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ABSTRACT 

 

Diabetes mellitus, the third most common disease in the world, is a chronic 

metabolic disorder caused by a failure of insulin production and/or an inability to respond 

to insulin. Specifically, type 1 diabetes is a disorder characterized by targeted 

autoimmune-directed destruction of a patient’s β-cell population within the pancreatic 

islets of Langerhans. The current primary treatment for type 1 diabetes is daily multiple 

insulin injections. However, this treatment cannot provide sustained physiological 

release, and the insulin amount is not finely tuned to glycemia. Pancreatic transplants or 

islet transplants would be the preferred treatment method but the lack of donor tissue and 

immunoincompatibility has been shown to be a roadblock to their widespread use. 

The objective of this project is to develop an effective strategy for the treatment of 

type 1 diabetes using β-cells based replacement therapy. To improve the viability of 

transplanted β-cells, one novel approach is to transplant optimal size range of β-cell 

spheroids rather than cell suspension. Uniform sized multicellular spheroids can be 

coated with a thin layer of non-degradable hydrogel for immunoisolation. In addition, the 

survival of spheroids of optimized size can be further improved with a novel coating of 

multiple layers of human mesenchymal stem cells (hMSCs), a cell type that has profound 

immunoregulatory effect, to prevent graft rejection. To prevent hMSC migrate away from 

spheroids, another layer of non-degradable hydrogel can be added. To further improve 

the viability and suppress the immune rejection, spheroids will be encapsulated with 

nanoparticles loaded with angiogenic and immune regulatory molecules. By this means 
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the spheroid will passively evade the complications of stressors in addition to actively 

modulating the immune microenvironment for regulatory tolerance and long-term 

engraftment. 

Firstly, through optimizing our hydrogel systems based on poly (ethylene glycol) 

(PEG), we have created specific niche for β-cells to form artificial islets in vitro. We have 

found that the optimal condition is the concentration of PEG at 5% and the ratios of 4-

arm thiolated PEG to 4-arm PEG acrylate at 1:2. Conjugated with adhesive peptides, 

especially, RGD at 0.2 mM, can significantly promote the glucose stimulated insulin 

secretion of encapsulated β-cells. Secondly, we have fabricated different sizes of 

uniformed β-cells spheroids through our designed high-throughput automatic spheroids 

maker. Beta-cells in the spheroids of 200 µm exhibited largest insulin secretion based on 

glucose stimulus when compared to others with sizes of 100, 300, 400 and 500 µm. The 

novel core-shell structured spheroids-hMSCs complex was successfully achieved. 

Methylcellulose hydrogel was applied as physical barrier on the surface of β-cells 

spheroids to inhibit invasion of hMSCs. Human MSCs prevented apoptosis of β-cells 

spheroids and benefited insulin secretion when exposed to pro-inflammatory cytokines. 

Thirdly, immune regulatory molecules [leukemia inhibitory factor (LIF) and interleukin 

10 (IL-10)] and angiogenic molecule [vascular endothelial growth factor (VEGF)] loaded 

poly (lactic-co-glycolic acid) (PLGA) nanoparticles have been successfully fabricated 

through solvent extraction/evaporation technique. These growth factors can be controlled 

release about 6 weeks. The bioactivity of released VEGF has been confirmed by the in 

vitro HAEC proliferation assay. Finally, β-cells spheroids were transplanted under the 
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kidney capsule to treat diabetic mice. Beta-cells spheroids kept the glucose level of 

diabetic mice constant. Co-transplanted hMSCs suppressed the host inflammation 

response, activated the regulatory T cells and also promoted angiogenesis at the 

transplantation site. The β-cells spheroids/hMSCs/hydrogel complex initiated a mild 

inflammatory response. The LIF and IL-10, and VEGF loaded complex can further 

inhibited this response and promoted blood vessel network formation at the 

transplantation site. Our approach holds a great potential to treat type 1 diabetes 
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CHAPTER ONE 

1. INTRODUCTION 

1.1 Type 1 diabetes and current treatments 

Diabetes mellitus is one of the most common metabolic diseases, which has 

become the third most common disease in the world. Around 285 million people 

worldwide suffer from various types of diabetes in 2012, and the number of people with 

diabetes will reach to 439 million by 2030. And the complications followed by diabetes 

mellitus include coronary heart disease, kidney failure, blindness, limb amputations, and 

premature death. 

Type 1 diabetes, referred to insulin-dependent diabetes mellitus, is an 

autoimmune disease resulting form the destruction of β-cells located in the islets of 

Langerhams of pancreas by autoantigen-reactive T lymphocytes which produce immune 

factors to attack and destroy β-cells in the pancreas. Once β-cells are destroyed, the 

ability to secrete insulin in response to control the blood glucose level is inhibited, and 

then leading to hyperglycaemia at clinical diagnosis. In the United States there are 30,000 

new cases annually with 1 in 300 children affected. 

To date, no effective treatment is available for type 1 diabetes in clinical settings. 

The exogenous insulin injection therapy is the current main treatment. However, the 

multiple injections are inconvenient and painful and may lead to infection at the site of 

injection. Pancreas transplantation is a clinical option available to cure type 1 diabetes. 

But complications are followed immediately after surgery including thrombosis, 

pancreatitis, infection, bleeding, and rejection. Rejection is a serious condition and ought 
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to be treated immediately. Patients must take a long-term immunosuppressive therapy. 

Transplantation of islets, the parts of the pancreas that can make insulin, can avoid a 

delicate surgical procedure and reduce the risk followed by the transplantation. However, 

for decades, the clinical application of islet transplantation is also limited by the 

shortcoming of immunosupression therapy and the shortage of donor tissues. In 

pancreatic islet transplantation, while efforts have been centered on systematic 

modulation of host immune responses for transplantation tolerance, strategies that render 

the allograft itself resistant to host immune insult have not been adequately explored. Islet 

encapsulation has been attempted as an immunoisolation device to facilitate the 

transplantation of islets without the need for immunosuppression for decades. 

Immunoisolation of islets aims to overcome the immune-mediated destruction of the 

donor tissues without requiring toxic immunosuppression agents. The strategy of 

immunoisolation means encapsulating islets within a semi-permeable structure made of 

biomaterials with good biocompatibility. Immunoisolation of islets also offers a 

possibility of using islets gained form animals, or insulin-producing cells induced from 

stem cells or pancreatic precursor cells, thus enlarging the potential sources of donor 

tissues. However, an optimal encapsulation device that allows sufficient oxygen and 

nutrient exchange while protecting from immune rejection response and promoting 

vascularization is still lacking. 

 
1.2 Study objectives and specific aims 

In this study, we will develop a comprehensive strategy for the treatment of type 1 

diabetes using β-cell based replacement therapy. To improve the viability of transplanted 
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β-cells, one novel approach is to transplant optimal size range of β-cell spheroids. We 

will focus on a novel and unique automatic robotic fabrication/microencapsulation 

system that can produce uniform-sized multicellular spheroid ranging anywhere between 

100 µm to 1000 µm. It can also allow coating of the islets or islet-like spheroids with 

multiple layers for immunoisolation and immunomodulation. We will coat the islets or 

spheroids with a non-degradable methylcellulose first, then with multiple layers of human 

mesenchymal stem cells (hMSCs), which demonstrated anti-immune and anti-

inflammatory effects. Lastly, we will have a porous non-degradable polymer layer for 

further protection and promoting vascular formation surrounding the encapsulated islets. 

Porous layer will be loaded with nanoparticles impregnated with angiogenic factors and 

immune regulatory molecules to enhance blood vessel formation around the encapsulated 

spheroids and in the same time further suppress the host immune response (Schematic 1). 

By this means the islets will passively evade the complications of stressors in addition to 

actively modulating the immune microenvironment for regulatory tolerance and long-

term engraftment. Islet microencapsulation can not only serve as a physical barrier 

deterring host immune recognition, but also function as a cargo carrier slowly releasing 

immune-modulatory molecules that accommodate the allograft into a local permissive 

cytokine milieu for long-term engraftment. 

 

1.3 Dissertation organization 

The following manuscript is arranged in chapters that highlight individual studies 

that relate to the overall aims of the project. Chapter 2 focuses on highlighting existing 
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strategies currently being investigated for type 1 diabetes treatment. In Chapter 3, we 

have created specific niche for β-cells through developing a series of hydrogels based on 

polyethelene glycol (PEG) and addehisve peptides RGD, YIGSR and IKVAV. In Chapter 

4, we developed a fully robotic biofabrication method to produce uniform size 

multicellular β-cells spheroids in large scale. Furthermore, we have constructed the 

complex of islet-like spheroids with multiple layers of hydrogels and hMSCs for 

immunoisolation and immunomodulation. To further improve the viability and suppress 

the immune rejection, in Chapter 5, we have loaded angiogenic and immune regulatory 

molecules like VEGF, IL-10 and LIF, into degradable poly (lactic-co-glycolic acid) 

(PLGA) nanoparticles and loaded nanoparticles into last layer hydrogels coating, for 

sustained release; we then inspected the biological activities of released IL-10 and LIF on 

survival and function of β-cells spheroids against pro-inflammatory cytokines, and the 

bioactivity of VEGF released from nanparticles. In Chapter 6, we have evaluated of β-

cells/MSC hybrid spheriods for the treatment of type 1 diabetes in vivo. Chapter 8 

summarizes overall conclusions drawn from the body of work and discusses 

developments related to the presented research. 
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CHAPTER TWO  

2. BIOENGINEERING STRATEGIES FOR TYPE 1 DIABETES TREATMENT 

2.1 Introduction 

Diabetes mellitus is a chronic endocrine disease that is attributed to insulin 

deficiency. Type 1 diabetes mellitus , occurring in children or young people, is an 

autoimmune disorder in which β-cells located in pancreatic islets are damaged and no 

longer able to secrete insulin. Every year around 15,000 patients are diagnosed with type 

1 diabetes in the United States, adding to the three million existing type I diabetes 

patients. 

The current clinical treatments for type 1 diabetes include exogenous insulin 

administration therapy and pancreas transplantation. Even though routine glucose 

monitoring and exogenous insulin therapy has been the common treatment, the lack of 

precise control of blood glucose with this therapy results in many complications, such as 

retinopathy (loss of vision), nephropathy (renal failure), and neuropathy (foot ulcers with 

the risk of amputation, even cardiovascular symptoms) [1]. Pancreas transplantation is an 

option of clinically available β-cells replacement to cure the disease. However, the 

procedure involves major surgery and long-term immunosuppression therapy which will 

leads to severe side effects [2]. Pancreas transplantation is not an optimal therapeutic 

option for the vast majority of diabetic patients [3]. 

Many new strategies for type 1 diabetes are under clinical trials. In order to 

reduce the risks of developing diabetes-related complications, novel methods in the 

insulin formulations and delivery systems have been investigated to improve the blood 
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glucose level control. Islet transplantation has also been studied as a potential option for 

the treatment of type 1 diabetes. Compared to pancreas transplantation, islet 

transplantation is more effective and less invasive. But islet transplantation cannot avoid 

similar problems to pancreas transplantation such as the limitation of donor tissue and 

long-term immunosuppression therapy if naked islets are used. An immunoisolated 

bioartificial pancreas (BAP) has been developed based on bioengineering strategies for 

avoiding immunosuppression. BAP allows the passage of oxygen, glucose, nutrients, 

waste products, and insulin, but blocks the penetration of immunocompetent cells and 

immune response associated biologics, such as antibodies and complements [4]. 

Imunoisolation technology offers a possibility for cell-based therapy to transplant β-cells 

or islets from animal sources, or new insulin-producing β-cells induced from other 

sources like stem cells and pancreatic precursor cells, thus expanding the sources of 

donor tissues. The generation of insulin-producing β-cells through in vivo regeneration or 

in vitro differentiation from stem cells has been investigated [5, 6]. 

There are several excellent review articles that offer a very detailed and 

comprehensive overview regarding the use of islet encapsulation and cell-based therapy 

for type 1 diabetes treatment [7-10]. Here, we will present a more detailed overview on 

bioengineering strategies for type 1 diabetes treatment. We will have a comprehensive 

review on bioengineering strategies with a focus on insulin delivery systems, BAP 

fabrication, transplantation of β-cells and inducing β-cells from other cell sources, and so 

on. Finally, we will also discuss major challenges using existing strategies and future 

directions for type 1 diabetes treatment. 
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2.2 Diabetes types and current treatments 

Diabetes mellitus is one of the most common metabolic diseases and has become 

the third most common disease following cardiovascular diseases and cancers. Around 

347 million people worldwide suffered from various types of diabetes in 2012, and the 

projected number of diabetes patients will reach to 439 million by 2030 [11]. The 

complications followed by diabetes mellitus include coronary heart disease, kidney 

failure, blindness, limb amputations, and premature death [12]. About 25.8 million 

Americans have diabetes and a total cost of diagnosed diabetes is $245 billion in 2012. 

 

2.2.1 Diabetes types 

Diabetes mellitus is a group of chronic metabolic diseases characterized by a 

deficit in β-cells mass and a disregulation of glucose metabolism, resulting in many 

complications. The classical symptoms include polyuria, polydipsia and polyphagia. 

There are three types of diabetes mellitus: type 1 diabetes, type 2 diabetes, and 

gestational diabetes. Type 1 diabetes is an insulin-dependent diabetes mellitus, which is 

believed to be an autoimmune disease leading to the destruction of β-cells in the islets of 

Langerhams. Once β-cells are destroyed by autoantigen-reactive T lymphocytes, the 

ability to secrete insulin in response to blood glucose increase is compromised, leading to 

hyperglycaemia. Type 2 diabetes is a non-insulin-dependent diabetes mellitus or an adult-

onset diabetes. It is characterized as insulin resistance, meaning cells fail to use insulin 

properly, leading to hyperglycaemia. The development of type 2 diabetes is caused by a 

combination of lifestyle and genetic factors. Obesity is the primary cause of type 2 
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diabetes in people who are genetically predisposed to the disease. Exercise and dietary 

modification are the first steps of disease management. If blood glucose levels are still 

high by these measures, medications such as Metformin or insulin may be needed. 

Gestational diabetes is a condition in which pregnant women, who have never had 

diabetes before, reveal high blood glucose level during pregnancy. Pregnancy hormones 

lead to insulin resistance and then hyperglycaemia. Gestational diabetes generally has 

few symptoms. It is commonly diagnosed by a screening test during pregnancy. Around 

3-10% pregnant women will have gestational diabetes depending on the population [13]. 

Women with gestational diabetes are at increased risk of developing type 2 diabetes after 

pregnancy. Most patients are treated only with diet modification and moderate exercise, 

but some will have to take anti-diabetic drugs, such as insulin, if the blood glucose level 

is too high [14]. 

 

2.2.2 Current clinical treatments for type 1 diabetes 

Exogenous insulin injection therapy is the current main treatment for type 1 

diabetes. It includes multiple/daily injections and insulin pump therapy (chronic 

subcutaneous injection). The multiples injections are inconvenient and painful and may 

lead to infection at the site of injection, giving rise for the increased research for new 

methods of treatment. For insulin pump therapy, the long-term injection at the same place 

can result in lipodystrophy. Although insulin-based therapy allows a monitor of the 

control of blood glucose levels through daily glucose monitoring, strict control of blood 

glucose levels can be difficult to achieve due to environmental variations, such as 
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exercise, diet, pregnancy, or age. The exogenous insulin injection therapy may lead to 

long-term complications, such as retinopathy, nephropathy, and neuropathy [15]. 

Currently, pancreas transplantation is a clinical option available to treat type 1 

diabetes. In this procedure, the recipient’s native pancreas is left in place to prevent the 

rejection of the donor pancreas which would leads to life-threatening diabetes quickly, 

thus the donor pancreas is placed in a different location [16]. In patients with type 1 

diabetes who have suffered the destruction of their kidney, the pancreas transplantation 

usually is performed along with kidney transplantation [17]. More than 90% of pancreas 

transplantations are simultaneous pancreas-kidney transplants. Complications 

immediately following surgery include thrombosis, pancreatitis, infection, bleeding, and 

rejection. Rejection is a serious condition and ought to be treated immediately. Patients 

must undergo a long-term immunosuppressive therapy [18]. 

 

2.2.3 New treatments under clinical trial and development 

The development of insulin administration by alternative routes has made 

remarkable progress over the last decade. The ultimate goal is to better simulate the 

physiological fluctuations of endogenous insulin release and thus leading to a better 

blood glucose metabolism and control. The current main alternatives for insulin delivery 

include nasal, pulmonary, dermal, rectal, and oral routes [19]. 

Islet cell transplantation is an experimental procedure that only transplants the 

islet parts that can make insulin. Islet transplantation has the potential to be widely used 

for type 1 diabetes, since this procedure can avoid a delicate surgical procedure and 
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reduce the risk followed by the whole pancreas transplantation [2, 20]. Islet 

transplantation includes two steps: the isolation of islets from donor pancreas tissue and 

the transplantation. The transplantation procedure is shown in Figure 2.1 [21]. Islets are 

injected into the hepatic portal vein, from where islets will flow into liver sinuses, which 

are well perfused. In this case, islets are not transplanted in the recipient’s pancreas 

because the pancreas is highly sensitive to any injury, which may lead to severe 

pancreatitis with accompanying pain and tissue destruction. 

 

Figure 2. 1 Islet transplantation for the treatment of type 1 diabetes in clinical [21]. 

 

For decades, the clinical application of islets transplantation was also limited by 

the shortcoming of immunosupression therapy and the shortage of donor tissues. Using 

biomaterial, scientists paid attention to immunoisolating islets from host immune systems 

based on various bioengineering approaches [22]. Using immunoisolated islets for 

transplantation can minimize, and even eliminate immunosuppressive needs theoretically 
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[23, 24]. Immunoisolation of islets offers a possibility of using islets derived from 

animals, or insulin-producing cells obtained from stem cells or pancreatic precursor cells, 

thus enlarging the potential sources of donor tissues. To this end, the generation of new 

insulin-producing cells by in vivo regeneration or by in vitro differentiation of stem cells 

has become a major effort in diabetes research [25, 26]. 

Since type 1 diabetes is one of the most common autoimmune diseases, 

considerable experimental and clinical progress has been made in understanding of its 

immunopathogenesis [27]. This knowledge has been used to develop immunopreventive 

and immunomodulatory treatments for type 1 diabetes [28, 29]. 

 

2.3 Bioengineering strategies for type 1 diabetes treatment 

Several novel bioengineering approaches are applied in insulin administration, 

islets transplantation, and cell-based therapy for type 1 diabetes treatment, such as 

microspheres and nanoparticles for insulin controlled release systems, hollow fibers and 

chamber diffusion device for islets immunoisolation, and hydrogels for β-cells 

transplantation. 

 

2.3.1 Insulin control release 

Insulin was firstly discovered by Banting and Best in 1922 [30]. The role of 

insulin is to change extra glucose into two storage forms, glycogen and triacylglycerols, 

and maintain blood glucose levels. The main method for insulin administration is 

subcutaneous injection because of insulin’s large molecular size, hydrophilicity and low 
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permeability. However, injection therapy is burdensome and has a low efficiency for 

insulin targeting to the liver, which is the primary organ of action. Only about 20% of the 

insulin reaches the liver after injection [31]. Various technologies have been investigated 

for replacing the insulin injections. Therefore, drug delivery systems have been paid 

attention to for the development of non-injectable routes. The main alternatives routes 

studied for insulin deliveries include nasal, pulmonary, dermal, rectal and oral routes. In 

this section we will discuss the different drug delivery strategies available (molecular, 

formulation, and device) and their current and potential applications with respect to the 

different insulin delivery routes. 

 

2.3.1.1 Molecular engineering 

Insulin is a polypeptide (molecular weight: 5800 Da) secreted by β-cells which 

consists of a 21-amino acid A chain and a 30-amino acid B chain, linked by two disulfide 

bonds, and a third disulfide bond occurs within the A chain [32]. Molecular engineering 

strategies are to modify insulin to improve its pharmacodynamic properties (insulin 

analogs) and prevent it from proteolytic degradation (insulin conjugates). An insulin 

analog is another form of insulin which results from changing the amino acid sequence of 

insulin. The characteristics of insulin such as absorption, distribution, metabolism and 

excretion are optimized for improving pharmacodynamic properties of the applied insulin 

by adjusting the amino acid sequence of insulin. Insulin conjugates is the chemically 

modified formation of insulin for protecting the insulin from proteolytic degradation or 

improving its properties such as solubility, permeability, stability and circulation half-
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life. 

