.3. Solutions to (5.5)-(5.8) admit the following conservation laws

1. Global energy conservation

1

2
‖uMh ‖2 +

s

2
‖Bn+1

h ‖2 + ∆t

M−1∑
n=0

(
Re−1‖∇un+1/2

h ‖2 + sRe−1
m ‖∇B

n+1/2
h ‖2

)
=

1

2
‖u0

h‖2 +
1

2
‖B0

h‖2 + ∆t

M−1∑
n=0

(
(f(tn+1/2), u

n1+/2
h ) + s(∇× g(tn+1/2), B

n1+/2
h )

)
. (5.15)

2. Global cross-helicity conservation

(uMh , B
M
h ) + ∆t

M−1∑
n=

(Re−1 +Re−1
m )(∇un+1/2

h ,∇Bn+1/2
h )

= (u0
h, B

0
h) +

M−1∑
n=0

((f(tn+1/2), B
n+1/2
h ) + (∇× g(tn+1/2), u

n+1/2
h )). (5.16)

Proof. To prove 1, choose vh = u
n+1/2
h in (5.5) and χh = sB

n+1/2
h in (5.7). This leaves

1

2∆t
(‖un+1

h ‖2 − ‖unh‖2) +Re−1‖∇un+1/2
h ‖2 − sb∗

(
3

2
Bnh −

1

2
Bn−1
h

h

, B
n+1/2
h , u

n+1/2
h

)

= (f(tn+1/2), u
n1+/2
h ). (5.17)

s

2∆t
(‖Bn+1

h ‖2 − ‖Bnh‖2) + sRe−1
m ‖∇B

n+1/2
h ‖2 − sb∗

(
3

2
Bnh −

1

2
Bn−1
h

h

, u
n+1/2
h , B

n+1/2
h

)

= s(∇× g(tn+1/2), B
n1+/2
h ). (5.18)

Adding the above together, the two remaining nonlinear terms vanish, leaving

1

2∆t
(‖un+1

h ‖2 − ‖unh‖2) +
s

2∆t
(‖Bn+1

h ‖2 − ‖Bnh‖2) +Re−1‖∇un+1/2
h ‖2 + sRe−1

m ‖∇B
n+1/2
h ‖2

= (f(tn+1/2), u
n1+/2
h ) + s(∇× g(tn+1/2), B

n1+/2
h ). (5.19)

To finish the proof, we multiply by ∆t and sum over time steps. To prove the second result, choose
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vh = B
n+1/2
h in (5.5) and χh = u

n+1/2
h in (5.7), which gives

1

∆t
(un+1
h − unh, B

n+1/2
h ) +Re−1(∇un+1/2

h ,∇Bn+1/2
h ) + b∗

(
3

2
unh −

1

2
un−1
h

h

, u
n+1/2
h , B

n+1/2
h

)

= (f(tn+1/2), B
n+1/2
h ). (5.20)

1

∆t
(Bn+1

h −Bnh , u
n+1/2
h ) +Re−1

m (∇Bn+1/2
h ,∇un+1/2

h ) + b∗

(
3

2
unh −

1

2
un−1
h

h

, B
n+1/2
h , u

n+1/2
h

)

= (∇× g(tn+1/2), u
n+1/2
h ). (5.21)

Adding the above together cancels the remaining two nonlinear terms, leaving

1

∆t
(un+1
h − unh, B

n+1/2
h ) +

1

∆t
(Bn+1

h −Bnh , u
n+1/2
h ) + (Re−1 +Re−1

m )(∇un+1/2
h ,∇Bn+1/2

h )

= (f(tn+1/2), B
n+1/2
h ) + (∇× g(tn+1/2), u

n+1/2
h ). (5.22)

We can rewrite the first two terms as

1

∆t
(un+1
h − unh, B

n+1/2
h ) +

1

∆t
(Bn+1

h −Bnh , u
n+1/2
h ) =

1

2∆t
((un+1

h , Bn+1
h − (unh, B

n
h ))

+
1

2∆t
((un+1

h , Bnh − (unh, B
n+1
h )) +

1

2∆t
((Bn+1

h , un+1
h − (Bnh , u

n
h))− 1

2∆t
((Bn+1

h , unh − (Bnh , u
n+1
h )),

(5.23)

which reduces to

1

∆t
((un+1

h , Bn+1
h − (unh, B

n
h )) + (Re−1 +Re−1

m )(∇un+1/2
h ,∇Bn+1/2

h )

= (f(tn+1/2), B
n+1/2
h ) + (∇× g(tn+1/2), u

n+1/2
h ). (5.24)

Multiplying by ∆t and summing over time steps completes the proof.
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5.2 Convergence

This section is devoted to proving convergence of the numerical scheme. For simplic-

ity in stating the following theorem, we state here the regularity assumptions of the solution

(u(x, t), p(x, t), B(x, t), λ(x, t)) of the true MHD solutions:

u,B ∈ L∞(0, T ;Hk+1 ∩ V ) (5.25)

utt, Btt ∈ L2(0, T ;H1(Ω)) (5.26)

uttt, Bttt ∈ L2(0, T ;L2(Ω)) (5.27)

p, λ ∈ L∞(0, T ;Hk(Ω)). (5.28)

We will denote Unh := 3
2u

n
h − 1

2u
n−1
h , Un := 3

2u(tn) − 1
2u(tn−1), B̃nh := 3

2B
n
h − 1

2B
n−1
h , and B̃n :=

3
2B(tn)− 1

2B(tn−1).

Theorem 5.2.1. Let (u(t), p(t), B(t), λ(t)) be a solution of the MHD satisfying no-slip boundary con-

ditions, and (5.25)-(5.28), with given f ∈ L∞(0, T ;H−1(Ω)) and u0, B0 ∈ Vh. Let (unh, p
n
h, B

n
H , λ

n
H),

n = 0, 1, . . .M be the solution of Algorithm 5.1.1, using (Pk, Pk−1) Taylor-Hood or (Pk, P
disc
k−1 ) Scott-

Vogelius elements in a setting where they are LBB stable, and α ≤ O(h). Then for any ∆t > 0, the

error in the discrete solution satisfies

‖uMh − u(T )‖2 + s‖BMh −B(T )‖2 + ∆t

M−1∑
n=0

Re−1‖∇(u
n+1/2
h − u(tn+1/2)‖2

+∆t

M−1∑
n=0

sRe−1
m ‖∇(B

n+1/2
h −B(tn+1/2)‖2 ≤ C

(
∆t4+α2h2k+α2‖aDN

(u)‖2+α2‖aDN
(B)‖2+h2k

)
,

(5.29)

where C is a constant independent of α, h, and ∆t.

Proof. The first equation of the MHD at time t = tn+1/2, after denoting un+1/2 := u(tn+1)+u(tn)
2 and

Bn+1/2 := B(tn+1)+B(tn)
2 , satisfies for all vh ∈ Vh:

(
u(tn+1)− u(tn)

∆t
, vh

)
+Re−1(∇un+1/2,∇vh) + b∗

(
Ûn

Un
h
, un+1/2, vh

)
− sb∗

(̂̃BnB̃n
h

, Bn+1/2, vh

)
− (p(tn+1/2),∇ · vh) = (f(tn+1/2), vh) +G(u,B, n, vh), (5.30)
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where

G(u,B, n, vh) :=

(
u(tn+1)− u(tn)

∆t
− ut(tn+1/2), vh

)
+Re−1(∇(un+1/2 − u(tn+1/2)), vh)

+ b∗
(
Ûn

Un
h
, un+1/2, vh

)
− b∗(u(tn+1/2), u(tn+1/2), vh)

− sb∗

(̂̃BnB̃n
h

, Bn+1/2, vh

)
+ sb∗(B(tn+1/2), B(tn+1/2), vh). (5.31)

Take vh ∈ Vh in (7.1) which vanishes the pressure term. Denote enu := unh − u(tn) and enB :=

Bnh −B(tn) and subtract (5.30) from (7.1) to get

1

∆t
(en+1
u − enu, vh) + b∗

(
Unh

h
, u
n+1/2
h , vh

)
− b∗

(
Ûn

Un
h
, un+1/2, vh

)
− sb∗

(
B̃nh

h
, B

n+1/2
h , vh

)
+ sb∗

(̂̃BnBn
h

, Bn+1/2, vh

)
+Re−1(∇en+1/2

u ,∇vh) = (p(tn+1/2),∇ · vh) +G(u,B, n, vh). (5.32)

Rewriting the nonlinear terms gives

1

∆t
(en+1
u − enu, vh) + b∗

(
Unh

h
, en+1/2
u , vh

)
+ b∗

(
Unh

h − Ûn
Un

h
, un+1/2, vh

)
+ sb∗

(̂̃BnBn
h

− B̃nh
h
, Bn+1/2, vh

)
+ sb∗

(
B̃n

h
, e
n+1/2
B , vh

)
+Re−1(∇en+1/2

u ,∇vh)

= (p(tn+1/2),∇ · vh) +G(u,B, n, vh). (5.33)

Decompose the error terms as

enu = (u(tn)− PL
2

Vh
(u(tn)))− (unh − PL

2

Vh
(u(tn))) =: ηnu − φnu,

enB = (B(tn)− PL
2

Vh
(B(tn)))− (Bnh − PL

2

Vh
(B(tn))) =: ηnB − φnB ,
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then choose vh = φ
n+1/2
u to get, ∀qh ∈ Qh,

1

∆t
(‖φn+1

u ‖2 − ‖φnu‖2) + b∗
(
Unh

h
, ηn+1/2
u , φn+1/2

u

)
+ b∗

(
Unh

h − Ûn
Un

h
, un+1/2, φn+1/2

u

)
+ sb∗

(̂̃BnBn
h

− B̃nh
h
, Bn+1/2, φn+1/2

u

)
+ sb∗

(
B̃n

h
, η
n+1/2
B , φn+1/2

u

)
+ sb∗

(
B̃n

h
, φ
n+1/2
B , φn+1/2

u

)
+Re−1‖∇φn+1/2

u ‖2 +Re−1(∇ηn+1/2
u ,∇φn+1/2

u ) = (p(tn+1/2)−qh,∇·φn+1/2
u )+G(u,B, n, φn+1/2

u ).

