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ABSTRACT 

 

This dissertation is an evaluation of popular turbulence schemes; both 

three dimensional and depth-averaged, and also includes an experimental study on 

shallow near bed jets.  The three dimensional ε−k  and RNG turbulent closure 

schemes are evaluated for free and bounded shear flows.  For free shear flows 

(circular and plane turbulent jets),   the ε−k  scheme with standard coefficient 

performs equally well and in some cases better than the renormalized group ε−k  

scheme in predicting growth rate, decay of centerline velocity and longitudinal 

velocity profiles.  For turbulent kinetic energy across the jet, the inner region is 

better predicted by the RNG scheme.   

The second case used to evaluate the three dimensional schemes was a 

submerged hydraulic jump.  This flow included a free surface and solid boundary 

creating larger shearing forces than in a free jet.  The results showed the 

longitudinal velocity profiles and their maximum values, in vertical direction, 

were estimated better by the RNG scheme.  The turbulent kinetic energy was 

overestimated in both magnitude and elevation of its maximum position in the 

flow.  The elevation of the recirculation region was also over predicted by both 

schemes; however, its longitudinal extent was predicted well. 

A two-dimensional, depth-averaged flow model with the depth-averaged 

parabolic eddy viscosity, mixing length, and ε−k  turbulent closure schemes was 

used to simulate flow patterns downstream of lock and dam structures.  The 



mixing length scheme was modified and performed as well as the ε−k  scheme 

in predicting the location and size of the recirculation zones, as well as the 

velocity profiles across the channel. 

Experimental measurements on shallow near bed jets are performed.  For 

low submergence, the horizontal growth rates have two distinct regions, with the 

downstream region having a higher growth rate.  The longitudinal velocity 

profiles in the horizontal plane are self-similar.  The centerline decay was slower 

than that of a free jet. 
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 CHAPTER 1 
 INTRODUCTION 

 
 
 

Shear flows are one of the most common classes of fluid flows.  A wide 

range of applications and phenomena can be classified as a shear flow and ranges 

from a submerged hydraulic jump, smoke plume rise, to the behavior of jet engine 

exhaust over a runway.  A shear flow occurs when a fluid is released with some 

relative initial momentum or buoyancy into an ambient fluid.  The released fluid 

creates a shear layer causing the ambient fluid to be entrained and mixed with the 

released flow.  The most studied example of this is a free turbulent jet.   

A free turbulent jet occurs when a fluid is released into a stagnant ambient 

fluid of infinite extent.  This type of shear flow has many interesting properties 

such as self similarity of velocity and concentration profiles as well as 

conservation of momentum.  While analytical solutions may exist for free shear 

flows, very few bounded shear flows have analytical solutions and one must rely 

on physical or numerical models to determine their behavior.  Since most shear 

flows are turbulent, the choice of a turbulence scheme is integral to the accuracy 

of the numerical simulation.   

 Turbulence schemes simulate the effects of turbulence on the mean flow.  

These turbulence schemes provide the extra equations needed to close the 

Reynolds-averaged Navier-Stokes system of equations.  Most of these models are 

semi-empirical and require determination of coefficients for a particular flow 

situation.  Through a large number of control tests, standard values for these 
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coefficients are established by the ASCE Task Committee on Turbulence 

Modeling in Hydraulic Computations (1988). This research is an evaluation of 

how a few of the most popular turbulence closure schemes behave using a set of 

standard coefficients.  Also included are the new results of an experimental study 

on a confined shear flow, specifically a shallow near bed jet. 

 Two of the most popular turbulence schemes are the ε−k  and RNG 

ε−k  schemes.  An evaluation of their performance when modeling different 

flow geometries and conditions can highlight what specific aspects of shear flows 

they capture well when using standard coefficient values.  Two well documented 

shear flows are used to evaluate the three dimensional forms of the standard ε−k  

and RNG schemes in this research.  The first shear flow is that of a free turbulent 

jet.  A free turbulent jet is free of any boundaries and therefore the schemes only 

have to deal with fluid shear.  Two nozzle geometries, plane and circular, are 

used.  Well documented experimental and analytical solutions exist for both these 

geometries to provide a solid basis for comparison between the two closure 

schemes.  Results from both the schemes are compared to longitudinal and 

transverse velocity profiles, centerline velocity decay, growth rate, and turbulent 

kinetic energy profiles for both nozzle geometries. 

 The second flow geometry used in this research is a submerged hydraulic 

jump.  In this shear flow geometry, not only is a large recirculation region 

produced but a free surface and solid boundary are also present.  Submerged 

hydraulic jumps dissipate a large amount of energy over a short distance through 

a higher level of turbulence than is seen in the free jet cases.   
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 The data used to evaluate the performance of the two turbulence schemes 

is taken from the extensive experiments of a submerged hydraulic jump 

performed by Long (1991).  The experimental results for velocity profiles of both 

the longitudinal and vertical velocities are compared to the results from the two 

turbulence schemes at different locations along the jump.  Comparisons of water 

surface profiles and turbulent kinetic energy profiles are also made.   

 In many situations when modeling large rivers, a two-dimensional depth-

averaged model is employed.  These models use various depth-averaged 

turbulence closure schemes to predict the flow behavior.  One such flow situation 

is that downstream of a lock and dam.  When the power house releases water to 

generate electricity, the lock on the other side of the channel is affected by a large 

recirculation zone created by the shearing effects of the power house flow release.  

This shear flow is bounded and takes up the full depth of the channel making a 

depth-averaged model appropriate.  The turbulence schemes under consideration 

in this research are the parabolic eddy viscosity scheme, mixing length scheme, 

and depth-averaged ε−k  scheme.  Modifications are made to the mixing length 

scheme to improve its performance.  The different turbulent closure schemes are 

evaluated using the measured data for velocity profiles, eddy size, and eddy 

location taken by Bravo (1990).  The validated model is then applied to a case 

study using data obtained at the J.H. Overton Dam on the Red River, Louisiana. 

 Another type of shear flow which shares some commonalities with the 

submerged hydraulic jump is a shallow near bed jet.  The hydraulic jump has been 

modeled as a limiting case of this type of jet for the plane nozzle geometry, as the 
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nozzle is adjacent to the floor.  Submerged hydraulic jumps have even been 

modeled as a plane jet under an adverse pressure gradient (Rajaratnam, 1965).  In 

this research experiments are conducted with a circular jet entering a shallow 

ambient fluid.  The jet issues from a circular nozzle above a flat plate.  The jet 

nozzle submergence and height off the floor are equal.  At each 

floor/submergence level three flow rates are used.  Longitudinal velocity profiles 

in the horizontal and vertical directions are taken along the planes of local 

maximum velocity for x d  locations from 6 to 50 using a pitot tube, where  is 

the distance from the nozzle in the downstream direction and  is the nozzle 

diameter (0.5 inch).  Horizontal profiles are examined for self similarity, growth 

rate and velocity decay.  Vertical profiles are fit to a power law near the bed, and 

the free surface is modeled as a plane of symmetry using a modified Reichardt’s 

hypothesis.  Surface disturbances are evaluated qualitatively from photographs of 

the wave field. 

x

d

 One objective of this research is to evaluate the behavior of popular 

turbulence closure schemes, both three dimensional and depth averaged, using 

standard coefficient values by comparing their results to well documented shear 

flows that introduce the models to both fluid shearing and shearing forces 

produced in the presence of free surface and wall boundaries.  Another objective 

is to evaluate the modifications made to the mixing length scheme, and finally to 

analyze the data obtained from experiments with a shallow near bed jet using 

circular nozzle geometry.  By examining the performance of turbulence schemes  
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and making improvements upon them, it may become possible to decide whether 

the standard schemes will be sufficient, saving the time and cost of a physical 

model.  Also the experimental results may provide future researchers with the 

data to evaluate these and other turbulence schemes.   
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 CHAPTER 2 
NUMERICAL SIMULATION OF FREE TURBULENT JETS 

 
 
 

Turbulent jets are the primary means through which waste is discharged 

into the environment.  The performance of a jet in these circumstances relies on 

the orifice geometry, characteristics of the discharged and ambient fluid, and the 

physical environment into which a jet is discharged.  A jet is considered free 

when any boundaries are far enough away that any effects they have on the jet are 

insignificant.   Classical self-similar solutions of free jet flow are based on three 

assumptions.  These assumption are (1) that the jet is slender, dividing the flow 

into two regions, the jet mixing layer and the flow induced by entrainment, (2) the 

initial velocity is maintained for a large distance away from the jet compared to 

the exit diameter or height (in the potential core) so that the flow (in the ZEF) 

depends only on the kinematic momentum flux and (3) the momentum flux inside 

the jet is conserved (Schneider, 1985). 

 7

 The velocity profiles at different sections along the jet for both plane and 

circular jets are self similar when normalized by the appropriate velocity and 

length scales.  Two classical solutions for the velocity profiles in free plane jets 

are the Tollmien solution and Goertler’s solution.  The Tollmien solution uses 

Prandtl’s mixing length equation to solve the equations of motion for a plane 

turbulent jet.   Goertler’s solution assumes a constant eddy viscosity exchange 

coefficient across the flow (Rajaratnam, 1976).  Experimental observations, made 

by Heskestad (1965) and Albertson (1950), for plane turbulent jets observed that 



the Tollmien solution is preferred in the outer region of the jet where as the 

Goertler solution provides better approximation near the centerline of the jet.  

Similar solutions can be applied to circular turbulent jets with similar preference 

given to each solution in the inner and outer regions (Wygnanski and Fiedler, 

1969).   

In most cases, the jet interacts with solid boundaries and/or a free surface 

for which analytical or empirical solutions may not be available.  In such cases, 

either physical model or numerical model studies are relied upon.  In recent years, 

numerical models have been increasingly adopted for studying complicated flow 

scenarios.  In modeling turbulent flows, one of the key elements is the choice of a 

turbulent closure scheme.  The ε−k  and the Renormalized Group ε−k  (RNG) 

schemes are the two most popular schemes.  While both these models can provide 

accurate results, their accuracy depends on empirical coefficients which must be 

adjusted to calibrate these schemes.  For example, the standard coefficients of the 

ε−k  scheme were determined by computer optimization of laboratory shear 

flows (ASCE Task Committee on Turbulence Models in Hydraulic Computations, 

1988). 

The standard coefficients determined for the turbulent closure schemes are 

not universal.  Corrections to these coefficients have been established for different 

flows to achieve better agreement with the laboratory or analytical results.  For 

example, the standard coefficients are modified to simulate circular turbulent jets 

and achieve better accuracy with established results (ASCE Task Committee on 

Turbulence Models in Hydraulic Computations, 1988).  However, in cases where 
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the jets may interact with boundaries, surface, or other flows, the appropriate 

modifications may not be available and standard values of these coefficients may 

have to be used. 

 

Mathematical Details 

The three-dimensional Reynolds-averaged Navier-Stokes equations 

representing mass and momentum equations for turbulent flows are given by 

0=
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∂
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where  and  are indices representing i j , ,x y z  directions in the Cartesian 

coordinates,  represents coordinate directions (ix =i 1 to 3 for zyx ,,  directions, 

respectively),  is the time-averaged velocity component,  represents time, iU t ρ  

is the fluid density,  is the piezometric pressure, P ν  is the kinematic viscosity of 

the fluid, and jiuu  represent turbulent normal and shear stresses.  Turbulent 

closure schemes are required to model turbulent normal and shear stresses. 

The ε−k  and the RNG turbulent closure schemes use Boussinesq’s eddy 

viscosity assumption to relate turbulent normal and shear stresses to the mean 

flow velocity gradients as follows  
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where tν  is the turbulent eddy viscosity, ijδ  is the Kronecker delta, and 

( 0.5 i ik u u= )  is the turbulent kinetic energy per unit mass.  The turbulent eddy 

viscosity is computed as 

 
εµ
2kcvt =             (2.4) 

where  is an empirical coefficient and µc ε  is the dissipation rate per unit mass of 

turbulent energy.  The ε−k  and RNG turbulent closure schemes use the above 

equation to determine turbulent eddy viscosity which relates the turbulent shear 

and normal stresses to the time averaged velocity gradients.  To close the system, 

transport equations for  and k ε  are needed. 