2.3.1.1.1 Insulin analogs 

Through the molecular engineering approaches, the amino acid sequences of 

insulin are altered to fabricate two types of insulin analogs. One is rapid-acting insulin 

analogs which are designed to provide a bolus level of insulin; another is long-acting 

analogs which are required to supply a basal level of insulin. Three rapid-acting analogs 

and two long-acting analogs are shown in Table 2.1. Aspart, Lispro and Glulisine insulin 

are rapid-acting analogs [33]; Glargine and Detemir analogs are long-acting analogs [34]. 

Compared to human insulin, the different amino acids of insulin analogs are labeled. 

Long-acting analogs with the slowing absorption property can last 20-24 hrs in the body 

after injection and decrease nocturnal hypoglycemia. Rapid-acting analogs increase the 

rate of absorption after injection and last longer than regular insulin. 

Table 2. 1 Insulin analogs by amino acid substitutions [33]. 
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2.3.1.1.2 Insulin conjugates 

Insulin conjugates have been investigated with several macromolecules such as 

poly (ethylene glycol) (PEG) [35, 36], polysialic acids [37, 38], albumin [39, 40], and 

chitosan [41]. For example, one of the most important modifications of insulin is the 

hexyl-insulin mono-conjugate 2 (HIM2), which has been introduced by the NOBEX 

corporation [35]. The HIM2 molecule was made by covalently linking a single, low 

molecular weight ampiphlic oligomer to the free amino acid group on the Lys-B29 

residue of recombinant human insulin through an amide bond. The oligomer was 

synthesized by binding a lipophilic alkyl unit to a hydrophilic PEG unit. This conjugation 

conferred many advantageous properties to the insulin molecule, such as more lipid and 

water solubility. These properties can be used to manufacture more varieties of 

formulation than ordinary insulin [42, 43]. Moreover, an insulin prodrug was designed by 

conjugating insulin to a PEG (40 kDa) containing sulfhydryl moiety. After subcutaneous 

injection, the insulin prodrug could extend glucose-lowering effects compared to the 

native hormone [44]. Bile acids [45, 46] or fatty acids [47] were also bonded with insulin 

to improve the stability of insulin. 

 

2.3.1.2 Formulation engineering 

The insulin administration routes and the required pharmacokinetic property 

decide the formulation of insulin. Formulation engineering aims to reach the required 

delivery profile. Hydrogels, patches, dry powders, microspheres, and nanoparticles have 

been applied to control the release of insulin for novel delivery routes such as nasal, oral, 
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pulmonary, and rectal. 

2.3.1.2.1 Hydrogels 

Hydrogels are three-dimensional (3D) networks of hydrophilic polymers that can 

entrap drugs and biomolecules under certain conditions and then releases the drugs or 

biomolecules in a controlled slow release manner. Thus, a higher concentration of the 

drugs and biomolecules can be loaded inside the hydrogels, which can be formulated to 

respond to various environmental signals such as pH [48], temperature [49], light [50], 

glucose [51], antigens [52], ultrasound, and so on, to release the drugs or biomolecules. 

These stimuli-responsive polymeric hydrogels have been extensively studied and used as 

“smart” carriers for the control release of insulin. 

 

2.3.1.2.1.1 pH-sensitive hydrogels 

All the pH-sensitive hydrogels include acids, such as sulfuric and carboxylic 

acids, or bases, such as ammonium salts group, for gaining or releasing protons in 

response to changes in environmental pH. Acidic hydrogels accept protons, swell at high 

pH, and shrink at low pH. In contrast, basic hydrogels exhibit opposite swelling 

behaviors in response to pH. The pH-sensitive hydrogels have shown the potential for the 

application as oral delivery of insulin [53-55]. Through controlling the swelling/shrinking 

properties, encapsulated insulin can be protected from degradation in the acidic 

environment in stomach (pH 1-2) [56, 57] and then be released in the basic environment 

of intestine (pH 6-7) [58, 59]. For example, hydrogels containing poly(mehacrylic acid) 

grafted with PEG were investigated for their potential as oral insulin carriers [54]. The 
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results showed insulin loaded hydrogels induced a hypoglycemic effect and an increase in 

insulin levels, proving that insulin was still biologically active. Tuesca et al. [60] 

demonstrated the feasibility of combing insulin PEGylation with pH-sensitive hydrogels 

for oral insulin delivery. 

 

2.3.1.2.1.2 Thermosensitive hydrogels 

Polymers comprising both hydrophobic and hydrophilic parts in their molecular 

structure exhibit thermo-sensitive properties. The thermo-sensitive hydrogel is usually 

designed for application as an injectable local drug delivery system. The insulin-loaded 

hydrogel is a flowing solution at ambient temperature and turns into a non-flowing gel at 

body temperature after being injected into body, and starts to release insulin at local sites 

[61, 62]. A study was aimed at developing a delivery system for the controlled slow 

release of insulin, based on chitosan-zinc-insulin complex incorporated into a poly(lactic 

acid)-poly(ethylene glycol)-poly(lactic acid) (4500 Da) thermo-sensitive polymer [63]. 

The addition of zinc to insulin reduced the initial burst, stabilized the insulin as compared 

with its monomeric state by forming reversible complex through a zinc-coordinated 

insulin hexamer, and controlled the overall release rate. 

 

2.3.1.2.1.3 pH/thermo-sensitive hydrogels 

The pure thermo-sensitive hydrogel is not suitable for the deep injection into the 

tissue because of the gelation formation inside the needle during the injection procedure. 

The pH/thermo-sensitive hydrogels can solve this problem. The polymer requires the 
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stimulation of both pH and temperature for the gelation process [64]. As Figure 2.2 

shown, a pH- and thermo-sensitive hydrogel was prepared by adding pH-sensitive 

sulfamethazine oligomers to either end of a thermosensitive poly(ε-caprolactone-co-

lactide)-poly(ethylene glycol)-poly(ε-caprolactone-co-lactide) block copolymer, which 

exhibited a pH-sensitivity around pH 7.4 as well as a temperature-sensitivity around 37 

ºC [65]. Another study used poly(β-amino ester) as a duo-functional group for controlled 

drug/protein delivery when responding to pH and thermal stimulations [66]. 

 
2.3.1.2.1.4 Glucose-sensitive hydrogels 

Glucose-sensitive hydrogels attracted lots of attention due to their glucose sensing 

ability, which may allow for automatic initiation or shut-off the insulin delivery. One 

series of glucose-sensitive hydrogels was prepared by mixing glucose-containing 

polymers with PEGylated concanavalin A (conA). Tang et al. [67] reported a polymer 

produced by crosslinking two dextrans of different molecular weights. The smaller 

dextran was covalently grafted with conA. This material was then mixed with the larger 

unfunctionalized dextran, allowing easy control of the overall amount of grafted conA in 

the material. Insulin was initially bound to the conA, which was used to control the 

delivery of glycosylated insulin. The affinity of conA for dextran provided additional 

affinity crosslinks, which were competitively inhibited by free glucose, resulting in a 

decrease in total crosslink density and increase in permeability to proteins. Moreover, 

Kim’s et al [68] demonstrated that glucose could be incorporated into the polymer 

backbone by copolymerization of allyl glucose with comonomers, such as 3-

sulfopropylacrylate, potassium salt, N-vinyl pyrrolidone, and acrylamide. ConA was 
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grafted with five PEG molecules to improve its stability. Although all of the glucose-

sensitive hydrogels are used to develop modulated insulin delivery systems, many 

improvements need to be achieved before they become clinically useful. The response of 

these hydrogels to changes in the environmental glucose concentration needs to be 

improved; also the speed for hydrogels returning to their original states needs to be 

increased after responding to the changing glucose concentration. 

 

2.3.1.2.2 Microspheres 

Polymer micropsheres are small (less than 2 µm in size), thermoplastic spheres, 

which can be used in controlled release of insulin because of their ability to increase the 

stability of insulin and the protection of encapsulated insulin from enzymatic degradation. 

Microspheres improve the insulin absorption due to the distribution of microspheres in 

the body. Microspheres are expected to accumulate in the liver where insulin can 

efficiently suppress elevated glucose production. 

Since 1986, Damge et al. [69] fabricated insulin loaded isobutyl 2-cyanoacrylate 

microspheres to treat streptozotocin-induced diabetic rats. Significant reductions in blood 

glucose levels were observed following administration of these microspheres [70, 71]. 

Since administration of insulin requires repeated dosing, the use of non-biodegradable 

microspheres posed a question with regard to the toxic effects of their accumulation in 

the body. Hence biodegradable microspheres such as ones made from a blend of 

poly(lactic acid) [72], poly(ε-caprolactone) [73], chitosan [74], and poly (lactide-co-

glycolide) (PLGA) [75], were investigated. The water/oil/water (w/o/w) double emulsion 
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technique has been widely used for encapsulation of hydrophilic macromolecules in 

microparticles [76]. The microsphere drug delivery system has been investigated to 

increase the poor permeability across intestinal epithelia and avoid destruction by 

proteolytic intestinal enzymes. 

 

Figure 2. 2 Insulin loading and release from pH/thermo-sensitive hydrogels. (A)The 

polymer solution in sol state at 10 °C and pH 7.0 with the ionic complex between insulin 

and PAE–PCL–PEG–PCL–PAE. (B) The gel formed by insulin free PAE–PCL–PEG–

PCL–PAE after injection to human body (37 °C and pH 7.4). (C) Insulin release from gel 

by polymer degradation [65]. 

As discussed earlier, stimuli-responsive “smart” hydrogels have attracted a great 
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deal of interest [77]. A pH-sensitive copolymeric hydrogel microspheres were prepared 

from N-vinylcaprolactam and methacrylic acid monomers by free radical polymerization 

offered 52% encapsulation efficiency and evaluated for oral delivery of human insulin 

[78]. Kumar et al. [79] prepared pH-sensitive hydrogel microparticles based on poly 

(methacrylic acid), and the result was shown that insulin dose released from 

microparticles were sufficient to control the blood glucose level of fed diabetic rats 

between 100 and 300 mg/dL. 

 

2.3.1.2.3 Nanoparticles 

Nanoparticles are defined as colloidal particles ranging in sizes less than 1000 

nm. A variety of nanoparticulate systems including nanospheres, nanovesicles, 

nanoplexes, nanocapsules, lipsomes, and a wide array of polymers were developed in 

nanoparticulate systems. The choice of polymers should be based on the required release 

profile, administration route, drug to be loaded, and the degradation property. Common 

polymers used for the insulin delivery system include PLGA [80, 81], chitosan, alginate 

[82], poly(ε-caprolactone) [83], polyalkycyancrylates [84, 85], and polymethacrylic 

acid/acrylates [86]. Using a double-emulsion/solvent technique, insulin was encapsulated 

in PLGA nanoparticles [87]. Insulin loaded in PLGA-Pluronic F68 can overcome the 

gastrointestinal barrier which can be used as an oral administration of insulin [81]. In vivo 

experiments showed that the insulin loaded PLGA nanoparticles could decrease animal 

blood glucose. Insulin loaded chitosan nanoparticles were tested in nasal and oral 

delivery routes. As a nasal delivery system, insulin loaded PEG-g-chitosan nanoparticles 
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in rabbits improved the absorption of insulin compared to control insulin solution and 

mix of insulin and PEG-g-chitosan [88]. The insulin loaded chitosan nanoparticles have 

been tested in oral administration [89-91]. 

 

2.3.1.3  Device engineering 

Some insulin release device designs, such as insulin pumps, insulin pen injectors, 

inhalation, and transdermal patches are used as a straightforward approach to increase 

patient acceptance and compliance [92, 93]. Delivery systems are being engineered for 

reproducible dose delivery. Inhalation devices are designed to delivery insulin powder 

through the pulmonary system. A blister pack of insulin powder is loaded into the inhaler 

and then the powder is dispersed into a standing cloud within the transparent chamber for 

the patients [94, 95]. Insulin pen, insulin jet injectors, and insulin pumps are non-needle 

injectors for people who prefer not to use a regular needle and syringe. Insulin pumps can 

deliver insulin constantly and can help to control glucose level all the time, even when 

patients are sleeping, which may avoid glucose swings and overall provide tighter control 

of glucose levels. In addition, pumps will allow patients to have a more flexible meal and 

activity schedule [96]. Glucometers are designed to monitor the blood glucose levels and 

are currently widely used by patients [97]. 

 

2.3.2 Islets transplantation 

The transplantation of islets of Langerhans is a potential option for curing type 1 

diabetes. The procedure can avoid the complications followed by major surgery 
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compared to whole pancreas transplantation. However, islets transplantation still faces 

the problems of the long-term administration of immunosuppressive agents with severe 

side effects, and the shortage of donor tissues. To solve these issues, the immunoisolation 

of islets with a semi-permeable membrane, or bioartificial pancreas (BAP), has been 

attempted. Using novel bioengineering approaches, a bioartificial pancreas has been 

fabricated for immunoisolating islets away from the host immune systems. Many groups 

have reported that BAP functions very well in small animal models. In this review, we 

overview the current techniques for the islets immunoisolation such as macro/micro 

encapsulation and conformal coating, and discuss some novel techniques for the 

modification of islets, such as chemical and cell modification. 

 

2.3.2.1 Islets immunoisolation 

Immunoisolation of islets is a technology becoming accepted to overcome the 

immune-mediated destruction of the donor tissues without requiring toxic 

immunosuppression agents. The strategy of immunoisolation means encapsulating islets 

within a semi-permeable membrane made of biomaterials with good biocompatibility. 

Immunoisolation devices include three different types of encapsulated systems based on 

different encapsulation techniques: macro-scale encapsulation, micro-scale encapsulation, 

and nano-scale encapsulation [22]. 
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2.3.2.1.1 Macro-scale encapsulation 

Macro-scale encapsulation includes two categories: intravascular and 

extravascular. The intravascular devices usually contain hollow fibers, which are 

perfused with blood. Extravascular devices such as hollow fibers, diffusion chambers, 

and hydrogels sheets, are implanted outside of the vasculature. 

 

2.3.2.1.1.1 Intravascular devices 

In the intravascular devices, the islets are encapsulated in hollow fibers sealed 

with semi-permeable membranes. The device is similar to a dialysis device in which 

blood is perfused in the hollow fiber and islets are placed around the fibers. The device is 

directly connected to the host systemic circulation, resulting in improving the diffusive 

exchange rate [98-100]. Ikada et al. [100] designed a BAP based on poly(ethylene-vinyl 

alcohol) (PVA), which was properly controlled in response to glucose in 

pancreatectomized pigs. However, these devices are hard to implant into a body and 

require some anticoagulation treatment. 

 

2.3.2.1.1.2 Extravascular devices 

Extra vascular devices entrap islets in a space surrounded by a semi-permeable 

membrane. Compared to intravascular devices, these devices are easily implantable and 

have the advantage of biocompatibility. Islets are contained in a diffusion chamber 

surrounded by semi-permeable membranes [101, 102]. The structure of the diffusion 

chamber is rather simple and the optimal membrane with desired pore size can be chosen. 
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However, islets tend to clump up with each other and undergo central necrosis. Seeding 

islets within hydrogels can avoid this clumping and improve islets function [4]. Macro-

encapsulation encapsulates islets in hydrogels such as agarose, alginate [103, 104], 

polyurethane, PVA, and chitosan-polyvinylpyrrolidone hydrogel. For example, a unique 

continuous amphiphilic network membrane created for macroencapsulation and 

immunoisolation of porcine islet cells has been studied based on hydrophilic poly (N, N-

dimethyl acrylamide) and hydrophobic/oxyphilic polydimethylsiloxane chains [105]. 

 

2.3.2.1.2 Micro-scale encapsulation 

In micro-scale encapsulation, generally one or a few islets are encapsulated within 

a microcapsules surrounded by semi-permeable membrane. Microcapsules are smaller 

than macrocapsules and are spherical in shape, which offers a large volume-to-surface 

area ratio. They can be implanted into patients through simple procedures without major 

surgery. Generally, microcapsules are fabricated from polymers that form hydrogels 

under certain conditions. They are derived either naturally or through synthetic routes. 

The polymers include the natural biomaterials such as alginate, agarose, and the synthetic 

biomaterials including polyacrylates [106, 107] and PEG [108, 109]. 

 

2.3.2.1.2.1 Alginate 

Alginate microcapsules are made by Ca2+ or Ba2+ cross-linked gel formation. The 

traditional type of alginate microcapsules is alginate-poly-L-lysine alginate (APA) 

microcapsules. APA microencapsulation of islets, first reported by Lim and Sun [110], of 
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encapsulation devices from the macro- to nano-scale has shown that islets encapsulated in 

APA microcapsules survived well and resulted in long term normoglycemia [111, 112]. 

Figure 2.3 shows the protocols of islets microencapsulation with APA [11]. 

 

Figure 2. 3 Microencapsulation of islets with alginate-polylysine [111]. 

 

The shortcomings of APA microcapsules are that they are immunogenic and 

highly bio-incompatible due to the PLL coating. PLL coating degrades over time, 

consequently leading to alginate matrix destabilization [113-115]. To overcome the 

drawback associated with APA microcapsules, many people tried to crosslink alginate 

with barium ions instead of calcium and without PLL to make barium alginate 
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microcapsules [116]. Morch et al. [117] showed that the gelation ion Ba2+ rather than 

Ca2+ yielded microcapsules of higher strength and stability when used with high G 

alginate compared to APA microcapsules. Tuch et al. [118] is processing a product of 

barium alginate microcapsules in phase I clinical study. 

 

2.3.2.1.2.2 Agarose 

Agarose microcapsules are made by gel formation in response to low 

temperatures. Agarose microcapsules have been investigated as a stable and durable 

immunoisolation membrane in human body [119-121]. Highly purified islets isolated 

from non-obese diabetic (NOD) mice were microencapsulated in 5% agarose hydrogel as 

a semi-permeable membrane to examine the feasibility of the immunoisolation. The size 

range of agarose microcapsules was 100 to 400 µm. Islets encapsulated in agarose 

microcapslues were transplanted into NOD spontaneously mice. Agarose microcapsules 

were able to completely protect NOD islet isografts from autoimmune destruction [121]. 

 

2.3.2.1.3 Nano-scale encapsulation 

The design of nano-scale encapsulation is similar to microcapsules. The 

difference of nanoencapsulation compared to microencapsulation is to decrease the 

thickness of the coating covering around the islets for forming the conformal coating. The 

conformal coating can decrease the size of encapsulated islets, advance the passage of 

nutrient, waste and insulin secretion between the implanted islets and extracellular matrix 

(ECM), and improve the viability of islets. The ultimate goal of the BAP is the 
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immunoisolation property for protecting implanted islets from host immune systems, 

while at the same time still keeping cell function and viability as well as normal islets. 

Islets with a thin coating can be transplanted into the liver through the portal veins. In the 

following, some new techniques for surface modification of islets will be introduced. 

 

2.3.2.1.3.1 Polymers coating 

Surface modification with ultra thin polymer membranes was reported by 

chemically treating red blood cells to enclose surface antigen [122-124]. The surface 

modification of islets with thin polymer membranes has been investigated by using 

amphiphilic polymers, such as PEG-conjugated phospholipid (PEG-lipid), polyvinyl 

alcohol (PVA, carrying long alkyl chains), and cationic polymers like poly 

(ethyleneimine) (PEI) (Fig. 2.4) [125]. 

PEI as a cationic polymer can be coated on the islets surface by the layer-by-layer 

method. The negatively charged cell surface bond with positively charged PEI, and then 

the surface is further exposed to a negatively charged polymer to form a layer-by-layer 

membrane based on the electrostatic binding theory [126]. 

The PEG chain can be anchored to the cell surface through the hydrophobic 

portion of the PEG-lipid and incorporated into the lipid layer of the cell membrane [127-

129]. The thickness of the PEG layer on the cell surface is several nanometers, which 

depends on the molecular weight of the PEG used [130]. The layer-by-layer method was 

used to improve the stability of the PEG-lipid membrane on the cell surface. Functional 

groups, such as biotin and maleimide, can be easily bonded to the end of the PEG chain 
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of PEG-lipid [131, 132]. Teramura et al. [127] formed a layer-by-layer membrane of 

PVA with thiol groups on a PEG-lipid with a maleimide group on the surface of islets 

using the reaction between the thiol and maleimide groups. Moreover, PEG carrying an 

N-hydroxyl-succinimidyl ester (NHS), activated ester group at one end was employed to 

react with an amino group of the membrane proteins or collagen layer on the islet surface 

[133, 134]. Byun’s group reported that normoglycemia was maintained for 1 year after 

islets with a PEG-NHS modified surface were transplanted into recipient rats treated with 

low dose of cyclosporine A [135, 136]. 

