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ABSTRACT 

 
      Listeria monocytogenes is a significant food-borne pathogen particularly associated 

with ready-to-eat (RTE) meat and poultry products which can grow and multiply at 

refrigeration temperatures. In-package pasteurization is an effective post-lethality 

intervention to reduce microbial contamination of RTE meat products. Enhancing the 

efficiency of in-package pasteurization is vital in reducing the L. monocytogenes 

population as well as in preserving the quality of the meat product.       

      The first section of the dissertation research evaluated the effect of product thickness 

on the surface heating rate and final surface temperature during in-package pasteurization 

of vacuum-packaged bologna. Three thicknesses (4, 12, and 20 mm), corresponding to 1, 

3, and 5 slices of two types of bologna having different (13 and 18%) fat contents were 

subjected to in-package pasteurization at 4 temperatures (60, 70, 80, and 90°C). Surface 

heating rate was fastest in the thinnest (4 mm) and slowest in the thickest (20mm) 

samples for all 4 temperatures. Final surface temperature attained after 3 min was lower 

with increased thickness levels for all temperatures. More significant was the magnitude 

of the difference in the time required to attain a 5 log reductions in L. monocytogenes on 

the surface of bologna due to small difference in thickness. A difference of only 16 mm 

increased the time from 1.5 min to 9.5 min and 0.72 min to 4.12 min at 70 and 80°C, 

respectively. 

      Effect of surface application of nisin and/or lysozyme (5000 AU nisin/ml, 80 AU 

lysozyme/ml, and 5000 AU nisin + 80 AU lysozyme/ml) in combination with in-package 

pasteurization (60, 62.5 and 65°C) of RTE low fat turkey bologna on the inactivation of  
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L. monocytogenes was the second objective investigated. Nisin-lysozyme combination 

and nisin treatments were effective in reducing the time required for a targeted reduction 

in L. monocytogenes population at 62.5 and 65°C, but not at 60°C. 

      Finally, the ability of in-package pasteurization at 65°C for 32 s combined with pre-

surface application of nisin and/or lysozyme (antimicrobial treatments were of the same 

concentration mentioned above) to reduce L. monocytogenes populations, and to prevent 

the subsequent recovery and growth during refrigerated storage for 12 weeks on the 

surface of low fat turkey bologna was determined. Nisin and nisin-lysozyme treatments 

were effective in reducing the growth of L. monocytogenes to below detectable levels by 

2-3 weeks of storage.  
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CHAPTER 1 
 INTRODUCTION 

 
 
      Microbiological safety of food is an important concern to the public as well as to the 

food industry. Foodborne illness resulting from consumption of food contaminated with 

pathogens is a major public health problem in the United States and in other nations of 

the world. Microbial contamination of foods has a serious impact on the food industry. 

Industry is often affected through severe economic losses resulting from food product 

recalls and also from plant closings and cleaning up operations associated with recalls. 

In order to avoid the burden associated with food pathogens, food industry is constantly 

seeking new preventive measures to reduce contamination and novel preservation 

methods to eliminate these organisms from food products. 

       Listeria monocytogenes is a food pathogen which is able to withstand various 

environmental and processing stresses. The organism often inhabits the processing 

environment and thereby contaminates products after thermal processing. As a result, 

ready-to-eat foods (RTE) that are commonly consumed without further cooking are of 

particular concern. RTE meat products including poultry products have been associated 

with many listeriosis outbreaks. Majority of the food products involved in United States 

Department of Agriculture (USDA) recalls associated with Listeria spp. contamination 

were RTE meat and poultry products. In response, the USDA has implemented a “zero 

tolerance” for L. monocytogenes on RTE meat products. 

      For cooked meat products, contamination with L. monocytogenes occurs at the outer 

surfaces of the product during processing steps such as cutting or slicing before 
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packaging. L. monocytogenes can grow and multiply at refrigeration temperatures. 

Therefore, the growth of the organism in vacuum-packaged, cooked meat products can 

occur during storage and distribution. Additional processing treatments are needed before 

and after packaging to reduce the population and control the growth of the organism in 

RTE meat products during storage. The USDA has implemented many regulations and 

issued guidelines for the industry to prevent contamination and to eliminate L.  

monocytogenes from RTE meat and poultry products. Recently USDA has issued 3 

alternatives for the industry which include use of a post-lethality treatment, antimicrobial 

agents, and sanitation measures to control L. monocytogenes in RTE products.         

Application of combined preservation methods, known as hurdle technology, is an 

efficient approach to improve the microbiological safety of food. Combining different 

preservative factors often will have a synergistic effect on restricting microbial growth.    

      Thermal processing is one of the most efficient methods for killing or reducing 

microbial populations in foods and in-package pasteurization is an effective method to 

reduce post-process contamination in RTE meat products. For developing an effective in-

package pasteurization process for a specific meat product, the rate of inactivation of the 

target organism at specific temperatures needs to be studied. Meat product and package 

characteristics may influence the efficiency of in-package pasteurization in attaining 

targeted microbial lethality and therefore should be given special attention while 

developing an in- package pasteurization method for RTE meat products. 