 In case of standard ε−k  turbulent closure scheme, the transport equations 

for kinetic energy and dissipation rate per unit mass are given by 
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In the above equations, , , , µc ε1c ε2c kσ , and εσ  are empirical coefficients.  

The standard values of these coefficients are 0.09, 1.44, 1.92, 1.0, and 1.3, 

respectively (Rhodi, 1984).  The first two terms on the left hand side of the  and k

ε  equations represent rate of change and advection of the respective quantities.  

The first term on the right hand side represents diffusion in both cases.  The two 

remaining terms represent the generation and destruction of stress, and energy, 

respectively.   
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Another turbulence scheme similar to the ε−k  scheme is the 

Renormalized Group ε−k  model (RNG).  The RNG scheme handles the k  and 

ε  transport equations differently than the standard ε−k  scheme and was 

developed for use with strong shear flows or low intensity turbulence.  In the 

RNG scheme the length scale of turbulent eddies vary from the area of flow to the 

scale at which eddies can be dissipated by viscosity.  Energy cascades down this 

scale and at some eddy size the energy produced equals the energy being 

dissipated.  The Renormalization Group technique uses this equilibrium eddy size 

or scale to describe all the other length scales.  This produces a model that is 

statistically equivalent to the original Navier-Stokes equations but only describes 

a single scale of turbulence.  This scale is of an order that can be efficiently 

handled by current computer technology.  The Renormalized Group  and k ε  

transport equations, as given by Bischof and Bucker (2003), are: 
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where  and  are Prandtl numbers for k  and rkP εrP ε , respectively,  represents 

the mean rate of strain, and 

Λ

effν  is a combination of fluid kinematic viscosity and 

turbulent viscosity and is given by 
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The term R  on the right hand side of the transport equation for the dissipation 

rate is the major difference between this and the ε−k  scheme and is given by  

 
( )

k
c

R o 2

3

3

1

1 ε
βη

ηηηµ
+

−
=           (2.10) 

where oη  and β  are constants having standard values of 4.38 and 0.012, 

respectively, and kη ε= Λ .  The standard values of constants , , and  

used in the RNG scheme are 0.0845, 1.42, and 1.68, respectively. 

µc ε1c ε2c

Both the ε−k  and RNG schemes have been extensively used with the 

RNG model employed for high shear and high Reynolds number flows.  A 

sensitivity analysis of both schemes showed that the ε−k  scheme is less 

sensitive to  than the RNG scheme.  It was further found that the µc ε−k  scheme 

is more sensitive to , and  than RNG scheme.  The RNG scheme is found 

to be more sensitive to the rate of strain because of the presence of the source 

term 

ε1c ε2c

R  (Bischof et al., 2003). 

 

Numerical Model and Setup 

 A three-dimensional flow model called Flow-3D, developed by Flow 

Science, Inc., is used to simulate various jet geometries and flow conditions.  The 

model solves the Reynolds-averaged Navier-Stokes equations using a finite 

volume/finite difference method in an Eulerian rectangular or cylindrical grid.  

The boundaries are determined independent of the grid generation process using 

 12



the Fractional Area/Volume Obstacle Representation (FAVOR) method, thus 

avoiding the “saw-tooth” representation of boundaries (Rodriguez et al., 2003). 

 The geometries used were a circular orifice of 5-mm in diameter for the 

circular jet and a slot width of 5-mm for the plane turbulent jet.  Both jets flowed 

into a simulated tank 580-cm on a side.  The tank was large enough in extent so 

that the jets could be considered free from the effects of boundaries and water 

surface.  A uniform velocity of 200 cm/s was applied across the nozzle for the two 

jets.  At tank boundaries, the normal and tangential components of velocities were 

set to zero.  At the outflow section, a continuative boundary condition was applied 

that forced the normal derivatives of all the variables at the boundary to zero.  At 

the wall, a smooth boundary was assumed by specifying a roughness height of 

zero.  Initial conditions of zero velocity and hydrostatic pressure distribution were 

assumed inside the tank.  Diagrams of the computational mesh used for plane and 

circular turbulent jets are given in Appendix F. 

To enable an accurate comparison of the two turbulent closure schemes, 

the computational mesh as well as initial and boundary conditions for the 

simulation of jets with the ε−k  and RNG turbulent closure schemes were 

exactly the same.  However, the mesh for the circular turbulent and plane 

turbulent jets differed in order to appropriately capture the nozzle geometry.  The 

computed results, at the center of each cell, were the velocity components in the 

x , , and  directions, pressure, turbulent kinetic energy per unit mass, and 

turbulent dissipation rate. 

y z
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Turbulent Jets 

 
2 ob

 The details of a circular turbulent or plane turbulent jet are shown in Fig. 

2.1.  For the plane turbulent jet,  represents the width of the nozzle, and  is 

the diameter of the nozzle for circular turbulent jet.  The initial uniform velocity 

of the jet exiting the nozzle is given by .  The virtual origin is at a distance 

d

ou x  

from the nozzle, and the centerline velocity at any position  (distance along the 

jet) is given by .  The velocity varies from the centerline value, , to zero at 

the edge of the jet.  For linear scale and growth of jets, length b  is commonly 

used.  Distance b  is measured along  or  (for plane turbulent or circular 

turbulent jets, respectively) coordinate direction to a point where . 

x

mu mu

y r

0.5 mu u=

 

 

,y r  

 

Fig. 2.1: Definition Sketch of Free Turbulent Jet 
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The growth rates of the free plane and circular jets are given by 

 
( )1ob b A x x b= + o                                                                           (2.11a) 

 ( )2b d A x x d= +                   (2.11b) 

where  and  are coefficients for plane and circular turbulent jets, 

respectively.  The value of 0.097 for  was found as a best fit the experimental 

data (Rajaratnam, 1976).  Abramovich (1963) recommended a value of 0.097 for 

.  The virtual origin ranged from 0 to  behind the nozzle for plane 

turbulent jets, and from 0.6  to  behind the nozzle for circular jets 

(Rajaratnam, 1976). 

1A 2A

1A

2A 2.4 ob

d 2.2d

The decay of the centerline velocities for the plane and circular turbulent 

jets are given by the following equations 

3

1

m

o o

u A
u x b α

=
+

                                              (2.12a) 

4

2

m

o

u A
u x d α

=
+

                                                                                   (2.12b) 

where  and  are given by 3.5 and 6.3, respectively.  The values 3A 4A 1α  and 2α  

represent correction for the virtual origin.  The velocity profiles across the jet are 

found to be similar and can be approximated by a Gaussian curve of the form 

(Rajaratnam, 1976) 

( 2exp 0.693
m

u
u )λ= −                                                                           (2.13) 

where λ  is given by y b  or r b  for plane or circular turbulent jet, respectively. 
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Simulation Results for Plane Turbulent Jet 

 
 To determine the accuracy of the simulated results for the plane jet, the 

growth rate, the decay of the centerline longitudinal velocity, the longitudinal and 

vertical velocity profiles across the jet, and the turbulent kinetic energy profile are 

compared with experimental data and accepted empirical equations.  Relative 

error plots are given in Appendix D to further quantify the results.  The relative 

error is given by the difference between the computed and expected value divided 

by the expected value.  The growth rates of the plane turbulent jet based on ε−k  

and RNG schemes are found to be 0.11 and 0.12, respectively, which compare 

well with the value given by Eq. (2.11a).  The virtual origin for ε−k  and RNG 

schemes are found to be 5.96  and 1.32 , respectively.  ob ob

 Figs. 2.2 and 2.3 show the decay of the centerline longitudinal velocity 

along the jet using ε−k  and RNG schemes, respectively.  For reference, the 

decay of the centerline velocity given by Eq. (2.12a) is also provided in these 

figures.  Although both schemes satisfactorily predict the decay of the centerline 

longitudinal velocity, the ε−k  scheme provides a better estimate of the decay.  

The RNG scheme predicts lower centerline velocity immediately after the 

potential core and in the lower half of the jet with a maximum error of -0.056. 
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Fig. 2.2: Centerline Velocity Decay of Plane Jet ( k ε−  Scheme)  
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Fig. 2.3: Centerline Velocity Decay of Plane Jet (RNG Scheme) 
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The similarity of longitudinal velocity profiles across the jet at different 

locations is tested by comparing the predicted velocity profiles with Eq. (2.13).  

The velocity profiles obtained using the ε−k  and RNG schemes are shown in 

Figs. 2.4 and 2.5, respectively, along with Eq. (2.13).  Though the velocity profile 

immediately after the potential core is poorly predicted by both schemes, the 

RNG scheme is the worse of the two predictors.  The relative error of the RNG 

scheme increases to -0.5 when by  is 0.5 while the ε−k  scheme stays within 

0.1.  The velocity profiles further away from the potential core follow the 

Gaussian curve more closely. 
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Fig. 2.4: Similarity of Longitudinal Velocity ( k ε−  Scheme) 
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Fig. 2.5: Similarity of Longitudinal Velocity (RNG Scheme) 

 

 The vertical velocity profiles across the jet predicted by the ε−k  and 

RNG schemes are compared to Goertler’s solution (Rajaratnam, 1963) in Figs. 2.6 

and 2.7, respectively. The Goertler’s solution is given by 

 21 tanh 0.5 tanh
m

v y y y
u x x x x

α α α α
α
⎛ ⎞⎛ ⎞ ⎛ ⎞= − −⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

y                                (2.14) 

where α  has a value of 7.67,  is the vertical velocity ( -direction).  The 

velocity profiles predicted by the two schemes compare well with the theoretical 

profile. 

v y
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Fig. 2.6: Similarity of Vertical Velocity ( k ε−  Scheme) 
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Fig. 2.7: Similarity of Vertical Velocity (RNG Scheme) 

 20



 

 

 
 Figs. 2.8 and 2.9 show the profiles of kinetic energy per unit mass at 

02 5x b = 0  obtained using  ε−k  and RNG schemes, respectively.  These profiles 

are compared with the physical model data of Heskestad (1965) at the same 

location.  The results from the ε−k  scheme do not conform to the experimental 

data near the centerline of the jet, while the RNG scheme predicts a slightly 

higher  value throughout. k
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Fig. 2.8: Profile of Turbulent Kinetic Energy ( k ε−  Scheme) 
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Fig. 2.9: Profile of Turbulent Kinetic Energy (RNG Scheme) 

 

 From the above discussion, it is clear that the ε−k  scheme performs 

slightly better than the RNG scheme for predicting the growth rate, similarity of 

longitudinal and vertical velocity profiles, and centerline velocity decay of the 

plane turbulent jet.  On the other hand, the RNG scheme can more accurately 

predict the kinetic energy per unit mass across the plane jet. 

 

Simulation Results for Circular Turbulent Jet 

 For the circular turbulent jet, the same set of comparisons, as described for 

the plane turbulent jet, are conducted.  The growth rates for the circular turbulent 

jet using ε−k  and RNG schemes are 0.1 and 0.14, respectively, and the 

corresponding virtual origins are located at 5.56  and .  The growth rate d 0.86d
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based on the RNG scheme is higher than the generally accepted value of 0.097, 

while the ε−k  turbulent closure scheme accurately predicts the growth rate. 

 The decay of the centerline longitudinal velocity obtained using ε−k  and 

RNG schemes are compared with Eq. (2.12b) in Figs. 2.10 and 2.11, respectively.  

The RNG scheme predicts lower centerline velocity immediately following the 

potential core and the trend continues for almost the entire length investigated.  

The results from the ε−k  scheme compare well with Eq. (2.12b). 

 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 20 40 60 80 100

Simulated Results
Equation (2.12b)

o

m

u
u

( ) dxx +  

Circular Jet 

Fig. 2.10: Centerline Velocity Decay of Plane Jet ( k ε−  Scheme) 
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Fig. 2.11: Centerline Velocity Decay of Plane Jet (RNG Scheme) 

 

 Eq. (2.13) is used to test the similarity characteristics of the longitudinal 

velocity profiles obtained from the two turbulent closure schemes.  Figs. 2.12 and 

2.13 show the velocity profiles from the ε−k  and RNG schemes, respectively.  