 

 

Figure 2. 4 Modification of cell surface with synthetic polymers: Covalent bonding, 

hydrophobic interaction, electrostatic interaction, and the layer-by-layer method [125]. 
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2.3.2.1.3.2 Living cells coating 

 

Figure 2. 5 Encapsulation of islets with living cells. (A) Hamster islets modified with 

polyA20-PEG-lipid were treated with (a-1, FITC) FITC-labeled polyT20. (a-2) Naked 

islets were treated with FITC-labeled polyT20. (B) Attachment of polyT20-PEG-lipid 

modified GFP-HEK cells onto the surface of polyA20-PEG-lipid modified hamster islets. 

An islet was observed by a confocal laser scanning microscope for (b-1, GFP) and a 

phase contrast microscope (b-2). (C) GFP-HEK cells-immobilized islets were cultured 

for 1, 3, and 5 days. Islets were observed by a phase contrast microscope (left panels) and 

a confocal laser scanning microscope (right panels, GFP). Scale bars: 200 μm [140]. 

 

The new approach for surface modification of islets is living cells coating. Living 

cells coating can improve the histocompatibility and blood compatibility, inhibit the graft 
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rejection, and decease the destruction of implanted islets resulting from blood-mediated 

inflammatory reactions. Pollok et al. [137] first attempted to microencapsulate rat islets 

with a porcine chondrycyte membrane. Kim et al. [138] also macroencapsulated islets 

with a chondrocyte membrane using the cell sheet engineering technique. Teramura et al. 

[139, 140] used amphiphilic PEG-lipid and the biotin/streptavidin reaction to immobilize 

HEK293 cells on the surface of islets (Figure 2.5). The function of insulin secretion was 

well maintained after HEK293 cell encapsulation. 

 

2.3.2.2 Islets functional modification 

There has been growing attention in modifying islets with growth factors or 

peptides to confer biological functionality. 

 

2.3.2.2.1 Growth factors 

In pancreatic islet transplantation, early revascularization is necessary for long-

term graft function. Cabric et al. [141] has shown in in vitro and in vivo models that 

modification with surface-attached heparin protected the islets from acute attack by the 

innate immune system of the blood following intraportal islet transplantation. 

Furthermore, vascular endothelial growth factor-A was conjugated to heparin as a means 

of attracting endothelial cells to induce angiogenesis and revascularization to improve 

islet engraftment in pancreatic islet transplantation. 
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2.3.2.2.2 Peptides 

Islet transplantation has the potential to treat type I diabetes; however, its 

widespread clinical application is limited by the massive apoptotic cell death and poor 

revascularization of transplanted islet grafts. Wu et al. [142] constructed a surface-

modified adenoviral vector with Arg-Gly-Asp (RGD) sequences encoding a human X-

linked inhibitor of apoptosis and hepatocyte growth factor (RGD-Adv-hHGF-hXIAP). In 

vivo transduction of islets with RGD-Adv-hHGF-hXIAP decreased apoptotic islet cell 

death, improved islet revascularization, and eventually might improve the outcome of 

human islet transplantation. 

2.3.3 Beta cells transplantation 

Within islets, there are five endocrine cell types that work as a micro-organ to 

maintain glucose homeostasis. Insulin is normally produced in and secreted by the β-cells 

of islets. Because of difficulties associated with the use of primary islets, such as limited 

human pancreas donation, the risk of zoonosis in case of an animal source, low isolation 

yield, and preservation [143], the β-cells replacement through cellular transplantation to 

replace primary islets has the promise of providing a long-term cure for type 1 diabetes. 

To achieve this goal, β-cells have been transplanted with hollow fibers, diffusion 

chambers, hydrogels, macrocapsules, or composites of them. These carriers have been 

proposed to protect cells from attack by the host immune system and to enhance β-cell 

survival and function in vivo. 
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2.3.3.1 Hollow fibers 

The blood perfusion hollow fiber is similar to dialysis. Blood is perfused in the 

hollow fiber and β-cells are placed around the fibers. The advantage of the hollow fibers 

device is to enhance the diffusive exchange rate between β-cells and blood [144]. For 

example, the poly (ethylene-co-vinyl alcohol) (EVAL) hollow fibers were designed to 

develop a new type of bioartificial pancreas [100]. As Figure 2.6 shows, the device 

includes EVAL hollow fibers and poly (amino unrethane) coated, non-woven poly 

(tetrafluoroethylene) (PTFE) fabrics. Beta cells attached to the surface of the PTFE 

fabric, but not to the surface of the EVAL hollow fibers, allowing nutrient and oxygen 

exchange between blood flowing inside the fibers and cells outside. 

 

Figure 2. 6 Construction of a bioartificial pancreas module. (A) A piece of non-woven 

fabric with a backing of rayon cloth was covered with 550 hollow fibers. (B) The fibers 

and cloth were rolled together and the spaces between the hollow fibers were sealed with 

urethane, and the roll was inserted into a polycarbonate casing with dimensions as shown 

[100]. 
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2.3.3.2 Diffusion chambers 

The macroencapsultion of β-cells includes a diffusion chamber in which β-cells 

are contained in a space surrounded by a semi-permeable membrane [145]. The 

advantage is that this chamber can be easily implanted into an intraperitoneal or 

subcutaneous space and is also easy to remove [146, 147]. Typically, β-cells are 

entrapped between two semi-permeable membranes placed on both sides of a ring-like 

structure. A PTFE device was used to encapsulate human fetal pancreatic islet-like cell 

clusters and transplanted into immunodeficient mice. After one month, encapsulated cell 

clusters survived, replicated, and acquired a level of glucose responsive insulin secretion 

sufficient to ameliorate hyperglycemia in diabetic mice [145, 148, 149]. 

Alumina biocapsule can be regarded as a particular type of diffusion chamber. 

These devices [150-152] have robust membranes and their pore size and pore size 

distribution can be easily controlled. The capsules were fabricated out of aluminum and 

aluminum oxide using a two-step anodization procedure, and the pore size is about 72 

nm. PEG immobilization on the alumina surface was achieved using a covalent coupling 

agent silicon tetrachloride. In vivo study has demonstrated that implantation of these 

capsules into the peritoneal cavity of rats induces a transient inflammatory response, and 

that PEG was useful in minimizing the host response to the material. 

 

2.3.3.3 Hydrogels 

Encapsulation of β-cells within hydrogels is a potential transplantation therapy 

independent of immune suppression for type 1 diabetes. Hydrogels as semi-permeable 
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barriers allow the passage of insulin, nutrients and waste, while preventing cell-cell 

contact between host immune cells and encapsulated β-cells and the penetration of large 

immune cell-secreted antibodies. Several hydrogels have been developed toward this 

application, such as PEG, agarose [153, 154], collagen-alginate [155], collagen-gelatin 

[156, 157], and polyurethane-polyvinylpyrrolidone [158]. 

 

2.3.3.3.1 PEG hydrogels 

PEG hydrogels provide a highly biocompatible niche for β-cells because of their 

high water content, simple chemical modifications to incorporate biomolecules, and 

limited immunogenicity in vivo [159-162]. A photopolymerization PEG hydrogels was 

developed to test the effects of microenvironmental culture parameters on survival and 

function of encapsulated β-cells [163]. The results showed that the different hydrogel 

crosslinking density did not affect β-cells survival, and encapsulated β-cells transplanted 

into diabetic mice decreased blood glucose levels to normal levels. Furthermore, different 

matrix proteins, including collagen type I and IV, fibrinogen, fibronectin, laminin, and 

vitronectin, were mixed into PEG hydrogels to investigate the effects of matrix proteins 

on β-cells survival and function [164]. Apoptosis in encapsulated β-cells was less in the 

presence of each matrix protein, suggesting the ability of individual matrix interactions to 

prevent matrix signaling-related apoptosis (anoikis). Beta cell function in hydrogels 

presenting both collagen type IV and laminin revealed synergistic interactions. 

PEG hydrogels provide a blank platform on which defined bioactive/functional 

motifs, such as peptides, can be easily incorporated without significantly affecting the 
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bulk material properties [165]. Cell-adhesive peptides (e.g., RGD, IKVAV, YIGSR, etc.) 

have been routinely conjugated within synthetic PEG hydrogel networks to promote 

survival of β-cells [166, 167]. The different peptides conjugated on PEG hydrogels and 

their effects on behaviors of β-cells are given in Table 2.2. 

However, encapsulation with passive barrier PEG alone is generally insufficient 

to protect β-cells from rejection, because small cytotoxic molecules produced by 

activated T cells can diffuse readily into the capsule and mediate allograft death. As a 

means to provide bioactive protection for polymeric encapsulation devices, Hume et al. 

[168, 169] investigated a functionalized polymeric coating that mimics a natural T cell 

regulation pathway. Anti-Fas antibodies capable of inducing T cell apoptosis were 

covalently incorporated PEG hydrogels. Figure 2.7 shows how the functionalized PEG 

was formed. Glucose oxidase-initiated dip coatings enabled the rapid formation of 

uniform PEG-based coatings which incorporate anti-Fas antibody on the surfaces of PEG 

hydrogels. 

Table 2. 2 Peptide conjugated PEG hydrogels for β-cells encapsulation. 
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Figure 2. 7 Schematic illustrating the formation of polymer coatings initiated by glucose 

oxidase (GOx). (A) Cell-laden PEG hydrogels are swollen in a glucose-containing media 

and then (B) dipped into a pre-polymer solution containing acryl-PEG, GOx, Fe2+, and 

thiolated signaling molecules. Glucose diffuses out of the gel, reacts with GOx and 

initiates polymerization at the surface of the hydrogel. (C) Reactive coating results in 

conformal PEG layers. (D) Confocal micrograph of PEG hydrogel (green) with GOx 

mediated polymer coating (red). Scale: 200 µm [169]. 

 
2.3.3.3.2 Glucose-responsive hydrogels 

A glucose-responsive hydrogel including concanavalin A was suggested to 

control the release insulin through β-cells entrapped in hydrogels [170, 171]. At low 

glucose concentrations, the materials were in a gel state that exhibited low insulin 

permeability, while at high glucose levels, the materials became a solution that exhibited 
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a higher permeability to insulin. Thus, at low glucose concentrations, a higher fraction of 

the insulin secreted by cells accumulated within the construct, and the insulin release rate 

was relatively low. When the construct was exposed to high glucose, the material became 

a more permeable solution, and the insulin release rate form the construct was higher. 

 

2.3.3.3.3 Collagen-alginate hydrogels 

Lee et al. [155] formed islets cell spheroids by using concave wells, and then 

encapsulated spheroids into alginate and collagen-alginate composite (CAC) hydrogels. 

Figure 2.8 shows the fabrication process. Alginate or CAC was covered on a concave 

microwell model containing islets spheroids, and CaCl2 solution was diffused through a 

nano-porous dialysis membrane to achieve uniform polymerization, forming convex 

structures. The in vitro and in vivo data showed that the collagen-alginate 

microencapsulation method enhanced the viability and function of islet spheroids, and 

protected these spheroids from immune attack. 
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Figure 2. 8 Schematic depiction of the in vitro cultivation of dispersed islet single cells, 

formation of islet cell-spheroids using concave microwell arrays, and the process of 

spheroids encapsulation within collagen-alginate composite [155]. 

 

2.3.3.4 Microcapsules 

Encapsulation of β-cells in micro scale capsules has been suggested as an 

alternative approach compared to macroencapsulation. Microencapsulation increases 

surface-area-to-volume ratio, which enhances transport properties. The most popular 

biomaterials used to encapsulate β-cells are alginate and agarose. 
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2.3.3.4.1 Alginate 

Traditional microencapsulation involves entrapping β-cells in a 

alginate/polylysine capsule [172-174]. For monitoring the fate of transplanted β-cells, 

gold nanoparticles treated with dithiolated diethylenetriamine-pentaacetic acid and 

gadolinium chelates (GG) were co-encapsulated in alginate capsules [173, 174]. Figure 

2.9 shows a three-dimensional structure of an alginate/polylysine microspheroid 

encapsulating β-cells and GG. The micro spheroid allowed diffusion of oxygen, nutrients, 

glucose, and insulin, and blocked the passage of immune cells and antibodies. Gold 

nanoparticles enabled multimodal cellular imaging of transplanted islet cells such as 

magnetic resonance imaging, micro-computed tomography, and 40-MHz 

ultrasonography. 

 

Figure 2. 9 Three-dimensional structure of alginate/polylysine microspheroid 

encapsulating β-cells and gadolinium chelates [174]. 
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To improve the passage of oxygen, nutrients, glucose, and insulin, some groups tried to 

decrease the size of microcapsules through conformal encapsulation [175] or nanofilm 

encapsulation technique [176]. An electrostatic layer-by-layer (LBL) technology was 

developed to form a chitosan/alginate nanocoating film on the surface of MIN-6 β-cell 

clusters [176]. A phosphorylcholine-modified chondroitin-4-sulfate layer was coated on 

the surface of β-cell microcapsules to reduce nonspecific protein adsorption of the 

chitosan/alginate nanofilm and to enhance biocompatibility of the nanocoating. 

For fabricating homogenous and asymmetric microencapsulation, Dang et al. 

[177] developed a new fabrication method by using micromolding systems. The rat 

insulinoma cell line (INS-1) was used and encapsulated with alginate in a polypropylene 

mesh mold. After cross-linking by CaCl2, Alginate hydrogel microcapsules were formed. 

Beta cells encapsulated in alginate microcapsules maintained desirable viability and 

preserved their ability to proliferate and secrete insulin in a glucose-responsive manner. 

 

2.3.3.4.2 Poly (N-isopropylacrylamide) 

Liu et al. [178] reported that the encapsulation of MIN6 cells was investigated by 

using thermally induced gelable materials based on poly (N-isopropylacrylamide). A 

vertical co-extrusion was used and a 37 ºC collection bath was settled with a paraffin 

layer above media. The size of microcapsules ranged from 500 to 900 µm. Encapsulated 

β-cells exhibited high viability after 5 days and a static glucose challenge showed 

glucose-dependent insulin secretion. 
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2.3.3.5 Composites 

2.3.3.5.1 Hollow fibers/microcapsules 

To start, people encapsulated single β-cells into microcapsules to fabricate 

artificial islets, and then entrapped artificial islets in chambers of hydrogels for in vivo 

transplantation. A blood perfusion composite was fabricated based on βTC3/agarose 

microspheres encapsulated in a polysulfone hollow fiber [179]. The in vitro results 

showed that encapsulated βTC3 exhibited high viability and functionality compared to 

islets. Yang et al. [180] designed a bioartificial pancreas based on a calcium phosphate 

cement chamber used to encapsulate β-cells/agarose microspheres. In vitro results 

exhibited that encapsulated β-cells had normal viability, cell survival and insulin 

secretion. In vivo study showed that the bioartificial pancreas implanted in the bone 

marrow cavity for the spontaneous diabetic was effective [181, 182]. 

 

2.3.3.5.2 Hydrogels/microcapsules 

For early research, β-cells/agarose microspheres were entrapped in 

chitosan/gelatin hydrogel as an immunoisolative matrix [156]. Microencapsulated β-

cells/agarose microspheres kept functional activity and secreted insulin continually for 60 

days in vitro. Chitosan/gelation hydrogels revealed cytoprotective effects against 

cytokine-mediated cytoxicity. After being injected with chitosan/gelatin containing β-

cells/agarose microspheres at the subcutaneous tissue, the non-fasting blood glucose 

concentrations of diabetic rats injected was decreased to euglycemic status albeit 

hyperglycemia within 10 days and was maintained at less than 200 mg/dL for 25 days 
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[157]. 

 

2.3.4 Cell sources for β-cell regeneration 

Although transplantation of human islets has the potential to treat type 1 diabetes, 

the limitations of donors and immunosuppression therapy restrict the application. Thus, 

alternative sources of β-cells need to be found. There have been two major approaches 

for β-cell regeneration in recent years: the in vitro generation of renewable β-cells 

suitable for transplantation and the in vivo regeneration of β-cells from undefined 

progenitors or adult stem cells. 

 

2.3.4.1 In vitro generation of β-cells 

As for in vitro regeneration, β-cells can be obtained from different sources, such 

as embryonic stem cells (ESCs), induced pluripotent stem cells, and so on. The details 

about how to regenerate β-cells from these stem cells have been thoroughly investigated 

and can be referred to reviews: [183-185]. However, the conditions under which the 

pancreatic stem cells mature into insulin-producing cells still need to be well defined. Of 

the safety concerns associated with the transplantation of stem cell-derived tissues, one 

main issue is tumorigenicity. Moreover, the use of immunosuppressive drug regimens 

concurrent with the use of allogenic or xenogenic cells for transplantation will need to be 

elucidated, tested and standardized. At present, the effect of immunosuppressive drugs on 

the insulin-producing capacity of pancreatic stem cells is unknown. 
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For in vitro regeneration, various types of bioengineering approaches have been 

used to offer a microenvironment mimicking the niche. The niche plays an important role 

in promoting cell-to-cell interaction, cell proliferation and differentiation into specific 

lineages, as well as tissue organization [186, 187]. The study of β-cell regeneration based 

on bioengineering approaches is mainly focused on the cell sources of embryonic stem 

cells, embryonic pancreatic precursor cells, fetal pancreatic precursor cells, and 

mesenchymal stem cells [188]. 

 

2.3.4.1.1 Embryonic stem cells (ESCs) 

Embryonic stem cells have been investigated as a potential renewable source of 

cells in replacement therapies for type 1 diabetes. The five step protocol for in vitro 

generation of pancreatic cells from ESCs was reported in which cells were transitioned 

through mesendoerm, definitive endoderm, foregut endoderm, pancreatic endoderm, and 

the endocrine precursoe stage, until mature β-cells were obtained [189]. 

Calcium alginate microspheres were used to encapsulate human embryonic stem 

cells (hESCs). The three dimensional model promoted cellular interactions. These 

encapsulated hESCs were differentiated to definitive endoderm [190]. Hoof et al. [191] 

tried to adjust the differentiation of hESCs into pancreatic endoderm through culturing 

hESCs in glass cover slips patterned by the covalent microcontact-printing of laminin in 

circular patches of 120 µm in diameter. These hESCs formed clusters and differentiated 

to pancreatic endoderm-like cells. Moreover, mouse ESCs (mESCs) were encapsulated in 

collagen gel to form a three dimensional ES cell pancreatic differentiation system. The 
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encapsulated mESCs can assemble into an islet-like tissue structure. Nearly 50-60% of 

the cells formed cell clusters expressed insulin. 

 

2.3.4.1.2 Pancreatic precursor cells 

Pancreatic precursor cells are isolated from the developing pancreatic bud. These 

cells have been investigated as an unlimited source of β-cells, as they have been directed 

down the early stages of pancreatic development but remain proliferative and have the 

innate ability to differentiate into insulin-producing β-cells [192]. 

Previous research has shown that embryonic pancreatic precursor cells 

encapsulated in unmodified PEG selectively after 7 days differentiated into pancreatic β-

cells which were immature and unable to release insulin in response to changes in media 

glucose concentration [193]. For functional β-cell regeneration, collagen type 1 was 

entrapped in a PEG culture system [194]. Collagen type 1, which promotes mature cell 

viability and function, entrapped in PEG hydrogels could improve the differentiation of 

precursor cell clusters to form mature, glucose-responsive, islet-like structures. Concerted 

differentiation of pancreatic precursor cell aggregates into functionally mature islet-like 

clusters can be achieved in PEG culture system by blocking cell contact-mediated Notch 

signaling with a gamma-secretase inhibitor [195]. 

For in vivo regeneration, porcine neonatal pancreatic cell clusters 

microencapsulated in barium alginate were transplanted into streptozotocin-induced 

diabetic severe combined immunodeficient mice [196, 197]. These results exhibited that 

cells/alginate microspheres transplanted into immunocompetent mice could differentiate 
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into β-cells and reverse high blood glucose levels without immunosuppression for above 

20 weeks. Montanucci et al. [198] encapsulated human islet-derived stem/precursor cells 

within alginate microspheres for transplantation. Alginate-based microspheres acted as 

three-dimensional niches to promote post-transplant precursor differentiation and 

acquisition of stem cells into immonodeficient (SCID) mice. 