(5.34)

Now, the second equation of the MHD at time t = tn+1/2 satisfies, for all vh ∈ Vh,

(
B(tn+1)−B(tn)

∆t
, χh

)
+Re−1

m (∇Bn+1/2,∇χh) + b∗
(
Ûn

Un
h
, Bn+1/2, χh

)
− b∗

(̂̃BnB̃n
h

, un+1/2, χh

)
− (λ(tn+1/2),∇ · χh) = (∇× g(tn+1/2), χh) + F (u,B, n, χh), (5.35)

where

F (u,B, n, vh) :=

(
B(tn+1)−B(tn)

∆t
−Bt(tn+1/2), χh

)
+Re−1

m (∇(Bn+1/2 −B(tn+1/2)), χh)

+ b∗
(
Ûn

Un
h
, Bn+1/2, χh

)
− b∗(u(tn+1/2), B(tn+1/2), χh)

− b∗

(̂̃BnB̃n
h

, un+1/2, χh

)
+ b∗(B(tn+1/2), u(tn+1/2), χh). (5.36)

Take vh ∈ Vh in (5.7) which vanishes the pressure term, and subtract (5.35) from (5.7) to get

1

∆t
(en+1
B − enB , χh) +Re−1

m (∇en+1/2
B ,∇χh) + b∗

(
Unh

h
, B

n+1/2
h , χh

)
− b∗

(
Ûn

Un
h
, Bn+1/2, χh

)
− b∗

(
B̃nh

h
, u
n+1/2
h , χh

)
+ b∗

(̂̃BnB̃n
h

, un+1/2, χh

)

= (λ(tn+1/2),∇ · χh) + F (u,B, n, χh). (5.37)
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Rewriting the nonlinear terms gives

1

∆t
(en+1
B − enB , χh) +Re−1

m (∇en+1/2
B ,∇χh) + b∗

(
Unh

h
, e
n+1/2
B , χh

)
+ b∗

(
Unh

h − Ûn
Un

h
, Bn+1/2, χh

)
+ b∗

(
B̃n

h
, en+1/2
u , χh

)
+ b∗

(̂̃BnB̃n
h

− B̃nh
h
, un+1/2, χh

)

= (λ(tn+1/2),∇ · χh) + F (u,B, n, χh). (5.38)

Decompose the error as above, and choose χh = sφ
n+1/2
B , which yields, ∀rh ∈ Qh,

s

∆t
(‖φn+1

B ‖2−‖φnB‖2)+sRe−1
m ‖∇φ

n+1/2
B ‖2+Re−1

m (∇ηn+1/2
B ,∇φn+1/2

B )+sb∗
(
Unh

h
, η
n+1/2
B , φ

n+1/2
B

)
+ sb∗

(
Unh

h − Ûn
Un

h
, Bn+1/2, φ

n+1/2
B

)
+ sb∗

(
B̃n

h
, ηn+1/2
u , φ

n+1/2
B

)
+ sb∗

(
B̃n

h
, φn+1/2
u , φ

n+1/2
B

)
+ sb∗

(̂̃BnB̃n
h

− B̃nh
h
, un+1/2, φ

n+1/2
B

)
= s(λ(tn+1/2)− rh,∇ · φn+1/2

B ) + sF (u,B, n, φ
n+1/2
B ).

(5.39)

Now add (5.34) to (5.39) to obtain

1

∆t
(‖φn+1

u ‖2 − ‖φnu‖2) +
s

∆t
(‖φn+1

B ‖2 − ‖φnB‖2) +Re−1‖∇φn+1/2
u ‖2 + sRe−1

m ‖∇φ
n+1/2
B ‖2

+b∗
(
Unh

h
, ηn+1/2
u , φn+1/2

u

)
+b∗

(
Unh

h − Ûn
Un

h
, un+1/2, φn+1/2

u

)
+sb∗

(̂̃BnBn
h

− B̃nh
h
, Bn+1/2, φn+1/2

u

)
+ sb∗

(
B̃n

h
, η
n+1/2
B , φn+1/2

u

)
+ sb∗

(
Unh

h
, η
n+1/2
B , φ

n+1/2
B

)
+ sb∗

(
Unh

h − Ûn
Un

h
, Bn+1/2, φ

n+1/2
B

)
+ sb∗

(
B̃n

h
, ηn+1/2
u , φ

n+1/2
B

)
+ sb∗

(̂̃BnB̃n
h

− B̃nh
h
, un+1/2, φ

n+1/2
B

)
+Re−1(∇ηn+1/2

u ,∇φn+1/2
u )

+Re−1
m (∇ηn+1/2

B ,∇φn+1/2
B ) = (p(tn+1/2)− qh,∇ · φn+1/2

u ) + s(λ(tn+1/2)− rh,∇ · φn+1/2
B )

+G(u,B, n, φn+1/2
u ) + sF (u,B, n, φ

n+1/2
B ). (5.40)
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Applying Cauchy-Schwarz and Young inequalities yields

1

∆t
(‖φn+1

u ‖2 − ‖φnu‖2) +
s

∆t
(‖φn+1

B ‖2 − ‖φnB‖2) +
Re−1

2
‖∇φn+1/2

u ‖2 +
sRe−1

m

2
‖∇φn+1/2

B ‖2

≤ b∗
(
Unh

h
, ηn+1/2
u , φn+1/2

u

)
+b∗

(
Unh

h − Ûn
Un

h
, un+1/2, φn+1/2

u

)
+sb∗

(̂̃BnBn
h

− B̃nh
h
, Bn+1/2, φn+1/2

u

)
+ sb∗

(
B̃n

h
, η
n+1/2
B , φn+1/2

u

)
+ sb∗

(
Unh

h
, η
n+1/2
B , φ

n+1/2
B

)
+ sb∗

(
Unh

h − Ûn
Un

h
, Bn+1/2, φ

n+1/2
B

)
+ sb∗

(
B̃n

h
, ηn+1/2
u , φ

n+1/2
B

)
+ sb∗

(̂̃BnB̃n
h

− B̃nh
h
, un+1/2, φ

n+1/2
B

)
+ CRe inf

qh∈Qh

‖p(tn+1/2)− qh‖2

+ CsRem inf
rh∈Qh

‖λ(tn+1/2)− rh‖2 +Re‖∇ηn+1/2
u ‖2 +Rem‖∇ηn+1/2

B ‖2

+G(u,B, n, φn+1/2
u ) + sF (u,B, n, φ

n+1/2
B ). (5.41)

We now bound the nonlinear terms:

b∗
(
Unh

h − Ûn
Un

h
, un+1/2, φn+1/2

u

)
≤ ‖Unh

h − Ûn
Un

h ‖‖un+1/2‖∞‖φn+1/2
u ‖

≤ ‖Unh − Un‖‖un+1/2‖∞‖∇φn+1/2
u ‖

≤ Re−1

32
‖∇φn+1/2

u ‖2 + CRe‖un+1/2‖2∞(‖ηnu‖2 + ‖ηn−1
u ‖2 + ‖φnu‖2 + ‖φn−1

u ‖2) (5.42)

sb∗
(
Unh

h − Ûn
Un

h
, Bn+1/2, φ

n+1/2
B

)
≤ s‖Unh

h − Ûn
Un

h ‖‖Bn+1/2‖∞‖φn+1/2
B ‖

≤ s‖Unh − Un‖‖Bn+1/2‖∞‖∇φn+1/2
B ‖

≤ Re−1
m

32
‖∇φn+1/2

B ‖2 + Cs2Rem‖Bn+1/2‖2∞(‖ηnu‖2 + ‖ηn−1
u ‖2 + ‖φnu‖2 + ‖φn−1

u ‖2) (5.43)

sb∗
(̂̃BnBn

h

− B̃nh
h
, Bn+1/2, φn+1/2

u

)
≤ s‖ ̂̃BnBn

h

− B̃nh
h
‖‖Bn+1/2‖∞‖φn+1/2

u ‖

≤ s‖B̃n − B̃nh‖‖B
n+1/2‖∞‖∇φn+1/2

u ‖

≤ Re−1

32
‖∇φn+1/2

u ‖2 + Cs2Re‖Bn+1/2‖2∞(‖ηnB‖2 + ‖ηn−1
B ‖2 + ‖φnB‖2 + ‖φn−1

B ‖2) (5.44)
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sb∗
(̂̃BnBn

h

− B̃nh
h
, un+1/2, φ

n+1/2
B

)
≤ s‖ ̂̃BnBn

h

− B̃nh
h
‖‖un+1/2‖∞‖φn+1/2

B ‖

≤ s‖B̃n − B̃nh‖‖u
n+1/2‖∞‖∇φn+1/2

B ‖

≤ Re−1
m

32
‖∇φn+1/2

B ‖2 + Cs2Rem‖un+1/2‖2∞(‖ηnB‖2 + ‖ηn−1
B ‖2 + ‖φnB‖2 + ‖φn−1

B ‖2). (5.45)

We bound the remaining trilinear terms using Remark 4.1.8.

b∗
(
Unh

h
, ηn+1/2
u , φn+1/2

u

)
= b∗

(
Unh

h − Un, ηn+1/2
u , φn+1/2

u

)
+ b∗

(
Un, ηn+1/2

u , φn+1/2
u

)
≤ C‖Unh

h − Un‖(‖∇ηn+1/2
u ‖‖φn+1/2

u ‖∞ + ‖ηn+1/2
u ‖‖∇φn+1/2

u ‖∞)

+C‖∇Un‖‖∇ηn+1/2
u ‖‖∇φn+1/2

u ‖

≤ C‖Unh
h − Un‖(h−1/2‖∇ηn+1/2

u ‖‖∇φn+1/2
u ‖+ h−3/2‖ηn+1/2

u ‖‖∇φn+1/2
u ‖)