Although the overall agreement of the velocity profiles at different locations is 

satisfactorily predicted by the two schemes, the RNG scheme shows a 

discrepancy in predicting the velocity profile immediately following the potential 

core. 
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Fig. 2.12: Similarity of Longitudinal Velocity ( k ε−  Scheme) 
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Fig. 2.13: Similarity of Longitudinal Velocity (RNG Scheme) 
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 The radial velocity profiles at different locations obtained using ε−k  and 

RNG schemes are compared with the vertical velocity profile given by  

Tollmien’s solution up to xr  of 3.1 (Abramovich, 1963) in Figs. 2.14 and 2.15, 

respectively.  Although both schemes perform well in predicting the vertical 

velocity profiles, the results from the ε−k  scheme are slightly better. 
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Fig. 2.14: Similarity of Vertical Velocity ( k ε−  Scheme) 
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Fig. 2.15: Similarity of Vertical Velocity (RNG Scheme) 

 

 The kinetic energy per unit mass predicted by the two schemes at 

 is compared with the experimental data of Wygnanski and Fiedler 

(1969).  The comparisons for the 

/ 61.5x d =

ε−k  and RNG schemes are shown in Figs. 2.16 

and 2.17.  Though both schemes perform poorly in predicting the kinetic energy 

per unit mass, the ε−k  scheme performs better on average than the RNG 

scheme. 

 For the circular turbulent jet, the ε−k  scheme clearly performs better for 

predicting the growth rate and the decay of the centerline longitudinal velocity.  

Both schemes adequately predict the similarity of longitudinal and radial velocity 

profiles at different locations along the jet.  However, the two schemes, especially 

the RNG scheme, are unable to predict the kinetic energy per unit mass profile. 
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Fig. 2.16: Profile of Turbulent Kinetic Energy ( k ε−  Scheme) 
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Fig. 2.17: Profile of Turbulent Kinetic Energy (RNG Scheme) 
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Summary and Conclusions 

 
 The ε−k  and RNG schemes, employed in a three-dimensional turbulent 

flow model (FLOW-3D), with standard coefficients are evaluated for predicting 

the characteristics of both the free plane and circular turbulent jets.  In particular, 

the growth rate, the decay of the centerline longitudinal velocity, the similarity of 

longitudinal and vertical velocity profiles at different locations along the jet, and 

profiles of kinetic energy per unit mass are compared with the available 

experimental data and theoretical analysis. 

The results show that the ε−k  scheme provides a better estimation of growth 

rates and decay of the centerline longitudinal velocity both for plane and circular 

turbulent jets.  Both schemes satisfactorily predict the similarity of longitudinal 

and vertical or radial velocity profiles, however, the ε−k  scheme provides 

slightly better results.  The estimation of kinetic energy per unit mass by both 

schemes incurs appreciable error especially in the case of the circular jet.  From 

the simulation results of ideal circular and plane turbulent jets, it is clear that the 

ε−k  turbulent closure scheme with standard coefficients, although simpler, can 

be used to effectively predict the characteristics of plane and circular turbulent 

jets. 
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 CHAPTER 3 
MODELING SUBMERGED HYDRAULIC JUMP  

 
 
 

Hydraulic jumps (free and submerged) are commonly used for energy 

dissipation downstream of spillways and sluice gates.  These flow features also 

exist in natural streams, especially in mountainous regions and downstream of 

free overfalls.  Submerged jumps are also common features downstream of 

curtain walls within pump intakes.  The energy dissipation in hydraulic jumps 

occurs through the formation of a turbulent shear layer observed as a large roller.  

A hydraulic jump forms when flow changes from the upstream supercritical state 

to the downstream subcritical state.  The depths immediately before and after the 

free hydraulic jumps are called sequent depths.  Given the upstream or 

downstream depth, the corresponding sequent depth can be determined using 

Ballenger’s equation, which is based on the momentum conservation principle 

across a hydraulic jump.  A free hydraulic jump forms when subcritical sequent 

depth occurs downstream of the supercritical region.  The roller is on the water 

surface and unsubmerged.  If the downstream depth is greater than the sequent 

depth required for the supercritical flow immediately downstream of a sluice gate, 

as shown in Fig. 3.1, the inlet is drowned thus forming a submerged hydraulic 

jump with a roller that is drowned or submerged.  The submerged jump is 

characterized by a submergence factor, , and is given by S
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=                        (3.1) 

 
where  is the downstream depth and  is the subcritical sequent depth for the 

supercritical flow at the inlet (Long, 1991). 
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Figure 3.1: Definition Sketch of a Hydraulic Jump 
 

 Many researchers have investigated hydraulic jumps.  However, Rouse 

(1958) was the first to measure the turbulence structure within a free hydraulic 

jump using a hot wire technique.  The experimental results showed that 

turbulence was generated rapidly in the first half length of the roller and was 

dissipated a short distance downstream.  The turbulence data measured were then 

used to integrate the momentum and energy equations over a control volume to 

determine various flow characteristics, such as surface profile and jump length.  

Madsen and Svendsen (1983) also developed an integral method to model free 

hydraulic jumps using an algebraic turbulence closure scheme.  A simplified 

ε−k  model was also presented but an algebraic closure scheme was found to be 

just as accurate.  The results showed that the surface profile was not sensitive to 
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the form of the velocity profile assumed and that the smaller the upstream Froude 

number the steeper the hydraulic jump.  Rajaratnam (1965) showed that the 

velocity profiles below the roller, in both submerged and free jumps, resembled 

those of a turbulent wall jet under an adverse pressure gradient.  Long (1991) 

performed experiments on submerged hydraulic jumps downstream of a sluice 

gate and measured mean and turbulent flow characteristics using a Laser Doppler 

Velocimeter (LDV).  The measured data were compared to that predicted from a 

two-dimensional flow model.  The flow model with the standard ε−k  scheme 

was developed using an offset control volume method.  By using this 

computational model, Long (1991) made turbulence part of the predictive solution 

instead of an assumption as with the most previous integral techniques.  Long 

(1991) found that the recirculating region of the jump was three dimensional and 

the ε−k  model results over predicted the water surface profiles at higher inlet 

Froude numbers in this region.  It was reported that the normal turbulent stress in 

the longitudinal direction and the reverse flow velocities were underestimated by 

the ε−k  model.  Gunal and Narayanan (1998) used a two dimensional flow 

model with a ε−k  turbulent closure scheme to simulate submerged hydraulic 

jumps.  The model results were compared to the experimental data of Long 

(1991).  The two dimensional model was developed using a boundary-fitted 

coordinate system to map the complicated boundaries of a submerged hydraulic 

jump onto a rectangular computational plane.  Gunal and Narayanan (1998) 

considered the prediction of turbulent normal stress in the longitudinal direction 

to be poor when compared with experimental data and was attributed to the 
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assumption of isotropic normal stresses by the ε−k  model.  The data of turbulent 

normal stress in the vertical direction and shear stress showed better agreement 

with the experimental data in the downstream portion of the jump. 

With advances in computer technology, the use of two- and three-

dimensional flow models to investigate complicated turbulent flow problems is 

becoming increasingly feasible.  One of the major components of these models is 

the turbulent closure scheme.  In recent years, the Renormalized Group (RNG) 

ε−k  turbulent closure scheme has been found to model the shear flows better 

than the original ε−k  scheme (Bischof et al., 2003).  In this study, the accuracy 

of the ε−k  and RNG turbulent closure schemes employed in a three-dimensional 

flow model is assessed in simulating the submerged hydraulic jump.   

 

Experimental Setup and Computational Model 

The experimental results of Long (1991) are used for validating the 

simulated results obtained from a three-dimensional flow model where ε−k  and 

RNG turbulent closure schemes with standard coefficients are employed.  The 

geometry and numerical mesh are copied as closely as possible from Long (1991).  

The computational model Flow-3D was used to simulate various scenarios of 

submerged hydraulic jump.  A more in-depth description of the computational 

model is given in Chapter 2.  However, it should be mentioned here that a 

modified volume of fluid method is used by the model to predict the location of 

the free surface during the solution.   
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The simulations were performed using a horizontal rectangular channel as 

used in laboratory tests.  The channel was 7.5 m long, 0.467 m wide and 0.515 m 

deep.  A diagram of the computational mesh used is given in Appendix F.  Three 

different flow geometries were examined.  The gate opening, , the inlet Froude 

number, 

1y

111 gyuF = , and downstream flow depth, , were varied for each 

case.  The upstream boundary condition was a uniform inlet velocity, , and the 

downstream boundary condition was the tailwater depth, , as measured by 

Long (1991).  Mean and turbulent flow quantities were measured using a Laser 

Doppler Velocimeter by Long (1991) in the vertical plane of 

ty

1u

ty

0.36z w =  or 168 

mm from the river right wall, where z  is the distance measured from the right 

wall and  is the width of the channel.  The flow parameters of each test are 

shown in Table 3.1. 

w

 

Table 3.1: Flow Conditions for Simulated Tests 
Test 

Number 1y  (mm) 1u  (m/s) ty  (mm) 1F  S  

1 25 1.58 187 3.19 0.85 
2 25 2.72 299 5.49 0.63 
3 15 3.14 206 8.19 0.24 

 

The computed and measured quantities compared are normalized 

longitudinal velocity profiles, vertical velocity profiles, vertical profiles of 

turbulent kinetic energy per unit mass,  and maximum longitudinal velocity along 

the length of the channel.  Comparisons of water surface profiles are also 

presented.  The velocities are normalized with , kinetic energy with  and the 1u 2
1u
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lengths with .  Relative error plots of representative locations are given in 

Appendix E. 

1y

 
Discussion of Results 

The computed and measured water surface profiles for the three tests are 

shown in Figs. 3.2, 3.3, and 3.4, respectively.  The ε−k  and RNG schemes 

provide similar results for the water surface profiles for the three tests.  The 

difference between the computed and measured water surface profiles increases as 

the inlet Froude number increases.  The large dip shown in the experimental 

results of test 3 is not captured by either model; however the RNG results show a 

more defined dip than the ε−k  results.  It was mentioned by Long (1991) that 

the measurements of water surface profiles with a point gauge at higher inlet 

Froude numbers were not as accurate due to water surface fluctuations (as much 

as 10 mm in some cases).  The water surface levels downstream of the 

recirculation zones are accurately predicted in all three cases.  
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Figure 3.2: Water Surface Profile for  

Test 1 ( 1 3.19, 0.85F S= = ) 
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Figure 3.3: Water Surface Profile for  

Test 2 ( 1 5.49, 0.63F S= = ) 
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Figure 3.4: Water Surface Profile for  

Test 3 ( 1 8.19, 0.24F S= = ) 
 
 

 The computed and measured profiles of maximum longitudinal velocity 

occurring in the vertical direction along the length of the jump are shown in Figs. 

3.5, 3.6, and 3.7 for the three tests.  In all three cases, the RNG scheme performs 

better than the ε−k  scheme in predicting the maximum longitudinal velocity.  

