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ABSTRACT 

 
BACKGROUND:  An international community of researchers has 

generated a significant number of Expressed Sequence Tags (ESTs) for the 

Rosaceae, an economically important plant family that includes most temperate 

fruits such as apple, cherry, peach, and strawberry as well as other commercially 

valuable members.  ESTs are fragments of expressed genes that can be used for 

gene discovery, developing markers for mapping and cultivar improvement via 

marker assisted selection. 

DESCRIPTION:  The Genome Database for Rosaceae (GDR) was 

initiated to provide a curated and integrated web-based relational database for this 

family.  I developed a key component of GDR to assemble and annotate the 

publicly available ESTs from the four main genera of the family (Prunus, Malus, 

Fragaria, Rosa).  I created both genera and family level unigenes using the 

software CAP3 after extensive filtering, trimming and assembly.  Further analysis 

includes marker mining for single nucleotide polymorphisms (SNPs) and simple 

sequence repeast (SSRs) with putative primer identification, and oligo 

identification for potential microarray development.  Functional genomics efforts 

are supported with sequence similarity searching against major protein and 

nucleotide databases, gene product ontology assignment, and protein motif 

identification.  I deployed the entire project on the GDR with all data available for 

browsing, searching, and downloading.   
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CONCLUSIONS: The GDR and its associated EST unigene project are 

meeting a major need for timely annotation and curation of sequence data for the 

Rosaceae community.  The results of my analysis highlight major genes and 

pathways of interest including ripening, disease resistance, and transcription 

factors.  The easily accessible pool of annotated coding sequences should further 

both functional and structural genomics characterization in Rosaceae. The 

unigene elucidates the levels of sequence similarity shared across different plant 

species and the implications for resource sharing across the family.  GDR can be 

accessed at http://www.rosaceae.org/. 
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CHAPTER 1 

INTRODUCTION 

Rosaceae Genomics 

In temperate regions of the world, Rosaceae is one of the most 

economically important plant families.  Fruit such as apple, apricot, blackberry, 

cherry, pear, peach, plum, raspberry, and strawberry are the major products from 

this family.  Another edible member is the almond.  The total value from the food 

production of members of this family is estimated at over $8 billion dollars in the 

United States in 2006 (National Agricultural Statistics Service, 2006).  These 

crops were grown on over 1.5 million acres, and the most valuable members are 

almonds, apples, strawberries, and peaches (Table 1.1)  This major crop family 

contributes to a nutritious and diverse diet by adding vitamins, minerals, dietary 

fiber, and antioxidants.  The Rosaceae encompasses other commercially valuable 

members such as lumber (black cherry), and ornamentals (roses, flowering cherry, 

crabapple, quince and pear).  Sales of these plants in nurseries contribute even 

more to the domestic and international value of this family. 
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Table 1.1: Rosaceae statistics from the United States Agricultrual Statistics 
Service, estimates for 2006 

 

Crop (Location) 
Bearing Acreage in US 

in 2006 
Value of Production in 

2006 ($1000s of dollars) 

Almonds (CA) 580,000 2,198,215 

Apples 377,490 2,099,129 

Apricot 15,540 29,580 

Blackberries (OR) 6,900 35,380 

Boysenberries 920 7,128 

Loganberries (OR) 60 100 

Raspberries, Black (OR) 1,500 9,780 

Raspberries, Red 11,500 25,346 

Raspberries, All (CA) 4,300 249,615 

Cherries, Sweet 81,300 487,482 

Cherries, Tart 37,200 53,453 

Nectarines 36,900 124,200 

Peaches 134,460 513,438 

Pears 59,850 324,885 

Plums (CA) 36,000 110,217 

Prunes (CA) 67,000 240,784 

Prunes & Plums 3,400 8,763 

Strawberries 53,280 1,514,998 

TOTAL 1,507,600 8,032,493 

  

The Rosaceae family has a worldwide distribution and encompasses over 

3000 species.  This family is part of the order Rosales, found within the eurosid I 

clade of flowering plants (Figure 1.1).  It is estimated that this group diverged 

from other Rosales around 76 Mya (Wikstrom et al., 2001).  Four subfamilies are 

generally recognized based on fruit classification (e.g., Schulze-Menz 1964).  The 

Rosoideae, containing strawberries, roses, blackberries and raspberries bear 
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indehiscent fruit.  A group of ornamental shrubs and other species with dry 

dehiscent fruit constitute the Spiroideae.  The Prunoideae include the species 

producing fleshy one-seeded fruits such as cherries, almonds, peaches, plums and 

apricots.  Apples and pears are pome fruits typical of those that fall into the last 

subfamily, Maloideae.   
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Figure 1.1: Most recent classification of orders and families of flowering plants 
from theAngiosperm Phylogeny Group.  Interrelationships are 
supported by jackknife or bootstrap frequencies above 50% in large-
scale analyses of angiosperms. (Figure from Angiosperm Phylogeny 
Group, 2003) 
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Despite the anatomical evidence that the Rosaceae should be divided into 

these four groups, recent phylogenies created from molecular information have 

not upheld them as accurate evolutionary divisions (Morgans et al, 1994; Evans et 

al, 2000).  The most recent and comprehensive examination of molecular data 

from Potter et al., 2002 utilized parsimony analysis of sequence data from the 

matK and the trnL-trnF region of the chloroplast genome.  Three main clades 

were indentified: Rosoideae sensu stricto, actinorhizal Rosaceae, and the rest of 

the family (Figure 1.2).  Basic subfamilies of Maloideae and Rosoideae were 

upheld with some modifications.  A somewhat clearer picture of the evolution of 

the family emerged from this study but the positions of many subgroups remain 

unresolved.   
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Figure 1.2: Rosaceae lineages (courtesy of Dan Potter, 2002) 

The Rosaceous crop industry is facing multiple challenges to efficient and 

profitable production.  The industry has identified key areas of crop improvement 

that needs to be addressed (US Rosaceae Genomics, Genetics and Breeding 

Consortium, 2006).  A major emphasis is to improve key qualities of fresh and 

processed fruit such as taste, aroma, color, and freedom from defects.  Post-

harvest quality is another pressing issue due to the highly perishable nature of 

fresh fruit and thier susceptibility to aging, decay, and chilling injury. 

Rosaceous crops are susceptible to multiple different types of pests and 

diseases that can cause high economic losses. This susceptibility has led farmers 

to depend on high levels of chemical pesticides that are expensive and potentially 
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damaging to the environment (Janick and Moore, 1996).  More resistant crop 

varieties would help alleviate both of these issues by preventing the initial pest 

and disease problems.  Growers also desire varieties that are resistant to common 

abiotic stresses such as drought and cold (Janick and Moore, 1996). 

Previous efforts to improve varieties of Rosaceous species have largely 

depended on traditional breeding techniques.  This has proved difficult in many of 

the species due to long generation times, high space requirements, and polyploid 

genomes.  Apples planted from seed go through a juvenile phase when they do 

not produce flowers; this phase may last from three to ten or more years.  Certain 

peach varieties take up to five years to begin fruiting (Janick and Moore, 1996a).  

Strawberries are vegetative, and their breeding has yielded many cultivars over a 

short time as new generations can be produced each year (Janick and Moore, 

1996b).  More advanced breeding technologies that utilize genomic tools could 

make significant gains in many of these crops, especially the woody ones, over a 

shorter time period.  Understanding the genes in fruits and how they interact to 

produce desired phenotypes would allow selection of varieties with the most 

favorable combinations of gene variants.  This can be accomplished through 

marker-assisted breeding techniques, manipulation of gene expression, or 

inclusion of new genes in the peach genome.  Of all of these techniques, a 

marker-assisted selection program for breeders may be the most important 

because it can be implemented immediately to yield important results 

(Dirlewanger et al., 2004b). Marker assisted selection allows the breeder to select 

a subset of seedlings with known desirable traits and grow only this subset for 
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further evaluation.  A small tissue sample can be taken from all seedlings, and 

DNA analysis of known loci will reveal the combination of alleles that are 

encoded in each of the progeny.  This efficiency of time and space will allow 

diverse germplasm with specific desirable traits to be included in breeding 

populations.  Markers for the common traits found in wild types such as small 

fruit size or low quality could be used to screen progeny at the seedling stage.  

New alleles from these new genotypes could provide better disease resistance and 

other phenotypes not yet exploited in commercial cultivars. 

Utilizing input from industries, scientists, and government agencies, a 

White Paper for the US Rosaceae Genomics, Genetics and Breeding Initiative has 

been released (US Rosaceae Genomics Genetics and Breeding Consortium, 

2006).  An international vision for increasing and integrating Rosaceae 

improvement and research is due to be published in 2007.  Overall, these 

initiatives have concluded that Rosaceous genomes must be analyzed and 

exploited, genomic database resources for the community must be enhanced, and 

breeding programs must be revitalized (US Rosaceae Genomics, Genetics and 

Breeding Consortium, 2006).  To date, three species, peach, apple, and 

strawberry, are the primary focus of most of the genomics efforts.  These 

represent diverse subfamilies and some of the most economically important crops 

worldwide. 

While many structural and functional genomic resources are already 

available for Prunus, Malus and Fragaria species, more research and funding is 

needed.  The community has a centralized data repository, the Genome Database 



 

 9

for Rosaceae (GDR), to disseminate the publicly available genomic data for this 

family (Jung et al, 2004).  Initial studies suggest that there is a significant 

sequence synteny within Prunus and across the Rosaceae (Dirlewanger et al., 

2004a; Dirlewanger et al., 2004b).  Efforts are being focused on integrating 

Rosaceous genomic information from individual species across the family using 

comparative genomics.  Breeding programs can accelerate the use of marker 

assisted selection and other molecular techniques to incorporate the current 

genomics information in new varieties.   

Structural Resources 

Structural genomics refers to the physical structure and organization of a 

genome.  Knowledge of structural genomics is necessary for manipulating genes 

and DNA segments in genomic studies.  The basic haploid chromosome number 

of the economically important Rosaceae species is known.  The Prunus genus, 

which encompasses peach, plum, almond, apricot and cherry, has 8 chromosomes 

(2n=2x=16) (Jelenkovic and Harrington, 1972).  The strawberries grown 

commercially, Fragaria x ananassa, are an octoploid member of the Fragaria 

genus.  Diploid strawberry species such as F. vesca and F. nubicola are generally 

accepted as primary candidates for physical genomic research due to the relative 

simplicity of developing and interpreting diploid maps (Sargent et al., 2004).  

These Fragaria species as well as F. x ananassa have a haploid chromosome 

number of 7 (Jelenkovic and Harrington, 1972).  Apple and pear are from a 

lineage that is assumed to have undergone whole genome duplication since 

divergence from the other Rosaceae members and has a haploid chromosome 

number of 17 (Lespinasse et al., 1976). 
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A basic resource for many genomic studies is a genetic linkage map where 

genetic distance is measured in centimorgans.  These maps are used to translate 

genomic information into molecular markers for breeding.  An integrated 

reference map for Prunus has been adopted and contains 562 markers (Joobeur et 

al., 1998; Aranzana et al., 2003; Dirlewanger et al., 2004a).  This map was created 

from an interspecific cross of peach and almond, and it currently spans 519 cM.  

Other Prunus maps are also available, including peach, apricot, sweet cherry, sour 

cherry, Myrobalam plum, and almond. A map spanning 424 cM with 182 markers 

is available for diploid strawberry (Sargent et al. 2006).  Strawberry represents an 

attractive mapping system due to its self-compatibility, small genome, and short 

generation time, but it has only a medium level of marker saturation thus far.  

Several apple maps have been developed, and the most comprehensive includes 

over 800 markers (Liebhard et al., 2003).  Mapping in apple can be time 

consuming due to its 6 to 10 year or more generation time (Janick and Moore, 

1996).  Other Rosaceous species with genetic maps include rose, pear, and 

raspberry.  A list of the major available genetic maps for Rosaceous species is 

outlined in Table 1.2.  
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Table 1.2: Genetic Linkage Maps Available for Rosaceae Species 

The full citations for these maps can be found in the “Map References” section 
following the “References” section of this chapter. 
 

Species Reference Markers Map Size 

Peach Chaparro et al., 1994 83 396 cM 

 Dirlewanger et al., 
1998 

249 712 cM 

 Lu et al., 1998 153 1297 cM 

 Dirlewanger et al., 
1999 

249 712 cM 

 Shimada et al., 2000 87 1000 cM 

 Verde et al., 2005 216 665 cM 

Peach X Almond Foolad et al., 1995 107 800 cM 

 Joobeur et al., 1998 246 491 cM 

 Dettori et al, 2001 109 521 cM 

 Bliss et al., 2002 161 1144 cM 

 Aranzana et al., 2003 342 522 cM 

 Dirlewanger et al., 
2004a 

166 716 cM 

 Howad et al., 2005 264 68 bins 

Myrobalan plum Dirlewanger et al., 
2004a 

93 525 cM 

Sour Cherry Wang et al., 1998 126 

95 

462 cM 

279 cM 

Sweet Cherry Stockinger et al., 1996 89 503 cM 

Apricot Hurtado et al., 2002 132 

80 

511 cM 

467 cM 

 Vilanova et al., 2003 211 602 cM 

Almond Viruel et al., 1995 93 

69 

393 cM 

394 cM 

 Joobeur et al., 2000 126 

99 

415 cM 

416 cM 
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Table 1.2: Genetic Linkage Maps Available for Rosaceae Species (Continued) 

 

Species Reference Markers Map Size 

Apple Hemmat et al., 1994 360 1120 cM 

 Conner et al., 1997 238 

110 

183 

1206 cM 

 Maliepaard et al., 
1998 

194 

163 

842 cM 

984 cM 

 Liebhard et al., 2003 840 1140 cM 

1450 cM 

Diploid Strawberry Lerceteau-Kohler et 
al., 2003 

235 

280 

1604 cM 

1496 cM 

 Sargent et al., 2004 76 448 cM 

 Sargent et al., 2006 182 424 cM 

Rose Mattiesch and 
Debener, 1999 

278 326 cM 

370 cM 

 Rajapakse et al., 2001 171 

167 

902 cM 

682 cM 

 Crespel et al., 2002 68 

108 

238 cM 

287 cM 

 Yan et al., 2005 520 487 cM 

490 cM 

 Dugo et al., 2005 133 388 cM 

260 cM 

Pear Yamamoto et al., 2002 226 

154 

949 cM 

926 cM 

 Pierantoni et al., 2004 41 

31 

 

Raspberry Graham et al., 2004 273 789 cM 
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A physical map is another invaluable structural genomic resource that 

maps the genome in physical distances (base pairs) instead of centiMorgans.  A 

peach framework physical map anchored on the general Prunus genetic map is 

under development (Horn et al., 2005).  It currently has 1,899 BAC contigs 

spanning an estimated 279 Mb of the genome, and it is due to be completed in 

2007. Twenty eight trait loci corresponding to agronomic characters from the 

general Prunus genetic map have already been anchored on this physical map 

(Dirlewanger et al., 2004b).  A transcriptome map is being developed and 

currently has the positions of 1258 ESTs identified by hybridization to ordered 

BACs (Horn et al., 2005). Two complementary BAC libaries have been 

constructed for the apple, one of Malus floribunda 821 ‘Florina’ (Xu et al, 2001) 

and one of the cultivar ‘GoldRush’ (Xu et al., 2002).  A physical map is now 

available with 2702 contigs that span an estimated 927 Mb (Han et al., 2007). The 

diploid strawberry genome has been integrated into an 8x Fosmid library (Davis, 

2006) but no physical map is yet available. 

Despite the availability of genetic linkage maps and physical maps, further 

research is needed in the area of structural genomics.  Neutral molecular markers 

still need to be linked to loci controlling traits of interest and mapping data needs 

to be integrated into overall reference maps that can be used for anchoring the 

physical maps. Further research will need to be conducted in comparative 

genomics to utilize the high levels of synteny expected between family members 

and facilitate the discovery of transferable markers.  More single nucleotide 

polymorphisms (SNPs) will be required to fully saturate the available maps. 
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Ultimately, the Rosaceae community needs a fully sequenced genome.  

Arabidopsis with a haploid genome size of only 115 Mb (Arabidopsis Genome 

Initiative, 2000) is the closest plant relative with a fully sequenced and annotated 

genome but has many limitations.  The fruit type, growth habit, and life history of 

Arabidopsis are very different from the members of the Rosaceae.  Populus 

trichocarpa is a closer relative and now has a draft sequenced genome with 7.5X 

coverage, but it has many of the same limitations as Arabidopsis (Tuskan et al., 

2006).  Fortunately, the Rosaceae have comparatively small genome sizes that 

facilitate a relatively inexpensive genome sequence.  The peach genome is 290 

Mb (Baird et al., 1994) and strawberry is 164 Mb (Akiyama et al., 2001).  Apple 

is somewhat larger at 769 Mb (Patocchi et al., 1999) but still a relatively small 

genome when compared to the majority of other crop species.   

In January, the Department of Energy’s Joint Genome Institute announced 

they will sequence the peach genome by 2008.  This will involve an 8X coverage 

of the peach double haploid ‘Lowell’, the same cultivar as the physical map. At 

the same time an Italian group from the Istituto Agrario San Michele all'Adige 

announced that they will complete a 4X coverage of the  apple cultivar ‘golden 

delicious’ by the end of 2007. Both of these genome sequences will be made 

publicly available. A whole genome sequence will promote genomics research in 

a profusion of areas including gene and cis-element discovery, transcriptome 

analysis, epigenetic studies, high-density genotyping, and polymorphism 

discovery.  



 

 15

Functional Resources 

Functional genomics plays an important role in the future of Rosaceae 

research and improvement.  This area focuses on gene expression, gene function, 

protein structure and interactions, and metabolic network structure.  An important 

goal of the Rosaceae community is to identify and characterize genes controlling 

or impacting important phenotypic traits (US Rosaceae Genomics Genetics and 

Breeding Consortium, 2006).  The current focus is mostly on fruit characters as 

fruit is the most prominent source of economic value.  Traits of interest include 

sugar and acid levels, color, firmness and fruit size, self-incompatibility, and 

biotic and abiotic stress resistance (DeCroocq et al., 2005; Dirlewanger et al., 

2004a; Dirlewanger et al., 2004b; Liebhard et al, 2003, Wunsch and Hormaza, 

2004).  Finding the genes impacting these characters may lead to direct 

manipulation of crop genetics and improved fruit quality.  Rosaceae are mostly 

perennial species with long maturation times, which makes traditional breeding 

more difficult.  However, if the genes of interest are tagged with molecular 

markers, they can be used in marker-assisted selection, thus allowing only the 

seedlings containing the tagged genes of interest to go forward for further field 

evalaution (Dirlewanger et al., 2004b). 

Expressed sequences tags (ESTs) are one of the most valuable functional 

genomic resources for studying gene expression. By sampling mRNA, these short 

sequences of expressed genes are able to give researchers a snapshot of the genes 

being expressed in a particular tissue, at a given time for a particular Rosaceae 

variety  All publicly released ESTs are stored in NCBI’s dbEST.  This database is 

a division of GenBank that contains EST library and sequence information 
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(Boguski et al., 1993).  The number of sequences being added to the database has 

been growing exponentially since the inception of dbEST.  As of August 18, 2006 

there were 38,266,600 sequences in dbEST, of which more than 10 million 

represented viridiplantae (green plant) species (http://www.ncbi.nlm.nih.gov 

/dbEST/dbEST_summary.html).  Many communities studying different plant 

species have produced and utilized ESTs; 35 different plant species have more 

than 50,000 ESTs currently in dbEST (http://www.ncbi.nlm.nih.gov 

/dbEST/dbEST_summary.html). 

A total of 374,654 ESTs from Rosaceae species were available from 

GenBank’s dbEST on August 21, 2006.  These ESTs represent 18 different 

species spread across 6 genera (Table 1.3) and 156 different libraries.  Twenty-

two different tissues have been characterized in these libraries (Table 1.4).  ESTs 

can be utilized for identifying candidate genes for different traits, mining for 

molecular markers such as SSRs and SNPs, and finding relative abundances of 

genes being expressed in different tissues and development stages. 
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Table 1.3: Rosaceae ESTs available at NCBI by Species as of 08/21/2006 

 

Genus Number of ESTs 

Malus 259088 

   x domestica 253660 

   x domestica X sieversii 3944 

   sieboldii 1163 

   hybrid rootstock 321 

Prunus 86583 

   persica 66249 

   armeniaca 15105 

   dulcis 3864 

   cerasus 1255 

   cerasus X avium X 
canescens 

89 

   avium 21 

Fragaria 19038 

   x ananassa 5376 

   vesca 13662 

Rosa 9289 

   hybrid cultivar 5563 

   wichurana 1932 

   chinensis 1794 

Pyrus 335 

   communis 238 

   communis X ussuriensis 82 

   pyrifolia 15 

Rubus ideaus 322 

TOTAL 374655 
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Table 1.4:  Rosaceae ESTs available at NCBI  by Library Tissue as of 
08/21/2006 

 

Tissue Number of ESTs 

Carpel 47 

Flower 23161 

Fruit Mesocarp 33206 

Fruit 78562 

Fruit Endocarp 5072 

Fruit Epicarp 7749 

Fruit Epicarp & Mesocarp 12029 

Fruit Mesocarp 34457 

Gynoecium 1006 

Inflorescence Meristem 8743 

Leaf 56457 

Petal 5305 

Phloem 9376 

Receptacle 23 

Receptacle & Achenes 35 

Root 11251 

Seed 8258 

Shoot 18696 

Unspecified 4978 

Vegetative Meristem 33833 

Whole Plant 17350 

Xylem 5061 

 

Microarray technology provides high throughput detection of gene 

expression levels (Richmond and Somerville, 2000).  Schena et al., 1995 first 

developed the cDNA microarray technology which has since been widely used 

(Duggan et al., 1999).  Specifically, these microchips have been used in plants to 

identify particular gene functions (Aharoni et al., 2000; Gutierrez et al., 2002), 

evaluate transcriptional response to physiological and environmental conditions 
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(Reymond et al., 2000; Van Hal et al., 2000; Lee et al., 2002; Oztur et al., 2002; 

Potokina et al., 2002; Zhu et al., 2003), and evaluate transcript profiles between 

genetically modified and control species (Val Hal et al., 2000).  

Currently in Rosaceae, only apple has a publicly available microarray 

chip.  The Plant Genome Program Award #0420394 included the development of 

a NimbleGen oligonucleotide array with 390,000 spots representing 55,000 

sequences developed from publicly available apple EST data (McNellis et al, 

2007).  Data from this chip has yet to be published.  Future development of either 

family-wide or individual species chips could promote functional genomic studies 

in the Rosaceae by allowing researchers a relatively economical and empirically 

proven means of identifying differentially expressed genes. 

 Transgenics, which includes the introduction of new genes and knocking 

out expression of genes, is a powerful method for elucidating gene function.  

Apple transformation has been achieved with an Agrobacterium-based approach 

(Defilippi et al, 2004; Szankowski et al, 2003; Markwick et al, 2003).  Transgenic 

apple lines are currently available with resistance to apple scab and fire blight 

(Bolar et al, 2001) and suppressed ethylene and volatile esters in the fruit 

(Defilippi et al, 2004).  A number of research groups have reported success with 

transforming strawberry using Agrobacterium (Folta et al, 2006; Oosumi et al, 

2006; Lunkenbein et al, 2006). To date, there have been no reproducible studies 

reported for peach transformation, although several groups are currently working 

on this problem. 
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Functional genomics can start with the trait or with a candidate sequence, 

but the ultimate goal is to find the specific sequence, discern its expression 

patterns and understand the metabolic roles of the resulting protein.  Generation 

and mapping of ESTs, especially from under-represented species, will continue to 

be an integral part of the functional genomics area.  The EST sets contain 

redundancies that need to be filtered into a more useable unigene set in which 

each gene is, theoretically, represented only once.  The unigenes need to be 

mapped onto the available physical and genetic maps. These new ESTs will help 

researchers to discover and utilize allelic diversity, find single nucleotide 

polymorphisms (SNPs), and develop microarray technology.  Adding QTLs to the 

various genetic maps will also be important. A greater understanding of functional 

genomics in crop species will ultimately lead to better varieties.  

Twenty eight traits of economic importance have been mapped to the 

general Prunus map and tightly linked markers have been identified.  These 

represent excellent candidates for marker assisted selection techniques.  A table 

from Dirlewanger et al., 2004b is reprinted in Table 1.5.  These traits are highly 

representative of many of the qualities important to breeders, growers and 

consumers. 
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Table 1.5: Description of 28 major traits controlling morphological or 
agronomic characters in different Prunus crops that can be located 
on the reference map (From Dirlewanger et al., 2004b) 

 

Characters Species Symbol 

Fruit flesh color (white/yellow) Peach Y 

Sharka resistance Apricot Sharka 

Evergrowing Peach Evg 

Flower color Almond x peach B 

Root-knot nematode resistance Peach Mi 

Shell hardness Almond D 

Broomy (or pillar) growth habitat Peach Br 

Double flower Peach Dl 

Flesh color around the stone Peach Cs 

Anther color (yellow/anthocyanic) Almond x peach Ag 

Polycarpel Peach Pcp 

Flower color Peach Fc 

Blooming time Almond Lb 

Flesh adhesion 
(clingstone/freestone) 

Peach F 

Non-acid fruit Peach D 

Kernel taste (bitter/sweet) Almond Sk 

Skin hariness (nectarine/peach) Peach G 

Leaf shape (narrow/wide) Peach NI 

Plant height (normal/dwarf) Peach Dw 

Male sterility Peach Ps 

Fruit shape (flat/round) Peach S* 

Self-incompatibility Almond S 

Self-incompatibility Apricot S 

Fruit skin color Peach Sc 

Leaf color (red/green) Peach Gr 

Root-knot nematode resistance Myrobalan plum Ma 

Resistance to powdery mildew Peach Sf 

Leaf gland (reniform/globose) Peach E 
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Other Resources 

Although investigations of Rosaceae genetics and genomics are relatively 

new compared with other major crop families, the Rosaceae community is well-

organized with elected steering committees at both the national and international 

level.   The current U.S White paper is designed to integrate research in Rosaceae 

family members and advocate more funding for these important studies. A unified 

community-based approach will hopefully accelerate the discovery process and 

reduce redundancy of effort. 