+
Re−1

32
‖∇φn+1/2

u ‖2 + CRe‖∇Un‖2‖∇ηn+1/2
u ‖2

≤ Re−1

32
‖∇φn+1/2

u ‖2 + CRe‖Unh
h − Un‖2(h2k−1|u|2k+1) + CRe‖∇ηn+1/2

u ‖2

≤ Re−1

32
‖∇φn+1/2

u ‖2 + CReh2k−1(‖ηn−1
u ‖2 + ‖ηnu‖2 + ‖φn−1

u ‖2 + ‖φnu‖2

+α2h2k + α2‖aDN
(u)‖2) + CRe‖∇ηn+1/2

u ‖2 (5.46)

sb∗
(
Unh

h
, η
n+1/2
B , φ

n+1/2
B

)
= sb∗

(
Unh

h − Un, ηn+1/2
B , φ

n+1/2
B

)
+ sb∗

(
Un, η

n+1/2
B , φ

n+1/2
B

)
≤ Re−1

m

32
‖∇φn+1/2

B ‖2 + CRems
2h2k−1(‖ηn−1

B ‖2 + ‖ηnB‖2 + ‖φn−1
B ‖2 + ‖φnB‖2

+α2h2k + α2‖aDN
(u)‖2) + CRems

2‖∇ηn+1/2
B ‖2 (5.47)

sb∗
(
Bnh

h
, η
n+1/2
B , φn+1/2

u

)
= sb∗

(
Bnh

h −Bn, ηn+1/2
B , φn+1/2

u

)
+ sb∗

(
Bn, η

n+1/2
B , φn+1/2

u

)
≤ Re−1

32
‖∇φn+1/2

u ‖2 + CRes2h2k−1(‖ηn−1
B ‖2 + ‖ηnB‖2 + ‖φn−1

u ‖2 + ‖φnu‖2

+α2h2k + α2‖aDN
(B)‖2) + CRes2‖∇ηn+1/2

B ‖2 (5.48)

sb∗
(
Bnh

h
, ηn+1/2
u , φ

n+1/2
B

)
= sb∗

(
Bnh

h −Bn, ηn+1/2
u , φ

n+1/2
B

)
+ sb∗

(
Bn, ηn+1/2

u , φ
n+1/2
B

)
≤ Re−1

m

32
‖∇φn+1/2

B ‖2 + CRems
2h2k−1(‖ηn−1

u ‖2 + ‖ηnu‖2 + ‖φn−1
B ‖2 + ‖φnB‖2

+α2h2k + α2‖aDN
(B)‖2) + CRems

2‖∇ηn+1/2
u ‖2. (5.49)
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Combining, we have

1

∆t
(‖φn+1

u ‖2 − ‖φnu‖2) +
s

∆t
(‖φn+1

B ‖2 − ‖φnB‖2) +
Re−1

2
‖∇φn+1/2

u ‖2 +
sRe−1

m

2
‖∇φn+1/2

B ‖2

≤ CRe inf
qh∈Qh

‖p(tn+1/2)−qh‖2 +CsRem inf
rh∈Qh

‖λ(tn+1/2)−rh‖2 +Re‖∇ηn+1/2
u ‖2 +Rem‖∇ηn+1/2

B ‖2

+ CRe‖un+1/2‖2∞(‖ηnu‖2 + ‖ηn−1
u ‖2 + ‖φnu‖2 + ‖φn−1

u ‖2)

+ Cs2Rem‖Bn+1/2‖2∞(‖ηnu‖2 + ‖ηn−1
u ‖2 + ‖φnu‖2 + ‖φn−1

u ‖2)

+ Cs2Re‖Bn+1/2‖2∞(‖ηnB‖2 + ‖ηn−1
B ‖2 + ‖φnB‖2 + ‖φn−1

B ‖2)

+ Cs2Rem‖un+1/2‖2∞(‖ηnB‖2 + ‖ηn−1
B ‖2 + ‖φnB‖2 + ‖φn−1

B ‖2)

+ CReh2k−1(‖ηn−1
u ‖2 + ‖ηnu‖2 + ‖φn−1

u ‖2 + ‖φnu‖2 + α2h2k + α2‖aDN
(u)‖2)

+ CRems
2h2k−1(‖ηn−1

B ‖2 + ‖ηnB‖2 + ‖φn−1
B ‖2 + ‖φnB‖2 + α2h2k + α2‖aDN

(u)‖2)

+ CRes2h2k−1(‖ηn−1
B ‖2 + ‖ηnB‖2 + ‖φn−1

u ‖2 + ‖φnu‖2 + α2h2k + α2‖aDN
(B)‖2)

+ CRems
2h2k−1(‖ηn−1

u ‖2 + ‖ηnu‖2 + ‖φn−1
B ‖2 + ‖φnB‖2 + α2h2k + α2‖aDN

(B)‖2)

+G(u,B, n, φn+1/2
u ) + sF (u,B, n, φ

n+1/2
B ). (5.50)

We next bound the terms in G(u,B, n, φ
n+1/2
u ) and F (u,B, n, φ

n+1/2
B using the bounds in [33]. We

have

(
u(tn+1)− u(tn)

∆t
− ut(tn+1/2), φn+1/2

u

)
≤ 1

2
‖φn+1

u ‖2 +
1

2
‖φnu‖2 + C(∆t)3

∫ tn+1

tn
‖uttt‖2dt (5.51)

(
B(tn+1)−B(tn)

∆t
−Bt(tn+1/2), φ

n+1/2
B

)
≤ 1

2
‖φn+1

B ‖2 +
1

2
‖φnB‖2 +C(∆t)3

∫ tn+1

tn
‖Bttt‖2dt (5.52)

ν(∇(un+1/2 − u(tn+1/2)), φn+1/2
u ) ≤ Re−1

32
‖∇φn+1/2

u ‖2 + CRe(∆t)3

∫ tn+1/2

tn
‖∇utt‖2dt (5.53)

ν(∇(Bn+1/2 −B(tn+1/2)), φ
n+1/2
B ) ≤ Re−1

m

32
‖∇φn+1/2

B ‖2 + CRem(∆t)3

∫ tn+1/2

tn
‖∇Btt‖2dt. (5.54)
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We add to b∗
(
Un, un+1/2, φ

n+1/2
u

)
to one of the terms and subtract it from another, bounding the

resulting differences as

b∗
(
Un, un+1/2, φn+1/2

u

)
− b∗(u(tn+1/2), u(tn+1/2), φn+1/2

u ) ≤ Re−1

32
‖∇φn+1/2

u ‖2

+ CRe(∆t)4(‖∇(u(tn) + u(tn−1))‖4 + ‖∇un+1/2‖4) + CRe(∆t)3

∫ tn+1

tn
‖∇utt‖4dt, (5.55)

and, using Cauchy-Schwarz and Young inequalities and Lemma 4.1.6,

b∗(Ûn
h,Un

h − Un, un+1/2, φn+1/2
u ) ≤ C‖Ûn

h,Un
h − Un‖‖∇un+1/2‖∞‖φn+1/2

u ‖

≤ Re−1

32
‖∇φn+1/2

u ‖2 + CRe‖un+1/2‖23‖Ûn
h,Un

h − Un‖2

≤ Re−1

32
‖∇φn+1/2

u ‖2 + CRe‖un+1/2‖23(α2h2k

+ α2‖aDN
(u)‖2 + h2k+2 + α2(‖ηn−1

u ‖2 + ‖ηnu‖2 + ‖φn−1
u ‖2 + ‖φnu‖2)). (5.56)

We now add to sb∗
(
B̃n, Bn+1/2, φ

n+1/2
u

)
to one of the terms and subtract it from another, bounding

the resulting differences as

sb∗
(
Bn, Bn+1/2, φn+1/2

u

)
− sb∗(B(tn+1/2), B(tn+1/2), φn+1/2

u ) ≤ Re−1

32
‖∇φn+1/2

u ‖2

+ Cs2Re(∆t)4(‖∇(B(tn) +B(tn−1))‖4 + ‖∇Bn+1/2‖4) + Cs2Re(∆t)3

∫ tn+1

tn
‖∇Btt‖4dt. (5.57)

and, using Cauchy-Schwarz and Young inequalities and Lemma 4.1.6,

b∗( ̂̃Bnh,Bn
h

−Bn, Bn+1/2, φn+1/2
u ) ≤ Cs‖ ̂̃Bnh,Bn

h

−Bn‖‖∇Bn+1/2‖∞‖φn+1/2
u ‖

≤ Re−1

32
‖∇φn+1/2

u ‖2 + Cs2Re‖Bn+1/2‖23(α2h2k

+ α2‖aDN
(B)‖2 + h2k+2 + α2(‖ηn−1

B ‖2 + ‖ηnB‖2 + ‖φn−1
B ‖2 + ‖φnB‖2)). (5.58)

Next, add and subtract sb∗
(
Un, Bn+1/2, φ

n+1/2
B

)
to one of the term and subtract it from another,
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bounding the resulting differences as

sb∗
(
Un, Bn+1/2, φ

n+1/2
B

)
− sb∗(U(tn+1/2), B(tn+1/2), φ

n+1/2
B ) ≤ Re−1

m

32
‖∇φn+1/2

B ‖2

+ CRem(∆t)3

(
‖∇(u(tn) + u(tn−1))‖2

∫ tn+1

tn
‖∇Btt‖4dt+ ‖∇B(tn+1/2)‖2

∫ tn+1

tn
‖∇utt‖2

)
,

(5.59)

and, using Cauchy-Schwarz and Young inequalities and Lemma 4.1.6,

sb∗(Ûn
h,Un

h − Un, Bn+1/2, φ
n+1/2
B ) ≤ C‖Ûn

h,Un
h − Un‖‖∇Bn+1/2‖∞‖φn+1/2

B ‖

≤ Re−1
m

32
‖∇φn+1/2

B ‖2 + CRem‖Bn+1/2‖23(α2h2k

+ α2‖aDN
(u)‖2 + h2k+2 + α2(‖ηn−1

u ‖2 + ‖ηnu‖2 + ‖φn−1
u ‖2 + ‖φnu‖2)). (5.60)