The ε−k  scheme over predicts the maximum velocity, especially for higher 

Froude numbers. 
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Figure 3.5: Maximum Longitudinal Velocity for  

Test 1 ( 1 3.19, 0.85F S= = ) 
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Figure 3.6: Maximum Longitudinal Velocity  

for Test 2 ( 1 5.49, 0.63F S= = ) 
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Figure 3.7: Maximum Longitudinal Velocity  

for Test 3 ( 1 8.19, 0.24F S= = ) 
 
 

Figures 3.8 – 3.13 show computed and measured longitudinal velocity 

profiles in the vertical direction at various locations along the channel.  The 

longitudinal velocities in the shear layers (zones between the gate and reverse 

velocity), are over estimated within 1x y  of 12, especially for the low Froude 

number in the first test.  This overestimation also raises the point where the 

longitudinal velocity changes from positive and negative.  The computed velocity 

profiles beyond 1x y  of 12 match the measured profiles accurately across the 

whole flow depth.  However, it is clear that the RNG scheme performs better than 

the ε−k  scheme near the bed and predicts the location and magnitude of 

maximum velocity more accurately.  The length of recirculation zone is predicted 

accurately by the both schemes. 
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Figure 3.8: Longitudinal Velocity Profiles for Test 1  
for 1x y = 2 – 18 ( 1 3.19, 0.85F S= = ) 
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Figure 3.9: Longitudinal Velocity Profiles for Test 1 

 for 1x y = 24 – 64 ( 1 3.19, 0.85F S= = ) 
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Figure 3.10: Longitudinal Velocity Profiles for Test 2 
 for 1x y = 4 – 24 ( 1 5.49, 0.63F S= = ) 
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Figure 3.11: Longitudinal Velocity Profiles for Test 2  

for 1x y = 32 – 80 ( 1 5.49, 0.63F S= = ) 
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Figure 3.12: Longitudinal Velocity Profiles for Test 3 

 for 1x y = 4 – 36 ( 1 8.19, 0.24F S= = ) 
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Figure 3.13: Longitudinal Velocity Profiles for Test 3 for  

1x y = 44 – 84 ( 1 8.19, 0.24F S= = ) 
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Next, the computed and measured results of vertical velocity profiles 

across the flow depth at various locations along the channel are shown in Figs. 

3.14 – 3.19 for the three test cases.  The computed results for the vertical velocity 

profiles do not follow the experimental data accurately near the gate ( 1x y  less 

than 24).  In some cases, computed and measured data have opposite sign in this 

region.  However, it should be realized that the magnitude of the vertical velocity 

is small within this zone.  Also, Long (1991) pointed out that there could be as 

much as 100% error in the vertical velocity measurements and the flow at the gate  

had slightly downward velocity.  These factors may contribute to large 

discrepancy between the computed and measured vertical velocity profiles near 

the gate.   
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Figure 3.14: Vertical Velocity Profiles for Test 1 
for 1x y = 2 – 18 ( 1 3.19, 0.85F S= = ) 
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Figure 3.15: Vertical Velocity Profiles for Test 1  
for 1x y = 24 – 48 ( 1 3.19, 0.85F S= = ) 
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Figure 3.16: Vertical Velocity Profiles for Test 2 

for 1x y = 4 – 24 ( 1 5.49, 0.63F S= = ) 
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Figure 3.17: Vertical Velocity Profiles for Test 2  

for 1x y = 32 – 80 ( 1 5.49, 0.63F S= = ) 
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Figure 3.18: Vertical Velocity Profiles for Test 3  

for 1x y = 4 – 36 ( 1 8.19, 0.24F S= = ) 
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Figure 3.19: Vertical Velocity Profiles for Test 3 

for 1x y = 44 – 84 ( 1 8.19, 0.24F S= = ) 
 
 

Comparisons of computed and measured vertical profiles of kinetic energy 

per unit mass at different locations along the channel length are shown in Figs. 

3.20 – 3.25.  Near the gate, the computed locations of maximum kinetic energy 

are higher than the measured locations, although, the computed and measured 

kinetic energy profiles show similar trend.  In the downstream region, the 

computed kinetic energy profiles are accurately predicted by the two turbulent 

closure schemes throughout the whole depth. 
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Figure 3.20: Turbulent Kinetic Energy Profiles for  
Test 1 for 1X Y = 2 – 18 ( 1 3.19, 0.85F S= = ) 
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Figure 3.21: Turbulent Kinetic Energy Profiles for 
 Test 1 for 1X Y = 24 – 64 ( 1 3.19, 0.85F S= = ) 
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Figure 3.22: Turbulent Kinetic Energy Profiles for 

 Test 2 for 1X Y = 4 – 24 ( 1 5.49, 0.63F S= = ) 
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Figure 3.23: Turbulent Kinetic Energy Profiles for 

 Test 2 for 1x y = 32 – 80 ( 1 5.49, 0.63F S= = ) 
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Figure 3.24: Turbulent Kinetic Energy Profiles Profiles for 

Test 3 for 1x y = 4 – 36 ( 1 8.19, 0.24F S= = ) 
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Figure 3.25: Turbulent Kinetic Energy Profiles for 

Test 3 for 1x y = 44 – 84 ( 1 8.19, 0.24F S= = ) 
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Conclusions 

 
ε−kThe accuracy of the  and RNG turbulent closure schemes (with 

standard coefficients) in modeling a submerged hydraulic jump is assessed by 

comparing the computed mean and turbulent flow properties with the measured 

data of Long (1991).  A three-dimensional flow model, Flow-3D, which has 

options for these two closure schemes is used to simulate three different cases of 

submerged hydraulic jump.  The three test cases involve increasing Froude 

number and reducing submergence ratio.  The computed water surface profile is 

accurately predicted by both schemes for the low Froude number and high 

submergence.  However, the computed results over predict the measured water 

surface profiles for the higher Froude numbers.  In all cases, the water surface 

profiles downstream of jumps are predicted accurately by both schemes. 

The location and magnitude of maximum longitudinal velocity is 

predicted more accurately by the RNG scheme.  Also the RNG scheme provides 

better estimate of the longitudinal velocities near the bed.  The velocities in the 

shear layer above the gate and the depths at which the reverse velocities begin are 

over predicted by both schemes, especially for the lowest Froude number.  The 

computed longitudinal velocity profiles are predicted accurately over the whole 

depth beyond 1x y  of 12.  The magnitude and longitudinal extent of the reverse 

velocities are computed accurately by both schemes. 

The accuracy of the computed vertical velocity profiles could not be 

ascertained due to measurement errors and downward velocity component at the 

inlet.  The computed kinetic energy per unit mass profiles in the vertical direction 
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agrees well with the measured data downstream of the jump.  Near the inlet, 

although the trend is computed accurately, the magnitude of the computed kinetic 

energy and its location above the bed are higher than the measured data. 

The comparison the ε−k  and RNG turbulent closure schemes for the 

submerged hydraulic jump shows that RNG scheme performs better in predicting 

the mean flow properties of the flow.  Both schemes perform similarly in 

predicting the turbulent flow properties.  In general, the three-dimensional model 

performs better in predicting turbulent kinetic energy per unit mass and reverse 

velocities compared to the two-dimensional models used previously. 

 52



 

 CHAPTER 4 
 NUMERICAL SIMULATION OF FLOW  
DOWNSTREAM OF LOCK AND DAM 
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A lock and dam structure is built for creating a reservoir and producing 

hydroelectricity while allowing movement of barge tows across the dam.  

Navigation is a major part of river usage throughout the world and provides 

economical means for transport of goods.  However, flow releases from either the 

spillway or the power generating units of the dam may have an adverse effect on 

navigation, especially barge tows moving upstream.  The J. H. Overton Lock and 

Dam located in the Red River, Louisiana, is shown in Fig. 4.1 as an example of a 

typical lock and dam structure.  The major features downstream of a lock and dam 

structure include the inside wall or river wall (a rock pile in this case), the outside 

or guide wall, and the bed topography.  The rock pile divides the channel into 

two, the left channel acts as an approach to the lock while the flow from the dam 

moves down the main channel on the right.  A guide wall is located to the left of 

the rock pile and defines the other boundary of the approach channel to the lock.  

Under certain flow and water surface level conditions an eddy, and in some cases 

a series of eddies may form at the left side of the main channel near the entrance 

to the approach channel (Bravo, 1989; Khan and Wang, 2001).  For example, the 

J. H. Overton Lock and Dam located in the Red River, Louisiana, has been 

plagued with navigation problems.  The rotating current encountered by barge 

tows approaching the lock and dam have caused numerous delays and accidents 



 

 

(some fatal).  If the reverse flow is strong enough, sediment may be moved and 

deposited near the mouth of the lock entrance and can cause barge tows to run 

aground. 
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Figure 4.1:  Layout of the J. H. Overton Lock and Dam. 

 

The flow pattern downstream of a lock and dam structure can be 

investigated using physical models or computational models.  Since each lock and 

dam structure has a unique bed topography, width of the approach channel, width 

of the main channel, length of the inside and outside walls bounding the approach 

channel, and outflow conditions from the dam, a physical model study is required 

for each scenario.  Thus, it is necessary to study the flow pattern downstream of 

each lock and dam structure through a physical model or a computational model.  

A computational model that can accurately predict the flow pattern downstream 
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of a lock and dam can prove useful both during the design phase of a new 

structure and for the assessment of flow conditions downstream of existing 

structures.  In addition, a computational model can be used to investigate the 

impact of the proposed training structures that may be employed to improve the 

flow pattern. 

Bravo (1989) performed a detailed set of laboratory experiments on a 1:70 

scale model of a lock and dam structure with gated spillway and powerhouse 

units.  Flow patterns for various configurations of outflow and main channel 

width downstream of the structure were investigated.  The impact of flow on the 

maneuverability of a barge tow model was also quantified.  Various flow training 

structures were utilized to improve the flow conditions in the vicinity of the 

approach channel.  Bravo and Holly (1996) reported a two dimensional, depth-

averaged, turbulent flow model for simulation of flow conditions downstream of a 

lock and dam structure.  The turbulent eddy viscosity was approximated using 

two different methods.  As a first method, a constant eddy viscosity value was 

specified for the whole domain; a depth-averaged ε−k  scheme (two-equation 

model) was used as a second method.  Both methods were found to be accurate 

with respect to the size and shape of the major recirculation zone.  However, the 

magnitude of the reverse flow was not computed accurately (Bravo, 1989).  Bravo 

and Holly (1996) preferred the use of ε−k  scheme as it eliminated the need of 

finding an appropriate value of eddy viscosity for every case. 

In this study, CCHE2D, a two-dimensional, depth-averaged, free surface, 

turbulent flow model is used to simulate the flow pattern downstream of a lock 
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and dam structure.  The eddy viscosity in the model is evaluated using three 

different closure schemes.  The turbulent closure schemes evaluated are the depth-

averaged parabolic eddy viscosity scheme, mixing length scheme, and ε−k  

scheme.  The computational model with various closure schemes is verified using 

the physical model data reported by Bravo and Holly (1996).  The model is then 

used to simulate flow downstream of J. H. Overton Lock and Dam located in the 

Red River, Louisiana. 

 

Governing Equations 

The two-dimensional, depth-averaged mass and momentum conservation 

equations used in the CCHE2D model are 

0h hu hv
t x y

∂ ∂ ∂
+ + =

∂ ∂ ∂
                                                                                (4.1) 

1 1 xyxx bx
cor

hhu u uu v g f
t x y x h x h y h

ττ τη
ρ ρ ρ

∂∂∂ ∂ ∂ ∂
+ + + = + − +

∂ ∂ ∂ ∂ ∂ ∂
v             (4.2) 

1 1yx yy by
cor

h hv v vu v g f
t x y y h x h y h

τ τ τη
ρ ρ ρ

∂ ∂∂ ∂ ∂ ∂
+ + + = + − +

∂ ∂ ∂ ∂ ∂ ∂
u             (4.3) 

where  is the depth of flow,  and  are the depth-averaged velocities in the h u v x  

and  directions, y x  and  are coordinate directions, t  is time, y ρ  is the density 

of water,  is the gravitational acceleration, g η  is the water surface elevation from 

a reference level, xxτ  and yyτ  are the normal stresses in the x  and  directions, y

xyτ  and yxτ  are the shear stresses in the x  and  directions, y bxτ  and byτ  are the 

bed shear stresses in the x  and  directions, and y corf  is the Coriolis parameter. 
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 The turbulent normal and shear stresses are evaluated using Boussinesq’s 

assumption as follows 

2xx t
u
x

τ ρν ∂
=

∂
                                                                                        (4.4) 

2yy t
v
y

τ ρν ∂
=

∂
                                                                                        (4.5) 

xy yx t
u v
y x

τ τ ρν
⎛ ∂ ∂

= = +⎜ ∂ ∂⎝ ⎠

⎞
⎟                                                                      (4.6) 

where tν  is the depth-averaged turbulent  kinematic eddy viscosity (eddy 

viscosity). 