With expanding sequence resources in models such as apple and peach, 

the application of comparative genomics can be increasingly used to transfer 

information between species in Rosaceae, especially those with fewer sequence 

resources such as cherry, pear, raspberry and rose.  By understanding the level of 

similarity and difference between the various genera and species, researchers can 

assess the usefulness of applying tools from one species to others.  This can help 

eliminate duplication of research effort for each crop of interest, reducing time, 

and costs.  Currently, maps from Prunus show a high degree of co-linearity 

among component species (Dirlewanger et al., 2004b).  A preliminary analysis of 

the apple and Prunus genome demonstrated a high level of synteny between these 

two genomes.  A recent study indicates marker transferability of primers flanking 

coding regions from Fragaria to Prunus and Malus (Sargent et al., 2007). 

The Rosaceae community has a central data repository and online website 

for information exchange and community news, the Genome Database for 

Rosaceae (GDR, Jung et al., 2004).  Funded by the NSF Plant Genome Program 

Award #0320544, GDR was initiated to integrate the available structural and 
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functional genomics data for peach.  The GDR has since expanded its aims to 

incorporate all publicly available genomics data for the family while also 

providing online analysis tools and services (Jung et al, 2004).  Future modules 

that are being developed will include information on genes, alleles, traits, 

segregation data, and germplasm resources.  Long term maintenance and 

enhancement of this resource will be required for efficient data dissemination and 

analysis in the community. 

Expressed Sequence Tags as Research Tools 

Expressed sequence tags (ESTs) are partial sequences of expressed genes 

randomly picked from a cDNA library.  Usually a single-pass read of 

approximately 200 to 600 base pairs is produced from the 3’ and/or the 5’ end of 

the cDNA clone.  Pioneered in 1991 by Adams et al. and utilized extensively in 

the human genome project (Davies, 1993), ESTs have since become an essential 

tool for gene discovery and mapping in many different organisms; they reveal not 

only which genes are being expressed in a tissue but also relative levels of 

expression.  Tissues from different developmental stages or produced from 

different conditions may be compared to determine differential gene expression. 

The production of ESTs (Baxevanis and Ouellette, 2001) begins by 

isolating RNA from the tissue of interest and selecting the mRNA with an 

oligo(dT) primer that recognizes the polyA tails.  These mRNAs are reverse 

transcribed into cDNA and directionally cloned into vectors to make a cDNA 

library.  Individual clones are then picked and sequenced, providing 200 to 600 or 

more high quality bases.  The resulting sequences may contain untranslated 

regions or other undesired sequence artifacts.  Contamination, including vector, 
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mitochondrial, and bacterial sequences, must be trimmed or removed from the set.  

Publicly available ESTs are submitted to one of three international sequence 

databases: GenBank, EMBL, and DDBJ, each of which is updated on a nightly 

basis to ensure uniformity of sequences across all three repositories. 

Researchers can choose to sequence from either the 3’ or the 5’ end of the 

sequence.  The 3’ generally yields part of the polyA tail in the sequence, allowing 

the end of the sequence to be easily identified.  Identifiying the end may enable 

the triplet codon frame to be established and make functional identification 

somewhat easier.  However extra bases or other sequencing errors may still shift 

or interfere with the codon frame. Sequencing from the 5’ end maximizes the 

coding region obtained by not sequencing the polyA tail and following 

untranslated region, but the ends of the sequences will vary.  Sequencing from 

both ends is generally the most useful technique but many researchers choose not 

to incur the extra expense and time investment.  If only one end is sequenced, the 

5’ end is generally preferred for its maximization of coding base pairs. 

There are some drawbacks to using the technique of EST sequencing.  

ESTs are generally produced with a single read of the sequencer, leading to lower 

quality sequence.  The mRNA is also very unstable prior to being reverse 

transcribed into cDNA, and it often undergoes substitutions, insertions, and 

deletions.  It is not uncommon to find chimeras in an EST library where the 5’ 

end and 3’ end are actually different genes joined together.  The sequences must 

be trimmed of low quality bases and screened for obvious problems before a 

sequence analysis can be performed. 
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EST libraries are less likely to contain genes that are very rarely 

transcribed.  To try to maximize the likelihood of sequencing these genes, the 

technique of subtractive hybrization, or normalization, is used (Bonaldo et al, 

1996; Soares et al, 1994).  A pool of RNA is removed from the library of interest 

by letting it hybridize to other RNAs.  These other RNAs can be obtained from a 

seperate sample, thereby reducing commonly expressed genes.  They may be 

taken from a different tissue, leaving only the sequences unique to the original 

library sample. 

An EST is usually compared at the sequence level to known proteins in 

public databanks to identify potential homologs and infer possible function.  The 

Basic Local Alignment Search Tool (BLAST) and the Fast-All (FASTA) are the 

two main sequence programs used for similarity searching (Altschul et al., 1990; 

Pearson and Lipman, 1988).  Significant sequence similarity of an unknown 

sequence to a characterized protein sequence allows researchers to identify genes 

of particular interest and find candidate genes (Hatey et al., 1998).  Disease 

resistance in particular is an example of a trait of interest across multiple species; 

ESTs have helped researchers to find these genes in many species such as 

Arabidopsis thaliana (Meyers et al. 2002), potato (Ronning et al., 2003), rice 

(Jantasuriyarat et al., 2005), soybean (Tian et al., 2004) and many others.  Known 

resistance genes can now be used as databases in the BLAST or FASTA searches 

to reveal other potential resistance genes in uncharacterized ESTs. 

By randomly choosing the cDNA inserts to sequence, the number of 

copies of each gene sequenced can be compared and used to infer relative 
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expression levels for those genes.  By comparing ESTs produced from different 

tissues, different species, or different environmental conditions/stresses important 

gene expression data can be gathered.  The availability of 152,635 ESTs for 

tomato made analysis of library expression levels possible and resulted in the 

identification of transcription factors associated specifically with ripening.  

However, this analysis can be error-prone, and requires careful statistical 

consideration as it relies heavily on the availability of the sequence data (Wang et 

al., 2004). ESTs from normalized libraries should not be used in this type of 

frequency analysis. 

ESTs are also utilized in gene family and gene evolution studies.  

Constructing long sequences from overlapping ESTs of sufficient quality can 

allow homologs to be identified.  The sequences may elucidate paralogs, genes 

separated by a gene duplication event, from orthologs, genes separated by a 

speciation event.  Different copies of genes present in highly similar gene families 

can be compared across taxa and utilized in evolutionary studies (Cooke et al., 

1997; Epple et al., 1997).  Researchers are also beginning to use ESTs from 

divergent plant species to compare rates of evolution for different genes (Van der 

Hoeven et al., 2002).  By noting the number of substitutions in the nucleotide 

sequence, it may be possible to infer evolutionary pressure on each gene in 

question.  Substitution rates and gene family information can also be used to build 

phylogenies and ascertain the evolutionary relationship of plant species.  

Genetic mapping is an important tool for plant genomics that requires the 

generation of molecular markers.  ESTs are a rich resource for simple sequence 



 

 27

repeats (SSRs), also know as microsatellites. These short repetitve sequences are 

useful for comparative mapping because of their high polymorphism and 

transportability.  Candidate SSRs in ESTs are easily located using computer 

algorthims and can then be screened for polymorphism against a DNA panel 

(Cardle et al., 2000; Jung et al., 2005; La Rota et al., 2005).  Single nucleotide 

polymorphisms (SNPs) can also be mined from ESTs (Garg et al., 1999).  These 

markers are highly abundant but require multiple high-copy reads of the same 

mRNA to identify.  Molecular markers derived from ESTs have the advantage of 

being located in a coding region and thus being directly correlated to a specific 

locus in the genome. 

ESTs can be useful in genetic mapping in other ways as well.  They can be 

used to help order the BAC clones on a physical map and then anchor the physical 

map onto the genetic map.  This approach has been used for linkage maps in rice 

and maize (Harushima et al., 1998; Davis et al., 1999) as well as a physical map 

of rice (Kurata et al., 1997).  

Despite the abundance of gene prediction algorithms available, identifying 

coding regions in genomic sequence is still considered an imperfect science at the 

present time.  An increasingly important use of ESTs involves aligning ESTs with 

genomic sequence to help validate predicted open reading frames.  ESTs can 

complement predictive algorithms by revealing alternative splicing and 

transcription start/stop sites. Arabidopsis chromosome 2 (Lin et al, 1999) and 4 

(Mayer et al, 1999) were annotated with ESTs by estimating how often genes 

along each chromosome were being expressed in different tissues. 
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EST Unigenes 

Unigenes strive to define a single sequence for each genomic locus that 

results in an mRNA transcript.  A common method of creating a putative unigene 

for an organism is clustering/assembling ESTs that come from the same 

transcript.  This makes EST resources more useful by reducing their inherent 

redundancy and through aligning sequences to find longer consensus sequences 

increases the probability of finding homolog matches.  As more ESTs are 

sequenced and added to the public domain, the unigene can be refined and 

become more accurate.   

Indexing EST data in this manner has become a major effort for many 

large online databases including NCBI’s UniGene (Pontius et al., 2003; Wheeler 

et al., 2003), the TIGR Gene Index (Quackenbush et al., 2000), the Sequence Tag 

Alignment and Consensus Knowledgebase (STACK) (Christoffels et al., 2001), 

and PlantGDB (Dong et al., 2004).  Each database uses different data sources and 

algorithms.  Unigenes are routinely created for one or multiple cDNA libraries in 

many individual species, for example wheat (Lazo et al., 2004), barley (Michalek 

et al., 2004), and soybean (Tian et al., 2004). 

The results from any clustering algorithm are limited by the sequencing 

and sampling error of the data.  Genes of low copy number are often not found in 

EST libraries and will not be represented in the unigene.  The quality of the data 

can also be an issue; very high error rates will make assembling transcripts much 

more difficult.   

The accuracy of a unigene is also dependent on the bioinformatics 

methods used to perform the clustering.  Two types of error can occur during 
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unigene production, commonly referred to as Type I and Type II errors (Burke et 

al., 1999; Wang et al., 2003).  Type I error refers to ESTs from the same gene 

being falsely separated into two or more clusters or singletons.  Type II error is 

the opposite, when two or more ESTs from different genes are placed in the same 

cluster, also referred to as a contig.  These errors tend to be correlated; reducing 

one will inflate the other (Wang et al., 2003).  Ideally, the assembly algorithm 

should be stringent enough to separate paralogs but also capable of tolerating 

sequencing errors. 

In general, a unigene set can be expected to overestimate the number of 

genes in the EST libraries (Vodkin et al., 2004).  Type I errors occur if two reads 

do not overlap at all or do not overlap enough to be identified as the same read.  

However, Type II errors are also problematic and are characterized by sequences 

identified as the same gene that are actually from different loci in the genome.  

Type II errors occur in most data sets due to the presence of gene families.  Often, 

genes in the same family have regions of very similar sequence, which can lead to 

“over-assembly”. Genomic sequencing in Arabidopsis indicated that 80% of 

proteins are encoded by families (AGI, 2000), making Type II error a potentially 

difficult problem for plant assemblies.  

The CAP3 assembling program is preferred for the creation of a Rosaceae 

unigene because it is efficient, reliable and more stringent than other BLAST-

based approaches.  It was shown by Liang et al., 2000 to be superior to the TIGR 

assembler (Sutton et al., 1995) and Phrap (Ewing and Green, 1998) in its ability to 

distinguish gene family members.  The main stringency parameter of concern for 
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the CAP3 program is the “p” value, the percentage identity in the overlap region 

(Wang et al., 2003).  However, as the quality and quantity of EST data varies 

greatly for each species, it is impossible for the program to perform well with 

default settings every time it is used; often different levels of stringency need to 

be tested to find the optimal parameter settings for a particular data set. 

Research Question 

The Rosaceae family of plants is a biologically diverse group with high 

economical and nutritional value.  Increasing the available genomic and genetic 

resources for this family will ultimately result in better varieties as well as 

increase our overall understanding of the biology and genetics of fruits and trees.  

A large set of ESTs is available for the family and includes multiple species, 

tissues, development stages, and conditions.  These libraries have not been data-

mined to extract the maximum amount of useful information across species and 

genera.  Many of the libraries have been analyzed within the context of the 

species (e.g. Newcombe et al, 2006; Park et al, 2006; Horn et al, 2005) or for 

particular candidate genes (e.g. Lalli et al, 2005; Silva et al, 2005; Beuning et al, 

2004), but a genus-wide or family-wide examination may yield more useful 

information.  The question asked in the course of this research is how 

bioinformatics can be used to analyze EST datasets, yield maximum knowledge 

for each sequence, and further genomic research in the Rosaceae community via 

online resources. 

The research elucidates what genes are being expressed in the species 

analyzed and how we can use these genes for eventual crop improvement.  

Effective dissemination of this data to the community is accomplished through 
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GDR. The EST data and corresponding unigenes can be used for developing 

better genetic maps through marker mining, and the sequences can be used to 

anchor these genes to physical maps.  The unigenes can be used to analyze gene 

families, gene copy numbers, levels of sequence divergence, and evolutionary 

relationships within Rosaceae.  Comparing cDNA libraries can yield interesting 

candidate genes involved in traits of interest to consumers, growers, and 

researchers that may be useful in multiple Rosaceae species. Questions can 

ultimately be answered about the genes being expressed in different tissues and 

stages that impact important agricultural qualities and how these genes are related 

across the family.   
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CHAPTER 2  

SMALL EST LIBRARY ANALYSIS* 

*This work was originally published in BMC Plant Biology: 
Folta KM, Staton M, Stewart PJ, Jung S, Bies DH, Jesdurai C and Main D.  2005.  

Expressed sequence tags (ESTs) and simple sequence repeat markers from 
octoploid strawberry (Fragaria x ananassa).  BMC Plant Biol 5:12. 

 
Background 

Commercial strawberry has a value of 1.4 billion dollars in the United 

States and represents a significant regional crop throughout the world (National 

Agricultural Statistical Services, 2006). Fragaria x ananassa, the commercially 

grown strawberry species, has an octoploid genome.  The potential challenge of 

working with an octoploid species may have lead to limited molecular study and a 

resulting information discrepancy between strawberry and other common fruits.  

In early 2004, only 279 sequences existed in public databanks for octoploid 

strawberry, and only about 200 more for other Fragaria species.  This gene 

deficit for strawberry represents a barrier to meaningful study of functional 

genomics, genetic mechanisms, as well as the molecular-systematic relationships 

between the octoploid strawberry, the Rosaceae, and other species.  Basic 

sequence information would promote the development of transgenic technologies 

that would advance molecular-physiological studies and potentially benefit the 

grower and consumer. 

To remedy this scarcity of sequence data, approximately1800 expressed 

sequence tags (ESTs) were sequenced from a whole-plant cDNA library derived 
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from various tissues of the Strawberry Festival cultivar by Kevin M. Folta of the 

University of Florida.  This cultivar was chosen because of its east-coast and 

west-coast lineage as well as its range of favorable horticultural attributes.  

Strawberry Festival produces large, uniform, firm fruit, and is resistant to Botrytis 

cinera, the causative agent behind gray mold (Chandler et al., 2000).  It is the 

predominant cultivar grown in Florida, and has been well studied in many reports 

of fungicide use, disease resistance, and post-harvest fruit quality. 

Strawberry has significant potential as a research model and tool, and the 

lack of molecular markers for breeding makes sequence examination especially 

timely.  ESTs are a valuable source for microsatellite markers, also known as 

simple sequence repeats (SSRs).  SSRs are useful for plant genetic mapping and 

breeding because of their high reproducibility, multiallelic nature, codominant 

inheritance, and relative abundance (Powell et al., 1996).  Information gained 

from the octoploid Fragaria species will also translate to defining molecular 

markers to facilitate mapping in both the diploid species (e.g. Fragaria vesca) and 

octoploid cultivars.  Numerous researchers have utilized SSRs derived from EST 

sequence information to create or expand genetic map.  This includes such plant 

species as cotton (Park et al, 2005), ryegrass (Favill et al, 2004), and red raspberry 

(Graham et al, 2004), a close relative of strawberry.  

A comprehensive sequence database is the cornerstone of functional 

genomics studies, and this information will aid development of genetic tools in 

Fragaria and in the Rosaceae in general. Examination of expressed gene 

sequence variation in the octoploid may aid in the understanding of polyploidy 
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evolution and the progenitor diploid species contributing the octoploid genome. 

Sequence information constitutes a basis for eventual reverse-genetic and 

activation-tag studies. Both the diploid and octoploid species are excellent 

candidates for such studies as they are efficiently transformed and regenerated 

(Alsheikh et al., 2002; Passey et al., 2003; Rugini and Orlando, 1992), possess a 

diploid genome estimated at 164 Mb (Akiyama et al, 2001), just slightly larger 

than that of Arabidopsis thaliana, and can be rapidly propagated from seed (3-5 

months) or runners (Darrow, 1966). A sampling of the strawberry transcriptome 

facilitates the initiation of such studies. 

In this study over 1300 unique transcripts were assembled from 1,847 

ESTs derived from whole-plant vegetative tissues 24 hours after salicylic acid 

treatment. The cDNA library was prepared from total RNA pooled from roots, 

petioles, stolons, leaves and meristems to generate a diverse set of transcripts with 

limited redundancy.  Multiple analyses, such as developing a unigene set, 

annotation with putative function and identification of SSRs, opens additional 

paths that will speed research into strawberry physiology, evolution, genetics and 

genomics. 

Despite the relatively small size of the EST data set, much useful 

information can be obtained from it.  Many EST libraries of this size are being 

developed within the Rosaceae family as well as other species (Albert et al., 

2005; Guterman et al., 2002; Jung et al., 2004).  A thorough analysis will allow a 

maximum amount of information to be extracted from the sequences.  However, 

no standardized protocol exists for the bioinformatics for small EST libraries.  
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The analysis presented here represents a first step toward a standardized pipeline 

for efficient and comprehensive analysis of small EST datasets. 

Materials and Methods 

Sequence Processing 

A total of 1847 EST clones were sequenced at the University of Florida 

ICBR Core Facility using ET Terminator (Amersham Inc, Schaumburg, IL) from 

the 3’ end.  I processed the sequences using publicly available software 

incorporated in a fully automated in house script (ProcEST.pl).  I converted 

sequence trace files into FASTA formatted sequence and quality score files using 

the PHRED (Ewing et al., 1998) base-calling program. I identified and masked 

vector and host contamination using the sequence comparison program 

CROSS_MATCH (Gordon et al., 1998). Vector trimming excised the longest non 

vector sequence and further trimming removed low quality bases (less than phred 

score 20) at both ends of a read. I discarded sequences if they had greater than 5% 

ambiguous bases, more than 40 PolyA or Poly T bases or less than 100 high 

quality bases (minimum phred score of 20). Using this protocol, 81% of the 

sequences (1505) were considered high quality and submitted to the NCBI public 

EST repository.  To reduce redundancy and increase transcript length I assembled 

the high quality sequences using the contig assembly program CAP3 (Huang and 

Madan, 1999).  I performed various assemblies using different CAP3 parameters 

to identify the build that produced the most effective assembly requiring the least 

manual editing. I selected more stringent parameters (- p 90 -d 60) to prevent over 

assembly and help identify potential paralogs.  I refined the assembly where 

possible using homology to the SWISS-PROT database to indicate contig 
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accuracy.  I determined likely homology by comparing the contigs and clones 

against the SWISS-PROT database (Boeckmann et al., 2003) using the 

FASTX3.4 algorithm with an expectation value cut-off < 1e-6 (Pearson and 

Lipman, 1988).  I deconstructed contigs whose clones showed difference in 

homology and joined contigs with the same sequence similarity matches to other 

contigs using default CAP3 parameters.  I derived the unigene data set by 

combining the contig and singleton data sets. 

Functional Characterization 

I performed functional characterization of the unigene data set that 

consisted of pairwise comparison of both the high quality clones and the contig 

consensus sequences against the NCBI nr (Wheeler et al., 2005), SWISS-PROT 

(Boeckmann et al., 2003), and the Arabidopsis protein (Rhee et al., 2003) 

databases using the FASTX3.4 algorithm (Pearson and Lipman, 1988). The most 

significant matches (EXP < 1e -7 for NCBI nr and EXP <1e-6 for the SWISS-

PROT and Arabidopsis protein searches) for each contig and individual clones in 

the library were recorded.  I further classified the SWISS-PROT matches via the 

Gene Ontology tool (Harris et al., 2004).  

I characterized the unigene sequences by comparison with the GenBank 

Rosaceae EST dataset (225741 as of 022805) and 256 peach mapped ESTs 

(Joobeur et al., 1998), downloaded from GDR. Using the BLASTN algorithm 

(Altschul et al., 1990), sequences with > 85% similarity over an alignment length 

of 100 bp were considered significant matches.  
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Open Reading Frame and Microsatellite Analysis 

Open reading frames (ORFs) were identified in the ESTs using the 

software program FLIP (Bossard, 1997) and the longest ORF was recorded as the 

putative coding region.  Simple Sequence Repeats (SSRs) were identified in the 

unigene data set using a modified version (CUGISSR, Jung et al., 2005) of a perl 

script SSRIT (Temnykh et al., 2001).  I recorded SSRs for the final dataset of 

dimers with at least 5 repeats, trimers with at least 4 repeats, tetramers with at 

least 3 repeats, and pentamers with at least 3 repeats.  Using the FLIP output, 

CUGISSR reports the location of SSRs and primers in the relation to the putative 

coding region. I used Primer3 (Rozen and Skaletsky, 2000) to attempt to generate 

primers for the SSRs using the default software parameters. 

Data Storage and Web Interface 

I uploaded all sequence, assembly, homology, ORF and SSR data as well 

as library, protocol, contact and publication information to the GDR. I developed 

GDR scripts (described in detail in Chapter 4) to allow users to browse, query or 

download all the project data. 

Public Access and Dissemination 

I developed a number of different EST project sections on the GDR 

including the Fragaria EST dataset detailed here.  These web pages are 

extensively linked such that users can easily access data of interest regardless of 

the navigation entry point.  To access the project pages for this EST project, users 

can go to the project page, which can be found by a link in the “projects” drop 

down menu in the top navigation bar.  The resulting project page links this 

project: “Folta - University of Florida” (http://www.bioinfo.wsu.edu/gdr/projects 
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/fragaria/folta/FA_SEa/index.shtml). The sidebar for this project allows the user 

to view the project description, the library details, the processing protocol, a 

report on the successful clones, unigene details, gene homology pages, 

microsatellite analysis, contact information, and associated publication 

information. The cDNA phage library and individual clones generated in this 

study are available upon request from the Folta laboratory.   

 For members of the Rosaceae community who are interested in searching 

the dataset, the EST search page allows users to go directly to the Fragaria page 

(www.bioinfo.wsu.edu/cgi-bin/gdr/newFragariaSearch_ChooseForm.cgi? 

lib_name=FA_SEa).  The ESTs and the unigene can be searched by clone name 

or accession number, by homology, and by features such as presence of a 

microsatellite or component of a contig.  Once an EST or contig has been 

selected, the sidebar allows users to view all information relating to the sequence 

(or consensus sequence), the library details, the assembly information, the open 

reading frame and microsatellites, homology, and for contigs, the component 

ESTs.   

Results 

Sequence Processing 

A total of 1847 ESTs were sequenced, resulting in 1505 high-quality 

trimmed sequences that were submitted to GenBank on August 6, 2004.  Of the 

342 sequences that failed to meet high-quality standards, one failed for having 

more than 5% N’s and 341 failed for having less than 100 high quality bases.  

Representing a success rate of 81.5%, the resulting submitted sequences have an 

average length of 613 bp and an average PHRED value of 35.  PHRED values are 
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a quality score assigned to each base in a sequence and range from 4 to 60 with 

higher values corresponding to higher quality.  These scores are associated with 

error probability based on a logarithmic distribution.  The cut-off of 35 was 

chosen to maximize high quality bases; 35 represents the likelihood of error as 

less than .01%.  The submitted sequences have an average of 478 high quality 

bases per sequence, and an average length of contiguous high quality bases of 

267. 

Functional Characterization 

The primary method of inferring sequence function is to computationally 

examine levels of similarity to experimentally verified proteins or putative 

proteins.  I employed both FASTA and BLAST software to compare the unigene 

developed from the Folta Fragaria EST library against known databases.  In 

order to gain as much information as possible, I chose to use multiple databases 

ranging from verified amino acid sequences to putative nucleotide sequences. 

I used the FASTX3.4 algorithm to compare the unigene sequences against 

three protein databases.  NCBI’s nr database represents the most comprehensive 

protein database available, including all publicly-available putative amino acid 

sequences.  I downloaded the database from NCBI on February 15, 2005, and it 

contained 2,321,663 proteins.  The FASTX algorithm with a cutoff of E < 1e-7 

yielded matches for 1068 of the total unigene set, or 81.9% (Table 2.1).  An E 

value reflects the degree of statistical confidence a researcher may have in a given 

alignment; it incorporates information on the length of the alignment, the percent 

of identity within the alignment and the size of the database.  An E value of less 

than 1e-7 suggests high confidence in the alignment being significant. 



 

 55

I also performed a comparison against SWISS-PROT that yielded a lower 

number of significant matches.  The SWISS-PROT database version 46.0 contains 

172,233 sequences and was downloaded on March 2, 2005.  This database is a 

curated and highly-annotated database, and all the proteins have experimentally 

demonstrated function.  Of the unigenes, 720 (55.2%) had results with a 

significant cut-off value of E < 1e-6 (Table 2.1). 

The third protein database used was the Arabidopsis proteins developed by 

TAIR from the sequenced Arabidopsis genome.  Chosen as the model dicot 

sequenced genome most closely related to strawberry; this database contained 

29,161 proteins and was downloaded on February 28, 2005.  Using an E-value 

cut-off of <1e-6, 1080 unigenes (82.8%) were found to have significant matches 

(Table 2.1). 

Only 194 unigenes (14.9%) were found to have no significant matches to 

any of the three protein databases utilized in the functional characterization.  

These sequences may represent long untranslated regions, structural RNAs, or 

bona fide proteins without characterization in the protein databases used. 