 

2.3.4.2 In vivo regeneration of β-cells 

Recently, in vivo neogenesis of β-cells from pancreatic and non-pancreatic cells 

has been reported in adults. Evidence to support the presence in adult pancreas of a 

population of undifferentiated stem/progenitor cells that can give rise to all pancreatic 

cell types has still not been found. It has been shown that replication of differentiated β-

cells contributed to new β-cells during normal adult life. However, neogenesis of islets 

also occurred during normal development (at least during the first month) and in response 

to physical and physiological stress. Recently, Xu et al. [199] demonstrated that the 

neogenesis of β-cells accompanied the induction of Ngn3-expressing endocrine 

progenitors in the ductal lining in the regenerating portion but not in the non-injured 

pancreas. Also, the liver represents an attractive in vivo source for generating β-cells due 

to its related developmental origin to the pancreas and its ease of genetic and surgical 

manipulation. 
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2.4 Conclusion remarks 

Although various delivery systems such as hydrogels and microspheres have 

proved to be effective for insulin release, and non-injectable methods of insulin delivery 

have resulted in some clinical researches [200], frequent blood glucose monitoring and 

multiple daily insulin injections are still the common treatment for type 1 diabetes. This 

treatment can not provide sustained release and the insulin amount is not finely tuned to 

glycemia, so it can not prevent long-term complications such as cardiovascular disease, 

retinopathy, and nephropathy [201]. The development of a fully automated glucose-

responsive device is the ultimate aim for type 1 diabetes treatment. 

Pancreatic islet transplantation is a potential approach for patients not only to 

avoid insulin injection, but also to avoid complications. The limitations of islet 

transplantation are the significant shortage of donor pancreases and the long-term 

immunosuppressive therapy after transplantation. The development of a bioartificial 

pancreas based on bioengineering approaches has been considered to solve these 

problems. 

The bioartificial pancreas based on bioengineering strategies protects transplanted 

islets from the immune system, but the next problem is how to improve long-term 

survival and function of transplanted pancreatic islets. It would be beneficial to mimic the 

β-cell interactions within its native environment and create this islet niche as best as 

possible in a carrier or capsule. The environment would include not only the islets, but 

accessory cells, proteins, and possibly local immunosuppression housed within a 

biocompatible materials. This microenvironment can also provide an alternative for the 
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regenerative cell-based therapy, so that other sources of β-cells can find their way to 

clinical therapy. 
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CHAPTER THREE 

3. DEVELOPING HYDROGELS SYSTEMS FOR THE FORMATION OF 

ISLETS OF LANGERHAM FROM SINGLE ΒETA-CELLS  

3.1 Introduction 

The applications of cell and tissue replacement therapies are usually limited by 

the lack of appropriate delivery platform for cells and engineered tissues. Successfully 

designed biomaterials systems for cell replacement therapies often intergrate multiple 

factors, such as cell-extracellular matrix (ECM) interactions, biomolecules (growth 

factors, peptides, cytokines, etc.), and cell-cell interactions [1, 2]. A successful design 

will further improve the spatial and temporal presentation of these factors to the 

encapsulated cells [3]. Hydrogels are important biomaterials for cell encapsulation and 

delivery, which can offer a physical barrier or “immuno-isolation” between the host 

tissue and encapsulated cells. Poly (ethylene glycol) (PEG) hydrogels are often 

considered advantageous for engineering such synthetic microenvironments used for cell 

delivery. PEG hydrogels present unique advantages for cell delivery because of their high 

water content and quick diffusion characteristics. Further, the nonfouling properties of 

PEG hydrogels provide a “blank slate” on which defined bioactive/functional motifs, 

such as peptides and proteins, can be easily incorporated without significantly affecting 

the bulk material properties [4, 5]. 

The peptide-functionalized PEG hydrogels mimic aspects of the ECM to support 

the survival and function of encapsulated cells. The specific amino acid sequences 

present at the binding sites, which include RGD (Arg-Gly-Asp), IKVAV (Ile-Lys-Val-
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Ala-Val), YIGSR (Tyr-Ile-Gly-Ser-Arg), RYVVLPR (Arg-Tyr-Val-Val-Leu-Pro-Arg), 

and RNIAEIIKDI (Arg-Asn-Ile-Ala-Glu-Ile-Ile-Lys-Asp-Ile), have been identified as 

being involved in cell-receptor interactions. RGD and IKVAV are present on α laminin 

chain, whereas YIGSR is found on the β laminin chain [6-8]. Peptides, when compared to 

whole proteins, are more stable, easily synthesized, and are less likely to exhibit steric 

hindrance after biomaterial modification. 

Many studies have been reported to encapsulate islets or insulin-producing β-cells 

in PEG hydrogels for cell transplantation. To date, the design of an islets or insulin-

producing β-cells delivery barrier has been largely focused on optimizing material 

biocompatibility and tailoring material properties for cell encapsulation. Few strategies 

use material functionalities to mimic or promote cell-cell interactions in a three-

dimensional (3D) microenvironment [9]. Cell-cell interactions are important for 

maintaining β-cells survival and functionality [10]. In this study, we have developed a 

series of functionalized hydrogels based on in situ gelable, non-immunogenic material, 

including multi-arm (4-arm) thiolated PEG and poly (ethylene glycol) tetra-acrylate 

(PEGTA), focused on promoting the survival and functionaility of encapsulated 

pancreatic β-cells (MIN6) in 3D. PEG hydrogels were designed to encapsulate β-cells for 

forming clusters from single cells as islets, which will improve the cell-cell interactions. 

Using the peptide incorporation technique, PEG hydrogels were synthesized containing 

peptide tethers of IKVAV, YIGSR, RGD. Individual MIN6 β-cells were encapsulated in 

peptide-containing hydrogels, and cell survival and glucose-stimulated insulin secretion 

were observed with culture time. 
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The central hypothesis for this study is that PEG hydrogels can be designed for 

the formation of artificial islets to maintain β-cells survival and functionality as a 

biomimetic cell delivery platform. Engineering PEG hydrogels with different peptides in 

3D culture systems can improve the viability and functionality of β-cells and promote 

cell-cell interactions. 

 

3.2 Materials and methods 

3.2.1 Materials 

4-arm poly (ethylene glycol) (MW, 10kDa) and poly (ethylene glycol) 

tetraacrylate (MW, 10kDa, PEGTA) was obtained from Creative PEGWorks (Winston 

Salem, NC). Three types of adhesive peptides, CSRARKQAASIKVAVSADR (Cys-Ser-

Arg-Ala-Arg-Lys-Gln-Ala-Ala-Ser-Ile-Lys-Val-Ala-Val-Ser-Ala-Asp-Arg), GRGDSPC 

(Gly-Arg-Gly-Asp-Ser-Pro-Cys), and CDPGYIGSR (Cys-Asp-Pro-Gly-Tyr-Ile-Gly-Ser-

Arg), were purchased from American Peptide Company (Sunnyvale, CA). Cell culture 

reagents and supplements were obtained from Invitrogen (Carlsbad, CA). LIVE/DEAD 

viability kit was obtained from Molecular Probes (Eugene, OR). Insulin enzyme linked 

immunosorbent assay (ELISA) kit was obtained from Millipore (Billerica, MA). All 

other reagents were purchased from Sigma Aldrich (St. Louis, MO). 

 

3.2.2 Synthesis of thiolated multi-arm PEG 

Multi-arm PEG was chain-end thiolated by esterification reaction with 

thioglycolic acid (TGA) using p-toluenesufonic acid as a catalyzer [11]. Briefly, 5 g of 
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multiarm PEG (4-arm PEG), 0.4 g TGA, and 5 mg p-toluenesufonic acid, were added to 

100 mL of toluene preheated to 120 °C. The reaction proceeded for 24 hrs under nitrogen 

atmosphere. The thiolated prepolymer was purified by precipitation into anhydrous ether 

(200 mL) at 4 °C. This sequence was repeated three times using dichloromethane as a 

solvent. The product was then dried under vacuum at room temperature for 3 days. 

 

3.2.3 Preparation of hydrogels 

PEGTA and 4-arm thiolated PEG stock solutions (10%, w/v) were prepared by 

dissolving powders in phosphate buffered saline (PBS), respectively. To elucidate the 

influence of polymer concentration on hydrogel properties, PEGTA solutions of different 

concentrations (1.5%, 2%, 2.5%, 5%, 7.5%, and 10%) were mixed with 4-arm thiolated 

PEG of different concentrations (1.5%, 2%, 2.5%, 5%, 7.5%, and 10%) in a ratio of 1:1, 

respectively. Moreover, a 5% PEGTA solution mixed with a 5% 4-arm thiolated PEG 

aqueous solution in specific volume ratios (2:10, 3:9, 4:8, 6:6, 8:4, 9:3, and 10:2), and 

another 2.5% PEGTA solution mixed with a 2.5% 4-arm thiolated PEG aqueous solution 

in specific volume ratios (3:9, 6:6, and 9:3), were also used to determine the effect of 

feed ratio on the properties of hydrogels formed. 

 

3.2.4 Rheological characterization of hydrogels 

For rheological study, hydrogel solutions of PEGTA and 4-arm thiolated PEG 

were mixed on the steel plate geometry and inspected by oscillatory shear rheometry 

immediately [12, 13]. An AR1000 rheometer (TA Instruments Inc.) with standard 
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geometry of 40 mm diameter was used for the rheological characterization of all 

hydrogels samples. The test methods employed were oscillatory time sweep, frequency 

sweep and stress sweep. The time sweep was performed to monitor the in situ gelation of 

the hydrogel solutions at 37 °C. The test, which was operated at constant frequency (1 Hz) 

and strain (5%) and terminated after 60 minutes, recorded the temporal evolution of shear 

storage modulus (G’) and the shear loss modulus (G’’). The stress sweep was set up by 

holding the temperature 37 °C and constant frequency (1 Hz) while increasing the stress 

level from 1 to 10 Pa. The applied range of 1-10 Pa was found to be safe-for-use from a 

prior experiment where we determined the linear viscoelastic region (LVR) profiles of 

the hydrogels by shearing them until structure breakdown. We also subjected hydrogels 

to a frequency sweep at 50% of their respective ultimate stress levels. At this fixed shear 

stress and temperature (37 °C), the oscillatory frequency was increased from 0.1 to 100 

Hz and the G’ was recorded. 

Young’s modulus, E, can be evaluated by E = 2G (1+γ). When a material can be 

assumed to be incompressible, its Poisson’s ratio, γ, approaches 0.5 and this relationship 

approaches E = 3G. This assumption for hydrogels is supported by a research showing 

that n for polyacrylamide hydrogels is nearly 0.5, and these hydrogels typically used 

under very low strain. This relationship between E and G then provides a useful tool for 

comparing mechanical properties of substrates and tissues that have been determined 

using other methods of measurement. 
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3.2.5 Swelling of hydrogels 

Hydrogels of different concentrations (1.5%, 2%, 2.5%, 5%, 7.5%, and 10%), 5% 

hydrogels with different ratios (2:10, 3:9, 4:8, 6:6, 8:4, 9:3, and 10:2), and 2.5% 

hydrogels in specific volume ratios (3:9, 6:6, and 9:3), were used to determine the effects 

of concentrations and feed ratios on the swelling properties of hydrogels. To characterize 

the swelling behavior of the hydrogels, they were weighed immediately after preparation. 

Hydrogels were placed in 5 mL of PBS solution at 37 °C and allowed to swell. Weights 

were taken every 24 hours for the next 30 days. Fresh PBS, previously equilibrated at 37 

°C, was replaced every 24 hours at the time of measurement. The swelling ratio was 

calculated by dividing the weight of the hydrogels at equilibrium swelling by their weight 

after gelation. 

 

3.2.6 Peptide conjugated to hydrogels 

Different peptides, such as IKVAV, YIGSR, and RGD of different concentrations 

(1 and 0.2 mM) were conjugated to PEG hydrogels through addition reaction of peptide 

cys thiols onto the ends of a PEGTA crosslinker as described before. Briefly, peptides 

containing stock solutions (3 mM) were prepared in the PEGTA stock solution (5% w/w) 

and stirring for 2 hrs at room temperature. Additional PEGTA solutions with lower 

peptide concentrations (0.6mM) were prepared by diluting the stock solution with 

peptide-free PEGDA solution (peptide: PEGTA=1:5). Then PEGTA solution containing 

different concentrations of peptides was added to 4-arm thiolated PEG (5% w/w) 

solutions at the ratio of 1:2 and mixed thoroughly to form hydrogels. 
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3.2.7 Cell culture and encapsulation 

Murine pancreatic β-cells of the MIN6 cell line were a kind gift from Dr. Bryan 

Wolf at Children's Hospital of Philadelphia. MIN6 cells were cultured in Dulbecco's 

Modified Eagle Medium (DMEM, 25 mM glucose) supplemented with 1% antibiotic and 

antimycotic solution, 10% fetal bovine serum, and 80 µM of 2-mercaptoethanol at 37 ºC 

in humid conditions with 5% CO2. The culture medium was exchanged every 2 days. 

For encapsulation, MIN6 cells were mixed with PEG hydrogels or peptides 

conjugated PEG hydrogels of different ratios before gel formation. To avoid cells 

precipitating onto the surface of plate during the hydrogel formation, we coated the plate 

with hydrogels overnight, then mixed MIN6 cells with hydrogel precursor solutions 

(1×104 cells/well) and seeded on the top of pre-formed hydrogels. The culture medium 

was changed every 2 days. 

 

3.2.8 Cell viability 

Viability of cells was examined using LIVE/DEAD viability kit, which is a two 

color fluorescent assay based on differential permeability of live and dead cells and 

allows preservation of the distinctive staining pattern for a couple of hours after 

postfixation with 4% glutaraldehyde. Live cells were stained with green fluorescent 

SYTO 10; and dead cells with compromised cell membranes were stained with red 

fluorescent ethidium homodimer-2. The Leica TCS SP5 laser scanning confocal 

microscope was used to capture the images of the LIVE/DEAD cell staining patterns. 
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3.2.9 Glucose-stimulated insulin secretion 

At designed time points, cultures were removed from encapsulation samples for 

glucose-stimulated insulin secretion. Samples were first placed in a low glucose 

concentration (1.1 mM) for 45 min, followed by incubation in a high glucose 

concentration solution (16.7 mM) for 1 hr. The high glucose solutions were collected for 

insulin measurement by ELISA insulin kit. 

 

3.2.10 Statistical analysis 

Data are shown as mean ± S.D. Statistical analyses were performed using one-

way ANOVA (analysis of variance) followed by Tukey’s post tests and the paired t-test 

where appropriate. A probability (p) value of <0.05 was considered statistically 

significant. 

 

3.3 Results 

3.3.1 Hydrogel characterization 

3.3.1.1 Mechanical properties of hydrogels 

In this study, we have developed an in situ cross-linkable hydrogel based on 4-

arm thiolated PEG and PEGTA. Hydrogels formed at physiological conditions due to 

conjugate addition reactions between thiols and acrylates. We achieved hydrogels with 

different mechanical properties by adjusting PEG concentrations or the ratios of thiolated 

PEG to PEGTA. Figure 3.1 shows the time sweep profiles of storage modulus (G’) for 

the 10%, 7.5%, 5%, 2.5%, 2%, 1.5%, and 1% hydrogel networks within the small time 
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frame (60 minutes). With increase of PEG concentrations G’ was increased accordingly 

(Figure 3.1, inserted 1). 1% PEG solution could not form hydrogel at physiological 

conditions. Higher PEG concentrations resulted in faster gelation (Figure 3.1, inserted 2). 

The frequency and stress sweeps of hydrogels of various PEG concentrations were shown 

in Figure 3.2 A and B, respectively. 

 

Figure 3. 1 Evolution of shear storage moduli, (G’) of hydrogels as a function of time. 

Inserted pictures: (1) G’ at 1 hr and (2) gelation time as a function of PEG concentrations. 

 

Another way to obtain hydrogels of different stiffness is to change the ratios of 

thiols to acrylates with the same PEG concentration. In 5% PEG solutions, the ratios of 
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PEGTA to 4-arm thiolated PEG were adjusted as follows: 2:10, 3:9, 4:8, 6:6, 8:4, 9:3, 

and 10:2. When the ratio of acrylates to thiols was kept at the stoichiometric balanced 1:1 

(6:6), hydrogels formed with the largest G’ (4,000 Pa, Figure 3.3 A). In contrast, as to 

ratios of 2:10 or 10:2, the biggest deviation to stoichiometric balance, PEG solutions 

could not form hydrogels. The gelation of hydrogels with ratios (3:9, 4:8, 6:6, 8:4, and 

9:3) occurred at about 10 minutes and the ratios showed no effects on gelation time. As 

for 2.5% PEG solutions, hydrogels with acrylates to thiols 2:4, 3:3, and 4:2 formed within 

30 minutes with G’ 75, 300, and 25 Pa, respectively (Figure 3.3B). 2.5% PEG solutions 

with higher deviation to stoichiometric balance (1:3 and 3:1) could not form hydrogels, 

either. 

 

Figure 3. 2 (A) Frequency sweep of hydrogels of various PEG concentrations. (B) 

Oscillatory stress sweep of hydrogels of various PEG concentrations. 
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Figure 3. 3 Frequency sweep and oscillatory stress sweep of hydrogels of various ratios 

of different concentrations of (A) 5% and (B) 2.5%. 

 

3.3.1.2 Hydrogel swelling and degradation 

The swelling of hydrogels was studied by incubating them at pH 7.4 and 37 °C. 

Figure 3.4 A presents the dynamic swelling of the hydrogels as the function of 

concentration (10%, 7.5%, 5%, 2.5%, 2%, and 1.5%). Hydrogels with increasing 

concentrations (2.5%, 5%, 7.5%, and 10%) exhibited larger swell ratios, even though 

2.5% and 1.5% showed no significant difference about their swelling ratios. All these 

hydrogels with stoichiometric balanced ratios were stable with steadily increased weight 

over the course of the study (3 weeks). 
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Figure 3.4 B and C shows the hydrogel swelling as the function of ratios of 

PEGTA to 4-arm thiolated PEG at the concentration of 5% and 2.5%, receptively. With 

the increase of deviation to stoichiometric balance from 6:6, 8:4 (4:8), to 9:3(3:9), 

hydrogels with concentration of 5% exhibited larger swell ratios. Although hydrogels 

with ratios of 4:8 exhibited larger swelling ratio than hydrogel of 8:4, both of them were 

stable over 3 weeks. In contrast, hydrogels with the ratios of 3:9 and 9:3 degraded at 14 

days and 20 days, respectively. When considering 2.5% PEG hydrogels, although both of 

the hydrogels with ratios of 1:2 and 2:1 totally degraded at about 30 days, hydrogels with 

ratio of PEGTA to 4-arm thiolated PEG 2:1 began to degrade earlier than hydrogels with 

1:2 ratios (16 days as opposed to 26 days). 

 

Figure 3. 4 Dynamic swelling of the hydrogels in PBS. (A) Degree swelling of hydrogels 

as the function of concentration. (B and C) Degree swelling of hydrogels as the function 

of ratios of PEGTA to 4arm PEGSH at the concentration of (B) 5% and (C) 2.5%. 
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3.3.2 Effects of PEG hydrogels with different ratios on β-cell clusters formation 

MIN6 cells were cultured in 5% PEG hydrogels with different ratios of 4-arm 

thiolated PEG to PEGTA. The survival of encapsulated β-cells was determined by 

LIVE/DEAD staining. In Figure 3.5, more than 90% of cells survived in all samples up to 

7 days and there was no significant difference among all samples. MIN6 cells were 

encapsulated as single cells, as Figure 3.5 shows, they can proliferate to form cell clusters 

like artificial islets, especially in the specific samples of 1:2 and 1:3. Figure 3.6 illustrates 

the quantity analysis of the size of cell clusters in PEG hydrogel with different ratios. 

Larger sizes of cell clusters especially appeared in hydrogels of 1:2 and 1:3 at both the 

day 4 and 7 (* P<0.05). 

 

Figure 3. 5 LIVE/DEAD (Green/Red) staining of MIN6 cells 3D cultured in 5% PEG 

hydrogels of different ratios of 4-arm thiolated PEG to PEGTA. 
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Figure 3. 6 The size of artificial islets of MIN6 cells in 5% PEG hydrogels of different 

ratios of 4-arm thiolated PEG to PEGTA (* P<0.05). 