Finally, add and subtract sb∗
(
B̃n, un+1/2, φ

n+1/2
B

)
and bound the differences as

sb∗
(
B̃n, un+1/2, φ

n+1/2
B

)
− sb∗(B(tn+1/2), u(tn+1/2), φ

n+1/2
B ) ≤ Re−1

m

32
‖∇φn+1/2

B ‖2

+ CRem(∆t)3

(
‖∇(B(tn) +B(tn−1))‖2

∫ tn+1

tn
‖∇utt‖4dt+ ‖∇u(tn+1/2)‖2

∫ tn+1

tn
‖∇Btt‖2

)
,

(5.61)

and, using Cauchy-Schwarz and Young inequalities and Lemma 4.1.6,

sb∗(Ûn
h,Un

h − Un, Bn+1/2, φ
n+1/2
B ) ≤ C‖Ûn

h,Un
h − Un‖‖∇Bn+1/2‖∞‖φn+1/2

B ‖

≤ Re−1
m

32
‖∇φn+1/2

B ‖2 + CRem‖Bn+1/2‖23(α2h2k

+ α2‖aDN
(u)‖2 + h2k+2 + α2(‖ηn−1

u ‖2 + ‖ηnu‖2 + ‖φn−1
u ‖2 + ‖φnu‖2)). (5.62)
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Combining all these bounds with (5.50) and using regularity assumptions (7.7)-(7.10), we obtain

1

∆t
(‖φn+1

u ‖2 − ‖φnu‖2) +
s

∆t
(‖φn+1

B ‖2 − ‖φnB‖2) +
Re−1

2
‖∇φn+1/2

u ‖2 +
sRe−1

m

2
‖∇φn+1/2

B ‖2

≤ Re‖∇ηn+1/2
u ‖2 +Rem‖∇ηn+1/2

B ‖2 + CRe

(
α2h2k + α2‖aDN

(u)‖2 + h2k+2

+ α2(‖ηn−1
u ‖2 + ‖ηnu‖2 + ‖φn−1

u ‖2 + ‖φnu‖2)

)
CRem

(
α2h2k + α2‖aDN

(B)‖2 + h2k+2 + α2(‖ηn−1
B ‖2 + ‖ηnB‖2 + ‖φn−1

B ‖2 + ‖φnB‖2)

)
. (5.63)

Summing over timesteps, multiplying by ∆t and noting that ‖u0
h‖ = ‖B0

h‖ = 0 gives

‖φMu ‖2 + s‖φMB ‖2 + ∆t

M−1∑
n=0

Re−1‖∇φn+1/2
u ‖2 + ∆t

M−1∑
n=0

sRe−1
m ‖∇φ

n+1/2
B ‖2

≤ ∆t

M−1∑
n=0

Re‖∇ηn+1/2
u ‖2+∆t

M−1∑
n=0

Rem‖∇ηn+1/2
B ‖2+C

(
α2h2k+α2‖aDN

(u)‖2+α2‖aDN
(B)‖2+h2k+2

+ ∆t

M−1∑
n=0

α2‖ηnu‖2 + ∆t

M−1∑
n=0

α2‖φnu‖2 + ∆t

M−1∑
n=0

α2‖ηnB‖2 + ∆t

M−1∑
n=0

α2‖φnB‖2
)
. (5.64)

Assuming (Pk, Pk−1) Taylor-Hood or (Pk, P
disc
k−1 ) Scott-Vogelius elements, we have

‖φMu ‖2 + s‖φMB ‖2 + ∆t

M−1∑
n=0

Re−1‖∇φn+1/2
u ‖2 + ∆t

M−1∑
n=0

sRe−1
m ‖∇φ

n+1/2
B ‖2 ≤ C

(
∆t4 + α2h2k

+ α2‖aDN
(u)‖2 + α2‖aDN

(B)‖2 + h2k + ∆t

M−1∑
n=0

α2‖φnu‖2 + ∆t

M−1∑
n=0

α2‖φnB‖2
)
. (5.65)

Applying Gronwall’s inequality yields

‖φMu ‖2 + s‖φMB ‖2 + ∆t

M−1∑
n=0

Re−1‖∇φn+1/2
u ‖2 + ∆t

M−1∑
n=0

sRe−1
m ‖∇φ

n+1/2
B ‖2

≤ C
(

∆t4 + α2h2k + α2‖aDN
(u)‖2 + α2‖aDN

(B)‖2 + h2k

)
. (5.66)

Applying the triangle inequality gives the stated result.
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5.3 Numerical Experiments

In this section we verify the rates predicted in section 5.2 for Algorithm 5.1.1. We compute

approximations to the chosen solution

u1(x, y, t) = (1 + 0.01t) cos(y), B1(x, y) = (1− 0.01t) sin(y)

u2(x, y, t) = (1 + 0.01t) sin(x), B2(x, y) = (1− 0.01t) cos(x)

p(x, y, t) = x+ y

on Ω = [0, 1]2 and T = 1. We choose Re−1 = Re−1
m = 1, s = 1 calculate f and ∇× g from the MHD

and the chosen solution. Then, using Algorithm 5.1.1 with both (P3, P2) and (P2, P1) elements, we

compute solutions on five successive mesh refinements using α = h and N=0 (our analysis shows

that for these element choices, choosing N > 0 does not improve asymptotic accuracy over the N=0

case). Our analytical results predict that for (P3, P2) elements, with a(·) = aD0
, a rate of 3 and

with a(·) = 1 (the usual Leray model), a rate of 2. Tables 5.1 and 5.2 show our calculated errors

and rates, and we do observe optimal convergence in both u and B.

h ∆t ‖u− uh‖2,1 Rate ‖B −Bh‖2,1 Rate
1/4 1 1.49e-03 - 5.86e-04 -
1/8 1/3 2.16e-04 2.782 9.17e-05 2.676
1/16 1/9 3.15e-05 2.783 1.83e-05 2.327
1/32 1/27 5.18e-06 2.602 4.04e-06 2.177
1/64 1/81 1.04e-06 2.313 9.65e-07 2.066

Table 5.1: L2(0, T ;H1(Ω)) errors and rates for u and B found with Leray. We observe a rate of 2.

h ∆t ‖u− uh‖2,1 Rate ‖B −Bh‖2,1 Rate
1/4 1 1.60e-03 - 8.51e-04 -
1/8 1/3 2.15e-04 2.896 9.04e-05 3.234
1/16 1/9 2.73e-05 2.974 9.70e-06 3.219
1/32 1/27 3.45e-06 2.987 1.15e-06 3.075
1/64 1/81 4.28e-07 3.011 1.43e-07 3.014

Table 5.2: L2(0, T ;H1(Ω)) errors and rates for u and B found with a(·) = aD0
. We observe a rate

of 3.
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Chapter 6

The Leray-αβ-deconvolution model

The work presented in this chapter is a result of [4]. Dissipation scale modeling in regular-

izations via the ‘β-method’ was introduced by Fried and Gurtin [15, 16, 17] for the Navier–Stokes-α

(NS-α) model, as a way to model the inherent separation between the inertial (modeled below with

the parameter α) and dissipation range scales (modeled below by the parameter β). Numerical stud-

ies due to Kim et al. [28, 29, 30] demonstrated that introducing the dissipation scale β < α improves

accuracy of velocity scale prediction in the dissipation range for simulations of three-dimensional

isotropic turbulent flows with periodic and non-periodic boundary conditions. It is the purpose of

this paper to study analogous dissipation scale modeling in the context of the Leray-α model with

deconvolution for viscous and incompressible fluid flow.

From the computational point of view, Leray-type models are more attractive than NS-α

type models due to their ability to be linearized in time-stepping schemes without sacrificing uncon-

ditional stability with respect to time-step size [34, 35]. On the other hand, from the physical point of

view, NS-α type models are more attractive because they conserve helicity and are frame–invariant,

while Leray-type models are not [14, 20, 46]. However, we believe that computational advantages of

Leray-type models outweigh the advantages of NS-α type models, particularly when deconvolution

is used. This belief is founded on the observation that the consistency of the nonlinearity of (1.12)

to that of the NSE is O(α2N+2), and thus that the deviation of the model from frame invariance

and helicity conservation is also O(α2N+2). Moreover, since frame–invariance and helicity conser-

vation are not typically exactly enforced in computations (due to discretization procedures), the

greater physical accuracy of the NS-α type models over the Leray-type models may not be realized
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in computed solutions.

6.1 Numerical algorithms for Leray-αβ-deconvolution

The system (1.12)-(1.15) is a fourth order system, and so does not easily lend itself to

efficient computations. However, we can rewrite (1.12) by

ut +DN (ū) · ∇u+∇p− ν
(

1− α2 − β2

α2

)
∆u− ν α

2 − β2

α2
∆ū = f, (6.1)

which is second order and thus can be computed with C0 mixed finite elements. This section presents

and analyzes a finite element algorithm for our model.

6.1.1 A finite-element scheme for the Leray-αβ-deconvolution model

We now present an algorithm for Leray-αβ-deconvolution. The scheme uses a trapezoidal

temporal discretization.

Algorithm 6.1.1. Given a kinematic viscosity ν > 0, and end-time T > 0, a time step ∆t chosen

so that ∆t < T = M∆t, f ∈ L∞(0, T ; (L2(Ω))d), a solenoidal initial condition u0 ∈ X, parameters

α ≥ β > 0 with α ≤ O(h), u0 = u0
h ∈ Vh, u0

h

h
= Fh(u0

h), find (unh, u
n
h

h
, pnh, λ

n
h) ∈ (Xh, Xh, Qh, Qh)

for n = 1, 2, ...,M satisfying, ∀(vh, wh, qh, rh) ∈ (Xh, Xh, Qh, Qh),

1

∆t
(un+1
h − unh, vh) + (Dh

Nu
n+1/2
h

h

· ∇un+1/2
h , vh) − (pn+1

h ,∇ · vh)

+ν

(
1− α2 − β2

α2

)
(∇un+1/2

h ,∇vh)

+ν

(
α2 − β2

α2

)
(∇un+1/2

h

h

,∇vh) = (fn+1/2, vh), (6.2)

(∇ · un+1
h , qh) = 0, (6.3)

α2(∇un+1
h

h
,∇wh) + (un+1

h

h
, wh)− (λn+1

h ,∇ · wh)− (un+1
h , wh) = 0, (6.4)

(∇ · un+1
h

h
, rh) = 0. (6.5)

It will be notationally convenient to instead study the equivalent Vh formulation: ∀vh, wh ∈
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Vh,

1

∆t
(un+1
h − unh, vh) + (Dh

Nu
n+1/2
h

h

· ∇un+1/2
h , vh) + ν

(
1− α2 − β2

α2

)
(∇un+1/2

h ,∇vh)

+ν

(
α2 − β2

α2

)
(∇un+1/2

h

h

,∇vh) = (fn+1/2, vh), (6.6)

α2(∇un+1
h

h
,∇wh) + (un+1

h

h
, wh)− (un+1

h , wh) = 0. (6.7)

We now prove the algorithm is unconditionally stable with respect to the time step.

