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Abstract

A population of stars exists in the old, open cluster M67, whose photometry, color magnitude

diagram locations and associated evolutionary states cannot be explained by current, standard single

star evolution theory. These stars are often referred to as “yellow straggler” stars. Yellow stragglers

have been identified in multiple star clusters suggesting that these stars constitute a real population.

Additionally, according to independent studies, at least some of the yellow straggler stars in M67

are likely cluster members. Therefore, cluster non-membership is not a sufficient explanation for the

observed anomalous photometry of these stars.

It is possible that the yellow stragglers occupy their precarious color magnitude diagram

positions as a result of the evolution of mass transfer blue straggler stars. These are stars which

have been formed by Roche Lobe overflow mass transfer in close binary systems. If this the case

for the yellow stragglers, it is hypothesized that they could potentially exhibit two spectroscopic

characteristics that can be indicative of this type of mass transfer system. Specifically, variable

radial velocities can be used to indicate that the yellow stragglers exist in binary systems and

enhancements of s-process elements in yellow stragglers can indicate Roche Lobe overflow mass

transfer from a once asymptotic giant branch star which has since evolved into a white dwarf.

This dissertation details the radial velocity survey and the chemical abundance analysis

that have been conducted to investigate the yellow stragglers with regard to this hypothesis. The

radial velocity survey revealed that eight of the ten yellow stragglers studied exhibit variable radial

velocities indicating that the yellow straggler population of M67 possess a high binary frequency.

However, the chemical abundance analysis revealed that none of the yellow stragglers exhibited

enhancements of the s-process elements Y and Ba. Therefore, a history which involves Roche Lobe

overflow mass transfer cannot be confirmed for the yellow straggler stars.
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Chapter 1

Introduction

Star clusters have provided the means to investigate theories of stellar evolution by pro-

viding a set of coeval stars with approximately the same chemical composition but with differing

masses. Studying star clusters, as entities in and of themselves, in addition to studying the stars in

those clusters has laid the groundwork for much of the current standard theory of stellar evolution.

Scientists have successfully theorized and observed how differing stellar mass and chemical compo-

sition affect not only the evolution of the stars in the cluster, but also the evolution of the cluster

itself. Because clusters form the building blocks of the galaxy, a thorough understanding of the

dynamics of star clusters is crucial to our understanding of the dynamics of the galaxy. However,

even after a century of studying star clusters, unresolved issues remain. For example, populations

of stars exist in the color magnitude diagrams of star clusters whose photometry and associated

evolutionary state cannot be explained by current, standard single star evolution theory. One such

population is considered in this study: the “yellow stragglers.”

It is possible that the yellow stragglers (YSs) occupy their precarious color magnitude dia-

gram locations as a result of being formed by mass transfer in close binary systems. There exist two

spectroscopic characteristics that can be indicative of such a mass transfer system. Specifically, vari-

able radial velocities can be used to establish the binary nature of such systems and enhancements

of slow neutron capture, or s-process nucleosynthesis elements can reveal a mass transfer history. In

this study, information regarding these two characteristics has been sought for the yellow stragglers

found in the color magnitude diagram of the old, open cluster M67. The yellow straggler population

of M67 exhibits a high binary frequency, however, s-process element enhancements were not observed
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for any of the yellow straggler stars. This dissertation will detail the methods employed to study

these objects and will discuss some of the implications of the results.

1.1 M67

Three specific characteristics of M67 make it an ideal cluster to study for this particular

project. The first is that M67 is an open cluster as opposed to a globular cluster. Open clusters

tend to to have fewer members and tend to be less gravitationally bound than globular clusters.

Therefore, open clusters are typically subject to less crowding in the field of view making it easier

to resolve individual stars, particularly towards the cluster center. The second characteristic that is

advantageous in studying M67 is its age. At roughly 4 Gyr, M67 is one of the oldest open clusters

observed. Its age is necessary in the current study because the advanced evolutionary states of low

mass stars will be need to be considered. For many of these stars, these late evolutionary states are

typically not reached for billions of years. The third favorable characteristic of M67 is its spatial

location. M67 has galactic coordinates: l = 215.688◦ and b = 31.923◦ (Yadav et al., 2008). From an

earth-centric point of view, this places M67 not only away from the galactic center but also slightly

above the galactic plane. Therefore, M67 has relatively few contaminating field stars in its field of

view and is subject to little interstellar reddening. The color excess reported by Taylor (2007) is

only E(B− V) = 0.04 mag. Furthermore, M67 is located roughly 900 pc (Yadav et al., 2008) away

from the earth, allowing many of the stars in M67 to be observed with medium-class, ground based

telescopes. This, in turn, makes M67 data more accessible in a long term survey like the one that

has been conducted for this study.

1.2 The Color Magnitude Diagrams of Star Clusters

The color magnitude diagrams of star clusters provide an efficient way to identify potential

YSs. A color magnitude diagram (CMD) for M67 was used to accomplish this specific task as will

be explained in §2, however, this currently warrants a brief review of the information that can be

gleaned from a CMD.

Figure 1.1 shows a plot of the CMD for M67, constructed from the available Yadav et al.

(2008) photometry for stars that lie in the field of view of the cluster. Stars that reside along the

2



Figure 1.1: The color magnitude diagram (CMD) for M67is presented here using the available
photometry for stars in the field of view of M67 from Yadav et al. (2008). Note that this CMD is

plotted in terms of the parameters V and B-V. The parameter, V, is the visual magnitude of a
star; the value of V decreases toward the top of the plot, however, this corresponds to brighter

stars. The parameter, B-V, is referred to as the color index of a star and is, in fact, the difference
between the “blue” or B magnitude and the V magnitude of a star. The smaller the value of B-V,
the bluer the star. The yellow stragglers (YSs) observed in this study are mostly located within

the smaller black box. The blue stragglers observed in this study are mostly contained within the
larger gray box.

ridge running from relatively faint and red CMD positions (B − V ∼ 1.0, V ∼ 16.0) to relatively

bright and blue positions, constitute the cluster’s main sequence (MS). The “turnoff” point for the

cluster is located at the brighter, bluer end of the MS (roughly at B − V ∼ 0.6, V ∼ 13.5). Stars

that are located at about the same visual magnitude but are redward of the turnoff constitute the

cluster’s subgiant branch (SGB) and consequently are referred to as subgiant (SG) stars. The red

giant branch (RGB), asymptotic giant branch (AGB) and red clump of the cluster are more difficult

to point out because they are sparsely populated compared to the MS and SGB. The stars that

trace out a wide band from about B − V ∼ 1.0, V ∼ 12.5 to B − V ∼ 1.4, V ∼ 10.0 collectively

reside in the CMD positions that are associated with these evolved states.

3



The photometry of the stars that reside in the CMD regions described above can be under-

stood and predicted by stellar atmosphere models in the context of standard single star evolution

theory. For example, Prialnik (2000) points out in her book on stellar structure and evolution that

the photometry of a MS star and the length of the star’s MS lifetime can be predicted primarily

by the star’s mass. The ability to predict these characteristics lies in the assumption that MS stars

exist in both hydrostatic equilibrium and thermal equilibrium.

The assumption that a MS star exists in hydrostatic equilibrium requires that the star

experiences an outward pressure that is balanced by the gravitational force inward. More massive

MS stars will experience greater gravitational forces than less massive stars and will therefore have

to experience greater outward pressures in order to exist in hydrostatic equilibrium. To achieve a

greater outward pressure requires that a more massive star must attain a higher temperature than

a less massive star. A higher temperature results in two photometric effects: a higher luminosity

and a bluer color. These characteristics result because stars radiate approximately like blackbodies.

Wein’s law states that the peak wavelength in which a star emits light is inversely proportional to

its temperature:

λpeak =
b

T
(1.1)

where b is Wein’s displacement constant. The Stefan-Boltzmann law can be used to show that the

luminosity of the star is directly proportional to its effective temperature:

L = 4πR2σT4
eff (1.2)

where R is the radius of the star and σ is the Stefan-Boltzmann constant. These relationships

show that higher temperatures will result not only in greater luminosities, but also shorter peak

wavelengths, or bluer colors, for more massive stars. These more massive MS stars are therefore

found on the brighter, bluer end of the MS.

The assumption that a MS star exists in thermal equilibrium requires that the star generates

energy at the same rate that it radiates that energy away. Ultimately, this assumption allows the

star’s mass to dictate the amount of time it will spend burning hydrogen on the MS. The amount of

time a star spends burning hydrogen on the MS can simply be thought of as the amount of nuclear

fuel available for burning, divided by the rate at which the star consumes the available fuel (hydrogen

in this case). The fuel available for burning will be proportional to the star’s mass and the rate of

4



fuel consumption equals the rate of energy generation. The assumption of thermal equilibrium for a

MS star requires that the rate of energy generation equal the rate that the energy is radiated away,

i.e. the luminosity. Therefore, the amount of time a star spends burning hydrogen on the MS can

then be expressed in a way that relates the MS lifetime to both the mass and the luminosity of the

star:

τMS ∝
M

L
(1.3)

However, both empirical information as well as manipulations of the stellar structure equations

indicate that along the MS, the luminosity of the stars is proportional to the mass cubed. Therefore,

the time spent burning hydrogen on the MS is inversely proportional to a star’s mass squared:

τMS ∝
1

M2
(1.4)

It can now be seen that more massive stars will reach the end of their MS lifetimes, or “turn off,” and

will evolve away from locations associated with the MS in the CMD before stars with lower masses.

Because the more massive stars are found at the bluer, brighter end of the MS, this indicates that

as the cluster ages, the number of massive stars that have turned off of the MS will increase and the

location of the turnoff point will recede to fainter and redder positions on the CMD.

The SGB, RGB, and AGB phases of evolution are also well understood. Our ability to

model these various evolutionary states can be tested by using a procedure known as isochrone

fitting. The general idea behind generating an isochrone is to model the evolution of single stars of

varying masses that have all been subjected to the same set of cluster parameters. For example, the

isochrone that has been fit to the stars in M67 for the current project (see Figure 1.2) is indicated by

the solid line. This isochrone has been derived from the theoretical photometry of stars of various

masses that each have an initial metallicity value of [M/H] = 0.12 dex, have each been subjected

to an interstellar reddening value of E(B − V) = 0.01 and a distance modulus of (m −M)o = 9.75

and have been allowed to evolve to an age of 3.6 Gyrs. It can be seen from this figure, that the

resulting photometry of single star evolution models as indicated by the 3.6 Gyr isochrone, is capable

of mimicking the observed photometry of the cluster stars.

In addition to the populations of stars in the CMD of M67 that are well understood and

predicted by single star evolution theory, there are other populations of stars whose photometry is not

sufficiently explained. There are two such populations that will be referred to in this introduction:
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Figure 1.2: The CMD plotted here includes only the photometry for stars in the Yadav et al.
(2008) study that have membership probabilities > 60%. The solid line in this plot represents a

PARSEC isochrone1(Bressan et al., 2012) generated for M67 using the values listed in the plot for
the parameters: age, metallicity ([M/H]), reddening (E(B-V)) and distance modulus ((m−M)o).

The dashed line indicates a zero age main sequence (ZAMS) for M67; the ZAMS is estimated by a
100 Myr PARSEC isochrone with the same [M/H], E(B-V) and (m−M)o values that were used to

generate the 3.6 Gyr isochrone.

the yellow straggler stars (YSs) and the blue straggler stars (BSs). The BSs are stars that are both

bluer and brighter than the turnoff for the cluster and are sometimes referred to as an extension

of the cluster’s MS. The majority of the BSs in M67 can be found encompassed by the larger gray

box in Figure 1.1. The YSs are stars that are brighter than the cluster turnoff and have colors that

are intermediate between that of the turnoff and the RGB. The majority of the M67 YSs can be

found in the smaller black box in the Figure 1.1. The observed photometry of the stars in both of

these populations cannot be explained using the current standard theory. The following sections

will identify and discuss the details of some of the complications that arise in attempting to explain

the photometry of both the blue and yellow straggler stars.

1http://stev.oapd.inaf.it/
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1.3 Review of the Yellow Stragglers

The stars that comprise the anomalous stellar population that will be focused on in the

current study are often referred to as the ”yellow straggler stars” (YSs). The population of M67

YSs that were studied for the present work can be seen in Figure 1.3 with their associated photo-

metric uncertainties (Yadav et al., 2008) and their identification numbers assigned presently. Note

that Table 2.1 cross references the identification numbers from different studies for convenience.

Currently, there is no understood evolutionary state that would be associated with the photome-

try exhibited by the YSs, however, similar YS populations have been identified in both open and

globular clusters (Eggen & Sandage, 1964; Kinman, 1965; van den Bergh et al., 1980; Hesser et al.,

1984; Janes & Smith, 1984; Ferraro et al., 1991, 1992; Clark et al., 2004). The existence of YSs in

multiple clusters indicates that they are real population. Subsequently, some of the studies listed

have briefly investigated potential reasons that YSs possess anomalous photometry.

Figure 1.3: The M67 YSs are plotted in this CMD with their associated photometric uncertainties
and the identification numbers assigned in the current work. The M67 BSs are plotted with filled

triangles for reference. Note the 100 Myr, or ZAMS, and 3.6 Gyr isochrones have also been
included for reference.
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The terminology “yellow stragglers” follows that presented by Hesser et al. (1984) and

Ferraro et al. (1991, 1992). However, some authors refer to these objects as “red stragglers” (Janes

& Smith, 1984) and some use the term “blue subgiants” (Kinman, 1965). The lack of a consensus on

something as simple as a name for these objects is likely a result of the fact that there is currently

no consensus on what type of objects the yellow stragglers (YSs) actually are. van den Bergh et al.

(1980) recognized a YS population in the dying globular cluster E3, but referred to them as BSs,

however, Hesser et al. (1984) point out that the BSs referred to by van den Bergh et al. (1980)

actually posses intermediate colors and are not a simple extension of the cluster’s MS. Hesser et al.

(1984) went on to say that “there is no simple or entirely convincing explanation” of the positions of

these stars in the cluster’s CMD. They subsequently offer three potential explanations: 1) the YSs

exist in binaries 2) an “unusual state of stellar evolution” has allowed the YSs to evolve as single stars

from the MS to their current CMD locations or 3) an alternative “unusual state of stellar evolution”

has allowed the YSs to evolve as single stars from the giant branch to their current CMD locations.

Ferraro et al. (1991, 1992) suggest that based on the colors, magnitudes and central spatial locations

of these objects in at least some clusters, these objects could be the result of “spurious blends” of two

stars, implying that these objects could simply be optical binaries. Janes & Smith (1984) target two

M67 YSs in particular, arguing that they can both be explained as spectroscopic binaries and they

state that previous radial velocity data from Mathieu et al. (1986) support this hypothesis. Perhaps

more interestingly, Landsman et al. (1997) report that that one of the YSs involved in the Janes

& Smith (1984) study has a confirmed white dwarf (WD) companion and state that it seems likely

that the system has experienced an episode of mass transfer in its history. Furthermore, Landsman

et al. (1997) state that this YSs photometry may be the result of the evolution of a BS. Clearly,

the picture painted for the YSs is a complicated one with no clear hypothesis that is capable of

explaining the existence of all YSs. The discussions in the following sub-sections will address some

of the issues that arise when considering potential explanations of YSs.

1.3.1 Contaminating Field Stars

One potential explanation for the anomalous photometry of YSs is that these stars are not

true cluster members, but are simply contaminating field stars along the line of site of the cluster

in question. If the YSs are not true cluster members, then they could exhibit photometry that

does not agree with the photometry that is predicted for the true members of the cluster. However,
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while field star contamination may be able to explain the existence of some of the YSs, Hesser et al.

(1984) and Ferraro et al. (1991) determined that there are statistically significant populations of

YSs in the globular clusters E3 and NGC 6171 respectively, that cannot be explained in this way.

Furthermore, four of the ten YS candidates considered for the current study have proper motion

membership probabilities > 80% according to Yadav et al. (2008) (see Table 2.1). In these studies

where the membership of the YSs has been questioned, each determined that at least some of the

stars that possess YS locations in the CMD are likely true cluster members.

1.3.2 Photometric Blends of “Normal” Stars

Another possible explanation for the photometry of YSs is that the observed photometry is

the result of the combined photometry of two “normal” cluster members in either an optical blend

or a binary system. In their work studying the giant branch of M67, Janes & Smith (1984) refer to

two stars considered in the present study (YS 43 and YS 44, see Figure 1.4) as “red stragglers” and

state that they are most easily explained as binaries. This study was based on the photometry of

Eggen & Sandage (1964), Racine (1971) and the previously unpublished photometry of Janes. For

each star, they used a near turnoff star as one component and derived that the second component

must be located on the lower giant branch in order to achieve a composite magnitude and color that

matches that of the observed YS in question. Janes & Smith (1984) were successful in achieving the

observed photometry of both stars using this method and support this finding with the findings of

Mathieu (1983), that both YS 43 and YS 44 exhibit variable radial velocities. The variations in the

radial velocities of these stars suggest that they exist in binary systems.

The current study uses the newer photometry of Yadav et al. (2008) to consider the hypoth-

esis of Janes & Smith (1984) for YS 43 and YS 44. The binary components were derived from the 3.6

Gyr isochrone (Bressan et al., 2012) that was fit to M67 in an attempt to recreate the observed Ya-

dav et al. (2008) photometry of the YSs. It can be seen in Figure 1.4 that the observed photometry

for YS 23 (upper-left panel), YS 24 (upper-right panel) and YS 43 (lower-left panel) is possible to

mimic by combining the photometry of two cluster members in well understood evolutionary states.

However, mimicking the observed photometry for YS 44 (lower-right panel) is more difficult. In this

figure, the composite photometry, which should mimic the observed photometry, is indicated by an

open circle. The CMD location of the composite photometry is the result of blending the B-V and

V magnitudes of any two theoretical components (filled circles) found either near the TO, along the
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SGB or along the RGB. The top two panels of Figure 1.4 show that the observed Yadav et al. (2008)

photometry of the YSs 23 and 24 can be achieved by combining two near turnoff stars of similar

color. It can be seen in the bottom left panel, that the Yadav et al. (2008) photometry can also

be achieved for YS 43 by combining a near turnoff star and a RG, in a similar fashion to Janes &

Smith (1984). However, in the case of YS 44, the bluest, near turnoff star has been chosen as one of

the components, yet the composite photometry is still located redward of the observed photometry.

Using the Yadav et al. (2008) photometry shows that a component bluer than the turnoff for the

cluster would be necessary in order to achieve the observed photometry of YS 44.

1.3.3 Photometric Blends Between Normal and Blue Straggler Stars

In addition to YS 44, the remaining YSs that were not addressed in § 1.3.2 are also not

satisfactorily explained as photometric blends of two normal stars with well understood and modeled

evolutionary states (near TO, SG or RG states). To recreate the observed colors of these remaining

YSs using normal cluster stars would require the use of two stars along the SGB of M67, however,

combining the photometry of two stars with the same magnitude can only result in an increase of

0.75 mag, which is insufficient to account for the roughly 1.5 mag gap in visual magnitude between

the SGB and the faintest of these YSs (YS 46) as can be seen in Figure 1.3.

It was previously mentioned that Ferraro et al. (1991) discovered a population of YSs in

the globular cluster, NGC 6171, and concluded that this population could not be explained as a

contamination of field stars. They state that the locations of the stars in the cluster CMD would

be difficult to explain in the context of standard stellar evolution theory or via photometric errors.

Instead, they propose that these stars could simply be optical binaries and claim that the fact that

almost the entire population of YSs is contained in the central field of the cluster supports this

hypothesis since crowding in the central regions is common. They note that the color-magnitude

regime of the YSs requires a blend of either a SG or a RG star with something blue, like a BS. They

show that forcing a deblending of the observed YSs, requiring one component to be either a SG or

RG, leaves a “nice” BS sequence. A similar situation is observed for the globular cluster, NGC 1904,

according to Ferraro et al. (1992). They find a situation where the YSs observed in NGC 1904

cannot be explained by cluster contamination, and by applying the same deblending procedure they

find that the YSs in this cluster can also be explained by spurious blends of either SGs or RGs and

BSs.
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Figure 1.4: The composite photometry (open circles) from combining the photometry of two
theoretical “normal” components (filled circles) derived from the 3.6 Gyr isochrone of Bressan

et al. (2012). The YS in question is shown with associated uncertainty and labeled with its
identification number from the current work.
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Similarly, in order to achieve the observed photometry for the M67 YSs barring YS 23,

YS 24 and YS 43 (see Figures 1.5 and 1.6) it is necessary for one of the components in the blend to

be a BS (see Figure 1.3). In these plots, one component is chosen from the observed M67 BSs while

the other component is an appropriate TO, SG or RG derived from the isochrone. In particular, it

can be seen in the bottom left panel of Figure 1.5 that using a BS component slightly fainter than

BS 3 would achieve the observed photometry of YS 44, whereas using two “normal” stars could not

produce this observed photometry as was seen in Figure 1.4. Additionally, the theoretical composite

photometry agrees with the observed photometry for the remaining YSs in these plots.

It should be noted however, that issues arise with this explanation as well. Mathieu &

Latham (1986) pointed out that for YS 42, the photometry of a BS and a RG in a binary system are

sufficient to mimic the observed V and B-V photometry of this star, however, the theoretical com-

posite uvby photometry of this system does not agree with the observed uvby photometry reported

by Nissen et al. (1987) for this star. Therefore, in at least some cases, the observed YS photometry

cannot be explained as a photometric binary of a normal star and a BS.

1.3.4 Evolution of BSs

It was previously mentioned that the work of Landsman et al. (1997) reported on a white

dwarf (WD) companion for YS 43. More specifically, they reported on an ultraviolet (UV) detection

of YS 43 (Stecher et al., 1997), which is considered direct evidence of a WD companion. Landsman

et al. (1997) followed up this UV detection with a UV spectroscopic study. The UV spectra were fit

with WD models leading to a derived WD mass of ∼ 0.22M� and a WD temperature of ∼ 16, 000K.

Furthermore, this WD mass and the mass function derived by Mathieu et al. (1990) indicate a YS

mass of roughly 1.5M�. Landsman et al. (1997) determined that these masses in conjunction with an

orbital period of 42.8 days (Mathieu et al., 1990) indicate that the binary system likely experienced

an episode of what is sometimes referred to as Roche Lobe overflow (RLOF) mass transfer in its

history. Landsman et al. (1997) also state that the WD should have cooled to its current temperature

within 75 Myrs since expelling it envelope on the RGB. Thus, Landsman et al. (1997) ultimately

conclude that the observed photometry of YS 43 is likely the result of the evolution of a BS formed by

RLOF mass transfer. The current work will further investigate this specific hypothesis as a potential

explanation for M67 YSs (see § 1.5 for details). Therefore, to outline a better understanding of this

potential relationship between YSs and BSs, a review of the nature of the BSs will follow.
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Figure 1.5: The composite photometry (open circles) from combining the photometry of two
components (filled circles); one component is chosen from the observed BSs and the other is

derived from the 3.6 Gyr isochrone of Bressan et al. (2012). The YS in question is shown with
associated uncertainty and labeled with its identification number from the current work.
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Figure 1.6: The composite photometry (open circles) from combining the photometry of two
components (filled circles); one component is chosen from the observed BSs and the other is

derived from the 3.6 Gyr isochrone of Bressan et al. (2012). The YS in question is shown with
associated uncertainty and labeled with its identification number from the current work.
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1.4 Review of the Blue Stragglers

The blue stragglers (BSs) were first identified by Sandage (1953) as the stars that were both

brighter and bluer than the turnoff in a color magnitude diagram (CMD) of the globular cluster M3.

The population of stars that constitute the BSs in M67 can be seen in Figure 1.1 encompassed by

the larger gray box. If these stars are indeed cluster members and if they are hydrogen burning stars

(as can be interpreted by their appearance as an extension of the MS of the cluster, see below for

further discussion) it can been inferred that these stars are more massive than stars located at the

turnoff. Assuming that these stars are a part of the coeval population of the cluster, they should have

evolved away from the MS. It was from this reasoning about the peculiar CMD locations of these

objects that the name “blue straggler” was derived; they appear to have colors that are bluer than

any “normal” MS star in the cluster, and they appear to “straggle” behind other cluster members

with similar masses in terms of stellar evolution. Since their discovery, BSs have been identified in

the field, open clusters, additional globular clusters and in dwarf galaxies (Stryker, 1993), however,

this discussion will focus mainly on the BSs found in open star clusters.

Typically, for a star cluster in which BSs are present, the CMD locations of the BSs are

bound on the blue side by the cluster’s zero age main sequence, or ZAMS, (see Figure 1.3) estimated

by the 100 Myr isochrone that has been fit to M67 in the current work. As can be seen, the BSs

tend to follow along the ZAMS with scatter that is roughly similar to that seen along the current

MS. This has led to the general hypothesis that these stars experience elongated main sequence,

or hydrogen burning, lifetimes due to some rejuvenation mechanism. Complications arise not only

from the idea that a single mechanism is not likely responsible for all BSs in all populations, but also

from the idea that a single mechanism is not likely responsible for all BSs in any given population.

As previously mentioned, the focus of this discussion will be the BSs found in open clusters, which

are themselves, thought to be form via multiple formation channels.

1.4.1 Potential Formation Channels

Currently, two formation channels are thought to be responsible for the majority of the BSs

in open clusters, and both mechanisms involve interactions between stars that allow the mass of a

main sequence (MS) star to be increased. As discussed in §1.2 increasing the mass of a MS star near

the turnoff could allow that star to occupy a new position along an extension of the MS past the
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turnoff point. The first formation channel relies on direct stellar collisions of main sequence (MS)

stars (Hills & Day, 1976). Direct stellar collisions can involve interactions between two single stars,

a single star and a primordial binary system, or two primordial binary systems. A single-single

stellar collision can result in a fully merged single star with increased mass. A single-binary or

binary-binary collision can result in the merger of the components of a primordial binary and can

ultimately result in a binary system with an eccentric orbit. The second formation channel relies

on what is often referred to as Roche Lobe overflow (RLOF) mass transfer in a close binary system

(McCrea, 1964). In this scenario, the more massive primary component in the binary system evolves

to a giant stage of evolution while the secondary component is still in a MS stage of evolution. If

the primary fills its Roche Lobe, the primary’s stellar material can flow through the inner Lagrange

point and onto the secondary, thus increasing the mass of the secondary and polluting its atmosphere

in the process. The mass of the MS secondary is thus increased allowing it to potentially occupy

a BS position on the CMD. Eventually, the primary evolves to its final white dwarf (WD) stage of

evolution, and the result is a BS-WD binary system with a circular orbit.

Much work has been dedicated to identifying different types of BSs and attempting to

determine the formation channel for each type, however, complications still remain. Hurley et al.

(2005) were able to reproduce the raw number of BSs found in M67 through extensive N-body

simulations, incorporating both formation channels, but Geller et al. (2013) point out that Hurley’s

simulation produces too many short period BSs and that the orbital parameters and hard binary

frequency of the simulated BSs did not match the observed populations of either M67 or another

old, open cluster, NGC 188. The populations of BSs in M67 and NGC 188, however, are not entirely

similar. The BS population of M67 is found to be spatially concentrated toward the center of the

cluster (Mathieu & Latham, 1986) with no dominant formation mechanism (Leonard, 1996), whereas

the BS population in NGC 188 exhibits a bimodal spatial distribution (Geller et al., 2008; Geller &

Mathieu, 2012) and the individual BSs are thought to be produced predominantly by the RLOF mass

transfer formation mechanism (Geller & Mathieu, 2011). Ferraro et al. (1997, 2004) and Mapelli

et al. (2004) each suggest that the similar bimodal spatial distributions of BSs found in globular

clusters are likely due to different formation mechanisms operating in different regions of the cluster,

i.e., BSs that are spatially located closer to the cluster core where stellar densities are typically

higher are more likely to be formed by collisions and mergers, and BSs located in the outer regions

of the cluster are more likely to be formed by (RLOF) mass transfer. However, Geller & Mathieu
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(2011) found that the majority of the BSs in NGC 188 have parameters that are consistent with the

RLOF mass transfer scenario. Furthermore, Geller & Mathieu (2012) determined that there is no

significant difference in the orbital parameters associated with the cluster core and halo populations

of BSs in NGC 188, and conclude that there is no significant difference between these populations.

Geller & Mathieu (2012) further conclude that the bimodal distribution is due to dynamical friction

in the cluster which results in mass segregation.

Geller et al. (2013) report on their N-body simulations of NGC 188, stating that these sim-

ulations were successful at recreating the distributions of orbital periods, eccentricities, companion

masses and mass ratios of the observed BSs. Additionally, they found that the majority of the BSs

in the simulation formed via RLOF mass transfer, in agreement with the Geller & Mathieu (2011)

finding that the majority of the BSs in NGC 188 likely formed through a mass transfer scenario.

However, Geller et al. (2013) found that their N-body simulations of NGC 188 underproduced BSs

and simultaneously overproduced MS-WD binary systems. The MS-WD binary systems can arise

from common envelope evolution in a binary system. Geller et al. (2013) conclude that this dis-

crepancy between the simulation populations and the observed population arises from incorrectly

imposing mass transfer on the progenitors of the MS-WD binaries. Specifically, they suspect that the

computation of the critical mass ratio, qc, is determined incorrectly due to simplifying assumptions.

The critical mass ratio determines whether or not a binary system undergoes common envelope

evolution in the N-body simulations, and that ratio is determined for these models assuming com-

pletely conservative mass transfer, an unlikely scenario according to Woods et al. (2012), especially

during the early stages of mass transfer when mass loss rates of the giant star are high. Geller et al.