 

3.3.3 Effects of PEG hydrogels with different ratios on glucose-stimulated insulin 

secretion 

Figure 3.7 reports insulin secretion from MIN6 cells encapsulated in PEG 

hydrogels with different ratios of thiolated PEG to PEGTA. On the first day, compared to 

MIN6 cells cultured on the plate, MIN6 cells inside hydrogels appeared to have no 

response to glucose stimulus. At the day 4, the cells encapsulated in the hydrogels of 1:2 

and 1:3 secreted significantly higher amounts of insulin relative to those inside other 

hydrogel samples (* P<0.05), and the amount of secreted insulin almost caught 2D 

control group based on glucose stimulation. At the day 7, besides the cells inside the 

specific hydrogel of 3:1, all the cells secreted similar amounts of insulin based on glucose 

stimulus when compared to 2D culture. 
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Figure 3. 7 Insulin release response to glucose from MIN6 cells cultured in 5% PEG 

hydrogels of different ratios of 4-arm thiolated PEG to PEGTA at the day 1, 4 and 7 (* 

P<0.05). 

 

3.3.4 Effects of peptides on β-cell survival and clusters formation 

 

Figure 3. 8 LIVE/DEAD (Green/Red) staining of MIN6 cells cultured in 5% PEG 

hydrogels of 4-arm thiolated PEG to PEGTA at the ratio of 1:2 conjugated with different 

peptides: IKVAV, RGD, and YIGSR at the day 4. 
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MIN6 cells were cultured inside 5% PEG hydrogels with the ratio of thiolated 

PEG to PEGTA at 1:2 conjugated with different concentrations of IKVAV, RGD and 

YIGSR, respectively. As Figure 3.8 shown, more than 95% of cells survived in all 

samples up to 7 days and there was no significant difference between all samples. As 

described above, the cells in the hydrogels proliferated in the format of aggregates. 

Peptides conjugated to hydrogels benefited aggreagate formation. Higher concentrations 

of peptide resulted in larger sizes of cell clusters, especially in the hydrogels conjugated 

with RGD and YIGSR (Figure 3.9, * P<0.05). 

 

Figure 3. 9 The size of artificial islets of MIN6 cells cultured in 5% PEG hydrogels of 4-

arm thiolated PEG to PEGTA at the ratio of 1:2 conjugated with different peptides: 

IKVAV, RGD, and YIGSR at the day 4 (* P<0.05). 
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3.3.5 Effects of peptides on β-cell based on glucose-stimulated insulin secretion 

Figure 3.10 shows insulin secretion from MIN6 cells encapsulated in PEG 

hydrogels conjugated with different peptides. At day 4, using YIGSR and IKVAV, higher 

amounts of pepides (1mM) conjugated to hydrogels resulted in larger amount of insulin 

secretion from cells encapsulated in the gels (* P<0.05). These two peptides at 1 mM 

benefited insulin secretion when compared to blank hydrogels. As to RGD, cells in the 

hydrogels with RGD at 0.2 mM have secreted the similar amount of insulin compared to 

those on 2D culture. Larger amount of RGD conjugation did not increase the insulin 

secretion further. 

 

Figure 3. 10 Insulin release response to glucose from MIN6 cells cultured in 5% PEG 

hydrogels of different peptides at the day 4 (* P<0.05). 
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3.4 Discussion 

Developing bioactive hydrogels for 3D cell culture is an archetypal engineering 

problem. The hydrogel concentration, mechanical property, adhesive ligand and growth 

factor presentation, transport and degradation kinetics must be tuned to the given 

culture’s needs a priori in a cytocompatible, reliable, and cost effective fashion. In this 

chapter, through adjusting the concentrations of PEG and the ratios of 4-arm thiolated 

PEG to PEGTA, we can achieve hydrogels with controllable mechanical properties 

ranging from 1 to 10,000 Pa and adjustable degradation time from 2 weeks to several 

months. MIN6 cells have been cultured inside hydrogels with different PEG 

concentrations and the ratios of thilated 4-arm PEG to PEGTA. MIN6 cells expressed 

very high viability in all the hydrogel samples. Another study has reported that MIN6 

cells encapsulated in hydrogels formed from three PEGDM macromers of varying 

molecular weights (Mn=4,000, 8,000, 10,000g/mol), showed similar viability [14]. The 

optimal condition for the cells to form artificial islets in vitro is having the concentration 

of PEG at 5% and the ratios of 4-arm thiolated PEG to PEGTA at 1:2 (or 1:3).  

The cells inside the optimal hydrogels exhibited similar insulin secretion to cells 

on 2D culture. Since the diffusion coefficient of agents, such as insulin, is determined by 

the pore size of the hydrogel matrix, the average pore size of hydrogel network is 

estimated based on rubber-elasticity theory according to equation 3.1[Assuming that all 

chains contribute to the retraction force after deformation in a similar way (affine 

deformation), neglecting end effects of single chains (all chains have fixed ends towards 

an elastic background)] [15]. 
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Equation 3.1 Equation used to evaluate the mesh size of the gels [15]. 

 

Table 3. 1 Mesh size of hydrogels with various concentrations of PEG and different 

ratios of 4 arm thiolated PEG to PEGTA. 
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The mesh size of hydrogels calculated from their storage modulus is shown in 

Table 3.1. The mesh sizes of hydrogels less than 5% are all over 10 nm. Since the size of 

insulin is about 10 nm, the diffusion of insulin in the hydrogels is not inhibited when the 

concentrations of hydrogels are less than 5%. There are different insulin screations from 

cells in different hydrogels due to the cells which have been affected by the hydrogels but 

not to physical inhibition of hydrogels themselves.  

To further optimize our hydogel, different peptides, such as RGD, IKVAV, 

YIGSR, have been conjugated to hydrogle matrix through the Machael reaction. These 

specific amino acid sequences rather than whole proteins, are better suited for 

biomaterials modification. As described before, they are more stable, easily synthesized, 

and are less likely to exhibit steric hindrance after biomaterial modification [16]. 

Moreover, these ECM proteins are difficult to produce, have high batch-to-batch 

variability, and may cause immune response if used in clinical applications. We have 

found all of the peptides have benefited insulin secretion when compared to blank 

hydrogels. Especially, RGD at 0.2 mM can significantly promote the insulin secretion, 

similar to the 2D control group at the day 4. 

Other investigators have reported similar results. In the absence of cell-cell and 

cell-matrix contacts, encapsulated MIN6 β-cell survival diminished within one week; 

however, in PEG hydrogel derivatives including the laminin sequences IKLLI and 

IKVAV, encapsulated β-cells exhibited preserved viability, reduced apoptosis, and 

increased insulin secretion. Interactions with the laminin sequences LRE, PDSGR, RGD, 

and YIGSR contribute to improved viability, but insulin release from these samples was 
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not statistically greater than that from controls. MIN6 β-cells were also encapsulated with 

various concentrations of IKLLI and IKVAV (0.05-5.0mM), individually, and the peptide 

combinations IKLLI-IKVAV, IKVAV-YIGSR, and PDSGR-YIGSR to explore 

synergistic effects [9]. Moreover, bioactive GLP-1C was efficiently immobilized within 

PEG hydrogels and did not alter the bulk hydrogel properties. The GLP-1 immobilized 

PEG hydrogels enhanced the survival and insulin secretion of encapsulated islets [17].  

To further enhance cell survival in the hydrogels, a polymerizable superoxide dismutase 

was incorporated into PEG hydrogels to protect encapsulated cells from 

superoxidemediated damage, since superoxide and other small reactive oxygen species 

can cause oxidative damage to donor tissue encapsulated within size exclusion barrier 

materials [18]. Recently, Lin et al. has reported that when MIN6 cells were encapsulated 

in PEG hydrogels, their survival and glucose responsiveness to insulin were highly 

dependent on the cell-packing density. A minimum packing density of 107 cells/mL was 

necessary to maintain the survival of encapsulated β-cells without the addition of material 

functionalities. Thiolated EphA5-Fc receptor and ephrinA5-Fc ligand were conjugated 

into PEG hydrogels via a thiol-acrylate photopolymerization to render an otherwise inert 

PEG hydrogel bioactive. The biomimetic hydrogels provided crucial cell-cell 

communication signals for dispersed β-cells and improved their survival and 

proliferation. Together with the cell-adhesive peptide RGDS, the immobilized fusion 

proteins (EphA5-Fc and ephrinA5-Fc) synergistically increased the survival of both 

MIN6 β-cells and dissociated islet cells, both at a very low cell-packing density (< 2 × 

106 cells/mL) [10]. 
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3.5 Conclusion 

In this chapter, we have optimized our hydrogel systems for MIN6 cells in 3D 

culture. We have found that the optimal condition for the cells to form artificial islets in 

vitro is the concentration of PEG at 5% and the ratios of 4-arm thiolated PEG to PEGTA 

at 1:2 (or 1:3). Conjugated with RGD at 0.2 mM can significantly promote the insulin 

secretion, similar to the 2D control group. 
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CHAPTER FOUR 

4 AUTOMATIC ROBOTIC FABRICATION OF BETA-CELL SPHEROIDS AND 

MSC MICROENCAPSULATION IN A CORE-SHELL CONFIGURATION FOR 

IMMUNOMODULATION 

4.1 Introduction 

In our body, most cells are organized in three-dimensional (3D) structures which 

allow for cell-cell and cell-extracellular matrix interactions in a very complex 

communication network of biochemical and mechanical signals. Knowing the cell 

responses to environmental cues, including biochemical and mechanical signals, is 

critical for the understanding development biology, disease progress, cancer biology and 

treatment, and tissue regeneration. However, most in vitro cell studies in the literature are 

from two-dimensional (2D) monolayer cultures. In 2D cultures, most cells lose tissue 

specific properties; and the physiological and pathological studies based on 2D culture 

may not reflect the signaling cascades in our body [1, 2]. To overcome the difficulties 

and issues with 2D cultures, many three-dimensional 3D culture systems have been 

tested, including organotypic tissue explants [3], cell seeded 3D scaffolds or hydrogels 

[4], multicellular spheroids [2, 5], and so on. 

Multicellular spheroids have advantages over the other methods due to its 

simplicity, reproducibility, and similarity to physiological tissues and steer clear of the 

mass transport issues associated with explants and scaffolds. These multicellular 

spheroids have been widely used in many biological and medical applications, such as 

screening new drug and biologics using human spheroids before clinical trial [6, 7], 
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understanding developmental biology, disease progress, cancer biology and treatment, 

and tissue regeneration [8], and improving the survival of transplanted cells in vivo [5]. 

Although these advantages of spheroids have been widely recognized, it has been 

difficult to scale up spheroid culture in a high-throughput manner. Preventing cells from 

attaching to the culture ware substratum is the fundamental requirement for multicellular 

spheroid generation. The general criteria for selecting a spheroid production method 

include: production efficiency, spheroid size uniformity, possible damage or influence on 

cellular physiology, convenience and suitability for subsequent applications. Traditional 

fabrication methods for multicellular cell spheroids include hanging-drop [9, 10], round-

bottomed well culture [11], non-adhesive surface, rotary bioreactor or spinner flasks [12], 

microfabricated microstructures [13-16], and so on. However, none of these methods fits 

the scalability criterion, either because spheroid shape and size can not be controlled 

during the fabrication process or because the platform does not permit fabrication of 

tissue spheroids in large number in a time efficient manner. The size and shape of the 

spheroids are very important, since uncontrolled size and shape may induce mass 

transport issues. Recently, a novel technique, high-throughput hydrogel microwells, has 

been developed to achieve mass sphere production with easy spheroid handling and 

diameter control [17, 18]. Mehesz and coworkers have combined this technique with 

automated cell seeding for scalable robotic fabrication of uniform-sized tissue spheroids 

[19]. 

The transplantation of islets of Langerhans is a potential option for curing type 1 

diabetes, which can avoid the complications followed by major surgery compared to the 
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whole pancreas transplantation. However, islets transplantation still faces the problems of 

the long-term administration of immunosuppressive agents with severe side effects, and 

the shortage of donor tissues [20-22]. To solve these issues, the immunoisolation of islets 

with a semi-permeable membrane, and other cell sources for islets transplantation, has 

been attempted. Immunoisolation of islets is a technology being excepted to overcome 

the immune-mediated destruction of the donor tissues without requiring toxic 

immunosuppression agents [23-25]. The strategy of immunoisolation means 

encapsulating islets within a semi-permeable membrane made of biomaterials with good 

biocompatibility. A variety of hydrogels have been applied to islet encapsulation. 

Hydrogels protect the islets from immune system but still allow pro-inflammatory 

cytokines and other effector molecules of low molecular weight to diffuse into the 

capsules and affect the function and vitality of islets [26-28]. Control of islet graft 

inflammation may be achieved by co-transplantation of islets with mesenchymal stem 

cell (MSCs). These stromal cells are connective tissue derived stem cell with 

immunomodulatory and regenerative properties. They also secrete anti-inflammatory 

proteins and suppress the activity of various immune cells such as alloantigen activated T 

and B lymphocytes. 

Within islets, there are five endocrine cell types work as a micro-organ to 

maintain glucose homeostasis. Insulin is normally produced in and secreted by the β-cells 

of islets. Because of difficulties associated with the use of primary islets, such as limited 

human pancreas donation, the risk of zoonosis in case of an animal source, low isolation 
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yield, and preservation [29], the β-cells replacement through cellular transplantation to 

replace primary islets has the promise of providing a long-term cure for type 1 diabetes.  

In this study, we developed a fully robotic biofabrication method to produce 

uniform size multi-cellular β-cells spheroids in large scale. Our method is the first one to 

allow production of cell spheroids in large number and in a time-efficient manner. The 

availability of this technique was assured. The size of uniform spheroids can be 

manipulated by adjusting the seeding concentrations of cell suspensions. Uniform sized 

multicellular β-cells spheroids can be coated with a thin layer of non-degradable hydrogel 

for immunoisolation. In addition, the survival of spheroids of optimized size can be 

further improved with a novel coating of multiple layers of MSCs to prevent graft 

rejection. To prevent MSC migrate away from spheroids, another layer of non-degradable 

hydrogel can be added. The function of β-cells in the spheroids with multiple layers 

respond to glucose to release insulin was investigated by enzyme linked immunosorbent 

assay. 

 

4.2 Materials and Methods 

4.2.1 Materials 

Polytetrafluoroethylene (PTFE, Teflon) rods were obtained from McMaster-Carr 

(Atlanta, GA). Methycellulose and Agarose were purchased from Sigma (St. Louis, MO). 

LIVE/DEAD viability kit was purchased from Molecular Probes (Eugene, OR). Insulin 

enzyme linked immunosorbent assay (ELISA) kit was obtained from Millipore (Billerica, 

MA). Cell culture reagents and supplements were obtained from Invitrogen (Carlsbad, 
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CA). Alexa Fluor-543 Phalloidin, 4', 6-Diamidino-2-Phenylindole, Dihydrochloride 

(DAPI) was obtained from Molecular Probes (Eugene, OR). Human mitochondria 

antibody (MAB1273) was purchased from Millipore (Billerica, MA). Rabbit anti-insulin 

was purchased from Santa Cruz Biotechnology (Dallas, Texas). Fluorophore-conjugated 

secondary antibodies were purchased from Jackson ImmunoResearch (West Grove, PA). 

All other reagents were purchased from Sigma Aldrich (St. Louis, MO). 

 

4.2.2 Cell culture 

Rat pancreatic β-cells of the RIN-m cell line were obtained from ATCC (CRL-

2057). RIN-m cells were cultured in Roswell Park Memorial Institute (RPMI) 1640 

medium supplemented with 10% fetal bovine serum at 37 ºC in humid conditions with 

5% CO2. The culture medium was exchanged every 2 days. 

Human bone marrow-derived mesenchymal stem cells (hMSCs) were obtained 

from Sciencell (Carlsbad, CA). Human MSCs were plated in Modified Essential Medium 

alpha (MEMα) supplemented with 10% fetal bovine serum. All the cells were incubated 

at 37 ºC under 5% CO2 and used before passage 5 in this study. The culture medium was 

exchanged every 2 days. 

 

4.2.3 Βeta-cells spheroids fabrication 

Βeta-cells spheroids with uniform sizes were fabricated using a robotic fabrication 

system developed in our lab. Briefly, stamps with micronipple array were designed in 

SolidWorks and fabricated using ultra-precision lathe. The automatic spheroid fabricator 
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was built on a TT-C3-4040 robot (IAI Corporation, Shizuoka, Japan) with electric 

triggered gripper to pick up the stamp and pipette tip uptake and ejection actuator to 

handle liquid. Agarose solution (2% w/w) was prepared by built-in heating elements in 

the robot platform. The robot was programmed to first add agarose solution to culture 

dishes. Then the robot picked up the stamp with micronipple arrays on the bottom and 

pressed on the agarose solution at room temperature for 2 minutes. Then the highly 

uniform size microwells were formed in the agarose gel. Specific micro-mold, including 

270 wells with the well diameter of 600 μm, designed and made by ourselves, were 

applied to staple microwells on agarose gels. To achieve desired sizes of β-cells spheroids, 

1 mL cell suspensions of different concentrations: 0.1x106, 0.8x106, 2.4x106, 5.6x106, 

and 1.2x107 cells/mL, were seeded into microwells. Cells in the microwells were 

incubated at 37 ºC and 5% CO2 2 days for β-cells spheroids formation. The formed β-

cells spheroids were transferred into a suspension flask on a shaker for long time culture. 

 

4.2.4 Viability of cells in microwells 

Viability of the cells in agarose microwells was examined using LIVE/DEAD 

Viability Kit, which is a two color fluorescent assay based on differential permeability of 

live and dead cells and allows preservation of the distinctive staining pattern for a couple 

of hours after post-fixation with 4% (w/v) glutaraldehyde. Live cells were stained with 

green fluorescent SYTO 10; and dead cells with compromised cell membranes were 

stained with red fluorescent ethidium homodimer-2. A confocal laser microscope (TCS 



 94

SP5, Leica microsystem Inc., Bannockburn, IL) was used to capture the images of the 

LIVE/DEAD cell staining patterns. 

 

4.2.5 Morphology of spheroids  

Morphology of spheroids was examined by immunocytochemistry. The spheroids 

were fixed with 4% (w/v) paraformaldehyde, treated with 5% goat serum in phosphate 

buffered saline (PBS) to block non-specific reactivity and incubated overnight at 4 ºC 

with primary antibodies, such as insulin and human mitochondria. After washing with 

PBS three times, the samples were incubated with the affinity secondary antibodies at 

room temperature for 3 hrs. The nuclei were stained with DAPI. The samples were 

imaged using a Leica TCS SP5 laser scanning confocal microscope. 

 

4.2.6 Co-culture RIN-m cells and hMSCs 

Mixed cell suspension of 2x106
 cells/mL with a ratio of RIN-m cells to hMSCs at 

1:1 was seeded into microwells. Cultured 3 days, the formed spheroids were inspected by 

immunocytochemistry as described above and imaged by Leica TCS SP5 laser scanning 

confocal microscope. 

 

4.2.7 Co-culture β-cells spheroids and hMSCs 

RIN-m cells (1x106
 cells/mL) in the microwells were incubated 2 days for 

spheroids formation. Then hMSCs (1x106
 cells/mL) were seeded and co-cultured with the 

formed β-cells spheroids in the microwells for another 3 days. The morphology of co-
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culture spheres was inspected through immunostaining as described before and imaged 

by Leica TCS SP5 laser scanning confocal microscope. 

 

4.2.8 Core/shell structure RIN-m/hMSCs complex fabrication 

4.2.8.1 Fabrication of hydrogel coated β-cells spheroids 

The methylcellulose coated β-cells spheroids were prepared as following. Briefly, 

hydrogel precursor solutions were prepared through mixing 1 mL 4% (w/w) 

methylcellulose solution and 0.1 ng/mL streptavidin. Βeta-cells spheroids with hydrogel 

precursor solutions were poured into 10 mL of mineral oil (Sigma Aldrich, St. Louis, MO) 

with the magnetic stirring at 300 rpm at 37 ºC. After half an hour, the β-cells spheroids 

were centrifuged at 300 rpm for 5 min, washed 3 times with culture media. The β-cells 

spheroids were fixed with 4% (w/v) paraformaldehyde, stained with DPAI for nuclei and 

Sulfo-Cy3 NHS ester (Lumiprobe Corp, Hallandale Beach, FL) for coated 

methylcellulose, and inspected by Leica TCS SP5 laser scanning confocal microscope. 

 

4.2.8.2 Human MSCs coating 

Human MSCs were washed with Hank’s Balanced Salt Solution (HBSS) 3 times. 