 

Turbulent Closure Schemes 

 Three different turbulent closure schemes are used to evaluate the depth-

averaged turbulent eddy viscosity.  The first turbulent closure scheme is based on 

the assumption of a parabolic vertical distribution of eddy viscosity (assuming a 

logarithmic velocity distribution), the depth-averaged eddy viscosity is given by 

*0.17t u hν κ=                                                                                          (4.7) 

where  is the von Karman constant and  is the bed shear velocity.  A depth-

averaged mixing length scheme, as given by Rodi (1984), is modified as a second 

turbulent closure scheme and is given below

 

κ *u

0.52 2 22
2 *2 2 2t

uu u v v
x y x y h

αν
κ

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ⎛ ⎞⎛ ⎞⎢ ⎥= + + + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦
                    (4.8) 
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where  is the depth-averaged mixing length (equal to 0.267 hκ ).  The last term 

in the equation is added to retrieve the depth-averaged eddy viscosity value in 

cases where velocity gradients are zero and accounts for the turbulence generated 

from the bed.  The coefficient α  is chosen to retrieve Eq. 4.7 when the velocity 

gradients are zero.  The variation of mixing length from the solid boundary is 

assumed to be parabolic (Jia and Wang, 1998).  At the solid boundary the mixing 

length is zero and increases with the distance from the wall to a maximum value 

of  (a depth-averaged mixing length value assuming logarithmic velocity 

profile in vertical direction). 

0.267 hκ

 The last turbulent closure scheme investigated is the depth-averaged ε−k  

scheme.  It is a two-equation model, the equations, as given by Rodi (1984), are 

described below 

t t
h kV

k k

k k k k ku v P P
t x y x x y y

ν ν
ε

σ σ
⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂

+ + = + + + −⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
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where 

 
2 22

2 2h t
u v u vP
x y y x

ν
⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞⎢= + + +⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

⎥                                          (4.11) 

3 4
*

2;kV k V
uP C P C
h h

ε ε= = *u                                                                (4.12) 
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1 6 1 4
23 2 3 4; 3.6k

h hC C C
n g n g

Cε ε= = µ                                            (4.13) 

2
t

kCµν
ε

=                                                                                            (4.14) 

n  is the Manning’s roughness coefficient,  is the resultant shear velocity based 

on bed shear stresses 

*u

bxτ  and byτ , and 1 2, , , ,k C C Cε ε ε µσ σ  are empirical 

constants and are given by Rodi (1984) as 1.0, 1.3, 1.44, 1.92, and 0.09, 

respectively. 

 

Numerical Scheme 

 The CCHE2D model employs the efficient element, implicit, numerical 

scheme to solve the momentum equations.  The scheme requires a quadrilateral, 

non-orthogonal, structured mesh system.  A diagram of the computational mesh 

used is given in Appendix F.  A working element is formed around each node and 

consists of a central node (the node at which the variables are calculated) and 

eight surrounding nodes.  Quadratic interpolation functions are used to 

approximate the variation of variables and its derivatives.  The continuity 

equation is solved for water surface elevation by drawing a control volume around 

the central node of each element and using the control volume approach to 

approximate the mass fluxes entering and leaving the control volume.  The 

method guarantees mass conservation through the computational domain.  

Complete details of the scheme are given by Wang and Hu (1992) and Jia and 

Wang (1999). 
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Model Validation 

 
 The CCHE2D model with three turbulent closure schemes is validated 

against the measured velocity in a physical model study of a lock and dam 

(geometric scale ratio of 1:70) conducted by Bravo (1989).  The setup of the test 

is shown in Fig. 4.2.  The complete details of the test (labeled as A-A-6-9-400-0) 

are provided by Bravo (1989).  A spillway 146.3-m (480-ft) long is located in the 

middle of the channel at the upstream end.  The spillway crest is at 18.29-m (60-

ft) elevation and the base of the spillway is at 13.41-m (44-ft) elevation.  There 

are 6 power generating units at the right side of the spillway and 2 power 

generating units at the left side of the spillway.  Each unit is 18.29-m (60-ft) wide 

and 9.14-m (30-ft) high.  The downstream trapezoidal channel is 121.92-m (400-

ft) wide at the base.  Two walls are located at the left side of the channel.  The 

inside wall separates the main channel from the lock and is 249.94-m (820-ft) 

long and the outside wall is 432.82-m (1,420-ft) long.  The channel bed elevation 

and side slope of the channel walls are shown in Fig. 4.2. 
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Figure 4.2: Layout of the Physical Model 

 

 At the upstream end, a flow rate of 652.93 cubic meters per second 

(23,058 cfs) was prescribed and was equally divided between the first two power 

units to the right of the spillway.  A tail gate was used to control the downstream 

depth and was set at 2.74 m (9 feet).  The channel bed and side walls were 

finished with cement mortar and Strickler’s friction coefficient of 40 was used. 

 Three major recirculation zones (eddies) were observed in the physical 

model study.  The first recirculation zone spanned across the entrance to the lock, 

the second eddy developed upstream of the first in the river near the inside wall, 

and the third eddy formed to the right of the discharging power units.  The length 

of the first eddy measured from the downstream end up to the end of the inside 

wall was 165 m and the maximum reverse velocity was found to be 0.8 m/s.  The 

velocity profiles were measured across the channel at three locations along the 

length of the channel.  The locations of the measured velocity profiles are shown 

in Fig. 4.2. 
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The flow rate at the upstream end and the flow depth at the downstream 

end are applied to simulate the flow condition in the channel using the depth-

averaged model.  The Manning’s roughness coefficient of 0.013 is used for the 

specified channel surface.  The simulated velocity profiles using the three 

turbulent closure schemes are compared to the measured velocity profiles in Figs. 

4.3, 4.4 and 4.5.  The results show that the depth-averaged parabolic eddy 

viscosity scheme performs poorly in predicting both the extent and magnitude of 

the reverse flow, while the depth-averaged mixing length and  ε−k  schemes 

perform satisfactorily.  At the third section downstream of the recirculation zones, 

Fig. 4.5, all three schemes provide similar results.  Figures 4.6 and 4.7 show the 

streamlines generated based on the results computed using the depth-averaged 

parabolic eddy viscosity and  ε−k  schemes, respectively.  Figure 4.6 shows that 

the eddy pattern and location are not computed accurately when the depth-

averaged parabolic eddy viscosity scheme is used. Figure 4.7 shows that the k ε−  

scheme is capable of simulating both the location and pattern of the main eddy.  

The length of the major eddy (an eddy spanning across the lock entrance) is found 

to be 170 m, which matches closely with the reported value of 165 m.  In 

addition, a clockwise eddy upstream of the main eddy and a clockwise eddy on 

the right side of the inflow are predicted.  These eddies are also reported by Bravo 

(1989).  The depth-averaged mixing length scheme provides results very similar 

to the ε−k  scheme. 
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Figure 4.3: Comparison of Velocity Files at Section 1 
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 Figure 4.4: Comparison of Velocity Profiles at Section 2 
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 Figure 4.5: Comparison of Velocity Profiles at Section 3 
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Figure 4.6: Streamlines Pattern using the Parabolic Eddy Viscosity Scheme 
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Figure 4.7: Streamlines Pattern using the −k ε  Scheme 

 

The comparison of eddy viscosity profiles from the three turbulent closure 

schemes at the three locations marked in Fig. 4.2 are shown in Figs. 4.8, 4.9, and 

4.10.  At sections 1 and 2, the eddy viscosity results from the mixing length and 

the parabolic schemes differ from the ε−k  scheme in the recirculation zones.  

However in the main flow region, all three schemes provide similar results for the 

eddy viscosity.  At section 3, the three schemes provide similar results for the 

eddy viscosity profile across the channel.  From these results it is clear that the 

ε−k  scheme should be preferred; however, in some cases other lower order 

schemes may provide similar results and prove efficient, especially where long 

river reaches are to be modeled. 

 65



 

 

0 2 4 6 8 10 12
0

50

100

150

200

250

300

350

400

450

Mixing Length
Parabolic Distribution

Eddy Viscosity (m2/s)

Y
(m

)

 

k ε− Scheme

 Figure 4.8: Comparison of Eddy Viscosity Profiles at Section 1 
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 Figure 4.9: Comparison of Eddy Viscosity Profiles at Section 2 
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 Figure 4.10: Comparison of Eddy Viscosity Profiles at Section 3 

 

Field Test 

 The aim of this field test is to quantify the flow characteristics that are 

causing navigational problems downstream of J. H. Overton Lock and Dam in the 

Red River, Louisiana.  The dam, lock channel, and the downstream channel along 

with the bed topography are shown in Fig. 4.1.  The dam is located at the 

upstream end.  The rock pile divides the channel into two, the channel on the left 

acts as an approach channel to the lock gate, while the flow from the dam moves 

down the right channel.  The upstream half of the rock pile dike is always 

exposed, while the lower half has a crest elevation of 15.24 m (50 feet) and is 

submerged for the water surface elevation considered in this study.  A guide wall 

is located to the left of the rock pile and defines the outer boundary of the 

approach channel.  Two scour holes, one immediately downstream of the rock 
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pile and another further downstream, near the left bank, can be clearly identified 

and shows the path of the main flow. 

Field observations found a recirculating flow reaching all the way 

upstream to the mouth of the lock approach channel.  Several accidents, some 

fatal, have been reported as barge tows approach the lock hugging the left bank of 

the channel.  A secondary problem is created by sediment build up in the 

quiescent zone and has caused barge tows to run aground. 

 Two different flow scenarios were simulated using the CCHE2D model.  

In the first case called the low flow condition, a downstream water surface level 

of 16.9 m (55.4 ft) was specified and a discharge of 2265.4 cubic meters per 

second (about 80,000 cfs) at the upstream end of the channel was applied as 

outflow from the dam.  In the second case called the high flow condition, a water 

surface level of 18.38 m (60.3 ft) was specified at the downstream end and a 

discharge of 3058.22 cubic meters per second (about 108,000 cfs) was prescribed 

as an outflow from the dam.  The low flow condition reflected the worst condition 

for navigation.  The Manning’s roughness coefficient of 0.03, based on the bed 

material size, was used for the simulation in both cases.  Both the depth-averaged 

mixing length and ε−k  schemes were used to simulate the flow pattern in the 

channel. 

 The streamlines obtained from the results using the depth-averaged ε−k  

model are shown in Figs. 4.11 and 4.12 for the low and high flow conditions, 

respectively.  In both cases, a high velocity flow region through the downstream 

channel can be identified.  The streamlines show the extent of the recirculation 
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zones with the main recirculation zone extending up to the mouth of the approach 

channel.  The strength of the main eddy at five points, labeled in Figs. 4.11 and 

4.12, are investigated for the high and low flow conditions.  The five points are 

located at the same locations in the two cases.  The velocities at points 1, 2, 3, 4, 

and 5 for the low flow condition are 0.56 m/s, 0.32 m/s, 0.08 m/s. 0.06 m/s, and 

0.05 m/s, respectively.  Under the high flow condition, the velocities are 0.71 m/s, 

0.4 m/s, 0.12 m/s, 0.072 m/s, and 0.06 m/s.  Point 1 represents the maximum 

velocity in the main eddy.  It is clear that the strength of the eddy increases as the 

flow increases.  However, the length (along the flow direction) and the width 

(across the flow) of the main eddy reduce as the flow increases.  The length and 

width of the eddy being 712 m and 98 m under the low flow condition and 621 m 

and 90 m under the high flow condition. 
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Figure 4.11: Streamlines Pattern for the Low Flow Condition 
(J. H. Overton Lock and Dam) 
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Figure 4.12: Streamlines Pattern for the High Flow Condition 

(J. H. Overton Lock and Dam) 
 

 Under the low flow or worst navigation condition, the strength and size of 

the main eddy were measured with floats.  It was found that the maximum 

strength of the eddy was 0.61 m/s and it extended up to the approach channel.  In 

addition, the downstream extremity of the main eddy corresponds well with field 

observations.  The results from the present study compare well with field 

observations. 