(2013) propose that more accurate determinations of this critical mass have the potential to adjust

the number of BS-WD and MS-WD binaries that are produced and could possibly account for the

observed discrepancy.

1.4.2 Mass Transfer and Stellar Evolution

It is clear from the previous discussion that there is still much work to be done to fully

understand the complete story behind the BSs. However, what cannot be ignored from the previous

discussion is that RLOF mass transfer is a plausibly dominant formation channel for BSs. Further-

more, in § 1.3.4 it was shown that at least one of the YSs in the current study is believed to be the
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result of the evolution of such a mass transfer BS. Therefore, the current sub-section relies on the

work of Tian et al. (2006) to consider mass transfer binary evolution.

To investigate how BSs might evolve, Tian et al. (2006) investigated the stellar evolution of

mass transfer binary systems. To conduct this study they considered a close binary system subject

to stable RLOF. First, evolution of the donor was carried out and mass transfer rates were computed

for various ages of the star. These mass transfer rates were then used to adjust the mass of the

accretor in such a way so that the evolution of both components in the binary was synchronized. To

generate an evolutionary track for the binary system in a CMD, Tian et al. (2006) synthesized the

total light of the binary system. Ultimately, it was determined that after mass transfer terminates,

the binary system will evolve toward the BS region of the CMD and will spend enough time there

(∼ 1.2 Gyrs) to be observed as a BS, until the accretor evolves away from the MS. Sills et al. (2009)

later noted that even though Tian et al. (2006) do not compare their stellar evolutionary track for

a BS formed by RLOF to that of a normal star, the evolutionary track appears “quite normal after

mass transfer ceases.” Sills et al. (2009) remarked that both their work on collisional BSs and the

work of Tian et al. (2006) on mass transfer BSs indicate that “post-main sequence evolution...is

quite robust to disturbances early on the main sequence.”

To consider the evolutionary tracks of single stars in M67, Figure 1.7 shows the BaSTI2

stellar evolution tracks (Pietrinferni et al., 2004) plotted on top of the Yadav et al. (2008) photometry

for the likely members of M67. McCrea (1964) determined that the upper limit for the mass of a BS

formed via RLOF mass transfer would be roughly two times the mass of the turnoff for the cluster.

In this study, the turnoff mass was determined from the 3.6 Gyr PARSEC3 isochrone (Bressan

et al., 2012) to be ∼ 1.3 M�. Thus, evolutionary tracks for stars with masses from 1.3 − 2.6 M�

were generated. If it is assumed that the YSs are the progeny of the BSs and that they were formed

via RLOF mass transfer, information on their masses can be gleaned from such a diagram. Making

this assumption, it can be seen in Figure 1.7 that the locations of the YSs do not disagree with the

upper mass limit of the cluster’s BSs (∼ 2.6 M�) according McCrea (1964). This finding that the

YSs of M67 do not disagree with the M67 BS upper mass limit is encouraging when considering a

mass transfer origin for YSs, however, it is far from evidence. The following section will describe

the evidence that has been sought in this investigation of a mass transfer origin for YSs.

2http://albione.oa-teramo.inaf.it/
3http://stev.oapd.inaf.it/
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Figure 1.7: This plot shows the evolutionary tracks of stars more massive than the turnoff for M67.
The turnoff mass of M67 was determined in this study to be ∼ 1.3 M�. According to McCrea

(1964), the upper limit of the mass of a BS is roughly twice the turnoff mass, therefore
evolutionary tracks were produced for stars up to 2.6 M� for this plot. The observed YSs are

marked with filled circles and their identification numbers from the current study.
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1.5 The Current Study

In particular, the present work aims to investigate the hypothesis that the YSs in M67

could be the result of the evolution of RLOF mass transfer BSs by considering the radial velocities

and the chemical abundances of the potential members of this previously described anomalous

stellar population. The previous sections have established that one of the predominant formation

mechanisms for BSs, and therefore, potentially YSs, is RLOF mass transfer; this process was briefly

described but deserves a more detailed review here to justify the evidence that has been sought to

investigate mass transfer as a formation mechanism for YSs in the current study.

RLOF mass transfer happens in a close binary system where one of the stars, the primary, or

donor star, is more massive than the secondary, or accretor. The donor will evolve more quickly than

the accretor due to its larger mass. It will likely go through its red giant stage and asymptotic giant

stage while the accretor remains on the MS. If the donor star fills its Roche Lobe when it becomes

a giant, the accretor can gain material from the donor through the binary system’s inner Lagrange

point and become “polluted” by donor material. Subsequently, the donor star will continue to evolve,

eventually becoming a WD, leaving the accretor to be detected. The accretor in this scenario can

be expected to exhibit two specific characteristics.

The first, perhaps obvious, characteristic is that the accretor will exhibit a variable radial

velocity as long as the binary system possesses a non-zero inclination angle. The donor star rem-

nant, now a WD companion, will likely be undetectable in the optical range of the electromagnetic

spectrum due primarily to its size, however, such companions may be observed in the ultraviolet

(UV) range like in the case of YS 43 (Landsman et al., 1997). These UV detections can be difficult

to obtain, however, since they require the use of space based telescopes. Furthermore, Landsman

et al. (1997) reported that the WD companion of YS 43 was the faintest WD detected. Therefore,

the detection of variable radial velocities can provide a useful substitute for UV detections.

The second characteristic that can potentially be expected in mass transfer progeny, is an

overabundance of slow neutron capture (s-process) elements in the spectrum of the accretor. Though

there are likely additional cites for s-process nucleosynthesis, it is believed that asymptotic giant

branch (AGB) stars are the primary site for s-processing (see review by Meyer (1994)). Therefore,

if the accreting star has been polluted with material from an AGB companion, it may show such

s-process element enhancements in its spectrum–a feat that theoretically cannot be accomplished by
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a star that has not experienced mass transfer and has not yet reached its AGB phase of evolution.

s-process element enhancements have been detected in the spectra of stars that are expected to have

experienced RLOF mass transfer and are reported in the literature. For example, the enhancement

of the s-process elements Sr and Ba are seen in the so-called Ba giants and Ba dwarfs (McClure,

1983; North & Lanz, 1991). These stars are found to be metal poor (North et al., 1994) and are

expected to have formed via RLOF mass transfer. Gray et al. (2011) supports this hypothesis with

reports on far ultraviolet excesses detected for Ba dwarfs, indicating that these stars do indeed

possess WD companions. A second, potentially more closely related example, is that of the blue

metal poor stars studied by Sneden et al. (2003) and Preston & Sneden (2004). Enhancements of

the s-process elements Ba and Pb, in addition to C enhancements, were found in the BMPs that

existed in binaries. These stars are also believed to have experienced an episode of RLOF mass

transfer from an AGB donor and Sneden et al. (2003) conclude that the BMP binaries are in fact

true field BSs.

The observations of the M67 targets span the course of about 200 days (see §3 for further

details). The time frame of the observations makes it possible to determine whether or not the

radial velocity of a target is variable, though the data obtained do not provide enough information

to determine an orbital period or other orbital parameters. If a YS target exhibits a variable radial

velocity, it suggests that the target exists in a binary system, even if the companion star is not

detectable. The radial velocities therefore, could be useful in either debunking or supporting RLOF

mass transfer as the formation mechanism responsible for individual members of the YS population

in M67.

Additionally, the observations of the the M67 targets were taken at ten different wavelength

ranges, allowing coverage of much of the electromagnetic spectrum between 4000 and 9000 Å. This

amount of wavelength coverage enables abundance determinations of a variety of elements so that

the overall chemical makeup of these stars can be considered in addition to determining s-process

element abundances. The s-process element abundances of these anomalous stars could potentially

provide additional support either in favor of, or against a RLOF mass transfer hypothesis on an

star-by-star basis.

Finally, it is noted that previous work on BSs has shown that: 1) they tend to be found

in binary systems and thus exhibit variable radial velocities and 2) they are subject to dynamical

cluster interactions that result in mass segregation. These findings indicate that BSs can potentially
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be subject to peculiar radial velocities or proper motions due to dynamical effects. Because it is

possible that the the YSs may be the progeny of evolved mass transfer BSs, the YSs may also be

subject to peculiar motions. Therefore, it is important to investigate all of the stars that reside in YS

locations on the CMD of M67, regardless of previous radial velocity or proper motion membership

determinations. Because the number of stars that reside in YS CMD positions in M67 is already

small (∼ 13), it is not a difficult task to study all possible YS candidates regardless of prior cluster

membership and/or radial velocity determinations. The current work accomplishes exactly this task.
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Chapter 2

Target Selection

To select targets of observation for this study, a color-magnitude diagram (CMD) was plot-

ted for the stars in M67 using Montgomery et al. (1993) photometry. Targets were then selected

according to their locations in the CMD. A variety of targets were selected for observation including

those that reside in both “anomalous” and “normal” locations on the CMD, however, target selec-

tions were restricted to stars in M67 that are brighter than 13th magnitude due to the limitations of

the observing instrumentation described in §3. A total of 57 targets were selected and classified into

six groups: 1) targets that were located in the region of the turnoff for the cluster are termed turnoff

stars (TOs) 2) targets located at positions slightly blueward of the turnoff are termed “anomalous

turnoff stars” (ATOs) 3) targets that are both brighter and bluer than the turnoff, appearing to

create an extension of the main sequence are termed blue stragglers (BSs) 4) targets located along

the subgiant branch are termed subgiants (SGs) 5) targets located along the red giant branch are

termed red giants (RGs) and 6) targets that are brighter than the turnoff with colors intermediate

between that of the turnoff and the red giant branch are termed “yellow stragglers” (YSs).

It was noted in §1.5 that cluster membership studies are potentially uninformative in the

cases of the BSs and the YSs, however, the membership probabilities of “normal” MS, TO, SG and

RG stars are likely more reliable and can help to establish the true structure of the CMD of the

cluster. The Montgomery et al. (1993) photometry, often used in the literature, has no accompanying

cluster membership probability data. Therefore, to produce a CMD for M67 in which only likely

cluster members are presented, an attempt was made to use an independent cluster membership

probability study for M67 performed by Balaguer-Núñez et al. (2007). However, in order to cross
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identify each of the nearly 2000 stars between the two studies requires cross identifying each star’s

right ascension (RA), declination (DEC) and magnitude values. This process is both time consuming

and potentially prone to error due to 1) the fact that the that the RA and DEC values are not

identical across studies since they are reported for a different epoch for each study and 2) the

fact that the magnitudes are not identical across studies due to inherent photometric calibration

uncertainties. In the end, a study completed by Yadav et al. (2008) as part of the WIYN Open

Cluster Survey (WOCS) was employed instead. The Yadav et al. (2008) study simultaneously

presented photometry and membership probabilities determined via proper motions for stars in the

field of view of M67. A CMD was created from the Yadav et al. (2008) target list using only stars with

membership probabilities > 60% (see Figure 1.2). The use of the Yadav et al. (2008) photometry

created the much more manageable task of only having to cross identify 57 of the current study’s

targets of observation between the Yadav et al. (2008) and Montgomery et al. (1993) studies. The

photometry for the 57 targets was fairly consistent between the two studies.

Each target of observation was selected solely by its Montgomery et al. (1993) photometry

and thus location in the CMD. Therefore, some of the targets have low membership probabilities

according to Yadav et al. (2008). The membership probabilities for each star and the photometry

from both Montgomery et al. (1993) and Yadav et al. (2008) are summarized in Table 2.1. The

columns included in this table contain the following in order from left to right: stellar identifications

from the current study (McGahee); identification numbers from Sanders (1977) (S77); identification

numbers, visual (V) photometry, mean errors in V, color index (B-V) photometry and mean errors

in B-V from Montgomery et al. (1993) (MMJ); identification numbers, V photometry, RMS uncer-

tainties in V, B photometry, RMS uncertainties in B, B-V photometry (calculated in the present

work), propagated B-V uncertainties (calculated in the present work) and membership probabilities

from Yadav et al. (2008) (Y08).

Figure 2.1 shows the CMD locations of each of the 57 targets of observation. The different

classification groups are indicated by the symbols in the legend. Figures 1, 2 and 3 in Appendix A

are zoomed in on different regions of the plot found in Figure 2.1 for further reference. Most of

the targets are plotted according to their Yadav et al. (2008) photometry, however, in a few cases

the target could not be cross identified between the Yadav et al. (2008) and Montgomery et al.

(1993) studies. In such cases, the target has been plotted according to its Montgomery et al. (1993)

photometry. In Figures 1, 2 and 3 each target has been plotted with its corresponding identification
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number from the present study. The targets that have identification numbers enclosed in parentheses

are targets that are plotted according to their Montgomery et al. (1993) photometry. These same

targets lack the Yadav et al. (2008) membership probability data.
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Figure 2.1: The CMD positions of all 57 targets of observation are shown in this plot. The six
categories that the targets were grouped into are indicated in the legend. See Figures 1, 2 and 3
for more detail. The ZAMS and 3.6 Gyr isochrone from Figure 1.2 have been included here for

reference.
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Table 2.1: Photometry Data

McGahee S77 MMJ Y08 Membership
V e(V) B-V e(B−V) V e(V) B e(B) B-V e(B−V) Probability

Star ID ID (mag) (mag) (mag) (mag) ID (mag) (mag) (mag) (mag) (mag) (mag) (%)

BS 1 1280 5940 12.257 0.016 0.260 0.024 1377 12.250 0.008 12.456 0.002 0.206 0.008 98

BS 2 977 6481 10.030 -0.073 813 10.037 0.013 9.872 0.011 -0.165 0.017 98

BS 3 997 5667 12.126 0.005 0.458 0.009 997 12.136 0.002 12.590 0.003 0.454 0.004 97

BS 4 968 6479 11.280 0.130 693 11.260 0.013 11.369 0.029 0.109 0.032 97

BS 5 1434 6510 10.700 0.110 714 10.617 0.018 10.664 0.005 0.047 0.019 97

BS 6 6006 12.278 0.385 148 12.248 0.029 12.625 0.000 0.377 0.029 96

BS 7 752 6476 11.320 0.295 779 11.305 0.013 11.556 0.006 0.251 0.014 96

BS 8 1066 6490 10.990 0.110 1430 10.940 0.016 10.963 0.025 0.023 0.030 96

BS 9 1263 6501 11.063 0.190 1191 11.067 0.007 11.241 0.011 0.174 0.013 96

BS 10 1082 6493 11.251 0.415 1528 10.982 0.054 11.276 0.046 0.294 0.071 84

BS 11 1284 6504 10.940 0.220 1390 10.915 0.009 11.071 0.010 0.156 0.013 76

BS 12 1013 6484 11.550 0.410 1099 11.531 0.007 11.935 0.007 0.404 0.010 75

BS 14 975 6480 11.078 0.430

BS 15 1466 6511 10.600 0.340

SG 16 794 5318 12.862 0.010 0.941 0.015 1456 12.841 0.008 13.784 0.010 0.943 0.013 100

SG 17 781 5362 12.725 0.018 0.739 0.026 1322 12.713 0.006 13.448 0.008 0.735 0.010 100

SG 18 1077 5451 12.595 0.003 0.637 0.005 1503 12.567 0.008 13.266 0.014 0.699 0.016 100

SG 20 1245 6114 12.934 0.919 973 12.944 0.003 13.848 0.002 0.904 0.004 99

SG 21 6169 12.906 0.970 1777 12.870 0.003 13.802 0.009 0.932 0.009 99

SG 25 1060 5651 13.051 0.018 0.877 0.025

SG 26 6228 12.688 0.622

SG 33 1234 5896 12.650 0.011 0.574 0.017 864 12.617 0.010 13.224 0.010 0.607 0.014 100

SG 36 1268 6177 12.647 0.030 0.581 0.045 1258 12.616 0.004 13.203 0.002 0.587 0.004 99

RG 22 1305 5997 12.230 0.993 1546 12.245 0.014 13.231 0.003 0.986 0.014 96

RG 41 1277 6502 11.630 1.050 1327 11.598 0.008 12.655 0.011 1.057 0.014 98

TO 19 6037 13.037 0.667 2045 12.948 0.006 13.541 0.002 0.593 0.006 100

TO 27 5061 13.025 0.574 1200 12.989 0.009 13.589 0.003 0.600 0.009 100

TO 28 5284 12.844 0.005 0.522 0.007 1752 12.751 0.006 13.289 0.002 0.538 0.006 100

TO 29 731 5335 13.065 0.534 336 13.004 0.009 13.561 0.004 0.557 0.010 100

TO 30 740 5354 13.482 0.551 535 13.451 0.011 14.004 0.001 0.553 0.011 100

TO 31 736 5389 13.374 0.554 426 13.333 0.006 13.908 0.004 0.575 0.007 100
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Photometry Data 2.1 – Continued

McGahee S77 MMJ Y08 Membership
V e(V) B-V e(B−V) V e(V) B e(B) B-V e(B−V) Probability

Star ID ID (mag) (mag) (mag) (mag) ID (mag) (mag) (mag) (mag) (mag) (mag) (%)

TO 32 5494 13.594 0.560 1931 13.551 0.004 14.137 0.009 0.586 0.010 100

TO 34 1441 6336 13.151 0.015 0.572 0.022 889 13.148 0.009 13.729 0.003 0.581 0.009 100

TO 35 5850 12.777 0.548 29 14.332 0.014 0.000 99

TO 37 5042 12.856 0.015 0.531 0.022 930 12.793 0.012 13.327 0.014 0.534 0.018 97

TO 0 1456 6224 12.705 0.011 0.575 0.016 1118 12.712 0.008 13.256 0.004 0.544 0.009 94

TO 39 5132 13.411 0.562 382 13.587 0.009 14.204 0.003 0.617 0.009 93

TO 40 5222 12.988 0.540

TO 49 5191 12.700 0.482 1064 12.789 0.014 13.328 0.013 0.539 0.019 100

TO 50 5239 12.846 0.022 0.501 0.033 1783 12.722 0.018 13.271 0.005 0.549 0.019 100

TO 52 1036 5833 12.784 0.040 0.487 0.056 1252 12.787 0.015 13.294 0.002 0.507 0.015 100

TO 55 1225 6135 12.831 0.504 770 12.863 0.002 13.395 0.009 0.532 0.009 0

YS 13 1425 6509 11.721 0.510 413 11.373 0.003 11.968 0.006 0.595 0.007 0

YS 23 5848 12.253 0.623 2236 12.145 0.005 12.725 0.004 0.580 0.006 5

YS 24 1447 6293 12.429 0.618 980 12.427 0.000 13.031 0.009 0.604 0.009 1

YS 42 1072 6491 11.315 0.610 1476 11.257 0.014 11.921 0.011 0.664 0.018 98

YS 43 1040 6488 11.520 0.870 1289 11.443 0.007 12.343 0.005 0.900 0.009 97

YS 44 1237 6498 10.780 0.940 892 10.696 0.012 11.661 0.009 0.965 0.015 96

YS 45 1023 6487 10.544 0.570 1166 10.452 0.019 11.016 0.040 0.564 0.044 84

YS 46 838 6478 11.520 0.700 2047 11.435 0.008 12.160 0.007 0.725 0.011 0

YS 47 1190 6496 11.260 0.620 90 11.070 0.027 11.769 0.011 0.699 0.029 0

YS 48 1327 6507 11.103 0.850 1915 10.880 0.012 11.644 0.006 0.764 0.013 0

UK 51 1031 5741 13.260 0.008 0.464 0.012 1235 13.273 0.007 13.735 0.003 0.462 0.008 100

UK 53 2223 5871 13.329 0.009 0.495 0.013 1411 13.299 0.009 13.792 0.002 0.493 0.009 99

UK 54 946 5698 13.626 0.473 305 13.580 0.006 14.108 0.011 0.528 0.013 96

UK 56 1005 5571 12.651 0.011 0.517 0.016

UK 57 6180 13.303 0.007 0.459 0.010
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Chapter 3

Observations

Observations of all target stars were performed with the WIYN 3.5 m telescope and HYDRA

multiobject spectrograph at Kitt Peak National Observatory near Tuscon, AZ during four observing

runs between October 2011 and May 2012. The 316 lines/mm echelle grating, the blue science fiber

cable, the Bench Camera and the 2600x4000 Thinned STA1 CCD with 12 µm-pixels were employed

for all observations yielding a dispersion of about 0.12 Å/pixel and a resolution of about 0.25 Å. Over

the course of the observing runs, multiple observations were made at each of ten different wavelength

settings resulting in 45 observations for most stars. These wavelength settings are listed in Table 3.1

with the corresponding date of the observation, the resolving power (R = λ/∆λ) for that wavelength

setting, the number of observations made and the elemental lines of interest. Exposure times were

varied to achieve a typical S/N ∼ 150. Standard reduction methods including overscan correction,

bias removal, flat fielding and scattered light corrections were applied to all observed spectra via

IRAF1. Wavelength calibrations for the observed spectra were obtained from Th-Ar comparison

lamp spectra.

Observations of the solar spectrum were also obtained at each wavelength setting using the

instrumental setup described above. To accomplish this task, observations of the sky were taken at

either dawn or dusk to yield solar spectra in which radial velocity components due to the motions

of the earth and sun are not present.

1IRAF is distributed by the National Optical Astronomy Observatories, which are operated by the Association of
Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.
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Table 3.1. Wavelength Regions

Date λλ Resolving Number of Lines of
yr/mo/day (Å) Power Observations Interest

2011 Oct 28 5745-5985 23000 6 Fe, Ba, Ti
2011 Oct 30 6055-6300 25000 4 Fe, Ni, Si, Ca, Ti, Ba, Na
2011 Dec 21 4980-5235 20000 7 Cr, Y
2011 Dec 21 7640-7985 31000 5 Fe, O
2011 Dec 23 4070-4285 17000 3 Cr, Pb
2011 Dec 24 4070-4285 17000 3 Cr, Pb
2011 Dec 24 8240-8820 34000 5 C
2012 Feb 19 6430-6840 27000 2 Fe, Ni, Ca, Al, C, Li
2012 Feb 20 8060-8430 33000 3 N
2012 May 18 4580-4770 19000 2 Cr, Ti
2012 May 19 6165-6465 25000 4 Fe, Cr, Ni, Si, Ca, Ti, Ba, Na

Note. — This table details the observations that were made at each wavelength setting
over the course of four observing runs. Note that the 4070-4285 Åsetting was observed
on two nights, December 23 and December 24.

During both target and sky observations, 57 fibers of the science fiber cable were utilized to

simultaneously image the selected target stars in M67 and sky respectively. As will be discussed in

§ 4, when a stellar spectrum is compared directly to a solar spectrum for the purposes of determining

a radial velocity in the present work, the solar spectrum used in the comparison was obtained using

the same fiber on which the star in question was observed.

In addition to the observations described above, a set of telluric absorption line spectra

taken by J.R. King at McDonald Observatory will be referred to in § 4. These spectra were taken

with the McDonald Observatory 2.7 m telescope and the 2D-coudé spectrograph yielding a resolving

power of of R = 60, 000. Further details on this set of observing instrumentation can be found in

King (1997).
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Chapter 4

Radial Velocity Determinations

The radial velocity of a star is defined as the speed that the star moves either toward

(negative values) or away from (positive values) an observer. This movement will result in a Doppler

shift of the spectral features observed for a star according to:

∆λ =
λrest ∗ vr

c
(4.1)

where λrest is the rest wavelength of a particular feature, vr is the radial velocity of the star and c

is the speed of light. Ideally, one compares a stellar spectrum which is expected to exhibit this type

of Doppler shift to a template spectrum which is expected to exhibit spectral features at their rest

wavelengths. This comparison can be used to determine the amount by which the stellar spectrum

has been Doppler shifted, and in turn, to determine a radial velocity for the star. Figure 4.1 shows

an observed solar template spectrum that ideally exhibits spectral features at their rest wavelengths.

It also shows an observed stellar spectrum for YS 47 which is Doppler shifted to longer wavelengths,

or redder colors. A radial velocity can be computed for the YS using IRAF’s FXCOR package

which Fourier transforms of each spectrum and convolves the two transforms to compute a cross

correlation function (CCF). The amount by which the stellar spectrum is shifted from the template

spectrum is derived from the location of the peak of the CCF which can then be converted into an

associated radial velocity. The uncertainty reported by FXCOR measures the goodness of fit of the

CCF and is typically an underrepresentation of the uncertainty in the radial velocity determination

for the object. In the case of a resolvable double lined spectroscopic binary (SB2) system the cross
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correlation will generate a function with a double peak where each peak corresponds to an individual

component of the binary system. FXCOR is capable of deblending a double peaked CCF so that

one can determine the shift of each peak individually. Using this capability, radial velocities were

computed for each component in the cases where the target was an SB2 system.

Figure 4.1: Example spectra are shown for the solar template spectrum (solid black line) and a
stellar spectrum for YS 47 (dashed gray line).

Radial velocities were initially determined for the each TO target by cross correlating each

of the 45 observed stellar spectra with a co-added solar template spectrum that was observed with

the same optical fiber. However, this process revealed two sources of systematic shifting of the radial

velocity data, both of which can be seen in Figure 4.2 for four of the TO stars. These types of shifts

were present in the radial velocity data for all of the TO stars, but the problem can be illustrated

using just these four stars. These shifts in the radial velocity data will be discussed presently, because

in one case, the shifts prompted a different approach to computing the radial velocities of the stars.

In the second case, it was determined that the radial velocity data should not be used in computing

the statistics for the radial velocity data.
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Figure 4.2: Radial Velocity Plots for TO0, TO27, TO35 and TO37 illustrating systematic shifts in
the radial velocity data.
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4.1 The λλ6430-6840 Region

The shift in the λλ6430-6840 region radial velocity data appears to be shifted roughly

15 km/s above the average radial velocity for the remaining wavelength regions. This shift is likely

caused by an instrumental shift of both the solar and stellar spectra on the CCD. The velocity

dispersion of the CCD is ∼ 9.26 km/s/pixel, therefore, a shift of 15 km/s in the radial velocity data

corresponds to a shift of the data on the CCD by ∼ 1.5 pixels. A shift of this size could have been

caused by reconfiguring the telescope and associated equipment multiple times between the time

that the stellar observations for this region were made at the beginning of the night, and the time

that the solar template spectra were taken at the end of the night.

To adjust for this instrumental shift, individual telluric absorption lines were utilized. Tel-

luric absorption lines are lines that are present in the observed solar template and stellar spectra

due to observing through earth’s atmosphere. In ideal spectra, these lines are expected be located

in identical positions on the CCD for both the solar template and stellar observations. If the telluric

lines are located in different positions on the CCD, as was the case for the λλ6430-6840 region, it

indicates that the data have been shifted on the CCD, and does not correspond to a radial velocity

shift of the spectral data. These telluric lines can be, and were, used to remove the instrumental

shift before performing a cross correlation to determine a true heliocentric radial velocity for each

TO star.

In most cases, five telluric lines were located and their positions were measured for each

TO and its corresponding solar template. These locations were compared to the locations of the

telluric lines in spectra observed by J. R. King at McDonald Observatory using the observing setup

described in §3 to determine a corrective shift from each of the individual telluric lines. These

individual corrective shifts were then averaged for each TO star. Computing the corrective shifts in

this way, however, introduces an additional systematic uncertainty to the radial velocity data. The

assumption that the shift in this region is instrumental in nature, indicates that the shift should

be the same for each star. Therefore, the standard deviation of the mean shifts computed for all

of the TOs indicated that radial velocities could be measured to no better than ±1.0 km/s for this

particular wavelength region.

Though it is most evident in the λλ6430-6840 region, instrumental shifting is likely present

in the radial velocity data for all of the wavelength regions. The correction technique discussed
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above can be difficult to accomplish because, as was previously mentioned, it relies on the presence

of telluric absorption lines in the spectra. In most wavelength regions the number of telluric lines is

limited, so it is likely that correcting each wavelength region for instrumental shifts would introduce

a typical additional systematic uncertainty of ±1.0 km/s to all of the radial velocity data. There

is, however, a method to avoid introducing this amount of systematic uncertainty into the radial

velocity data for each star. Recall that the instrumental shift imposed on the spectra is assumed to

be the same for each exposure of the target stars. Therefore, using a chosen stellar spectrum from

an exposure as the template spectrum can provide a radial velocity for each of the remaining stars

in the exposure relative to the chosen stellar template and can eliminate the effects of any potential

instrumental shift. This approach was used in the end to determine the radial velocities of the target

stars in the current work, and will be described in more detail in §4.3.

4.2 The λλ8060-8430 Region

It can be seen in Figure 4.2 that the radial velocity data for the λλ8060-8430 region corre-

spond to roughly −2 km/s for each of the TOs presented. The reason for this is that the spectrum

in this region is heavily dominated by telluric absorption lines caused by observing through the

earth’s atmosphere. As previously mentioned, in ideal spectra, these telluric absorption lines will be

located in identical positions on the CCD for both the solar template and stellar spectra. Therefore,

a cross correlation between these solar template and stellar spectra that are dominated by telluric

absorption lines will yield a corresponding “radial velocity” value of zero because the CCF will be

dominated by those telluric lines as well. The fact that the radial velocity derived from this region

is −2 km/s implies that there is also some instrumental shift imposed on this region that is smaller

but similar to the instrumental shift seen in the λλ6430-6840 region. The cross correlation of the

telluric lines in this case simply measures the amount of instrumental shift.