Human MSCs of different concentrations (0.4x106, 0.8x106, 1.6x106, 3.2x106, and 

6.4x106
 cells/mL) were incubated in biotinylated poly(ethylene glycol)-N-

hydroxysuccinimide (biotin-PEG-NHS) solution(1 mg/mL) for 30 min at 37 ºC on the 

shaker. Human MSCs were washed 3 times with HBSS and transferred to Petrie dish 

with the β-cells spheroids for 30 min coating at 37 ºC on a shaker. The formed spheroid 
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complex were stained by immunocytochemistry and inspected by Leica TCS SP5 laser 

scanning confocal microscope. 

 

4.2.8.3 Agarose hydrogel coating 

Agarose hydrogels were selected for coating on the surface of RIN-m/hMSCs 

hybrid spheroids using the similar coating method as described before. Briefly, 1 mL 2% 

agarose solution was mixed with 700 to 1000 RIN-m/hMSCs spheroids and 15 mL of 

mineral oil (Sigma Aldrich, St. Louis, MO) was added at 40 ºC. The mixture was 

suspended with the magnetic stirring at 200 rpm to form agarose droplets then immersed 

in an ice bath for 5min. The microbeads contained RIN-m/hMSCs spheroids were 

washed 3 times with HBSS and then cultured in medium under 5% CO2 at 37 ºC. The 

thickness of coated hydrogel was controlled through adjusting the stirring rate of mineral 

oil. Stirring rate was set up at 100, 200, and 500 rpm, respectively. The complexes were 

fixed with 4% (w/v) paraformaldehyde and inspected by the phase-contrast microscope. 

 

4.2.9 Insulin release from hMSCs coated β-cells spheroids 

Beat-cells spheroids coated with different concentrations of hMSCs (0.4x106, 

0.8x106, 1.6x106, 3.2x106, and 6.4x106
 cells/mL) were inspected for insulin release based 

on the glucose stimulus. Briefly, culture medium were removed from samples and 

washed twice with KRB solution. Samples were first placed in a low glucose 

concentration (1.1 mM) for 45min, followed by incubation in a high glucose 
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concentration solution (16.7 mM) for 1 h. The high glucose solutions were collected for 

insulin measurement by ELISA kit. 

 

4.2.10 Bioactivation of hMSCs to pro-inflammatory cytokines 

Human MSCs were enzymatically detached from culture plates, counted, and 

added (0.4x106, 0.8x106, 1.6x106, 3.2x106, and 6.4x106
 cells/mL) to a 24-well plate with 

35 β-cells spheroids of 200 µm compared to β-cells spheroids cultured alone. After 24 hrs, 

the insulin release based on the glucose stimulus from β-cells spheroids was inspected as 

described above. 

Then these co-culture cells were exposed to a cocktail of pro-inflammatory 

cytokines including 100 ng/mL interferon-γ (IFN-γ), 10 ng/mL tumor necrosis factor-α 

(TNF-α), 0.5 ng/mL interleukin 1β (IL-1β) for another 24 hrs. The insulin secretion based 

on the glucose stimulus from β-cells spheroids was inspected again as described above. 

The change of insulin release after exposing to the pro-inflammatory cytokines was 

calculated based on these two inspections. 

 

4.2.11 Analysis of β-cells apoptosis by TUNEL assay 

Cytokine induced β-cells damage was assessed by the TUNEL, a marker for cell 

apoptosis. After culture as 4.2.10 described above, the β-cells spheroids were fixed with 

4% w/v paraformaldehyde. An APO-BrdU TUNEL Assay Kit (Invitrogen, Grand Island, 

NY) was utilized, in which an AlexaFluor 488 labeled anti-BrdU antibody was used for 
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detection of apoptotic cells. Propidium iodide staining was performed to detect all the 

cells. 

 

4.2.12 Statistical analysis 

Data are shown as mean ± S.D. Statistical analyses were performed using one 

way ANOVA (analysis of variance) followed by Tukey’s post tests and the paired t-test 

where appropriate. A probability (P) value of <0.05 was considered statistically 

significant. 

 

4.3 Results 

4.3.1 Fabrication of β-cells spheroids with uniform size 

In this study, the agarose microwells were firstly fabricated by our designed 

computer controlled spheroid maker (Figure 4.1). Different concentrations of β-cells were 

seeded into these agarose microwells. Beta-cells survived and aggregated in these 

microwells (Figure 4.2 A). Beta-cells exhibited high viability (>95%, Figure 4.2 B). The 

cell seeding concentration controlled the size of β-cells spheroids. Higher concentrations 

of β-cells resulted in the spheroids with larger diameter (Figure 4.2 A and C). These cell 

aggregates were transferred to a suspension flask on a shaker for long-term culture. Large 

amounts of uniformed β-cells spheroids with different sizes (100, 200, 300, 400, and 500 

μm) have been successfully fabricated at 1 week with very high viability as shown in 

Figure 4.3. 
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Figure 4. 1 (A) The computer controlled spheroid maker. (B and C) The fabrication 

process of microwells. (D) Agarose microwells. 

 

 

Figure 4. 2 (A) Beta-cells formed aggregates of different diameters of 200, 300, and 400 

µm in microwells. (B) LIVE/DEAD staining of β-cells aggregates in microwells. Live 

cells stained with green and dead with red. (C) The relationship between cell seeding 

concentrations and spheroid diameters. 
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Figure 4. 3 Beta-cells formed spheroids with different diameters of (A) 100, (B) 200, (C) 

300, (D) 400, and (E) 500 µm transferred into a suspension flask for culture 1 week with 

high viability. Live cells stained with green and dead with red. Scale bar = 200 µm. 

 
4.3.2 Glucose-stimulated insulin secretion 

As shown on Figure 4.4, β-cells in the spheroids stained strongly positive for 

insulin regardless of spheroid size, indicating that these cells were still capable of 

producing insulin after in vitro culture in the format of spheroids. 

For stimulated insulin secretion, β-cells spheroids were first conditioned in Krebs 

Ringer Buffer (KRB) containing low glucose and then exposed to KRB containing high 

glucose. Figure 4.5 reports insulin secretion from β-cells spheroids of different sizes at 

high glucose level. The insulin released from the single cell was also calculated through 

dividing the insulin amounts by the total cells in the spheroids. The spheroids of 200 µm 

released significantly larger amount of insulin than those of 100 µm (* P<0.05). And 

there is no significant difference about total insulin released from the spheroids of 200, 

300, 400, and 500 µm. In consideration to the capacity of the single cell for insulin 

secretion in the format of spheroids, the single cell from spheroids of 200 µm released 

highest amount of insulin when compared to that from spheroid of 300 400, and 500 µm 

(* P<0.05). 
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Figure 4. 4 Insulin (green) staining of β-cells spheroids with different diameters of (A) 

200, (B) 300, and (C) 500 µm. Nuclei were stained with DAPI (blue). Scale bar = 100 

µm. 
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Figure 4. 5 Insulin release from β-cells spheroids with different diameters of 100, 200, 

300, 400, and 500 µm. (A) Insulin release from spheroids of total number of 270. 

Spheroids of diameter of 200 µm released significant larger amount of insulin than those 

with diameter of 100 µm (* P<0.05). (B) Insulin release from the single cell in the 

spheroids. Cells from spheroids of 200 µm released lager amount of insulin compared to 

those from spheroid of 300 µm (* P<0.05). 
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4.3.3 Human MSCs invasion into β-cells spheroids 

Human MSCs were stained with red by human specific antibody, mitochondria, 

and RIN-m cells were identified with green by a polyclonal antibody directed against 

murine insulin. When seeding these two types of cells in the microwells simultaneously, 

as shown on Figure 4.6A, these cells self-assembled into a spheroid in which hMSCs 

have integrated with each other and self-sorted to stay inside whereas β-cells randomly 

disseminated throughout the entire spheroid. Moreover, a thin layer of β-cells appeared to 

cover the whole spheroid. 

When β-cells seeded first in the microwells, they aggregated together at the day 2. 

The subsequently seeded hMSCs in the same microwells did not adhere on the surface of 

the formed β-cells spheroids; instead, they invaded into β-cells spheroids and broke the 

integrity of β-cells spheroids regardless of the diameter of spheroid, as shown in Figure 

4.6B. 
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Figure 4. 6 (A) Co-culture of β-cells and hMSCs. (B) Co-culture of β-cells spheroids 

with hMSCs. Beta-cells were stained with insulin with green. Human MSCs were 

identified by human mitochondria with red. Scale bar = 100 µm. 

 

4.3.4 Construction of unique RIN-m/hMSCs complex with core/shell structure 

To prevent the invasion of hMSCs, a physical barrier, methylcellulose hydrogel, 

was coated on the surface of β-cells spheroids. Methylcellulose hydrogel formed a nano 

layer on the spheroid (Figure 4.7). 
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Figure 4. 7 Methylcellulose was coated on the surface of β-cell spheroid. 

Methylcellulose was conjugated with Cy3 NHS ester (red) and DAPI for nuclei (blue). 

Scale bar = 100 µm. 

 
After nano-coating of hydrogel on the surface of β-cell spheroid, hMSCs attached 

on the β-cell spheroid with shell-structure. The thickness of shell can be adjusted by the 

concentration of hMSCs. As shown on Figure 4.8, with increasing the concentration of 

hMSCs, a thicker shell layer formed on the surface of β-cell spheroid. 
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Figure 4. 8 Human MSCs of different concentrations of (A) 0.4, (B) 0.8, (C) 1.6, and (D) 

3.2 million/mL were coated on the surface of β-cell spheroid. Human MSCs were stained 

with human mitochondria antibody with red, β-cell spheroid was identified by insulin 

antibody (green) and DAPI for nuclei (blue). Scale bar = 100 µm. 

 

4.3.5 Insulin secretion from RIN-m/hMSCs hybrid spheroids 

To check the effects of coating of hMSCs on the insulin secretion from β-cell 

spheroids, RIN-m/hMSCs hybrid spheroids were first conditioned in KRB containing low 

glucose and then exposed to KRB containing high glucose. As shown in Figure 4.9, the 
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amounts of secreted insulin decreased with increasing of hMSC concentration. When the 

concentration caught up to 106 cells, the insulin secretion reduced significantly (* 

P<0.05). 
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Figure 4. 9 Insulin release from β-cells spheroids with diameter of 200 µm coated with 

different concentrations of hMSCs. Spheroids of diameter of 200 µm coated with the 

concentration of hMSCs of 0.8 million cells/mL released significant larger amount of 

insulin than those with 1.6 million cells/mL (* P<0.05). 
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4.3.6 Effects of hMSCs on β-cells spheroids 

Before exposure of pro-inflammatory cytokines, co-culture with hMSCs for 24 

hrs did not enhance glucose stimulated insulin secretion of β-cells regardless of hMSC 

concentration (Fig. 4.10 A). Without hMSCs, exposure to cytokines significantly 

debilitated the insulin secretion of β-cells (Fig. 4.10 B, 38%). Co-cultured hMSCs 

benefited β-cells to retain the insulin secretion. The protective effect of hMSCs was dose-

dependent. High concentrations of hMSCs preserved β-cells to secrete insulin due to 

glucose stimulation when exposed to pro-inflammatory cytokines. Specifically, with 

hMSCs of 6.4 x 106/mL, β-cells only lost 8% of insulin secretion when compared after 

and before exposure to pro-inflammatory cytokines 
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Figure 4. 10 Beta-cells spheroids with the diameter of 200 µm co-cultured with different 

concentrations of hMSCs. (A) Insulin release from β-cells spheroids co-culture with 

hMSCs of different concentrations at 24 hr. (B) Percentage change of insulin release after 

exposing to the pro-inflammatory cytokines after 24 hr (* P<0.05). 
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Figure 4.11 showed apoptosis of β-cells co-cultured with hMSCs of different 

concentrations of 0, 0.4, 0.8, 1.6, 3.2, and 6.4 x 106/mL after exposing to the pro-

inflammatory cytokines for 24 hrs. AlexaFluor 488 labeled anti-BrdU antibody was used 

for detection of apoptotic cells. Propidium iodide was applied to stain all the cells. With 

the increase of hMSC concentration, lower number of β-cells expressed apoptosis. 

Human MSCs benefited β-cells survival when exposed to pro-inflammatory cytokines. 

 

Figure 4. 11 Apoptosis of β-cells with the diameter of 200 µm co-cultured with hMSCs 

of different concentrations: (A) 0, (B) 0.4, (C) 0.8, (D) 1.6, (E) 3.2, and (F) 6.4 

million/mL after exposing to the pro-inflammatory cytokines. AlexaFluor 488 labeled 

anti-BrdU antibody was used for detection of apoptotic cells and propidium iodide 

staining for all the cells. Scale bar = 100 µm. 
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4.3.7 Agarose hydrogel coating 

Agarose hydrogel was coated on the surface of complex. Through controlling the 

stirring rate, hydrogel out layer formed on the surface of RIN-m/hMSCs hybrid spheroids 

with different thicknesses of 5, 20, and 60 μm, as shown in the Figure 4.12. 

 

Figure 4. 12 Agarose was coated on the surface of complex. Through controlling the 

stirring rate, hydrogel outlayer of different thicknesses of  (A) 5, (B) 20, and (C) 60 µm 

can be formed on the surface of β-cell spheroid-hMSCs complex. Scale bar = 100 µm. 

 

4.4 Discussion 

Isolated cells from pancreatic islets and immortalized β-cells lines require contact 

with other cells or basement membrane proteins, or mimicry of these contacts to maintain 

function and viability when cultured in synthetic in vitro systems. Recognizing this 

requirement, different approaches have been developed that encourage or increase cell-

cell contact for β-cells such as cell encapsulation, cellular co-culture with MSCs, cell 

aggregates, and so on. For cell aggregates, typical methods are hanging drop culture, 

round-bottomed 96-well culture, non-adhesive plate culture, agitation culture, and so on. 

Non-adhesive plate and agitation culture are difficult to control sphere diameter whereas 



 110

hanging drop culture is hard to handle spheres. Recently, a novel technique, high-

throughput hydrogel microwells, has been developed to achieve mass sphere production 

with easy spheroid handling and diameter control. In this study, we have designed a 

computer controlled spheroid maker, which can produce mass spheroids automatically. 

Uniformed β-cell spheroids, derived from RIN-m cells, have been successfully fabricated. 

The size of β-cell spheroids can be manipulated through adjusting the cell seeding 

concentrations and recess diameters of micro-molds. These spheroids were readily 

removed from the devices and maintained their size and shape, presumably due to strong 

cell-cell attachment and low cell-material adhesion. 

The first relates to cell aggregates is central necrosis. Although often seen during 

the culture of intact islets, the re-aggregated β-cells did not show signs of central necrosis, 

as the cell-permeable viability dye were able to penetrate to the interior of the aggregates 

and the central cells also stained green (Figure 4.3). 

The maintenance of functional expression throughout cell manipulation is 

important for β-cells. The cells preserved intracellular insulin content at high levels as 

evidenced by immunostaining. The model β-cells used in this work did not show a size-

dependent effect on cellular viability, but on functional expression. The bigger spheroids 

released more insulin. However, the same number of cells released more insulin from 

smaller spheroids in the range of 100-200 µm (Figure 4.5). It may imply that the spheroid 

of 300 µm is too big, cells in the core of spheroids have limited response to glucose; and 

then the function of the cells in the core may be compromised. 
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Mesenchymal stem cells, multipotent stromal cells with the potential to give rise 

to cells of diverse lineages, have been noted to possess the ability to impart profound 

immunomodulatory effects in vivo. MSCs were found to down-regulate T and B 

lymphocytes, natural killer cells and antigen presenting cells through various 

mechanisms, including cell to cell interaction and soluble factor production [30]. 

Aggregation of MSCs into three dimensional spheroids has shown to be more effective 

than MSCs from adherent monolayer cultures in suppressing inflammatory responses in a 

co-culture system with lipopolysaccharide-activated macrophages and in a mouse model 

for peritonitis [30]. Furthermore, MSCs can secret trophic molecules to enhance survival, 

function, and angiogenesis of isolated islets after co-transplantation of islet and MSCs 

[5]. 

To construct core/shell structured complex of RIN-m/hMSCs, first of all, we have 

seeded these two types of cells in microwells simultaneously, the cells self-assembled 

into a spheroid and self-sorted with hMSCs integrating with each other and staying inside 

encapsulated by a thin layer of RIN-m cells. Human MSCs and RIN-m cells have 

different cohesive forces (like-to-like) and adhesive forces (unlike binding). Self-sorting 

occurs due to these differences with hMSCs of higher cohesion in the core and RIN-m 

cells with lower cohesion on the outside. Moreover, the differences in cytoskeletal 

mediated tension between these two types of cells may also result in self-sorting. 

When co-culturing hMSCs with β-cells spheroids, hMSCs invaded into spheroids. 

To successfully construct core/shell structured β-cells spheroids/hMSCs complex, we 

have to inhibit hMSCs invasion. In this study, a physical barrier, non-degradable 
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hydrogel, was applied between β-cell spheroids and hMSCs. This hydrogel effectively 

inhibited hMSCs invasion. The hydrogel also served as another temperately shell for β-

cells spheroids away from the hostile destruction as immunoisolation, which may further 

improve the survival of β-cells aggregates in vivo. 

The maintenance of functional expression throughout cell manipulation is 

important for β-cell spheroids after coating. RIN-m spheroids were shown to maintain 

their functional expression throughout seeding, aggregation, culture, and coating. The 

coating cell concentration influenced the insulin secretion from β-cells spheroids. While 

compared to the co-culture data of hMSCs and β-cell spheroids, hMSCs did not enhance 

the insulin secretion in co-culture samples, which means the coating thickness is 

important to maintain the function of β-cells spheroids. To measure the beneficial effects 

of this co-culture strategy, we investigated the function of β-cell spheroids exposed to 

pro-inflammatory cytokines. We found that co-culture hMSCs with β-cell spheroids can 

protect β-cell spheroids from pro-inflammatory cytokines. 

 

4.5 Conclusion 

In this study, different sizes of uniformed β-cells spheroids were successfully 

fabricated through our automatic high-throughput spheroid maker. Single β-cell in the 

spheroid with the diameter of 200 µm expressed strongest insulin secretion compared to 

other sizes of 100, 300, 400 and 500 µm. The novel core-shell structured spheroids-

hMSCs complex was achieved through coating hydrogels as physical barrier on the 

surface of β-cells spheroids to inhibit hMSCs invasion. The thickness of hMSCs coating 
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affected the insulin secretion. Human MSCs prevented β-cells spheroids apoptosis and 

benefited insulin secretion when exposed to pro-inflammatory cytokines. This study 

provides a new therapeutic approach to treat type 1 diabetes in which cell therapies may 

be essential. 
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CHAPTER FIVE 

5 LIF, IL-10 AND VEGF-LOADED NANOPARTICLES COATED MSC 

MICROENCAPSULATED BETA-CELL SPHEROIDS 

5.1 Introdution 

Type 1 diabetes, referred to as insulin-dependent diabetes mellitus, is an 

autoimmune disease resulting from the destruction of β-cells located in the islets of 

Langerhams of pancreas by autoantigen-reactive T lymphocytes (T cells) which produce 

immune factors to attack and destroy β-cells of pancreas [1]. T cells specific for 

pancreatic islet β-cell constituents (auto-antigens) exist normally but are restrained by 

regulatory mechanisms (self-tolerant state). When regulation fails, β-cell specific 

autoreactive T cells become activated and expand clonally. The pathogenic immune 

response would lead to islet inflammation. This is characterized by infiltration of the islet 

by macrophages and T cells that are cytotoxic, both directly and indirectly by producing 

cytokines [e.g., interleukin 1 (IL-1), tumor necrosis factor α (TNFα), TNFβ, and 

interferon γ (IFNγ)] and free radicals that damage β-cells. Current evidence indicates that 

islet β-cell specific autoreactive T cells belong to a T helper 1 (Th1) subset, and these 

Th1 cells and their characteristic cytokine products, IFNγ and IL-2, are believed to cause 

islet inflammation and β-cell destruction [2, 3]. Several approached are being tested or 

are under consideration for clinical trials to prevent or arrest complete autoimmune 

destruction of islet β-cells and insulin-dependent diabetes. Approaches for the treatment 

of type 1 diabetes aimed at deleting β-cell autoreactive Th1 cells and cytokines (IL-1, 
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TNFα, TNFβ, and IFNγ) and increasing regulatory Th2 cells and/or Th3 cells and their 

cytokine products (IL-4, IL-10 and TGFβ1). 