I compared the Fragaria unigenes to publicly-available Rosaceae ESTs in 

order to assess how Fragaria relates to the rest of the Rosaceae family at the gene 

sequence and content levels.  I employed the BLASTN algorithm for the 

nucleotide homology searches.  I downloaded the publicly available Rosaceae 

ESTs on February 28, 2005, including 225,741 ESTs from five different genera 

(Fragaria, Prunus, Rosa, Malus and Pyrus).  Using a stringency requirement of 

greater than or equal to 85% identity over at least 100 base pairs, I found 965 



 

 56

unigenes (74.0%) to have matches (Table 2.1).  Since this dataset is composed of 

public ESTs, it contains a large amount of redundancy.  The majority of public 

ESTs have been sequenced from the 5’ end, so ESTs generated from the 3’ end in 

this case may be less likely to find homologs in a search against public ESTs.  

Still, of the 194 unigenes that did not show significant homology with the protein 

database searches, 64 had homologs represented in the Rosaceae EST set.  This 

leaves 130 transcripts without any functional annotation.  

In a final attempt to characterize the transcripts with no information, the 

130 sequences were run against the InterPro suite of databases using 

InterProScan.  InterPro is a composite database that incorporates information 

from multiple protein family, domain, and functional site databases (Mulder et al, 

2005).  The InterProScan tool searches all of these databases in an attempt to find 

regions of similarity in the query sequence (Quevillon et al, 2005).  The search of 

the 130 Fragaria sequences yielded no functional matches or new information. 

Linkage relationships have been identified for many peach ESTs and have 

facilitated placement on the peach genetic map.  A total of 295 peach ESTs have 

been conclusively anchored to the genetic maps by sharing BACs with genetic 

markers previously used for BAC hybridization (Horn et al, 2005).  Comparison 

of the strawberry unigene to this set of peach ESTs presents a basis for developing 

linkage relationships between the established peach (Dirlewanger et al, 2004a) 

and growing Fragaria linkage maps (Sargent et al, 2004). Of the 1304 unigenes, 

22 had significant (>= 85% identity over at least 100 base pairs) matches to the 

mapped peach ESTs (Table 2.1).  
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Table 2.1:  Sequence similarity search results for the Fragaria unigene 
sequences. 

 

 NCBI’s nr 
SWISS-
PROT 

TAIR’s 
Arabidopsis 

proteins 

Rosaceae 
ESTs 

Mapped 
Peach 
ESTs 

Algorithm FASTX3.4 FASTX3.4 FASTX3.4 BLASTN BLASTN 

Database 
Size 

2,321,556 172,233 29,161 225,741 295 

Number of 
Sequences 

with 
Matches 

1068 720 1080 965 22 

Sequences 
with 

Matches 
81.9% 55.2% 82.8% 74.0% 1.7% 

 
 

Open Reading Frames and Microsatellite Analysis 

I identified simple sequence repeats (SSRs) in the strawberry unigene set.  

206 unigenes were found to contain 241 total SSRs with trinucleotides being the 

most common motif length (Table 2.2).  The motifs found were grouped into 

categories with AG/GA/CT/TC being the most common (Table 2.3).  To examine 

the distribution of SSRs in the putative coding region and the UTR, I detected 

open reading frames in the unigenes using the FLIP program.  FLIP was able to 

identify a potential ORF in 1297 of the 1304 strawberry unigenes (99.5%).  Based 

on the longest predicted ORF for each unigene, 160 (66.4%) of the SSRs are 

located in putative coding regions.  Putative primers were successfully predicted 

by primer3 in a total of 199 SSRs in 171 different unigenes.  140 of these are 

located in ORFs.  
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Table 2.2:  Motif lengths for SSRs with putative primer sequences. 

 

Motif Length In an ORF NOT in an ORF Total 

2 bp 42 23 65 

3 bp 87 16 103 

4 bp 10 15 25 

5 bp 1 5 6 

All 140 59 199 

 

Table 2.3:  Most common motifs for SSRs with putative primer sequences. 

 

Motif Number of Microsatellites 

AT|TA 15 

AG|GA|CT|TC 68 

AC|CA|TG|GT 11 

GC|CG 0 

AAT|ATA|TAA|ATT|TTA|TAT 2 

AAG|AGA|GAA|CTT|TTC|TCT 40 

AAC|ACA|CAA|GTT|TTG|TGT 4 

ATG|TGA|GAT|CAT|ATC|TCA 6 

AGT|GTA|TAG|ACT|CTA|TAC 0 

AGG|GGA|GAG|CCT|CTC|TCC 22 

AGC|GCA|CAG|GCT|CTG|TGC 13 

ACG|CGA|GAC|CGT|GTC|TCG 7 

ACC|CCA|CAC|GGT|GTG|TGG 10 

GGC|GCG|CGG|GCC|CCG|CGC 7 
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Discussion 

Fragaria x ananassa is complex polyploid, with evidence suggesting it 

arose from a spontaneous cross between Fragaria virginiana and Fragaria 

chilioensis.  The genome contains contributions from at least three diploid species 

(Bringhurst, 1990; Senanayake and Bringhurst, 1967). Over the past century 

cultivation of octoploid strawberry has progressed solely on the careful efforts of 

breeders, physiologists and biochemists. This complex genome and coincidental 

difficult genetics has slowed the development of molecular markers and other 

tools that would benefit breeding efforts and understanding of strawberry 

genomics. This project marks a starting point to advance the traditional strawberry 

research avenues using modern molecular tools in structural and functional 

genomics studies.  It demonstrates that computational tools may be used to mine 

diverse types of useful data from a single cDNA library. As these tools become 

available as web-based applications, small-scale sequencing efforts may extract 

valuable information that will shape research questions in under-represented crops 

like strawberry. 

The transcripts characterized from this project will allow development of 

genomics resources for the study of other important physiological responses. A 

subset of these ESTs is shown in Table 2.4, and the full set of homology matches 

leading to the assignment of function can be found in Appendix A. These ESTs 

are relevant to the strawberry industry and may represent important molecular 

tools to researchers. The first set represents a series of ESTs with sequence 

homology to genes associated with the photoperiodic control of flowering. These 

include a close homolog to CONSTANS (CO), a likely transcription factor that 
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induces specific meristem identity genes under the appropriate photoperiod 

(Putterill et al., 1995; Valverde et al., 2004).  A homolog of a critical regulator of 

meristem identity AGL20/SUPPRESSOR OF CO OVEREXPRESSION was also 

identified. This gene encodes a MADS-box transcription factor that likely 

functions downstream of CO in conferring light signals to the promoters of 

meristem identity genes (Onouchi et al., 2000). An EST representing 

VERNALIZATION INSENSITIVE 3 also was identified in this library. VIN3 is a 

protein shown to function downstream of CO in regulating seasonal flowering 

responses (Sung and Amasino, 2004). VIN3 is a chromatin-remodeling protein 

that represses FLC, a protein that negatively-regulates CO function (Michaels and 

Amasino, 2001) allowing the plant to appropriately time flowering relative to 

seasonal chilling. 
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Table 2.4:  Unigenes putatively coding for genes involved in important 
physiological processes. 

 

EST Homolog E Value 

Photoperiodic Control of Flowering Time 

FA_SEa0007C05 B-box, zinc-finger protein CONSTANS 2.40E-21 

FA_SEa0016A05 MADS box protein 
AGL20/SUPPRESSOR OF CONSTANS 

4.90E-15 

FA_SEa0002H08 VIN3 – Vernalization insensitive 3 
protein 

9.80E-34 

Disease Resistance 

FA_SEa0004D05 Disease resistance protein (TIR-NBS-
LRR class) 

2.20E-22 

FA_SEa0006F10 Enhanced Disease Susceptibility protein 
EDS5 

7.10E-58 

FA_SEa0007F04 Plant defensin PDF2.2 3.10E-22 

FA_SEa0010B10 Pathogenesis-related thaumatin (PR5) 2.30E-53 

FA_SEa0014H12 Putative thaumatin (PR5) 2.40E-21 

FA_SEa0015A01 Harpin-induced protein 2.40E-27 

FA_SEa0015D01 NDR1 family protein 7.00E-69 

FA_SEa0017F09 Disease resistance protein (CC-NBS-
LRR class) 

5.40E-29 

FA_SEa0020H01 Harpin-induced protein 2.50E-29 

FA_SEa0010F01 glycosyl hydrolase family 17 p (PR2) 2.60E-12 

FA_SEa0017H06 Osmotin-like protein (PR5) 3.40E-16 

FA_SEa0001D03* Peroxidase PRXR1 (PR9) 8.90E-54 

FA_SEa0019D07 Bet v 1 (PR10) 2.30E-39 

FA_SEa0012C06 Lipid transfer protein LPT4 (PR14) 1.40E-27 

Photomorphogenesis 

FA_SEa0004E09 B-zip transcription factor HY5 4.60E-37 

FA_SEa0001C09* NON-PHOTOTROPIC HYPOCOTYL 3 3.20E-31 

FA_SEa0006H04* Far-red impaired / FAR1 3.30E-29 

 
*SSR detected in this sequence 
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Analysis of this dataset revealed a suite of likely homologs to 

pathogenesis-related (PR) genes, such as thionins, Ndr1, 1-3-glucanase and 

chitinases, and LRR proteins.  The prevalence of this family of proteins was not 

surprising as the plants were treated with salicylic acid 24 h before RNA harvest 

to enrich for PR genes in the library. These genes are of particular interest to plant 

scientists because of their potential to help define the mechanism(s) of disease 

resistance and susceptibility. It is possible that these genes may be especially 

useful targets for antisense or overexpression in unveiling these agriculturally-

important traits, or possibly in the design of transgenic plants with heightened 

resistance to common plant pathogens. All of these facets are important, as 

strawberry cultivation requires copious application of fungicides and/or 

bacteriostatic compounds to ensure proper fruit set. 

The information distilled from all of these analyses can now be used to 

design strawberry-specific probes to assess gene expression patterns and develop 

transgenics to directly test gene function. These important studies are underway 

and will facilitate comparisons between the biological sensory/response 

mechanisms in strawberry to those of model systems.  

The apparent sequence conservation between Fragaria and other 

rosaceous tree crops suggests that cross-species microarray studies may be 

productive within the Rosaceae. This study demonstrates that less than 10% of the 

ESTs are unique to strawberry. This value is likely inflated, as ESTs by nature 

contain variable untranslated regions and other features that may preclude 

efficient identification of homologs. Of the 1305 ESTs, 965 have strong sequence 
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similarity with other Rosaceae ESTs. Those featuring at least 85% homology over 

100 bases have an average identity of 88.6%.  Considering only the best match 

found for each unigene, the rate of similarity between the unigenes and the ESTs 

was 90.7%.  The high degree of similarity may be a useful platform for 

comparisons between molecular-mechanistic differences exhibited between 

diverse species with little sequence variation. Here, the diversity within the 

Rosaceae is likely due to variation in gene expression as well as sequence error.  

EST data and microarray technologies are an ideal platform to study these 

patterns.   

SSRs derived from ESTs provide a basis to assign linkage relationships to 

known gene products and such studies have been initiated in diploid strawberry 

(Sargent et al., 2004). In the EST collection presented here, a number of SSRs are 

present in transcripts correlating to putative allergens, regulators of the circadian 

clock, and general housekeeping genes.  These transcripts can now be readily 

mapped in the diploid using existing populations, and such studies are currently 

underway. Furthermore, specific genes of interest can be studied for variation 

within diploid species or for intron-specific polymorphisms that will allow their 

assignment to the diploid strawberry linkage map.  These studies will ultimately 

facilitate the generation of molecular markers to follow traits/genes of interest in 

the commercial cultivars, adding the resolution of molecular tools to complement 

conventional breeding strategies.   

The general proportions of the different functional groups (Figure 1) 

reflect well the expected state of the mature plant transcriptome as reported in 
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previous studies. Transcripts encoding enzymes associated with the cell cycle, 

cytoskeleton or cell walls are not abundant as mature plants are less reliant on 

processes governing greater cell number or cell size. Approximately half of the 

transcripts associated with photosynthesis are members of the chlorophyll a/b 

binding protein family; the other half typically contains plastid-encoded 

transcripts. As expected, the majority of transcripts detected represent enzymes of 

general metabolism.  

Conclusion 

Although a small EST set, the complete suite of analyses performed 

demonstrates that a finite transcriptome snapshot may provide ample resources to 

seed additional study. Here a relatively small number of ESTs has provided 

sufficient information to engage in further molecular, physiological and genetic 

studies. For instance, the pretreatment with salicylate likely enriched the 

expression of pathogenesis-related transcripts that can now be used to study 

disease progression in specific strawberry cultivars with large variations in 

sensitivity and resistance. Clearly, the development of a comprehensive SSR 

catalog allows characterization of these potential genetic markers in the progeny 

of polymorphic cultivars, in an important crop species virtually devoid of linkage 

associations. Unlike other markers, EST-derived SSRs by definition originate 

from a sequence that is expressed, adding functional resolution to linkage groups 

built on structural polymorphisms. More importantly, the same suite of tools used 

to perform these analyses will be made available through a public interface at the 

GDR, making comparable analyses possible. These applications are an important 

rationale for sequencing and analysis of a limited EST set, as even a small 
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research program may find sufficient resources to initiate molecular-genetic study 

of an under-represented crop species. 
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CHAPTER 3  

ROSACEAE UNIGENE DEVELOPMENT 

Introduction 

An important practical outcome of understanding gene function is 

integration of marker technology into breeding programs to enhance cultivar 

improvement.  Many plants are economically and nutritionally important but are 

still limited by a lack of genetic and genomic information.  This is true of the 

Rosaceae plant family that includes such valuable crops as apple, peach, 

strawberry, pear, almond, rose, blackberry, raspberry and other ornamental 

species.  Much funding at the federal level has been dedicated to model species 

such as Arabidopsis, rice and maize with relatively little resources directed to 

non-model plants such as the Rosaceae.  Research funding for plants such as these 

is, therefore, always at a premium, and researchers can significantly benefit from 

sharing knowledge and resources stemming from closely related species.  It 

benefits the Rosaceae community of researchers to understand the degree of 

sequence conservation across the economically important members of the family 

and to estimate how well molecular tools and information developed in one will 

be useful for others. 

Gene content and gene number are unknown in most plants.  Only three 

high coverage plant genomes are available: Arabidopsis thaliana (Rhee et al., 

2003), Oryza sativa (Itoh et al., 2007), and Poplus trichocarpa (Tuskan et al., 

2006).  However, expressed sequence tags (ESTs) are available for a large 
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number of plant species and facilitate gene discovery and gene sequence 

determination within these species.  As detailed in the introductory chapter, 

considerable resources exist in Rosaceae with respect to ESTs. Large EST 

sequence sets are available for species such as Malus x domestica (cultivated 

apple) and Prunus persica (peach) while other species have relatively small EST 

sets.  Using these resources, I have undertaken the creation of both Rosaceae 

genera and family wide unigenes to evaluate the degree of conservation between 

the species.  The advantages as well as the drawbacks to unigenes are reviewed in 

the first chapter. 

Creation of a unigene that examines the redundancy in EST datasets on a 

genera as well as family level will elucidate some of the overlapping genes and 

allow candidate gene studies to utilize data from closely related species.  The 

ultimate set of genes for these closely related plants are expected to contain 

extensive homology.  Mapping in various Prunus species, including peach, 

almond, apricot, cherry, P. davidiana, P. cerasifera, and P. ferganensis, has led to 

the conclusion that all diploid Prunus species share the same basic genomic 

complement and can be mapped as a single genome (Dirlewanger et al, 2004a).   

While most Prunus species are diploid, apples are allotetraploid.  Using 30 loci 

from the reference Prunus map that have homologs in a saturated apple map, a 

putative high level of synteny and collinearity between the two component apple 

genomes and the Prunus genome was been established (Dirlewanger et al, 

2004b).  An initial investigation into strawberry yielded promising synteny 
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results.  Sargent et al., 2007 demonstrated that twenty primer pairs from Fragaria 

amplified a product of the expected size in Malus and Prunus. 

The Rosaceae family represents many different fruit types such as pomes 

(apples), drupes (peaches), and achenes (strawberries). Comparing the different 

species can allow identification of genes that control different fruit ripening, 

quality, taste, and other traits specific to the individual species.  The species may 

also have different responses to their varying pathogens and stressors that can be 

obtained from the different tissues and stressors unique to each cDNA library. 

The methods of assembling a unigene for an entire family with its inherent 

sequence differences have not been well characterized.  Species-specific unigenes 

have become a resource from large online databases including NCBI’s UniGene 

(Pontius et al., 2003; Wheeler et al., 2003), the TIGR Gene Indices (Quackenbush 

et al., 2000), the Sequence Tag Alignment and Consensus Knowledgebase 

(STACK) (Christoffels et al., 2001), and PlantGDB (Dong et al., 2004).  Each 

database uses different data sources and algorithms.  Unigenes are routinely 

created for one or multiple cDNA libraries in many individual species, for 

example wheat (Lazo et al., 2004), barley (Michalek et al., 2004), and soybean 

(Tian et al., 2004).  Here two different methods will be analyzed and compared.  

The methods will utilize the assembly software CAP3 (Huang and Madan, 1999).   

The final unigene will be a resource for researchers from many species 

and genomic specialties in the family.  The unigene is mined for markers such as 

SSRs and SNPs in order to facilitate genetic and comparative mapping.  

Candidate gene studies and metabolic pathway analysis will be furthered by the 
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functional characterization of the unigenes through comparison to other sequence 

and protein motif databases.  The information and results from the project are 

deployed online for browsing, searching, and downloading by the entire 

community.  Genes of interest from varying species and cDNA libraries are 

highlighted both online and in this chapter. 

Materials and Methods 

Sequence Processing 

I downloaded all the public Rosaceae ESTs from dbEST on June 14, 2006.  

As dbEST has minimal quality curation for submitted sequences, low quality or 

contaminated sequences are routinely found in their datasets (McEntyre and 

Ostell, 2005).  To optimally filter this data set it is beneficial to obtain the original 

sequence trace files and associated quality values from the submitting author.  

The libraries processed through GDR as part of its community service were 

available with quality values, and I contacted a number of other researchers who 

had contributed significant Rosaceae EST data sets to dbEST to request sequence 

and quality files.  For those sequences for which we could not obtain this 

information, I assigned an average default quality value of 15 for each base.   All 

ESTs were screened against NCBI’s UniVec vector sequence database (Kitts et 

al., in preparation) downloaded on June 6, 2006 using the software package 

cross_match (Gordon et al., 1998).  The ESTs were filtered using the BLAST 

algorithm (E cut-off <1e-6) against genera-specific tRNA, rRNA, and snRNA 

sequences downloaded from GenBank.  Sequences downstream of more than 10 

consecutive A’s or T’s were  trimmed as were the quality files to match the 

resulting sequences.  Sequences with less than 100 base pairs were excluded from 



 

 75

further analysis.  I curated the tissue information from each of the 151 cDNA 

libraries to correspond to the most applicable Plant Structure Ontology term (Ilic 

et al., 2006). 

I divided the total trimmed sequences into the five represented genera: 

Malus, Prunus, Fragaria, Rosa, and Pyrus.  As only 330 ESTs were available for 

Pyrus they  wer excluded from further analysis.  The other four genera datasets 

were assembled using CAP3 (Huang and Madan, 1999) with an overlap 

percentage parameter of 90 (-p 90).  The resulting four sets of singlets and contigs 

were again assembled together by CAP3 with -p 90 to produce an overall putative 

Rosaceae family unigene.  For the purpose of comparison, I produced another 

Rosaceae family unigene by directly assembling all the trimmed ESTs at -p 90 

with CAP3.  I chose the “p” parameter value based both on values analyzed by 

Wang et al. (2004) and previous Mainlab experience with EST assembly.  The 

“p” parameter specifies the minimum percent identity of each overlap created by 

the program during alignment. 

Assembly Functional Characterization 

I made a thorough effort to functionally characterize all putative 

transcripts by comparing the unigene consensus sequences to various sequence 

databases.  The BLAST suite of programs (Altschul et al., 1997) was used to 

compare the unigenes to both protein and nucleotide sequence sets with an 

expectation value (E value) cutoff <  1e-6.  The comprehensive protein database 

Uniprot, which includes SWISS-PROT and TrEMBL (Wu et al., 2005), the 

TAIR-predicted Arabidopsis protein set (Rhee et al., 2003), and the JGI-predicted 

Populus protein set (provided by DoE Joint Genome Institute and Poplar Genome 
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Consortium) were utilized for the first round of functional characterization using 

BLASTX.  

The Gene Ontology Consortium provides three ontological sets for gene 

characterization: biological process, cellular component, and molecular function 

(The Gene Ontology Consortium, 2000).  The SWISS-PROT group at EBI 

provides keywords and mappings from these keywords to GO terms 

(http://www.geneontology.org/external2go/spkw2go).  They also created and 

maintain their own smaller subset of the entire GO ontologies, referred to as 

“GOA Slim” (http://www.ebi.ac.uk/GOA/).  Using these mappings, I assigned the 

unigene sequences to the three GOA Slim ontologies based on their best SWISS-

PROT match. 

I attempted to utilize the functional results in verifying the unigene 

assembly.  The ESTs were examined to identify whether the ESTs comprising a 

contig also shared significant sequence similarity to a known protein.  The top ten 

significant results for SWISS-PROT and TrEMBL were recorded for each EST.  

The results for each EST comprising a contig were compared to find matches.  

Contigs ultimately fell into one of four categories: (1) All ESTs share at least one 

sequence similarity match, (2) All ESTs with matches share at least one sequence 

similarity match but some ESTs have no significant matches, (3) No ESTs have 

significant matches, and (4) The ESTs with matches do not share a common 

match. 

I used the Malus x domestica (apple) unigene produced from PlantGDB 

(Dong et al., 2004) as a comparison for our unigene sets.  Using an E value cut-
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off of 1e-9 TBLASTX, a sensitive BLAST program that includes 6-frame 

translation of query and database, was used to find significant matches.  Putative 

unique transcripts from PlantGDB for the twelve most sequenced, most important, 

and evolutionarily diverse sets of plants were used for further comparison.  These 

included Arabidopsis thaliana (thale cress), Glycine max (soybean), Gossypium 

(tree and upland cotton), Hordeum vulgare (barley), Lycopersicon esculentum 

(tomato), Medicago truncatula (barrel medic), Oryza sativa (rice), Pinus taeda 

(loblolly pine), Solanum tuberosum (potato), Triticum aestivum (bread wheat), 

Vitis vinifera (wine grape) and Zea mays (maize or corn).  All of these species 

have more than 200,000 transcripts for assembly, maximizing the number of 

expressed genes represented.  Two other species with smaller EST sets were used 

for comparison to another group of fruit trees: Citrus clementina and Citrus 

sinensis (sweet orange).  Their putative unigene was assembled from 61393 and 

94289 transcripts, respectively. 

Conserved sequence motifs can be used to infer information about a 

coding region even if a known protein does not provide a stringent sequence 

similarity match.  I used the InterPro suite of protein family, domain, and function 

site databases and the corresponding InterProScan tool to analyze the sequences 

in the final Rosaceae unigene.  The following InterPro databases were scanned 

with default parameters: ProDom, TIGRFAMS, TMHMM, PRINTS, PROSITE, 

PIRSF, Gene3d, Pfam, and SMART (Mulder et al., 2007). 

Marker and Oligo Mining 

I mined both SSRs and SNPs from the unigene sets.  The SSRs were 

detected using an in-house pipeline based on a modified version of SSR-IT 
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(Temnykh et al., 2001).  Microsatellites were extracted if they contained 

dinucleotide motifs occurring at least 5 times or trinucleotides 4 times to give an 

overall length of at least 10 base pairs. Tetranucleotide or pentanucleotide were 

flagged at 3 repeats, the minimum to be considered a microsatellite. The 

minimum microsatellite motif repeat frequency parameters were selected based 

on  discussions with researchers who had found polymorphism in cassava at these 

levels (D Main, personal communication). I used the software FLIP (Brossard, 

1997) to predict the open reading frame (ORF) of each unigene and used this 

information to determine whether the microsatellites occur in a coding region or 

an untranslated region (UTR).  For the purposes of marker and oligo mining only, 

unigenes without ORFs were assumed to be coding.  The longest ORF predicted 

was used in the case of sequences with more than one possible ORF.  Primer3 

(Rozen and Skaletsky, 2000) was used to generate primers for the SSRs where 

possible using the default software parameters.   The SNPs were generated with 

the autoSNP (Barker et al., 2003) package using default stringencies for the 

genera unigene contigs. 

Microarray technology has grown to be an essential tool to monitor 

changes in gene expression patterns for different tissues, cultivars, treatments or 

conditions.  The unigenes created can be used to produce the gene target 

sequences for inclusion in a microarray. An example platform might be a 

NimbleGen arrays with direct synthesis of isothermal oligonucleotides on a slide 

of approximately 55-70 bases.  An array such as this could be a standardized 

platform for functional genomics for all researchers within this family.  In an 
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effort to begin this important type of research, we used an algorithm developed in-

house to identify 55-70 bp isothermal oligos from the ORF sequences of the 

unigenes at both the genera and the family level.   

Data Dissemination and Download 

The unigene versions presented in this paper are accessible by direct 

download on the GDR website (http://www.rosaceae.org).  I created 

comprehensive html pages that document the project and include the ability to 

search the public ESTs or the unigenes through name, taxonomy, putative 

markers, or functional characterization results.  I constructed tutorials on 

downloading, browsing, and searching EST and unigene data that can be found at 

www.bioinfo.wsu.edu/gdr/tutorial/index.shtml. 

Results 

EST Collection and Assembly 

A total of 369,106 Rosaceae ESTs were downloaded from NCBI’s dbEST.  

Quality values were available for 196,957 of these ESTs, leaving over 46% to be 

assigned a default quality value.  Filtering and trimming left 359,001 ESTs 

representing 151 cDNA libraries and 17 species (Table 3.1).  Curation of the 

tissues to Plant Structure Ontology was completed, and 20 tissue types were 

represented in the set with only 1.4% unknown.  Malus x domestica is the most 

sequenced species of the set with 68.4% of the total ESTs and fruit tissues clearly 

dominated with 44.1% of the total tissues. 
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Table 3.1: Genus, species, and tissue representation in public Rosaceae ESTs 
after filtering. 