In order to correct for this effect, the amount of instrumental shift in a given spectrum was

first determined by cross correlating a region of the spectrum that is known to be populated by only

telluric lines–λλ8223-8236 with the same region in the McDonald telluric absorption spectra observed

by J. R. King. This procedure was performed for both the stellar spectra and solar template spectra

to determine the shift present in each spectrum and then each individual shift was removed from

the corresponding spectrum. Then five non-telluric lines (∼ λ 8085.2, λ 8183.2, λ 8248.5, λ 8327.1,
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λ 8387.8) were located in both the stellar and solar template spectra to be used in a cross correlation

to determine a heliocentric radial velocity for the star in question. This process was repeated for

each of the four observations in this region.

In this case, each application of a correctional shift to a spectrum introduced an additional

uncertainty. The uncertainty introduced was computed in the cross correlation to determine the

amount of correctional shift to be applied. For a given star, the uncertainty introduced by shifting

the co-added solar spectrum was added in quadrature to the uncertainty introduced by shifting the

stellar spectrum. The total shift uncertainty was then added linearly to the uncertainty computed

in the heliocentric radial velocity cross correlation.

4.3 A Final Approach to Determining Radial Velocities

Because a multiobject spectrograph was used for observations, all targets were imaged si-

multaneously for a given exposure, thus, the amount of instrumental shift is presumably the same for

each fiber (or target) in a given exposure. Replacing the solar spectrum template, which is subject

to a different amount of instrumental shift than the targets, with a stellar spectrum template that

is subject to the same amount of instrumental shift as all of the other targets, eliminates the need

to correct for the instrumental shift imposed on the stellar spectra. Performing a cross correlation

between a given target and a stellar template yields a radial velocity for the target in question

relative to the chosen stellar template and removes the effects of the instrumental shift.

In order to use a stellar spectrum as a template, it is first necessary to select a target with

a constant radial velocity and then to determine a zero point heliocentric radial velocity for that

template star. Both the TOs and the SGs were surveyed to select the template star since they would

likely provide the most “normal” set of stars of in the target sample. Each of the 13 TOs and 11

SGs in the target list were cross correlated with their corresponding co-added solar spectra for each

wavelength region, barring the discrepant λλ6430-6840 and λλ8060-8430 regions. The turnoff star,

TO 0, showed the least amount of variation when its radial velocity values were computed in this

way; the standard deviation of the radial velocity measurements for this star was 0.74 km/s.

To determine the heliocentric radial velocities for each observation of TO 0, three methods

were employed: 1) for the λλ6430-6840 region, the instrumental shifts were corrected before de-

termining heliocentric radial velocity measurements using the method described in §4.1 2) for the
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λλ8060-8430 region, the instrumental shifts were corrected before determining heliocentric radial

velocity measurements using the method described in §4.2 3) for the remaining wavelength regions,

no corrections were made before cross correlations were performed between the stellar spectrum and

the corresponding co-added solar spectrum for each observation to determine the remaining values

for the heliocentric radial velocity of TO 0. A plot of the all of the heliocentric radial velocity mea-

surements for TO 0, including the corrected λλ6430-6840 and λλ8060-8430 measurements, can be

seen in the top panel of Figure 4.3. The 45 heliocentric radial velocity measurements were averaged

to determine a mean “zero point” heliocentric radial velocity of vh,o = 33.6± 0.1km/s.

Heliocentric radial velocities were determined for the observations made in the λλ8060-8430

region using the method prescribed in §4.2 for each star. In all remaining wavelength regions, radial

velocities were computed using the following method. For a given target, a cross correlation was

performed between each individual spectrum of the target and the corresponding template spectrum

for TO 0 from the same observation. This yielded a radial velocity for the target relative to the

template TO 0. The zero point heliocentric radial velocity for TO 0, vh,o, was then added to each

relative radial velocity measurement of the target to determine a heliocentric radial velocity for each

observation made at each wavelength region.

Once heliocentric radial velocities had been computed for all observations in all wavelength

regions for a target, the null hypothesis that the target has a constant radial velocity was adopted

and the following were computed excluding the λλ8060-8430 region data (see §4.4 below for details):

1) a mean heliocentric radial velocity, vh 2) a sample standard deviation given by:

σvh
=

√√√√ 1

n− 1

n∑
i=1

(vh,i − vh)2 (4.2)

where vh,i are the individual heliocentric radial velocity measurements, vh is the mean heliocentric

radial velocity and n is the number of heliocentric radial velocities that were measured for the target

3) an uncertainty in the mean, or standard error, given by:

σµ,vh
=

σvh√
n− 1

(4.3)
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Figure 4.3: Radial Velocity Plots for TO0, BS1, BS2 and BS3. Note that for stars that exhibit
variable radial velocity measurements, the mean value computed in the present work is not

representative of a systemic radial velocity for the binary system. It is simply an average of the
radial velocity measurements computed.
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4) a reduced Chi-squared statistic given by:

χ2
ν =

n∑
i=1

(vh,i − vh)2

(n− 1− dof)
(4.4)

where all parameters are the same as in 2) and dof represents the degrees of freedom in the null

hypothesis model, i.e. dof = 1 in this case and 5) a Chi-squared probability, pχ; a value of pχ = 0

indicates that there is zero probability that a χ2
ν statistic would be found, by chance, to be as

large as the value calculated for that star. Given the null hypothesis that an object has a constant

radial velocity, this means that the object associated with pχ = 0 is unlikely to have a constant radial

velocity. Conversely, the higher the pχ value, the more likely the object is to exhibit a constant radial

velocity. The parameters described above are listed in Table 4.1 in addition to radial velocity data

from Mathieu et al. (1986) and Yadav et al. (2008). The Mathieu et al. (1986) data include a mean

heliocentric radial velocity value, vh, the standard deviation of the radial velocity measurements

σvh
, pertinent notes about the nature of the object observed and the number of observations. The

Yadav et al. (2008) data include a, presumably, single heliocentric radial velocity measurement, vh,

and the uncertainty they report is simply the output of their cross correlation pipeline σp,vh
. Yadav

et al. (2008) remark that these formal fitting errors underestimate the true uncertainty of the radial

velocity measurements, but that the reported values “retain the information on the goodness of fit

of the cross correlation function.” They also found a systematic uncertainty of up to ∼ 0.6km/s and

recommend that to find the true uncertainty of the radial velocities, one could add the systematic

uncertainty and the formal fitting error in quadrature. These values have been computed in the

present work and are found in the column marked σµ,vh
in the Yadav et al. (2008) columns of

Table 4.1. A more detailed comparison of these three studies will be discussed in §6.
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Table 4.1: Radial Velocity Data

Y08 M86 McGahee
vh σp,vh σµ,vh vh σvh # of vh σvh σµ,vh # of

Star (km/s) (km/s) (km/s) (km/s) (km/s) notes meas (km/s) (km/s) (km/s) notes meas. χ2
ν pχ

TO0 31.3 0.3 5 33.5 0.8 0.1 41 2.25 0.00

BS1 -29.7 0.8 1.0 36.2 3.2 1.3 7 1.22 0.30

BS2 -28.3 0.3 0.7 36.7 1.3 1.3 2

BS3 29.6 0.7 8 30.3 0.8 0.1 41 8.46 0.00

BS4 33.4 1.1 0.2 41 20.87 0.00

BS5 49.5 5.7 3.3 4 4.73 0.01

BS6 31.1 2.8 0.5 39 1.47 0.03

BS7 24.6 0.3 0.7 36.2 3.1 0.5 39 6.76 0.00

BS8 -51.4 0.8 1.0 37.3 5.0 1.2 18 2.10 0.01

BS9 33.0 1.1 0.2 41 14.00 0.00

BS10 33.3 2.0 26 34.5 1.8 0.3 41 90.02 0.00

BS11 34.7 9.5 1.7 32 6.55 0.00

BS12 29.3 0.7 0.1 41 3.16 0.00

BS14 30.5 1.7 0.3 41 2.91 0.00

BS15 27.8 2.4 0.4 41 0.84 0.75

SG16 33.7 0.3 2 33.9 0.4 0.1 41 0.25 1.00

SG17 32.8 0.0 0.6 33.0 0.4 2 32.1 0.4 0.1 41 0.47 1.00

SG18a SB2 14 36.6 18.3 2.9 SB3 41 158.19 0.00

SG18b 61.0 20.0 4.3 23 58.11 0.00

SG18c -21.6 19.9 6.6 10 8.25 0.00

SG20 33.0 0.0 0.6 32.8 0.7 4 32.8 0.8 0.1 41 0.74 0.88

SG21 34.7 0.7 2 33.9 0.7 0.1 41 0.51 1.00

SG25 33.7 1.5 3 33.7 0.4 0.1 41 0.43 1.00

SG26 32.5 1.0 8 32.4 0.5 0.1 41 0.80 0.81

SG33 28.1 0.1 0.6 SB2 32 35.1 6.7 1.1 SB2 41 97.70 0.00

SG36 33.4 0.5 6 32.4 0.3 0.1 41 0.53 0.99

RG22 34.0 0.0 0.6 33.7 0.5 16 34.1 0.5 0.1 41 0.28 1.00

RG41 34.0 0.5 21 33.9 0.5 0.1 41 0.26 1.00

TO19 31.1 0.6 0.1 41 0.66 0.95

TO27 35.6 0.1 0.6 35.5 0.4 0.1 41 0.45 1.00

TO28 34.4 1.9 10 32.8 0.3 0.1 12 0.90 0.53
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Radial Velocity Data 4.1 – Continued

Y08 M86 McGahee
vh σp,vh σµ,vh vh σvh # of vh σvh σµ,vh # of

Star (km/s) (km/s) (km/s) (km/s) (km/s) notes meas (km/s) (km/s) (km/s) notes meas. χ2
ν pχ

TO29 33.0 0.6 0.1 41 1.17 0.21

TO30 35.1 10.0 1.6 41 324.61 0.00

TO31 32.4 0.1 0.6 31.4 5.5 0.9 41 137.67 0.00

TO32 41.2 0.2 0.6 38.7 4.5 0.7 41 92.04 0.00

TO34 34.4 0.8 0.1 41 2.51 0.00

TO35 34.1 0.1 0.6 34.4 0.5 5 34.1 0.5 0.1 41 0.78 0.83

TO37 33.5 0.1 0.6 32.9 0.5 0.1 41 0.79 0.83

TO39 33.1 0.5 0.1 41 0.96 0.54

TO40 -23.8 0.7 0.1 41 0.52 0.99

TO49 34.4 0.1 0.6 33.2 0.9 6 34.3 0.6 0.1 41 0.90 0.66

TO50 46.1 0.8 0.1 41 1.61 0.01

TO55 0.5 0.6 0.1 41 0.63 0.96

YS13 49.6 0.0 0.6 49.2 0.8 0.1 41 1.45 0.03

YS23 36.1 0.7 0.1 41 1.46 0.03

YS24 52.9 0.3 0.7 35.8 0.4 0.1 41 0.66 0.95

YS42 33.6 0.0 0.6 32.2 2.2 SB1 38 30.2 0.8 0.1 41 2.07 0.00

YS43 32.0 6.3 SB1 36 29.4 5.9 0.9 41 113.47 0.00

YS44 33.0 3.5 SB1 37 36.5 2.0 0.3 41 9.99 0.00

YS45 4.0 0.0 0.6 3.6 1.0 3 5.3 1.1 0.2 41 2.16 0.00

YS46A SB2 2 49.3 8.0 1.3 SB2 41 46.46 0.00

YS46B 54.9 14.2 4.3 12 45.24 0.00

YS47 94.4 1.0 0.2 41 2.14 0.00

YS48 12.0 0.4 2 12.0 0.7 0.1 41 0.48 1.00

UK51 29.9 9.2 1.5 41 90.40 0.00

UK53 35.8 0.9 0.1 41 0.77 0.85

UK54 34.5 0.7 0.1 41 0.56 0.99

UK56 34.7 2.4 10 32.7 1.1 0.2 41 3.77 0.00

UK57 66.7 1.0 0.2 41 0.90 0.66
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The final radial velocity plots for three of the BSs stars observed for the current study can

be seen in the bottom three panels of Figure 4.3. The radial velocity plots of the remaining stars

studied in the current work can be found in Appendix B in Figures: 4, 5, 6, 7, 8, 9, 10, 11, 12, and

13. Each plot is labeled with the star identification number, the mean heliocentric radial velocity

with standard error and the Chi-squared probability all determined in the present work. Note that

the abscissa in these plots simply indicates the observation number and is not a timeline for the

observations. It is remarked here that in the case of a target that exhibits radial velocity variation,

the mean radial velocity value computed is not the systemic radial velocity of the likely binary

system. It is simply an average of the derived radial velocity measurements. Currently, there is not

enough data to determine orbital periods for these objects, thus systemic radial velocities cannot

be determined. Collection of additional data in the future will hopefully make orbital parameter

determinations possible for targets that are likely in binary systems.

4.4 Exclusion of the λλ8060-8430 Region

The purpose of monitoring the radial velocities of these stars over time is to determine if

they exhibit variability; if they do, then the star likely exists in a binary system. Due to the fact

that the radial velocities in the λλ8060-8430 region were computed by cross correlating only five

spectral features, there appears to be more scatter in the radial velocity data for this region that

does not appear in the other wavelength regions. This is seen for many of the stars’ radial velocity

plots (see Figure 4.3 and Appendix B). This amount of scatter was not successful in altering the

mean radial velocities computed for the TOs as can be seen in the left panel of Figure 4.4. However,

the scatter present in this region causes a lower Chi-squared probability to be computed when the

data are included as can be seen in the right panel of Figure 4.4. The explicit values computed both

including the λλ8060-8430 region data, and leaving it out, can be found in Table 4.2. It can be seen

in both the figures and the table values, that when the λλ8060-8430 region data are included in the

Chi-squared probabilities in particular, it can lead one to determine that a star exhibits a variable

radial velocity when, in reality, it is likely constant. This, in turn, can lead to an overestimation of

the number of binaries in the population. Because of this effect, the λλ8060-8430 region data was

excluded from all computations described above in §4.3.
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Figure 4.4: The left panel in this plot compares the mean radial velocities computed for TOs using
all of the 45 radial velocity data points and the mean radial velocity determined when the
λλ8060-8430 region was excluded from the computation. The right panel compares the

Chi-squared probability computed using all of the available radial velocity data for the TOs to the
Chi-squared probabilities determined when the λλ8060-8430 region was excluded from the

computation. The solid line in both panels indicates a 1-to-1 line for reference.

Table 4.2: Mean radial velocities and Chi-squared probabilities for TOs computed using all data
and computed excluding the λλ8060-8430 region data.

Using all RV data No λλ8060-8430 data
vh pχ vh pχ

Star (km/s) (km/s)

19 31.2 0.52 31.1 0.95

27 35.4 0.88 35.5 1.00

28 32.8 0.53 32.8 0.53

29 32.9 0.19 33.0 0.21

30 35.1 0.00 35.1 0.00

31 31.6 0.00 31.4 0.00

32 38.6 0.00 38.7 0.00

34 34.4 0.00 34.4 0.00

35 34.2 0.60 34.1 0.83

37 32.8 0.62 32.9 0.83

39 33.3 0.15 33.1 0.54

40 -23.7 0.91 -23.8 0.99

49 34.3 0.51 34.3 0.66

50 46.0 0.01 46.1 0.01

55 0.6 0.87 0.5 0.96

43



Chapter 5

Chemical Abundance

Determinations

A detailed chemical abundance analysis was performed for a subset of the target list utilized

in the radial velocity study. The purpose of this abundance analysis is to compare the abundance

pattern of the YSs to “normal” cluster members. The subset of targets investigated in the abundance

analysis, hereafter referred to as List B, is comprised of all of the YSs regardless of membership

probabilities and/or radial velocity data, all of the SGs with the exception of the secondary (B)

component of SG 46, both RGs and four TOs selected by their high membership probabilities, vh

values that agree with the cluster mean (33.5 ± 0.5 km/s) derived by Mathieu (1983) and high pχ

values.

Individual spectra were utilized in the radial velocity survey of §4 so that the maximum

amount of information regarding the variability of the measurements was retained, however, for the

purpose of conducting the abundance analysis, it is more beneficial to co-add the spectra for each

wavelength region to increase the S/N ratio of the data. Any mention of stellar or solar spectra in

this chapter, therefore, refers to a co-added spectrum. Note that to determine the solar abundances,

the only solar spectra used were those taken with the same fiber used to image the radial velocity

template star TO 0.

Before discussing the specific steps of a chemical abundance analysis, it is important to

note that in this study, a differential chemical abundance analysis has been employed. This type
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of analysis has been performed to eliminate one of the largest sources of uncertainty in a chemical

abundance analysis. This uncertainty is introduced in determining an accurate gf value associated

with a particular spectral line, or atomic transition. The gf value is really a combination of two

individual values for g and f . In the context of a gf value, g is often referred to as the statistical

weight of a transition and describes the number of ways in which a transition can take place. Care

should be taken to not confuse this g with log(g) which describes the surface gravity of a star and will

be discussed later. f is known as the oscillator strength and describes the probability that a specific

transition will take place. It is standard practice to combine the g and f values for a particular

spectral line to establish a single gf value for the line. Very few lines have gf values that can be

determined analytically, but these values can be measured in the lab with some difficulty. Though

accurate gf values have been pursued in the lab for some time, they still present a significant source

of uncertainty in abundance measurements.

A differential chemical abundance analysis averts the inclusion of uncertainties due to inac-

curate gf values by using the ratio of two equivalent width values of a specific spectral line. One of

the equivalent width values is that measured in the target of interest, and the other is the equivalent

width measured in some reference spectrum. In the present study, the reference spectrum will be

that of the sun. The use of spectral line equivalent widths to determine an elemental abundance

will be discussed in the following sections, but currently, it suffices to mention two things: 1) the

number of absorbers associated with at particular spectral line can be computed from the equivalent

width of that line and 2) the equivalent width of a spectral line is proportional to the gf value

associated with that line. In this differential analysis, the ratio of the number of absorbers is sought

and requires the ratio of the equivalent width of a spectral line measured in the star to the equivalent

width of the same line measured in the sun. Therefore, the gf value associated with the line will

cancel in the ratio of the equivalent widths and this ratio can then be used to calculate the ratio of

the number of absorbers without imposing the uncertainty of the gf value on the calculation.

The total number of particles (atoms and ions) of a particular element can be determined

using the Boltzmann and Saha equations (Equations 5.3 and 5.8 respectively) for a given number of

atoms in a particular excitation or ionization state, i.e. a given number of absorbers for a particular

spectral line. The number abundance of an element, defined by Gray (2005) to be AX = NX

NH

(where NH is the total number of hydrogen particles per unit volume and likewise, NX is the total

number of element ’X’ particles per unit volume) can be determined from the number of absorbers
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for a particular spectral line if one knows the value of NH. As previously mentione, the differential

analysis that has been employed in this study, utilizes a ratio of the number abundance of an element

in the star to the number abundance of the same element in the sun in order to eliminate the need for

accurate gf values. Therefore, the abundances reported will be of the typical form “[X/H]” which

indicates the logarithmic abundance of any element, ‘X’, with respect to hydrogen, H, relative to the

solar abundance of the element ’X’ with respect to hydrogen. These abundances can be determined

from:

[X/H] = log
AX,star

AX,sun
= log(

NX

NH
)star − log(

NX

NH
)sun (5.1)

Also note, that in the cases for Fe and Ti, both neutral and singly ionized lines were

measurable in most of the stellar spectra. The notation [Fe I/H] indicates a total Fe abundance

computed using only the measurements of the neutral Fe I lines where as [Fe II/H] indicates a total

Fe abundance computed using only the measurements of singly ionized Fe II lines. In theory, [Fe I/H]

should equal [Fe II/H] for any given star.

5.1 Constructing Stellar Atmosphere Structures

The first step in conducting a chemical abundance analysis for a star is to determine the stel-

lar atmosphere parameters effective temperature (Teff), surface gravity (log(g)), metallicity ([M/H])

and microturbulent velocity (ξt) from which the structure of the stellar atmosphere will be deter-

mined. In this study, a classical spectroscopic approach of Fe excitation-ionization balancing (Fe

balance) was used to achieve this goal of determining the final stellar atmosphere parameters for

each target. Before performing the Fe balance, however, a number of preliminary steps must be

completed. Each of these steps will be described in detail, but an overview of the general steps

involved can be helpful, so a summary is provided: 1) initial stellar atmosphere parameters are

determined for the target 2) an initial stellar atmosphere structure is determined from stellar atmo-

sphere models according to the initial stellar atmosphere parameters 3) equivalent widths of the Fe I

and Fe II lines are measured in the target spectra 4) any correlation between the excitation potential

(EP) and the reduced equivalent width (REW) is removed for the Fe I lines. Once these steps have

been completed, an iterative Fe balance can be performed by first inferring an Fe abundance for each

equivalent width measured for both the Fe I and Fe II lines and subsequently looking for correlations
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between the inferred abundances and other spectral line parameters like EP and REW. The four

initial steps and the iterative Fe balance are described in more detail in the following paragraphs.

Initial Stellar Atmosphere Parameters

Initial values for the various stellar atmosphere parameters were estimated in a variety of

ways, depending on the parameter in question and the target in question. The initial values for [M/H]

were taken to be zero for all targets since M67 has been shown to exhibit near solar metallicity (see

§6.2.1). Initial values for Teff and log(g) were derived for each target in List B by adopting the

values of Teff and log(g) that were generated for closest point in the isochrone (see Figure 1.2) that

was fit to the M67 members. This task was simple for the SG, RG and TO stars because these stars

lie along the isochrone. For each of these targets, the closest isochrone data point was located and

the Teff and log(g) values were adopted for the target in question. The YSs, however, do not lie

along the isochrone, so an associated position along the subgiant branch (SGB) was extrapolated

from each YS’s B-V color index, and an associated position along the red giant branch (RGB)

was extrapolated from each YS’s V magnitude. The Teff value for each YS was adopted from the

extrapolated position along the SGB of the isochrone (associated with B-V) and the log(g) value

for the YS was adopted from the extrapolated position along the RGB of the isochrone (associated

with V mag). The initial values for ξt were calculated from the initial values of Teff and log(g) using

the following equation from Edvardsson et al. (1993):

ξt = 1.25 + (8× 10−4)(Teff − 6000)− 1.3(log(g)− 4.5) km/s (5.2)

derived for stars with 5550 < Teff < 6800, 3.8 < log(g) < 4.5, and −1.1 < [M/H] < 0.3.

Initial Stellar Atmosphere Structures

Interpolation between the lattice points in the Kurucz (1992) grid of stellar atmosphere mod-

els was the method used to establish a stellar atmosphere structure that corresponded to the initial

stellar atmosphere parameters. The Kurucz models assume a 1-D plane parallel model atmosphere

in both hydrostatic equilibrium and in local thermodynamic equilibrium (LTE) (Kurucz, 1970) and

describe the structure of the stellar atmosphere for a given set of stellar atmosphere parameters. An

initial stellar atmosphere structure was determined for each target using this interpolation technique.

Additionally, a solar atmosphere structure was established by interpolating from the Kurucz (1992)
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grid using the solar atmosphere parameter values Teff = 5777 K, log(g) = 4.44, [M/H] = 0.00 and

ξt = 1.10 km/s

Fe I and Fe II Equivalent Widths

Each line in the Fe I and Fe II line lists of Bubar & King (2010) were located in both

the stellar and solar spectra and in cases where the line appeared to be unaffected by cosmic rays

or blending with neighboring lines, the line’s equivalent width was measured using SPECTRE1, a

program designed to manipulate single order spectra (Sneden et al., 2012b). This program measures

equivalent widths by fitting a Gaussian profile to each spectral line based on user inputs of the

continuum level, the line depth and the line width. Note that in the following steps, problematic

lines were removed from the line list of each target on a case-by-case basis so the line lists for

individual targets are different. The final Fe I and Fe II line lists and their measured equivalent

widths in each star and in the sun can be found in Appendix C in Tables 2, 3, 4 and 5.

Removing EP-REW Correlations

The Fe balance method relies on removing any correlation between the inferred Fe abun-

dances and the EPs of measured Fe I lines and also on removing any correlation between the inferred

Fe abundances and the REWs of those measured lines. Therefore, any correlations between EP and

REW must first be removed (or at least reduced) to prevent the abundance-EP correlation and the

abundance-REW correlation from being dependent on each another. To check for an EP-REW cor-

relation for a given target, each Fe I line was plotted according to its associated excitation potential,

as reported by Bubar & King (2010), and its reduced equivalent width, or simply, the equivalent

width measured for the line divided by the central wavelength of the line measured. The plot gen-

erated for TO 35 can be seen in the top panel of Figure 5.1. A linear fit was generated for this plot,

its slope indicating that there was, indeed, a slight negative correlation between log(REW) and EP

for the Fe I lines that were measured in the TO 35 spectra. Fe I lines that enhanced this correlation

were identified and removed from the line list to reduce this effect. The resulting plot can be seen

in the bottom panel of Figure 5.1. The process outlined above was performed for the sun and for

each target in List B. In each case, correlation enhancing Fe I lines were removed from the line list

so that the slope of the linear fit was between -0.02 and 0.02. The resulting Fe I line list was utilized

in the following steps.

1http://www.as.utexas.edu/ chris/spectre.html
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Figure 5.1: Reduced Equivalent Width plots for TO 35. The top panel is plotted including all
measured Fe I lines. The bottom panel shows the resulting plot when problematic Fe I lines have

been removed.

Fe Balance

Computing the Fe I and Fe II Abundances

Once the correlation between EP and log(REW) is reduced by removing problematic Fe I

lines from the line list, an Fe abundance must be inferred for each remaining Fe I line in the list.

This was accomplished by using the “abfind” driver of a line analysis and spectrum synthesis code,

MOOG2 (Sneden et al., 2012a). This driver utilizes a curve-of-growth technique to force-fit an

abundance value to the supplied single-line Fe I equivalent width measurements. The curve-of-

growth technique will be discussed in further detail in §5.1.2, but simply put, for a given spectral

line, MOOG calculates the number of absorbers that would be required to generate a spectral line

with the equivalent width supplied by the user. The abundance reported by MOOG is a logarithmic

number abundance value, relative to hydrogen, where the logarithm of the number abundance of

hydrogen relative to the total number of atoms and ions has been set to 12.

2http://www.as.utexas.edu/ chris/moog.html
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Recall that in a differential analysis, the ratio of the number abundance in the star to the

number abundance in the sun is required. Therefore, the Fe abundance must also be computed for

each line of interest in the sun. These solar Fe abundances were computed using the same technique

described in the previous paragraph. Because the abundances reported by MOOG are logarithmic,

one simply needs to take the difference between the reported stellar and solar number abundances

calculated for each line. This yields the logarithmic stellar abundance of Fe with respect to hydrogen

relative to the logarithmic solar abundance of Fe with respect to hydrogen, i.e. [Fe/H].

Abundances of the Fe II lines were determined in a similar fashion, however, it is noted

that the EP-REW correlation was not considered for these lines. There were only eight measurable

Fe II lines across all of the spectral regions observed and determining accurate statistical properties

like correlations becomes quite challenging with the use of only eight data points. Nevertheless, the

determination of an Fe abundance using only the Fe II lines provides a crucial tool for determining

an accurate value of log(g) as will be shown in §5.1.3.

Adjusting Stellar Atmosphere Parameters

On each pass of the iterative Fe balancing process, abundances were determined for each

Fe I and Fe II line. From these individual line abundance values, a mean Fe abundance value was

computed using only the Fe I values and a mean Fe abundance value was computed using only the

Fe II values. Additionally, the standard deviations associated with those means were determined.

If any line appeared to be deviant (> 2σ from the mean), it was checked and either re-measured

or removed from the line list, and then new Fe abundances were determined. Three relationships

were considered regarding the Fe I and Fe II abundances: 1) the correlation between the Fe I

abundances inferred from the lines and the EP of the lines (associated with the excitation balance)

2) the correlation between the Fe I abundances inferred from the lines and the REW of the lines

(associated with the equivalent width balance) and 3) the difference between the calculated mean

Fe I and Fe II abundances (associated with the abundance balance). To remove the correlations and

to remove any difference between the mean abundances of Fe I and Fe II, the stellar atmosphere

parameters must be adjusted and new abundances derived. Adjusting any particular parameter will

have an effect on all three of the relationships listed above, however, each parameter tends to have

one relationship that it affects the most. These effects will be covered in more detail in the following

sections, however a summary is provided here. If there exists an Fe I-EP correlation, adjusting Teff

will have the greatest effect on that correlation. If an Fe I-REW correlation exists, adjusting the ξt
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will have the greatest effect. Lastly, if there exists a discrepancy between Fe I and Fe II, adjusting

log(g) will have the greatest effect on removing that discrepancy. The plots used to determine

the correlations are illustrated in Figure 5.2. The plots shown were generated for SG 17 after the

final iteration of the process summarized above. At the stage illustrated in the plot, both of the

correlations and the Fe I–Fe II discrepancy from the stellar atmosphere model had been minimized

and a final set of stellar atmosphere parameters has been determined for the star.

The following sections will describe in detail the significance of the three main components

of balancing the Fe abundances: the excitation balance, the equivalent width balance, and the

abundance balance.

5.1.1 Excitation Balance

In an emission line spectrum generated in the lab, each line corresponds to a specific atomic

transition in an atom of a particular element. The same is true of absorption lines in stellar spectra,

though the picture is complicated by the presence of a multitude of chemical species, broadening

effects, and the blending of neighboring lines. In most cases, however, a specific absorption line

corresponds to a specific atomic transition that is associated with a particular amount of energy

required for the excitation of an electron or emitted in the de-excitation of an electron. For a

particular element, say Fe, there are many atomic transitions available to the electrons in the atoms,

thus, there are many absorption lines associate with Fe.