 The results show that the eddy on the left side of the channel is the main 

cause of the navigation problems encountered.  A barge tow moving towards the 

approach channel along the left bank of the channel would suddenly experience a 

sharp velocity gradient at the junction of forward moving and recirculating flow 

zones, thus creating navigational hazard. 
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Summary and Conclusions 

 
 A two-dimensional, depth-averaged, turbulent flow model with three 

different turbulent closure schemes is used to simulate the flow conditions in 

channels downstream of lock and dams.  The major emphasis is to evaluate the 

capability of the turbulent closure schemes in modeling the recirculation zones 

that develop in the downstream channel.  The accuracy in determining the size 

and strength of the main eddy are the main parameters of validation.  The depth-

averaged parabolic eddy viscosity scheme, mixing length scheme, and ε−k  

scheme are employed in this study.  The results of the velocity profiles across the 

channel, at different locations along the channel, obtained using the three 

turbulent closure schemes are compared to the measured data from a physical 

model study of a lock and dam.  The results show that the mixing length and 

ε−k  schemes perform well in predicting the velocity profiles.  In addition, these 

two schemes accurately predict, the size, shape, and location of eddies found in 

the physical model study.  However, the eddy viscosity profiles across the channel 

in the recirculation zone, computed using mixing length scheme, differ from that 

predicted using the ε−k  scheme. 

The model is then applied to simulate flow patterns for the low and high 

flow conditions downstream of a lock and dam in the Red River, Louisiana.  The 

results, using the mixing length and ε−k  schemes, show that the main features 

of the flow in the downstream channel can be satisfactorily simulated.  The 

strength and length of the main eddy for the low flow condition compare well 

with observations made in the field.  The results show that as the flow increases 
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the strength of the main eddy increases, however the length and width of the eddy 

reduce. 

The results from the two tests conducted in this study show that the 

modified mixing length turbulent closure scheme, though simple, can be used to 

predict flow features in the channel downstream of a lock and dam.  However, the 

results are specific to this study and the applicability of the mixing length model 

must be verified against the ε−k  scheme for other applications. 
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 CHAPTER 5 
 EXPERIMENTAL MEASUREMENTS OF 

 SHALLOW NEAR BED JETS 
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 Many industries and municipalities release effluent into our lakes, streams 

and rivers.  The releases can be broadly categorized as jets.  If pollutants, in the 

form of heat or particulates, are released, some environmental regulations require 

them to be diluted within a certain distance downstream of the discharge point.  

Current dilution calculations assume that these releases mix with the ambient 

fluid and dilute in a way consistent with a free jet, or a jet in an ambient fluids of 

infinite extent.  However, most effluent discharges enter shallow streams or rivers 

where boundaries may affect these mixing characteristics.  A better understanding 

is needed of how the mixing characteristics of a jet are affected by the presence of 

boundaries.  A large body of research has been performed on free jets, jets near or 

at the bed (wall jets), as well as on jets at or near the surface (surface jets).  

However few researchers have looked at the influence of both boundaries 

together.  A definition sketch is shown in Fig. 5.1 of each of the four jet 

geometries.



 

 

 

Surface Jet Wall Jet 

d  
 H  

 
oy  

Shallow Near 
Bed Jet Free Jet  

Figure 5.1: Schematic of Jet Geometries in Vertical Plane 

 

 Shallow near bed jets are normally classified based on their submergence 

ratio, H d , offset ratio, dyo , and entrance Froude number, where H  and  

are defined in Fig. 5.1.  One interesting property of these jets is their attachment 

to one boundary or the other causing the point of maximum velocity to deviate 

from the nozzle centerline.  Johnston and Halliwell (1986) describe different 

attachment regimes that may be classified broadly as surface and bed attachment.  

In some cases both regimes may exist for identical tail water conditions.  Large 

submergence ratios produce bed attached jets while very shallow jets attach to the 

surface.  Johnston (1985) performed experiments at offset ratios of 3, 4 and 5 for 

Froude numbers of 4 – 32 and submergence ratios of 1 – 11.  Using these results a 

map of attachment regimes based on submergence and Froude number was 

oy
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produced.  The results also showed that shallow jets produce less dilution than 

free jets at the same location.  In a later study on buoyant shallow jets, Johnston 

and Volker (1992) included some results on non-buoyant shallow jets close to the 

nozzle 12<dx .  They found that the potential core length is shorter than that of 

free jets. They also found linear growth rates of 0.107 for both the vertical and 

horizontal directions, which are higher than the free circular jets. Other 

researchers have examined shallow jets for the limiting cases of wall jets and 

surface jets in shallow water.   

Ead and Rajaratnam (2002) performed experiments on plane wall jets 

entering shallow water.  In this case the offset ratio is zero and the shear layer 

grows, eventually reaching the surface, creating a recirculation zone above the 

nozzle.  The length of this recirculation zone was found to be dependant on the 

submergence ratio and Froude number similar to the surface regime described by 

Johnston (1985).  Two stages were identified for the wall jet.  The growth rate 

was found to be linear in both stages; however, the growth rate was higher in the 

second stage.  The growth rate in the first stage was 0.076 and was higher than a 

deeply submerged wall jet. The maximum velocity decay rate was higher than 

that of a plane wall jet in deep water.  The decay rate of maximum velocity was 

also higher in the second stage (Ead and Rajaratnam, 2002).   

The limiting case of a plane surface jet in shallow water was examined by 

Swean and Ramberg (1989).  In this case the submergence ratio is large because 

the jet nozzle is located at the surface.  They developed a method to determine if 

the jet was being affected by the bed. They assumed that in a finite depth some 
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momentum must be lost to the induced outer flow and therefore at some point this 

momentum loss must become unacceptable and deviations in the velocity scale 

would show a breakdown of the jet.  If the acceptable momentum loss, , was 

limited to 10% then a usable experiment length  or length in which the jet 

could be considered as a free surface jet could be determined from the following 

relationship 
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 Many researchers have also examined jets affected by only one boundary, 

such as wall jets and near bed jets.  In a wall jet, the fluid enters the ambient 

adjacent to the floor and creates a boundary layer region below the plane of 

maximum velocity.  Above this plane, a shear layer, or free mixing region is 

created entraining fluid into the jet (Law and Herlina, 2002).  The maximum 

velocity  may no longer occur along the nozzle centerline but at some distance 

from the nozzle centerline.  Circular wall jets are three dimensional but still 

exhibit self-similar properties (Rajaratnam and Pani, 1974). 

mu

mz

 For circular wall jets and circular near bed jets, the growth rate parallel to 

the bed has been found to be about 5 times greater than the growth rate 

perpendicular to the bed. The growth rate of a circular wall jet in the 

perpendicular direction has been found to be about 0.042 (Rajaratnam and Pani, 

1974; Law and Herlina, 2002).  Experiments by Padmanabham and Gowda 

(1991) using smooth polished teak wood as a bed also found this value to be 
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between 0.04 and 0.049 for different heights of the jet off the bed.  The growth 

rate of circular wall jets parallel to the bed has been found to be 0.2 (Rajaratnam 

and Pani, 1974), in good agreement with the 0.21 value found by Law and 

Herlina, 2002.  Both growth rates remain constant.  Tachie and Balachandar 

(2004) found that while increasing roughness increases the boundary layer 

thickness, it has little effect on the growth rate of the jet.  However, Wu and 

Rajaratnam (1990) found that while the parallel growth rate is unaffected, the 

perpendicular growth rate is increased by a factor of ( )0.02 sk d , where sk  is the 

roughness of the bed.  In the experiments of Law and Herlina (2002), a 

rectangular region normal to the direction of flow was found in the jet where the 

half velocity width parallel to the bed remained constant for some distance away 

from the bed.  They found that in this region the momentum flux was completely 

balanced by skin friction.  After a downstream distance of 25 , the velocity 

profiles parallel to the bed were self-similar and had higher velocities.  Therefore, 

a Lorentzian distribution was fit to the data (Law and Herlina, 2002).  Their 

results also described the centerline velocity decay rate as, 

d

 9.23
n

m

o

u x
u d

−
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (5.2) 

where  is an exponent and the value of 9.23 was found to decrease with an 

increase in bed roughness (Wu and Rajaratnam, 1990).  The  value ranges 

between 1.0, found by Rajaratnum and Pani (1974), to 1.29 found by 

Abrahamsson (1997).   

n

n
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Davis and Winarto (1980) studied circular jets near a bed for offset ratios 

( dyo ) of 0.5, 1.0, 2.0, and 4.0.  They found that the decay of maximum velocity 

was similar to that of a free jet with an  value of 1.15 which agreed with the 

results of Padmanabham and Gowda (1991). Results also showed that velocity 

profiles normal to the bed had higher local velocities near the bed than a free jet in 

the early stages of the jet and lower velocities further downstream.  They 

attributed the higher velocities to reduction in mixing in the vertical plane and the 

lower velocities to the thickening of the turbulent boundary layer near the bed.  

They also found growth rates for velocity profiles parallel and perpendicular to 

the bed.  The growth rates parallel to the bed were 0.32, 0.33, 0.29, 0.23 for offset 

ratios of 0.5, 1, 2, and 4, respectively, making them 2.7 – 3.9 times larger than the 

growth rate of a free jet.  The growth rates perpendicular to the bed were 0.037, 

0.036, 0.039, and 0.046, respectively, making them 5 – 9.2 times smaller than 

those measured parallel to the bed.  This is a clear indication that the mixing 

becomes greater parallel to the plane as the jet transitions from a circular free jet 

to a wall jet (Davis and Winarto, 1980). 

n

While wall jets interact with a solid boundary, surface and shallow jets 

interact with a free surface.  This boundary can move and deform with the jet 

making surface waves and velocities that affect the jet behavior.  Experiments 

performed by Rajaratnam and Humphries (1984) on plane and circular, non-

buoyant, surface jets found that the centerline velocity decay for both nozzle 

geometries was slower than that in a free jet.  The plane surface jet results showed 

the maximum velocity located at the free surface.  The plane surface jet maximum 
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velocity decay was described by Eq. (2.12a) with a value of  equal to 3.1 

instead of 3.5 as suggested for a free jet.  The growth rate of the plane surface jet 

was found to be 0.07, about 72% of a free plane jet.  This growth rate is similar to 

that of a deeply submerged plane wall jet.  The circular jet measurements showed 

the location of the maximum velocity to be below the free surface.  The growth 

rate perpendicular to the surface was found to equal 0.09 similar to that of a 

circular wall jet, while the growth rate parallel to the free surface was 0.044, 

about half that of a wall jet.   

3A

Similar results were found by Anthony and Willimarth (1992) for a round 

jet beneath a free surface.  These researchers used a three component Laser 

Doppler Velocimeter (LDV) to measure not only mean flow characteristics but 

also turbulent velocity fluctuations.  The centerline of the 0.635 cm nozzle was 

located at 1.27 cm below the free surface.  Similar to Rajaratnam and Humphries 

(1984), they found that the growth rate parallel to the free surface was much 

greater than in the perpendicular direction.  Also, at an dx  of 32, the turbulence 

was affected by the free surface, with the maximum velocity shifting toward the 

free surface.  The streamwise and transverse velocity fluctuations increased 

toward the free surface while the vertical velocity fluctuations were dampened.  

The authors attributed this to vortex filaments terminating at the free surface.  The 

results also showed that in a shallow layer near the free surface, the jet widened 

and a shallow surface current formed.  This surface current was much wider than 

the jet below it with much less turbulent mixing.  Waves propagating at an angle 

outward from the jet in the capillary gravity range were also observed and the 
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authors attributed the fluctuations in turbulence to the orbital velocities in the 

wave field.   

 Experiments more specifically focused on the free surface interactions of a 

submerged circular jet were performed by Madnia and Bernal, (1994).  Using a 

shadowgraph flow visualization technique along with hot film velocity 

measurements they were able to take free surface curvature measurements for 

submergence ratios of 1, 1.5, 2.5 and 3.5.  In the near field, vortex ring structures 

were observed, which terminated perpendicular to the surface farther downstream.  