[DM1] 
       

ORGANISM NUMBER %  TISSUE NUMBER % 

Fragaria 18729 5.2   Carpel 47 <0.1 

  x ananassa 5276 1.5   Flower 22829 6.4 

  vesca 13453 3.7   Fruit 31245 8.7 

Malus 250907 69.9   Fruit Endocarp 73633 20.5 

  
hybid 
rootstock 320 0.1   Fruit Epicarp 7543 2.1 

  sieboldii 1126 0.3   
Fruit Epicarp & 
Mesocarp 11822 3.3 

  x domestica 245545 68.4   Fruit Mesocarp 65377 18.2 

  
x domestica 
x sieversii 3916 1.1   Gynoecium 924 0.3 

Prunus 83751 23.3   
Inflorescence 
Meristem 8562 2.4 

  armeniaca 14710 4.1   Leaf 55068 15.3 

  avium 21 <0.1   Petal 5284 1.5 

  

avium x 
cerasus x 
canescens 84 <0.1   Phloem 9240 2.6 

  cerasus 12 <0.1   Receptacle 20 <0.1 

  dulcis 3776 1.1   
Receptacle & 
Achenes 33 <0.1 

  persica 65148 18.1   Root 11167 3.1 

Rosa 5284 1.5   Seed 8169 2.3 

  chinensis 1790 0.5   Shoot 14450 4.0 

  
hybrid 
cultivar 3494 1.0   Unspecified 4906 1.4 

          
Vegetative 
Meristem 32739 9.1 

          Whole Plant 17170 4.8 

          Xylem 4979 1.4 

 

Clustering ESTs into a unigene set reduces their inherent redundancy and 

aligning sequences into longer consensus sequences facilitates more effective 



 

 81

homology identification.  The resulting unigene has contigs, consisting of 

overlapping sequences, and singlets that are low-frequency transcripts or 

otherwise cannot be associated with a contig.  Unigene sets attempt to represent 

each unique gene at a particular loci in a single sequence.  The resulting members 

of the unigene are either a consensus contig sequence based on many transcripts 

of the same gene or a stand alone singlet sequence from a single transcript.  In 

creating the unigenes with CAP3, we chose a high stringency to avoid over-

assembly.  Over-assembly generally results in gene family members or other 

distinct genes being assembled into a single contig.   

The trimmed ESTs were separated and assembled into the 4 genera 

unigenes: Fragaria, Malus, Prunus, and Rosa.  This first level of assembly 

achieved an overall reduction of 66.7% from total ESTs to unigenes (Table 3.2).  

While these four unigenes represent a significant decrease in redundancy, these 

closely related genera are expected to share many genes.  A unigene for the entire 

family would reduce the redundancy further, facilitate comparative genomics 

between family members, and highlight genes that are shared between family 

members.  Two types of unigenes were produced: one with a CAP3 assembly of 

all the Rosaceae ESTs and one with a CAP3 assembly of the genera unigenes 

including contigs and singlets (Table 3.3).   Among other advantages (see 

Discussion), the latter allows a higher degree of compaction. 
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Table 3.2: Genera Unigene Statistics 

 

Genus 
Number of 
Sequences 

Number of 
Singlets 

Number of 
Contigs 

Number of 
Unigenes 

Reduction 
(%) 

Fragaria 18729 7073 2939 10012 46.5 

Malus 250907 58982 23868 82850 67.0 

Prunus 83751 14903 8818 23721 71.7 

Rosa 5284 2258 705 2963 43.9 

Table 3.3: Rosaceae Unigene Statistics 

 

 
 

Number of 
Sequences 

Number of 
Singlets 

Number of 
Contigs 

Number of 
Unigenes 

Reduction  
(%) 

Rosaceae 
without using 
prior genera 

assembly 

359001 120389 27751 148140 58.7 

Rosaceae using 
prior genera 

assembly 
119546* 76573 13764 90337 74.8 

 
* This set consists of the total contigs and singlets from the four genera unigenes. 

 

Despite the effort to assemble transcripts across species and genera, the 

clones tend to cluster within the same organism (Table 3.4).  A total of 11,549 

(83.9%) contigs consist of all ESTs from the same genera.  The theory that 

sequences that match the same protein were not being merged across genera was 

further explored by selecting contigs consisting of all Prunus transcripts and all 

Malus transcripts that matched the same SWISSWISS-PROT protein.  ClustalW 

was then used to perform a multiple sequence alignment on the ESTs underlying 

these contigs.  These alignments confirmed that sequences from Prunus and 
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Malus are diverged and tend to group together, thereby preventing assembly 

across the two genera.  These results are found in Appendix C. 

Table 3.4: The distribution of genera within overall Rosaceae contigs 

 

Contig Description Number of Contigs Frequency (%) 

One Genus Represented 11549 83.9 

    Prunus ONLY 815  

    Malus ONLY 10544  

    Fragaria ONLY 168  

    Rosa ONLY 22  

Two Genera Represented 2132 15.5 

    Malus and Prunus 1431  

Three Genera Represented 78 10.4 

Four Genera Represented 5 <0.1 

 
 

Assembly Functional Characterization 

The unigenes were examined for sequence similarity by BLAST 

comparison to protein sequence databases.  The SWISS-PROT database version 

52 with 260,175 amino acid sequences provides a curated set of proteins with 

high levels of annotation and low levels of redundancy.  The TrEMBL database 

(3,874,166 seqs) is a computer-annotated supplement to SWISS-PROT which 

contains all other publicly available proteins.  These two databases coupled with 

the Arabidopsis proteins from TAIR and the Populus proteins v1.1 from JGI were 

used to putatively identify the function of as many clones and unigenes as 

possible (Table 3.5).   
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Using the best SWISS-PROT match for the Rosaceae unigenes, 31,486 

(34.9%) were assigned to a GO Slim term.  However, not all of these were 

assigned to a GO term in all three ontologies: 17,287 unigenes had biological 

process annotation, 19,017 had cellular component annotation, and 24,628 had 

molecular function annotation.   The GO Slim charts for the molecular function 

ontology and the biological process ontology are displayed with the 

corresponding numbers of Rosaceae unigenes for each term in Tables 3.7 and 3.8, 

respectively. 

The number of ESTs and assemblies available for many plant species 

allows comparative analysis to be performed.  Both the common genes among 

plants as well as their unique or fast-evolving transcripts are of interest to 

researchers.  The PlantGDB comparisons provide illuminating results about the 

relationship between the gene content of the Rosaceae family in comparison to a 

diverse set of other plants.  PlantGDB produces a set of nonredundant Unique 

Transcripts (PUTs) for a variety of different plant species.  Their procedure uses a 

series of clustering steps including pre-clustering and CAP3 assembly with a 

stringent overlap percent (-p 95) as well as Vmatch and PaCE.  The Malus x 

domestica unigene version 154 was compared to our Malus unigene using 

TBLASTX.  Their unigene achieves the same reduction in redundancy of the 

dataset when compared to our Malus unigene (72.0% vs. 71.7%).  Considering 

both sets utilize the same public EST dataset, it is not surprising that 95.9% of our 

unigenes share significant similarity to one of their PUTs.  Our larger combined 

genera dataset included Malus ESTs from species such as sieboldii and hybrid 
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rootstocks, which could have led to our slightly higher number of unigenes.  The 

Prunus and Fragaria unigenes show ~72% sequence similarity to the Malus 

PUTs (Table 3.6).   

 

Table 3.5: Frequency of unigene matches with protein databases using the 
BLASTx algorithm  

 Frequency of Matches (%) 

Database 
Rosaceae 
Unigene 

Malus 
Unigene 

Prunus 
Unigene 

Fragaria 
Unigene 

Rosa 
Unigene 

SWISS-
PROT 40.2 42.5 39.9 45.5 50.3 

TrEMBL 67.1 69.6 67.5 69.9 76.9 

Arabidopsis 
Proteins 

from TAIR 67.6 70.0 67.2 71.3 78.8 

Populus 
Proteins 

v1.1 70.2 72.6 70.1 72.8 81.1 
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Table 3.6: Frequency of unigene matches with PlantGDB databases using the 
tBLASTx algorithm 

 Frequency of Matches (%) 

Database 
Rosaceae 
Unigene 

Malus  
Unigene 

Prunus 
Unigene 

Fragaria 
Unigene 

Rosa    
Unigene 

Malus x domestica PUTs 85.7 95.9 72.2 72.8 81.3 

Medicago truncatula PUTs 62.5 65.1 62.4 67.8 75.6 

Glycine max PUTs 64.4 67.1 64.8 69.3 75.8 

Citrus clementina PUTs 55.4 56.9 53.2 59.3 66.9 

Citrus sinensis PUTs 58.1 60.9 58.7 63.0 70.4 

Gossypium PUTs 64.6 67.4 64.7 68.9 76.1 

Arabidopsis thaliana PUTs 64.4 66.8 64.4 69.5 75.5 

Lycopersicon esculentum 
PUTs 61.3 63.9 61.2 67.3 74.2 

Solanum tuberosum PUTs 62.0 64.6 62.1 67.5 74.1 

Vitis vinifera PUTs 63.2 65.0 63.0 66.6 73.1 

Zea mays PUTs 60.7 62.9 61.1 65.5 71.8 

Triticum aestivum PUTs 59.6 62.1 59.9 64.7 70.8 

Oryza sativa PUTs 62.4 64.5 63.0 67.1 72.7 

Hordeum vulgare PUTs 59.2 61.7 59.3 82.7 70.1 

Pinus taeda PUTs 54.9 56.9 55.3 60.4 66.5 
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Table 3.7: Rosaceae unigenes mapped to the GO Slim biological process 
ontology 

GO Category Rosaceae Unigenes 

 Number 
Frequency 

(%) 

GO:0007275 : development 926 1.0 

      →GO:0030154 : cell differentiation 422 0.5 

GO:0007582 : physiological process 11297 12.5 

      →GO:0008152 : metabolism 7447 8.2 

            →GO:0009056 : catabolism 75 0.1 

            →GO:0043170 : macromolecule metabolism 6145 6.8 

      →GO:0009405 : pathogenesis 16 <0.1 

      →GO:0046903 : secretion 308 0.3 

      →GO:0050875 : cellular physiological process 4084 4.5 

            →GO:0008151 : cell growth and/or maintenance 4084 4.5 

                  →GO:0006810 : transport 4084 4.5 

GO:0009987 : cellular process 10754 11.9 

      →GO:0030154 : cell differentiation 422 0.5 

GO:0050789 : regulation of biological process 2466 2.7 
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Table 3.8: Rosaceae unigenes mapped to the GO Slim molecular function 
ontology 

 

GO Category Rosaceae Unigenes 

 Number 
Frequency 

(%) 

GO:0003774 : motor activity 147 0.2 

GO:0003824 : catalytic activity 15447 17.1 

      →GO:0004386 : helicase activity 493 0.5 

      →GO:0016491 : oxidoreductase activity 3536 3.9 

      →GO:0016740 : transferase activity 5413 6.0 

      →GO:0016787 : hydrolase activity 4575 5.1 

      →GO:0016829 : lyase activity 978 1.1 

      →GO:0016853 : isomerase activity 605 0.7 

      →GO:0016874 : ligase activity 1048 1.2 

GO:0004871 : signal transducer activity 876 1.0 

      →GO:0004872 : receptor activity 807 0.9 

GO:0005198 : structural molecule activity 264 0.3 

GO:0005215 : transporter activity 1129 1.2 

      →GO:0005386 : carrier activity 369 0.4 

      →GO:0015075 : ion transporter activity 383 0.4 

      →GO:0015267 : channel or pore class transporter  212 0.2 

GO:0005488 : binding 15746 17.4 

      →GO:0005515 : protein binding 543 0.6 

GO:0016209 : antioxidant activity 27 <0.1 

GO:0030234 : enzyme regulator activity 172 0.2 

GO:0030528 : transcription regulator activity 14 <0.1 

GO:0045182 : translation regulator activity 507 0.6 
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The procedure to verify the contigs via sequence similarity to a known 

protein showed less than 3% contained conflicting ESTs.  Overall, 59.1% of 

genera contigs and 68.6% of Rosaceae contigs contained members all with 

significant similarity to the same known protein.  Contigs not in these two 

categories were confounded by ESTs without a match to SWISS-PROT or 

TrEMBL proteins (Table 3.9). 

Table 3.9: Verification of contigs through sequence similarity to known 
proteins 

 

 Genera Contigs Rosaceae Contigs 

Total Contigs 36365 13764 

Contigs verified by homology 
for all ESTs 21485 59.1% 9445 68.6% 

Contigs verified by homology 
for all ESTs with results (some 
no Matches) 8947 24.6% 2330 16.9% 

Contigs with no homology 
results for any ESTS 4871 13.4% 1675 12.2% 

Contigs with homology conflicts 
between ESTs 1062 2.9% 304 2.2% 

 
 

Of the 90,337 unigenes 45.8% had at least one identifiable protein motif 

from InterProScan.  The top ten most common motifs for the Rosaceae unigene 

are listed in Table 3.10.  InterProScan results are available with associated GO 

Terms, allowing groups of proteins associated with a certain function to be easily 

examined.  One area of particular interest to many researchers is transcription 

regulation.  Four GO terms (GO:0006355, regulation of transcription, DNA-
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dependent; GO:0045449, regulation of transcription; GO:0003700, transcription 

factor activity; GO:0030528, transcription regulator activity) were used to extract 

the top ten motifs associated with transcription regulation (Table 3.11).  A total of 

1,765 unigenes, about 2.0% of the overall unigene set, were found to be involved 

in transcription regulation.  Ninety seven motifs associated with transcription 

regulation were found in the set at least once. 

Table 3.10: Most common InterProScan motifs in the Rosaceae Unigene 

 

IPR Entry Num of Unigenes Description of motif 

IPR000719 7902 Protein kinase 

IPR001680 6660 WD-40 repeat 

IPR002048 3832 Calcium-binding EF-hand 

IPR001611 3691 Leucine-rich repeat 

IPR002110 2820 Ankyrin 

IPR002885 2815 Pentatricopeptide repeat 

IPR000504 2386 
RNA-binding region RNP-1 (RNA recognition 
motif) 

IPR000626 2219 Ubiquitin 

IPR001841 1879 Zinc finger, RING-type 

IPR000894 1817 
Ribulose bisphosphate carboxylase, small 
chain 
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Table 3.11: Most common transcription regulation associated InterProScan 
motifs in the Rosaceae unigene. 

 

IPR Entry 
Num of 

Unigenes 
Description of motif 

IPR001471 1684 
Pathogenesis-related transcriptional factor and 
ERF 

IPR001356 877 Homeobox 

IPR002100 638 Transcription factor, MADS-box 

IPR012287 456 Homeodomain-related 

IPR001092 427 Basic helix-loop-helix dimerisation region bHLH 

IPR003657 388 DNA-binding WRKY 

IPR004827 369 Basic-leucine zipper (bZIP) transcription factor 

IPR001789 334 Response regulator receiver 

IPR003441 310 No apical meristem (NAM) protein 

IPR001965 296 Zinc finger, PHD-type 

 
 

The Rosaceae and genera unigenes were also compared to PlantGDB 

PUTs from fourteen other species of diverse evolutionary distance from the 

Rosaceae (Figure 3.1).  Counter to the original theory that longer divergence time 

would lead to fewer shared genes, the unigenes show remarkably stable levels of 

sequence similarity across all fourteen species surveyed.  62% of the  Rosaceae 

unigene had a match to the Medicago truncatula PUTs, a species also in the 

eurosids I clade, and 54.9% with Pinus taeda, a much more evolutionarily distant 

gymnosperm (Table 3.7).  Figure 3.2 shows the Rosaceae unigene and the Prunus 

unigene compared to the Malus PUT set and the other 14 PUT sets.  The 

Rosaceae unigene is heavily influenced by Malus ESTs that account for 70% of 

its input sequences.  However, even as a control, the Prunus unigene also shows a 
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very similar number of matches to each plant except Malus.  To Malus, it is more 

similar than to other plants but still less conserved than the Rosaceae unigene. 

 
 

Figure 3.1: Picture adapted from Savolainen et al., 2000, Figure 4 
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Figure 3.2: The percent of unigenes with significant similarity to various plant 
assemblies from PlantGDB.   

I attempted to further characterize the relationship between these plant 

unigene sets by examining the Rosaceae unigenes and how many homologs were 

identifiable in other plants.  The two Citrus unigenes were excluded from this 

analysis.  They have considerably less EST data than the other groups for 

comparison.  Their unigene is likely to be missing more of the genes from the 

genome and would influence the results.  Interestingly, the unigenes tended to 

either match all the other plants in the group or to match none of them (Figure 

3.3).  The same chart was created for the Prunus unigene, and the percentages 

stayed within 1% of agreement with those listed below (data not shown).   
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Figure 3.3: The percentage of Rosaceae unigenes that show sequence similarity 
to other plant unigenes from PlantGDB. 

To examine members of a truly conserved set, I selected all the Rosaceae 

unigenes (total of 90337) with an E value match of less than 1e-50 to a member of 

all twelve other plant unique transcript sets.  The most common SWISS-PROT 

matches from this set were used to infer protein function and are in the Table 

3.12.  These proteins are grouped by their SWISS-PROT name regardless of 

originating species.  In a similar manner to the SWISS-PROT results, subsets of 

unigenes were extracted from the overall InterProScan results to examine further.  

The set of unigenes that stringently matched the twelve other plantGDB sets had a 

match rate of 91.5% with InterPro.  The top ten most common motifs from this set 

are all found in the top 25 most common motifs from the overall unigene (Table 

3.13). 
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Table 3.12: The most common Uniprot matches to Rosaceae unigenes with 
sequence similarity value of  E<1e-50 to 14 other plant species. 

 

Match 
Number of 
Unigenes 

Description 

EF1A 77 Elongation factor 1-alpha (EF-1-alpha) 

UBIQ 64 3-demethylubiquinone-9 3-methyltransferase (EC 2.1.1.64)  

SRK6 55 
Putative serine/threonine-protein kinase receptor [Precursor].  EC 
2.7.11.1.  

BAK1 47 
BRASSINOSTEROID INSENSITIVE 1-associated receptor kinase 1 
[Precursor].  EC 2.7.11.1   

CB21 36 
Chlorophyll a-b binding protein 151, chloroplast [Precursor]. LHCII type 
II CAB-151. LHCP 

DFRA 34 
Dihydroflavonol-4-reductase.  EC 1.1.1.219.  DFR.  Dihydrokaempferol 
4-reductase 

RBS 33 
Ribulose bisphosphate carboxylase small chain, chloroplast 
[Precursor].  EC 4.1.1.39 

G3PC 32 
Glyceraldehyde-3-phosphate dehydrogenase, cytosolic. EC 1.2.1.12.  
GAPC 

PBS1 30 
Serine/threonine-protein kinase PBS1. EC 2.7.11.1.  AvrPphB 
susceptible protein 1 

H3 30 Histone H3. HHT1 

UBC4 28 Ubiquitin-conjugating enzyme E2-21 kDa 1.  EC 6.3.2.19 

TSJT1 28 Stem-specific protein TSJT1 

TT12 28 TRANSPARENT TESTA 12 protein 

ASO 26 L-ascorbate oxidase homolog [Precursor]. EC 1.10.3.3.  Ascorbase. 

CB26 25 Chlorophyll a-b binding protein CP26, chloroplast [Precursor] 

ATG8 21 
Autophagy-related protein 8 [Precursor]. Autophagy-related ubiquitin-
like modifier ATG8. 

PTR2 20 Peptide transporter PTR2.  Histidine-transporting protein 

MYB4 20 Transcription repressor MYB4.  Myb-related protein 4 
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Table 3.13[DM2]: The most common InterPro matches to Rosaceae unigenes 
with sequence similarity of E<1e-50 to 14 other plant species. 

 

IPR Entry 
Number of 

(Conserved) 
Unigenes 

Description of motif 
Rank in 
Overall 
Unigene 

IPR000719 2978 Protein kinase 1 

IPR001680 1520 WD-40 repeat 2 

IPR002048 1306 Calcium-binding EF-hand 3 

IPR000626 1275 Ubiquitin 8 

IPR000608 1246 Ubiquitin-conjugating enzyme, E2 11 

IPR001806 1197 Ras GTPase 17 

IPR000425 1083 Major intrinsic protein 16 

IPR000504 953 
RNA-binding region RNP-1 (RNA 
recognition motif) 7 

IPR002016 801 
Haem peroxidase, 
plant/fungal/bacterial 21 

IPR001245 775 Tyrosine protein kinase 13 

IPR000795 728 Protein synthesis factor, GTP-binding 23 

 
 

Another interesting set of unigenes, those with matches to none of the 

other twelve plants, may represent sequencing errors, unfiltered contamination, or 

Rosaceae-specific genes.  This set comprises of 24181 Rosaceae unigenes, of 

which 1391 are contigs (5.8%).  Because protein to protein sequence comparisons 

are more accurate and likely to detect homology than nucleotide to nucleotide 

comparisons, we examined the matches to the SWISS-PROT and TrEMBL 

databases for this set manually.  Only 862 had matches with less than 279 being 

matches to other plants.  Most of the others were from bacteria or viruses that 

were presumably missed in quality filtering despite scanning with the UniVec 
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database.  The remaining showed very specific categories of genes including 

those shown in Table 3.14. Further information including the matches and E 

values can be found in Appendix B.  This set of unigenes without matches to the 

other 12 plants shows a very low percentage of InterProScan matches (4.8%).  

This is only slightly higher than the percentage with plant SWISS-PROT results 

(3.6%).   The results do not correspond with the top results in the overall unigene; 

only three appear in the top 25 of the overall unigene motifs (Table 3.15).  The set 

of transcriptional regulation associated motifs in the unigenes without matches 

included 27 motifs corresponding to 152 unigenes (Table 3.16). 
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Table 3.14: Categories of Uniprot matches to Rosaceae unigenes that do not 
match other plant transcripts.[DM3] 

 

Gene Category 
Number of 
Rosaceae 
Unigenes 

Malus* Prunus* Fragaria* 
Malus 
and 

Prunus** 

Allergens 6 5 1 0 0 

DNA Binding 18 14 4 0 0 

Nucleic Acid Binding 7 6 1 0 0 

Resistance Proteins 38 35 2 1 0 

Ripening Related 22 14 7 1 0 

Self-Incompatibility 5 3 1 1 0 

Stress Response 26 16 8 2 0 

Transcription Factors 22 16 2 4 0 

Other Transcription/ 
Translation Regulation 5 2 3 0 0 

Transposable Element 
Related 54 33 16 4 1 

* Refers to either singlets of this genus or contigs with all transcripts coming from 
this genus.  **Refers to a contig with member ESTs from both genera. 
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Table 3.15: The most common InterProScan matches to Rosaceae unigenes with 
no sequence similarity to 14 other plant species. 

 

IPR Entry 
Number of 

(Conserved) 
Unigenes 

Description of motif 
Rank in Overall 

Unigene 

IPR010916 88 TonB box, N-terminal 49 

IPR001810 85 Cyclin-like F-box 44 

IPR001878 68 Zinc finger, CCHC-type 27 

IPR002048 55 Calcium-binding EF-hand 3 

IPR000583 54 
Glutamine amidotransferase, 
class-II 112 

IPR013032 53 EGF-like region 71 

IPR007087 50 Zinc finger, C2H2-type 18 

IPR003006 46 
Immunoglobulin/major 
histocompatibility complex 95 

IPR002052 40 
N-6 Adenine-specific DNA 
methylase 175 

IPR000719 32 Protein kinase 1 
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Table 3.16: The most common transcription regulation associated InterProScan 
matches to Rosaceae unigenes with no sequence similarity to 14 
other plant species. 

 

IPR Entry 
Number of 

(Conserved) 
Unigenes 

Description of motif 
Rank in Overall 

Unigene 

IPR003340 20 Transcriptional factor B3 15 

IPR001647 16 Bacterial regulatory protein, TetR 40 

IPR000847 15 Bacterial regulatory protein, LysR 34 

IPR000005 15 Helix-turn-helix, AraC type 30 

IPR003441 10 No apical meristem (NAM) protein 9 

IPR002197 9 Helix-turn-helix, Fis-type 21 

IPR000524 8 
Bacterial regulatory protein GntR, 
HTH 55 

IPR012287 8 Homeodomain-related 4 

IPR001867 6 
Transcriptional regulatory protein, 
C-terminal 49 

IPR000418 6 Ets 37 

 
 

Marker and Oligo Mining 

An abundance of potential SSR markers were discovered in the EST and 

unigene data.  An average of 21% of unigenes yielded a repeat with the Malus 

unigene showing the lowest relative amount (17.8%) and Prunus unigenes having 

the highest (24.8%) (Table 3.17).  More than 33,000 SSRs were mined from 

genera contigs and 27,260 were found in Rosaceae contigs, however, the 

Rosaceae repeats are expected to be represented in the genera datasets.  Around 

80% of the in silico microsatellites yielded putative primers via the Primer3 

package. 
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Table 3.17: SSRs mined from Rosaceae Unigene and Genera Unigene sets 

 

Unigene Set 
Number of 

SSRs 

Frequency 
of SSRs 

with primers 
(%) 

Number of 
SSRs 

outside of 
putative 

ORF 

Number of 
SSRs with 

primers and 
outside 
ORF 

Frequency 
of Unigenes 
with an SSR 

(%) 

Rosaceae  27260 82.7 44.4 33.0 23.9 

Malus  21465 82.4 40.3 29.5 17.8 

Prunus  8320 81.3 49.7 36.8 24.8 

Fragaria  2897 78.4 34.2 21.9 21.4 

Rosa  760 79.7 40.6 66.67 19.5 

 
 

The genera show differing distributions of 2, 3, 4 and 5 base pair motifs 

(Figure 3.4).  The Malus and Prunus unigenes have a higher occurrence of 2 bp 

motifs than 3 bp motifs while Fragaria and Rosa unigenes were the opposite.  All 

are similar in having a higher percentage of 3 base pair motifs within putative 

open reading frames as would be expected to conserve the triplet codon reading 

frame.  The dinucleotide motifs exhibit a marked bias toward AG/GA/CT/TC 

(from 68% in Prunus to 82% in Rosa) and against CG/GC (<1% for all sets) 

(Figure 3.5).  This is expected and has been noted in other studies with apple 

(Newcomb et al, 2006), Prunus species (Jung et al, 2005), and other plants (For 

example, Kumpatla & Mukhopadhyay, 2005).  The other two categories of 

dinucleotides, AT/TA and AC/CA/TG/GT, were more variable in number 

between datasets. 
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Figure 3.4: Motif length and ORF position of in silico mined SSRs. 
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Figure 3.5: Dinucleotide motif frequency in in silico mined SSRs 

SNPs were mined from the genera unigene contigs using autoSNP.  A 

total of 20,244 SNPs were found from 31.5Mb of aligned sequence. The Malus, 

Prunus, and Rosa contigs showed the same frequency of SNPs (.07 per 100 bp) 

and similar frequency of transitions (~45%), transversions (~26%) and indels 

(25%).  Fragaria differed with only .01 SNPs per 100 bp and a far higher 
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percentage of indels (37%). Transitions were more common than transversions or 

indels across all the genera (Table 3.18).  SNPs were not mined from the 

Rosaceae contigs due to the higher than expected sequence divergence. 