Lemma 6.1.2. Solutions to Algorithm (6.1.1) are unconditionally stable: for any ∆t > 0, they

satisfy

‖uMh ‖2 + ν∆t

M−1∑
n=0

‖∇un+1/2
h ‖2 ≤ C(data). (6.8)

Proof. We start the proof by choosing vh = u
n+1/2
h in (6.6). This immediately causes the nonlinear

term to vanish, leaving

1

∆t
(un+1
h − unh, u

n+1/2
h ) + ν

(
1− α2 − β2

α2

)
‖∇un+1/2

h ‖2

+ ν

(
α2 − β2

α2

)
‖un+1/2

h ‖2ε = (fn+1/2, u
n+1/2
h ). (6.9)

Using the identity

1

∆t
(un+1
h − unh, u

n+ 1
2

h ) =
1

2∆t
(un+1
h − unh, un+1

h + unh) =
1

2∆t
(‖un+1

h ‖2 − ‖unh‖2)

with (6.9), and Lemma 2.1.2, we get

1

2∆t
(‖un+1

h ‖2 − ‖unh‖2) + ν‖un+1/2
h ‖2ε ≤ (fn+1/2, u

n+1/2
h ). (6.10)

Using Lemma 2.1.2 on the left hand side (i.e. the equivalence of norms), then majorizing the

righthand side with Cauchy-Schwarz and Young’s inequalities yields

1

2∆t
(‖un+1

h ‖2 − ‖unh‖2) + C1ν‖∇un+1/2
h ‖2 ≤ ‖f(tn+1/2)‖−1‖∇un+1/2

h ‖

≤ C

2ν
‖f(tn+1/2)‖2−1 +

C1ν

2
‖∇un+1/2

h ‖2. (6.11)
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Reducing, summing over time steps and multiplying by ∆t gives

‖uMh ‖2 + ν∆t

M−1∑
n=0

‖∇un+1/2
h ‖2 ≤ C

(
ν−1∆t

M−1∑
n=0

‖f(tn+1/2)‖2−1 + ‖u0
h‖2
)
, (6.12)

which completes the proof.

Remark 6.1.3. These bounds are sufficient to establish the existence of the solution at each time

step using the Leray–Schauder fixed-point theorem [33]. Uniqueness of discrete solutions can be

proven in the usual way, but requires a data-dependent restriction on the timestep of ∆t ≤ O(ν−3).

This restriction arises from the use of the discrete Gronwall inequality, and it is not believed to be

sharp.

6.1.2 Convergence Analysis

Theorem 6.1.4. Let (w(t), q(t)) be a smooth, strong solution of the NSE, additionally satisfying

w ∈ L∞(0, T ;Hk+1(Ω)) and the smoothness assumptions of Lemma 2.1.4. If (uh, ph) is a solution to

Algorithm 6.1.1 with N = 0 or 1, then for ∆t sufficiently small, there is a constant C, independent

of h and ∆t, such that

‖w(T )− uMh ‖2 + ν∆t

M−1∑
n=0

‖∇
(
w(tn) + w(tn+1)

2

)
− un+1/2

h ‖2

≤ C(∆t4 + α4N+4 + h2k + ν2(α2 − β2)2). (6.13)

Proof. At time tn+1/2, the solution of the NSE (w, q) satisfies

(
wn+1 − wn

∆t
, vh

)
− (Dh

Nw
n+1/2

h
· ∇wn+1/2, vh) + ν

(
1− α2 − β2

α2

)
(∇wn+1/2,∇vh)

+ν

(
α2 − β2

α2

)
(∇wn+1/2

h
,∇vh) = (f(tn+1/2), vh) + Intp(wn, vh), ∀vh ∈ Vh, (6.14)
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The term Intp(wn, vh), given by

Intp(wn, vh) =

(
wn+1 − wn

∆t
− wt(tn+1/2), vh

)
+ν(∇

(
w(tn) + w(tn+1)

2

)
− ∇w(tn+1/2),∇vh)

+ν

(
α2 − β2

α2

)
(∇
(
w(tn) + w(tn+1)

2

)h
−∇

(
w(tn) + w(tn+1)

2

)
,∇vh)

−(Dh
N

(
w(tn) + w(tn+1)

2

)h
· ∇
(
w(tn) + w(tn+1)

2

)
, vh)

+(Dh
Nw(tn+1/2) · ∇w(tn+1/2), vh) + (f(tn+1/2)− fn+1/2, vh), (6.15)

collects the interpolation error, the filtering error, and the consistency error. The pressure terms

vanish since we are using SV elements that are pointwise div-free. Now, subtracting (6.2) from

(6.14) and letting en = w(tn)− unh, we have

1

∆t
(en+1 − en, vh)− (Dh

Ne
n+1/2

h
· ∇wn+1/2, vh) + (Dh

Nu
n+1/2
h

h

· ∇en+1/2, vh)

+ ν

(
1− α2 − β2

α2

)
(∇en+1/2,∇vh) + ν

(
α2 − β2

α2

)
(∇en+1/2

h
,∇vh) = Intp(wn, vh). (6.16)

Decompose the error as en = (wn − Un) − (vnh − Un) := ηn − φnh where φnh ∈ Vh, and U is the L2

projection of u in Vh.

1

∆t
(φn+1
h − φnh, vh) + ν

(
1− α2 − β2

α2

)
(∇φn+1/2

h ,∇vh) + ν

(
α2 − β2

α2

)
(∇φn+1/2

h

h

,∇vh)

=
1

∆t
(ηn+1 − ηn, vh) + (Dh

Nη
n+1/2

h
· ∇un+1/2, vh)− (Dh

Nφ
n+1/2
h

h

· ∇un+1/2, vh)

− (Dh
Nu

n+1/2
h

h

· ∇ηn+1/2, vh) + (Dh
Nu

n+1/2
h

h

· ∇φn+1/2
h , vh)

+ ν

(
1− α2 − β2

α2

)
(∇ηn+1/2,∇vh) + ν

(
α2 − β2

α2

)
(∇ηn+1/2

h
,∇vh) + Intp(wn, vh). (6.17)
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Setting vh = φ
n+1/2
h in (6.17), we obtain

1

∆t
(‖φn+1

h ‖2 − ‖φnh‖2) + ν

(
1− α2 − β2

α2

)
‖∇φn+1/2

h ‖2 + ν

(
α2 − β2

α2

)
‖φh‖2ε

=
1

∆t
(ηn+1 − ηn, φn+1/2

h ) + (Dh
Nη

n+1/2
h
· ∇un+1/2, φ

n+1/2
h )− (Dh

Nφ
n+1/2
h

h

· ∇un+1/2, φ
n+1/2
h )

− (Dh
Nu

n+1/2
h

h

· ∇ηn+1/2, φ
n+1/2
h ) + ν

(
1− α2 − β2

α2

)
(∇ηn+1/2,∇φn+1/2

h )

+ ν

(
α2 − β2

α2

)
(∇ηn+1/2

h
,∇φn+1/2

h ) + Intp(wn, φ
n+1/2
h ). (6.18)

The first term form the right hand side vanishes based on its projection definition. We bound the

rest of the right hand side terms as follows.

(Dh
Nη

n+1/2
h
· ∇un+1/2, φ

n+1/2
h ) ≤ C‖Dh

Nη
n+1/2

h
‖‖∇un+1/2‖∞‖φn+1/2

h ‖

≤ C(N)‖ηn+1/2‖‖un+1/2‖H3‖φn+1/2
h ‖

≤ ν

4
‖∇φn+1/2

h ‖2 + C(N)ν−1‖ηn+1/2‖2‖un+1/2‖2H3 ,

(Dh
Nφ

n+1/2
h

h

· ∇un+1/2, φ
n+1/2
h ) ≤ C‖Dh

Nφ
n+1/2
h

h

‖‖∇un+1/2‖∞‖φn+1/2
h ‖

≤ C(N)‖un+1/2‖H3‖φn+1/2
h ‖2,

(Dh
Nu

n+1/2
h

h

· ∇ηn+1/2, φ
n+1/2
h ) ≤ ν

4
‖∇φn+1/2

h ‖2 + C(N)ν−1‖∇ηn+1/2‖2‖∇un+1/2
h ‖2,

ν

(
1− α2 − β2

α2

)
(∇ηn+1/2,∇φn+1/2

h ) ≤ ν

2

(
1− α2 − β2

α2

)
‖∇φn+1/2

h ‖2+

Cν−1

(
1− α2 − β2

α2

)
‖∇ηn+1/2‖2,

and

ν

(
α2 − β2

α2

)
(∇ηn+1/2

h
,∇φn+1/2

h )

≤ ν

2

(
α2 − β2

α2

)
‖∇φn+1/2

h ‖2 + Cν−1

(
α2 − β2

α2

)
‖∇ηn+1/2‖2.
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Combine the above and use norm equivalences from Lemma 2.1.2 on the left hand side to obtain

1

2∆t
(‖φn+1

h ‖2 − ‖φnh‖2) +
ν

2
‖∇φn+1/2

h ‖2 ≤ Cν−1‖∇ηn+1/2‖2

+ Cν−1‖ηn+1/2‖2‖un+1/2‖2H3 + Cν−1‖φn+1/2
h ‖2‖un+1/2‖2H3

+ Cν−1‖∇ηn+1/2‖2‖∇un+1/2
h ‖2 + CIntp(wn, φ

n+1/2
h ). (6.19)