In this region surface waves formed and propagated away from the jet 

symmetrically.  The propagation angle relative to the downstream flow for a 

given depth increased as the initial jet velocity was increased.  As the 

submergence of the jet increased, the vortex generated waves moved downstream 

until their formation was inhibited by the surface current.  Velocity measurements 

taken in the jet found that the maximum velocity decay was slower than in a free 

jet and that this effect was more pronounced for smaller values of jet 

submergence.  Growth rates parallel and perpendicular to the surface were 

reported as 0.078.  Results also showed that in the farfield, the jet had twice the 

momentum of the jet initial momentum when the surface was modeled as a 

symmetry plane.  This produces a relationship similar to Eq. (2.12b) and is shown 

below 
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where  is the corresponding value of a free jet (1C 1 0.115C = ).  It was also 

suggested that the half-velocity width, b , normalized by H  instead of , be d
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measured from the free surface as opposed to the jet centerline for the 

perpendicular growth rate.  Analysis of the surface waves showed an increase and 

subsequent decrease in surface velocity.  This inhibits further wave generation 

and propagation in the downstream field. 

While little research exists on the mixing characteristics of shallow near 

bed jets, they share many common behaviors with both wall and surface jets.  In 

this study, longitudinal velocity profiles normal and parallel to the bed were 

measured.  The growth rates in normal and parallel to the bed were examined and 

compared to the growth rate of wall jets and surface jets.  The vertical profiles 

normal to the bed were analyzed using Reichardt’s hypothesis and power law. 

 

Experimental Setup 

The present experiments were conducted in a 12 ft x 12 ft basin with a 

maximum depth of 4 ft.  The water level was controlled by an adjustable 

standpipe at the far end of the basin.  Flow was provided by a constant head tank 

adjustable in one inch increments.  The jet issued into the basin through a ½ inch 

nozzle located 36 inches above the floor.  To simulate different offset ratios, a flat 

4 ft wide by 8 ft long horizontal false floor was placed at the desired level below 

the jet.  Velocity data was captured using a pitot tube with 1/8 inch outer 

diameter, mounted on a 3 axis cart with 1/16 inch precision.  The pitot tube was 

connected to a differential pressure transducer with a maximum head of 3 feet of 

water.  The output was sampled at 25 Hz for 3200 samples using Labview to 

convert the signal to an average velocity.  Calibration was performed daily 
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through the use of two standpipes with a head difference of 3 ft (maximum range 

of the transducer).  The standpipes were connected to the pressure transducer in 

such a way as to allow for zero head and 3 ft head difference.  The instrument was 

also checked for zero calibration between each horizontal and vertical profile.  A 

schematic of the experiment is shown in Fig. 5.2. 

 

Head Tank 

 

Standpipe 

Sump 

Jet Entrance
False Floor 

Figure 5.2 Schematic of Model Setup 
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The offset ratios ( dyo , Fig 5.1) examined in this experiment were 2, 3, and 4.  

The submergence ratio ( dH , Fig. 5.1) of the jet was controlled by the standpipe 

and was equal to the offset  ratio for each case.  Profiles of Longitudinal velocity 

in the horizontal (horizontal profiles) and vertical (vertical profiles) planes 

passing through the point of local maximum velocity were taken at each floor 

level with three flow rates at dx  locations of 6, 12, 16, 18, 24, 28, 34, 40 and 50.  

Table 5.1 shows the flow parameters of each experiment. 

 

Table 5.1: Experiment Parameters 
Run Number dHordyo  Re Fr 

J1 2 3.9E+04 7.0 
J2 2 5.00E+04 8.9 
J3 2 5.1E+04 9.2 
J4 3 3.8E+04 6.8 
J5 3 4.7E+04 8.4 
J6 3 5.1E+04 9.1 
J7 4 3.8E+04 6.8 
J8 4 4.7E+04 8.5 
J9 4 5.1E+04 9.1 

   

 
Results and Discussion     
 
 Horizontal and vertical profiles of longitudinal velocity were taken along 

the planes of local maximum velocity at nine dx  locations from the nozzle.  The 

jet centerline is defined as the location of the maximum velocity and the nozzle 

centerline extends in a straight line from the center of the nozzle parallel to the 

bed and perpendicular to the nozzle opening.  The velocities were normalized by 
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the local maximum velocity and the distance from the jet centerline was 

normalized by the half velocity width for the horizontal profiles as shown in Fig. 

5.3.  For the vertical profiles the  values were measured from the bed and 

normalized by the distance from the jet centerline to the bed (

y

mo yy − ) as shown 

in Fig. 5.4. 
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Figure 5.3: Definition Sketch For Horizontal Profiles 
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Figure 5.4: Definition Sketch for Vertical Profiles 
 
 

Horizontal Profiles 

The normalized horizontal velocity profiles were self-similar at all 

locations for all nine combinations of submergence and Reynolds number.  The 

distribution showed good agreement with that of a free jet profile as given by Eq. 

(2.13).  Velocity profiles at dx = 24 are shown for all 9 cases in Fig. 5.5.  The 

values showed a slight tendency of being smaller in the inner region near the 

centerline and larger than the free jet away from the center line.  Velocity profiles 

for the other eight dx  locations can be found in Appendix A. 
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Figure 5.5: Horizontal Profiles at dx = 24 

 

 Jet half width values, normalized by the nozzle diameter, for all nine 

experimental cases are shown in Fig. 5.6.  These half widths were linear with 

dx for a submergence ratio of 4 for all nine dx  locations with an average slope 

of 0.071.  For locations near the nozzle, the other two submergence ratio cases 

also followed this trend.  However, for a submergence ratio of 2, the half widths 

began to deviate at an dx  of 28.  The deviation began at dx  of 34 for the 

submergence ratio of 3.  The deviations can be divided into two regions in the 

case of dH  of 2 and 3.  Near the nozzle these regions follow the trend seen by 

the large submergence cases and change to a linear trend with a larger slope.  

Plots of these regions are shown in Figs. 5.7, 5.8 and 5.9 for submergence ratios 

of 2, 3, and 4, respectively.  It is possible that the growth rate for submergence 
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ratio of 4 may begin to deviate from the initial growth rate further downstream.  

This behavior of higher horizontal growth rate has not been reported for wall and 

surface jets. 
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Figure 5.6: Horizontal Half-Widths 
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Figure 5.7: Horizontal Half-Widths for 2=dH  
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Figure 5.8: Horizontal Half-Widths for 3=dH  
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Figure 5.9: Horizontal Half-Widths for 4=dH  

 

Decay of the maximum centerline velocity was also calculated for each case.  The 

results are shown in Fig. 5.10.  The results are slightly larger than those from a 

circular free jet beyond dx  = 24. The results from the submerged jet 

experiments of Madnia and Bernal (1994) and the wall jet results from Law and 

Herlina (2002) are included for comparison. 

 89



 

 

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60

J1 J2
J3 J4
J5 J6
J7 J8
J9 Law and Herlina (2002)
Madnia and Bernal (1994) Free Jet

o

m

u
u

dx
 

Figure 5.10: Centerline Velocity Decay 

 

Vertical Profiles 

 The vertical velocity profiles can be divided into two categories, the 

boundary layer, which occurs below the jet centerline and the mixing region, 

which occurs above the jet centerline.  At locations near the nozzle, the vertical 

profiles were self similar with an average growth rate of 0.12 and showed good 

agreement with the horizontal profiles, an example of the vertical profiles can be 

seen in Figure 5.11 for all 9 experimental cases for dx  = 12.  Velocity profiles 

for the other eight dx locations can be found in Appendix A.  The growth rates 

for the vertical profiles where the self similarity was observed are shown in 

Figure 5.12.   
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Figure 5.11: Vertical Profiles at dx = 12 
 

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0 10 20 30 40 50 60

J1

J2

J3

J4

J5

J6

J7

J8

J9

Free Jet

dx

d
b

 

Figure 5.12: Vertical Half-Widths 
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Past the point where the jet began to interact with the boundaries, the half 

width for the profile above and below the jet centerline could not determined as a 

velocity of 2mu  was not measured in the profile.  At this point a power law was 

fit to the boundary layer portion of the vertical profiles in the form of Eq. (5.4). 

( ) m

m
YA

u
u 1

=                (5.4)  

were Y  is given by Eq. (5.5). 

mo

o
yy
yy

Y
−
+

=               (5.5) 

where ,  and  are defined in Figure 5.4.  The values of ,  and the 

regression coefficient (R2) are shown below in Table 5.2. 

y oy my A m

The majority of the curve fits represent the data adequately; however, the 

values of  are not unity therefore when the jet centerline is reached, the curves 

will not predict a 

A

muu  value of unity, with the largest coefficient predicting a 

value of 1.053.  No relationship was found between  and m dx .  An example of 

the curve fit for the case of J8 is shown in Fig. 5.13.  Curve fits for the remaining 

cases can be found in Appendix B.   
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Table 5.2: Power Law Curve Fit Parameters 
x/d Test J1 J2 J3 J4 J5 J6 J7 J8 J9 

A 
m 6 
R2 

         

A 
m 12 
R2 

         

A 1.03 1.01 1.03
m 5.28 2.95 3.1416 
R2 0.951 0.993 0.988

      

A 0.99 1.00 1.02
m 5.83 4.54 4.3918 
R2 0.987 0.996 0.993

      

A 1.02 1.03 1.05 1.02 1.03 1.03
m 9.61 8.73 5.80 3.55 3.62 3.9424 
R2 0.929 0.917 0.873

   
0.995 0.992 0.990

A 1.02 1.03 1.03 0.86 0.90 1.03 1.04 1.04
m 6.70 7.27 7.64 2.19 2.46 4.65 4.90 5.3228 
R2 0.891 0.827 0.953 0.963

 
0.967 0.968 0.955 0.924

A 1.02 1.03 1.03 0.98 0.98 1.02 1.05 1.04 1.08
m 5.61 5.66 5.83 3.22 3.69 3.63 4.89 6.44 5.1034 
R2 0.965 0.874 0.961 0.986 0.973 0.994 0.863 0.893 0.743
A 1.03 1.04 1.05 1.01 1.01 1.01 1.04 1.04 1.07
m 7.21 5.65 6.11 5.31 5.31 5.41 4.36 5.20 5.6540 
R2 0.918 0.835 0.908 0.992 0.993 0.969 0.872 0.943 0.866
A 1.03 1.03 1.03 1.02 1.03 1.03 1.05 1.05 1.04
m 5.76 7.47 6.41 7.62 7.92 9.17 4.73 4.33 4.9050 
R2 0.947 0.778 0.947 0.909 0.928 0.861 0.941 0.951 0.958

*The blank shaded cell represent self-similar behavior 
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Figure 5.13: Power Law Fit for Vertical Boundary Layer Profile of J8 

 

 The locations of the local maximum velocities are shown in Fig. 5.14.  

The jet centerline deviated from the nozzle centerline for low submergence ratios.  

The large submergence ratio cases remained close to the nozzle centerline.  These 

are the same cases for which the growth rate remained linear for all dx  

locations.  The dyo = 2 cases dip toward the bed and begin to return to the 

nozzle centerline at about dx  = 34, suggesting that the jet is attaching itself to 

the bed.  Test parameters and the centerline shape for this test falls within the 

reattached bed jets regime outlined by Johnston (1985).  For ratios of dyo  = 3 

the jet centerlines deviate from the nozzle center line further downstream.  This is 

expected as the bed/surface interaction occurs further downstream for the deeper 

cases.  For experiments with  dyo  = 4 the jet centerline stays relatively close to 
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the nozzle centerline.  These cases fall into the zone of both surface and bed jets 

based on their submergence and inlet Froude number, according to Johnston 

(1985).  However, the centerline meander does not seem to support one boundary 

attachment over the other for this offset ratio. 
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Figure 5.14: Deviation of Maximum Velocity from the Nozzle Centerline 

 

 For velocity profiles above the bed in the mixing region, the free surface 

was modeled as a plane of symmetry.  Reichardt’s hypothesis for a circular jet 

(Miller and Comings, 1957) was used and the equation is given by 
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 myH += 2

where  is an integer representing the number of image jets, one in this case, n

( )λ ,  is the growth rate of a circular free jet,  is equal to 0.36 for 

circular free jets, and  is the decay rate of the local maximum velocity.   