Table 3.18: Frequency of in silico mined SNPs across unigenes 

 

Contig Set 
Number  

of           
SNPs 

Number  
of  

Transitions 

Number  
of 

Transversio
ns 

Number  
of  

Indels 

Frequency 
per 100 bp 

Malus  14298 
7060 

(49.4%) 
3836 

(26.8%) 
3402 

(23.8%) 0.07 

Prunus  5284 
2345 

(44.4%) 
1353 

(25.6%) 
1586 

(30.0%) 0.07 

Fragaria  342 132 (38.6%) 83(24.3%) 127 (37.1%) 0.01 

Rosa  320 140 (43.8%) 

85  

(26.6%) 95 (29.7%) 0.07 

 
 

An in-house perl script was used to to select 55-70-mer oligos from the 

Rosaceae unigene that may be used to create a microarray chip.  The script has 

numerous design features that contribute to quality unique oligo selection 

including filtering out matches to non-target sequences and setting ideal oligo 

length, GC content, melting temperature and salt concentration.  For the Rosaceae 

unigene, the script was able to generate 54,750 oligos representing 20,675 of the 

unigene sequences (22.9%). 

Discussion 

EST Collection and Assembly 

Two family-wide unigenes were constructed with CAP3 for comparison; 

one assembly uses all the ESTs, the other uses the contigs and singlets from the 
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previously generated genera unigenes. The latter was ultimately selected as the 

more useful.  By utilizing the previous assemblies, multiple advantages were 

obtained.  First, a higher confidence in the starting sequences is possible.  Many 

miscalled bases of ESTs that have been assembled into contigs will be filtered out 

of the consensus sequence.  Also, allelic variation between cultivars or species 

may be filtered into a single allele, allowing easier assembly between genera.  The 

double-assembly method also results in a higher degree of compaction from ESTs 

to unigenes.  The direct assembly yields 148,140 unigenes (58.7% reduction) 

while using the previous assembly and assembling again results in 90,337 

unigenes (74.8% reduction).  Plants in the same family are expected to share a 

highly similar gene compliment, and fewer unigenes is more likely to reflect the 

true relationship of genes between the Rosaceae.  Finally, the assemblies allow 

researchers to start with a unigene from a genera assembly and find putative 

homologs in other Rosaceae species via the Rosaceae assembly. 

Out of a total 13,764 family contigs, only 5 contigs from the Rosaceae 

unigene include ESTs from all four genera, and only 78 span three genera. This is 

quite unexpected as most genes should be duplicated in all the different species 

analyzed.  Allelic variation and sequence divergence are the expected reasons for 

this.  The stringent level of assembly may not allow as many homologs to be 

identified, but does lend confidence to those that are.  As the EST database grows, 

future versions of this unigene may be able to merge the clones between genera 

more effectively and provide more useful information for comparative genetics.  

The lack of overlap significantly impacts the probability of transferring molecular 
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tools from one genus to another.  Despite the expected gene overlap, it may be 

difficult to detect on a large scale due to higher sequence divergence than 

originally suspected.  

To assess if transcripts matching the same genes are not being assembled I 

found the best Uniprot match for each Rosaceae unigene.  I evaluated how often 

more than one unigene matches the same Uniprot protein.  A total of 41,887 

unigenes had a best match to the Uniprot dataset; 19247 proteins from Uniprot 

were a best match to a Rosacea unigene.  9,680 unigene sequences (10.7%) have a 

unique match while 80,657 unigenes (89.3%) share matches to a set of 9,567 

Uniprot proteins.  These “duplicated” matches range from 2 unigenes matching 

the same protein up to a maximum of 36 unigenes matching one protein.  This 

highlights that many of the unigenes are probably expressing the same protein or 

a protein within the same family but due to sequence divergence they are not 

being assembled into one consensus sequence. 

The ability to accurately assemble transcripts to a defined “set of genes” 

for an organism is known to be quite difficult.  For example, the Arabidopsis 

thaliana PUTs from PlantGDB number 144,280 despite a well-curated set of 

genes from the genomic sequence of about 27,000.  It is nearly impossible to 

adequately filter out all contamination such as untranslated regions and chimeras 

from an EST dataset, thus expanding the number of estimated unigenes.  Low 

quality and short sequences can impact the ability of alignment algorithms to find 

significant overlap between sequences and can lead to further underassembly.  We 
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expect our unigenes to be overestimates of the number of actual genes due to 

these factors. 

Other unigenes for apple sequences have been published in the past.  The 

UniGene pipeline from NCBI uses public ESTs (187969), mRNAs (386) and 

HTCs (9) from Malus x domestica to create clusters of nonredundant putative 

genes.  One of the main requirements for cluster formation is a recognizable 

polyadenylation signal or tail.  This reduces their final set of clusters to 14,626, an 

incomplete, but likely very accurate set for a large sample of genes.  Our unigene 

attempts to be more comprehensive by not requiring 3’ identification and 

publishing a putative consensus sequence.  NCBI unigenes may be more useful 

for researchers that want to examine full-length genes only. 

The HortResearch apple ESTs (151,687) have also been published as a 

unigene produced from the TIGR gene indices clustering tools including CAP3 

(Newcomb et al, 2006).  Their version has fewer contigs and singlets than our 

Malus unigene, uses a slightly higher threshold and achieves slightly more 

reduction.  This can be attributed to our much larger starting dataset (250,907 

ESTs) with more cDNA libraries of diverse tissues and development stages, 

which likely represents a larger pool of genes.  The HortResearch unigene may be 

more useful for examining certain gene families with very similar members of 

more than 95% expected sequence similarity.  Similar to our analysis, they 

performed SSR and SNP mining. 

PlantGDB also produces a set of nonredundant Malus x domestica PUTs 

(PlantGDB-assembled Unique Transcripts).  Their unigene has the advantage of 
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being comparable with numerous other species assembled in the same manner.  It 

has been compared to our Malus assembly above.  Over 96% of our Malus 

unigene has a significantly similar match to their dataset.  The PlantGDB 

transcript set is limited to only Malus x domestica sequences while we utilize the 

small number of transcripts from other Malus species.  This extra data could 

account for the 4% difference in non-matching sequences. 

Assembly Functional Characterization 

The group of Rosaceae unigenes with a match in all 12 other PlantGDB 

sets appears to represent a group of conserved proteins present throughout the 

plant kingdom.  These conserved proteins may be essential to cellular functions 

and therefore unlikely to diverge or be lost over time.  The most common motifs 

found by InterProScan in the overall set of unigenes match the common motifs in 

this set.  This indicates that conserved gene motifs are found in many proteins 

throughout the plant kingdom. 

In contrast to the similarity between the overall unigene and putatively 

conserved genes, the Rosaceae unigenes without matches to other plant sequences 

show fewer common motifs and demonstrate unique categories of gene functions.  

The idea that evolution of species depends on rapid changes in regulatory genes 

instead of the metabolic proteins themselves has been noted in other plants (Frary 

et al., 2000; Wang et al., 1999; Van der Hoeven et al., 2002).  This may account 

for the large number of DNA binding, nucleic acid binding, transcription factors, 

and other transcription/translation regulation genes.  They may have evolved 

significantly enough that direct sequence similarity with another nucleotide 

sequence is too slight to identify, but a protein sequence is more likely to retain 
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enough similarity at the amino acid level to infer homology.   The putative fast-

evolving genes showed no correlation to a particular species or tissue type. 

A subset of the InterProScan results for the set of unigenes with no match 

to the other plants, the Pfam database results, was analyzed manually for 

interesting categories of gene function.  The motifs verify many of the same 

categories found in the SWISS-PROT results.  F-boxes and leucine-rich repeats 

represent the most common motifs from this group with 39 and 26 instances, 

respectively.  Six B3 DNA binding domains indicate transcription factors, and 10 

other motifs were linked to transcription factor activity.  Transposable elements 

were represented by 5 retrotransposon gag protein motifs and 6 zinc knuckles, 

mostly found from retroviral gag proteins.  Four dehydrin matches and two heat 

shock match indicate heat stress response. 

Marker and Oligo Mining 

SSRs mined in silico are valuable markers for mapping with an estimated 

60 to 90% amplification success reported in other studies (Varshney et al., 2005).  

SSRs mined from the untranslated region of an EST are more polymorphic than 

those in a coding region due to lower selection pressure, and may be more likely 

to provide useful markers for mapping. The location of the unigene microsatellites 

in relation to putative open reading frames was assessed using the ORF-finding 

software FLIP.  The percentage of markers outside a coding region varied from a 

low of 34.2% in the Rosa unigene to a high of 49.7% in the Prunus unigene.  

When narrowing down the SSRs to only those outside the putative ORF with 

primer prediction from Primer3, Malus has a set of 6330, Prunus has 3063, 
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Fragaria has 634, Rosa has 164, and the overall Rosaceae overall unigene has 

9,006.  

SSRs are valued in comparative mapping because of their high 

polymorphism, codominance, and high transportability between species.  SSRs 

have been transferred from apple to pear (Pierantoni et al., 2004) and Prunus to 

Malus (Dirlewanger et al., 2004b).  Twenty primer pairs flanking polymorphic 

regions of Fragaria were demonstrated to amplify a product of the expected size 

in Prunus and Malus (Sargent et al., 2007) suggesting SSRs may also be 

transferable between these genomes.  SSRs that occur within an open reading 

frame are less polymorphic and more conserved between species, making them 

especially useful for comparative mapping. As Malus and Prunus have the most 

available sequences, they also share the most contigs.  There are 640 SSRs in the 

overall Rosaceae contigs containing Malus and Prunus ESTs.  These represent a 

starting point of sequences that must be tested in the lab for amplification and 

polymorphism. 

The SSRs reported in the study by Jung et al., 2005 and other studies can 

now be reexamined against this larger dataset.  The Fragaria dataset reported 

earlier contained 1505 of the 18729 ESTs available for this version of the 

Fragaria unigene, however, that library was from an octoploid species while the 

majority of the ESTs reported here are from the diploid Fragaria vesca.  The 

same assembly algorithm and definition of an SSR were used for both.  The 

results from that study seem to match the results of this one quite well.  The 

octoploid set yielded 15.8% of sequences with an SSR as opposed to the 21.4% 
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reported here.  Trinucleotides were the most common in both sets and the percent 

identified as inside a coding region remained virtually identical.  Using the same 

parameters may have caused a strong correlation in the data but it could also 

indicate that a small sample of ESTs can be used to predict overall microsatellite 

trends for the species. 

Jung et al., 2005 examined SSR rates from a putative peach unigene of 

4539 sequences and found only 4% of sequences contained SSRs, but they used a 

more stringent definition of microsatellite that required at least 18 bp.  A similar 

rate was found in their almond unigene of 933 sequences.  Reducing our set of 

SSRs to at least that length leaves 5.6% of sequences with a microsatellite.  

Newcomb et al., 2006 mined a large set of apple ESTs for SSRs using a similar 

definition of an SSR but a nonredundant set.  They found 17.8% of ESTs with a 

putative SNP while we found 17% of our unigenes contained at least one SNP. 

Similarly to the SSRs, the SNPs are a resource that can be utilized for 

mapping.  SNPs were mined from the genera unigene contigs but not the 

Rosaceae unigene due to an expected higher level of sequence divergence and 

lack of transferability across species.  However, SNPs can make an excellent 

marker for fine scale mapping and saturation within a species by developing 

primers that correspond to the differing nucleotide sequence and its surrounding 

sequence or by developing CAPs (Cleaved Amplified Polymorphic Sequence).  

These markers use primers outside the SNP to obtain a PCR product and then 

restriction enzymes are used to find the SNP. 



 

 111

The Fragaria contigs showed much lower levels of polymorphism from 

the SNP analysis.  An estimate of 1 SNP per 100 base pairs in Fragaria differed 

from the 7 per 100 base pairs found in the other three sets of unigenes.  This may 

not be statistically significant as there were fewer contigs to examine as compared 

with the much larger Prunus and Malus contig sets.  Also, the low percentage 

could be due to a higher amount of inbreeding in strawberries when compared to 

the other crops. 

 Microarrays can elucidate the differences in expression levels from 

mRNA samples from a variety of conditions including different tissues, 

development stages, or environmental conditions. This technology has helped 

researchers find genes involved in seed germination (Duque et al., 2003), 

maturing stems (Casu et al., 2004) and leaf senescence (Lin and Wu, 2004).  

Microchips have been used in plants to evaluate transcriptional response to biotic 

(Narusaka et al., 2003; Reymond et al., 2000; Whitham et al., 2004) and abiotic 

(Oztur et al., 2002) stresses.  The citrus family (Forment et al., 2005) and 

Arabidopsis researchers (Horvath et al., 2003) have already proven the usefulness 

of an array that contains sequences from multiple related species.  Also, the rise in 

availability of EST sequences and the complete Arabidopsis and rice genomes 

indicates many coding sequences of plants are highly conserved, especially those 

with core biological functions (Munkvold et al., 2004; Van der Hoeven et al., 

2002).  This assures that not only will the target sequences be useful across 

species, but also that they can be functionally characterized through sequence 

similarity searching. 
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A microarray for the Rosaceae will become a standardized platform for 

functional genomics for all researchers within this family.  The main problems 

with microarray research currently include difficulties with normalization and 

analysis of the data (Quackenbush, 2001) as well as comparing and reproducing 

results from different microarray platforms (Kothapelli et al., 2002).  By 

providing a flexible yet standardized microarray chip for the entire community, 

the results produced should be more comparable and have less overall variation.  

The GDR will be able to provide a repository for the raw data giving researchers 

the option to analyze the data with different statistical techniques and reanalyze 

old data as new software packages and statistics are developed in this growing 

area. 

Conclusion 

Other EST unigenes based on a certain species of the Rosaceae family 

have been created, but the unigene I created investigates the overlap of ESTs 

across the whole Rosaceae family of species.  With many plants of economic 

importance and limited economic funding, it is fitting for genomic researchers to 

investigate the amount of overlap between the species and genera and to estimate 

how molecular tools from one species may be applied to another.  Our unigene 

was not able to assemble transcripts between genera very effectively indicating 

that sequence divergence is an issue that will have to be addressed via better 

bioinformatics assembly methods.  The overall assembly does elucidate many 

useful genomic features such as markers and candidate genes that researchers can 

access online quickly and easily.  Regular updates of this unigene by means of the 

GDR team will continuously improve the information available.  New data will be 
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incorporated into the original sets of sequences and new, more effective 

bioinformatics tools may be added to the processing pipeline.  This is just one of 

the ways that GDR will fulfill its function to add value to the genomic data for 

Rosaceae and disseminate it effectively. 
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CHAPTER 4  

THE GENOME DATABASE FOR ROSACEAE 

Introduction 

The NSF funded the Genome Database for Rosaceae (GDR) in 2003 

through award #0320544.  The GDR was originally focused on peach genomic 

resources but has since grown to incorporate all the public structural and 

functional data for the Rosaceae family (Jung et al., 2004).  The use of a curated 

and integrated relational database of sequence information coupled with an online 

interface is one of the most important genomic tools for researchers focusing on a 

species or a group of species.  This type of website provides researchers with a 

comprehensive view of the data being generated in their area of interest and 

functions as a clearinghouse of news and information.  These sites often have 

important roles in annotation, curation, and permanent data storage.  Scientists 

from all over the world are able to access, analyze, integrate, and apply the data to 

their own research in a timely manner.  The usefulness of this type of database has 

been repeatedly proven in other species.  Examples of effective and fruitful plant 

genomics databases with comparative mapping data include TAIR for 

Arabidopsis (Rhee et al., 2003), the Sol Genomics Network for Solanaceous 

species (Mueller et al., 2005), and Gramene for the grasses (Jaiswal et al., 2006). 

The large amount of data and dispersed worldwide community of 

researchers for Rosaceous species necessitates a properly curated and centralized 

database. The investigators of this project outlined three main goals for the 
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website: (1) to develop an organized and integrated web resource for peach 

genomics data to facilitate gene discovery in other member species by a 

comparative mapping approach, (2) to collect and integrate all Rosaceae 

genomics data, and (3) to develop online tools and resources for the Rosaceae 

community. 

The Rosaceae research community has responded enthusiastically to this 

resource.  Between July 2005 and June 2006 GDR had 262,284 hits by 

researchers from 44 countries.  The community has elected a steering committee 

that published a White Paper outlining the future goals and needs for genomic 

research in this family (US Rosaceae Genomics, Genetics and Breeding 

Consortium, 2006).  This paper calls for “enhanced Rosaceae genomics database 

resources.”  It recognizes the indispensable contribution of the GDR to the 

community and specifically calls for continued funding and expanded resources to 

manage the next wave of microarray and genomic sequence data. 

The GDR currently contains all the publicly available Rosaceae 

sequences.  ESTs are updated nightly from the dbEST at NCBI (McEntyre and 

Ostell, 2005).  Regular annotation of the ESTs includes unigene creation, marker 

mining, and assignment of function through sequence similarity searches.  

Controlled vocabularies such as Gene Ontology (Harris et al., 2004) and Plant 

Structure Ontology (Ilic et al., 2006) are utilized in this process.  Sequenced 

BACs, proteins, and organelle genomes are also available for download.  GDR 

offers free EST library analysis for any researcher in the community and places 
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all results online for searching and downloading.  Libraries analyzed by the GDR 

team currently span almond, peach, strawberry and raspberry. 

GDR houses and maintains extensive mapping resources.  CMap (Fang et 

al., 2003), a comparative map viewer, allows researchers to view numerous 

Rosaceae genetic maps and the peach transcriptome map (Horn et al., 2005).  

CMap includes the ability to display multiple maps simultaneously, to find maps 

with a certain feature or to find the number of contact points or features in 

common between two maps.  Currently 37 maps spanning apple, pear, Prunus, 

almond, apricot, cherry, peach, raspberry, rose and strawberry are available for 

comparison. The genetically anchored peach physical map is available in 

WebFPC or WebChrom.  These software packages are both downloaded from an 

Arizona Institue of Genomics website (http://www.genome.arizona.edu/software/ 

fpc/download_web/) and allow viewing of contig and marker alignments.  The 

TxE genera Prunus map is available as interactive linkage groups with anchored 

BACs and ESTs. 

GDR provides bioinformatic tools for researchers such as dedicated 

sequence similarity servers.  Users can run BLAST (Altschul et al., 1997) or 

FASTA (Pearson and Lipman, 1998) to compare their sequence of interest to 

Rosaceae ESTs, Rosaceae unigenes, the Arabidopsis genome, and other sequence 

datasets.  The downloadable results are accessible via a web page which the user 

is directed to via email on completion of the search.  The results include the name, 

description, and organism of the matching sequence as well as the expectation 

value, the beginning and ending indices of the overlap in the query and the match, 
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and percent identity across the overlap. Where a specific GDR dataset match is 

found, a hyperlink directs the user to all the associated information for that 

sequence in GDR. The database also provides a tool for searching for 

microsatellites within sequences and generating primer pairs for those SSRs.  

Users can assemble groups of sequences using CAP3 (Huang and Madan, 1999).  

All the tools allow the user maximum ability to change default parameters and 

customize their results. 

GDR functions as a central and public communications hub for the 

community, providing mailing lists, message boards, and archives for the 

community and certain subgroups.  Conference announcements, abstracts, and 

reports are also available.  A page is devoted to the elected executive committee 

for the family and provides meeting announcements, minutes and publications.  

Researchers can browse the funding sources for the community and view abstract 

and progress for many projects.  Quarterly newsletters keep members of the 

mailing lists abreast of GDR developments as well as overall community news, 

which can be submitted by any of the component mailing list members.  Relevant 

publications from Pubmed (www.ncbi.nlm.nih.gov/entrez/ 

query.fcgi?DB=pubmed) and Agricola (agricola.nal.usda.gov) are downloaded 

weekly and can be searched or browsed by author, title or keyword. 

Ultimately, the GDR hopes to play an important role in providing added 

value to the Rosaceae genomic data being produced worldwide.  Both automated 

and curated analysis is needed to link the sequence and biological information for 

this family of plants. Improved community integration and communication is 
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central for using Rosaceae synteny relationships to rapidly apply data from each 

species to other members of the family.  This chapter will focus on my 

development of the functional genomics resources within GDR. 

Infrastructure 

The GDR is based upon an underlying relational database implemented 

using the Oracle Database Management System version 9.2.0.  The database 

currently has a total of 57 tables to represent the various types of data in GDR and 

their properties.  I created the tables relevant to the rest of the discussion, some of 

which are briefly outlined in Figure 4.1.  GO term tables and tables not relevant to 

the main functional part of the database have been excluded. 
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Figure 4.1:  GDR Schema – Functional Genomics Tables 
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 I accomplished data processing, annotation, and uploading with scripts 

written in the Perl programming language.  Perl has the advantages of built-in, 

powerful string processing features via regular expressions and a large base of 

bioinformatics source code from the publicly available bioPerl packages.  I 

developed perl code to handle the download of public EST data, automatic 

annotation and subsequent upload to the GDR database and also wrote the 

processing pipelines for EST data and unigenes in Perl.  I  continued this trend 

with web interfaces using Perl code embedded in Common Gateway Interface 

(CGI) scripts.  These scripts can move data between the web server and the 

database, allowing the development of pages to view, query, and download data. 

Navigation 

The homepage for the GDR (Figure 4.2) was designed to allow users to 

easily find the data they are looking for as well as stay abreast of current 

developments in GDR and the community at large.  The main navigation bar with 

drop down menus remains the same throughout all of the GDR pages to enable 

users to move seemlessly between sections of the database.  The main page 

includes points of interest that list updates to the website including new data or 

tools and important community information. 
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Figure 4.2: GDR Home Page 

An important part of the international Rosaceae genomics effort is the 

ongoing development of extensive EST resources from a variety of different 

tissues and species. EST bioinformatics analysis has become a standardized 

process that is offered as a free service to all Rosaceae researchers. Currently, 

25,752 ESTs have been analyzed by GDR and uploaded to GenBank.  I 
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performed the analysis for 11,307 these.  Another 7,085 are in process and 

expected to be publicly available soon.  The full analysis includes trace file 

processing to obtain a high-quality clone library, assembly of the sequences to 

produce longer transcripts and reduce redundancy, and sequence annotation.  The 

BLAST sequence similarity analysis tool (Altschul et al., 1990) is used to assign 

putative function to the ESTs and unigenes by comparison with the SWISS-PROT 

and TrEMBL databases (Wu et al., 2005).  Researchers can also request 

comparison to additional databases such as other Rosaceae EST sequences, 

Arabidopsis proteins, predicted Populus proteins, etc.  These matches are used to 

assign GO terms that facilitate searching sequences by keywords and grouping 

sequences by similar function.  Marker mining is performed that identifies simple 

sequence repeats (SSRs or microsatellites) in all ESTs and unigene contigs.  An 

example of this type of analysis was presented in Chapter 2.  All of this data is 

made available publicly to researchers through the GDR both in html format and 

as downloadable files on a ftp website.  

The cDNA libraries analyzed and publicly submitted by the GDR team 

represent a small portion of the public Rosaceae ESTs available.  I designed a 

script that downloads and enters into the database all publicly available Rosaceae 

ESTs in dbEST on a nightly basis.  I perform annotation of these sequences that is 

similar to the analysis of individual libraries.  This includes genera and family-

wide levels of unigene assembly with CAP3.  Assignment of putative function by 

means of sequence similarity searching is performed and the SWISS-PROT and 

TrEMBL results are available online for viewing and searching.  The assignment 
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of GO terms facilitates keyword searching and allows users to find genes with 

functions or in pathways of interest easily.  The community is interested in 

genetic as well as comparative mapping in all the Rosaceous species.  I mine the 

unigenes and ESTs for microsatellites to promote these mapping projects.  

Putative primers for the microsatellites are extracted from sequences using the 

software Primer3.  The microsatellite files for download include useful 

information for researchers such as optimal marker characteristics and putative 

open reading frame (ORF) location.  The most recent addition to the annotation 

pipelines is mining simple nucleotide polymorphisms (SNPs) from contigs.  This 

will allow researchers to begin finer scale mapping once the reference maps for 

the varying species are saturated with microsatellites.  I have ensured backward 

compatibility for GDR by offering full access to versions 2 and 3 of the unigenes 

as well as downloadable data for version 1.  I created tutorials that are available 

on the website to guide users through accessing and searching all of the EST data 

and bioinformatic features. 

Unigene Project Viewing and Access 

The GDR provides not just access and storage of data but also conducts 

important data analysis.  For expressed sequence tag data reducing redundancy 

and assigning putative function are necessary initial steps to utilize the data in 

further studies.  The first project to be explored is the Rosaceae version 3 unigene.  

The creation and analysis performed for this project are covered in Chapter 3. 

The main data overview page is a convenient place to start for finding and 

viewing EST projects (Figure 4.3).  This page can be reached from the homepage 

by clicking the “GDR Data” link in the “General Info” drop down menu in the top 
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navigation bar.  A chart at the bottom of this page lists the relevant EST data 

projects including libraries with in-house analysis and overall assemblies of 

public data.  The Rosaceae v3 unigene can be reached by clicking on “Rosaceae 

Assembly”. 

 
 

Figure 4.3: GDR Data Overview Page 

The main page of the Rosaceae assembly version 3 project overviews the 

aims and basic results of the project (Figure 4.4).  Users can navigate the rest of 

the project by clicking the links in the grey bar to the right of the main 

description.  This lists the pages of data that can be accessed, including searching 
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the ESTs, library details, protocols and downloads, putative homology, 

microsatellite analysis, contact and publication information, and gene ontology 

(GO) classification.  The genera unigene assemblies are available from the 

original data overview page and also include a page in their sidebar linking to 

SNP analysis.  This is not available for the Rosaceae unigene due to the higher 

amount of sequence divergence.  The pages from each of these links can be found 

in Appendix B.  The content of each page is explained in Table 4.1. 