The interpolation error is bounded in the usual way ([34, 35, 29]), and using Lemmas 2.1.2 and 2.1.9,

and the regularity assumptions on the true solution, we find

|Intp(wn, φ
n+1/2
h )| ≤ C(∆t4 + α4N+4 + h2k + ν2(α2 − β2)2) + ‖φn+1

h ‖2 + ‖φnh‖2. (6.20)

Summing over time steps, multiplying by ∆t, using ‖φ0
h‖ = 0, then under regularity assumptions we

obtain

‖φMh ‖2 +
∆tν

2

M−1∑
n=0

‖∇φn+1/2
h ‖2 ≤ C(1 + ν−1)∆t

M∑
n=0

‖φnh‖2 + C

(
∆t

M−1∑
n=0

ν−1‖ηn+1/2‖2

+ ∆t4 + α4N+4 + h2k + ν2(α2 − β2)2) + ∆t

M−1∑
n=0

ν−1‖∇ηn+1/2‖2‖∇un+1/2
h ‖2

)
. (6.21)

Continuing to bound the right hand side terms,

C∆tν−1
M−1∑
n=0

‖∇ηn+1/2‖2 ≤ C∆tν−1
M∑
n=0

‖∇ηn‖2

≤ C∆tν−1
M∑
n=0

h2k|u(tn)|2k+1

≤ Cν−1h2k. (6.22)
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Since we assume ((Pk)d, P disck−1 ) elements, then using the stability result gives

∆t

M−1∑
n=0

ν−1‖∇un+1/2
h ‖2‖∇ηn+1/2‖2

= ∆t

M−1∑
n=0

ν−1‖∇un+1/2
h ‖2 inf

vh∈Vh

‖∇(un+1/2)− vh)‖2

≤ ∆t

M−1∑
n=0

ν−1‖∇un+1/2
h ‖2(Ch2k|u|2k+1)

≤ Cν−1h2k∆t

M−1∑
n=0

‖∇un+1/2
h ‖2

≤ Cν−2h2k. (6.23)

Combining (6.21) with (6.22)-(6.23), and using (2.2) and (2.3) gives

‖φMh ‖2 +
∆tν

2

M−1∑
n=0

‖∇φn+1/2
h ‖2

≤ C(1 + ν−1)∆t

M∑
n=0

‖φnh‖2 + C(ν−2h2k + ∆t4 + α4N+4 + h2k + ν2(α2 − β2)2). (6.24)

For ∆t small enough, applying Gronwall’s inequality yields

‖φMh ‖2 +
∆tν

2

M−1∑
n=0

‖∇φn+1/2
h ‖2 ≤ C(∆t4 + α4N+4 + h2k + ν2(α2 − β2)2). (6.25)

Finally, applying the triangle inequality gives the result.

6.1.3 Linearized Scheme

Algorithm 6.1.1 can be more efficiently computed in the following way, by linearizing through

time-lagging and extrapolation of the filtered terms, which decouples filtering and deconvolution from

the system. Although unconditional stability is lost, the resulting stability condition for the time-

step is mild, and easily justified by the gain in efficiency since the linear systems for the filtering

and mass/momentum are decoupled and need solved only once at each time-step.

Algorithm 6.1.5. Given a kinematic viscosity ν > 0, and end-time T > 0, a time step ∆t chosen

so that ∆t < T = M∆t, f ∈ L∞(0, T ; (L2(Ω))d), the initial condition u0 ∈ V , parameters 0 < β ≤

α ≤ O(h), first find u0
h ∈ Vh to be the L2 projection of u0 into Vh, then find (unh, u

n
h

h
) ∈ (Vh, Vh) by
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linear two-step process, for n = 1, 2, ...,M

Step 1: For all vh ∈ Vh,

1

∆t
(un+1
h − unh, vh)− (Dh

N

3

2
unh −

1

2
un−1
h

h

· ∇un+1/2
h , vh) + ν

(
1− α2 − β2

α2

)
(∇un+1/2

h ,∇vh)

+ ν

(
α2 − β2

α2

)
(∇unh

h
,∇vh) = (fn+1/2, vh), (6.26)

Step 2: For all wh ∈ Vh,

α2(∇un+1
h

h
,∇wh) + (un+1

h

h
, wh)− (un+1

h , wh) = 0, (6.27)

For n = 1, u−1
h := u0

h.

This scheme is conditionally stable, with a mild time-step restriction when β < α.

Lemma 6.1.6. For a given mesh and parameters, if the time-step satisfies

1− C2
i νh

−2∆t

2

α2 − β2

α2
> 0,

(i.e. ∆t < O
(
h2

ν

)
), solutions to Algorithm 6.1.5 satisfy

‖uMh ‖2 + ν∆t

M−1∑
n=0

‖∇un+1/2
h ‖2 ≤ C(data). (6.28)

Remark 6.1.7. Since this scheme is linear, provided the time-step restriction, the stability result

implies existence and uniqueness of solutions, without any further assumptions. Also, a convergence

result similar to that proven for the nonlinear scheme holds for this scheme as well, but with the

∆t4 term in Theorem 6.1.4 reducing to a ν2∆t2 due the time lagging in the viscous term. If an

extrapolation of this term was used instead, it would increase the accuracy, but currently we are

unable to prove a stability result of practical use for such an alteration.

Proof. Set vh = u
n+1/2
h in (6.26). This vanishes the nonlinearity, and leaves

1

2∆t

(
‖un+1

h ‖2 − ‖unh‖2
)

+ ν

(
1− α2 − β2

α2

)
‖∇un+1/2

h ‖2

+ ν

(
α2 − β2

α2

)
(∇unh

h
,∇un+1/2

h ) = (fn+1/2, u
n+1/2
h ). (6.29)
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The third term in the left hand side of (6.29) reduces as

(∇unh
h
,∇un+1/2

h ) = (∇unh
h ±∇un+1/2

h

h

,∇un+1/2
h )

= ‖un+1/2
h ‖2ε + (∇unh

h −∇un+1/2
h

h

,∇un+1/2
h )

= ‖un+1/2
h ‖2ε −

1

2
(∇un+1

h

h
−∇unh

h
,∇un+1/2

h )

= ‖un+1/2
h ‖2ε −

1

4

(
‖un+1

h ‖2ε − ‖unh‖2ε
)
, (6.30)

with the final equality holding since the filter is self-adjoint in the L2 inner product, and so we can

now rewrite (6.29) as

1

2∆t

(
‖un+1

h ‖2 − ‖unh‖2
)

+ ν

(
1− α2 − β2

α2

)
‖∇un+1/2

h ‖2

+ ν

(
α2 − β2

α2

)
‖un+1/2

h ‖2ε = (fn+1/2, u
n+1/2
h ) +

ν

4

α2 − β2

α2

(
‖un+1

h ‖2ε − ‖unh‖2ε
)
. (6.31)

For the forcing term in (6.31), using Cauchy-Schwarz, Young and norm equivalences from Lemma

2.1.2, we have the bounds

(fn+ 1
2 , u

n+ 1
2

h ) ≤ ‖fn+ 1
2 ‖−1‖∇u

n+ 1
2

h ‖

≤ ν

2

(
1− α2 − β2

α2

)
‖∇un+ 1

2

h ‖2 +
1

2ν

(
1− α2 − β2

α2

)−1

‖fn+ 1
2 ‖2−1, (6.32)

and

(fn+ 1
2 , u

n+ 1
2

h ) ≤ ‖fn+ 1
2 ‖−1‖∇u

n+ 1
2

h ‖ ≤ C‖fn+ 1
2 ‖−1‖u

n+ 1
2

h ‖ε

≤ ν

2

α2 − β2

α2
‖un+ 1

2

h ‖2ε +
C2

2ν

α2

α2 − β2
‖fn+ 1

2 ‖2−1 (6.33)

Combining (6.31)-(6.33) provides

1

∆t

(
‖un+1

h ‖2 − ‖unh‖2
)

+ ν

(
1− α2 − β2

α2

)
‖∇un+1/2

h ‖2 + ν
α2 − β2

α2
‖un+1/2

h ‖2ε

≤ ν

4

α2 − β2

α2

(
‖un+1

h ‖2ε − ‖unh‖2ε
)

+
1

ν
‖fn+ 1

2 ‖2−1 min{C2

(
α2 − β2

α2

)−1

,

(
1− α2 − β2

α2

)−1

}.

(6.34)
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Note the min on the right hand side of (6.34) is bounded by 2C2, since the two numbers being

inverted are positive and sum to 1, so one of them must be bigger than or equal to 1/2. Thus we

have

1

∆t

(
‖un+1

h ‖2 − ‖unh‖2
)

+ ν

(
1− α2 − β2

α2

)
‖∇un+1/2

h ‖2 + ν
α2 − β2

α2
‖un+1/2

h ‖2ε

≤ ν

2

α2 − β2

α2

(
‖un+1

h ‖2ε − ‖unh‖2ε
)

+
2C2

ν
‖fn+ 1

2 ‖2−1. (6.35)

Multiplying by ∆t and summing over time-steps yields

(
‖uMh ‖2 − ‖u0

h‖2
)

+ ν∆t

M−1∑
n=0

((
1− α2 − β2

α2

)
‖∇un+1/2

h ‖2 +
α2 − β2

α2
‖un+1/2

h ‖2ε
)

≤ ν

2

α2 − β2

α2
∆t
(
‖uMh ‖2ε − ‖u0

h‖2ε
)

+
2C2

ν
∆t

M−1∑
n=0

‖fn+ 1
2 ‖2−1, (6.36)

which reduces using Lemma 2.1.2 and the inverse inequality to

‖uMh ‖2 + ν∆t

M−1∑
n=0

((
1− α2 − β2

α2

)
‖∇un+1/2

h ‖2 +
α2 − β2

α2
‖un+1/2

h ‖2ε
)

≤ ν∆t

2

α2 − β2

α2
‖uMh ‖2ε +

2C2

ν
∆t

M−1∑
n=0

‖fn+ 1
2 ‖2−1 + ‖u0

h‖2

≤ ν∆t

2

α2 − β2

α2
‖∇uMh ‖2 +

2C2

ν
∆t

M−1∑
n=0

‖fn+ 1
2 ‖2−1 + ‖u0

h‖2

≤ C2
i νh

−2∆t

2

α2 − β2

α2
‖uMh ‖2 +

2C2

ν
∆t

M−1∑
n=0

‖fn+ 1
2 ‖2−1 + ‖u0

h‖2. (6.37)

Taking with α = β, or α > β with

1− C2
i νh

−2∆t

2

α2 − β2

α2
> 0,

along with norm equivalences, completes the proof.
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6.2 Finite Element Numerical Experiments

In this section, we present two numerical experiments on benchmark problems that illus-

trate the effectiveness of the proposed approach, in giving good coarse mesh approximations. All

computations are done using Algorithm 6.1.5.