If a star is in thermodynamic equilibrium, the atoms of Fe should obey a Maxwell-Boltzmann

distribution, i.e., the number of Fe atoms in an excited state is given by the Boltzmann formula:

Nn

No
=

gn

go
e−χn/kT (5.3)

where Nn is the number of Fe atoms in the nth excited state, No is the number of Fe atoms in

the ground state, gn and go are the degeneracies of the nth and ground states respectively, χn is

the difference in the excitation potential of the nth excited state and the ground state, k is the

Boltzmann constant and T is the temperature of the atmosphere. Consider a “true” value of N1,

the number of Fe atoms in the first excited state. According to the Boltzmann formula above, for

a given temperature T, the value of N1 would require a specific value of No. If the value of T in

a model is lower than the true T, then the model value of No would have to be larger in order to
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achieve the true value for N1. Thus, the total abundance of Fe (No + N1) would be overestimated

by the model. The larger the value of the excitation potential associated with an excited state, the

more pronounced this effect becomes. Therefore, for a model temperature that is lower than the

true value, a positive correlation between the EP and and the Fe I abundance, [Fe I/H], will be

seen. Conversely, if the temperature for the model is higher than the true value, there will be a

negative correlation between the EP and the Fe I abundance. Therefore, the true temperature can

theoretically be found by adjusting the model value of Teff until the the correlation between the EP

and [Fe I/H] has been eliminated. The top panel of Figure 5.2 shows the final plot for [Fe I/H] vs.

EP for the star SG 17 where the majority of the correlation has been removed.

5.1.2 Equivalent Width Balance

Böhm-Vitense (1989) gives an in-depth description of the procedure for performing a curve-

of-growth analysis in her book: Introduction to Stellar Astrophysics Vol 2. Sections of that procedure

will be drawn upon for the purposes of explaining parts of the Fe balance technique, but keep in

mind that Böhm-Vitense (1989) can be referenced for further details on the classical procedure of

curve-of-growth analysis. In a general sense, a theoretical curve-of-growth yields information about

how the equivalent width of a spectral line changes with the change in the number of absorbers

associated with that particular line, i.e. the abundance of a particular element. The curve-of-growth

is typically plotted according to the ordinate
EWλo

Rc∆λD
where EWλo

is the measured equivalent width

of a spectral line at a measured central wavelength, λo, Rc is the limiting central line depth of the

strongest lines of that element and ∆λD is the Doppler broadening associated with the spectral line.

By determining a value for the ordinate and fitting that value to a point on the theoretical curve-of-

growth, one can determine the abscissa value associated with the same point and in turn determine

the number of absorbers associated with the ordinate value because the abscissa is a function of the

number of absorbers, Nα.

Note that the Doppler broadening term actually contains three components: a thermal

broadening component, a macroturbulent velocity component and a microturbulent velocity com-

ponent. What is important here, as Böhm-Vitense (1989) explains, is that broadening due to

macroturbulence (turbulent motions on scales larger than the mean free path of the photons) is not

dependent on the number of absorbers in the atmosphere of a star, whereas the microturbulence

(turbulent motions on scales smaller than the mean free path of the photons) is. This dependence
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of the microturbulence, or microturbulent velocity (ξt), on the number of absorbers in the stellar

material leads to a dependence of ξt on the equivalent width, and thus the reduced equivalent width

(REW), of a spectral line.

To explain the potential correlation between the REW and the ξt, first re-consider the curve-

of-growth in terms of the Doppler broadening term. The Doppler broadening term for a spectral

line is given by:

∆λD = λo
ξo
c

(5.4)

where λo is the rest wavelength of the spectral line, c is the speed of light and ξo is a reference

velocity given by

ξ2
o = ξ2

th + ξ2
turb (5.5)

In equation 5.5, ξth is the reference velocity component due to the thermal motions and ξturb is

the reference velocity component due to the turbulent motions (both macro- and microturbulent).

However, because the macroturbulent velocity component of ∆λD is not dependent on the number

of absorbers, whereas the microturbulent component is, only the microturbulence will be considered

when referring to ξturb for the remainder of this discussion.

Recall that the ordinate for the curve-of-growth analysis is defined by
EWλo

Rc∆λD
. It can now be

seen that the ordinate is inversely proportional to the ξt through ∆λD (equations 5.6 and 5.5). In

this case, consider a true value for the number of absorbers, Nα, associated with a particular spectral

line. If the model value of ξt is underestimated in the curve-of-growth analysis, then the ordinate

computed for the spectral line will be overestimated. The point corresponding to this ordinate on

the curve-of-growth will then lead one to determine an abscissa value, and thus Nα, that is too large,

because the curve-of-growth is a monotonically increasing function. Thus, an underestimation of

the model’s ξt, will lead to an overestimation of Nα. The amount by which Nα is overestimated is

dependent on the true number of absorbers that are present in the atmosphere. This is because as the

number of absorbers increases to the point where a spectral line is no longer strictly optically thin,

the curve-of-growth flattens out. If the spectral line being measured resides in the flat part of the

curve-of-growth and the microturbulence is underestimated, then the point on the curve-of-growth

that matches the computed ordinate will likely be found all the way up on the damping section of

the curve-of-growth. Therefore, the more absorbers that are truly present in the atmosphere, the

larger the overestimation of Nα will be.
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The connection to the reduced equivalent width can be made by first writing the ordinate

in terms of the rest wavelength of the line and the reference velocity ξo:

EWλo

Rc∆λD
=

EWλo

Rcλo
ξo
c

(5.6)

and then re-writing this equation as:

EWλo

Rc∆λD
=

EWλo

λo

c

Rc ξo
(5.7)

where
EWλo

λo
is the definition of the reduced equivalent width (REW).

The potential correlation between the ξt and the REW can now be understood through the

following explanation. Consider a single model value of ξt that is an underestimation of the true

value of ξt. It has already been explained how this underestimation will cause an overestimation in

the computation of the ordinate, and thus the abundance, for a specific spectral line. It can now

be seen from equation 5.7, that for a given underestimation of ξt, the larger the REW is for the

spectral line in question, the larger the overestimation of the ordinate, and thus abundance, will be

for that line. Thus, for a underestimation of the model ξt, a positive correlation between the REWs

and the Fe abundances will be seen. Conversely, if the model ξt is overestimated, there will be a

negative correlation between REWs and the Fe abundances that are computed. This relationship

can be exploited in much the same way that the Teff -EP relationship was exploited in the previous

section. The true microturbulence can theoretically be found by adjusting the model value of ξt

until the the correlation between the REW and [Fe I/H] has been eliminated. The bottom panel of

Figure 5.2 shows the final plot for [Fe I/H] vs. REW for the star SG 17 where the majority of the

correlation has been removed.

5.1.3 Ionization Balance

MOOG reports an abundance value that accounts for every atom of a particular element,

regardless of each individual atom’s excitation, ionization, etc. Ideally, the abundance that MOOG

calculates for Fe should be the same regardless of whether MOOG uses lines of neutral Fe or lines

of singly ionized Fe in its calculations. This presents one with the opportunity to determine an

accurate value of the surface gravity, log(g), for a stellar atmosphere model. This is possible because
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singly ionized Fe is more sensitive to surface gravity than neutral Fe particularly for stars in the

temperature range of the stars studied in the current work. Thus, an accurate value for log(g) can be

determined by matching the Fe abundance calculated via Fe II lines to the Fe abundance calculated

via Fe I lines.

To fully understand why this technique works, one has to understand why Fe II is more

sensitive to the surface gravity than Fe I. The key is that in cool (F, G and K spectral type) stars,

like those studied in the present abundance analysis, the continuous absorption coefficient is due

mostly to the presence of H− and the majority of Fe in these stars is in the form of Fe II according

to the Saha equation (5.8) which tells us about the ionization state for a collision-dominated gas

(Gray, 2005). This equation is given by:

NI

N
Pe =

(2πme)3/2(kT)5/2

h3

2uI(T)

u(T)
e−χI/kT (5.8)

where NI is the number of singly ionized atoms, N is the number of neutral atoms, Pe is the electron

pressure, me is the mass of an electron, k is the Boltzmann constant, T is the temperature, uI is

the partition function for the ionized atoms, u is the partition function for the neutral atoms and

χI is the energy required to ionize a neutral atom. This equation can be altered to represent the

ratio between any two adjacent ionization states, for example one could consider the ratio of Fe IV

to Fe III, by letting χI represent the energy it would take to remove an electron from an atom of

Fe III.

The Saha equation also indicates that if the surface gravity is increased, and thus the electron

density and pressure, the number of H− ions which have an additional electron, will increase relative

to the number of neutral hydrogen atoms (Böhm-Vitense, 1989). Because the continuous absorption

in these stars is due mainly to the presence of H−, if the surface gravities are low, like in the case of

the giant stars, the ratio of H− to H is low and thus the continuous absorption is weak. This may

cause the absorption lines to appear stronger in a giant star than they would appear in a dwarf star.

Note, however, that the difference in the observed line strength, or equivalent width, would be due

to differences in surface gravity, not differences in the abundance of the element in question.

The stars involved in the present study are relatively cool, as previously mentioned and

solar-like in chemical composition. Thus, the majority of the Fe in these stars is in the form of Fe II.

Consider a star with a given value of log(g). If that value is now decreased, the ratio of H− to H is
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also decreased, which in turn decreases the continuous opacity of the atmosphere. This effectively

increases the geometrical depth of the photosphere and, in turn, the amount of Fe (mostly in the

form of Fe II) above the photosphere. This means the amount of absorption that is observed due

to Fe II compared to the continuous absorption will increase. Consider a stellar model that has

been generated to synthesize an Fe II line to be compared to an observed Fe II line in a star. If the

value of log(g) has been underestimated, the model line will require an Fe abundance smaller than

the true Fe abundance of the star to generate an Fe II line with the same strength of the observed

Fe II line. This is because the model with a low value of log(g) will generate stronger lines for lower

abundances.

In the ionization balance, for a set of stellar atmosphere parameters, a mean Fe abundance

is inferred using only the Fe I lines and then is inferred again using only the Fe II lines. If the Fe

abundance inferred from Fe I does not match that inferred from Fe II, the value of log(g) is adjusted

until the Fe abundances computed in both ways match. In particular, if the Fe II abundance value

is lower than the Fe I abundance value, log(g) must be increased so that the strength of the Fe II

lines generated by the model are smaller and require a larger Fe abundance to match the Fe II lines

observed.

5.1.4 Final Stellar Atmosphere Parameters

It should be reiterated that any change of a single stellar atmosphere parameter value, in

practice, affects all of the balances described above, however, the most prominent effects were dis-

cussed in each section. The stellar atmosphere parameters were, therefore, adjusted individually in

an iterative manner to converge on a unique set of stellar atmosphere parameters for each star. In

other words, on each pass, one stellar atmosphere parameter would be adjusted, new abundances

would be determined, the balances would be checked, the next appropriate stellar atmosphere pa-

rameter adjustement would be estimated and the process would be repeated. A unique solution

to this iterative process was accepted when, for a given star, the correlation coefficient of a least

squares fit was < 0.01 in both the [Fe I/H]–EP data and the [Fe I/H]–REW data, and when the

difference between the [Fe I/H] and the [Fe II/H] values was < 0.01 dex. The stellar parameters

extracted in this way for each target are listed with uncertainties in Table 5.1. The computation of

the uncertainties for each parameter will be discussed in §5.1.4.1.
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Figure 5.2: Fe Balance Plots for SG17.
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Table 5.1. Final Stellar Atmosphere Model Parameters

Teff ξt
Star (K) log(g) [Fe I/H] (km/s)

SG 16 5210± 106 3.79 +0.48
−0.66 0.13 +0.10

−0.10 1.68± 0.21

SG 17 5755± 90 3.88 +0.32
−0.82 0.12 +0.09

−0.09 1.45± 0.11

SG 20 5245± 79 3.82 +0.46
−0.85 0.12 +0.08

−0.07 1.41± 0.17

SG 21 5220± 104 3.74 +0.45
−1.06 0.14 +0.11

−0.11 1.54± 0.23

SG 25 5430± 83 3.79 +0.38
−0.59 0.22 +0.09

−0.08 1.52± 0.16

SG 26 5945± 92 3.68 +0.37
−0.69 0.07 +0.08

−0.09 1.39± 0.10

SG 33 6170± 137 4.20 +0.42
−1.05 0.17 +0.11

−0.13 1.63± 0.16

SG 36 6025± 98 3.90 +0.31
−0.87 0.18 +0.09

−0.10 1.40± 0.11

RG 22 5150± 92 3.52 +0.57
−1.11 0.15 +0.10

−0.09 1.66± 0.16

RG 41 4850± 85 2.60 +0.69
−1.20 −0.13 +0.10

−0.12 2.10± 0.12

TO 35 6270± 100 4.15 +0.41
−0.65 0.18 +0.08

−0.09 1.68± 0.11

TO 37 6145± 105 4.04 +0.31
−0.73 0.11 +0.08

−0.10 1.56± 0.12

TO 0 6155± 102 4.00 +0.25
−0.67 0.13 +0.08

−0.09 1.52± 0.10

TO 49 6210± 107 3.89 +0.37
−0.66 0.03 +0.09

−0.09 1.74± 0.13

YS 13 5950± 86 4.17 +0.33
−0.93 −0.28 +0.07

−0.09 1.47± 0.13

YS 23 6110± 75 4.71 +0.28
−0.66 0.12 +0.06

−0.08 1.57± 0.12

YS 24 5965± 101 4.09 +0.33
−0.92 −0.22 +0.08

−0.09 1.47± 0.14

YS 42 5790± 84 3.41 +0.35
−0.90 −0.14 +0.07

−0.08 2.28± 0.15

YS 43 5265± 79 3.42 +0.34
−0.87 −0.08 +0.08

−0.08 2.03± 0.14

YS 44 5050± 88 2.81 +0.50
−0.79 −0.22 +0.09

−0.09 2.33± 0.18

YS 45 5945± 77 4.14 +0.24
−0.53 −0.11 +0.06

−0.07 1.30± 0.12

YS 46 5615± 147 4.24 +0.58
−1.22 −0.27 +0.11

−0.12 2.48± 0.42

YS 47 5610± 98 4.02 +0.32
−0.88 −0.05 +0.08

−0.09 1.57± 0.18

YS 48 5415± 88 4.48 +0.25
−0.90 −0.02 +0.08

−0.07 1.86± 0.23
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Note that in the case of YS 46, there were two resolvable components in the spectra. The

Fe balance was attempted for the fainter component of this SB2, however the parameters would

not converge on a unique solution. This is not surprising because the values measured for the

equivalent widths of the Fe I and Fe II are likely overestimates due to contamination from the

primary companion’s spectrum. In fact, it is likely that many of the equivalent width measurements

of the primary companion are overestimates. Nevertheless, the results have been included in the

current abundance analysis.

5.1.4.1 Uncertainties in Stellar Atmosphere Parameters

Due to the differing nature of the stellar atmosphere parameters, the uncertainties associated

with the various parameters were calculated in different ways. The following paragraphs summa-

rize the techniques used to determine the uncertainty for each stellar atmosphere parameter. The

notation to denote uncertainties will be of the form σX where X represents the stellar atmosphere

parameter in question.

Teff and ξt

Initial upper and lower bounds of the uncertainties for Teff and ξt were calculated individ-

ually for each star, but each calculations follow the same procedure. Recall that the final value for

Teff was determined by removing the correlation between EP and [Fe I/H] and the value for ξt was

determined by removing the correlation between REW and [Fe I/H]. Thus, for a set of parameters,

e.g. EP and [Fe I/H], the limits of a (small) range of values can be determined for for the associated

stellar atmosphere parameter, in this case Teff , for which the correlation between EP and [Fe I/H]

is statistically insignificant. By determining the point at which the correlation computed between

EP and [Fe I/H] becomes statistically significant, we determine the uncertainty associated with Teff .

To illustrate the process used to determine the upper and lower bounds on the uncertainties, the

determination of the upper bound on σup,Teff
for one star will be discussed.

Once the stellar model atmosphere parameters had been determined using a process that

rendered no correlation between EP and [Fe/H], the value of Teff was increased incrementally in

an iterative process until a statistically significant correlation developed. On each pass, Teff was

increased, a new stellar atmosphere model was generated and a new [Fe I/H] abundance was deter-

mined for each Fe I line. A Pearson correlation coefficient was determined to interpret the correlation
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between [Fe I/H] and EP for the Fe I lines according to Equation 5.9.

r =

∑
epi · fei −

∑
epi·

∑
fei

n√
(
∑

ep2
i −

(
∑

epi)2

n )(
∑

fe2
i −

(
∑

fei)2

n )

(5.9)

Each sum above runs from i to n, the number of Fe I lines measured, epi represents the excitation

potentials of the lines, and fei represents the abundances calculated for the lines.

To investigate the statistical significance of of the correlation coefficient, a t-test statistic

was computed. The choice of a t-test statistic is appropriate because for sample sizes with n > 30,

the probability distribution associated with the correlation coefficient, r, can be approximated by a

Student’s t distribution. The t-test statistic, or t-value associated with the correlation coefficient, r,

was calculated following Equation 5.10.

t = r ·
√

n− 2

1− r2
(5.10)

The null hypothesis for this scenario is that there is no correlation (r = 0) between EP

and [Fe I/H], but upon each iteration, Teff is purposefully increased, causing r, and thus t, to be

driven further and further from zero. For each iteration, the error function was used to calculate a

p-value corresponding to the t-test statistic calculated; for a given t-value, the p-value estimated the

likelihood that determining a t-value at least as extreme as the current value is due to chance, i.e.

it represents the probability that there is no correlation between EP and [Fe I/H]. This process was

repeated until a p-value < 0.33 was attained, indicative of a 1σ statistically significant correlation

between EP and [Fe I/H]. The value for Teff on the last iteration of the process described is considered

the upper limit of the uncertainty for the star in question. A lower bound for Teff was determined

by decreasing the value of Teff until a statistically significant correlation between EP and [Fe I/H]

developed. The final uncertainty reported for Teff in Table 5.1, denoted by σTeff
was determined by

using:

σTeff
=
σup,Teff

− σlow,Teff

2
(5.11)

A final uncertainty was similarly computed for ξt, denoted by σξt , by determining upper and lower

bounds via the procedure detailed above and executing Equation 5.11. However, the correlation

being exploited to determine this uncertainty was the one between ξt and REW.
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[Fe I/H] and [Fe II/H]

The Fe abundance is determined by using the measurements of the equivalent widths of

either Fe I (or Fe II lines) and stellar atmosphere structures extracted from the Kurucz (1992)

grid using the three stellar parameters Teff , ξt and log(g). Therefore, the uncertainty associated

with the Fe abundance inferred using Fe I lines, σFeI, is dependent not only on the uncertainty in

the measurement of the equivalent widths of the Fe I lines, σmeas,FeI, but also on the uncertainties

associated with the stellar atmosphere parameters: σTeff
, σξt and σlog(g). In particular, σFeI is co-

dependent with σlog(g), thus they have to be computed in an iterative process. The first step of this

process is an initial computation of both σFeI and of σFeII. This initial computation will be outlined

for Fe I below, but note that the initial computation of σFeII is performed in an identical manner.

The initial total uncertainty in [Fe I/H] is calculated using Equation 5.12:

σFeI =

√
(
∂[Fe I/H]

∂Teff
· σTeff

)2 + (
∂[Fe I/H]

∂log(g)
· σlog(g))2 + (

∂[Fe I/H]

∂ξt
· σξt)2 + (σµ,FeI)2 (5.12)

In this equation, each ∂Fe I
∂X term represents what will be referred to as a “sensitivity.” These sensi-

tivities indicate the rate of change in the abundance value of Fe with a stellar atmosphere parameter

indicated by ’X.’ Iron sensitivities were computed for each stellar atmosphere parameter for each

star. For a given star and sensitivity, this was accomplished by starting with the derived stellar at-

mosphere parameters found in Table 5.1, altering only the stellar atmosphere parameter in question,

generating a new stellar atmosphere model and computing the new Fe abundance for that model.

The sensitivity of Fe to the parameter in question was then computed by dividing the amount of

change in the Fe abundance, ∂Fe I, by the amount of change in the parameter X, ∂X. The sensi-

tivities computed for each stellar atmosphere parameter for each star can be found in Table 1 in

Appendix C.

The uncertainties σTeff
and σξt were calculated as described in “Teff and ξt” and σµ,FeI, the

uncertainty, or standard error associated with the equivalent width measurements, was determined

in the same way that the standard error was computed for the radial velocity measurements in §4.3.

The standard error is given by the following equation:

σµ,FeI =
σmeas,FeI√

n− 1
(5.13)
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where σmeas,FeI is the sample standard deviation given by:

σmeas,FeI =

√√√√ 1

n− 1

n∑
i=1

(FeIi − FeI)2 (5.14)

Again, n is the number of Fe I lines measured, FeIi is the Fe I abundance computed for each individual

line and FeI is the mean value of those individual Fe I abundances. In the initial computation of

the uncertainty in Fe I, σFeI, the value of the uncertainty in log(g) was taken to be zero. The initial

uncertainty in Fe II, σFeII, was also computed using the process described above.

log(g)

Recall that a value of log(g) was accepted for a stellar atmosphere model when the Fe

abundance calculated using Fe I lines was balanced with the Fe abundance calculated using Fe II

lines, i.e., when [Fe I/H] = [Fe II/H] to within 0.01 dex. Note that the uncertainty in the difference

between [Fe II/H] and [Fe I/H] is given by:

σII−I =
√
σ2

FeII + σ2
FeI (5.15)

Thus, the uncertainty in log(g), σlog(g), can be computed by altering the value of log(g) for a stellar

atmosphere model enough so that the difference between the values computed for [Fe I/H] and

[Fe II/H] is equal to the sum of the Fe I and Fe II uncertainties in quadrature, i.e. σII−I . This

can be accomplished by either increasing or decreasing the value of log(g), but the results are not

necessarily the same for both cases.

It can now be seen that the uncertainties associated with [Fe I/H] and [Fe II/H] are de-

pendent on the uncertainty associated with log(g) as shown in Equation 5.12, and the uncertainty

in log(g) is dependent on the uncertainties in [Fe I/H] and [Fe II/H]. Therefore, these uncertainties

were computed in an iterative process.

As previously mentioned, on the first iteration, σlog(g) was taken to be zero, and σFeI and

σFeII were computed. These values were used to compute σII−I, which was then used to determine

a value for σlog(g) as described above. The new value of σlog(g) was then incorporated into new σFeI

and σFeII values from which a new σII−I was computed. The new value was then compared with

the old value. This process was repeated three times for each star, after which, 85% of the sample

stars possessed a new σII−I that was different than the old value by ≤ 0.03dex. This process was
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performed for two instances–one where the value of log(g) was increased and one where the value

of log(g) was decreased to determine respective upper and lower bounds on log(g) for which σII−I

converged.

5.2 Other Elements of Interest

The elements of interest in this study included the Fe peak elements (Fe, Ni, Cr), α-capture

elements (Ti, Ca, Si, O), n-capture elements (Ba, Y) and others (Al). Attempts were made to

determine abundances for additional elements such as Zr, Sr, Pb and Eu, however the limits of the

spectral resolution of the observations prevented this task from being accomplished. Line lists were

comprised for each element from various studies including Bubar & King (2010), Preston & Sneden

(2000), King et al. (1998) and Sneden et al. (2003). The equivalent widths of each measurable line

in the line lists are reported in Tables 2, 3, 4 and 5 in Appendix C for all of the targets involved in

the abundance analysis.

An abundance was inferred for each of the elemental lines in the line list of each star in

the same way that the Fe abundance was inferred. A mean abundance was then computed from

those lines for each element. For a given star, the stellar atmosphere structure was established by

interpolating from the Kurucz (1992) grid for the final values of the stellar atmosphere parameters

and the measured equivalent widths of lines of each element of interest served as inputs in MOOG for

a curve-of-growth analysis to determine the abundance value for each element. The mean abundance

values and corresponding uncertainties for each element are reported for all of the targets in Tables 6,

7, 8 and 9 in the Appendix C.

The uncertainties for each element were computed for each star using Equation 5.12 substi-

tuting the element in question for Fe. For a given star, the uncertainties for the stellar atmosphere

parameters σTeff
, σlog(g) and σξt were determined in the procedure described in §5.1.4.1. However

the uncertainty in the measurements of the equivalent widths of the lines and the sensitivities to the

different stellar parameters will be different for each element.

For each element, the uncertainty in the measurements of the equivalent widths of the lines

was computed using Equations 5.14 and 5.13, replacing Fe with the element in question. In the case

where there was only one line to measure, the standard error was taken to be the sample standard

deviation calculated for the Fe I lines for that star since the sample standard deviation tells the user
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that if another EW measurement is made, there is an associated 1σ confidence that the measurement

will be within ±σmeas,X of the mean value of the EWs for the element X. In other words, it informs

the user of the precision of the measurement of a single line.

The sensitivities for each element were computed for five stars chosen primarily by their

locations on the CMD, but also by the secondary requirement that they are not likely binary stars

as indicated by their radial velocity p-values. These sensitivities were computed by both increasing

and decreasing the parameter in question to determine how the elemental abundance changed with

the change in the parameter. The sensitivities of each element to the three stellar parameters Teff ,

log(g) and ξt are listed in Table 1 in the Appendix C for the turnoff star, TO 37, a subgiant from

the center of the SG branch, SG 17, a subgiant from the region at the base of the red giant branch,

SG 16, the red giant star, RG 41 and a yellow straggler, YS 42. The sensitivities for these five

“standard sensitivity” stars were then used as approximations for the other stars. The sensitivities

assigned to a particular star were adopted from the standard sensitivity star that was located closest

to it in the CMD.
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Chapter 6

Discussion

6.1 Radial Velocities

The primary finding of the current radial velocity survey is that only two of the YSs targets

exhibit constant radial velocities (see Table 4.1) suggesting that they either single stars, or that if

they do exist in binary systems, the system is seen face-on from earth. Specifically, YS 24 exhibits

a radial velocity that is constant to 2σ and YS 48 exhibits a radial velocity that is constant to 3σ.

The finding that the majority of the YSs exhibit variable radial velocities is encouraging when one

considers a mass transfer hypothesis for YSs because it reveals a high binary frequency among the

YS population. However, other factors need to be considered. Primarily, the specific radial velocity

values exhibited by the YSs need to be examined with regard to the bulk motion of the cluster.

Mathieu (1983) determined a mean radial velocity of 33.5 ± 0.5 km/s for M67. Half of the YSs

studied presently exhibit mean radial velocity values that are significantly different than the mean

cluster radial velocity value derived by Mathieu (1983). However, a radial velocity distribution for

M67 can be used to further investigate the YS radial velocities.

To this end, smoothed histograms were created to consider the extent to which radial velocity

data vary for likely cluster members in both the Mathieu et al. (1986) and Yadav et al. (2008) works.

Figure 6.1 shows the smoothed histogram for the Mathieu et al. (1986) radial velocity data (solid

line) and the smoothed histogram for the Yadav et al. (2008) data (dotted line). These histograms

were computed by assuming a Gaussian distribution of the radial velocity values for each star in

each study and summing those distributions for a range of heliocentric radial velocity values with a
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specified bin size. It is important to note that because Mathieu et al. (1986) reported the standard

deviation of the multiple radial velocity measurements made for each star, those values were used

in computing the Gaussian distribution for each star. Yadav et al. (2008), however, reported formal

fitting errors produced from their cross correlation pipeline, so upon their suggestion, the fitting

errors were added in quadrature to their reported upper systematic uncertainty (∼ 0.6km/s) to

estimate true radial velocity uncertainties (see Table 4.1 for explicit values). These uncertainty

estimates were then used for the purpose of producing a Gaussian distribution for the radial velocity

value for each star in the Yadav et al. (2008) study. Stars that were reported by Mathieu et al. (1986)

to be spectroscopic binaries were removed from the Mathieu et al. (1986) sample to compute the

histogram, as were stars that possessed membership probabilities < 50% (Sanders, 1977). Similarly,

stars that were reported by Yadav et al. (2008) to have membership probabilities < 50% were

removed from the Yadav et al. (2008) sample to compute the histogram. Unfortunately, Yadav et al.

(2008) made no report on suspected spectroscopic binaries, so those stars could not be removed from

the sample.

In addition to the smoothed histograms, the radial velocities of the individual stars consid-

ered in the current abundance analysis have been plotted according to their mean heliocentric radial

velocity values. These radial velocity data have been plotted with a vertical offset so that they can

all be seen. The “normal” SG and TO stars (barring SG 33 because it was determined that this

star was a spectroscopic binary) have been plotted without error bars because their uncertainties

were typically smaller than the size of the data point on the plot. The YSs have been plotted with

error bars and labels. The circled YSs, 24 and 48, are the two YSs for which the radial velocities

were found to be constant at 2σ and 3σ levels respectively. It is plain to see in this figure that the

normal stars’ radial velocity determinations fall cleanly within the main distribution peak of both

histograms indicating that the radial velocities of these normal stars agree with the overall motion

of the cluster. The picture for the YSs, however, is more complicated.

The discrepancies seen between the overall cluster motion and the radial velocities exhibited

by the YSs could be used to argue that the YSs are simply contaminating field stars, however, there

are a few issues with assuming this explanation for all YSs. First, it should be recalled that for the

stars that exhibit variable radial velocities, the values reported presently are simply a calculated

mean of the radial velocities observed and will vary over time; they are not systemic radial velocities

of the binary system. Second, the radial velocities for YSs 23, 24, 42, 43 and 44 are not entirely
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Figure 6.1: Radial velocity histograms for Mathieu et al. (1986) (solid line) and Yadav et al. (2008)
(dotted line). The stars observed in the current abundance analysis are plotted here according to
their mean radial velocity values with vertical offsets. The uncertainties associated with the SG

and TO radial velocity values are smaller than the size of the points on the plot and have therefore
been left off. Uncertainties are reported, however, for the YSs which are labeled with their

associated identification numbers from the current study. The two stars whose radial velocity
points are circled mark the two YSs whose radial velocity values are constant at the 2σ and 3σ

levels.
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inconsistent with the cluster motion when the base of the main distribution peak is considered.