 
 

Figure 4.4: Rosaceae Unigene Version 3 EST Project Home Page  
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Table 4.1: Overview of Unigene Project Pages 

 

Page Description 

Project Description 
Overviews the main aims and techniques of the project.  The 
chart gives overall statistics. 

Libraries Information 

Includes charts with the number of separate libraries, species, 
tissues, and development stages included in the project as well 
as a list of the number of ESTs in each species.  A link opens a 
separate page with the details of each library individually. 

Protocol & 
Downloads 

Specifies the bioinformatic software applications and methods 
utilized in the project with links to references.  The text is 
followed by links to downloadable files including sequences of 
clones and unigenes, BLAST results, and Excel spreadsheets 
detailing ORFs, SSRs, and primers.  

Homology 

Describes the BLAST searches against the Uniprot databases 
used for functional annotation and links to Excel spreadsheets 
containing this data.  Links also take users to a search page. 

GO Terms 

 An expandable tree is available for each of the three GO term 
ontologies: biological process, cellular component, and 
molecular function.  Clicking on the term will return all the 
unigenes mapped to this term via their SWISS-PROT sequence 
similarity results. 

Microsatellite 
Analysis 

The number of SSRs and motif statistics for the project are 
covered.  Also, links for downloading Excel sheets with ORFs, 
SSRs and primers are available. 

SNP Analysis 

Includes an overview of the SNPs found in the data as well as 
links to contigs with SNPs and a search page where SNPs can 
be selected as a criterion. 

Contact 
Includes name, email and other information for contacting the 
creators of the project. 

Publication Includes the publication information. 

Search Rosaceae 
ESTs 

Links to a search page for clones of Rosaceae species.  This is 
covered in the next section of the chapter. 

Search Rosaceae 
V3 Contigs 

Links to a search page for contigs of Rosaceae species.  This is 
covered in the next section of the chapter. 
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In house EST libraries and resulting assemblies have similar features to 

the larger assemblies of public data.  They contain more processing information 

such as quality values, successful clone reports, and plate reports.  These projects 

can be found on the original Data Overview page and are listed under the 

originating lab and primary investigator.  The home page for the project discussed 

in Chapter 2 can be seen in Figure 4.5. 

 
 

Figure 4.5: Kevin Folta EST Project Home Page 

Searching 

I have developed extensive search pages to allow maximum customization 

of results for researchers.  The EST and unigene gene search page can be accessed 

through the “EST” link under the “Search” menu on the top navigation bar.  The 
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initial page allows searching of all Rosaceae clones and unigenes and links to a 

contig search page (Figure 4.6).  Users can enter the name of the clone either as 

an accession number or the EST name associated with the clone in dbEST.  Users 

can also upload a file of names to be returned.  Features may be used to limit 

searches so that the results returned have SSRs or represent a unigene sequence 

from a particular unigene assembly.  This feature will return the unigene singlets 

and a representative EST from each contig.  To maintain backward compatibility, 

version 2 unigenes from 2005 are available as well as the most recent version 3.  

Users can also link directly to a contig search page.  The search page also allows 

users to limit the search to particular genera or species via the drop down box in 

the “Taxonomy” section.  The “Tissue” section also has a drop down box that lists 

all the tissues assigned from the Plant Ontology terms to the various cDNA 

libraries.  The final “Putative Function” section allows researchers to enter 

descriptions, source organisms, or GO terms relating to a gene of interest.  The 

search will find genes with SWISS-PROT matches to any of these keywords.  All 

of these search features can be combined in any way to produce highly tailored 

results for the user. 
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Figure 4.6: Main Rosaceae EST Search Page 

The results page lists the ESTs as clickable links to more information such 

as sequence, library details, reference and contact information, sequence 

homology, unigene information, SSR and ORF information, and mapping 

information where available (Figure 4.7).  Another link will also use InterProScan 

via web services to return InterProScan results.  Besides clicking on each 

individual clone, the results can be downloaded as a fasta-formatted file or as a 

tab-delimited file with SWISS-PROT homology results. 
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Figure 4.7: Results of EST search 

I created a contig search page that provides a similar set of choices for 

searching with the additional feature of containing a SNP.  The contig viewing 

pages include consensus sequence information, comprising ESTs with library 

information, sequence homology, SSR and ORF information, and autoSNP 

output.  The InterProScan web services feature is also available. 

Conclusions 

The GDR fulfills a specific need for an integrated genomics clearing 

house for the Rosaceae family, which contains numerous species of economic 

importance.  The data includes maps, markers, and publically available sequences 

such as ESTs.  The database and website provide users with access to this data via 

direct download, querying, or browsing.  GDR increases the value of the public 
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data by adding extensive annotation and curation that is tailored directly to the 

interests of the Rosaceae researchers.  Further online tools and community 

resources allow researchers to exchange results and ideas in an internationally 

available forum.  The database is an essential part of the community for Rosaceae 

research and can become ever more important as genomic sequences and 

expression data becomes available. 

 

References 

Altschul SF, Gish W, Miller W, Myers EW, and Lipman DJ.  1990.  Basic local 
alignment search tool. J Mol Biol 215(3):403-410. 

Fang Z, Polacco M, Chen S, Schroeder S, Hancock D, Sanchez H and Coe E.  
2003.  cMap: the comparative genetic map viewer.  Bioinformatics 
19(3):416-7. 

Harris MA, Clark J, Ireland A, Lomax J, Ashburner M, Foulger R, Eilbeck K, 
Lewis S, Marshall B, Mungall C, Richter J, Rubin GM, Blake JA, Bult C, 
Dolan M, Drabkin H, Eppig JT, Hill DP, Ni L, Ringwald M, Balakrishnan 
R, Cherry JM, Christie KR, Costanzo MC, Dwight SS, Engel S, Fisk DG, 
Hirschman JE, Hong EL, Nash RS, Sethuraman A, Theesfeld CL, Botstein 
D, Dolinski K, Feierbach B, Berardini T, Mundodi S, Rhee SY, Apweiler 
R, Barrell D, Camon E, Dimmer E, Lee V, Chisholm R, Gaudet P, Kibbe 
W, Kishore R, Schwarz EM, Sternberg P, Gwinn M, Hannick L, Wortman 
J, Berriman M, Wood V, de la Cruz N, Tonellato P, Jaiswal P, Seigfried T, 
White R; Gene Ontology Consortium.  2004.  The Gene Ontology (GO) 
database and informatics resource. Nucleic Acids Res 32(Database 
issue):D258-261. 

Horn R, Lecouls AC, Callahan A, Dandekar A, Garay L, McCord P, Howad W, 
Chan H, Verde I, Main D, Jung S, Georgi L, Forrest S, Mook J, 
Zhebentyayeva T, Yu Y, Kim HR, Jesudurai C, Sosinski B, Arus P, Baird 
V, Parfitt D, Reighard G, Scorza R, Tomkins J, Wing R and Abbott AG.  
2005. Candidate gene database and transcript map for peach, a model 
species for fruit trees. Theor Appl Genet. 2005 Apr 22; [Epub ahead of 
print] 

Huang X and Madan A.  1999.  CAP3: A DNA sequence assembly program. 
Genome Res. 9(9):868-877. 



 

 137

Ilic K, Kellogg EA, Jaiswal P, Zapata F, Stevens PF, Vincent LP, Avraham S, 
Reiser L, Pujar A, Sachs MM, Whitman NT, McCouch SR, Schaeffer ML, 
Ware DH, Stein LD and Rhee SY.  2006.  Plant Structure Ontology. 
Unified Vocabulary of Anatomy and Morphology of a Flowering Plant.  
Plant Physiol.  Dec 1 [Epub ahead of print]. 

Jaiswal P, Ni J, Yap I, Ware D, Spooner W, Youens-Clark K, Ren L, Liang C, 
Zhao W, Ratnapu K, Faga B, Canaran P, Fogleman M, Hebbard C, 
Avraham S, Schmidt S, Casstevens TM, Buckler ES, Stein L and 
McCouch S. 2006.  Gramene: a bird’s eye view of the cereal genomes.  
Nucleic Acids Res.  34(Database issue):D717-23. 

Jung S, Jesudurai C, Staton M, Du Z, Ficklin S, Cho I, Abbott A, Tomkins J, 
Main D. 2004. GDR (Genome Database for Rosaceae): integrated web 
resources for Rosaceae genomics and genetics research. BMC 

Bioinformatics 5(1):130. 

McEntyre J and Ostell J, eds.  2005.  The NCBI Handbook.  
Bethesday(MD):National Library of Medicine (US), NCBI.   Article : 
GenBank: The Nucleotide Sequence Database by Ilene Mizrachi updated 
July 27th, 2004 

Mueller LA, Solow TH, Taylor N, Skwarecki B, Buels R, Binns J, Lin C, Wright 
MH, Ahrens R, Wang Y, Herbst EV, Keyder ER, Menda N, Zamir D and 
Tanksley SD.  2006. The SOL Genomics Network: a comparative resource 
for Solanaceae biology and beyond.  Plant Physiol.  138(3):1310-7. 

Pearson WR, Lipman DJ. Improved tools for biological sequence comparison. 
Proc Natl Acad Sci U S A. 1988;85:2444–2448. 

Rhee SY, Beavis W, Berardini TZ, Chen G, Dixon D, Doyle A, Garcia-
Hernandez M, Huala E, Lander G, Montoya M, Miller N, Mueller LA, 
Mundodi S, Reiser L, Tacklind J, Weems DC, Wu Y, Xu I, Yoo D, Yoon J 
and Zhang P.  2003.  The Arabidopsis Information Resource (TAIR): a 
model organism database providing a centralized, curated gateway to 
Arabidopsis biology, research materials and community.  Nucleic Acids 

Research 31(1):224 

The U.S. Rosaceae Genomics, Genetics, and Breeding Initiative.  (March 2006).  
Retreived August 23, 2006 from 
http://www.mainlab.clemson.edu/gdr/community/funding/ 

Wu CH, Apweiler R, Bairoch A, Natale DA, Barker WC, Boeckmann B, Ferro S, 
Gasteiger E, Huang H, Lopez R, Magrane M, Martin MJ, Mazumder R, 
O’Donovan C, Redaschi N and Suzek B.  2005.  The Universal Protein 
Resource (UniProt): an expanding universe of protein information.  
Nucleic Acids Res.  34(Database issue):D187-91. 



 

 138
 



 

 

CHAPTER 5  

DISCUSSION AND CONCLUSIONS 

The research presented in this document attempts to explore ways that 

bioinformatics methods have been used to add value to expressed sequence tags 

(ESTs) from the Rosaceae family and how this information can be disseminated 

in a timely, effective and efficient way to the community of genomic researchers.  

The main methods of interest are assembly, marker mining, function 

characterization via sequence similarity searching, and oligo development.  I have 

used these methods on datasets of varying sizes and across many species with 

results that shed light on the genomics of the entire family and plants in general.   

The initial genomic investigation into a species that is not viewed as a 

critical research area by the government is often a small project, especially small 

EST datasets.  With scarce funding researchers may use small sequence samples 

to target their area of interest.  This was true of the Rosaceae family in the years 

1998 to 2003 in which 25,209 ESTs were deposited in Genbank.  Despite their 

focused nature small datasets have extensive information that can be mined with 

comprehensive efforts.  The example of the strawberry library discussed in 

Chapter 2 illustrates this premise.  While the initial impetus for creation of the 

cDNA library was to discover the genes associated with stress, many other types 

of data were discovered from analysis with bioinformatics tools.  Over 290 

potential SSR markers were found to spur physical genomics, and functional 

genomic knowledge was increased with the identification of genes in multiple 
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pathways such as photoperiodic control of flowering time and 

photomorphogenesis. The overall data provided an initial glimpse of the octoploid 

strawberry gene set. 

Over the last few years the prices of sequencing have dropped and the 

funding for the Rosaceae crops has grown.  Gene sequence data is now being 

produced at a rapid rate for many plants including those in the Rosaceae family.  

Since September of 2003 when this research began, the number of ESTs has 

increased by over 1400%, from 25,209 to 380,687.  This data represents an 

extensive sampling of genes from diverse species, tissues, development stages and 

conditions.  However, the public sequence database dbEST does not add value to 

this data through annotation and assembly.  For each researcher to download and 

attempt to assemble and characterize this data would be a major redundancy of 

effort. Thus GDR plays a central role in annotating this data and presenting the 

findings online. Researchers for the Rosaceae can easily see what has been done 

in closely related species, find data that can help accelerate their research or 

justify a grant and find collaborators. 

One of the ultimate outcomes of this research is a software pipeline that 

can be used to regularly analyze and update new sequences.  The creation of 

family wide and genera unigenes can be performed regularly and the data can be 

deployed online in a timely manner.  This continual updating is a necessary 

feature of any sequence database as new information becomes available.  

Sequences previously characterized must also be analyzed continually as protein 
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databases are growing at an ever-increasing rate.  This new protein information 

can provide new annotation for sequences sampled previously.  

A major roadblock to the current EST project is the lack of accuracy in 

algorithms to assemble gene sequences.  The need for assembly programs that are 

both effective and efficient is growing.  CAP3, while the most commonly used 

software for assembly, has limitations.  These are not just due to major sequence 

artifacts but also to an ineffective balance between Type I and Type II errors, 

discussed in the first chapter.  As an example, Arabidopsis thaliana has the most 

extensively annotated genome for plants, resulting in a confident estimate of 

actual gene content of about 25,000.  PlantGDB uses preclustering along with 

CAP3 to assembly the Arabidopsis ESTs, numbering 808,214 in the current 

version.  This large number should preclude major sequencing gaps.  Using a 

preclustering method and CAP3, the plantGDB assembly contains 150,533 

sequences.  This is an overestimate of more than 500%.  This example illustrates 

the need for better and more accurate assembly methods. 

  The advantages of a more sensitive and accurate unigene are numerous.  

Researchers are interested in not only the number genes in an organism but also 

the number of genes in a family and accurately distinguishing paralogs and 

orthologs for evolutionary studies.  With two sequenced and annotated plant 

genomes, another genome (poplar) awaiting annotation and several more 

underway, information is now becoming available to allow us to begin improving 

assembly methods.  It is now possible to take the sequence data, assemble it, and 

compare the results to the annotated genome to find where errors occurred and 
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why.  In this way the assembly programs can be modified to be more accurate or 

new assembly algorithms can be created.   

An increase in the amount of information that can be included in an 

assembly may be necessary to achieve a more powerful result.  The ploidy level 

of a given species can have a large impact on the levels of divergence between 

gene copies and gene family members.  By entering this as a parameter in the 

software, more accurate results could be obtained.  The elucidation of well-

conserved genes in plant genomes may also prove an important source of 

information for better assemblies.  Contigs can be seeded with these known 

protein sequences and motifs to find the correct reading frame and thus increase 

assembly despite sequencing error.  Ultimately, hidden markov models may be 

the most effective statistical algorithms to use.  The ability of Clustal to perform 

multiple sequence alignments is unparalleled but its algorithm is too 

computationally intensive to be used on the massive scale required for EST data. 

However, ever increasing computational power and the availability of grids with 

many processors will reduce the cost of computational power in the same way the 

cost of sequencing has been reduced.  This will open up the possibility of using 

more complex statistical algorithms on a larger scale. 

The key to providing the best set of bioinformatics tools and data to the 

Rosaceae community is not only staying up to date with increases in EST 

sequence data but also anticipating and handling new types of data and new 

software tools.  JGI has announced an 8x sequence of the peach genome and a 4x 

sequence of the apple genome will be available soon from the 
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Istituto Agrario San Michele all'Adige.  A genomic sequence module is needed 

for GDR to house and add value to this dataset.  A centralized repository linked to 

the other community resources will be necessary to link the current genetic and 

physical maps to the genomic sequence.  The genomic sequence can be used to 

refine the Rosaceae unigene much as it has elucidated the genes in Arabidopsis.  

However, the EST data can also be used to improve the annotation of the genomic 

sequence itself by providing evidence of events such as exons being alternatively 

spliced.  

GDR, as a family specific database, can provide resources that focus on 

the specific needs of the community.  As the resources grow so must the 

bioinformatics grow to add value to the sequences that is meaningful and useful to 

researchers.  For example, Rosaceae researchers are interested in specific traits for 

crop improvement such as fruit taste, aroma, softening, and other ripening 

processes as well as both abiotic and biotic stress responses.  One of the goals of 

GDR is to connect the EST data directly to metabolic pathways through sequence 

similarity results and then directly to characteristics of interest.  This would create 

a module that would allow researchers to enter at any point (EST, enzyme, trait) 

and be able to explore the available annotation.  The ESTs or proteins could be 

downloaded by the researcher along with any associated markers and primers.  

This information can feed directly into many scientific studies of interest 

including genetic or transcriptome mapping and marker assisted selection.  

We have already begun development of trait and metabolic pathway 

modules.  Besides flavor and ripening pathways such as ethylene and sugars, 
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other pathways or partial pathways should be included such as resistance and cell 

wall metabolism.  The GDR advisory board, representing a cross section of 

interests across the community, would be a good resource for deciding which 

genes and pathways would be the most important to highlight.  However, some 

manual curation would be involved for this type of module.  

One of the aims of the community of genetics researchers studying the 

Rosaceae family of plants is to further the functional genetics information 

available.  Microarray technology has grown to be popular for this type of study 

within many plant species to monitor changes in gene expression patterns for 

different treatments or conditions. The main problems with microarray research 

currently include difficulties with normalization and analysis of the data as well as 

comparing and reproducing results from different microarray platforms.  The 

GDR will be able to provide a repository for the raw data giving researchers the 

option to analyze and compare data with different techniques and reanalyze old 

data as new software packages and statistics are developed in this growing area. 

Access to the Rosetta Resolver Gene Analysis System via GDR provides 

Rosaceae researchers with a unique opportunity to pertform meta-analyses across 

species and experimental conditions. This preminent array analysis package 

automatically links out to sequence and biochemical pathway databases. 

Bioinformatics is a necessary computational tool for mining useful 

information from biological data and solving biological problems.  The inherent 

complexity of biological data requires wielding software and algorithms in a 

statistically proven way to derive useful information.  As the data increases, the 
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tools used in bioinformatics will need further refinement and new tools will need 

to be developed as well.  The overall challenge is to continue to develop ever 

more sophisticated analysis tools to fully extract maximum knowledge from the 

wealth of genomic data that will increasingly be available as sequencing costs 

significantly reduce.  The bioinformatics outlined in this paper have elucidated 

much useful information about the genomes in the Rosaceae family but further 

refinement is needed.  The introduction of new types of data from the research 

community will need to be analyzed and connected to the current data to provide 

a consolidated, integrated view for the researcher.   
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Appendix A  

Unigenes putatively coding for genes involved in important 
physiological processes 

The evidence for each putative gene assignment is give below.  The database from 

the hit is listed first (NR = NCBI’s nr; TA = TAIR’s Arabidopsis proteins; SP = SWISS-

PROT), then the name of the protein, the protein description, the protein organism, and 

the E value of the match. 

 

FA_Sea0007C05 - B-box, zinc-finger protein CONSTANS 

NR AAC99309.1 CONSTANS-like protein 
Malus x 

domestica 
2.40E-31 

TA At5g24930.1 

zinc finger (B-box type) family 
protein, similar to CONSTANS-
like protein 1 GI:4091804 from 

(Malus x domestica) 

Arabidopsis 
thaliana 

7.30E-21 

SP COL4_ARATH 
Zinc finger protein 

CONSTANS-LIKE 4 
Arabidopsis 

thaliana 
3.60E-20 

 

FA_Sea0016A05 - MADS box protein AGL20/SUPPRESSOR OF CONSTANS 

TA At2g45660.1 MADS-box protein (AGL20) 
Arabidopsis 

thaliana 
1.90E-15 

NR AAO22989.1 
MADS-box transcription 

factor CDM36 

Chrysanthem
um x 

morifolium 

4.90E-15 

SP AGL19_ARATH 
Agamous-like MADS box 

protein AGL19 
Arabidopsis 

thaliana 
1.30E-08 

 

FA_Sea0002H08 - VIN3 – Vernalization insensitive 3 protein 

SP VIN3_ARATH 
VERNALIZATION-

INSENSITIVE protein 3 
Arabidopsis 

thaliana 
1.30E-34 

TA At5g57380 
vernalization insensitive 3 

(VIN3) 
Arabidopsis 

thaliana 
9.80E-34 
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FA_Sea0004D05 - Disease resistance protein (TIR-NBS-LRR class) 

TA At4g16890.1 

disease resistance protein 
(TIR-NBS-LRR class), 

putative, domain signature 
TIR-NBS-LRR exists, 

suggestive of a disease 
resistance protein. 

Arabidopsis 
thaliana 

6.80E-18 

NR AAG48132.1 putative resistance protein Glycine max 2.20E-22 

SP TMVRN_NICGU TMV resistance protein N 
Nicotiana 
glutinosa 
(Tobacco) 

3.10E-21 

 

FA_Sea0006F10 - Enhanced Disease Susceptibility protein EDS5 

TA At2g21340.2 

enhanced disease 
susceptibility protein, 

putative / salicylic acid 
induction deficient protein, 

putative 

Arabidopsis 
thaliana 

7.10E-58 

NR AAL27003.1 
enhanced disease 

susceptibility 5 
Arabidopsis 

thaliana 
7.90E-44 

SP EDS5_ARATH 
Enhanced disease 

susceptibility 5 
Arabidopsis 

thaliana 
6.10E-47 

 

FA_Sea0007F04 - Plant defensin PDF2.2 

TA At2g02100.1 

plant defensin-fusion protein, 
putative (PDF2.2), plant 
defensin protein family 

member 

Arabidopsis 
thaliana 

3.10E-22 

NR CAH58740 Defensin 
Plantago 

major 
4.10E-18 

SP DEF1_CAPAN Defensin J1-1 precursor 
Capsicum 

annuum (Bell 
pepper) 

1.40E-12 
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FA_Sea0010B10 - Pathogenesis-related  thaumatin (PR5) 

TA At1g19320.1 

pathogenesis-related 
thaumatin family protein, 

Pathogenesis-related protein 
5 precursor (PR-5) 

Arabidopsis 
thaliana 

1.20E-21 

NR AAO12209.1 
thaumatin-like cytokinin-

binding protein 
Brassica 
oleracea 

2.30E-53 

SP TLPH_ARATH 
Thaumatin-like protein 

[Precursor] 
Arabidopsis 

thaliana 
1.20E-27 

 

FA_Sea0014H12 - Putative thaumatin (PR5) 

TA At1g18250.1 
thaumatin, putative, identical 

to SP|P50699 Thaumatin-
like protein precursor 

Arabidopsis 
thaliana 

7.10E-16 

NR NP_173261.1 putative thaumatin 
Arabidopsis 

thaliana 
7.20E-20 

SP TLPH_ARATH 
Thaumatin-like protein 

[Precursor] 
Arabidopsis 

thaliana 
2.40E-21 

 

FA_Sea0015A01 - Harpin-induced  protein 

TA At3g11660.1 

harpin-induced family protein 
/ HIN1 family protein / 

harpin-responsive family 
protein 

Arabidopsis 
thaliana 

3.80E-26 

NR AAM67015.1 
putative harpin-induced 

protein 
Arabidopsis 

thaliana 
2.40E-27 

 

FA_Sea0015D01 - NDR1 family protein 

TA At5g11790.1 

Ndr family protein, similar to 
SP|O23969 Pollen specific 
protein SF21 {Helianthus 
annuus}; contains Pfam 

profile PF03096: Ndr family 

Arabidopsis 
thaliana 

7.00E-69 

NR 
NDRG1_HUMA

N 
N-myc downstream 

regulated gene 1 protein 
Homo 

sapiens 
2.30E-17 
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FA_Sea0017F09 - Disease resistance protein (CC-NBS-LRR class) 

TA At5g66910.1 

disease resistance protein 
(CC-NBS-LRR class), 

putative, domain signature 
CC-NBS-LRR exists 

Arabidopsis 
thaliana 

2.10E-23 

NR BAB08633.1 
disease resistance protein-

like 
Arabidopsis 

thaliana 
5.40E-29 

SP DRL43_ARATH 
Probable disease resistance 

protein At5g66910 
Arabidopsis 

thaliana 
3.10E-28 

 

FA_SEa0020H01 - Harpin-induced  protein 

TA At2g35980.1 

harpin-induced family protein 
(YLS9) / HIN1 family protein 

/ identical to cDNA YLS9 
mRNA for hin1 homolog 

GI:13122295 

Arabidopsis 
thaliana 

3.40E-18 

NR BAD22533.1 
harpin inducing protein 1-like 

9 
Nicotiana 
tabacum 

2.50E-29 

 

FA_Sea0010F01 - glycosyl hydrolase family 17 p (PR2)  

TA At3g57270.1 

glycosyl hydrolase family 17 
protein, similar to beta-1,3-

glucanase GI:16903144 
from (Prunus persica) 

Arabidopsis 
thaliana 

2.60E-12 

NR CAB91554.1 beta 1-3 glucanase Vitis vinifera 5.40E-15 

SP E13A_SOYBN 
Glucan endo-1,3-beta-

glucosidase protein 
Glycine max 
(Soybean) 

1.40E-12 

 

FA_Sea0017H06 - Osmotin-like protein (PR5) 

TA At2g28790.1 

osmotin-like protein, 
putative, similar to 

SP|Q41350 Osmotin-like 
protein precursor 

Arabidopsis 
thaliana 

5.00E-13 

NR AAB41124.1 osmotin-like protein 
Lycopersicon 
esculentum 

1.80E-15 

SP OLP1_LYCES 
Osmotin-like protein 

[Precursor] 
Lycopersicon 
esculentum 

3.40E-16 
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FA_SEa0001D03 - Peroxidase PRXR1 (PR9) 

TA At4g21960.1 
peroxidase 42 (PER42) 

(P42) (PRXR1) 
Arabidopsis 

thaliana 
8.20E-51 

NR CAB79151.1 peroxidase prxr1 
Arabidopsis 

thaliana 
2.50E-53 

SP PER42-ARATH Peroxidase 42 [Precursor] 
Arabidopsis 

thaliana 
8.90E-54 

 

FA_SEa0019D07 - Bet v 1 (PR10) 

TA At1g24020.1 

Bet v I allergen family 
protein, contains Pfam 

profile PF00407: 
Pathogenesis-related protein 

Bet v I family 

Arabidopsis 
thaliana 

2.10E-35 

NR AAM65899.1 pollen allergen-like protein 
Arabidopsis 

thaliana 
2.30E-39 

 

FA_SEa0012C06 - Lipid transfer protein LPT4 (PR14) 

TA At5g59310.1 

lipid transfer protein 4 
(LTP4), identical to lipid 
transfer protein 4 from 
Arabidopsis thaliana 

Arabidopsis 
thaliana 

1.70E-19 

NR CAA65477.1 lipid transfer protein Prunus dulcis 1.90E-25 

SP NLTP3_PRUDU 
Nonspecific lipid-transfer 

protein 3 [Precursor] 
Prunus dulcis 1.40E-27 

 

FA_Sea0004E09 - B-zip transcription factor HY5 

TA At5g11260.1 
bZIP protein HY5 (HY5), 
identical to HY5 protein 

GI:2251085 

Arabidopsis 
thaliana 

4.60E-37 

NR BAC20320.1 bZIP with a Ring-finger motif 

Lotus 
corniculatus 

var. 
japonicus 

2.00E-31 
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FA_Sea0001C09 - NON-PHOTOTROPIC HYPOCOTYL 3 

TA At1g67900.2 

phototropic-responsive 
NPH3 family protein, 
contains NPH3 family 

domain, Pfam:PF03000 

Arabidopsis 
thaliana 

3.20E-31 

NR AAP68226.1 At1g67900 
Arabidopsis 

thaliana 
9.00E-28 

 

FA_SEa0006H04 - Far-red impaired / FAR1 

TA At4g12850.1 

far-red impaired responsive 
family protein; contains Pfam 

profile PF03101: FAR1 
family 

Arabidopsis 
thaliana 

3.30E-29 

NR AAS88777.1 At4g12850 
Arabidopsis 

thaliana 
9.30E-27 
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Appendix B  

Putative Unique Rosaceae Unigenes 

We analyzed a dataset of rosaceae unigenes without matches to twelve 

sets of plantGDB transcripts. This set, putatively representing Rosaceae-specific 

transcripts, numbers 24181.  We examined this set for significant matches to the 

SWISS-PROT and TrEMBL databases to attempt to infer homology.  BLAST 

with a cut-off of E<1e-9 results were considered.  Only 862 unigenes had matches 

and 279 match other plants.  Most of the others were from bacteria or viruses that 

were presumably missed in quality filtering.  The rest showed very specific 

categories of genes including those shown in the following table.  Many of these 

categories are known to be faster evolving than other sets of genes. 