Th1 cells and Th2 cells secrete cytokines to lead to strikingly different T cell 

actions. Th1 cells produce IL-2, IFNγ, and TNFβ which attack islet β-cells, while Th2 

secrete IL-4 and IL-10 to inhibit the production of the Th1 cytokines. IL-10 may favor 

Th2 over Th1 cell differentiation and function by inhibiting expression of MHC class II 

molecules and the B7 accessory molecule on macrophages, a major co-stimulator of T 

cells. IL-10 is effective in inhibiting Th1 effector function. The cytokine milieu 

specifically is critical for orchestration of lineage development towards aggressive 

effector T cell (Teff) or tolerant Treg phenotypes. Leukemia inhibitory factor (LIF) 

belongs to the IL-6 family of structurally related cytokines. LIF is associated with Tregs 

and immune tolerance [4]. LIF can reduce the inflammatory immune response in vivo by 

promoting regulatory Treg [5]. In addition to promoting immune tolerance via Treg, LIF 

is also well known to promote islet cell survival and LIF regulates β-cell mass [6, 7]. 

Pancreatic islets are well vascularized throughout life. This is important for their 

ability to secrete insulin swiftly in response to changes in blood glucose. Reestablishment 

of blood flow to transplanted islets requires several days. Rapid and adequate 

revascularization of transplanted islets is critical for islet survival and function. Delayed 

and insufficient revascularization can result in islet cell death and early graft failure. 

Therefore, developing strategies aimed at enhancing or accelerating this process is 

extremely important [8]. 
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Figure 5. 1 (A) The scheme of our core-shell structured β-cells/hMSCs/hydrogels 

complex. (B and C) The β-cells spheroids/hMSCs complex coated with agarose hydrogel 

mixed with LIF, VEGF and IL-10 loaded nanoparticles. Scale bar = 100 µm. 

 
To further improve the viability and suppress the immune rejection, a drug 

delivery system is really needed to delivery angiogenic and immune regulatory molecules 

like vascular endothelial growth factor (VEGF), IL-10 and LIF. Among drug delivery 

systems, poly (lactide-co-glycolide) (PLGA) nanoparticles have already demonstrated 

their potential for growth factors or immune regulatory molecules delivery in tissue 

equivalents. As temporally controlled systems, PLGA nanoparticles can protect the 

protein and release it at a specific time and for long time frames during tissue 

development [9-11]. In this study, we loaded IL-10, LIF, and VEGF into degradable 

PLGA nanoparticles and loaded nanoparticles into outside layer of agarose hydrogel, as 

Figure 5.1 shown, for sustained release; we then inspected the biological activities of 
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released IL-10 and LIF on survival and function of β-cells spheroids against pro-

inflammatory cytokines, and the bioactivity of VEGF released from nanoparticles on the 

culture of human aortic endothelial cells. 

 

5.2 Materials and methods 

5.2.1 Materials 

PLGA (50:50) was purchased from Sigma Chemical Co. (St. Louis, MO). Human 

interleukin 10 (IL-10) and rat VEGF were purchased from PeproTech (Rock Hill, NJ). 

Human LIF was purchased from Millipore (Billerica, MA). LIF enzyme-linked 

immunosorbent assay (ELISA) kit was obtained from Raybiotech, Inc. (Norcross, GA). 

IL-10 and VEGF ELISA kits were obtained from Sigma Aldrich. (St. Louis, MO). 

Transwell inserts of 8 μm pores were purchased from Greiner Bio-One (Monroe, NC). 

All other reagents were purchased from Sigma Aldrich (St. Louis, MO). 

 

5.2.2 Cell culture 

Rat pancreatic β-cells of the RIN-m cell line were obtained from ATCC (CRL-

2057). RIN-m cells were cultured in Roswell Park Memorial Institute (RPMI) 1640 

medium supplemented with 10% fetal bovine serum at 37 ºC in humid conditions with 

5% CO2. The culture medium was exchanged every 2 days. 

Human aortic endothelial cells (HAECs) were obtained from Sciencell (Carlsbad, 

CA). HAECs were maintained in endothelial cell medium supplemented with 5% fetal 
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bovine serum and 1% AA (Penicillin-Streptomycin). HAECs were incubated at 37 °C 

under 5% CO2. Medium was changed every 3 days. 

 

5.2.3 Fabrication of IL-10, LIF and VEGF-loaded PLGA nanoparticles 

The IL-10, LIF, and VEGF-loaded PLGA nanoparticles were prepared using a 

water-in oil-in-water (W1/O/W2) solvent extraction/evaporation technique. Briefly, using 

LIF as an example, 2 μg LIF previously dissolved in a 1 mL 1% bovine serum albumin 

(BSA) buffer was emulsified by ultrasound (Branson Sonifier, CT) in 2 mL methylene 

chloride containing 50 mg PLGA for 5 min. This emulsion was poured into 10 mL of 1% 

polyvinyl acetate and emulsified by magnetic stirring at 500 rpm. After evaporation of 

the methylene chloride at room temperature for 4 hr, the nanoparticles were centrifuged 

at 14,000 rpm for 30 min, washed five times with deionized distilled water, and then 

lyophilized. The size and morphology of PLGA nanoparticle were inspected with 

Nanosizer/Particle Size Analyzer (Delsa™, Beckman Coulter, Inc.) and scanning electron 

microscope (SEM, JSM-5610, JEOL, Japan), respectively. 

 

5.2.4 IL-10, LIF and VEGF release from PLGA nanoparticles 

The release kinetics of IL-10, LIF, and VEGF from PLGA nanoparticles were 

examined in a phosphate buffered saline (PBS) buffer supplemented with 1% BSA and 

10 μg/mL of heparin at 37 °C, respectively. First, 3.5 mg of molecules-loaded PLGA 

nanoparticles was placed with 1% agarose hydrogel and then added 1 mL of buffer 

solutions in 15 mL tubes. The 1 mL of buffer was removed and the buffer was replaced 
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each time to maintain constant volume. The amount of molecules actually loaded within 

the PLGA nanoparticles was measured via extraction with 0.05N NaOH. Freeze-dried 

loaded nanoparticles (2mg, n-3) were dissolved with 1 mL of 0.05N NaOH under stirring. 

After 24 h, the solutions were centrifuged at 5000 rpm and the supernatant analyzed for 

growth factor content by ELISA. The amount of molecules released from nanoparticles 

was measured using ELISA kits. Cumulative release kinetics was calculated by 

normalizing the total release at each time point with the total loaded amount in 

nanoparticles. 

 
5.2.5 Bioactivity of LIF and IL-10 nanoparticles to pro-inflammatory cytokines  

Thirty five β-cell spheroids per well were seeded to a 24 wells plate, a transwell 

insert was added into the well with LIF and IL-10 nanoparticles. Then these co-culture 

samples were exposed to a cocktail of pro-inflammatory cytokines including 100 ng/mL 

interferon-γ (IFN-γ), 10 ng/mL tumor necrosis factor-α (TNF-α), 0.5 ng/mL interleukin 

1β (IL-1β) for 24 hrs. Culture medium were removed from encapsulation samples for 

glucose-stimulated insulin secretion and washed twice with KRB solution. Samples were 

first placed in a low glucose concentration (1.1 mM) for 45min, followed by incubation 

in a high glucose concentration solution (16.7 mM) for 1 hr. The high glucose solutions 

were collected for insulin measurement by ELISA insulin kit. 

 

5.2.6 Analysis of β-cells apoptosis by TUNEL assay 

Cytokine induced β-cells damage was assessed by the TUNEL, a marker for cell 

apoptosis. After culture as 5.2.5 described above, the β-cells spheroids were fixed with 
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4% w/v paraformaldehyde. An APO-BrdU TUNEL Assay Kit (Invitrogen) was utilized, 

in which an AlexaFluor 488 labeled anti-BrdU antibody was used for detection of 

apoptotic cells. Propidium iodide staining was performed following to detect all the cells. 

 

5.2.7 Bioactivity of VEGF released from nanoparticles 

The bioactivity of released VEGF from the PLGA nanoparticles was evaluated in 

vitro by determining the proliferative capacity of the HAECs. The CyQUANT cell 

proliferation assay kit was used to assess proliferation of the HAECs treated with 

nanoparticles supernatant and exogenous VEGF. The HAECs were plated in a density of 

4000 cells/well in a 96-well plate. After 24 hours, the endothelial cell medium was 

removed and treated with exogenous VEGF (final concentration: 8, 16, and 32 ng/mL), 

and supernatant from VEGF nanoparticles (final concentration: 8, 16 and 32 ng/mL). 

After the 72 hrs, the contents of the assay wells were removed. Subsequent cell labeling 

with the CyQUANT reagent was according to the manufacturer’s instructions. 

Microplates were read by plate reader. 

 

5.2.8 Loaded nanoparticles in RIN-m/hMSCs hybrid spheroids 

The agarose hydrogel was mixed with biodegradable polyethylene glycol (PEG) 

hydrogel as the ratio of 1:1 to prepare hydrogel solution, and then the nanopaticles were 

mixed with hydrogel solution for RIN-m/hMSCs hybrid spheroids coating. The applied 

coating method was the same as chapter 4.2.8 described 
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5.2.9 Statistical analysis 

Data are shown as mean ± S.D. Statistical analyses were performed using oneway 

ANOVA (analysis of variance) followed by Tukey’s post tests and the paired t-test where 

appropriate. A probability (P) value of <0.05 was considered statistically significant. 

 

5.3 Results and discussion 

5.3.1 LIF and IL-10 nanoparticles 

Figure 5.2 shows the morphology of LIF-loaded PLGA particles with a uniform 

size of approximately 400 nm (Figure 5.2 B). As Figure 5.3 shows, LIF can be released 

from PLGA nanoparticles in a controlled manner over 1 month. During the first 3 days, 

approximately 50% of total loaded LIF was released from the nanoparticles, followed by 

a steady release over 3 weeks. Another burst release occurred at 4 weeks due to the 

degradation and collapse of PLGA nanoparticles. During the first 3 days, LIF released 

from 3.5 mg nanoparticles was maintained at about 15 ng per day (Figure 5.3 B). Figure 

5.4 reports the release profile of IL-10 from PLGA nanoparticles. IL-10 released from 

PLGA nanoparticles in a controlled manner about 6 weeks with a burst release of 27% 

during the first 3 days. These release profiles are similar to previous reports by other 

researchers [9, 11-13]. 
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Figure 5. 2 (A) LIF-loaded PLGA nanoparticles. (B) The average particle size is 400 nm. 

 

Figure 5. 3 Cumulative in vitro LIF (A) percentage release from PLGA nanoparticles and 

(B) release amounts from 3.5 mg nanoparticles during the first 7 days. 
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Figure 5. 4 Cumulative in vitro IL-10 cumulative percentage release from PLGA 
nanoparticles. 

 

5.3.2 Bioactivity of released IL-10 and LIF to pro-inflammatory cytokines 

To investigate the effects of IL-10 and LIF on protecting β-cells spheroids from 

pro-inflammatory cytokines, such as interferon-γ, tumor necrosis factor-α, and interferon 

1β, glucose stimulated insulin secretion was used to assess β-cell function in a two hour 

static incubation assay at low and high glucose concentrations. As shown in Figure 5.5, 

cytokine exposure significantly altered glucose stimulated insulin secretion of β-cells. 

Without nanoparticles, exposure to cytokines decreased insulin secretion of β-cells (38% 

lost when compared after and before exposure). In contrast, with nanoparticles, β-cells 
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lost 33% of insulin secretion. IL-10 and LIF loaded nanoparticles did not significantly 

preserve glucose stimulated insulin secretion. Apoptosis of β-cells cultured under these 

cytokines with LIF and IL-10 loaded nanoparticles or blank nanoparticles was shown in 

Figure 5.6. IL-10 and LIF did not prevent the apoptosis of β-cells. The reason lies in the 

facts that IL-10 is effective in inhibiting Th1 effector function whereas LIF is associated 

with Tregs [7, 14]. Especially, IL-l0 (derived from macrophages and Th2 cells) exerts 

anti-inflammatory effects by inhibiting production of IL-12 and other pro-inflammatory 

macrophage cytokines (e.g., IL-1, IL-6, IL-8, TNFα), by increasing macrophage 

production of IL-1 receptor antagonist, and by inhibiting the generation of oxygen and 

nitrogen free radicals by macrophages. Both IL-10 and LIF do not directly affect the β-

cells. Since the situation in vitro (no T cells involving) is totally different from that in 

vivo, the further in vivo study will prove the benefits of LIF and IL-10 on survival and 

function β-cells [15, 16]. 
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Figure 5. 5 Beta-cells spheroids with the diameter of 200 µm cultured with LIF and IL-

10 loaded nanoparticles with a cocktail of cytokines of interferon-γ, tumor necrosis 

factor-α,  and interferon 1β. 

 

5.3.3 Bioactivity of released VEGF on HAECs 

Figure 5.7 reports the release profiles of VEGF from PLGA nanoparticles. VEGF 

can be released from PLGA nanoparticles about 6 weeks in a controlled manner. The 

bioactivity of the VEGF released from the nanoparticles over time was assessed using an 

in vitro HAEC proliferation assay shown in Figure 5.8. Endothelial cells response to 

bioactive VEGF by proliferating is dose-dependent. These cells exposed to exogenous 

VEGF at the concentration of 16 ng/mL exhibited the highest proliferation rate when 
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compared to 8 and 32 ng/mL (* P<0.05). In addition, the VEGF released from 

nanoparticles was as potent as exogenously added VEGF to enhance the proliferation of 

HAECs. 

 

Figure 5. 6 Apoptosis of β-cells with the diameter of 200 µm cultured (A) with LIF and 

IL-10 loaded nanoparticles and (B) blank nanoparticles with a cocktail of cytokines of 

interferon-γ, tumor necrosis factor-α, and interferon 1β. AlexaFluor 488 labeled anti-

BrdU antibody was used for detection of apoptotic cells and propidium iodide staining 

for all the cells. Scale bar = 100 µm. 
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Figure 5. 7 Cumulative in vitro VEGF cumulative percentage release from PLGA 

nanoparticles. 

 

Figure 5. 8 The bioactivity of the VEGF assessed using an in vitro HAEC proliferation 

assay. (A) The proliferation of HAEC affected by the concentration of VEGF. (B) 

Comparison of VEGF solution and VEGF released from nanoparticles on the 

proliferation of HAEC (* P<0.05). 
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5.3.4 Loaded nanoparticles in RIN-m/hMSCs hybrid spheroids 

In this study, we design a hydrogel system mixed with non-degradable hydrogel 

(agarose) and biodegradable hydrogel (PEG). Growth factors loaded nanoparticels have 

been mixed with the hydrogels before the coating process. Hydrogel out layer formed on 

the surface of RIN-m/hMSCs hybrid spheroids with the thickness of 20 μm was shown in 

the Figure 5.9. 

 

Figure 5. 9 The β-cells spheroids/hMSCs complex coated with agarose hydrogel mixed 

with LIF, VEGF and IL-10 loaded nanoparticles. Scale bar = 100 µm. 

 

5.4 Conclusion 

In this chapter, LIF, IL-10 and VEGF loaded PLGA nanoparticles have been 

successfully fabricated through solvent extraction/evaporation techniques. These growth 

factors can be controlled release about 6 weeks. The bioactivity of released VEGF has 

been confirmed by the in vitro HAEC proliferation assay. The LIF and IL-10 did not 
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preserve the capacity of glucose stimulated insulin secretion of β-cells in vitro when 

exposure to the pro-inflammatory cytokines. 

5.5 References 

1. Padgett, L.E., et al., The role of reactive oxygen species and proinflammatory 
cytokines in type 1 diabetes pathogenesis. Ann N Y Acad Sci, 2013. 1281: p. 16-
35. 

2. Johnsen-Soriano, S., et al., IL-2 and IFN-gamma in the retina of diabetic rats. 
Graefes Arch Clin Exp Ophthalmol. 248(7): p. 985-90. 

3. Rabinovitch, A. and W.L. Suarez-Pinzon, Cytokines and their roles in pancreatic 
islet beta-cell destruction and insulin-dependent diabetes mellitus. Biochem 
Pharmacol, 1998. 55(8): p. 1139-49. 

4. Metcalfe, S.M., LIF in the regulation of T-cell fate and as a potential therapeutic. 
Genes Immun, 2011. 12(3): p. 157-68. 

5. Park, J., et al., Modulation of CD4+ T lymphocyte lineage outcomes with 
targeted, nanoparticle-mediated cytokine delivery. Mol Pharm, 2011. 8(1): p. 
143-52. 

6. Baeyens, L., et al., In vitro generation of insulin-producing beta cells from adult 
exocrine pancreatic cells. Diabetologia, 2005. 48(1): p. 49-57. 

7. Breuck, S., L. Baeyens, and L. Bouwens, Expression and function of leukaemia 
inhibitory factor and its receptor in normal and regenerating rat pancreas. 
Diabetologia, 2006. 49(1): p. 108-116. 

8. Bible, E., et al., Neo-vascularization of the stroke cavity by implantation of human 
neural stem cells on VEGF-releasing PLGA microparticles. Biomaterials, 2012. 
33(30): p. 7435-46. 

9. Formiga, F.R., et al., Sustained release of VEGF through PLGA microparticles 
improves vasculogenesis and tissue remodeling in an acute myocardial ischemia-
reperfusion model. J Control Release, 2010. 147(1): p. 30-7. 

10. Silva, E.A. and D.J. Mooney, Spatiotemporal control of vascular endothelial 
growth factor delivery from injectable hydrogels enhances angiogenesis. J 
Thromb Haemost, 2007. 5(3): p. 590-8. 



 132

11. Borselli, C., et al., Bioactivation of collagen matrices through sustained VEGF 
release from PLGA microspheres. J Biomed Mater Res A, 2010. 92(1): p. 94-102. 

12. Sun, Q., et al., Sustained vascular endothelial growth factor delivery enhances 
angiogenesis and perfusion in ischemic hind limb. Pharm Res, 2005. 22(7): p. 
1110-6. 

13. Ennett, A.B., D. Kaigler, and D.J. Mooney, Temporally regulated delivery of 
VEGF in vitro and in vivo. J Biomed Mater Res A, 2006. 79(1): p. 176-84. 

14. Sandler, S. and N. Welsh, Interleukin-10 Stimulates Rat Pancreatic Islets in Vitro, 
but Fails to Protect against Interleukin-1. Biochemical and Biophysical Research 
Communications, 1993. 195(2): p. 859-865. 

15. Yi, S., et al., Adoptive Transfer With In Vitro Expanded Human Regulatory T 
Cells Protects Against Porcine Islet Xenograft Rejection via Interleukin-10 in 
Humanized Mice. Diabetes, 2012. 61(5): p. 1180-1191. 

16. Dong, H., et al., Immuno-isolation of pancreatic islet allografts using pegylated 
nanotherapy leads to long-term normoglycemia in full MHC mismatch recipient 
mice. PLoS One, 2012. 7(12): p. e50265. 

 
 



 

CHAPTER SIX 

6 IN VIVO EVALUATION OF BETA-CELLS/MSC HYBRID SPHERIODS FOR 

THE TREATMENT OF TYPE 1 DIABETES 

6.1 Introduction 

Islet transplantation, which can restore the recipients’ ability to secrete insulin in a 

physiological manner, is the most promising approach to treat patients with type 1 

diabetes. However, there are two major problems hindering this process. First, not 

enough donor islets are available for transplantation. Second, the function of transplanted 

islets is often compromised by the immune rejection response mounted to the grafts by 

the recipients [1-4]. Immunosuppressive agents used so far have severe toxic side effects 

and are sometime diabetogenic. Islet encapsulation with biocompatible materials can 

exert both immunoisolation and immunomodulation effects by (1) physically isolating 

islets from cytokines and host immune cells, and (2) delivering immune regulatory and 

immunomodulatory factors/cells locally to the islets to protect those islets from immune 

rejection [5-7]. Thus, with glycemia control well achieved by fewer donor islets, 

encapsulation technology not only solves the problems of limited islet supply, but also 

reduces/avoids the use of toxic immunosuppressants in the recipients. 