Third, likely single star, M67 members exist in both the Mathieu et al. (1986) and Yadav et al.

(2008) studies that exhibit radial velocities similar to YSs 13, 45, 46 and 48. Furthermore, if the

YSs are considered as a single population of contaminating field stars, it requires that the field stars

that just happen to fall within the YS region in the CMD of M67 also happen to have a particularly

high binary frequency. It should also be noted that the work of others, as discussed in §1, has

shown that the existence of BSs is likely due to some interaction between multiple stars and can

result in binary systems. It has also been shown that binary systems can exhibit effects that are

due to dynamical interactions, like mass segregation. This dissertation proposes that it is possible

that at least some of the YSs may be related to the BSs in the sense that they may be evolved

BSs. If this is the case, then YSs should also be subject to these types of dynamical interactions.

If a BS or YS has suffered some sort of dynamical “kick” from the cluster, it could potentially

exhibit a proper motion and/or radial velocity that disagrees with the cluster mean. In light of the

current discussion, the radial velocity data alone is insufficient to rule a non-membership status for

the YSs as a population and it is appropriate that all of the objects that could potentially be true

YSs (as indicated by their locations in the CMD of M67) be studied as a population, temporarily

disregarding their membership probabilities determined in proper motion studies. Then multiple

factors like chemical abundances and stellar atmosphere parameters can be taken into account in

addition to proper motions membership probabilities and radial velocities when making conclusions

about each individual potential YS. Because multiple parameters need to be considered for each YS,

the YSs are discussed in this way, on an individual basis in Appendix D.

6.1.1 A Note on Specific Radial Velocity Discrepancies with Yadav et al.

(2008)

The results for the radial velocities of the stars studied in the current work exhibit substantial

overlap with other studies and therefore provide an opportunity for radial velocity measurement

comparisons. The results of two predominant radial velocity studies (Mathieu et al., 1986; Yadav

et al., 2008) will be discussed here. Each of these studies contained radial velocity data for some of

the objects observed in this work. Those data were presented in the Table 4.1. The radial velocity

determinations in the present work agree with the Mathieu et al. (1986) study for all stars for which
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Mathieu et al. (1986) data are available. However, discrepancies arise in comparisons with the Yadav

et al. (2008) study. In particular, the radial velocities determined by Yadav et al. (2008) for BS 1,

BS 2, BS 7, BS 8 and YS 24 are grossly discrepant with the values determined in the current study.

It should be noted that the number of radial velocity measurements available for BS 1, BS 2 and BS 8

in the present study were limited and unfortunately, no Mathieu et al. (1986) data exists for these

stars for further comparison. In the case of BS 7, the radial velocity data from the present study

indicate that this star does not exhibit a constant radial velocity. Thus, it could be possible that this

star is capable of exhibiting the Yadav et al. (2008) radial velocity value, but further observation

would be necessary to establish whether or not this would be possible. The case of YS 24 is the most

perplexing. The Yadav et al. (2008) radial velocity value is significantly different from the mean

value determined in the current work. Furthermore, the 41 radial velocity measurements available

for this star in the current study indicate that it exhibits a constant radial velocity at a 2σ level. It

is noted that the primary purpose of the Mathieu et al. (1986) study of M67 was to determine radial

velocities of M67 stars and that the radial velocities of the stars studied by Mathieu et al. (1986)

were measured multiple times. Therefore, even though no Mathieu et al. (1986) data are available

for YS 24 for further comparison, it is plausible that the radial velocities measured presently for

YS 24 are accurate, when one considers the degree of agreement between the current work and the

Mathieu et al. (1986) study for other stars.

6.2 Abundances

For stars of near solar metallicity, [Fe/H] is often used to approximate the “metallicity” of a

star, or the overall “heavy” metal content. In astronomy terms, “heavy” means any element heavier

than He. The metallicities, or [Fe/H] values, derived in this work indicate that the population of

YSs are derived from a different parent population than the “normal” population of SG and TO

stars, excluding SG 33. Figure 6.2 shows a smoothed histogram of the Fe I abundances calculated

for both the YS and the normal star populations. These smoothed histograms were computed by

assuming a Gaussian distribution of the [Fe I/H] values that were computed for each Fe I line for

each star and summing those distributions for specified bins of [Fe I/H]. It can be seen in Figure 6.2

that there is a clear distinction between the peaks corresponding to each population, however there

is some overlap in the distributions when the uncertainties are taken into account.
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Figure 6.2: This plot shows smoothed histograms of the YS population and a “normal” star
population that consists of the SGs and TOs, barring SG33 due to its radial velocity variation and
likely binary nature. The two RGs were not used in the calculation of either smoothed histogram.
The dashed line indicates the smoothed histogram computed for the YS population. The solid line

corresponds to the normal star population.
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The distinction between the two populations can also be seen in Figure 6.3, but here, the

specific mean Fe I abundances for each star can be seen. In this figure, each star has been plotted

according to its mean Fe I abundance and associated uncertainty, as computed using the previously

described Fe balance approach. Because of this apparent distinction between the two populations,

mean Fe I abundance values and their associated uncertainties were computed both for the normal

star population (indicated by the solid line) and the YS population (indicated by the dashed line).

The gray boxes depict the standard error associated with each population mean. These standard

errors were computed using the general form of Equations 5.14 and 5.13. It can be seen that the mean

Fe I abundance values of the two populations are distinct; the mean value for the normal population

is [Fe I/H]norm = 0.12±0.02 while the mean value for the YS population is [Fe I/H]YS = −0.13±0.04.

Note that the Fe I abundance value for SG 33 was not used in the calculation of the mean for the

normal star population because it shows significant radial velocity variation and is likely a binary

system.

Furthermore, a two-sample Kolmogorov-Smirnov (K-S) test of the metallicities of these

two populations of stars also supports the conclusion that they are drawn from different parent

populations. The results of the Fe I abundance K-S test can be seen in Figure 6.4. The [Fe I/H] K-S

statistic and its p-value were computed to be 2.05 and 0.00 respectively. The p-value is computed

under the null hypothesis that the two populations are drawn from the same parent population.

Thus, the [Fe I/H] K-S test indicates that the normal and YS populations are derived from parent

populations with differing distributions. Note, however, that the K-S test is limited by the number

of stars in each population.

The fact that the YS population appears to be distinct from the normal stars in M67 in

terms of metallicity is problematic if the YSs are true cluster members. This is because it is assumed

that the stars in a cluster are derived from the same molecular cloud and are expected to have similar

chemical compositions. One is, again, encouraged to consider the possibility that the YSs are simply

contaminating field stars. However, in light of the fact that some of the YSs have high proper motion

membership probabilitiies and radial velocities that are consistent with the cluster mean, three other

possible explanations will be considered presently.
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Figure 6.3: [Fe I/H] with associated uncertainties for various star types. Note that the abscissa
values indicate each star’s identification number in this work. The solid line indicates the mean

metallicity computed for the “normal” SG and TO stars, excluding SG33 due to it’s radial velocity
variations and likely binary nature. The dashed line indicates the mean metallicity computed for
the YS population. The two RGs were not used in the calculation of either mean value. The gray

boxes indicate the standard error (as defined in Equation 5.13) associated with the mean
metallicity value of each population.
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Figure 6.4: KS test for [Fe I/H].

6.2.1 1–Inaccurate Metallicity Determinations

It is acknowledged here that the mean [Fe I/H] value for the normal star population is

notably higher than the values reported by others, which range from -0.09 to 0.04 (Nissen et al.,

1987; Garcia Lopez et al., 1988; Hobbs & Thorburn, 1991; Friel & Boesgaard, 1992; Friel & Janes,

1993; Tautvaisiene et al., 2000; Taylor, 2007). Therefore, the possibility that the metallicities derived

in the current work are inaccurate will be considered in this section via comparisons with other works.

6.2.1.1 Comparisons with Önehag et al. (2014)

A recent study by Önehag et al. (2014), aimed at exploring the understanding of the physics

and evolution of solar type stars, reports elemental abundances for the star SG 36 of the current

study. Additionally, Önehag et al. (2014) report stellar atmosphere parameters, a line list of the

elemental lines used in their study, the equivalent widths of those lines as measured in a solar atlas

and the abundances computed for each spectral line in the star. Önehag et al. (2014) do not report,

however, the equivalent widths measured for each of the spectral lines in SG 36. Though they do
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Table 6.1. Comparison of SG 36 Chemical Abundance Values.

Önehag et al. (2014) McGahee
Element Wavelength [X/H] [X/H]

Na I: 6154.230 0.02 0.03
6160.750 -0.05 0.00

Al I: 6698.670 -0.02 0.01
Ca I: 6166.439 -0.06 0.08
Ti I: 6126.216 -0.01 0.12

6258.102 0.03 0.00
Fe I: 6151.617 -0.04 0.10

6498.945 0.06 0.40
Al I: 5087.420 -0.11 0.15

not present stellar equivalent widths, the rest of the data presented by Önehag et al. (2014) will be

compared to the results from the current work.

Table 6.1 contains the specific abundance values listed for each element that is present in

both this study and that of Önehag et al. (2014). A comparison plot of these elemental abundances

for SG 36 can be seen in Figure 6.5. It is clear, in this plot, that there is disagreement between the

abundance values computed for each line in the present study and those values computed by Önehag

et al. (2014). In particular, there is strong disagreement between the Fe abundances computed in

both studies. The following paragraphs discuss potential reasons for these discrepancies.

The stellar atmosphere parameters derived by Önehag et al. (2014) and in this study are

presented in Table 6.2. Önehag et al. (2014) derived Teff by taking the mean of two values: one

computed from the photometric color indices (V−Ks) and (V− Ic) and one computed by matching

the Hα wings to a synthetic spectrum. They derived log(g) by estimating each star’s mass from the

star’s de-reddened V magnitude and an isochrone fit to M67. Their solar models were computed

using these estimates of Teff and log(g) and assuming solar abundances of all elements. Abundances

were computed for each Fe I spectral line, and ξt was then determined by adjusting its value until the

abundances computed for all of the Fe I lines were as “equal as possible.” The derived sensitivities

of the Fe I abundance to each of these parameters from both the current study from Önehag et al.

(2014) are listed in Table 6.3. Note that in the present work, sensitivities were, in some cases,

found to vary depending on whether the parameter in question was being increased or decreased.

Also note that the Fe II sensitivities were typically different than the Fe I sensitivities. Önehag
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Figure 6.5: The abundance values computed for individual spectral lines are compared between
this study and that of Önehag et al. (2014). The solid line indicates a 1-to-1 relation for reference.

et al. (2014) present only one value for the Fe sensitivity (presumably the Fe I sensitivity) to what

are, also presumably, increases in the value of each parameter. The sensitivities reported from the

current work, are the sensitivities of the Fe abundance due to increases in the parameter in question

in Table 6.3.

A comparison of the solar equivalent widths measured in both studies reveals a notable

discrepancy between the equivalent widths measured for the two Fe I lines that are in common

between the studies: λ6151 and λ6498 (see Table 6.4). The discrepancies between the studies for

each of the Fe lines is roughly 60%. Upon this discovery, the equivalent widths of those lines were

Table 6.2. Stellar Atmosphere Parameters for SG 36.

Study Teff log(g) [Fe I/H] ξt
(K) (dex) (dex) (km/s)

Önehag et al. (2014): 6061 3.82 -0.03 1.6
McGahee: 6025 3.90 0.18 1.40
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Table 6.3. Fe I Sensitivities for SG 36.

Study Teff log(g) ξt

Önehag et al. (2014): 0.0006 0.00 -0.10
McGahee: 0.0008 -0.10 -0.30

Note. — This table contains the Fe I abundance
sensitivities derived in the present work by increasing
the value of the parameter in question. The Önehag
et al. (2014) sensitivities were simply indicated for
Fe. The Teff values are per Kelvin, the log(g) values
are per dex and the ξt values are per (km/s).

Table 6.4. Comparison of Solar Equivalent Widths.

Önehag et al. (2014) McGahee
EW EW

Wavelength (mÅ) (mÅ)

6154.230 40.6 41.0
6160.750 62.2 63.0
6698.670 22.4 30.2
6166.439 73.8 66.8
6126.216 24.1 24.1
6258.102 52.9 56.0
6151.617 125.4 48.9
6498.945 108.6 47.3
5087.420 50.6 49.4

checked and subsequent measurements agreed with the values determined previously in the current

study. Additionally, both Bubar & King (2010) and King et al. (1998) find equivalent widths for

these lines in the sun in that are in agreement with the values determined in the current work. Note,

however, that when the Fe I lines are disregarded, the equivalent widths measured differ, on average,

by only ∼ 4%. The equivalent width measurements for the lines in common between both studies

are listed in Table 6.4.

A visual comparison of the solar equivalent widths can be seen in Figure 6.6. Again, it is

clear that the solar equivalent widths are in agreement between the two studies with the exception

of the two Fe lines. In a differential analysis, an overestimation of an equivalent width and thus
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an elemental abundance would drive down the stellar abundance. Thus the overestimation of the

equivalent widths of the Fe lines in Önehag et al. (2014) could be a contributing factor in the

lower Fe abundance reported by them. Considering the consistency between the stellar atmosphere

parameters and sensitivities determined in both studies, it is likely that this difference in the derived

metallicity for SG 36 is closely related to the discrepancies in the equivalent widths measured for

these Fe I lines. Because Önehag et al. (2014) provide no additional equivalent width information for

the Fe I lines in SG 36, no further investigation can be conducted. It cannot, however, be concluded

that the metallicity determined in the current study is unreliable.

Figure 6.6: The equivalent widths of solar lines are compared between the current study and that
of Önehag et al. (2014). The solid line indicates a 1-to-1 relation for reference.

6.2.1.2 Comparisons with Jacobson et al. (2011)

A study by Jacobson et al. (2011) aims to determine chemical abundances of open clusters.

In the process, they reported chemical abundances for the stars RG 41, YS 43 and YS 44 of the

current study. Figure 6.8 depicts a comparison between the mean abundance values computed in

the present study and those computed by Jacobson et al. (2011). The mean chemical abundance
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Table 6.5. Comparison of RG 41, YS 43 and YS 44 Mean Abundance Values.

Jacobson et al. (2011) McGahee
RG 41 YS 43 YS 44 RG 41 YS 43 YS 44

Element [X/H] [X/H] [X/H] [X/H] [X/H] [X/H]

Fe I -0.07 -0.11 -0.09 -0.13 -0.08 -0.22
Ni I -0.03 -0.14 -0.08 -0.27 -0.16 -0.29
Cr I 0.38 -0.01 -0.06 -0.45 -0.20 -0.45
Na I -0.09 0.01 0.01 0.01 0.02 0.04
Ti I 0.00 -0.15 -0.09 -0.22 -0.15 -0.28
Ca I -0.25 -0.18 -0.14 -0.13 -0.04 -0.22
Si I 0.14 0.09 0.10 -0.11 -0.08 -0.13
O I -0.10 -0.35 -0.20 -0.09 0.16 0.03
Al I 0.48 0.18 0.30 0.15 0.00 0.10

values for RG 41, YS 43 and YS 44 are listed in Table 6.5. The abundances computed in the current

study differ from those computed by Jacobson et al. (2011) by only 10% on average. Furthermore,

considering only the Fe abundances, Figure 6.7 shows that two of the three stars in common in both

studies have mean Fe abundances that agree to within the uncertainties determined in the current

study. On average the Fe abundances differ by only 5% between the two studies.

Figure 6.7: The mean [Fe I/H] values computed in this study and in Jacobson et al. (2011) are
compared for RG 41, YS 43 and YS 44. The solid line indicates a 1-to-1 relation for reference.

Jacobson et al. (2011) state that they chose to not use the Fe ionization and excitation

balance that was employed in the current study because they felt they had too few Fe lines to ensure
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Table 6.6. Stellar Atmosphere Parameters for RG 41, YS 43 and YS 44.

Study Teff log(g) [Fe I/H] ξt
(K) (dex) (dex) (km/s)

Jacobson et al. (2011):
RG 41 4800 2.9 -0.07 1.5
YS 43 5100 3.0 -0.11 1.5
YS 44 5000 2.7 -0.09 1.5
McGahee:
RG 41 4850 2.60 -0.13 2.10
YS 43 5265 3.42 -0.08 2.03
YS 44 5050 2.81 -0.22 2.33

that the results of the process would be reliable. Instead, they determine Teff using extinction-

corrected magnitudes and colors and taking the average of the (B-V), (V-K) and (J-K) temperatures.

They also state that they determine log(g) from the relation:

log(g) = log(m/m�)− 0.4(Mbol,� −Mbol,∗) + 4log(T/T�) + log(g�) (6.1)

Lastly, they adopted a microturbulent velocity (ξt) of 1.5 km/s for all stars and after investigation,

claim that “no major systematics are introduced into [their] results as a result of [their] treatment

of the microturbulence.” The stellar atmosphere parameters for RG 41, YS 43 and YS 44 from both

studies are listed in Table 6.6 for comparison.

A visual comparison of the equivalent widths of various spectral lines can be seen in Fig-

ure 6.9. On average, the equivalent widths measured in this study agree with those of Jacobson et al.

(2011) to within ∼ 5%. The equivalent width measurements from both studies are listed explicitly

in Table 6.7.
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Table 6.7. Comparison of RG 41, YS 43 and YS 44 Equivalent Widths.

Jacobson et al. (2011) McGahee
RG 41 YS 43 YS 44 RG 41 YS 43 YS 44

Wavelength EW EW EW EW EW EW
Element (Å) (mÅ) (mÅ) (mÅ) (mÅ) (mÅ) (mÅ)

Fe I: 6151.617 82 71 85 97.5 74.3 87.5
6157.728 112 92 97 119.5 94.1 102.3
6165.360 64 61 64 82.9 70.3 73.3
6173.336 110 88 102 138.2 104.7 114.0
6232.641 126 116 117 129.1 119.6 137.5
6322.685 129 114 120 138.3 119.8 99.9
6336.820 142 133 130 148.3 141.4 30.1
6344.148 117 112 107 155.8 122.2 81.1
6469.193 104 73 91 83.0 80.9 77.5
6646.932 50 33 41 53.9 27.0 70.4
6703.567 96 69 77 94.1 64.1 62.6
6705.101 79 66 71 88.0 68.4 68.1

Fe II: 6149.249 46 56 59 44.6 55.4 60.4
6247.557 61 73 71 57.1 72.4 73.3
6369.462 28 39 54 50.4 35.4 42.5
6416.919 41 65 65 56.8 49.1 54.1
6456.380 71 86 87 89.5 93.9 98.2

Na I: 6154.230 79 70 76 84.0 60.9 77.8
6160.750 93 85 85 109.4 92.8 105.8

Si I: 6142.480 52 48 51 48.0 49.5 52.7
6145.010 51 50 50 54.2 50.5 52.7
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Table 6.7 (cont’d)

Jacobson et al. (2011) McGahee
RG 41 YS 43 YS 44 RG 41 YS 43 YS 44

Wavelength EW EW EW EW EW EW
Element (Å) (mÅ) (mÅ) (mÅ) (mÅ) (mÅ) (mÅ)

6155.130 81 91 88 95.9 92.6 98.4
Ca I: 6166.439 95 87 95 112.7 95.8 98.0
Ni I: 6175.370 63 63 69 82.3 69.3 74.4

6204.605 54 39 45 50.1 41.5 48.7
6772.320 82 68 82 86.0 67.6 78.5

Figure 6.8: The mean abundance values computed in the current study and in Jacobson et al.
(2011) are compared for RG 41 (top left panel) YS 43 (top right panel) and YS 44 (bottom panel).

The solid line indicates a 1-to-1 relation for reference in all panels.

In comparing the results of this study with those of Jacobson et al. (2011), it appears as

though the equivalent width measurements are not responsible for the discrepancy in various chemical

abundance values between the two studies. It is possible that the difference in the treatment of the

stellar atmosphere parameters between the two studies could be responsible for the discrepancies that

are seen for particular elements. However, it has been shown that there is no substantial disagreement
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Figure 6.9: The equivalent widths for various spectral lines measured in the current study and in
Jacobson et al. (2011) are compared for RG 41 (top left panel), YS 43 (top right panel) and YS 44

(bottom panel). The solid line indicates a 1-to-1 relation for reference in all panels.

between the metallicities ([Fe I/H] values) derived by Jacobson et al. (2011) and those derived in the

current work for RG 41, YS 43 and YS 44. Therefore, it is concluded that the metallicities derived

in the current study are, in fact, reliable and the difference in the metallicities between the YSs and

the normal stars in the current study cannot be explained as inaccurate metallicity determinations

for the stars.

6.2.2 2–A Speculation About a Metallicity Enhancing Period in the His-

tory of M67

In this section, an explanation of the metallicity discrepancy between the YSs and the

normal stars of M67 is attempted by speculating about a potential metal-enriching period in the

history of M67. In order to explain the discrepancy, this metal-enriching scenario requires several

assumptions: 1) in the history of M67, the massive stars returned metal enriched material to the

cluster through supernova explosions, successfully polluting the still MS burning stars 2) the amount
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of pollution was sufficient enough so that these MS stars began to exhibit enhanced metallicities and

3) that some undetermined mechanism operates in the YSs allowing them to exhibit their original

metallicities. This is quite an exotic scenario, however, if it were responsible for the metallicity

discrepancies, one could expect that as the MS stars evolve away from the MS and begin to cool,

that their convective zones will deepen and effectively erase the enhanced metallicities exhibited by

the polluted MS stars. To investigate this possibility, one can look for a negative correlation between

[Fe I/H] and the color index (B-V) of the stars in the current work. It can be seen in the top panel of

Figure 6.10, that no such correlation exists for the M67 TOs, SGs and RGs that were investigated in

the current work. Furthermore, there is no such correlation seen for the YSs (see the bottom panel

of Figure 6.10) either. This is a good indication that a scenario similar to the one described here is

not responsible for the metallicity discrepancy seen between the YSs and the normal stars of M67.

6.2.3 3–Revisiting a Hypothesis of Field Star Contamination

Lastly, the hypothesis that the YSs are simply contaminating field stars in the field of

view of M67 is revisited. This hypothesis again seems plausible given the metallicity discrepancies

between the YSs and the normal stars in M67. To further investigate this hypothesis, the overall

chemical abundance patterns of both the normal stars and the YSs will be considered. In particular,

the abundances for Ni, Cr, Ba, Y, Na, Ti I, Ti II, Ca, S, C, O and Al are examined. Abundance

plots, similar to Figure 6.3, have been generated for each element and can be found in Appendix C

in Figures 18, 19 and 20. Additionally, a K-S test was performed for each element, the results

of which, are illustrated in Appendix C in Figures 21, 22 and 23. It is noted that the only case

where there is greater than 1σ confidence that the two populations are drawn from the same parent

population is found in the K-S test for oxygen–the bottom right panel of Figure 23. The resulting

overall abundance pattern of the YSs again indicates that the YSs are derived from a different parent

population than the normal stars considered in the present work and suggests that these stars could

be contaminating field stars.

Bensby et al. (2004) presented chemical abundances for field stars of various metallicities.

The results of this work have been used to compare the abundance patterns of the YSs to those

of field stars with similar metallicities. Visual comparisons can be seen in Figures 6.11, 6.12 and

6.13. In these plots the field stars are indicated with small gray filled circles. It can be seen that

the abundance pattern of the YSs tends to disagree with those seen for the field stars, perhaps more
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Figure 6.10: The top panel shows no correlation between the [Fe I/H] values and the B-V indices
for the TOs, SGs and RGs. The YSs have been added to the plot in the bottom panel, labeled with
the identification numbers assigned in the current work for reference. Again, no correlation is seen.

so than the majority of the normal cluster stars considered in the current study. This finding casts

considerable doubt on the hypothesis that the YSs can be explained as a population of contaminating

field stars, however, it does appear that some individual YS abundance patterns may agree with

those seen for the field stars.

6.3 Considering the s-process Elements

One of the primary purposes of the current work was to investigate the s-process element

abundances of the YSs to see if these elements are enhanced. An enhancement of the s-process

elements would support a hypothesis in which RLOF mass transfer occurred in the stars’ histories.
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Figure 6.11: Abundances derived in the current study compared to those derived by Bensby et al.
(2004) for field stars with similar metallicities.
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Figure 6.12: Abundances derived in the current study compared to those derived by Bensby et al.
(2004) for field stars with similar metallicities.

86



Figure 6.13: Abundances derived in the current study compared to those derived by Bensby et al.
(2004) for field stars with similar metallicities.
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Attempts were made to determine abundances for the s-process elements Ba, Y, Sr, Zr and Pb.

Equivalent widths were measured for Ba and Y and abundances were successfully inferred, however,

the resolution of the spectra obtained for the current study was insufficient for measuring the equiv-

alent widths of lines of Sr, Zr and Pb. The abundance plots for Y and Ba from Figure 6.11 have

been enlarged and identification numbers have been added for the YSs for examination. Clearly,

no enhancement of Y or Ba are seen for any YS. Therefore, a past episode of RLOF mass transfer

cannot be confirmed for these stars. This is perplexing however, when YS 43 is considered. It

was discussed in §1.3.4 that an independent study by Landsman et al. (1997) determined that this

star likely experienced a prior episode of RLOF mass transfer, however the current study finds an

underabundance of both Y and Ba. This issue will be addressed further in §7.

Figure 6.14: The yttrium abundances for all stars involved in the current study compared to the
values derived by Bensby et al. (2004) for field stars of various metallicities. The YSs have been

labeled with the identification numbers assigned in the current study.
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Figure 6.15: The barium abundances for all stars involved in the current study compared to the
values derived by Bensby et al. (2004) for field stars of various metallicities. The YSs have been

labeled with the identification numbers assigned in the current study.
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Chapter 7

Conclusions

The results of the current study have shown that the YS population exhibits a high binary

frequency, however, none of the YSs exhibit s-process element enhancements. Therefore, a previous

episode of RLOF mass transfer cannot be confirmed for the yellow straggler stars. However, a few

final points should be addressed.

Are the metallicities derived in the current work reliable?

The mean metallicity, or [Fe I/H] value derived for the normal stars involved in the current

abundance analysis is significantly different than the mean metallicity derived for M67 by numerous

others. This is likely not due to the resolution of the spectra; comparisons of the equivalents widths

of the the Fe I lines measured in the current work with the equivalent widths from Jacobson et al.

(2011) indicate similar measurements. Furthermore, the Fe I abundance values inferred in the

current work agree with the abundance values inferred by Jacobson et al. (2011). Therefore, there

is no obvious reason that the [Fe I/H] values determined in the current work should not be reliable.

It is noted, however, that the discrepancy of the metallicities between the YSs and the normal stars

could not be explained by any of the three hypotheses considered in §6.2. It is interesting that the

metallicity of RG 22 mimicked that of the normal stars while the metallicity of RG 41 mimicked

that of the YSs. A follow-up study on the RGs in M67 may provide clues as to why this discrepancy

between the YSs and the normal stars exists.

Are the YSs a population of contaminating field stars?

It has been shown that both the radial velocity data and the abundance data for the YSs can

be used to argue that the YSs are simply a population of contaminating field stars. However, it has
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also been pointed out that it is unlikely that all YSs are field stars given: 1) the high membership

probabilities of some YSs 2) the fact that likely members in both the Mathieu et al. (1986) and

Yadav et al. (2008) studies exhibit radial velocities similar to those seen for the majority of the

YSs 3) the binary frequency that would be required of a population of field stars that happens to

reside in the YS region of the CMD of M67 and 4) the fact that the abundance patterns of the

YSs tend to disagree with the abundance patterns of field stars with similar metallicities. The

contaminating field star hypothesis is not a sufficient explanation all YSs, however, it is again

reiterated that this explanation is likely sufficient for some of the YSs. To address this, individual

YSs are discussed in Appendix D. In the discussion found there, membership probabilities, radial

velocities and abundances are considered simultaneously. In some cases, however, the nature of the

YS in question is still not clear. A follow-up study to obtain further radial velocity data in order

to establish orbital parameters for the YS binaries may help illuminate the situation for individual

YSs. Comparison of the orbital parameters of a specific YS to the parameters that are typical for

field stars binaries could help indicate whether the YS in question is likely a field star.

Does the fact that s-process elements are not enhanced in YSs mean that these stars have not ex-

perienced an episode of RLOF mass transfer?