 

ALLERGENS 

Unigene 
Name 

SWISS-
PROT 
Match 

SWISS-PROT Description Organism E Value 

Contig7345 
NLTP_ 
MALDO 

Nonspecific lipid-transfer protein 
precursor (LTP) (Allergen Mal d 3) 

Malus 
domestica 

1.00E-20 

Malus_ 
AT000341 

Q5J026_ 
MALDO 

Lipid transfer protein precursor 
(Major allergen and lipid transfer 

protein Mal d 3) 

Malus 
domestica 

4.00E-15 

Malus_ 
AT000352 

Q5J026_ 
MALDO 

Lipid transfer protein precursor 
(Major allergen and lipid transfer 

protein Mal d 3) 

Malus 
domestica 

1.00E-14 

Malus_ 
CV082042 

Q5VJR1_ 
MALDO 

Mal d 1-like (Major allergen Mal d 
1.03E) 

Malus 
domestica 

3.00E-11 

Malus_ 
CV997766 

MAL11_ 
MALDO 

Major allergen Mal d 1 (Mal d I) 
Malus 

domestica 
4.00E-14 

Prunus_ 
DY635989 

Q2I6V8_ 
PRUPE 

Major allergen Pru p 1 
Prunus 
persica 

3.00E-11 
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DNA BINDING 

Unigene 
Name 

SWISS-
PROT 
Match 

SWISS-PROT Description Organism E Value 

Malus_ 
Contig13125 

NAC67_O
RYSA 

NAC domain-containing protein 67 
(ONAC067) 

Oryza sativa 8.00E-11 

Prunus_ 
DW343405 

Q6K777_
ORYSA 

Putative DNA polymerase epsilon 
catalytic subunit protein isoform b 

Oryza sativa 2.00E-21 

Prunus_ 
DW343875 

Q1RZ64_
MEDTR 

DNA-directed DNA polymerase B 
Medicago 
truncatula 

4.00E-13 

Prunus_ 
DW346806 

Q8HD74_
BRANA 

Orf6 protein 
Brassica 

napus 
9.00E-12 

Prunus_ 
DY654082 

Q9LM82_
ARATH 

F2D10.21 
Arabidopsis 

thaliana 
1.00E-12 

Contig10503 
Q6Z4I5_ 
ORYSA 

DNA binding protein-like Oryza sativa 4.00E-09 

Contig2568 
Q7XU13_
ORYSA 

OSJNBa0091D06.8 protein Oryza sativa 1.00E-08 

Contig7085 
NAC61_ 
ARATH 

Putative NAC domain-containing 
protein 61 (ANAC061) 

Arabidopsis 
thaliana 

6.00E-08 

Contig7460 
Q7XU13_
ORYSA 

OSJNBa0091D06.8 protein Oryza sativa 1.00E-07 

Malus_ 
CN872432 

Q7XU13_
ORYSA 

OSJNBa0091D06.8 protein Oryza sativa 2.00E-13 

Malus_ 
CN909378 

Q1SEE1_
MEDTR 

Integrase, catalytic region; Zinc 
finger, CCHC-type; Peptidase 

aspartic, catalytic 

Medicago 
truncatula 

2.00E-14 

Malus_ 
CN922172 

Q4ABN6_
BRARP 

01P13-1 
Brassica 

rapa subsp. 
pekinensis 

2.00E-15 

Malus_ 
CN924648 

Q1SJP8_
MEDTR 

D-galactoside/L-rhamnose binding 
SUEL lectin; Integrase, catalytic 
region; Galactose-binding like; 
Peptidase aspartic, catalytic 

Medicago 
truncatula 

9.00E-10 

Malus_ 
CN948632 

Q4ABX5_
BRARP 

4D11_12 
Brassica 

rapa subsp. 
pekinensis 

2.00E-10 

Malus_ 
CO903900 

Q5DW96_
PRUYE 

Plastid DNA-binding protein 
(Fragment) 

Prunus 
yedoensis 

7.00E-55 

Malus_ 
EB125280 

Q2HVX8_
MEDTR 

Helix-loop-helix DNA-binding 
Medicago 
truncatula 

2.00E-12 

Malus_ 
EB147616 

Q1SP86_
MEDTR 

Helix-loop-helix DNA-binding 
Medicago 
truncatula 

2.00E-10 

Malus_ 
CN870361 

KNAP2_ 
MALDO 

Homeobox protein knotted-1-like 2 
(KNAP2) 

Malus 
domestica 

3.00E-11 
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NUCLEIC ACID BINDING 

Unigene 
Name 

SWISS-
PROT 
Match 

SWISS-PROT Description Organism E Value 

Contig9890 
Q9LTU1_
ARATH 

Replication protein A1-like 
Arabidopsis 

thaliana 
4.00E-09 

Malus_ 
CN911169 

Q1RZD5_
MEDTR 

Zinc finger, C2H2-type 
Medicago 
truncatula 

6.00E-21 

Malus_ 
CN928149 

Q9LIR7_ 
ARATH 

Arabidopsis thaliana genomic 
DNA, chromosome 3, BAC 

clone:F14O13 

Arabidopsis 
thaliana 

1.00E-11 

Malus_ 
CN941602 

Q1S3P4_
MEDTR 

Zinc finger, CCCH-type 
Medicago 
truncatula 

5.00E-11 

Malus_ 
CN869844 

Q9LN78_
ARATH 

T12C24.22 
Arabidopsis 

thaliana 
5.00E-10 

Malus_ 
CN889149 

Q9FNQ1_
ARATH 

RNA helicase 
Arabidopsis 

thaliana 
5.00E-59 

Prunus_ 
BU043054 

Q9LQE5_
ARATH 

F15O4.40 
Arabidopsis 

thaliana 
5.00E-14 

 

RESISTANCE 

Unigene 
Name 

SWISS-
PROT 
Match 

SWISS-PROT Description Organism E Value 

Contig10855 
Q6URA2_ 

9ROSA 
TIR-NBS-LRR type R protein 7 Rosales 3.00E-11 

Contig12209 
Q1SGR7_
MEDTR 

TIR; Disease resistance protein; 
AAA ATPase 

Medicago 
truncatula 

1.00E-07 

Contig417 
Q6URA2_ 

9ROSA 
TIR-NBS-LRR type R protein 7 Rosales 2.00E-57 

Contig7471 
Q6URA1_ 

9ROSA 
Putative TIR-NBS type R protein 4 Rosales 8.00E-11 

Contig7540 
Q6URA2_ 

9ROSA 
TIR-NBS-LRR type R protein 7 Rosales 4.00E-23 

Contig7631 
Q9SHI3_ 
ARATH 

Similar to disease resistance 
proteins 

Arabidopsis 
thaliana 

1.00E-08 

Contig8995 
Q19PN0_ 
POPTR 

TIR-NBS-LRR-TIR type disease 
resistance protein (Fragment) 

Populus 
trichocarpa 

6.00E-12 

Fragaria_ 
DY668873 

Q9FKE5_ 
ARATH 

Disease resistance protein RPS4 
Arabidopsis 

thaliana 
5.00E-12 

Malus_ 
CN491689 

Q6URA2_ 
9ROSA 

TIR-NBS-LRR type R protein 7 Rosales 4.00E-11 

Malus_ 
CN493446 

Q6QT45_ 
QUESU 

Resistance protein (Fragment) 
Quercus 

suber 
2.00E-15 

Malus_ 
CN495384 

Q6URA2_ 
9ROSA 

TIR-NBS-LRR type R protein 7 Rosales 7.00E-52 
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RESISTANCE (Continued) 

Unigene 
Name 

SWISS-
PROT 
Match 

SWISS-PROT Description Organism E Value 

Malus_ 
CN909990 

Q69L15_ 
ORYSA 

Putative Avr9/Cf-9 rapidly elicited 
protein 141 

Oryza sativa 1.00E-12 

Malus_ 
CN918149 

Q2L361_ 
MALDO 

Putative CC-NBS-LRR resistance 
protein 

Malus 
domestica 

3.00E-16 

Malus_ 
CN996310 

Q6URA2_ 
9ROSA 

TIR-NBS-LRR type R protein 7 Rosales 4.00E-30 

Malus_ 
CN996566 

Q6URA2_ 
9ROSA 

TIR-NBS-LRR type R protein 7 Rosales 6.00E-17 

Malus_ 
CO754758 

Q2L359_ 
MALDO 

Putative CC-NBS-LRR resistance 
protein 

Malus 
domestica 

2.00E-29 

Malus_ 
CO867486 

Q2L361_ 
MALDO 

Putative CC-NBS-LRR resistance 
protein 

Malus 
domestica 

5.00E-21 

Malus_ 
Contig12623 

Q6URA2_ 
9ROSA 

TIR-NBS-LRR type R protein 7 Rosales 4.00E-41 

Malus_ 
Contig14559 

Q6URA2_ 
9ROSA 

TIR-NBS-LRR type R protein 7 Rosales 1.00E-61 

Malus_ 
Contig14645 

Q6URA2_ 
9ROSA 

TIR-NBS-LRR type R protein 7 Rosales 2.00E-10 

Malus_ 
Contig15163 

Q2L360_ 
MALDO 

Putative CC-NBS-LRR resistance 
protein 

Malus 
domestica 

5.00E-23 

Malus_ 
Contig18684 

Q6URA2_ 
9ROSA 

TIR-NBS-LRR type R protein 7 Rosales 8.00E-11 

Malus_ 
Contig23745 

Q2L361_ 
MALDO 

Putative CC-NBS-LRR resistance 
protein 

Malus 
domestica 

4.00E-18 

Malus_ 
Contig3333 

Q6URA2_ 
9ROSA 

TIR-NBS-LRR type R protein 7 Rosales 2.00E-16 

Malus_ 
CV883412 

RGA4_ 
SOLBU 

Putative disease resistance 
protein RGA4 (RGA4-blb) 

Solanum 
bulbocastan

um 
6.00E-13 

Malus_ 
DR033890 

Q6UJ68_ 
MALDO 

NBS-LRR resistance gene-like 
protein ARGH17 (Fragment) 

Malus 
domestica 

5.00E-16 

Malus_ 
DR991235 

Q6URA2_ 
9ROSA 

TIR-NBS-LRR type R protein 7 Rosales 6.00E-22 

Malus_ 
DT040468 

Q6URA2_ 
9ROSA 

TIR-NBS-LRR type R protein 7 Rosales 7.00E-33 

Malus_ 
DT042200 

RGA2_ 
SOLBU 

Disease resistance protein RGA2 
(RGA2-blb) (Blight resistance 

protein RPI) 

Solanum 
bulbocastan

um 
9.00E-10 

Malus_ 
DT043243 

Q6URA2_ 
9ROSA 

TIR-NBS-LRR type R protein 7 Rosales 3.00E-61 

Malus_ 
DY255684 

Q6URA2_ 
9ROSA 

TIR-NBS-LRR type R protein 7 Rosales 4.00E-34 

Malus_ 
EB110576 

Q6URA2_ 
9ROSA 

TIR-NBS-LRR type R protein 7 Rosales 2.00E-15 
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RESISTANCE (Continued) 

Unigene 
Name 

SWISS-
PROT 
Match 

SWISS-PROT Description Organism E Value 

Malus_ 
EB114350 

Q6URA2_ 
9ROSA 

TIR-NBS-LRR type R protein 7 Rosales 2.00E-15 

Malus_ 
EB151511 

Q6URA2_ 
9ROSA 

TIR-NBS-LRR type R protein 7 Rosales 3.00E-29 

Malus_ 
EB151787 

Q2HUU3_
MEDTR 

Disease resistance protein; 
Calcium-binding EF-hand; AAA 

ATPase 

Medicago 
truncatula 

5.00E-17 

Prunus_ 
AJ823882 

Q6URA2_ 
9ROSA 

TIR-NBS-LRR type R protein 7 Rosales 3.00E-21 

Prunus_ 
DY646807 

MRP9_ 
ARATH 

Multidrug resistance-associated 
protein 9 (EC 3.6.3.44) 

(Glutathione S-conjugate 
transporting ATPase 9) (ATP-

energized glutathione S-conjugate 
pump 9) 

Arabidopsis 
thaliana 

8.00E-22 

Contig2989 
CYTM_ 
SOLTU 

Multicystatin (MC) 
Solanum 

tuberosum 
2.00E-08 

 

RIPENING 

Unigene 
Name 

SWISS-
PROT 
Match 

SWISS-PROT Description Organism E Value 

Malus_ 
CO414873 

Q9FHX3_ 
ARATH 

Receptor lectin kinase-like protein 
(Lectin protein kinase family 

protein) 

Arabidopsis 
thaliana 

4.00E-18 

Malus_ 
CO415575 

Q45TX6_ 
MALDO 

Starch branching enzyme I 
Malus 

domestica 
3.00E-30 

Malus_ 
DT040152 

Q84L65_ 
PYRCO 

Xyloglucan endotransglycosylase 
Pyrus 

communis 
6.00E-14 

Malus_ 
EB114578 

Q5J3N9_ 
MALDO 

Sucrose phosphate phosphatase 
(EC 3.1.3.24) 

Malus 
domestica 

8.00E-16 

Malus_ 
EB146797 

Q9FHX3_ 
ARATH 

Receptor lectin kinase-like protein 
(Lectin protein kinase family 

protein) 

Arabidopsis 
thaliana 

7.00E-24 

Malus_ 
CN934037 

LE14B_ 
PRUAR 

LEC14B homolog 
Prunus 

armeniaca 
5.00E-17 

Contig10296 
Q68UW1_

PYRCO 
Polygalacturonase 

Pyrus 
communis 

6.00E-07 

Contig8761 
Q6YYW5_

ORYSA 
Putative expansin 11 Oryza sativa 2.00E-08 

Malus_ 
CN944300 

Q1W5D1_
HEVBR 

Solanesyl diphosphate synthase 
Hevea 

brasiliensis 
1.00E-10 

Malus_ 
CV082424 

O48629_ 
PRUAR 

Putative auxin-repressed protein 
Prunus 

armeniaca 
2.00E-10 

Malus_ 
DT002539 

Q8LSK7_ 
9ROSI 

Auxin-regulated protein rosids 6.00E-13 
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RIPENING (Continued) 

Unigene 
Name 

SWISS-
PROT 
Match 

SWISS-PROT Description Organism E Value 

Malus_ 
EB116462 

Q93WZ6_ 
PRUPE 

Abscisic stress ripening-like 
protein 

Prunus 
persica 

1.00E-14 

Malus_ 
EB117867 

Q93WZ6_ 
PRUPE 

Abscisic stress ripening-like 
protein 

Prunus 
persica 

1.00E-11 

Malus_ 
EB120299 

Q5S004_ 
CUCSA 

Ethylene response factor 3 
Cucumis 
sativus 

5.00E-11 

Prunus_ 
DN676698 

O48629_ 
PRUAR 

Putative auxin-repressed protein 
Prunus 

armeniaca 
2.00E-13 

Prunus_ 
DT454892 

Q93WZ6_P
RUPE 

Abscisic stress ripening-like 
protein 

Prunus 
persica 

5.00E-25 

Prunus_ 
DT454987 

Q93WZ6_ 
PRUPE 

Abscisic stress ripening-like 
protein 

Prunus 
persica 

2.00E-43 

Prunus_ 
DY635974 

Q93WZ6_ 
PRUPE 

Abscisic stress ripening-like 
protein 

Prunus 
persica 

5.00E-16 

Prunus_ 
DY652441 

Q2Z1Y3_ 
PRUMU 

Expansin 
Prunus 
mume 

4.00E-11 

Prunus_ 
DY652857 

O50000_ 
PRUAR 

Abscisic stress ripening protein 
homolog 

Prunus 
armeniaca 

1.00E-11 

Prunus_ 
DY653665 

Q93WZ6_ 
PRUPE 

Abscisic stress ripening-like 
protein 

Prunus 
persica 

9.00E-28 

Fragaria_ 
Contig381 

Q9FVF1_ 
FRAAN 

Alcohol acyltransferase 
Fragaria 

ananassa 
1.00E-17 

 

SELF-INCOMPATIBILITY 

Unigene 
Name 

SWISS-
PROT 
Match 

SWISS-PROT Description Organism E Value 

Malus_ 
CO417763 

Q9XIR5_ 
ARATH 

Similar to translational activator 
Arabidopsis 

thaliana 
7.00E-15 

Malus_ 
CO417854 

Q3EA10_ 
ARATH 

Protein At4g16195 
Arabidopsis 

thaliana 
2.00E-17 

Fragaria_ 
DV440585 

Q852Q3_ 
PRUMU 

S7-RNase 
Prunus 
mume 

2.00E-19 

Malus_ 
CN994087 

Q9MB59_
MALDO 

Se-RNase 
Malus 

domestica 
9.00E-28 

Prunus_ 
AJ873095 

Q84KJ9_ 
PRUDU 

S locus F-box protein c 
Prunus 
dulcis 

1.00E-120 
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STRESS RESPONSE 

Unigene 
Name 

SWISS-
PROT 
Match 

SWISS-PROT Description Organism E Value 

Malus_ 
CN869627 

Q9LUX4_ 
PYRPY 

Glycine rich protein (Fragment) 
Pyrus 

pyrifolia 
9.00E-10 

Prunus_ 
DY646882 

Q9ZW93_ 
ARATH 

F5A8.5 protein 
Arabidopsis 

thaliana 
1.00E-18 

Malus_ 
CV883152 

Q9SW89_ 
PRUDU 

Abscisic acid response protein 
Prunus 
dulcis 

5.00E-14 

Malus_ 
CN861106 

Q9SW89_ 
PRUDU 

Abscisic acid response protein 
Prunus 
dulcis 

1.00E-17 

Fragaria_ 
CO817582 

Q40968_ 
PRUPE 

Dehydrin 
Prunus 
persica 

5.00E-11 

Fragaria_ 
DY669955 

Q8W3I7_ 
ORYSA 

Putative DnaJ domain containg 
protein, 3'-partial (Fragment) 

Oryza sativa 3.00E-23 

Malus_ 
CN496472 

O04648_ 
ARATH 

A_TM021B04.9 protein 
Arabidopsis 

thaliana 
2.00E-20 

Malus_ 
CN863502 

Q5QIC0_ 
PRUPE 

Dehydrin 2 
Prunus 
persica 

9.00E-17 

Malus_ 
CN869457 

Q30E95_ 
PRUPE 

Type II SK2 dehydrin (Fragment) 
Prunus 
persica 

1.00E-10 

Malus_ 
CN903463 

Q40968_ 
PRUPE 

Dehydrin 
Prunus 
persica 

2.00E-13 

Malus_ 
CN914194 

Q1SIX7_ 
MEDTR 

Forkhead-associated; Tyrosyl-
DNA phosphodiesterase 

Medicago 
truncatula 

3.00E-14 

Malus_ 
CN921728 

Q1SJW3_
MEDTR 

UspA 
Medicago 
truncatula 

2.00E-17 

Malus_ 
CN940093 

MSH7_ 
ARATH 

DNA mismatch repair protein 
MSH6-2 (AtMsh6-2) (MutS 

homolog 7) 

Arabidopsis 
thaliana 

3.00E-10 

Malus_ 
CO753477 

Q30E95_ 
PRUPE 

Type II SK2 dehydrin (Fragment) 
Prunus 
persica 

9.00E-14 

Malus_ 
Contig3796 

Q1T0V8_ 
MEDTR 

Heat shock protein Hsp20 
Medicago 
truncatula 

6.00E-10 

Malus_ 
DT043057 

Q84UH1_ 
PRUPE 

Defensin protein 1 
Prunus 
persica 

7.00E-12 

Malus_ 
EB115083 

Q30E95_ 
PRUPE 

Type II SK2 dehydrin (Fragment) 
Prunus 
persica 

4.00E-16 

Malus_ 
EB119260 

Q30E95_ 
PRUPE 

Type II SK2 dehydrin (Fragment) 
Prunus 
persica 

4.00E-11 

Malus_ 
EB145819 

Q40968_ 
PRUPE 

Dehydrin 
Prunus 
persica 

1.00E-13 

Prunus_ 
AJ631390 

Q30E95_ 
PRUPE 

Type II SK2 dehydrin (Fragment) 
Prunus 
persica 

3.00E-21 

Prunus_ 
AJ631394 

Q30E95_ 
PRUPE 

Type II SK2 dehydrin (Fragment) 
Prunus 
persica 

2.00E-15 
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STRESS RESPONSE (Continued) 

Unigene 
Name 

SWISS-
PROT 
Match 

SWISS-PROT Description Organism E Value 

Prunus_ 
DY636011 

Q30E95_ 
PRUPE 

Type II SK2 dehydrin (Fragment) 
Prunus 
persica 

1.00E-10 

Prunus_ 
DY646022 

Q30E95_ 
PRUPE 

Type II SK2 dehydrin (Fragment) 
Prunus 
persica 

4.00E-23 

Prunus_ 
DY646050 

Q30E95_ 
PRUPE 

Type II SK2 dehydrin (Fragment) 
Prunus 
persica 

2.00E-13 

Prunus_ 
DY647472 

Q30E95_ 
PRUPE 

Type II SK2 dehydrin (Fragment) 
Prunus 
persica 

1.00E-20 

Prunus_ 
DY652978 

Q30E95_ 
PRUPE 

Type II SK2 dehydrin (Fragment) 
Prunus 
persica 

5.00E-11 

 

TRANSCRIPTION FACTORS 

Unigene 
Name 

SWISS-
PROT 
Match 

SWISS-PROT Description Organism E Value 

Contig10829 
Q7X9I6_ 
MALDO 

MADS box protein 
Malus 

domestica 
4.00E-20 

Malus_ 
CN494770 

Q9M7S0_
MALDO 

Homeodomain protein 
Malus 

domestica 
1.00E-17 

Malus_ 
Contig3003 

KNAP1_ 
MALDO 

Homeobox protein knotted-1-like 1 
(KNAP1) 

Malus 
domestica 

6.00E-59 

Malus_ 
EB128043 

Q9FQ01_ 
9ROSI 

Basic leucine zipper transcription 
factor 

rosids 4.00E-11 

Malus_ 
EB136357 

KNAP2_ 
MALDO 

Homeobox protein knotted-1-like 2 
(KNAP2) 

Malus 
domestica 

4.00E-22 

Prunus_ 
Contig1282 

Q9XH73_ 
PRUAR 

Homeobox leucine zipper protein 
Prunus 

armeniaca 
1.00E-17 

Prunus_ 
DY635995 

O81365_ 
PRUAR 

AP2 domain containing protein 
(Fragment) 

Prunus 
armeniaca 

2.00E-14 

Prunus_ 
DY653634 

O81365_ 
PRUAR 

AP2 domain containing protein 
(Fragment) 

Prunus 
armeniaca 

2.00E-16 

Contig12628 
Q84WX1_ 

BRANA 
BHLH transcription factor 

Brassica 
napus 

5.00E-11 

Contig12777 
Q2LMF1_ 
MALDO 

MYB6 
Malus 

domestica 
8.00E-15 

Fragaria_ 
Contig1577 

Q6RF31_ 
9ROSI 

MADS box transcription factor rosids 2.00E-10 

Fragaria_ 
DY670036 

Q9LD95_ 
ARATH 

Sigma factor-like protein (SigF) 
(Putative RNA polymerase sigma-

70 factor protein) 

Arabidopsis 
thaliana 

9.00E-11 

Malus_ 
CN861043 

Q8VWW8_ 
MALDO 

Transcription factor AHAP2 
Malus 

domestica 
4.00E-23 

Malus_ 
CO865898 

Q2LME2_ 
MALDO 

MYB22 
Malus 

domestica 
3.00E-14 
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TRANSCRIPTION FACTORS (Continued) 