2A 2F

4A

 An example of the symmetry solution above the jet centerline is shown in 

Fig. 5.15 using J8.  The remaining cases can be found in Appendix C. 
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Figure 5.15: Plane of Symmetry and Power Law fit for J8 
 

 Reichardt’s hypothesis has been modified in this study to report velocities 

normalized by the local maximum velocity as well as accounting for the meander 

in the jet centerline.  These modifications give better results than assuming 

constant jet spacing.  However, while the plane of symmetry solution shows good 

agreement for a few cases, it does not systematically describe the behavior above 
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the jet centerline.  The accuracy of the solution seemed to improve with 

submergence.   

 The effects of the jet on the surface were also examined qualitatively and 

are shown in Figs. 5.16, 5.17, and 5.18 for increasing submergence values.  The 

effects of increased submergence moved the beginning of the disturbance 

downstream of the nozzle.  Increased submergence also showed an increase in 

wave length of the surface waves as well a decrease in amplitude.  Wave heights 

were higher for lower values of dyo  with a maximum recorded wave height for 

J3 of approximately 0.03 inches.  The effects of Reynolds number on the wave 

field could not be distinguished due to the small range of values used in the 

experiment. 
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Figure 5.16: Photographs of Surface Disturbance for oy d  = 2 
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Figure 5.17: Photographs of Surface Disturbance for oy d  = 3 
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Figure 5.18: Photograph oy d  s of Surface Disturbance for = 4
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onclusions 

rizontal velocity profiles in the jet are self-similar and show good 

reem

elf 

milar

C

 The ho

ag ent with a free jet profile.  The growth rate in the horizontal direction was 

found to be 0.071 in the near field and matches closely with that found by Madnia 

and Bernal (1994).  The growth rates diverge from this value as the jets interact 

with the boundaries for the lower two submergence ratios.  The centerline decay 

shows good agreement with a free jet near the nozzle but the decay rate is slower 

in the far field.  This slower decay rate is indicative of a reduction in mixing.   

 The velocity profiles, in the vertical plane, near the nozzle were s

si  and showed good agreement with the horizontal profiles, however their 

growth rates were larger (0.12) than the horizontal growth rates.  In the case of 

wall or surface jets, this growth rate was usually found to be larger in the near 

field than the horizontal growth rate (Davis and Winarto, 1980).  The velocity 

profiles below the jet, away from the nozzle, were not self-similar when 

normalized by mo yy − .  However, a power law was found to fit the profiles in 

the boundary layer region of the jet.  The coefficients of the power law were not 

one and so these fits over or under predict muu at the jet centerline.  Also no 

relationship between the exponent and the distance from the nozzle could be 

determined. 

 The deviation of the jet centerlines from the nozzle centerline in the 

le

y  

direction were examined.  The jet centerlines meander around the nozz  

centerline for the case of dyo = 4.  The other two cases move toward the bed and 
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then begin to come back up toward the nozzle centerline seeming to fall into the 

reattached bed jet regime described by Johnston (1985). 

 Velocity profiles in the vertical direction for locations in the mixing 

region, away from the nozzle of the jet, were modeled by taking the surface as a 

plane of symmetry.  The model was slightly modified in this study to account for 

the jet center line meander by adjusting the jet spacing parameter λ .  The solution 

failed to systematically describe the jet behavior especially at low submergence 

ratios.  A qualitative examination of surface waves showed that the wavelength 

increased and amplitude decreased as dH  increased. 
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 CHAPTER 6 
CONCLUSIONS AND RECOMENDATIONS 

 
 

 Shear flows occur in many industrial and environmental applications.  It is 

very important to understand their behavior and mixing characteristics when 

designing outfalls into the environment.  A better understanding of the behavior 

of the computational models used when simulating these widely occurring flows 

will lead to more accurate predictions of flow behavior in the design stage 

avoiding situations like that at the J. H. Overton Dam.   
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 The ε−k  and RNG turbulence schemes are widely used to predict the 

behavior of shear flows.  When modeling free circular and plane turbulent jets, 

comparisons of the schemes’ behavior, to well documented empirical and 

analytical solutions, were made.  A summary table of the behavior of each scheme 

is shown in Tables 6.1 and 6.2 for plane and circular jets, respectively.   



 

Table 6.1: Evaluation of Scheme Performance for Plane Turbulent Jet 

 

Jet Behavior ε−k  RNG Comment 

Growth Rate G Ok 

RNG predicted higher 
values than 

the ε−k and those 
reported in the 

literature  

Centerline Velocity 
Decay G Ok 

ε−k  error magnitude 
under 0.03 for whole 
rage with RNG up to 

0.05 
Longitudinal 

Velocity Profiles G Ok RNG had high error   
(-0.5) near the nozzle 

Vertical Velocity 
Profiles Ok Ok 

RNG had high error 
near the nozzle but 
was lower than the 

ε−k  for 502 =obx  

Turbulent Kinetic 
Energy No No 

Both Over Predicted 
with the RNG error 
50% or greater than 

the ε−k  
*G = Good performance, Ok = Satisfactory performance, and No = Poor performance 
 
 

Table 6.2: Evaluation of Scheme Performance for Circular Turbulent Jet 
Jet Behavior ε−k  RNG Comment 

Growth Rate G Ok 

RNG predicted higher 
values than the ε−k  
and those reported in 

the literature  

Centerline Velocity 
Decay G No 

RNG underestimated 
values with an error as 
much as 0.3 while the 

ε−k  stayed below 
0.07 

Longitudinal 
Velocity Profiles G G  

Radial Velocity 
Profiles Ok Ok  

Turbulent Kinetic 
Energy No No 

RNG showed better 
performance in the 

inner region of the jet 
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An evaluation of the ε−k  and RNG turbulence schemes are also 

performed for the case of a submerged hydraulic jump.  Comparisons to 

experimental data were used to evaluate the performance of both schemes.  A 

summary table of the behavior of the schemes is shown below in Table 6.3. 

 
Table 6.3: Evaluation of Scheme Performance for Submerged Hydraulic Jump 

Jump  Behavior ε−k RNG Comment 
Water Surface Profile No No Overpredicted by both 

Maximum Velocity No G ε−k  over predicted in all three 
cases 

Longitudinal Velocity 
Profiles Ok G RNG better performance near the 

bed 
Vertical Velocity 

Profiles No No  

Reverse flow Region, 
(velocity magnitude and 

location) 
No No 

Both the magnitude and location 
were over predicted by both 

schemes 
Reverse Flow Region, 
(longitudinal extent) G G  

Turbulent Kinetic  
Energy Profiles No No 

Both models overestimated the 
location and magnitude of the 

maximum value 
    
 
 
 As seen from the above tables both models consistently over predict 

turbulent kinetic energy.  The different behaviors of the two models when 

modeling the turbulent jets and submerged jump can be seen in the longitudinal 

velocity profiles.  The difference can be attributed to the presence of the bed in 

the in the submerged hydraulic jump creating higher turbulent shear than seen in 

the free jets.  The better performance of the RNG model in the high shear region 

near the bed is expected as this model was designed for high shear flows.  
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However, when modeling lower shear flows the ε−k  model seems to give more 

accurate predictions. 

In the case of shear flows in natural channels, the complicated geometry 

makes the use of three dimensional computational models impractical.  In many 

cases a depth-averaged model may be used.  These depth-averaged models use 

turbulent closure schemes just like their three dimensional counter parts.  In this 

work a two dimensional depth-averaged model is used to compare three depth-

averaged turbulent closure schemes to experimental and field measurements 

downstream of a lock and dam.  The schemes are the Parabolic eddy viscosity, 

modified mixing length and depth-averaged ε−k  schemes.  The main flow 

parameters used for evaluation are the size and strength of the recirculating eddies 

as well as cross channel velocity profiles.  The results show that the mixing length 

and ε−k  schemes perform well in predicting the velocity profiles as well as 

accurately predicting, the size, shape, and location of eddies found in the physical 

model study.  However, the eddy viscosity profiles across the channel in the 

recirculation zone, computed using mixing length scheme, differ from that 

predicted using the ε−k  scheme.  The results from the two tests conducted in 

this study show that the modified mixing length turbulent closure scheme, though 

simple, can be used to predict flow features in the channel downstream of a lock 

and dam.  However, the results are specific to this study and the applicability of 

the mixing length model must be verified against the ε−k  scheme for other 

applications. 
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    While the behavior of turbulence models is important for accurate 

prediction of flow behavior, the behavior of the flow itself must be understood for 

a computational model to be developed requiring experimental measurements to 

elucidate general and specific flow behaviors.  The final portion of this research is 

an experimental study of circular shallow near bed jets.  This shear flow shares 

many commonalities to shallow jets and near bed jets.  The shallow near bed jets 

were evaluated at three different submergence levels which were equal to the 

height of the jet off the floor in each case.  Each submergence level was evaluated 

at three flow rates.  Profiles of longitudinal velocity were taken in the vertical and 

horizontal planes of the local maximum velocity.  The results showed that the 

horizontal profiles were self similar with a growth rate similar to that of a 

submerged jet.  The growth rate was linear for the large submergence case. 

However at the lower submergences, growth rates began to increase as the 

vertical expansion of the jet was affected by the boundaries and the mixing rate 

increased in the horizontal plane.  The path of the jet centerline showed that the 

jets attached themselves to the bed in agreement with previous research by 

Johnston (1985).  

Evaluation of the velocity profiles in the vertical directions showed that 

the jet transitions from a free jet to resemble a wall or surface jet.  It was found 

that the profiles in the vertical direction below the jet centerline could be modeled 

by a power law curve.  The power law fits adequately described the profile shape 

and magnitude however the condition of unity for the normalized velocity at the 

 107



 

 

jet centerline is not met.  Also no relationship was found between the fitting 

coefficients and the jets parameters.   

Above the jet the profiles were modeled by taking the surface as a plane of 

symmetry, using a modified Reichardt’s hypothesis.  The symmetry solution 

failed to systematically predict the behavior of the vertical profile above the jet 

centerline.  A qualitative examination of the surface wave field showed that as the 

submergence was increased, the wavelengths increased and the wave amplitudes 

decreased.   

The author would like to recommend future studies to further verify the 

modifications made to the mixing length model in this research.  Furthermore, 

future research in the field of shallow near bed jets should include asymmetric 

submergence and offset ratios and a larger range of Reynolds numbers.  Including 

the effects of bed roughness on the jet is also recommended.  Finally the author 

would like to recommend the simulation of shallow near bed jets, using the 

turbulence schemes evaluated in this study. 
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Appendix A  
 

Horizontal and Vertical Profiles 
 
 Below are the longitudinal velocity profiles in the horizontal and vertical 

planes of local maximum velocity for all dx  locations not shown in the text. 
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Horizontal Profile for dx  = 6 
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Horizontal Profile for dx  = 12 
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Horizontal Profile for dx  =16 
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Horizontal Profile for dx  =18 
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Horizontal Profile for dx  =28 
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Horizontal Profile for dx  =34 
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Horizontal Profile for dx  =40 
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Horizontal Profile for dx  =50 
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Appendix B  
 
 

Power Law Fits 
 
 Below are the power law fits of the vertical profiles below the nozzle for  
 
all tests not shown in the text. 
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Appendix C  
 
 

Similarity Solution 
 
 Below are the similarity solutions of the vertical profiles above the nozzle 
 
for all tests not shown in the text. 
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Appendix D 
 
 

Relative Error for Turbulent Jets 
 

 Below are relative error plots for the plane and circular turbulent jets  
 
modeled in this research. 
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Appendix E 
 
 

Relative Error for Submerged Hydraulic Jump 
 

 Below are relative error plots at representative location for the submerged  
 
hydraulic jump cases modeled in this research. 
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Appendix F  
 
 

Computational Mesh 
 

Diagrams of the computational mesh geometries used in the numerical 

simulations of this research are given below. 
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