If s-process elements had been detected for the YSs, it would have been a “smoking gun” for

a prior episode of RLOF mass transfer. However, the fact that these enhancements are not seen does

not rule out a history of mass transfer for the YSs. Preston & Sneden (2004) did find enhancements

of s-process elements in the blue metal poor stars (BMPs), however, these enhancements were

typically seen in only the most metal poor stars in their sample. So there seemed to be a correlation

between the overall metallicity of the BMPs and whether or not they showed the s-process element

enhancements. This leads one to consider that there could be a dilution effect for the YSs; if these

stars have have in fact been polluted by previous AGB companions but their overall metallicities

are relatively high, they may not be capable of exhibiting their s-process element enhancements. If

this is the case, then it may be that these types of enhancements simply can’t be seen. This could

be a possible explanation for why no enhancements are seen in YS 43 which is believed to have

experienced this type of mass transfer. However, a better understanding of the amount of material

accreted in the mass transfer process, the ratio of the s-process material to the total amount of

material accreted and the convection zone depths of the YSs could all help to better predict whether

or not these s-process element enhancements can be expected for the M67 yellow straggler stars.
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Appendix A Stellar Targets of Observation

Figure 1: Turnoff stars (TOs) and anomalous turnoff stars (ATOs) plotted according to their
Yadav et al. (2008) photometry. Each star has been labeled with the identification number

assigned in the current study. Identification numbers enclosed in parentheses indicate the stars for
which no Yadav et al. (2008) photometry was available. In these cases, the star has been plotted

according to its Montgomery et al. (1993) photometry.
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Figure 2: Subgiant stars (SGs) and red giant stars (RGs) plotted according to their Yadav et al.
(2008) photometry. Each star has been labeled with the identification number assigned in the

current study. Identification numbers enclosed in parentheses indicate the stars for which no Yadav
et al. (2008) photometry was available. In these cases, the star has been plotted according to its

Montgomery et al. (1993) photometry.
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Figure 3: Blue straggler stars (BSs) and yellow straggler stars (YSs) plotted according to their
Yadav et al. (2008) photometry. Each star has been labeled with the identification number

assigned in the current study. Identification numbers enclosed in parentheses indicate the stars for
which no Yadav et al. (2008) photometry was available. In these cases, the star has been plotted

according to its Montgomery et al. (1993) photometry.
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Appendix B Radial Velocity Survey Data

Figure 4: Radial Velocity Plots for BS4, BS5, BS6 and BS7. Note that for stars that exhibit
variable radial velocity measurements, the mean value computed in the present work is not

representative of a systemic radial velocity for the binary system. It is simply an average of the
radial velocity measurements computed.
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Figure 5: Radial Velocity Plots for BS8, BS9, BS10 and BS11. Note that for stars that exhibit
variable radial velocity measurements, the mean value computed in the present work is not

representative of a systemic radial velocity for the binary system. It is simply an average of the
radial velocity measurements computed.
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Figure 6: Radial Velocity Plots for BS12, BS14, BS15 and SG16. Note that for stars that exhibit
variable radial velocity measurements, the mean value computed in the present work is not

representative of a systemic radial velocity for the binary system. It is simply an average of the
radial velocity measurements computed.
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Figure 7: Radial Velocity Plots for SG17, SG18a, SG18b and SG18c. Note that for stars that
exhibit variable radial velocity measurements, the mean value computed in the present work is not

representative of a systemic radial velocity for the binary system. It is simply an average of the
radial velocity measurements computed.
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Figure 8: Radial Velocity Plots for SG20, SG21, SG25 and SG26. Note that for stars that exhibit
variable radial velocity measurements, the mean value computed in the present work is not

representative of a systemic radial velocity for the binary system. It is simply an average of the
radial velocity measurements computed.
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Figure 9: Radial Velocity Plots for SG33, SG36, RG22 and RG41. Note that for stars that exhibit
variable radial velocity measurements, the mean value computed in the present work is not

representative of a systemic radial velocity for the binary system. It is simply an average of the
radial velocity measurements computed.
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Figure 10: Radial Velocity Plots for TO19, TO27, TO28 and TO29. Note that for stars that
exhibit variable radial velocity measurements, the mean value computed in the present work is not

representative of a systemic radial velocity for the binary system. It is simply an average of the
radial velocity measurements computed.
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Figure 11: Radial Velocity Plots for TO30, TO 31, TO32 and TO34. Note that for stars that
exhibit variable radial velocity measurements, the mean value computed in the present work is not

representative of a systemic radial velocity for the binary system. It is simply an average of the
radial velocity measurements computed.
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Figure 12: Radial Velocity Plots for TO35, TO37, TO39 and TO40. Note that for stars that
exhibit variable radial velocity measurements, the mean value computed in the present work is not

representative of a systemic radial velocity for the binary system. It is simply an average of the
radial velocity measurements computed.
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Figure 13: Radial Velocity Plots for TO49, TO50, TO55 and YS13. Note that for stars that
exhibit variable radial velocity measurements, the mean value computed in the present work is not

representative of a systemic radial velocity for the binary system. It is simply an average of the
radial velocity measurements computed.
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Figure 14: Radial Velocity Plots for YS23, YS24, YS42 and YS43. Note that for stars that exhibit
variable radial velocity measurements, the mean value computed in the present work is not

representative of a systemic radial velocity for the binary system. It is simply an average of the
radial velocity measurements computed.
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Figure 15: Radial Velocity Plots for YS44, YS45, YS46a and YS46b. Note that for stars that
exhibit variable radial velocity measurements, the mean value computed in the present work is not

representative of a systemic radial velocity for the binary system. It is simply an average of the
radial velocity measurements computed.
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Figure 16: Radial Velocity Plots for YS47, YS48, ATO51 and ATO53. Note that for stars that
exhibit variable radial velocity measurements, the mean value computed in the present work is not

representative of a systemic radial velocity for the binary system. It is simply an average of the
radial velocity measurements computed.
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Figure 17: Radial Velocity Plots for ATO54, ATO56 and ATO 57. Note that for stars that exhibit
variable radial velocity measurements, the mean value computed in the present work is not

representative of a systemic radial velocity for the binary system. It is simply an average of the
radial velocity measurements computed.
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Appendix C Abundance Analysis Data

Table 1: Abundance Sensitivities to Parameter Changes

∆[X/H]
∆Teff

∆[X/H]
∆log(g)

∆[X/H]
∆ξt

(dex
K

) (dex
dex

) ( dex
km/s

)

Star Ion + − + − + −

TO37

[FeI/H] 0.0007 0.0008 -0.07 -0.06 -0.20 -0.25

[FeII/H] -0.0002 -0.0002 0.40 0.38 -0.25 -0.30

[NiI/H] 0.0007 0.0007 -0.03 -0.02 -0.15 -0.15

[CrI/H] 0.0009 0.0011 -0.10 -0.04 -0.30 -0.35

[BaII/H] 0.0004 0.0003 0.23 0.28 -0.60 -0.65

[YII/H] 0.0002 0.0002 0.40 0.40 -0.35 -0.40

[NaI/H] 0.0005 0.0005 -0.07 -0.04 -0.05 -0.05

[TiI/H] 0.0009 0.0009 -0.07 -0.02 -0.10 -0.05

[TiII/H] 0.0002 0.0001 0.37 0.36 -0.40 -0.45

[CaI/H] 0.0007 0.0008 -0.27 -0.20 -0.30 -0.25

[SiI/H] 0.0004 0.0003 -0.10 -0.06 -0.10 -0.10

[CI/H] -0.0006 -0.0006 0.30 0.30 -0.05 0.00

[OI/H] -0.0008 -0.0008 0.23 0.22 -0.15 -0.15

[AlI/H] 0.0004 0.0003 -0.10 -0.10 -0.05 -0.05

SG17

[FeI/H] 0.0007 0.0008 -0.10 -0.06 -0.35 -0.30

[FeII/H] -0.0004 -0.0005 0.43 0.44 -0.30 -0.30

[NiI/H] 0.0007 0.0006 0.00 0.02 -0.30 -0.30

[CrI/H] 0.0011 0.0012 -0.13 -0.10 -0.50 -0.45

[BaII/H] 0.0003 0.0002 0.23 0.26 -0.65 -0.65

[YII/H] 0.0001 -0.0013 1.33 -0.12 0.90 -1.90

[NaI/H] 0.0006 0.0005 -0.07 -0.06 -0.10 -0.10

[TiI/H] 0.0010 0.0011 -0.03 -0.04 -0.15 -0.15

[TiII/H] 0.0001 0.0000 0.37 0.36 -0.60 -0.65

[CaI/H] 0.0010 0.0009 -0.17 -0.18 -0.20 -0.25

[SiI/H] 0.0002 0.0001 -0.03 -0.02 -0.10 -0.10

[CI/H] -0.0006 -0.0009 0.33 0.32 0.00 -0.05

[OI/H] -0.0009 -0.0012 0.30 0.34 -0.15 -0.10

[AlI/H] 0.0004 0.0005 -0.17 -0.06 -0.15 0.00

SG16

[FeI/H] 0.0006 0.0005 0.00 0.00 -0.30 -0.35

[FeII/H] -0.0007 -0.0010 0.50 0.50 -0.15 -0.25

[NiI/H] 0.0004 0.0001 0.13 0.12 -0.25 -0.35

[CrI/H] 0.0013 0.0013 -0.13 -0.12 -0.40 -0.40

[BaII/H] 0.0002 0.0002 0.23 0.28 -0.60 -0.60

[YII/H] 0.0001 -0.0030 2.37 -0.78 2.70 -3.35

110



Abundance Sensitivities to Parameter Changes 1 – Continued

∆[X/H]
∆Teff

∆[X/H]
∆log(g)

∆[X/H]
∆ξt

(dex
K

) (dex
dex

) ( dex
km/s

)

Star Ion + − + − + −

[NaI/H] 0.0006 0.0007 -0.10 -0.08 -0.15 -0.20

[TiI/H] 0.0013 0.0013 -0.03 -0.04 -0.30 -0.35

[TiII/H] 0.0000 0.0000 0.37 0.42 -0.40 -0.45

[CaI/H] 0.0011 0.0012 -0.20 -0.20 -0.25 -0.35

[SiI/H] -0.0002 -0.0004 0.10 0.10 -0.10 -0.10

[CI/H] -0.0009 -0.0011 0.30 0.36 -0.05 0.00

[OI/H] -0.0013 -0.0015 0.30 0.38 -0.05 -0.10

[AlI/H] 0.0005 0.0004 -0.13 -0.12 -0.10 -0.15

SG41

[FeI/H] 0.0007 0.0005 0.07 0.08 -0.40 -0.40

[FeII/H] -0.0009 -0.0012 0.53 0.52 -0.20 -0.25

[NiI/H] 0.0004 0.0002 0.17 0.16 -0.30 -0.30

[CrI/H] 0.0016 0.0016 -0.03 -0.06 -0.60 -0.65

[BaII/H] 0.0002 0.0003 0.37 0.40 -0.65 -0.75

[YII/H] 0.0000 0.0023 -1.07 1.32 -2.45 1.95

[NaI/H] 0.0008 0.0009 -0.07 -0.04 -0.20 -0.20

[TiI/H] 0.0015 0.0016 -0.03 0.00 -0.30 -0.35

[TiII/H] 0.0000 -0.0001 0.40 0.42 -0.45 -0.50

[CaI/H] 0.0014 0.0015 -0.13 -0.10 -0.40 -0.40

[SiI/H] -0.0002 -0.0004 0.17 0.18 -0.15 -0.15

[CI/H]

[OI/H] -0.0016 -0.0018 0.40 0.44 -0.10 -0.10

[AlI/H] 0.0006 0.0006 -0.07 -0.04 -0.20 -0.15

YS42

[FeI/H] 0.0008 0.0007 -0.03 -0.04 -0.10 -0.20

[FeII/H] -0.0003 -0.0003 0.43 0.42 -0.25 -0.25

[NiI/H] 0.0007 0.0008 0.00 0.00 -0.15 -0.10

[CrI/H] 0.0011 0.0011 -0.03 -0.06 -0.25 -0.30

[BaII/H] 0.0004 0.0002 0.37 0.34 -0.50 -0.60

[YII/H] 0.0002 0.0002 0.40 0.40 -0.25 -0.30

[NaI/H] 0.0006 0.0005 -0.03 -0.04 -0.05 -0.10

[TiI/H] 0.0010 0.0011 -0.07 -0.02 -0.05 -0.05

[TiII/H] 0.0002 0.0001 0.40 0.40 -0.30 -0.35

[CaI/H] 0.0008 0.0009 -0.17 -0.10 -0.30 -0.30

[SiI/H] 0.0004 0.0003 0.00 -0.02 -0.10 -0.10

[CI/H] -0.0007 -0.0008 0.33 0.34 -0.05 0.00

[OI/H] -0.0009 -0.0011 0.30 0.32 -0.20 -0.20

[AlI/H] 0.0004 0.0004 -0.07 -0.06 -0.05 -0.10
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Table 2: Equivalent Widths Part I: SGs

Equivalent Width

Ion WL EP log(gf) Solar SG16 SG17 SG20 SG21 SG25 SG26 SG33 SG36

Fe I:

5752.032 4.55 -1.18 56.6 75.7 62.5 69.9 67.7 70.0 46.6 45.4 63.1

5775.081 4.22 -1.30 57.9 75.8 63.7 71.9 91.8 80.4 47.7 58.1

5778.450 2.59 -3.48 21.0 58.2 24.6 44.2 54.3 49.7 19.0 22.2

5905.672 4.65 -0.73 64.3 79.1 66.3 75.5 78.5 55.9 43.3 44.9

5916.247 2.45 -2.99 70.4 67.6 92.7 90.9 53.6 58.8

5927.786 4.65 -1.09 45.5 58.8 49.7 56.8 56.1 61.8 39.3 30.3 42.3

5929.667 4.55 -1.41 43.8 61.2 37.1 63.4 56.6 31.8 49.2 42.7

5930.173 4.65 -0.23 86.5 106.9 96.8 106.4 97.4 89.3 78.5 91.0 84.5

5934.653 3.93 -1.17 74.3 105.7 75.8 88.7 100.6 104.6 73.9 71.9 75.4

5969.559 4.28 -2.73 4.2

6055.992 4.73 -0.46 76.0 108.9 84.1 89.8 86.1 83.5 75.9 66.9 78.3

6065.482 2.61 -1.53 114.4 177.7 119.3 167.2 172.0 155.1 114.7 117.8 114.3

6078.491 4.80 -0.32 81.0 117.2 91.9 96.6 102.5 102.3 78.1 101.0 93.6

6078.999 4.65 -1.12 44.1 75.4 43.9 65.7 71.9 64.0 40.7 41.0

6083.660 3.88 -3.50 3.5

6085.259 2.76 -3.10 39.8 81.6 47.3 80.5 79.2 72.2 38.9 27.0 31.7

6098.245 4.56 -1.88 21.0 38.0 41.5 20.1 24.9

6102.171 4.83 -0.52 82.3 90.1 96.5 115.1 118.5 121.7 73.5 80.1

6105.131 4.55 -2.05 10.4

6120.249 0.91 -5.96 7.6 27.1 30.1 24.7 21.1

6127.907 4.14 -1.40 49.9 90.9 66.3 86.5 88.3 81.6 52.6 39.3 44.7

6151.617 2.18 -3.30 48.9 78.4 61.0 83.7 75.1 77.4 39.8 43.1 44.3

6157.728 4.08 -1.26 60.1 95.3 70.6 94.5 96.3 82.4 68.7 77.1 68.3

6159.368 4.61 -1.97 13.0

6165.360 4.14 -1.47 46.0 70.5 52.3 69.4 57.9 64.3 38.3 42.8 42.7

6170.504 4.79 -0.44 80.7 138.3 92.4 130.7 119.5 127.5 75.1 66.9 80.4

6173.336 2.22 -2.88 66.8 107.0 78.3 99.9 97.6 94.0 70.1 51.0 67.9

6187.987 3.94 -1.72 42.9 66.7 61.1 68.3 77.9 69.9 49.2 41.9 40.9

6213.429 2.22 -2.48 79.5 140.7 92.0 122.2 127.1 125.8 82.8 80.5 86.7

6219.280 2.20 -2.43 88.7 128.8 104.1 129.4 125.8 118.3 81.9 92.4 92.0

6226.730 3.88 -2.22 29.2 59.0 45.4 60.9 61.8 58.9 30.7 31.5 27.0

6232.641 3.65 -1.22 85.7 129.1 97.2 125.6 125.8 113.2 75.2 79.2 84.8

6240.645 2.22 -3.23 54.2 118.7 73.3 109.5 98.2 96.6 46.7 52.4

6246.317 3.60 -0.73 124.5 158.9 124.3 147.5 154.5 149.3 101.9 115.3 109.5

6252.554 2.40 -1.69 115.2 169.8 129.9 157.9 168.3 150.2 114.1 110.9 113.3

6256.360 2.45 -2.41 99.2 173.0 113.2 145.3 155.0 155.8 95.8 100.6

6265.130 2.17 -2.55 88.0 138.8 103.9 124.9 119.0 82.5 84.1 88.1

6271.280 3.33 -2.72 26.8 63.1 36.2 64.1 56.0 54.2 27.0 27.4 27.0

6290.974 4.73 -0.78 70.7 111.7 87.1 108.4 112.9 112.2 75.0 53.9 74.3

6293.924 4.83 -1.72 18.6 22.0 40.1

6322.685 2.59 -2.43 79.3 133.4 103.9 106.2 123.8 116.8 88.5 83.5 87.1

6335.328 2.20 -2.18 103.6 145.6 107.0 131.0 137.3 92.6 103.5 96.0

6336.820 3.68 -0.91 107.6 153.3 104.7 134.6 140.4 135.9 94.7 98.8

6344.148 2.43 -2.92 68.3 141.4 89.4 115.8 116.9 63.8 73.8 70.3

6380.743 4.19 -1.38 50.3 74.5 63.5 73.7 56.5 69.6 47.8 55.7 46.9

6392.538 2.28 -4.03 18.1 62.3 26.1 53.1 57.6 49.0 20.3

6393.612 2.43 -1.57 126.4 191.1 141.6 177.6 186.5 176.8 120.0 118.2 124.8

6408.018 3.69 -1.02 108.1 158.3 112.4 153.8 154.5 150.2 99.2 110.0 99.1

6411.647 3.65 -0.59 135.1 175.2 137.3 166.9 163.7 115.5 116.9

6469.193 4.83 -0.77 67.3 107.4 79.0 102.6 106.0 68.5 68.6 79.9
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Equivalent Widths Part I: SGs 2 – Continued

Equivalent Width

Ion WL EP log(gf) Solar SG16 SG17 SG20 SG21 SG25 SG26 SG33 SG36

6498.945 0.96 -4.70 30.7 72.1 68.0 38.5

6533.940 4.56 -1.38 53.2 63.4 56.7 62.0 84.1 87.6 53.1

6584.575 5.39 -1.34 10.1

6591.313 4.59 -2.07 25.3 24.3 29.6 32.5

6592.913 2.73 -1.47 138.1 212.2 188.0 209.3 197.3 134.5 157.2 141.5

6593.870 2.43 -2.42 91.3 141.6 102.4 130.6 152.7 132.8 92.0 94.0

6597.557 4.79 -1.07 44.6 74.5 58.8 68.3 72.3 72.6 48.9 50.0 59.5

6608.024 2.28 -4.03 18.5 55.9 53.8 61.5 58.4 23.7 18.6

6627.540 4.55 -1.68 31.2 60.5 44.2 52.0 70.5 67.1 27.1 35.1 49.3

6646.932 2.61 -3.99 12.8 46.4 18.8 40.0 43.7 43.3

6653.850 4.15 -2.52 22.8 43.6 28.5 32.6

6667.417 2.45 -4.40 15.0 62.8 47.5 63.4 40.1

6667.711 4.58 -2.11 19.0 46.0

6703.567 2.76 -3.16 38.4 78.1 61.8 67.8 73.2 69.9 36.8 47.9 30.7

6705.101 4.61 -1.39 51.7 80.7 61.2 72.8 64.6 69.0 53.2 61.2

6710.316 1.49 -4.88 16.7 76.7 53.7 59.2 52.3 16.0

6713.745 4.79 -1.52 17.8 53.9 35.0 21.4 28.4

6715.383 4.61 -1.64 29.0 66.0 56.2 64.3 57.1 33.9 35.7 36.0

6716.222 4.58 -1.92 18.6 57.3 48.6 53.6

6725.353 4.10 -2.30 18.9 35.2 43.8

6726.666 4.61 -1.13 50.3 73.7 60.6 70.8 78.1 76.0 45.7 69.1 54.0

6733.151 4.64 -1.58 29.3 48.6 45.7 53.4 53.8 34.3 38.8

6739.520 1.56 -4.79 13.7 50.4 45.5 66.1 53.6 10.4

6745.090 4.58 -2.16 18.1

6745.957 4.08 -2.77 20.1

6746.953 2.61 -4.35 14.1 25.8 33.8

6750.150 2.42 -2.62 74.3 107.7 91.2 108.4 107.6 102.1 79.1 76.1 75.6

6752.716 4.64 -1.30 38.9 61.4 71.1 73.9 73.0 52.8 46.5

6753.464 4.56 -2.29 13.9

6777.408 4.19 -2.82 19.6 50.7 39.7 57.3 25.9 21.3

6783.704 2.59 -3.98 33.0 39.9 89.8 78.4 82.4

6786.856 4.19 -2.07 31.4 77.4 49.8 64.9 42.7 42.9 46.9

6793.259 4.08 -2.33 16.1 58.5

7802.473 5.09 -1.52 16.3

7807.909 4.99 -0.54 68.4 94.9 67.3 83.9 84.3 87.1 59.8 60.4 54.7

7820.803 4.29 -2.64 9.7

7844.555 4.83 -1.81 12.8

7879.748 5.03 -1.65 28.3 50.8 41.2

Fe II:

6084.110 3.20 -3.80 21.3 41.0 30.5 25.9 32.9 35.2 39.9 36.0

6149.249 3.89 -2.88 40.4 48.4 56.7 52.9 45.9 53.5 60.6 53.4 58.1

6238.392 3.89 -2.75 44.3 70.2 57.0 53.8 58.5 66.5 70.7 68.8

6247.557 3.89 -2.44 56.8 55.5 73.5 51.4 64.6 69.2 81.2 76.9 83.5

6369.462 2.89 -4.23 16.9 24.2 34.8 40.2 30.1 37.9 40.4

6416.919 3.89 -2.88 38.2 43.3 58.0 42.5 42.3 50.5 59.8 66.9 56.6

6456.380 3.90 -2.07 70.9 67.6 88.6 66.9 72.2 89.1 102.3 108.5

Ni I:

6086.280 4.26 -0.51 46.2 70.0 55.4 62.8 68.6 67.8 42.9 33.1 39.2

6175.370 4.09 -0.53 56.8 69.8 71.8 71.2 71.4 51.5 50.0 57.8

6204.605 4.09 -1.10 25.4 43.2 36.8 46.2 48.9 38.8 25.0 24.0

6327.600 1.68 -3.23 39.6 87.6 61.6 77.1 78.1 75.5 30.4 17.4 35.2

6378.260 4.15 -1.00 33.6 43.4 46.7 56.1 61.0 60.9 33.6 19.2 34.1
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Equivalent Widths Part I: SGs 2 – Continued

Equivalent Width

Ion WL EP log(gf) Solar SG16 SG17 SG20 SG21 SG25 SG26 SG33 SG36

6643.640 1.68 -2.01 98.3 140.6 109.1 133.4 138.2 136.4 89.8 61.8 92.2

6772.320 3.66 -0.98 49.7 77.8 66.9 69.2 82.5 67.6 54.0 34.9 52.9

Cr I:

4616.120 0.98 -1.19 100.6 149.8 114.6 140.1 138.4 123.5 103.0 92.5 94.3

4651.290 0.98 -1.46 85.2 98.0 118.7 123.0 115.1 87.0 70.3 78.0

6330.100 0.94 -2.99 30.2 70.2 38.7 64.7 65.0 54.5 15.7 14.5 19.4

Ba II:

5853.690 0.60 -1.00 62.3 90.2 85.0 85.9 80.4 85.1 81.3 75.4 80.5

6141.730 0.70 -0.07 122.6 154.7 144.8 147.9 147.2 150.8 134.8 142.7 130.2

Y II:

5087.420 1.08 -0.17 49.4 61.4 67.3 65.4 58.5 65.9 62.9 48.1 66.5

Na I:

6154.230 2.10 -1.53 41.0 69.7 48.8 60.4 69.1 62.2 32.7 26.0 34.8

6160.750 2.10 -1.23 63.0 96.5 72.5 84.2 95.2 94.8 50.1 53.2

Ti I:

5978.541 1.87 -0.50 27.5 71.2 35.4 68.0 69.8 53.3 13.5

6064.626 1.05 -1.94 15.5 50.6 18.9 47.2 58.9 43.6 7.5

6126.216 1.07 -1.43 24.1 70.3 38.6 64.9 70.5 50.9 21.1 9.0 19.4

6258.102 1.44 -0.35 56.0 104.1 69.8 100.0 114.7 86.2 39.8 28.0 45.5

6261.098 1.43 -0.48 58.5 107.3 71.3 98.7 109.6 91.8 37.1 35.4 44.7

Ti II:

4589.958 1.24 -1.78 75.1 98.6 96.3 88.4 93.4 96.7 103.9 84.2 109.4

4708.665 1.24 -2.63 45.6 67.3 63.6 72.9 69.2 72.4 60.1

Ca I:

6122.226 1.89 -0.32 202.8 282.0 197.5 262.6 257.3 250.8 155.8 177.8 162.2

6166.439 2.52 -1.14 66.8 103.4 78.7 96.1 94.6 94.6 62.1 56.1 62.4

6464.680 2.52 -2.53 12.0

6572.800 0.00 -4.28 39.0 101.1 54.7 90.3 86.5 86.6 35.1 34.2

Si I:

6142.480 5.62 -1.54 42.6 52.0 50.2 45.0 43.0 50.7 39.2 24.0 41.7

6145.010 5.62 -1.36 42.8 50.0 50.1 49.0 41.4 53.4 41.1 30.7 44.4

6155.130 5.62 -0.78 92.4 94.0 95.1 90.9 89.8 100.3 82.4 86.1 89.1

C I:

6587.620 8.53 -1.00 17.7 14.6 23.4 12.7 15.3 34.2 32.9

O I:

7771.940 9.15 0.37 74.5 42.2 84.1 53.6 49.4 63.7 119.0 119.9

7774.170 9.15 0.22 63.5 36.8 73.6 42.1 39.5 55.6 106.7 98.4

7775.390 9.15 0.00 51.7 29.3 64.2 38.6 28.9 45.4 95.5 82.4

Al I:

6698.670 3.14 -1.95 30.2 60.2 35.9 51.5 58.8 25.0

7835.310 4.02 -0.47 59.7 88.2 59.2 78.2 81.7 91.9 45.4 48.2

7836.130 4.02 -0.31 69.6 98.7 75.2 90.6 93.2 103.6 58.8 51.3
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Table 3: Equivalent Widths Part II: RGs and TOs

Equivalent Widths

Ion WL EP log(gf) Solar RG22 RG41 TO35 TO37 TO0 TO49

Fe I:

5752.032 4.55 -1.18 56.6 87.8 80.4 64.0 52.2 49.3

5775.081 4.22 -1.30 57.9 84.8 90.1 56.8 50.1 54.2 56.1

5778.450 2.59 -3.48 21.0 59.1 73.9 11.8 19.3 19.1

5905.672 4.65 -0.73 64.3 72.5 84.5 62.7 54.2 54.0 49.9

5916.247 2.45 -2.99 70.4 47.8 51.9 50.7 55.3

5927.786 4.65 -1.09 45.5 60.8 64.3 40.1 28.7 26.3

5929.667 4.55 -1.41 43.8 66.5 62.6 36.9 36.6 46.5

5930.173 4.65 -0.23 86.5 106.4 110.9 87.3 89.0 80.1

5934.653 3.93 -1.17 74.3 106.7 113.4 73.4 67.6 56.2 63.1

5969.559 4.28 -2.73 4.2

6055.992 4.73 -0.46 76.0 102.5 79.2 68.3 75.9

6065.482 2.61 -1.53 114.4 173.9 196.2 120.3 114.5 115.5 107.6

6078.491 4.80 -0.32 81.0 108.7 110.2 75.0 90.6 69.7 78.8

6078.999 4.65 -1.12 44.1 77.9 84.1 51.2 40.6 24.6

6083.660 3.88 -3.50 3.5

6085.259 2.76 -3.10 39.8 93.3 103.2 28.4 22.9 40.3 25.8

6098.245 4.56 -1.88 21.0 15.5 18.3 17.0

6102.171 4.83 -0.52 82.3 116.4 124.9 83.9 86.3 88.8 66.3

6105.131 4.55 -2.05 10.4 13.4 13.7

6120.249 0.91 -5.96 7.6 43.2 50.4

6127.907 4.14 -1.40 49.9 95.8 106.2 55.0 45.6 49.6 40.6

6151.617 2.18 -3.30 48.9 97.5 46.0 36.3 45.1 35.0

6157.728 4.08 -1.26 60.1 104.0 119.5 74.8 63.0 67.7 52.6

6159.368 4.61 -1.97 13.0 14.7 16.3

6165.360 4.14 -1.47 46.0 70.7 82.9 48.1 45.9 43.9 44.7

6170.504 4.79 -0.44 80.7 84.1 70.7 81.6 76.9

6173.336 2.22 -2.88 66.8 104.1 138.2 65.7 70.0 66.0 54.4

6187.987 3.94 -1.72 42.9 81.7 86.9 34.1 36.6 37.9 33.1

6213.429 2.22 -2.48 79.5 176.5 81.7 81.8 74.6 71.7

6219.280 2.20 -2.43 88.7 134.8 89.3 85.0 83.3 85.0

6226.730 3.88 -2.22 29.2 57.5 68.6 26.1 22.7 22.9 32.4

6232.641 3.65 -1.22 85.7 132.4 129.1 81.0 72.8 82.9 74.6

6240.645 2.22 -3.23 54.2 115.5 127.3 49.9 39.9 42.9 35.4

6246.317 3.60 -0.73 124.5 155.7 181.3 113.8 106.8

6252.554 2.40 -1.69 115.2 168.7 194.1 117.7 103.4 110.6 107.3

6256.360 2.45 -2.41 99.2 179.4 204.5 98.9 91.9 90.6 78.5

6265.130 2.17 -2.55 88.0 140.7 155.5 93.7 83.3 79.5 76.6

6271.280 3.33 -2.72 26.8 67.9 77.1 27.8 17.7 21.2

6290.974 4.73 -0.78 70.7 122.0 126.9 79.7 74.0 74.9 74.6

6293.924 4.83 -1.72 18.6 50.8 13.3 23.4

6322.685 2.59 -2.43 79.3 134.8 138.3 70.4 79.8 87.4 94.6

6335.328 2.20 -2.18 103.6 95.9 87.6 93.9 83.8

6336.820 3.68 -0.91 107.6 138.6 148.3 95.3 94.6 99.1 86.4

6344.148 2.43 -2.92 68.3 136.1 155.8 65.9 63.2 59.0 56.0

6380.743 4.19 -1.38 50.3 85.9 95.2 46.5 44.4 48.8 48.1

6392.538 2.28 -4.03 18.1 58.7 79.9 13.2 14.8

6393.612 2.43 -1.57 126.4 195.0 218.2 117.9 122.4 125.9 102.1

6408.018 3.69 -1.02 108.1 164.0 177.3 97.1 93.9 94.3

6411.647 3.65 -0.59 135.1 170.7 177.9 115.4 116.6 112.7 105.5

6469.193 4.83 -0.77 67.3 113.8 83.0 57.7 71.1 60.9 60.9
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Equivalent Widths Part II: RGs and TOs 3 – Continued