Unigene 
Name 

SWISS-
PROT 
Match 

SWISS-PROT Description Organism E Value 

Malus_ 
CO867282 

Q2LME2_ 
MALDO 

MYB22 
Malus 

domestica 
2.00E-35 

Malus_ 
CO903858 

Q2LME9_ 
MALDO 

MYB11 
Malus 

domestica 
4.00E-20 

Malus_ 
Contig16722 

Q1SG54_ 
MEDTR 

GRAS transcription factor 
Medicago 
truncatula 

2.00E-13 

Malus_ 
DR998738 

Q2LME9_ 
MALDO 

MYB11 
Malus 

domestica 
1.00E-56 

Malus_ 
EB139466 

Q2LMD8_ 
MALDO 

MYB92 
Malus 

domestica 
5.00E-14 

Malus_ 
EB154218 

Q6RF31_ 
9ROSI 

MADS box transcription factor rosids 2.00E-11 

Malus_ 
EB175541 

Q2LMF0_ 
MALDO 

MYB7 
Malus 

domestica 
2.00E-10 

Prunus_ 
CV051106 

Q9SR27_ 
ARATH 

Putative transcription factor 
Arabidopsis 

thaliana 
2.00E-16 

 

OTHER TRANSCRIPTION/TRANSLATION REGULATION 

Unigene 
Name 

SWISS-
PROT 
Match 

SWISS-PROT Description Organism E Value 

Prunus_ 
Contig3020 

Q94BW3_ 
CINCA 

Type 2 ribosome-inactivating 
protein cinnamomin III precursor 

Cinnamomu
m camphora 

8.00E-32 

Prunus_ 
DW343155 

Q1RZJ4_ 
MEDTR 

Aldo/keto reductase; Sigma-54 
factor, interaction region 

Medicago 
truncatula 

1.00E-106 

Malus_ 
CV880602 

Q9FH01_ 
ARATH 

Similarity to CHP-rich zinc finger 
protein 

Arabidopsis 
thaliana 

5.00E-15 

Malus_ 
CO052477 

Q6YNS0_ 
PRUAV 

Putative translation-initiation factor 
3 subunit 

Prunus 
avium 

4.00E-25 

Prunus_ 
DY640722 

IF2C_ 
PHAVU 

Translation initiation factor IF-2, 
chloroplast precursor (PvIF2cp) 

Phaseolus 
vulgaris 

6.00E-16 

 

TRANSPOSABLE ELEMENT RELATED 

Unigene 
Name 

SWISS-
PROT 
Match 

SWISS-PROT Description Organism E Value 

Malus_ 
Contig17295 

O81630_ 
ARATH 

F8M12.22 protein (RNA-directed 
DNA polymerase activity) 

Arabidopsis 
thaliana 

5.00E-10 

Malus_ 
Contig17477 

Q1S9K1_ 
MEDTR 

Integrase, catalytic region; Zinc 
finger, CCHC-type; Peptidase 

aspartic, catalytic 

Medicago 
truncatula 

7.00E-10 

Prunus_ 
AJ872476 

Q1SCY9_ 
MEDTR 

Integrase, catalytic region; Zinc 
finger, CCHC-type 

Medicago 
truncatula 

1.00E-12 
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TRANSPOSABLE ELEMENT RELATED (Continued) 

Unigene 
Name 

SWISS-
PROT 
Match 

SWISS-PROT Description Organism E Value 

Prunus_ 
AJ873120 

Q1SEE1_ 
MEDTR 

Integrase, catalytic region; Zinc 
finger, CCHC-type; Peptidase 

aspartic, catalytic 

Medicago 
truncatula 

2.00E-11 

Prunus_ 
Contig4976 

Q9SA04_ 
ARATH 

F28K20.4 protein ( RNA-directed 
DNA polymerase activity) 

Arabidopsis 
thaliana 

3.00E-10 

Prunus_ 
DW343206 

Q5GIS9_ 
CUCME 

Ulp1-like peptidase (Ulp1 
peptidase-like) 

Cucumis 
melo 

1.00E-24 

Prunus_ 
DW344028 

Q1SD84_ 
MEDTR 

Integrase, catalytic region 
Medicago 
truncatula 

5.00E-13 

Prunus_ 
DW344244 

Q6QZP0_ 
DAUCA 

DNA-directed RNA polymerase 
Daucus 
carota 

3.00E-20 

Prunus_ 
DW344563 

Q5GIS9_ 
CUCME 

Ulp1-like peptidase (Ulp1 
peptidase-like) 

Cucumis 
melo 

5.00E-12 

Prunus_ 
DW345563 

Q9XG91_ 
PHAVU 

Tpv2-1c protein (Fragment) 
Phaseolus 

vulgaris 
2.00E-10 

Prunus_ 
DW346268 

Q8H6Q8_ 
PONTR 

CTV.20 
Poncirus 
trifoliata 

5.00E-14 

Prunus_ 
DW347461 

Q1SCY9_ 
MEDTR 

Integrase, catalytic region; Zinc 
finger, CCHC-type 

Medicago 
truncatula 

5.00E-11 

Contig4317 
Q1SS89_ 
MEDTR 

Integrase, catalytic region 
Medicago 
truncatula 

1.00E-07 

Contig4323 
Q1S3K7_ 
MEDTR 

RNA-directed DNA polymerase 
(Reverse transcriptase); Zinc 

finger, CCHC-type; 
Endonuclease/exonuclease/phosp

hatase 

Medicago 
truncatula 

1.00E-06 

Fragaria_ 
DV439596 

Q1S3K7_ 
MEDTR 

RNA-directed DNA polymerase 
(Reverse transcriptase); Zinc 

finger, CCHC-type; 
Endonuclease/exonuclease/phosp

hatase 

Medicago 
truncatula 

2.00E-13 

Fragaria_ 
DY670243 

Q1S3K7_ 
MEDTR 

RNA-directed DNA polymerase 
(Reverse transcriptase); Zinc 

finger, CCHC-type; 
Endonuclease/exonuclease/phosp

hatase 

Medicago 
truncatula 

6.00E-13 

Malus_ 
CN859348 

Q1S8I3_ 
MEDTR 

RNA-directed DNA polymerase 
(Reverse transcriptase); 

Expansin/Lol pI 

Medicago 
truncatula 

2.00E-11 

Malus_ 
CN860026 

Q75L75_ 
ORYSA 

Putative reverse transcriptase Oryza sativa 1.00E-13 

Malus_ 
CN868023 

Q2AA00_ 
ASPOF 

Reverse transcriptase family 
protein 

Asparagus 
officinalis 

1.00E-10 

Malus_ 
CN924484 

Q1SKR2_ 
MEDTR 

Integrase, catalytic region; Zinc 
finger, CCHC-type 

Medicago 
truncatula 

4.00E-23 

Malus_ 
CN924937 

Q204I7_ 
MALDO 

Reverse transcriptase (Fragment) 
Malus 

domestica 
3.00E-11 
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TRANSPOSABLE ELEMENT RELATED (Continued) 

Unigene 
Name 

SWISS-
PROT 
Match 

SWISS-PROT Description Organism E Value 

Malus_ 
CN924979 

Q204I7_ 
MALDO 

Reverse transcriptase (Fragment) 
Malus 

domestica 
9.00E-10 

Malus_ 
CO905370 

Q1SEE1_ 
MEDTR 

Integrase, catalytic region; Zinc 
finger, CCHC-type; Peptidase 

aspartic, catalytic 

Medicago 
truncatula 

2.00E-19 

Malus_ 
CV656145 

Q1SCY9_ 
MEDTR 

Integrase, catalytic region; Zinc 
finger, CCHC-type 

Medicago 
truncatula 

3.00E-13 

Prunus_ 
AJ873519 

Q6L975_ 
VITVI 

GAG-POL Vitis vinifera 2.00E-18 

Prunus_ 
DW341050 

Q1S8I3_ 
MEDTR 

RNA-directed DNA polymerase 
(Reverse transcriptase); 

Expansin/Lol pI 

Medicago 
truncatula 

8.00E-16 

Prunus_ 
DW345168 

Q1SS87_ 
MEDTR 

Gag-pol polyprotein-related 
Medicago 
truncatula 

4.00E-11 

Contig2543 
Q9ZS84_ 
LYCES 

Polyprotein 
Lycopersico

n 
esculentum 

5.00E-08 

Malus_ 
Contig8242 

Q1T2D5_ 
MEDTR 

Chromo 
Medicago 
truncatula 

2.00E-14 

Contig11260 
Q949J4_ 
LYCES 

Putative copia-like polyprotein 
Lycopersico

n 
esculentum 

9.00E-07 

Contig11350 
Q9ZQK0_ 

ARATH 
Putative retroelement pol 

polyprotein 
Arabidopsis 

thaliana 
3.00E-11 

Contig11628 
Q2R6F2_ 
ORYSA 

Retrotransposon protein, putative, 
unclassified 

Oryza sativa 8.00E-07 

Contig1434 
Q2AA50_ 
ASPOF 

Retrotransposon gag protein 
Asparagus 
officinalis 

5.00E-09 

Contig8743 
Q1SJ04_ 
MEDTR 

RNA-directed DNA polymerase 
(Reverse transcriptase); 

Integrase, catalytic region; 
Ribonuclease H; Retrotransposon 
gag protein; Retrovirus capsid, C-

terminal; Peptidase aspartic, 
catalytic 

Medicago 
truncatula 

6.00E-12 

Contig8909 
Q2QS85_ 
ORYSA 

Retrotransposon protein, putative, 
Ty3-gypsy subclass 

Oryza sativa 9.00E-08 

Fragaria_ 
Contig1244 

Q9LH75_ 
ARATH 

Ac transposase-like protein 
(Hypothetical protein At3g14800) 

Arabidopsis 
thaliana 

1.00E-09 

Fragaria_ 
DY670637 

Q1S8I5_ 
MEDTR 

Probable Ta11-like non-LTR 
retroelement protein [imported]-

Arabidopsis thaliana 

Medicago 
truncatula 

2.00E-11 

Malus_ 
CN492003 

Q9XE43_ 
ARATH 

Putative non-LTR retrolelement 
reverse transcriptase 

Arabidopsis 
thaliana 

5.00E-11 

Malus_ 
CN854949 

Q53NY9_ 
ORYSA 

Retrotransposon protein, putative, 
Ty3-gypsy sub-class 

Oryza sativa 6.00E-11 

Malus_ 
CN856635 

Q60DB1_ 
ORYSA 

Retrotransposon protein, putative, 
unclassified 

Oryza sativa 7.00E-13 
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TRANSPOSABLE ELEMENT RELATED (Continued) 

Unigene 
Name 

SWISS-
PROT 
Match 

SWISS-PROT Description Organism E Value 

Malus_ 
CN858499 

Q5GIT1_ 
CUCME 

MuDRA-like transposase (MuDRA 
transposase-like) 

Cucumis 
melo 

1.00E-14 

Malus_ 
CN860215 

Q1RWL1_ 
MEDTR 

Zinc finger, CCHC-type; 
Retrotransposon gag protein; 
Polynucleotidyl transferase, 

Ribonuclease H fold 

Medicago 
truncatula 

2.00E-18 

Malus_ 
CN867476 

Q2R4N2_ 
ORYSA 

Retrotransposon protein, putative, 
unclassified 

Oryza sativa 8.00E-12 

Malus_ 
CN878460 

O22148_ 
ARATH 

Putative non-LTR retroelement 
reverse transcriptase 

Arabidopsis 
thaliana 

2.00E-10 

Malus_ 
CN900895 

Q2QVF5_ 
ORYSA 

Transposon protein, putative, 
mariner sub-class 

Oryza sativa 9.00E-11 

Malus_ 
CN921366 

Q949J4_ 
LYCES 

Putative copia-like polyprotein 
Lycopersico

n 
esculentum 

6.00E-17 

Malus_ 
CN924951 

Q2QWF9_ 
ORYSA 

Retrotransposon protein, putative, 
unclassified 

Oryza sativa 7.00E-11 

Malus_ 
CN932984 

POLX_ 
TOBAC 

Retrovirus-related Pol polyprotein 
from transposon TNT 1-94 

[Includes: Protease (EC 3.4.23.-); 
Reverse transcriptase (EC 
2.7.7.49); Endonuclease] 

Nicotiana 
tabacum 

5.00E-13 

Malus_ 
Contig17460 

Q1SJ04_ 
MEDTR 

RNA-directed DNA polymerase 
(Reverse transcriptase); 

Integrase, catalytic region; 
Ribonuclease H; Retrotransposon 
gag protein; Retrovirus capsid, C-

terminal; Peptidase aspartic, 
catalytic 

Medicago 
truncatula 

4.00E-11 

Malus_ 
Contig18758 

Q9FWZ5_ 
ARATH 

Putative retroelement polyprotein 
Arabidopsis 

thaliana 
9.00E-24 

Malus_ 
Contig8348 

Q6JJ56_ 
IPOTF 

Putative copia-like polyprotein 
Ipomoea 

trifida 
6.00E-10 

Malus_ 
CV794276 

Q2AA50_ 
ASPOF 

Retrotransposon gag protein 
Asparagus 
officinalis 

2.00E-13 

Prunus_ 
DW342097 

Q1SJ04_ 
MEDTR 

RNA-directed DNA polymerase 
(Reverse transcriptase); 

Integrase, catalytic region; 
Ribonuclease H; Retrotransposon 
gag protein; Retrovirus capsid, C-

terminal; Peptidase aspartic, 
catalytic 

Medicago 
truncatula 

1.00E-16 

Prunus_ 
DW342250 

Q9SJP0_ 
ARATH 

Putative retroelement pol 
polyprotein 

Arabidopsis 
thaliana 

5.00E-14 

Prunus_ 
DW346992 

Q2QQV8_ 
ORYSA 

Retrotransposon protein, putative, 
unclassified 

Oryza sativa 7.00E-10 
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Appendix C 

Multiple Sequence Alignments of ESTs in Rosaceae 
Unigene Contigs 

 

Example 1.  Five contigs from the Rosaceae unigene match the SWISS-PROT 

protein 5NG4_PINTA.  This protein, from Pinus taeda, is an auxin-induced 

protein.  One of the matching contigs consists of all Prunus sequences; the other 

four consist of all Malus sequences.  The ESTs that are part of these contigs were 

named with the format of the contig number followed by a unique number, and all 

of these were entered into ClustalW for assembly.  This is one of the few 

examples where the Prunus unigenes are not grouped together in the cladogram.  

This contig may be an example of some other type of sequencing or assembly 

error other than evolutionary divergence between Prunus and Malus. 

Contig Name Source of ESTs E-Value 

Rosaceae_Contig13217 Prunus 2.00E-44 

Rosaceae_Contig585 Malus 9.00E-56 

Rosaceae_Contig1819 Malus 8.00E-62 

Rosaceae_Contig4063 Malus 1.00E-29 

Rosaceae_Contig12528 Malus 4.00E-23 
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Example 2. Four contigs from the Rosaceae unigene match the SWISS-PROT 

protein 12KD_FRAAN.  This protein, from Fragaria x ananassa, is an auxin 

repressed 12.5 kDa protein.  Two of the matching contigs consists of all Prunus 

sequences; the other two consist of all Malus sequences.  The ESTs that are part 

of these contigs were named with the format of the contig number followed by a 

unique number, and all of these were entered into ClustalW for assembly.  The 

cladogram result confirms that the sequences grouped together do have more 

bases in common, and the two Prunus contigs are more closely related than the 

two Malus contigs. 

 

Contig Name Source of ESTs E-Value 

Rosaceae_Contig5581 Prunus 2.00E-13 

Rosaceae_Contig5721 Prunus 2.00E-35 

Rosaceae_Contig2155 Malus 2.00E-43 

Rosaceae_Contig5366 Malus 2.00E-39 
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Example 3. Five contigs from the Rosaceae unigene match the SWISS-PROT 

protein ELI_PEA.  This protein, from Pisum sativum, is an early light-induced 

protein.  Two of the matching contigs consists of all Prunus sequences; the other 

three consist of all Malus sequences.  The ESTs that are part of these contigs were 

named with the format of the contig number followed by a unique number, and all 

of these were entered into ClustalW for assembly.  The cladogram result confirms 

that three of the four Prunus sequences group together with this model.  

 

Contig Name Source of ESTs E-Value 

Rosaceae_Contig6104 Prunus 1.00E-49 

Rosaceae_Contig13077 Prunus 5.00E-40 

Rosaceae_Contig1797 Malus 2.00E-39 

Rosaceae_Contig5377 Malus 9.00E-34 

Rosaceae_Contig5397 Malus 6.00E-40 

 

 

 

Example 4. Two contigs from the Rosaceae unigene match the SWISS-PROT 

protein SUSY_SOYBN.  This protein, from Glycine max, is a sucrose synthase 

protein.  One of the matching contigs consists of all Prunus sequences; the other 

consists of all Malus sequences.  The ESTs that are part of these contigs were 



 

 170

named with the format of the contig number followed by a unique number, and all 

of these were entered into ClustalW for assembly.  The cladogram result confirms 

that the sequences grouped together do have more bases in common, and the 

Prunus sequences are more closely related than the Malus sequences. 

Contig Name Source of ESTs E-Value 

Rosaceae_Contig13577 Prunus 0 

Rosaceae_Contig12438 Malus 1.00E-143 

 

 



 

 

Appendix D  

Bioinformatic Software Utilized in Research Efforts 

 

 Numerous bioinformatics software packages and databases were used in 

this research.  They are listed in alphabetical order below. 

 

SOFTWARE: 

• autoSNP 

o Used to generate SNPs from unigene contigs 

o Barker G, Batley J, O' Sullivan H, Edwards KJ and Edwards D.  

2003.  Redundancy based detection of sequence polymorphisms in 

expressed sequence tag data using autoSNP.  Bioinformatics  

12(19(3)):421-422. 

• BLAST 

o Used to find sequence similarities between ESTs and either protein 

or nucleotide sequence databases. 

o Altschul SF, Gish W, Miller W, Myers EW, and Lipman DJ.  

1990.  Basic local alignment search tool. J Mol Biol 215(3):403-

410. 

• CAP3 

o Used to align groups of ESTs into nonredundant consensus 

sequences (contigs) and singlets.  These two groups comprise a 

unigene set. 
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o Huang X and Madan A.  1999.  CAP3: A DNA sequence assembly 

program. Genome Res. 9(9):868-877. 

• CROSS_MATCH 

o Used to mask vector regions from EST sequences. 

o Gordon D, Abajian C and Green P.  1998.  Consed: a graphical 

tool for sequence finishing. Genome Res. 8(3):195-202. 

• FASTX3.4 

o Used to find sequence similarities between ESTs and either protein 

or nucleotide sequence databases. 

o Pearson WR and Lipman DJ. Improved tools for biological 

sequence comparison. Proc Natl Acad Sci U S A. 1988;85:2444–

2448. 

• FLIP 

o Used to find putative ORFs in ESTs. 

o Brossard N. 1997.  FLIP: a Unix Program used to find/translate 

orfs.  Bionet.software<Message-

ID:347B3A1B.794BDF32@bch.umontreal.ca> 

• InterProScan 

o Used to find protein families, domains and functional sites in ESTs 

o Mulder NJ, Apweiler R, Attwood TK, Bairoch A, Bateman A, 

Binns D, Bork P, Buillard V, Cerutti L, Copley R, Courcelle E, 

Das U, Daugherty L, Dibley M, Finn R, Fleischmann W, Gough J, 

Haft D, Hulo N, Hunter S, Kahn D, Kanapin A, Kejariwal A, 
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Labarga A, Langendijk-Genevaux PS, Lonsdale D, Lopez R, 

Letunic I, Madera M, Maslen J, McAnulla C, McDowall J, Mistry 

J, Mitchell A, Nikolskaya AN, Orchard S, Orengo C, Petryszak R, 

Selengut JD, Sigrist CJ, Thomas PD, Valentin F, Wilson D, Wu 

CH and Yeats C.  2007.  New developments in the InterPro 

database.  Nucleic Acids Res.  35(Database issue):D224-8. 

• PHRED 

o Used to base-call chromatograms and produce sequence and 

quality files. 

o Ewing B and Green P. 1998. Base-calling of automated sequencer 

traces using phred. II. Error probabilities. Genome Res 8:186–94. 

• Primer3 

o Used to generate primers for putative microsatellite sequences 

from ESTs. 

o Rozen S and Skaletsky H.  2000.  Primer3 on the WWW for 

general users and for biologist programmers.  Methods Mol Biol.  

132:365-86. 

• SSRIT 

o Used to mine putative microsatellites from EST sequences. 

o Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S 

and McCouch S.  2001.  Computational and experimental analysis 

of microsatellites in rice (Oryza sativa L.): frequency, length 
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variation, transposon associations, and genetic marker potential.  

Genome Res.  11:1441-1452. 

 

DATABASES: 

• Arabidopsis proteins 

o Amino acid sequences from the Arabidopsis genome as curated by 

TAIR. 

o Rhee SY, Beavis W, Berardini TZ, Chen G, Dixon D, Doyle A, 

Garcia-Hernandez M, Huala E, Lander G, Montoya M, Miller N, 

Mueller LA, Mundodi S, Reiser L, Tacklind J, Weems DC, Wu Y, 

Xu I, Yoo D, Yoon J and Zhang P.  2003.  The Arabidopsis 

Information Resource (TAIR): a model organism database 

providing a centralized, curated gateway to Arabidopsis biology, 

research materials and community.  Nucleic Acids Research 

31(1):224 

• Gene Ontology 

o Controlled vocabularies for biological process, cellular component 

and molecular function of proteins. 

o Harris MA, Clark J, Ireland A, Lomax J, Ashburner M, Foulger R, 

Eilbeck K, Lewis S, Marshall B, Mungall C, Richter J, Rubin GM, 

Blake JA, Bult C, Dolan M, Drabkin H, Eppig JT, Hill DP, Ni L, 

Ringwald M, Balakrishnan R, Cherry JM, Christie KR, Costanzo 

MC, Dwight SS, Engel S, Fisk DG, Hirschman JE, Hong EL, Nash 
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RS, Sethuraman A, Theesfeld CL, Botstein D, Dolinski K, 

Feierbach B, Berardini T, Mundodi S, Rhee SY, Apweiler R, 

Barrell D, Camon E, Dimmer E, Lee V, Chisholm R, Gaudet P, 

Kibbe W, Kishore R, Schwarz EM, Sternberg P, Gwinn M, 

Hannick L, Wortman J, Berriman M, Wood V, de la Cruz N, 

Tonellato P, Jaiswal P, Seigfried T, White R; Gene Ontology 

Consortium.  2004.  The Gene Ontology (GO) database and 

informatics resource. Nucleic Acids Res 32(Database issue):D258-

261. 

• GOA Slim 

o A smaller subset of the overall Gene Ontologies as generated by 

EMBL’s EBI.   

o http://www.ebi.ac.uk/GOA/ 

• Mapping from keywords to GO Terms for SWISS-PROT 

o A mapping of the SWISS-PROT keywords to the Gene Ontology 

terms. 

o http://www.geneontology.org/external2go/spkw2go 

• NCBI dbEST 

o A database of all the publicly available ESTs. 

o McEntyre J and Ostell J, eds.  2005.  The NCBI Handbook.  

Bethesday(MD):National Library of Medicine (US), NCBI.   

Article : GenBank: The Nucleotide Sequence Database by Ilene 

Mizrachi updated July 27th, 2004 
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• NCBI nr 

o A comprehensive, nonredundant database of public protein 

sequences. 

o Wheeler DL, Barrett T, Benson DA, Bryant SH, Canese K, Church 

DM, DiCuccio M, Edgar R, Federhen S, Helmberg W, Kenton DL, 

Khovayko O, Lipman DJ, Madden TL, Maglott DR, Ostell J, 

Pontius JU, Pruitt KD, Schuler GD, Schriml LM, Sequeira E, 

Sherry ST, Sirotkin K, Starchenko G, Suzek TO, Tatusov R, 

Tatusova TA, Wagner L and Yaschenko E.  2005. Database 

resources of the National Center for Biotechnology Information.  

Nucleic Acids Res. 2005 Jan 1;33(Database issue):D39-45. 

• NCBI UniVec 

o A database of vector and oligonucleotide sequences.  Used to 

screen contamination from ESTs. 

o Kitts PA, Madden TL, Sicotte H, and Ostell JA - Manuscript in 

preparation.  The UniVec website can be accessed at 

http://www.ncbi.nlm.nih.gov/VecScreen/UniVec.html 

• PlantGDB 

o A database of tentative unique genes for multiple plant species. 

o Dong Q, Schlueter SD and Brendel V. (2004) PlantGDB, plant 

genome database and analysis tools. Nucleic Acids Res. 

32(Database issue):D354-D359. 

• Plant Structure Ontology 
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o A controlled vocabulary for plant structures.  Used for tissue types 

of cDNA libraries. 

o Ilic K, Kellogg EA, Jaiswal P, Zapata F, Stevens PF, Vincent LP, 

Avraham S, Reiser L, Pujar A, Sachs MM, Whitman NT, 

McCouch SR, Schaeffer ML, Ware DH, Stein LD and Rhee SY.  

2006.  Plant Structure Ontology. Unified Vocabulary of Anatomy 

and Morphology of a Flowering Plant.  Plant Physiol.  Dec 1 

[Epub ahead of print]. 

• Populus proteins 

o Amino acid sequences from the Populus genome as curated by 

JGI. 

o Provided by DoE Joint Genome Institute and Poplar Genome 

Consortium at http://genome.jgi-psf.org/Poptr1/Poptr1.home.html 

• SWISS-PROT 

o Curated protein database with extensive annotation. 

o Boeckmann B, Bairoch A, Apweiler R, Blatter M-C, Estreicher A, 

Gasteiger E, Martin MJ, Michoud K, O'Donovan C, Phan I, Pilbout 

S and Schneider M.  2003.  The Swiss-Prot protein knowledgebase 

and its supplement TrEMBL in 2003. Nucleic Acids Res. 31:365-

370. 

• TrEMBL 

o Computationally curated addition to SWISS-PROT.  Includes 

translations of all nucleotide sequences from EMBL. 
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o Wu CH, Apweiler R, Bairoch A, Natale DA, Barker WC, 

Boeckmann B, Ferro S, Gasteiger E, Huang H, Lopez R, Magrane 

M, Martin MJ, Mazumder R, O’Donovan C, Redaschi N and 

Suzek B.  2005.  The Universal Protein Resource (UniProt): an 

expanding universe of protein information.  Nucleic Acids Res.  

34(Database issue):D187-91. 
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