6.2.1 2D Flow around a cylinder

Our first numerical experiment is for two dimensional under-resolved channel flow around

a cylinder, as described in chapter 3.

For our models to be successful, they should be able to approximate the true solution well,

on a coarser mesh. Hence for these simulations, a barycenter-refined mesh providing 18,780 total

degrees of freedom with ((P3)2, P disc2 ) Scott-Vogelius elements, a time step of ∆t = 0.001, and

filtering radius α chosen to be the average mesh width, is used. Results are shown at t = 6 for

N = 0, 1 and for β = α, α/2, in Figure 6.1. From these plots, we see that without deconvolution

or β-modeling (i.e. the Leray-α model), the simulation fails to predict the vortex street. With

either deconvolution or using β = α/2, improvement is seen, but the combination of deconvolution

N = 1 and β = α/2 gives a result that matches well the DNS of Figure 3.6 in that the vortex street

continues to the end of the channel.

N β cmaxd cmaxl ∆p
0 α 2.173 0.034 -0.124
0 α/2 1.950 0.182 -0.114
1 α 2.510 0.234 -0.097
1 α/2 2.447 0.315 -0.114

Table 6.1: Maximum lift and drag coefficients and pressure drop for four model settings on a coarse
mesh.
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N = 0, β = α

N = 0, β = α
2

N = 1, β = α

N = 1, β = α
2

Figure 6.1: Shown above are the velocity field and speed contours of the models’ computed solutions
at t = 6 for the channel flow around a cylinder test problem.
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Chapter 7

Numerical approximation of a

multiscale Leray model for

incompressible, viscous flow

The work presented in this chapter is a result of [3]. We study a modification of the

Leray-α model. We will filter on a finer mesh, which allows smoothing of the solution to be more

localized, causing less damping at coherent flow structures. The filter system is decoupled from

the mass/momentum system, and even though it is solved on a finer mesh, the filter solve can be

considered as equivalent to a well conditioned Stokes problem, as we are solving the same matrix at

every timestep.

We present an efficient numerical method for the model that is unconditionally stable and

optimally convergent, and which decouples the mass/momentum system from the filter system,

improving the efficiency of the system solves.

7.1 Scheme and Stability

Algorithm 7.1.1. Given a kinematic viscosity ν > 0, an end-time T > 0, a time step ∆t chosen so

that ∆t < T = M∆t, f ∈ L∞(0, T ; (L2(Ω))d), initial condition u0 ∈ X, filtering radius α ≤ O(ĥ),
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find (unh, p
n
h) ∈ (Xh, Qh) for n = 1, 2, ...,M satisfying, ∀(vh, qh) ∈ (Xh, Qh),

1

∆t
(un+1
h − unh, vh) + b∗(u

n+1/2
h

ĥ

, u
n+1/2
h , vh)− (pn+1

h ,∇ · vh)

+ν(∇un+1/2
h ,∇vh) = (fn+1/2, vh), (7.1)

(∇ · un+1
h , qh) = 0. (7.2)

Lemma 7.1.2. Solutions to Algorithm (7.1.1) exist, are unique, and satisfy

‖uMh ‖2 + ∆t

M−1∑
n=0

ν‖∇un+1/2
h ‖2 ≤ C(ν, f, u0

h, T ). (7.3)

Proof. Begin by choosing vh = u
n+1/2
h in (7.1). The trilinear term vanishes, leaving

1

2∆t
(‖un+1

h ‖2−‖unh‖2)+ν‖∇un+1/2
h ‖2 = (fn+1/2, u

n+1/2
h ) ≤ Cν−1‖fn+1/2‖2+

ν

2
‖∇un+1/2

h ‖2, (7.4)

which reduces to

1

2∆t
(‖un+1

h ‖2 − ‖unh‖2) +
ν

2
‖∇un+1/2

h ‖2 ≤ Cν−1‖fn+1/2‖2. (7.5)

Summing over timesteps and multiplying by 2∆t yields

‖uMh ‖2 + ∆t

M−1∑
n=0

ν‖∇un+1/2
h ‖2 ≤ Cν−1

M−1∑
n=0

‖fn+1/2‖2 + ‖u0
h‖2. (7.6)

7.2 Convergence

This section proves convergence of the scheme to the NSE solution. The result gives guid-

ance in choice of parameter α to achieve optimal accuracy. For simplicity in stating the follow-

ing convergence theorem, we summarize here the necessary regularity assumptions for the solution
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(u(x, t), p(x, t)) to the NSE

u ∈ L∞(0, T ;Hk+1(Ω)), (7.7)

u ∈ L∞(0, T ;H2N+2(Ω)), (7.8)

utt ∈ L4(0, T ;H1(Ω)), (7.9)

uttt ∈ L2(0, T ;L2(Ω)), (7.10)

p ∈ L∞(0, T ;Hk(Ω)). (7.11)

Theorem 7.2.1. Let (u(t), p(t)) be a solution of the NSE satisfying no-slip boundary conditions,

and (7.7)-(7.11), with given f ∈ L∞(0, T ;H−1(Ω)) and u0 ∈ H1(Ω). Let (unh, p
n
h), n = 0, 1, . . .M be

the solution of Algorithm (7.1), using (Pk, Pk−1) elements. Then for ∆t small enough, the error in

the discrete solution satisfies

‖u(T )− uMh ‖2 + ∆t

M−1∑
n=0

ν‖∇(un+1/2 − un+1/2
h )‖2 ≤ C(∆t4 + h2k + α4 + α2ĥ2k + ĥ2k+2)

Remark 7.2.2. With α = O(ĥ) (which is believed to be the optimal choice [34],[47],[43],[41]),

estimate of the theorem reduces to

‖u(T )− uMh ‖+ ∆t

M−1∑
n=0

ν‖∇(un+1/2 − un+1/2
h )‖ ≤ C(∆t2 + hk + ĥ2)

Hence, using degree polynomial k = 3, ĥ = O(h3/2) will provide optimal convergence.

Proof. We begin by multiplying the NSE at t = tn+ 1
2 by vh ∈ Vh. Then integrate to get, ∀vh ∈ Vh,

(
u(tn+1)− u(tn)

∆t
, vh

)
− (p(tn+1/2),∇ · vh) + ν(∇un+1/2,∇vh)

+ b∗(un+1/2
ĥ
, un+1/2, vh) = (f(tn+1/2), vh) +G(u, n, vh), (7.12)

where

G(u, n, vh) :=

(
u(tn+1)− u(tn)

∆t
− ut(tn+1/2), vh

)
+ ν(∇(un+1/2 − u(tn+2/2)), vh)

+ b∗(un+1/2
ĥ
, un+1/2, vh)− b∗(u(tn+1/2), u(tn+1/2), vh). (7.13)
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Denote en = u(tn)− unh and subtract (7.12) from (7.1) to get the error equation

1

∆t
(en+1 − en, vh) + b∗(u

n+1/2
h

ĥ

, en+1/2, vh) + b∗(en+1/2
ĥ
, un+1/2, vh)

+ ν(∇en+1/2,∇vh) = (p(tn+1/2),∇ · vh) +G(u, n, vh). (7.14)

Decompose the velocity error as,

en = (u(tn)− PVh
(u(tn))) + (PVh

(u(tn))− unh) =: ηn + φnh.

Expanding and choosing vh = φ
n+1/2
h , and reducing by Cauchy-Schwarz and Young’s inequalities

gives

1

2∆t
(‖φn+1

h ‖2 − ‖φnh‖2) +
ν

2
‖∇φn+1/2

h ‖2 ≤ Cν‖∇ηn+1/2‖2 + Cν−1 inf
qh∈Qh

‖p− qh‖2

+ b∗
(
ηn+1/2

ĥ
, un+1/2, φ

n+1/2
h

)
+ b∗

(
φ
n+1/2
h

ĥ

, un+1/2, φ
n+1/2
h

)

+ b∗

(
u
n+1/2
h

ĥ

, ηn+1/2, φ
n+1/2
h

)
+G(u, n, φ

n+1/2
h ). (7.15)

We now bound the three trilinear terms using Lemma 2.0.3 and Young’s inequality:

b∗
(
ηn+1/2

ĥ
, un+1/2, φ

n+1/2
h

)
≤ ν

16
‖∇φn+1/2

h ‖2 + Cν−1‖∇ηn+1/2‖2‖∇(u(tn+1) + u(tn))‖2. (7.16)

b∗

(
u
n+1/2
h

ĥ

, ηn+1/2, φ
n+1/2
h

)
≤ ν

16
‖∇φn+1/2

h ‖2 + Cν−1‖∇ηn+1/2‖2‖∇un+1/2
h ‖2. (7.17)
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b∗

(
φ
n+1/2
h

ĥ

, un+1/2, φ
n+1/2
h

)

=
1

2

(
φ
n+1/2
h

ĥ

· un+1/2, φ
n+1/2
h

)
− 1

2

(
φ
n+1/2
h

ĥ

· ∇φn+1/2
h , un+1/2

)