Equivalent Widths

Ion WL EP log(gf) Solar RG22 RG41 TO35 TO37 TO0 TO49

6498.945 0.96 -4.70 30.7 80.2 138.1 23.7 15.7

6533.940 4.56 -1.38 53.2 81.6 80.0 39.2 34.2 39.0 42.4

6584.575 5.39 -1.34 10.1 11.2

6591.313 4.59 -2.07 25.3

6592.913 2.73 -1.47 138.1 205.5 235.3 119.6 117.8 121.2

6593.870 2.43 -2.42 91.3 140.2 157.6 85.9 85.1 87.5

6597.557 4.79 -1.07 44.6 79.0 80.6 58.0 45.1 46.6 29.5

6608.024 2.28 -4.03 18.5 64.0 81.1 13.7 13.7

6627.540 4.55 -1.68 31.2 61.4 73.8 40.2 29.2 18.8

6646.932 2.61 -3.99 12.8 40.5 53.9 10.5 9.4 6.8

6653.850 4.15 -2.52 22.8 15.2 18.0 12.2

6667.417 2.45 -4.40 15.0 8.2

6667.711 4.58 -2.11 19.0 16.3

6703.567 2.76 -3.16 38.4 81.2 94.1 24.4 38.5 26.9 30.3

6705.101 4.61 -1.39 51.7 77.1 88.0 44.0 54.3 54.2 29.5

6710.316 1.49 -4.88 16.7 70.3 90.1 11.5 6.8

6713.745 4.79 -1.52 17.8 39.3 22.8 23.6

6715.383 4.61 -1.64 29.0 75.6 27.5 32.9 36.1 15.5

6716.222 4.58 -1.92 18.6 18.3 26.9 7.9

6725.353 4.10 -2.30 18.9 62.3 58.4 24.3 18.0 13.0

6726.666 4.61 -1.13 50.3 82.7 97.1 47.3 56.2 45.7 45.3

6733.151 4.64 -1.58 29.3 51.5 33.1 25.7 31.3 17.2

6739.520 1.56 -4.79 13.7 54.0 84.2 10.2

6745.090 4.58 -2.16 18.1 19.2 19.4

6745.957 4.08 -2.77 20.1

6746.953 2.61 -4.35 14.1 50.7 12.6 9.2

6750.150 2.42 -2.62 74.3 114.5 138.5 67.7 73.6 68.2 54.4

6752.716 4.64 -1.30 38.9 91.0 31.0 33.5 38.9 33.2

6753.464 4.56 -2.29 13.9 9.6

6777.408 4.19 -2.82 19.6 53.3 61.0 16.7 15.5

6783.704 2.59 -3.98 33.0 103.2 17.2 22.8

6786.856 4.19 -2.07 31.4 79.9 76.8 26.3 39.8 40.8 20.9

6793.259 4.08 -2.33 16.1 7.9

7802.473 5.09 -1.52 16.3 9.1

7807.909 4.99 -0.54 68.4 89.2 99.8 55.2 50.6 61.4

7820.803 4.29 -2.64 9.7

7844.555 4.83 -1.81 12.8 16.0

7879.748 5.03 -1.65 28.3 55.0 20.1 17.1 16.1

Fe II:

6084.110 3.20 -3.80 21.3 50.1 51.1 38.7 33.7 36.8 34.1

6149.249 3.89 -2.88 40.4 48.4 44.6 60.2 61.3 58.8 64.7

6238.392 3.89 -2.75 44.3 59.7 66.3 69.6 69.4 67.0 71.2

6247.557 3.89 -2.44 56.8 49.9 57.1 91.1 73.3 83.2 89.4

6369.462 2.89 -4.23 16.9 31.6 50.4 36.6 40.6 33.0

6416.919 3.89 -2.88 38.2 48.3 56.8 53.1 61.3 58.5 60.1

6456.380 3.90 -2.07 70.9 89.5 117.2 100.4 112.3 110.7

Ni I:

6086.280 4.26 -0.51 46.2 68.6 72.2 44.2 41.0 37.2

6175.370 4.09 -0.53 56.8 80.1 82.3 59.2 53.8 63.5 56.2

6204.605 4.09 -1.10 25.4 45.8 50.1 24.8 20.9 19.1 17.5

6327.600 1.68 -3.23 39.6 85.3 102.3 34.1 38.5 32.3 22.9

6378.260 4.15 -1.00 33.6 57.6 56.8 31.2 32.1 28.6
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Equivalent Widths Part II: RGs and TOs 3 – Continued

Equivalent Widths

Ion WL EP log(gf) Solar RG22 RG41 TO35 TO37 TO0 TO49

6643.640 1.68 -2.01 98.3 142.2 159.8 85.3 80.2 86.2 69.3

6772.320 3.66 -0.98 49.7 80.1 86.0 48.4 42.9 45.7 40.0

Cr I:

4616.120 0.98 -1.19 100.6 148.8 159.5 92.0 92.3 91.9 85.8

4651.290 0.98 -1.46 85.2 130.2 146.6 73.9 73.4 76.2 72.8

6330.100 0.94 -2.99 30.2 73.5 85.5 15.6 17.7 13.8

Ba II:

5853.690 0.60 -1.00 62.3 95.7 103.9 80.9 78.3 78.5 75.6

6141.730 0.70 -0.07 122.6 156.1 165.6 137.6 134.1 136.8 144.9

Y II:

5087.420 1.08 -0.17 49.4 66.6 69.2 68.1 61.5 59.7

Na I:

6154.230 2.10 -1.53 41.0 78.0 84.0 30.1 30.8 31.4 30.1

6160.750 2.10 -1.23 63.0 104.8 109.4 53.5 51.6 50.4 45.4

Ti I:

5978.541 1.87 -0.50 27.5 75.4 90.7 29.0 29.2

6064.626 1.05 -1.94 15.5 57.6 64.5

6126.216 1.07 -1.43 24.1 72.7 81.9 21.8 13.1

6258.102 1.44 -0.35 56.0 116.5 133.7 45.2 41.3 38.9 35.5

6261.098 1.43 -0.48 58.5 112.0 131.3 43.4 40.1 41.4 40.1

Ti II:

4589.958 1.24 -1.78 75.1 109.3 103.0 93.3 98.9 93.0 98.3

4708.665 1.24 -2.63 45.6 71.7 96.5 61.5 61.7 56.1

Ca I:

6122.226 1.89 -0.32 202.8 261.7 269.7 161.2 162.4 157.3 150.7

6166.439 2.52 -1.14 66.8 102.5 112.7 62.5 62.2 63.1 52.1

6464.680 2.52 -2.53 12.0

6572.800 0.00 -4.28 39.0 103.4 127.0

Si I:

6142.480 5.62 -1.54 42.6 46.3 48.0 42.4 40.9 40.1 40.5

6145.010 5.62 -1.36 42.8 50.8 54.2 48.1 43.2 38.6

6155.130 5.62 -0.78 92.4 95.3 95.9 89.9 84.6 87.3 86.7

C I:

6587.620 8.53 -1.00 17.7 15.6 32.9 35.2 44.2

O I:

7771.940 9.15 0.37 74.5 38.8 44.3 127.5 135.1 120.7 133.8

7774.170 9.15 0.22 63.5 41.5 37.0 115.2 121.1 108.5 126.7

7775.390 9.15 0.00 51.7 32.0 97.7 94.5 92.1 111.2

Al I:

6698.670 3.14 -1.95 30.2 78.5 23.0 25.9 24.2

7835.310 4.02 -0.47 59.7 95.4 95.9 46.3 46.3 45.3 52.3

7836.130 4.02 -0.31 69.6 106.7 102.2 59.4 55.3
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Table 4: Equivalent Widths Part III: YSs

Equivalent Widths

Ion WL EP log(gf) Solar YS13 YS23 YS24 YS42 YS43

Fe I:

5752.032 4.55 -1.18 56.6 37.4 49.0 41.4 46.6 75.1

5775.081 4.22 -1.30 57.9 37.5 57.9 25.9 60.5 83.0

5778.450 2.59 -3.48 21.0 10.1 19.7 15.0 19.2 47.1

5905.672 4.65 -0.73 64.3 42.4 56.8 39.5 59.9 81.0

5916.247 2.45 -2.99 70.4 55.0 40.2 65.5 99.1

5927.786 4.65 -1.09 45.5 34.8 38.4 31.1 55.9

5929.667 4.55 -1.41 43.8 24.9 44.8 28.5 48.7 62.6

5930.173 4.65 -0.23 86.5 69.6 89.9 70.0 90.8 101.8

5934.653 3.93 -1.17 74.3 55.9 72.5 47.3 76.9 97.7

5969.559 4.28 -2.73 4.2

6055.992 4.73 -0.46 76.0 57.8 71.9 68.3 70.7 87.7

6065.482 2.61 -1.53 114.4 93.2 124.7 93.6

6078.491 4.80 -0.32 81.0 64.0 89.4 62.1 82.7 94.2

6078.999 4.65 -1.12 44.1 16.6 54.6 30.8 28.8 76.7

6083.660 3.88 -3.50 3.5

6085.259 2.76 -3.10 39.8 24.3 36.3 24.1 29.9 70.8

6098.245 4.56 -1.88 21.0 21.5 20.4 43.0

6102.171 4.83 -0.52 82.3 58.2 104.8 70.6 79.4 125.0

6105.131 4.55 -2.05 10.4 12.3

6120.249 0.91 -5.96 7.6 26.1

6127.907 4.14 -1.40 49.9 34.6 54.8 32.0 48.2 76.0

6151.617 2.18 -3.30 48.9 28.9 45.5 28.4 42.8 74.3

6157.728 4.08 -1.26 60.1 45.8 71.8 48.0 70.3 94.1

6159.368 4.61 -1.97 13.0

6165.360 4.14 -1.47 46.0 30.3 45.0 31.3 43.6 70.3

6170.504 4.79 -0.44 80.7 61.0 83.9 60.3 82.2 119.1

6173.336 2.22 -2.88 66.8 52.3 65.1 51.6 71.4 104.7

6187.987 3.94 -1.72 42.9 26.0 45.5 31.3 45.3 70.2

6213.429 2.22 -2.48 79.5 66.0 83.9 68.2 83.5 136.0

6219.280 2.20 -2.43 88.7 72.3 93.5 74.3 117.4

6226.730 3.88 -2.22 29.2 21.2 24.0 24.9 47.0

6232.641 3.65 -1.22 85.7 62.4 86.9 62.8 106.9 119.6

6240.645 2.22 -3.23 54.2 33.8 51.5 37.5 56.9 99.7

6246.317 3.60 -0.73 124.5 111.8 127.0

6252.554 2.40 -1.69 115.2 94.8 122.7 102.3

6256.360 2.45 -2.41 99.2 75.5 102.1 85.8 128.0 162.9

6265.130 2.17 -2.55 88.0 67.5 82.6 68.3 116.0

6271.280 3.33 -2.72 26.8 16.9 24.9 19.5 24.6 50.7

6290.974 4.73 -0.78 70.7 42.9 77.0 64.1 72.2 116.1

6293.924 4.83 -1.72 18.6 16.2

6322.685 2.59 -2.43 79.3 69.2 91.9 71.5 94.4 119.8

6335.328 2.20 -2.18 103.6 75.9 84.5

6336.820 3.68 -0.91 107.6 77.5 107.2 80.4 141.4

6344.148 2.43 -2.92 68.3 46.1 75.4 49.4 78.2 122.2

6380.743 4.19 -1.38 50.3 38.4 53.6 34.9 53.2 78.9

6392.538 2.28 -4.03 18.1 13.3 18.9 49.4

6393.612 2.43 -1.57 126.4 107.5 133.3

6408.018 3.69 -1.02 108.1 74.9 107.4 80.2 142.8

6411.647 3.65 -0.59 135.1 139.7

6469.193 4.83 -0.77 67.3 43.7 53.9 61.5 80.9
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Equivalent Widths Part III: YSs 4 – Continued

Equivalent Widths

Ion WL EP log(gf) Solar YS13 YS23 YS24 YS42 YS43

6498.945 0.96 -4.70 30.7 30.4 73.5

6533.940 4.56 -1.38 53.2 35.4 58.0 29.2 49.9 62.6

6584.575 5.39 -1.34 10.1

6591.313 4.59 -2.07 25.3

6592.913 2.73 -1.47 138.1 113.8 145.1

6593.870 2.43 -2.42 91.3 66.5 82.9 72.9 87.4

6597.557 4.79 -1.07 44.6 43.1 49.0 30.6 42.0 62.8

6608.024 2.28 -4.03 18.5 21.6 52.3

6627.540 4.55 -1.68 31.2 19.2 30.6 21.7 38.5 50.8

6646.932 2.61 -3.99 12.8 27.0

6653.850 4.15 -2.52 22.8

6667.417 2.45 -4.40 15.0

6667.711 4.58 -2.11 19.0

6703.567 2.76 -3.16 38.4 22.9 32.2 20.4 41.8 64.1

6705.101 4.61 -1.39 51.7 29.4 55.7 30.3 52.1 68.4

6710.316 1.49 -4.88 16.7 10.6 10.6 45.0

6713.745 4.79 -1.52 17.8

6715.383 4.61 -1.64 29.0 28.7 21.4 32.8

6716.222 4.58 -1.92 18.6 21.9 19.9

6725.353 4.10 -2.30 18.9 15.4

6726.666 4.61 -1.13 50.3 34.8 46.8 27.6 47.9 68.1

6733.151 4.64 -1.58 29.3 21.6 26.2 18.8 50.9

6739.520 1.56 -4.79 13.7 51.8

6745.090 4.58 -2.16 18.1

6745.957 4.08 -2.77 20.1

6746.953 2.61 -4.35 14.1

6750.150 2.42 -2.62 74.3 53.4 71.0 60.2 69.2 112.4

6752.716 4.64 -1.30 38.9 20.6 49.5 29.5 37.3 69.0

6753.464 4.56 -2.29 13.9

6777.408 4.19 -2.82 19.6

6783.704 2.59 -3.98 33.0

6786.856 4.19 -2.07 31.4 40.6 27.5 61.7

6793.259 4.08 -2.33 16.1

7802.473 5.09 -1.52 16.3 14.4

7807.909 4.99 -0.54 68.4 35.7 67.6 35.9 55.5 76.0

7820.803 4.29 -2.64 9.7

7844.555 4.83 -1.81 12.8

7879.748 5.03 -1.65 28.3

Fe II:

6084.110 3.20 -3.80 21.3 20.4 24.9 20.5 39.2 33.1

6149.249 3.89 -2.88 40.4 37.4 49.1 45.2 67.0 55.4

6238.392 3.89 -2.75 44.3 44.3 57.9 46.9 76.8 64.1

6247.557 3.89 -2.44 56.8 51.8 63.5 62.2 93.7 72.4

6369.462 2.89 -4.23 16.9 21.7 22.4 23.2 40.3 35.4

6416.919 3.89 -2.88 38.2 37.5 46.4 41.4 62.6 49.1

6456.380 3.90 -2.07 70.9 74.9 80.9 79.2 119.7 93.9

Ni I:

6086.280 4.26 -0.51 46.2 28.9 45.2 36.7 47.6 60.2

6175.370 4.09 -0.53 56.8 37.8 56.4 55.3 69.2 69.3

6204.605 4.09 -1.10 25.4 14.4 24.3 12.3 23.3 41.5

6327.600 1.68 -3.23 39.6 31.1 38.2 28.3 45.5 79.6

6378.260 4.15 -1.00 33.6 21.3 34.5 24.4 25.8 53.1
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Equivalent Widths Part III: YSs 4 – Continued

Equivalent Widths

Ion WL EP log(gf) Solar YS13 YS23 YS24 YS42 YS43

6643.640 1.68 -2.01 98.3 75.9 91.2 76.6 96.5 139.8

6772.320 3.66 -0.98 49.7 34.6 50.6 42.2 45.4 67.6

Cr I:

4616.120 0.98 -1.19 100.6 81.0 92.7 85.9 106.0 141.9

4651.290 0.98 -1.46 85.2 68.4 86.4 87.8 126.2

6330.100 0.94 -2.99 30.2 14.4 24.5 13.8 18.7 59.7

Ba II:

5853.690 0.60 -1.00 62.3 61.8 79.2 67.6 94.9 103.0

6141.730 0.70 -0.07 122.6 113.9 148.2 120.2 159.9 168.5

Y II:

5087.420 1.08 -0.17 49.4 42.6 55.5 52.1 75.3 68.7

Na I:

6154.230 2.10 -1.53 41.0 37.2 23.4 34.4 60.9

6160.750 2.10 -1.23 63.0 55.0 45.7 61.2 92.8

Ti I:

5978.541 1.87 -0.50 27.5 22.7 22.8 14.5 61.8

6064.626 1.05 -1.94 15.5 12.3 14.0 14.9 7.2 37.5

6126.216 1.07 -1.43 24.1 13.5 30.3 17.1 50.8

6258.102 1.44 -0.35 56.0 31.4 48.0 33.2 43.9 88.2

6261.098 1.43 -0.48 58.5 31.3 52.9 33.5 43.4 87.6

Ti II:

4589.958 1.24 -1.78 75.1 91.1 88.0 89.9 105.7 107.9

4708.665 1.24 -2.63 45.6 57.2 46.6 59.9 63.7 74.3

Ca I:

6122.226 1.89 -0.32 202.8 153.0 206.8 142.6 167.9 245.5

6166.439 2.52 -1.14 66.8 49.3 72.7 48.7 62.5 95.8

6464.680 2.52 -2.53 12.0

6572.800 0.00 -4.28 39.0 83.0

Si I:

6142.480 5.62 -1.54 42.6 31.5 48.1 30.9 40.6 49.5

6145.010 5.62 -1.36 42.8 28.7 44.1 28.1 46.4 50.5

6155.130 5.62 -0.78 92.4 70.8 99.1 93.9 92.6

C I:

6587.620 8.53 -1.00 17.7 23.3 21.8 22.5 29.9 8.8

O I:

7771.940 9.15 0.37 74.5 85.6 104.4 90.6 138.8 76.4

7774.170 9.15 0.22 63.5 71.0 87.1 74.1 123.9 65.6

7775.390 9.15 0.00 51.7 58.0 69.8 60.0 95.3 47.1

Al I:

6698.670 3.14 -1.95 30.2 20.3

7835.310 4.02 -0.47 59.7 35.5 56.5 35.7 43.3 72.9

7836.130 4.02 -0.31 69.6 40.7 66.2 46.1 53.3 80.5
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Table 5: Equivalent Widths Part IV: YSs

Equivalent Widths

Ion WL EP log(gf) Solar YS44 YS45 YS46 YS47 YS48

Fe I:

5752.032 4.55 -1.18 56.6 70.6 48.6 40.0 59.4 69.1

5775.081 4.22 -1.30 57.9 77.4 46.3 52.2 63.8 73.5

5778.450 2.59 -3.48 21.0 55.0 12.8 23.6 34.4

5905.672 4.65 -0.73 64.3 72.5 51.5 41.6 53.7 74.8

5916.247 2.45 -2.99 70.4 50.8

5927.786 4.65 -1.09 45.5 30.7 37.2 46.6 52.7

5929.667 4.55 -1.41 43.8 54.1 32.5 46.9 58.3

5930.173 4.65 -0.23 86.5 108.2 76.4 79.9 105.6

5934.653 3.93 -1.17 74.3 100.8 61.8 62.4 78.8 104.6

5969.559 4.28 -2.73 4.2

6055.992 4.73 -0.46 76.0 98.5 61.3 90.8 78.2 104.4

6065.482 2.61 -1.53 114.4 148.6

6078.491 4.80 -0.32 81.0 108.7 75.0 105.0 88.2 110.4

6078.999 4.65 -1.12 44.1 79.8 27.6 37.4 45.9 76.9

6083.660 3.88 -3.50 3.5

6085.259 2.76 -3.10 39.8 82.1 25.5 53.9 54.2 60.6

6098.245 4.56 -1.88 21.0 10.3 25.8 39.3

6102.171 4.83 -0.52 82.3 98.8 71.9 105.6 107.1 131.5

6105.131 4.55 -2.05 10.4

6120.249 0.91 -5.96 7.6 35.2

6127.907 4.14 -1.40 49.9 82.1 38.5 63.2 55.4 62.5

6151.617 2.18 -3.30 48.9 87.5 36.7 59.6 56.1 63.2

6157.728 4.08 -1.26 60.1 102.3 56.5 77.7 75.9 78.8

6159.368 4.61 -1.97 13.0

6165.360 4.14 -1.47 46.0 73.3 35.3 55.3 49.3 58.2

6170.504 4.79 -0.44 80.7 138.1 71.0 96.5 116.3

6173.336 2.22 -2.88 66.8 114.0 58.2 63.5 73.0 93.8

6187.987 3.94 -1.72 42.9 74.5 35.1 51.1 50.3 68.6

6213.429 2.22 -2.48 79.5 69.1 84.7 87.3 125.2

6219.280 2.20 -2.43 88.7 79.0

6226.730 3.88 -2.22 29.2 55.2 22.2 40.1 35.2 43.6

6232.641 3.65 -1.22 85.7 66.8 87.9 95.1 121.9

6240.645 2.22 -3.23 54.2 110.1 45.2 61.2 76.0 88.2

6246.317 3.60 -0.73 124.5 177.5

6252.554 2.40 -1.69 115.2

6256.360 2.45 -2.41 99.2 175.0 86.0

6265.130 2.17 -2.55 88.0 72.7

6271.280 3.33 -2.72 26.8 61.4 18.9 41.0 33.1 41.8

6290.974 4.73 -0.78 70.7 111.2 69.5 80.0 88.6 118.3

6293.924 4.83 -1.72 18.6

6322.685 2.59 -2.43 79.3 68.1 79.3 83.2 108.6

6335.328 2.20 -2.18 103.6

6336.820 3.68 -0.91 107.6 148.3

6344.148 2.43 -2.92 68.3 137.5 60.9 80.5 98.7 101.9

6380.743 4.19 -1.38 50.3 87.3 44.0 35.7 63.8 61.8

6392.538 2.28 -4.03 18.1 67.9 15.0 21.7 34.9

6393.612 2.43 -1.57 126.4

6408.018 3.69 -1.02 108.1 157.3 150.7

6411.647 3.65 -0.59 135.1 199.4

6469.193 4.83 -0.77 67.3 99.9 47.1 43.8 58.6 66.4
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Equivalent Widths Part IV: YSs 5 – Continued

Equivalent Widths

Ion WL EP log(gf) Solar YS44 YS45 YS46 YS47 YS48

6498.945 0.96 -4.70 30.7 90.2 37.5 33.8 69.0

6533.940 4.56 -1.38 53.2 77.8 36.2 50.1 47.2

6584.575 5.39 -1.34 10.1

6591.313 4.59 -2.07 25.3

6592.913 2.73 -1.47 138.1

6593.870 2.43 -2.42 91.3 79.1

6597.557 4.79 -1.07 44.6 69.0 34.1 44.4 50.7 58.9

6608.024 2.28 -4.03 18.5 51.9 11.9 27.0 39.8

6627.540 4.55 -1.68 31.2 57.0 26.2 34.8 40.9 42.0

6646.932 2.61 -3.99 12.8 30.1 19.0 24.6

6653.850 4.15 -2.52 22.8

6667.417 2.45 -4.40 15.0

6667.711 4.58 -2.11 19.0

6703.567 2.76 -3.16 38.4 81.1 28.0 27.6 45.2 54.5

6705.101 4.61 -1.39 51.7 77.5 34.3 46.7 50.6 66.0

6710.316 1.49 -4.88 16.7 70.4 19.2 23.9 36.1

6713.745 4.79 -1.52 17.8

6715.383 4.61 -1.64 29.0 22.2 26.4 38.0 45.6

6716.222 4.58 -1.92 18.6 19.2 30.6 35.1

6725.353 4.10 -2.30 18.9 18.6 29.1

6726.666 4.61 -1.13 50.3 81.0 38.3 42.9 46.6 67.3

6733.151 4.64 -1.58 29.3 62.6 21.9 23.1 36.4 41.6

6739.520 1.56 -4.79 13.7 68.1 23.0

6745.090 4.58 -2.16 18.1

6745.957 4.08 -2.77 20.1

6746.953 2.61 -4.35 14.1

6750.150 2.42 -2.62 74.3 63.4 78.7 98.6

6752.716 4.64 -1.30 38.9 28.6 32.8 41.9 61.8

6753.464 4.56 -2.29 13.9

6777.408 4.19 -2.82 19.6

6783.704 2.59 -3.98 33.0

6786.856 4.19 -2.07 31.4 72.2 24.7 47.5 42.2 50.6

6793.259 4.08 -2.33 16.1

7802.473 5.09 -1.52 16.3 16.3

7807.909 4.99 -0.54 68.4 86.1 50.4 75.8 72.0 76.9

7820.803 4.29 -2.64 9.7

7844.555 4.83 -1.81 12.8

7879.748 5.03 -1.65 28.3

Fe II:

6084.110 3.20 -3.80 21.3 44.8 25.1 20.4 24.0 18.0

6149.249 3.89 -2.88 40.4 60.4 44.5 44.6 43.9 34.6

6238.392 3.89 -2.75 44.3 66.7 49.5 55.1 58.1 41.4

6247.557 3.89 -2.44 56.8 73.3 60.1 52.4 63.7 50.5

6369.462 2.89 -4.23 16.9 42.5 22.4 18.8 26.0 16.9

6416.919 3.89 -2.88 38.2 54.1 42.0 20.4 46.4 33.7

6456.380 3.90 -2.07 70.9 98.2 84.3 84.0

Ni I:

6086.280 4.26 -0.51 46.2 66.6 35.4 57.3 48.9 52.2

6175.370 4.09 -0.53 56.8 74.4 48.7 69.6 58.7 58.4

6204.605 4.09 -1.10 25.4 48.7 19.8 30.9 24.1 29.5

6327.600 1.68 -3.23 39.6 93.2 27.9 36.4 44.0 52.1

6378.260 4.15 -1.00 33.6 64.3 26.1 22.3 38.3 36.5
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Equivalent Widths Part IV: YSs 5 – Continued

Equivalent Widths

Ion WL EP log(gf) Solar YS44 YS45 YS46 YS47 YS48

6643.640 1.68 -2.01 98.3 149.7 83.2 67.9 101.9 115.6

6772.320 3.66 -0.98 49.7 78.5 45.0 58.4 63.8

Cr I:

4616.120 0.98 -1.19 100.6 152.4 84.2 118.0 142.6

4651.290 0.98 -1.46 85.2 137.3 71.2 60.8 96.9 111.4

6330.100 0.94 -2.99 30.2 66.8 15.6 22.5 35.5 50.4

Ba II:

5853.690 0.60 -1.00 62.3 107.6 64.0 35.6 70.9 80.1

6141.730 0.70 -0.07 122.6 177.2 119.8 136.6 128.7 160.4

Y II:

5087.420 1.08 -0.17 49.4 76.7 47.8 55.5 49.2 60.2

Na I:

6154.230 2.10 -1.53 41.0 77.8 27.6 58.1 51.6 52.2

6160.750 2.10 -1.23 63.0 105.8 45.1 85.1 77.3 81.8

Ti I:

5978.541 1.87 -0.50 27.5 71.6 24.7 30.9 40.1 54.8

6064.626 1.05 -1.94 15.5 42.8 9.6 21.8 22.0 29.5

6126.216 1.07 -1.43 24.1 65.5 16.2 35.5 31.0 45.9

6258.102 1.44 -0.35 56.0 106.3 44.1 69.2 64.1 76.9

6261.098 1.43 -0.48 58.5 107.0 38.6 78.5 67.0 77.8

Ti II:

4589.958 1.24 -1.78 75.1 105.9 85.1 49.0 85.1 81.4

4708.665 1.24 -2.63 45.6 74.4 46.9 48.8 52.5 51.9

Ca I:

6122.226 1.89 -0.32 202.8 242.2 159.7 261.7 221.2 325.1

6166.439 2.52 -1.14 66.8 98.0 55.7 87.1 81.5 97.7

6464.680 2.52 -2.53 12.0

6572.800 0.00 -4.28 39.0 100.6 53.0 76.6

Si I:

6142.480 5.62 -1.54 42.6 52.7 32.7 47.5 42.4 38.8

6145.010 5.62 -1.36 42.8 52.7 34.1 46.1 43.3

6155.130 5.62 -0.78 92.4 98.4 76.3 99.8 91.3 92.9

C I:

6587.620 8.53 -1.00 17.7 16.5 18.6 18.8 9.3

O I:

7771.940 9.15 0.37 74.5 61.5 83.9 60.5 77.3 48.5

7774.170 9.15 0.22 63.5 54.1 73.2 52.1 67.6 38.5

7775.390 9.15 0.00 51.7 42.6 60.5 38.6 53.9 26.4

Al I:

6698.670 3.14 -1.95 30.2 43.5

7835.310 4.02 -0.47 59.7 84.2 36.6 74.9 60.4 69.7

7836.130 4.02 -0.31 69.6 98.3 51.1 91.5 84.3 81.8
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Table 6. Abundance Values Part I: SGs

Ion SG16 SG17 SG20 SG21 SG25 SG26 SG33 SG36

[FeI/H] 0.13 +0.10
−0.10 0.12 +0.09

−0.09 0.12 +0.08
−0.07 0.14 +0.11

−0.11 0.22 +0.09
−0.08 0.07 +0.08

−0.09 0.17 +0.11
−0.13 0.18 +0.09

−0.10

[FeII/H] 0.13 +0.19
−0.36 0.12 +0.12

−0.37 0.12 +0.18
−0.45 0.14 +0.18

−0.57 0.22 +0.14
−0.29 0.07 +0.10

−0.28 0.17 +0.14
−0.43 0.18 +0.11

−0.35

[NiI/H] 0.04 +0.11
−0.12 0.17 +0.08

−0.08 0.10 +0.09
−0.12 0.12 +0.10

−0.16 0.15 +0.08
−0.10 −0.01 +0.08

−0.08 −0.19 +0.13
−0.13 0.06 +0.08

−0.08

[CrI/H] −0.04 +0.18
−0.18 0.15 +0.12

−0.16 −0.01 +0.14
−0.16 −0.07 +0.18

−0.21 0.01 +0.14
−0.15 0.06 +0.20

−0.20 −0.05 +0.15
−0.17 0.02 +0.11

−0.12

[BaII/H] −0.05 +0.17
−0.23 0.12 +0.11

−0.23 0.04 +0.15
−0.26 −0.12 +0.18

−0.33 0.06 +0.13
−0.19 0.04 +0.12

−0.21 0.11 +0.16
−0.32 0.10 +0.13

−0.27

[YII/H] −0.19 +1.30
−0.96 0.08 +0.48

−0.33 0.01 +1.20
−0.93 −0.21 +1.27

−1.21 0.01 +1.03
−0.78 −0.06 +0.27

−0.36 −0.18 +0.34
−0.51 0.15 +0.26

−0.42

[NaI/H] 0.09 +0.09
−0.10 0.12 +0.06

−0.07 0.00 +0.07
−0.09 0.14 +0.09

−0.12 0.19 +0.11
−0.12 −0.06 +0.06

−0.06 −0.09 +0.30
−0.30 0.02 +0.06

−0.06

[TiI/H] 0.07 +0.15
−0.16 0.15 +0.10

−0.11 0.12 +0.11
−0.13 0.20 +0.15

−0.17 0.12 +0.12
−0.13 −0.11 +0.16

−0.16 −0.12 +0.13
−0.13 0.06 +0.10

−0.10

[TiII/H] 0.05 +0.20
−0.29 0.14 +0.24

−0.36 0.02 +0.20
−0.37 0.09 +0.25

−0.49 0.14 +0.16
−0.26 0.26 +0.15

−0.26 −0.04 +0.34
−0.48 0.30 +0.34

−0.45

[CaI/H] 0.12 +0.16
−0.20 0.18 +0.10

−0.17 0.11 +0.14
−0.20 0.02 +0.16

−0.26 0.24 +0.13
−0.17 0.06 +0.12

−0.16 0.10 +0.20
−0.27 0.11 +0.11

−0.19

[SiI/H] 0.07 +0.06
−0.08 0.08 +0.03

−0.02 0.03 +0.05
−0.09 −0.03 +0.06

−0.12 0.11 +0.05
−0.07 −0.02 +0.05

−0.05 −0.13 +0.12
−0.13 0.06 +0.05

−0.06

[CI/H] 0.16 +0.32
−0.38 0.00 +0.23

−0.34 0.05 +0.30
−0.41 0.16 +0.34

−0.50 0.08 +0.25
−0.31 0.05 +0.25

−0.35

[OI/H] −0.11 +0.20
−0.30 0.02 +0.13

−0.30 0.08 +0.18
−0.35 −0.05 +0.19

−0.44 0.04 +0.15
−0.26 0.29 +0.11

−0.17 0.16 +0.12
−0.21

[AlI/H] 0.17 +0.09
−0.10 0.10 +0.07

−0.08 0.10 +0.08
−0.11 0.14 +0.08

−0.14 0.33 +0.07
−0.08 −0.02 +0.08

−0.09 −0.03 +0.06
−0.10
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Table 7. Abundance Values Part II: RGs and TOs

Ion RG22 RG41 TO35 TO37 TO0 TO49

[FeI/H] 0.15 +0.10
−0.09 −0.13 +0.10

−0.12 0.18 +0.08
−0.09 0.11 +0.08

−0.10 0.13 +0.08
−0.09 0.03 +0.09

−0.09

[FeII/H] 0.15 +0.20
−0.59 −0.13 +0.22

−0.64 0.18 +0.11
−0.26 0.11 +0.09

−0.28 0.13 +0.09
−0.26 0.03 +0.12

−0.25

[NiI/H] 0.05 +0.12
−0.19 −0.27 +0.14

−0.20 0.15 +0.08
−0.08 0.05 +0.10

−0.10 0.08 +0.08
−0.09 −0.06 +0.11

−0.11

[CrI/H] −0.05 +0.18
−0.19 −0.45 +0.16

−0.17 0.06 +0.11
−0.12 0.02 +0.12

−0.13 0.02 +0.12
−0.13 −0.07 +0.12

−0.13

[BaII/H] −0.07 +0.24
−0.46 −0.71 +0.27

−0.49 0.12 +0.13
−0.20 0.06 +0.11

−0.22 0.10 +0.09
−0.20 −0.04 +0.18

−0.24

[YII/H] −0.19 +0.78
−1.54 0.19 +0.25

−0.33 0.03 +0.25
−0.36 −0.14 +0.29

−0.37

[NaI/H] 0.18 +0.09
−0.10 0.01 +0.08

−0.09 0.06 +0.07
−0.07 0.02 +0.06

−0.06 0.03 +0.05
−0.06 −0.02 +0.08

−0.08

[TiI/H] 0.11 +0.15
−0.16 −0.22 +0.14

−0.15 0.13 +0.11
−0.11 0.21 +0.13

−0.14 −0.01 +0.09
−0.09 0.10 +0.14

−0.15

[TiII/H] 0.10 +0.25
−0.48 −0.42 +0.48

−0.64 0.14 +0.16
−0.24 0.18 +0.15

−0.28 0.20 +0.16
−0.28 0.06 +0.29

−0.35

[CaI/H] 0.09 +0.16
−0.19 −0.13 +0.16

−0.19 0.15 +0.14
−0.16 0.12 +0.12

−0.17 0.13 +0.11
−0.16 −0.01 +0.13

−0.16

[SiI/H] 0.03 +0.10
−0.21 −0.11 +0.12

−0.22 0.13 +0.06
−0.06 0.04 +0.05

−0.06 0.07 +0.05
−0.05 0.04 +0.06

−0.06

[CI/H] 0.14 +0.36
−0.51 0.02 +0.24

−0.31 0.04 +0.21
−0.28 0.14 +0.28

−0.33

[OI/H] −0.12 +0.29
−0.52 −0.09 +0.31

−0.55 0.17 +0.12
−0.16 0.29 +0.12

−0.19 0.15 +0.10
−0.17 0.27 +0.13

−0.17

[AlI/H] 0.27 +0.07
−0.07 0.15 +0.07

−0.07 0.04 +0.06
−0.08 −0.02 +0.05

−0.08 0.05 +0.09
−0.11 0.06 +0.06

−0.08
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Table 8. Abundance Values Part III: YSs

Ion YS13 YS23 YS24 YS42 YS43

[FeI/H] −0.28 +0.07
−0.09 0.12 +0.06

−0.08 −0.22 +0.08
−0.09 −0.14 +0.07

−0.08 −0.08 +0.08
−0.08

[FeII/H] −0.28 +0.09
−0.37 0.12 +0.08

−0.28 −0.22 +0.10
−0.37 −0.14 +0.10

−0.38 −0.08 +0.12
−0.42

[NiI/H] −0.27 +0.08
−0.08 0.10 +0.07

−0.07 −0.17 +0.10
−0.09 −0.20 +0.10

−0.09 −0.16 +0.08
−0.08

[CrI/H] −0.30 +0.10
−0.12 0.07 +0.12

−0.13 −0.24 +0.12
−0.14 −0.34 +0.10

−0.12 −0.20 +0.10
−0.11

[BaII/H] −0.35 +0.15
−0.33 0.29 +0.13

−0.24 −0.24 +0.15
−0.33 −0.41 +0.15

−0.32 −0.25 +0.15
−0.31

[YII/H] −0.41 +0.22
−0.41 0.17 +0.21

−0.32 −0.23 +0.23
−0.42 −0.33 +0.24

−0.41 −0.40 +0.25
−0.41

[NaI/H] −0.34 +0.07
−0.08 0.04 +0.06

−0.07 −0.19 +0.08
−0.09 −0.08 +0.12

−0.13 0.02 +0.07
−0.08

[TiI/H] −0.16 +0.13
−0.13 0.20 +0.10

−0.11 −0.16 +0.16
−0.17 −0.31 +0.10

−0.10 −0.15 +0.10
−0.10

[TiII/H] 0.03 +0.14
−0.38 0.17 +0.15

−0.28 0.02 +0.14
−0.37 −0.36 +0.15

−0.36 −0.19 +0.15
−0.35

[CaI/H] −0.22 +0.09
−0.12 0.17 +0.09

−0.10 −0.24 +0.11
−0.14 −0.22 +0.11

−0.14 −0.04 +0.10
−0.12

[SiI/H] −0.22 +0.04
−0.04 0.10 +0.04

−0.04 −0.22 +0.06
−0.06 −0.06 +0.04

−0.05 −0.08 +0.04
−0.04

[CI/H] −0.01 +0.21
−0.36 −0.01 +0.20

−0.29 −0.08 +0.23
−0.37 −0.02 +0.23

−0.37 −0.33 +0.25
−0.37

[OI/H] −0.12 +0.13
−0.31 0.10 +0.11

−0.23 −0.12 +0.14
−0.32 0.33 +0.15

−0.31 0.16 +0.14
−0.30

[AlI/H] −0.22 +0.07
−0.08 0.03 +0.04

−0.05 −0.22 +0.06
−0.08 −0.16 +0.04

−0.06 0.00 +0.04
−0.06
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Table 9. Abundance Values Part IV: YSs

Ion YS44 YS45 YS46 YS47 YS48

[FeI/H] −0.22 +0.09
−0.09 −0.11 +0.06

−0.07 −0.27 +0.11
−0.12 −0.05 +0.08

−0.09 −0.02 +0.08
−0.07

[FeII/H] −0.22 +0.15
−0.41 −0.11 +0.08

−0.22 −0.27 +0.18
−0.55 −0.05 +0.11

−0.38 −0.02 +0.10
−0.44

[NiI/H] −0.29 +0.10
−0.10 −0.12 +0.06

−0.06 −0.35 +0.21
−0.21 −0.14 +0.09

−0.08 −0.17 +0.09
−0.08

[CrI/H] −0.45 +0.11
−0.12 −0.20 +0.09

−0.10 −0.71 +0.47
−0.48 −0.08 +0.12

−0.14 −0.19 +0.13
−0.15

[BaII/H] −0.64 +0.21
−0.29 −0.15 +0.11

−0.19 −0.85 +0.37
−0.53 −0.28 +0.15

−0.32 −0.09 +0.15
−0.34

[YII/H] −0.66 +0.30
−0.39 −0.23 +0.18

−0.26 −0.36 +0.35
−0.56 −0.35 +0.26

−0.42 −0.05 +0.22
−0.41

[NaI/H] 0.04 +0.05
−0.06 −0.16 +0.04

−0.05 0.08 +0.09
−0.10 0.09 +0.06

−0.07 −0.06 +0.05
−0.07

[TiI/H] −0.28 +0.10
−0.11 −0.07 +0.09

−0.10 −0.10 +0.15
−0.16 −0.03 +0.10

−0.11 −0.10 +0.11
−0.12

[TiII/H] −0.60 +0.24
−0.35 −0.06 +0.16

−0.25 −0.63 +0.54
−0.70 −0.17 +0.14

−0.36 −0.12 +0.18
−0.39

[CaI/H] −0.22 +0.12
−0.13 −0.09 +0.08

−0.09 −0.05 +0.19
−0.22 0.07 +0.11

−0.13 0.04 +0.11
−0.14

[SiI/H] −0.13 +0.04
−0.04 −0.14 +0.03

−0.03 −0.06 +0.07
−0.07 −0.06 +0.04

−0.04 −0.10 +0.04
−0.04

[CI/H] 0.04 +0.28
−0.35 −0.16 +0.18

−0.24 0.03 +0.25
−0.38 −0.07 +0.22

−0.37

[OI/H] 0.03 +0.18
−0.27 −0.09 +0.11

−0.19 −0.21 +0.24
−0.43 0.06 +0.14

−0.30 −0.16 +0.13
−0.31

[AlI/H] 0.10 +0.06
−0.07 −0.18 +0.08

−0.08 0.08 +0.08
−0.10 0.09 +0.08

−0.09 −0.07 +0.04
−0.07
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Figure 18: Abundance plots for [Ni I/H], [Cr I/H], [Ba II/H] and [Y II/H].
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Figure 19: Abundance plots for [Na I/H], [Ti I/H], [Ti II/H] and [Ca I/H].
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Figure 20: Abundance plots for [Si I/H], [C I/H], [O I/H] and [Al I/H].
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Figure 21: KS test for [Ni I/H], [Cr I/H], [Ba II/H] and [Y II/H].
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Figure 22: KS test for [Na I/H], [Ti I/H], [Ti II/H] and [Ca I/H].
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Figure 23: KS test for [Si I/H], [C I/H], [O I/H] and [Al I/H].
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Appendix D Notes On Individual Yellow Stragglers

YS 13

Sanders (1977), Yadav et al. (2008) and Balaguer-Núñez et al. (2007) all determined that

the proper motion of YS 13 indicated that it is not likely a member of M67. This star appears to

have a variable radial velocity with p = 0.03, and while it is not a systemic radial velocity of the

likely binary system, it does have an average radial velocity of vh = 49.2 ± 0.1 km/s (consistent

with the Yadav et al. (2008) value of vh,y = 49.6 ± 0.6 km/s; no Mathieu et al. (1986) data are

available) and a range of 3.1 km/s in the radial velocity measurements made in the present study.

The abundance pattern of this star closely resembles that of a field star, HIP 44441, that lies in the

general direction of M67 and is approximately 4 Gyr old (Bensby et al., 2004). Considering all of

these points, it seems likely that YS 13 is not a member of M67 but is likely a field star in the field

of view of the cluster.

YS 23

Though Balaguer-Núñez et al. (2007) find that the proper motion of YS 23 did not confirm

cluster membership, Yadav et al. (2008) concluded that this star has a cluster membership probability

of 96%. Unfortunately, no Sanders (1977) membership probability data was available for this star.

The present study finds that this star has a variable radial velocity with p = 0.03, and though it

does not represent a systemic velocity of the likely binary system, it has an average radial velocity

of vh = 36.1± 0.1 km/s with a range of 2.3 km/s. This average radial velocity is consistent with the

cluster mean derived by Mathieu (1983) of 33.5 ± 0.5 km/s. Given that the photometry of YS 23

indicates that it could potentially be a binary comprised of two near turnoff stars, it is perhaps not

surprising that the metallicity of this star more closely matches that of the SGs and TOs than the

YSs. The proposition that this star is a binary, comprised of two normal cluster members is an

attractive one.

YS 24

Sanders (1977), Yadav et al. (2008) and Balaguer-Núñez et al. (2007) each indicate that

YS 24 is not a cluster member considering its proper motion with respect to the cluster. However,

this work finds that this star has a constant radial velocity to within 2σ and that the average radial

velocity of this star (vh = 35.8± 0.1 km/s) is consistent with the cluster mean radial velocity. It is

noted however, that the radial velocity determined in the present work is not consistent with the
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value determined by Yadav et al. (2008) of vh,y = 52.9±0.7km/s. Given the likelihood that this star

exists as a single star, assuming that this star is a true cluster member, the photometry indicates

that it could be a photometric blend of a SG and a MS star roughly 1.5 mag fainter. The metallicity

of this star, however, is unlike that of the typical SGs in the current study and is more similar to

that of the field star, HIP 44441 (Bensby et al., 2004). In light of these points, it is suggested that

YS 24 may simply be a field star with a radial velocity similar to that of M67, and is not a bona

fide cluster member.

YS 42

Mathieu & Latham (1986) discuss this star noting that it is a spectroscopic binary with an

orbital period of roughly 1500 days. They also note that it possesses three traits supporting the

star’s membership in M67: 1) this star has proper motion membership probability of 95% (Sanders,

1977) 2) the systemic velocity of this binary (32.7± 0.2 km/s) is in agreement with the cluster mean

velocity (33.5±0.5km/s) and 3) this star has a spatial location that appears one core radius from the

cluster center. They go on to explore multiple star systems but conclude that a binary of a BS and

a RG is not a satisfactory explanation because the composite photometry of such a system would

not agree with the uvby photometry of Nissen et al. (1987). Mathieu et al. (1990) show that a triple

system is also an unsatisfactory explanation because this would ultimately require a triple system of

three subgiants with similar colors, and the “correlation-dip depths” are significantly more shallow

than those of stars on the giant branch with comparable visual magnitudes as well as main sequence

stars with comparable color. They propose that two options remain; either the membership status

of YS 42 is incorrect despite its proper motion, radial velocity and spatial location or it truly is an

anomalous star, “possibly in an evolutionary phase linked to the blue straggler phenomenon.”

Additionally, both Yadav et al. (2008) and Balaguer-Núñez et al. (2007) find that the proper

motion of YS 42 indicates that this star is indeed a cluster member. The present work finds that

this star exhibits a variable radial velocity (p = 0.00) with an average value (not systemic) of

vh = 30.2 ± 0.1 km/s, consistent with the value of Mathieu et al. (1986) (vh,m = 32.2 ± 2.2 km/s),

the value of Yadav et al. (2008) (vh,y = 33.6 ± 0.6 km/s) and the cluster mean. The Yadav et al.

(2008) photometry of this star indicates that if YS 42 is a blend or binary, one of the components

must be bluer than the turnoff (likely a BS) in order to achieve its location blueward of the giant

branch. It is noted that for most elements, the abundances of YS 42 tend to be lower than, but not

inconsistent with, those of YS 43, a star that is suspected to have experienced RLOF mass transfer
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and will be discussed below. If the abundances of YS 42 are significantly lower than those of YS 43,

then it could be possible that YS 42 is a contaminating field star, despite its proper motion and

radial velocity data. This makes it quite difficult to make any conclusions about YS 42, however,

subsequent studies investigating the abundance patterns of mass transfer BSs and the abundance of

lithium (Glebbeek et al., 2010) in particular in both YS 42 and YS 43 could provide further clues.

YS 43

Landsman et al. (1997) note that the finding that YS 43 is a single lined spectroscopic binary

with a circular orbit and a period of 42.8 days (Mathieu et al., 1990) contradicts the claim of Janes &

Smith (1984) that this star could be explained as a photometric binary of a lower giant branch star

and a near-turnoff star because such a system would exhibit a secondary correlation peak due to the

similar magnitudes of the two components. The present work supports the findings of Mathieu et al.

(1990) in that it finds no secondary peak in the cross correlation function indicating that a secondary,

should one exist, would have to be significantly fainter than the primary. Landsman et al. (1997)

addresses the detection of a companion in YS 43. Specifically, Landsman et al. (1997) notes that the

ultraviolet detection of YS 43 (Stecher et al., 1997) “almost certainly implies that the secondary is a

hot white dwarf” because if the source of the ultraviolet radiation were more luminous than a WD,

the resulting B-V magnitude of YS 43 would not match what is observed. Landsman et al. (1997)

follows up on these studies and the suggestion that YS 43 is the result of RLOF mass transfer

(Verbunt & Phinney, 1995) by imaging YS 43 with the Goddard High Resolution Spectrograph

on Hubble Space Telescope. These observations revealed a broad Lyα absorption feature; further

confirmation of the WD nature of the secondary component of YS 43 according to Landsman et al.

(1997). Furthermore, from the computation of the WD mass (∼ 0.22M�) and the corresponding

evolutionary track, Landsman et al. (1997) determine that the mass transfer for this system must

have stopped roughly 75 Myr ago and that YS 43 must have evolved to its current location in the

CMD from a BS location in that time period.

There is consensus between Sanders (1977), Yadav et al. (2008) and Balaguer-Núñez et al.

(2007) that the proper motion of YS 43 indicates that this star is a true cluster member. The

current work determines that this star exhibits a variable radial velocity with p = 0.00 and finds an

average (not systemic) radial velocity of vh = 29.4± 0.9 km/s, consistent with the value of Mathieu

et al. (1986) (vh,m = 32.0 ± 6.3 km/s) and the cluster mean. The photometry of this star could be

achieved by a blend or binary system of a SG and a RG. Additionally, the abundance pattern is not
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inconsistent with that found for RG 41 (a radial velocity constant star to within 3σ and Yadav et al.

(2008) cluster membership probability of 98%), though it appears to tend to be slightly higher. So

it is, perhaps, fortunate that the previous studies of this star have determined the WD nature of the

companion in this system, otherwise the photometry and abundance pattern of YS 43 might lead

one to believe that it was likely a binary system comprised of a SG and a RG. This, however, is an

excellent example of how the true nature of these YSs can be easily misinterpreted.

The determination of the abundances of this star of are particular importance because it

is believed to be an evolved BS that has undergone RLOF mass transfer. Recall, however, that no

s-process element enhancements were seen for this star. These abundance determinations can still

provide a means for comparison with current models dealing with the evolution of mass transfer

systems, though. Glebbeek et al. (2010) predicts that lithium may provide the most robust means

to distinguish between a collisional or RLOF mass transfer origin for BSs, thus a follow-up study

to determine the lithium abundance of this star, and perhaps others in this YS sample may provide

observational data to compare with this prediction.

YS 44

Mathieu et al. (1986) found YS 44 to be single lined spectroscopic binary; Mathieu et al.

(1990) note that the lack of a detection of the secondary component in this case is unsurprising due

to the report of Janes & Smith (1984) that this star could be a binary comprised of a giant star

and a fainter near-turnoff. Mathieu et al. (1990) state that such a system would require two stars

of equal mass, the secondary would be 1.6 magnitudes fainter than the primary and the velocity

separation of the components would only be 10 km/s. They claim that it should be detectable with

high resolution, high signal-to-noise spectra. However, the finding in the present study that the

location of YS 44 cannot be achieved with the bluest turnoff star (but instead requires that one

component be a BS) encourages that the situation for this star be reconsidered.

Sanders (1977), Yadav et al. (2008) and Balaguer-Núñez et al. (2007) all agree that YS 44

is likely a cluster member based on its proper motion. The present study finds that YS 44 exhibits

a variable radial velocity (p = 0.00), with an average radial velocity of vh = 36.5 ± 0.3 km/s and

a range of roughly 7.0 km/s. This average radial velocity is consistent with that of Mathieu et al.

(1986), vh,m = 33.0 ± 3.5 km/s. The Yadav et al. (2008) photometry indicates that the composite

photometry of a RG and a BS could achieve the observed location of YS 44 on the CMD, however,

the magnitude of the BS would need to be roughly 1.5 magnitudes fainter than the RG to create the
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observed photometry. It is possible that the BS could contribute very little to the cross correlation

resulting in a single peak in the cross correlation function. However, it cannot be ruled out that

the RG could exist in a binary with some other type of unseen companion, and create an optical

blend with a BS. An analysis of a RG-BS binary system could further elucidate the validity of this

scenario. The the abundance pattern of YS 44 tends to mimic that of RG 41, however, as was seen

for YS 43, this particular abundance pattern could be representative of a binary system that was

previously subject to mass transfer.

YS 45

Though Balaguer-Núñez et al. (2007) lists YS 45 as a non-member and Sanders (1977) de-

termines a membership probability for this star of 0%, Yadav et al. (2008) determined a membership

probability of 84%, so its true proper motion membership status is unclear. The radial velocity data

is not entirely helpful in clearing up the matter. The current study finds that YS 45 has a variable

radial velocity with p = 0.00, an average radial velocity of vh = 5.3± 0.2 km/s and a range of about

4.5 km/s. This radial velocity agrees with both Mathieu et al. (1986) (vh,m = 3.6 ± 1.0 km/s) and

Yadav et al. (2008) (vh,y = 4.0± 0.6 km/s). Though the radial velocity value is substantially lower

than the cluster mean, it is not an unrealistic value for a cluster member to possess, as was seen

in §6.1. The observed photometry of YS 45 indicates that if it is, indeed, a cluster member and a

binary system, one of the components would necessarily have to be a BS. Again, a BS-RG binary

system would need to be analyzed to consider specific parameters. The mass of the components of

such a binary system could make the system more susceptible to dyanamical interactions in the clus-

ter (like mass segregation) causing the system to exhibit a peculiar velocity. As previously stated,

numerous others have noted the results of such dynamical interactions on BSs in particular in the

form of central and/or bimodal spatial distributions of BSs. The abundance pattern of YS 45 is not

illuminating either. The Fe-peak and s-process elements tend to be more similar to the normal SGs

and TOs, however other elements like Na, Ca, and Si appear more similar to the field star HIP 44441

(Bensby et al., 2004). Thus, further study of this star is recommended before it is determined to be

a non-member.

YS 46

The proper motion membership information for YS 46 indicates that it is not a cluster

member. Both Sanders (1977) and Yadav et al. (2008) report membership probabilities of 0% and

Balaguer-Núñez et al. (2007) also reports this star as a non-member. The radial velocity information
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in the present study agrees with the findings of Mathieu et al. (1986) that this star is a double lined

spectroscopic binary. An average radial velocity was computed for both correlation peaks in the

cross correlation function, however, keep in mind that this is not a computation of the systemic

radial velocity of the binary system, as previously stated for the other variable radial velocity stars.

vh,A = 49.3 ± 1.3 km/s was computed for the larger of the two cross correlation peaks (component

A) and vh,B = 54.9± 4.3 km/s was computed for the smaller of the two peaks (component B). The

average radial velocities of the two components are a bit higher than the cluster mean, however, they

are not completely unrealistic radial velocity values for cluster members as was seen in §6.1 and the

values for both componets range over roughly 29 km/s. The observed photometry for this binary

indicates that it must comprise a RG and a BS with roughly the same magnitude. Abundances were

computed for component A. The abundance pattern for this star is quite perplexing. Some of the

Fe-peak elements match those of the field star HIP 44441 (Bensby et al., 2004) while others appear

similar to the SGs and TOs. The same is true for the s-process elements as well. It is noted, however,

that the abundance values computed for this star are likely unreliable given the star’s double lined

nature.

YS 47

Sanders (1977) and Yadav et al. (2008) both give cluster membership probabilities of 0% for

YS 47 and Balaguer-Núñez et al. (2007) also reports it as a non-member. The present work finds that

it has a variable radial velocity with p = 0.00, an average radial velocity of vh = 94.4±0.2 km/s and

a range of only 3 km/s. This radial velocity is significantly different than that of the cluster mean,

and this value is not a realistic value for other cluster members as was shown in §6.1. Furthermore,

assuming that YS 47 is a binary system, the observed photmetry indicates that it must be comprised

of a RG and a BS that is roughly 0.7 mag fainter, but the metallicity for this star is significantly

higher than that of RG 41. It is also significantly higher than that of the field star HIP 44441 (Bensby

et al., 2004). Because the proposed BS component could contribute significantly to the observed

spectrum, an abundance analysis of the BSs may lead to further insights on the true nature of this

object, however it is expected that this star is likely a contaminating field star.

YS 48

Sanders (1977) and Yadav et al. (2008) both give membership probabilities for YS 48 of 0%.

Balaguer-Núñez et al. (2007) also lists this star as non-member. The present study determined an

average radial velocity for this star of vh = 12.0 ± 0.1 km/s which is substantially lower than the
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cluster mean, but as was presented in §6.1, is not an unrealistic value for other cluster members.

Keep in mind, however, that the present work also found that the radial velocity of this star is

constant to 3σ. These data support the hypothesis that this star is simply a contaminating field

star, however, note that the abundance pattern for this star is consistently higher than that of the

field star HIP 44441 of Bensby et al. (2004). The possibility that this star is a cluster member of

some anomalous evolutionary state is unlikely. However, the possibility that this star is a normal

cluster member that forms an optical blend with some other object cannot be ruled out. If YS 48 is

a normal cluster member in an optical blend, the other component would have to be a BS in order

to generate the observed photometry of this object.
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