The objective of this project is to develop an effective strategy for the treatment of 

type 1 diabetes using β-cells based replacement therapy. To improve the viability of 

transplanted β-cells, one novel approach is to transplant an optimal size range of β-cell 

spheroids rather than a cell suspension. Uniform sized multi-cellular spheroids can be 

coated with a thin layer of non-degradable hydrogel for immunoisolation. In addition, the 
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survival of spheroids of optimized size can be further improved with a novel coating of 

multiple layers of mesenchymal stem cells (MSCs), a cell type that has profound 

immunoregulatory effect, to prevent graft rejection [8]. To prevent MSCs from migrating 

away from spheroids, another layer of non-degradable hydrogel can be added. To further 

improve the viability and suppress the immune rejection, spheroids will be encapsulated 

with nanoparticles loaded with angiogenic (vascular endothelial growth factor, VEGF) [9] 

and immune regulatory molecules [interleukin-10 (IL-10) and leukemia inhibitory factor 

(LIF)] [10, 11]. By this means, the spheroid will passively evade the complications of 

stressors in addition to actively modulating the immune microenvironment for regulatory 

tolerance and long-term engraftment. 

 

6.2 Materials and Methods 

6.2.1 Materials 

F40/80 and CD-31antibodies were purchased from Abcam (Cambridge, MA). 

FOXP3 antibody was obtained from LifeSpan Bioscience (Seattle, WA); Insulin antibody 

was obtained from Santa Cruz Biotechnology (Dallas, Texas); Human mitochondria 

antibody was purchased from Millipore (Billerica, MA). Fluorophore-conjugated 

secondary antibodies were purchased from Jackson ImmunoResearch (West Grove, PA). 

All other reagents were purchased from Sigma Aldrich (St. Louis, MO). 

 

6.2.2 Animals 
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Male C57BL/6 mice at 6–8 weeks of age were purchased from the Jackson 

Laboratory (Bar harbor, ME). All procedures were carried out using animals less than 12 

weeks old and protocols were approved by the IACUC committee at Medical University 

of South Carolina. 

 

6.2.3 Animal model and spheroids transplantation 

C57BL/6 (H-2b) mice were rendered diabetic by one-time injection of 

streptozotocin (STZ) given intraperitoneally at 225 mg/kg as described before [12]. Five 

days after STZ administration, mice with two consecutive blood glucose levels exceeding 

350 mg/dL were deemed diabetic and used as recipients. Beta-cell spheroids were 

transplanted under the kidney capsule of each recipient. There were 4 groups (n=5/group). 

Group I: β-cells spheroids; Group II: β-cells spheroids/hMSCs; Group III: β-cells 

spheroids/hMSCs coated with agarose hydrogel; Group IV: β-cells spheroid/hMSCs 

coated with porous hydrogel mixed with IL-10, LIF and VEGF loaded-nanoparticles. 

Beta cell function was monitored indirectly by measuring blood glucose levels twice per 

week. 

 

6.2.4 Tissue processing, histology and immunohistochemistry 

Beta-cells spheroid grafts including a portion of the kidney were harvested at the 

day 3, 9 and 30 post-transplantation. They were immediately rinsed in phosphate buffered 

saline (PBS), embedded in optimal cutting temperature compound, frozen, and sectioned 

on a cryostat according to routine histologic procedures. The sections (5 μm thick) were 
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fixed with 4% (w/v) paraformaldehyde. For immunostaining, sections were 

permeabilized with 0.5% Triton X-100 and blocked with 4% normal goat serum in PBS 

for 2 hr. Primary antibodies were then applied overnight at 4 °C. The following primary 

antibodies were used: F40/80 to detect the expression of infiltrated macrophages inside 

the graft, CD-31 to identify the endothelial cells for angiogenesis, FOXP3 to inspect the 

regulatory T cells, and human mitochondria to check the survived human MSCs. Cy3 

affinity secondary antibodies and goat anti-mouse and rabbit were used at 1:400. The 

specimens were imaged using a LSM 510 Meta Confocal Microscope (Zeiss, Thornwood, 

NY). At least 6 random fields per samples were analyzed for each group. 

 

6.3 Results and discussion 

6.3.1 Macro-inspection of transplantation of spheroids 

 

Figure 6. 1 Macro inspection of spheroids transplantation. (A) The kidney has been 

exposed for β-cells spheroids transplantation. (B) Beta-cells spheroids have been 

transplanted under the kidney capsule. (C) Inspection of the β-cells spheroids after 3 days 

post-transplantation . 
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We have picked up the mouse as the species to construct the diabetes model since 

fewer cells are needed for the treatment when compred to a rat used as the model. As 

Figure 6.1 showed, the kidney has been exposed for spheroid transplantation. Beta-cell 

spheroids have been successfully transplanted under the kidney capsule. Three days later, 

these transplanted spheroids maintained their integrity and can be still identified. 

 

6.3.2 Glucose level investigation 

The function of transplanted β-cells was monitored indirectly by measuring blood 

glucose levels. As shown in Figure 6.2, during the first 2 days in the group of spheroids 

only, the glucose level was kept constant to that before transplantation (1.05 compared to 

1). As for other three groups, all the glucose levels decreased a little bit. Without any 

treatment, the glucose level will increase significantly to 500 mg/dL at the day 3. All 

these results have implied that the transplanted β-cells worked with limited success to 

prevent the increasing of glucose level. 
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Figure 6. 2 Glucose level after transplanted different groups of β-cells spheroids at the 

day 1 and 2. 



 138

Long-term investigation of glucose level has been recorded in the Figure 6.3. The 

glucose level of 500 mg/dL is assumed as failure control of the glucose condition. Based 

on this assumption, the control group, without any transplanted cells, the glucose level 

reached 500 mg/dL at the day 3 and increased with the time. During the inspection period 

(30 days), these four treatment groups expressed different glucose modulation times: 7 

days for spheroids, 14 days for spheroids/hMSCs/nano, 30 days for 

spheroids/hMSCs/gel, respectively. The 7-day of glucose control time for spheroids only 

may imply that the survival of spheroids in vivo has significantly declined 7 days later 

after transplantation. Spheroids co-transplanted with hMSCs have maintained the glucose 

level during the whole period. Compared to spheroids only group, hMSCs may modulate 

the host immune response and enhance survival of spheroids at the transplantation site. 

The other two groups, both with a hydrogel out-layer, have exhibited limited success. The 

hydrogel out-layer has a thickness of about 20 µm. This layer may have blocked the 

response of β-cells to host glucose or inhibited the secreted insulin free diffusion from the 

graft to host tissue. All these groups can not restore normoglycaemia and reduce the 

glucose to normal level (<200 mg/dL) [13]. This may be due to the low number of 

spheroids transplanted at first (just about 300) compared to the large number (>1000) of 

islet transplantation in other studies [14, 15]. 
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Figure 6. 3 Glucose level after transplanted different groups of β-cells spheroids. 

 

6.3.3 Survived hMSCs at the transplantation site 

Human mitochondria have been used to identify the transplanted hMSCs shown 

in Figure 6.4. Especially for the group of spheroids/hMSCs, a large number of hMSCs 

survived at the transplantation site at day 30. In consideration to the spheroids with 

hydrogels, at the day 9, hMSCs still maintained the shell structure even though the 

encapsulated core, β-cells spheroids, had been lost during the histology process (Figure 

6.4 G and H). 
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Figure 6. 4 Human MSCs at the transplantation sites at the day of 3 (A-D), 9 (E-H) and 

30 (I-L). (A, E and I) Beta-cells spheroids. (B, F and J) Beta-cells spheroids/hMSCs. (C, 

G and K) Beta-cells spheroids/hMSCs coated with agarose hydrogel. (D, H and L) Beta-

cells spheroid/hMSCs coated with porous hydrogel mixed with IL-10, LIF and VEGF 

loaded-nanoparticles. Human MSCs were identified by mitochondria and nuclei by 

DAPI. Scale bar: 100 µm. 

 
6.3.4 Macrophages 

Figure 6.5 showed macrophages at the transplantation sites. Only in the group of 

spheroids, huge amounts of macrophages have existed all the time. As for the spheroids 
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transplanted with hMSCs, although at day 3 large numbers of macrophages appeared, at 

the day 9 the number of macrophages significantly decreased compared to spheroids 

only, and at the day 30, just few macrophages appeared at the transplantation site. All 

these results mean the hMSCs may suppress the inflammation at the transplantation site. 

Interestingly, when the spheroids were coated with an out-layer of agarose hydrogel, the 

spheroids did not induce an intense inflammation reaction especially at day 3. The IL-10, 

LIF and VEGF loaded-nanoparticles further inhibited the inflammation response at the 

day 3 (Figure 6.5 D compared to C). Moreover, very few macrophages existed all the 

time with these two groups of spheroids/hMSCs/gel and β-cells spheroid/hMSCs/nano. 

These spheroids with an out-layer of hydrogel were lost during the process of 

immunhistochemsitry, which has been confirmed again by the empty pores on these 

specimens (Figure 6.5 G, H and L). 
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Figure 6. 5 Macrophages at the transplantation sites at the day 3 (A-D), 9 (E-H) and 30 

(I-L). (A, E and I) Beta-cells spheroids. (B, F and J) Beta-cells spheroids/ hMSCs. (C, G 

and K) Beta-cells spheroids/hMSCs coated with agarose hydrogel. (D, H and L) Beta-

cells spheroids/hMSCs coated porous hydrogel mixed with IL-10, LIF and VEGF loaded-

nanoparticles. Macrophages were identified by F40/80 and nuclei by DAPI. Scale bar: 

100 µm. 

 

6.3.5 Regulatory T cells 

The regulatory T cells are supposed to be activated by transplanted hMSCs to 

protect spheroids. As Figure 6.6 shows, no Foxp3+ cells were observed in tissue sections 
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from all groups at 3 day following transplantation (Fig. A, B, C and D). At a later time, 

many more Foxp3+ cells were observed surrounding cell grafts from hMSCs group and 

nanoparticles loaded group, indicating that hMSCs initiated the regulatory T cells at day 

9 and emphasized this activation further at day 30, and the IL-10, LIF and VEGF loaded-

nanoparticles also activated regulator T cells at both day 9 and 30. 

 

Figure 6. 6 Regulatory T cells at the transplantation sites at the day 3 (A, B, C and D), 9 

(E, F, G, and H) and 30 (I, J, K and L). (A, E and I) Beta-cells spheroids. (B, F and J) 

Beta-cells spheroids/hMSCs. (C, G and K) Beta-cells spheroids/hMSCs coated with 

agarose hydrogel. (D, H and L) Beta-cells spheroids/hMSCs coated with porous hydrogel 

mixed with IL-10, LIF and VEGF loaded-nanoparticles. T cells were identified by 

FOXP3 and nuclei by DAPI. Scale bar: 100 µm. 
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6.3.6 Blood vessels 

Shown in the Figure 6.7, at day 3, there was no blood vessel formation at the 

transplantation sites in all groups. Compared to spheroids only, when spheroids 

transplanted with hMSCs, a blood vessel network had appeared at the transplantation site 

(Figure 6.7 F). The network became much more intense and structured at the day 30 

(Figure 6.7 J). This phenomenon is consistent with other studies in which hMSCs 

benefited angiogenesis in vivo [16-18]. When considereing the VEGF loaded 

nanoparticles in comparison to the gel group (Figure 6.7 G to H and K to L), the release 

of VEGF significantly enhanced the vasculature formation at the transplantation site. 

Well-structured blood vessel networks formed in the group of spheroids/hMSCs/nano, 

especially at day 30, and were consistent with other studies [19-21]. 
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Figure 6. 7 Blood vessels inspected at the transplantation sites at the day 3 (A-D), 9 (E-

H) and 30 (I-L). (A, E and I) Beta-cells spheroids. (B, F and J) Beta-cells 

spheroids/hMSCs. (C, G and K) Beta-cells spheroids/hMSCs coated with agarose 

hydrogel. (D, H and L) Beta-cells spheroid/hMSCs coated with porous hydrogel mixed 

with IL-10, LIF and VEGF loaded-nanoparticles. Blood vessels were identified by CD-31 

and nuclei by DAPI. Scale bar: 100 µm. 

 

6.4 Conclusion 

In this study, β-cell spheroids were transplanted under the kidney capsule to treat 

diabetic mice. Beta-cells spheroids can keep the glucose level of diabetic mice constant. 
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Co-transplanted hMSCs can suppress the host inflammation response, activate the 

regulatory T cells and also promote angiogenesis at the transplantation sites. The β-cells 

spheroids/hMSCs/hydrogel complex initiated a mild inflammatory response. The LIF and 

IL-10, and VEGF loaded complex can further inhibit this response and promoted blood 

vessel network formation at the transplantation site. Our approach holds a great potential 

to treat type 1 diabetes. 
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CHAPTER SEVEN 

7 OVERALL CONCLUSIONS AND FUTURE DIRECTIONS 

7.1 Overall conclusions 

The objective of this project is to develop an effective strategy for the treatment of 

type 1 diabetes using β-cell based replacement therapy. One novel approach to improve 

the viability of transplanted β-cells is to transplant an optimal size range of β-cell 

spheroids rather than a cell suspension. Uniform sized multicellular spheroids can be 

coated with a thin layer of non-degradable hydrogel for immunoisolation. In addition, the 

survival of spheroids of optimized size can be further improved with a novel coating of 

multiple layers of human mesenchymal stem cells (hMSCs), a cell type that has profound 

immunoregulatory effects, to prevent graft rejection. To prevent MSC migration away 

from spheroids, another layer of non-degradable hydrogel can be added. To further 

improve the viability and suppress the immune rejection, spheroids will be encapsulated 

with nanoparticles loaded with angiogenic and immune regulatory molecules. By this 

means the spheroid will passively evade the complications of stressors in addition to 

actively modulating the immune microenvironment for regulatory tolerance and long-

term engraftment. 

In Chapter 2, we have attempted to provide a detailed overview of bioengineering 

approaches for the treatment of type 1 diabetes, including insulin controlled release 

systems, immunoisolation of transplanted islets, and cell-based therapies, such as β-cells 

and stem cells. 
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In Chapter 3, we have created specific niche for β-cells in vitro. We have 

optimized our hydrogel systems for MIN6 cells 3D culture. We have found that the 

optimal condition for the cells to form artificial islets in vitro is the concentration of PEG 

at 5% and the ratios of 4-arm thiolated PEG to PEGTA at 1:2 (or 1:3). Conjugation with 

different peptides, especially, RGD at 0.2 mM, can significantly promote the insulin 

secretion, similar to the 2D control group. 

In Chapter 4, we have fabricated different sizes of uniform β-cell spheroids 

through high-throughput automatic spheroids maker. Beta-cell spheroids with a diameter 

of 200 µm exhibited the largest insulin secretion based on glucose stimulus when 

compared to others with sizes of 100, 300, 400 and 500 µm. The novel core-shell 

structured spheroids-hMSCs complex was achieved through coating methylcelluloe 

hydrogel as physical barrier on the surface of β-cell spheroids to inhibit invasion of 

hMSCs. Furthermore, hMSCs prevented apoptosis of β-cell spheroids and benefited 

insulin secretion when exposed to pro-inflammatory cytokines. 

In Chapter 5, LIF, IL-10 and VEGF loaded PLGA nanoparticles were 

successfully fabricated through solvent extraction/evaporation technique. These growth 

factors can be controlled to release over about 6 weeks. The bioactivity of released VEGF 

has been confirmed by the in vitro HAEC proliferation assay. But the LIF and IL-10 did 

not preserve glucose stimulated insulin secretion of β-cells in vitro when exposure to the 

pro-inflammatory cytokines. 

In Chapter 6, β-cell spheroids were transplanted under the kidney capsule to treat 

diabetic mice. Beta-cell spheroids kept the glucose level of diabetic mice constant. Co-
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transplanted hMSCs suppressed the host inflammation response, activated the regulatory 

T cells and also promoted angiogenesis at the transplantation site. The β-cell 

spheroids/hMSCs/hydrogel complex initiated a mild inflammatory response. The LIF, IL-

10, and VEGF loaded complex further inhibited this response and promoted blood vessel 

network formation at the transplantation site. Our approach holds a great potential to treat 

type 1 diabetes. 

 

7.2 Future directions 

7.2.1 Hydrogels conjugated with functional peptides 

7.2.1.1 Peptides with capacities of anti-immune response 

In Chapter 5, we have constructed a hydrogel coated β-cell spheroids/hMSCs 

complex. The outer layer of hydrogel is supposed to accommodate nutrients, oxygen, and 

wastes diffusion out of the hydrogel. At the same time, the hydrogel will also permit pro-

inflammatory cytokines and other effector molecules of low molecular weight, such as 

IL-1β (17.5 KD) and TNF-α (51 KD), to enter the capsules. Besides the benefits of 

hMSCs and LIF and IL-10 loaded nanoparticles to prevent the toxic effects of these-

inflammatory cytokines, we want to conjugate cytokine-inhibitory peptides on the 

hydrogel to further exert a protective effect on cells from damage induced by pro-

inflammatory cytokines that were able to permeate the capsules. 

A peptide inhibitor for cell surface IL-1 receptor (IL-1R) can block the interaction 

between encapsulated cells and cytokines diffusing into the hydrogel. The IL-1R 

inhibitory peptide sequence, FEWTPGWYQPY, has been reported [1] to conjugate to our 
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hydrogels. This sequence can be designed as CCRRFEWTPGWYQPYWLC and be 

synthesized by solid phase method. 

 

7.2.1.2 Peptides with capacities of vascularization 

A synthetic 15 amino acid peptide, KLTWQELYQLKYKGI, based on a region of 

the vascular endothelial growth factor (VEGF) binding interface, has been shown to 

possess similar biological activity to that of the VEGF protein [2]. Except VEGF loaded 

nanoparticles, this sequence can be designed as CCRRKLTWQELYQLKYKGIWLC, be 

synthesized by solid phase method, and can be conjugated to our hydrogels. 

 

7.2.2 Adjusting the structure of β-cells spheroids-hMSCs complex 

7.2.2.1 Optimizing the size of spheroids and the thickness of shell of hMSCs 

Cells in aggregates or groups can form a community to provide paracrine 

signaling or trophic support for neighboring transplanted cells to be able to survive in a 

community manner. One important parameter in the spheroid structure is the size or 

diameter. If the spheroid size is too big, the nutrient and oxygen support for the cells in 

the core of the spheroid will be limited or insufficient. If the spheroid size is too small, 

the beneficial impact of the multicellular community may be limited. Although we have 

demonstrated high viability of spheroids of different sizes in vitro, there is an optimal 

range of the spheroid size to get the highest survival rate for the transplanted β-cells in 

vivo. In Chapter 6, it will be our further work to inspect the effects of the size of β-cells 

on survival of transplanted cells. Moreover, the thickness of hMSCs will also affect the 
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survival of β-cells in the core of spheroids. The optimal thickness of the shell of hMSCs 

needs to be investigated further. Moreover, the fate of hMSCs after transplantation into 

the tissue is a big issue we need to address. 

 

7.2.2.2 Optimizing the hydrogel shell on the outlayer 

In Chapter 5, we have selected agarose and PEG hydrogels to coat on the surface 

of the β-cell spheroids/hMSCs complex. The functions of this hydrogel out layer lie in: 

(1) to keep the complex intact during the transplantation process; (2) to prevent hMSCs 

from migrating away from the spheroids, especially at the acute and sub-acute phase (1-3 

weeks) because of the capacities of anti-inflammation and immunomodulation of hMSCs. 

However, this layer of hydrogel definitely affects the transportion of oxygen and 

nutrients to encapsulated cells in complex. Even PEG hydrogel is degradable through 

hydrolysis in vivo, the optimal thickness of this out layer of hydrogel is something we 

need to inspect. 

 

7.2.3 Clinical use of our approaches 

7.2.3.1 Cell source 

Induced pluripotent stem cells (iPSCs) have been extensively studied in recent 

years as they offer the potential to generate patient-specific cells for autologous use, 

presumably avoiding the need for immunosuppression. The patient’s own fibroblasts can 

be harvested and used to generate iPSCs. Induced pluripotent stem cells, as a source of β-

cells, have years of research ahead before clinical translations. It will be our future work 
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to use iPSC-derived β-cells to fabricate spheroids and spheroids-MSCs complexs for 

clinical use [3].  

The hydrogel coated on the surface of the complex can prevent transplanted β-

cells from host immune response. Our selected hydrogel, methyl cellulose, is biodurable. 

The resorption of cellulose in human tissues does not occur, since cells are not able to 

synthesize cellulases [4]. The methyl cellulose is sufficiently nondegradable to enable use 

of xenogeneic cells. 

 

7.2.3.2 Our approaches for clinical use 

As for clinical use, the spheroids will be fabricated from our robot spheroid maker 

and can be cultured long-term in a floating flask on a shaker. The complex of spheroids-

hMSCs will be fabricated 3 days before transplantation. Sterilized hydrogel precursor 

solutions through 0.22 µm filters and the complex can be transplanted into patients 

through syringes. 
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