≤ C‖φn+1/2
h

ĥ

‖‖∇un+1/2‖∞‖φn+1/2
h ‖+ C‖φn+1/2

h

ĥ

‖‖un+1/2‖∞‖∇φn+1/2
h ‖

≤ C‖φn+1/2
h ‖(‖∇un+1/2‖∞ + ‖un+1/2‖∞)‖∇φn+1/2

h ‖

≤ ν

16
‖∇φn+1/2

h ‖2 + C‖φn+1/2
h ‖2‖un+1/2‖2H3 (7.18)

Using bounds on the three trilinear terms and the G(u, n, φ
n+1/2
h ) from [34] and [5], we get

1

2∆t
(‖φn+1

h ‖2 − ‖φnh‖2) + ν‖∇φn+1/2
h ‖2 ≤ Cν‖∇ηn+1/2‖2 + Cν−1 inf

qh∈Qh

‖p− qh‖2

+ Cν−1‖∇un+1/2‖2‖∇ηn+1/2‖2 + Cν−1‖∇un+1/2
h ‖2‖∇ηn+1/2‖2

+ C‖un+1/2‖2H3‖φn+1/2
h ‖2 + C(∆t)3

∫ tn+1

tn
‖uttt‖2dt

+ Cν(∆t)3

∫ tn+1/2

tn
‖∇utt‖2dt+ Cν−1(∆t)4(‖∇un+1/2‖4 + ‖∇u(tn+1/2)‖4)

+ Cν−1(∆t)3

∫ tn+1

tn
‖∇utt‖4dt+ Cν−1‖un+1/2‖H3(α4 + α2ĥ2k + ĥ2k+2). (7.19)

Summing over timesteps, multiplying by 2∆t, noting that ‖φ0
h‖ = 0, and using regularity assump-

tions (7.7)-(7.11) yields

‖φMh ‖2 + ∆t

M−1∑
n=0

ν‖∇φn+1/2
h ‖2 ≤ C

(
∆t

M−1∑
n=1

‖φn+1/2
h ‖2 + ∆t

M−1∑
n=0

ν−1‖∇ηn+1/2‖2

+ ∆t4 + α4 + α2ĥ2k + ĥ2k+2 + ∆t

M−1∑
n=0

ν−1‖∇un+1/2
h ‖2‖∇ηn+1/2‖2

)
. (7.20)
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Assuming (Pk, Pk−1) elements, the last term in (7.20) is bounded by

∆t

M−1∑
n=0

ν−1‖∇un+1/2
h ‖2‖∇ηn+1/2‖2

= ∆t

M−1∑
n=0

ν−1‖∇un+1/2
h ‖2 inf

vh∈Vh

‖∇(u(tn+1/2)− vh)‖2

≤ ∆t

M−1∑
n=0

ν−1‖∇un+1/2
h ‖2(Ch2k|u|2k+1)

≤ Ch2k∆t

M−1∑
n=0

ν−1‖∇un+1/2
h ‖2

≤ Ch2k. (7.21)

Combining (7.20) with (7.21) gives

‖φMh ‖2 + ∆t

M−1∑
n=0

ν‖∇φn+1/2
h ‖2 ≤ C∆t

M−1∑
n=1

‖φn+1/2
h ‖2

+ C(h2k + ∆t4 + α4 + α2ĥ2k + ĥ2k+2). (7.22)

For ∆t small enough, applying Gronwall’s inequality yields

‖φMh ‖2 + ∆t

M−1∑
n=0

ν‖∇φn+1/2
h ‖2 ≤ C(h2k + ∆t4 + α4 + α2ĥ2k + ĥ2k+2). (7.23)

Applying the triangle inequality to (7.23) yields

‖u(T )− uMh ‖2 + ∆t

M−1∑
n=0

ν‖∇(u(tn+1/2)− un+1/2
h )‖2 ≤ C(∆t4 + h2k + α4 + α2ĥ2k + ĥ2k+2). (7.24)

7.3 Numerical Experiments

In this section, we present several numerical experiments that illustrate the effectiveness of

our approach in giving good approximations of incompressible flows. In particular, we show that

using fine mesh filtering gives better results than filtering on the same coarse mesh.
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7.3.1 Convergence Rate Verification

h ∆t ĥ ‖u− uh‖2,1 Rate
1/2 0.001 1/2 1.271e-02 -
1/4 0.001/3 1/6 1.683e-03 2.916
1/8 0.001/9 1/18 2.177e-04 2.951
1/16 0.001/27 1/54 2.816e-05 2.951
1/24 0.001/61 1/122 8.398e-06 2.984

Table 7.1: L2(0, T ;H1(Ω)) errors and rates found with (Xĥ, Qĥ) = (P3, P2) for experiment 1, with

ĥ cut by 3 for each mesh refinement, as predicted by the analysis.

h = ĥ ∆t ‖u− uh‖2,1 Rate
1/2 0.001 1.271e-02 -
1/4 0.001/3 1.687e-03 2.914
1/8 0.001/9 2.334e-04 2.853
1/16 0.001/27 4.538e-05 2.363
1/24 0.001/61 2.001e-05 2.019

Table 7.2: L2(0, T ;H1(Ω)) errors and rates found with (Xĥ, Qĥ) = (P3, P2) for experiment 1, with

h = ĥ for each mesh refinement. A lower rate of convergence can be observed compared to Table 1.

Our first numerical experiment is to verify the predicted convergence rates in Chapter 4 for

Algorithm (7.1.1). The test problem we choose is to compute approximations to the chosen solution

u1(x, y, t) = sin(2πy)(1 + 0.01t)

u2(x, y, t) = cos(2πx)(1 + 0.01t)

p(x, y, t) = x+ y

on Ω = (0, 1)2 and t ∈ [0, 0.001]. We calculate f from the NSE, the initial condition u0 = u(0), set

ν = 1, and use this data to compute solutions on five mesh refinements.

h ∆t ĥ ‖u− uh‖2,1 Rate
1/2 0.001 1/2 1.270e-02 -
1/4 0.001/3 1/6 1.684e-03 2.915
1/8 0.001/9 1/18 2.177e-04 2.951
1/16 0.001/27 1/54 2.816e-05 2.951
1/24 0.001/61 1/122 8.398e-06 2.984

Table 7.3: L2(0, T ;H1(Ω)) errors and rates found with (Xĥ, Qĥ) = (P2, P1) for experiment 1, with

ĥ cut by 3 for each mesh refinement, as predicted by the analysis.

The increased order of convergence for a (P3, P2) filter can be seen in Tables 1 and 2. In

81



h = ĥ ∆t ‖u− uh‖2,1 Rate
1/2 0.001 1.270e-02 -
1/4 0.001/3 1.686e-03 2.917
1/8 0.001/9 2.333e-04 2.854
1/16 0.001/27 4.539e-05 2.362
1/24 0.001/61 2.001e-05 2.019

Table 7.4: L2(0, T ;H1(Ω)) errors and rates found with (Xĥ, Qĥ) = (P2, P1) for experiment 1, with

h = ĥ for each mesh refinement. A lower rate of convergence can be observed compared to Table 1.

Table 1, where fine mesh filtering is used, we see O(h3) spatial convergence, whereas when finemesh

filtering is not used, (Table 2), the convergence order is decaying away from 3. We found similar

results when using a (P2, P1) filter space (Tables 3 and 4).

7.3.2 2d Flow Over a Step
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Figure 7.1: Fine mesh filtering with (P3, P2) filter.

Our second experiment is for two-dimensional flow over a forward and backward facing step.

The domain Ω is a 40 x 10 channel with a 1 x 1 step five units into the channel at the bottom. We

assume no-slip boundary conditions on the top and bottom boundaries, and parabolic inflow and

outflow profiles, given by (y(10− y)/25, 0)T .

Figure 7.1 shows the T = 40 solution using (P3, P2) elements on a coarse mesh of 8,023

degrees of freedom, and filtering with (P3, P2) elements on a refinement of the coarse mesh, with

31,267 degrees of freedom. Figure 7.2 shows the T = 40 solution using (P3, P2) elements on the

same coarse mesh of 8,023 degrees of freedom, and filtering with (P2, P1) elements on a refinement

of the coarse mesh, with 12,969 degrees of freedom. In both cases, we see smooth channel flow, with

eddies forming and detaching behind the step.
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Figure 7.2: Fine mesh filtering with (P2, P1) filter.
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Chapter 8

Conclusions

Chapter 3 proposed an unconditionally stable and efficient algorithm for computing reduced

order approximations to flow problems, by using adaptive nonlinear filtering with the Leray regu-

larization model. We found this method to be very effective, and to give much better solutions on

coarse meshes than either direct numerical simulations and the ‘usual’ regularization model using

linear filtering. Of the indicator functions studied, the best choice appears to be a synthesis of the

Vreman and Q-criterion based indicator functions.

In Chapter 4, we extended our work with adaptive nonlinear filtering to include a deconvolution-

based indicator function. To our knowledge, this is the first indicator function that has been explicitly

incorporated into a convergence analysis, where the convergence rate is rigorously shown to be in-

creased due to its use. This was possible because the indicator function was based on mathematical

approximation theory, instead of physical phenomenology. We have shown that the proposed method

is well-posed, unconditionally stable, efficient, and converges to an NSE solution with optimal rate.

We also provided benchmark tests which demonstrated the effectiveness of our approach over the

NSE and the regular Leray-α model on coarse meshes.

We further explored use of the deconvolution-based indicator in Chapter 5 by extending

our method to the Leray-MHD model. We proved unconditional stability and convergence of our

method to the MHD equations, and verified the convergence rate predicted by our analysis.

Our work in Chapter 6 shows that dissipation scale modeling can help in capturing more

of the effect of subgrid scales than Leray-α (even when enhanced by deconvolution). A finite ele-

ment stability and convergence analysis was presented and it is accompanied by computations on
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benchmark problems. The regularization the higher order Leray-αβ-deconvolution model gives, has

remarkable and positive effects on the results of the computations, giving lower errors over larger

time intervals.

In Chapter 7, we developed, analyzed, and tested an efficient algorithm for approximating

Navier-Stokes solutions on coarser meshes than a DNS can be performed. We have shown our

algorithm to be unconditionally stable, and optimally convergent, using an element choice and

filtering radius guided by our analysis. Numerical experiments were provided confirming our analysis

and showing our schemes effectiveness.
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