      Another important factor to consider is the duration of in-package pasteurization. 

Since RTE meat products undergo an initial thermal treatment during cooking, the second 

heat treatment (in-package pasteurization) should be of minimum duration to conserve 
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the organoleptic qualities of the product. One practical approach to achieve this objective 

is to combine in-package pasteurization with other preservation methods in order to 

reduce the heat resistance of the organism and thereby reduce the magnitude of the heat 

treatment required. 

      Surface application of various antimicrobial agents alone as well as in combination is 

gaining attention as an effective method to reduce L. monocytogenes contamination. 

Nisin is a natural antimicrobial compound, which exerts a rapid bactericidal effect against 

gram-positive bacteria including L. monocytogenes. It is an FDA approved antimicrobial 

agent for foods. Nisin has been shown to be synergistic with some other antimicrobial 

agents and heat. Lysozyme is a natural enzyme used as a food preservative. Recent 

studies have shown that combining nisin and lysozyme has a synergistic effect on the 

resulting bactericidal activity of each component when used alone.  

      Based on the various aspects discussed above, the main objective of this study was to 

evaluate surface application of nisin and/or lysozyme in combination with in-package 

pasteurization of RTE low fat turkey bologna to eliminate L. monocytogenes, particularly 

to enhance the inactivation of the organism and to prevent its growth during storage. The 

effect of product thickness and composition on surface heating rate during in-package 

pasteurization was also investigated. 

 
.  
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CHAPTER 2 
LITERATURE REVIEW 

 
 

MICROBIOLOGICAL SAFETY OF FOOD 

Foodborne pathogens 
 
      Foodborne illness caused through contamination of food products by pathogenic 

microorganisms is a major public health problem in the US and around the world (White 

et al., 2002). Epidemiology of microbial food-borne diseases has changed in the last 

decade due to high susceptibility of human population to diseases, changing life styles, 

and the emergence of newly recognized human pathogens (Altekruse and Swerdlow, 

1996; Berkelman, 1994). Even in industrialized countries, one out of every three people 

has a food-borne microbial illness event every year (WHO, 2002). A broad spectrum of 

microbial pathogens can contaminate food and cause illness after they or their toxins are 

consumed. These foodborne pathogens include a variety of enteric bacteria, aerobes and 

anaerobes, viral pathogens, parasites, marine dinoflagellates, biotoxin producing bacteria 

in fish and shellfish, and prions (Tauxe, 2002). Some of the important foodborne bacteria 

are Salmonella spp., Listeria monocytogenes, Escherichia coli O157:H7 and other 

enterohemorrhagic E. coli, Clostridium botulinum, Clostridium perfringens, 

Campylobacter jejuni, Staphylococcus aureus, Vibrio cholera, and Yersinia 

enterocolitica. Important foodborne parasites include Toxoplasma gondii, Trichinella, 

Taenia saginata, Taenia solium, Cryptosporidium parvum, and Cyclospora cayetanensis. 

Important viruses causing foodborne diseases are Hepatitis A, Norwalk-like viruses, 

Astrovirus, and Rotavirus (Jay et al., 2005; Ray, 2004). 
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      Every year, in the United States, foodborne infections cause millions of illnesses and 

thousands of deaths with most of the infections going undiagnosed and unreported 

(Tauxe, 1997). Annual costs of foodborne illness in the United States have been 

estimated between $10 and $83 billion (FDA-CFSAN, 2003). Foodborne illness poses a 

significant economic burden, damages consumer confidence and impacts international 

trading of food products (Glynn et al., 2006). Worldwide, the number of cases of 

gastroenteritis associated with food pathogens is estimated to be between 68 million and 

275 million annually (Naravaneni and Jamil, 2005). Two major sources of foodborne 

bacteria in meat and meat products are from the animal which carries pathogenic bacteria 

and the processing environment which harbors them. Human beings acts as a source of 

pathogenic bacteria indirectly by cross contamination (Borch and Arinder, 2002). 

      A substantial proportion of foodborne illness is attributable to improper in-home food 

handling, preparation, and consumption practices by consumers (CAST, 1994; Redmond 

and Griffith, 2003). Improper practices include inadequate cooking, cooling and storage 

of foods, cross-contamination of raw and cooked foods, inadequate personal hygiene, and 

consumption of raw and undercooked foods (CAST, 1994; Doyle et al., 2000). 

Awareness of foodborne pathogens among consumers is a very important factor in 

reducing foodborne illness. A survey based study conducted by Lin et al. (2005) found 

that 94% of the US consumers were aware of Salmonella spp. and 90% of E. coli as a 

problem in food. But only 32% of consumers were aware of Listeria spp. and 7% were 

aware of Campylobacter spp.  

      Development of antibiotic-resistant foodborne pathogens is another microbiological 

food safety issue (Doyle and Erickson, 2006; White et al., 2002). Several antibiotic-
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resistant pathogens that have been associated with animals used for food and are of public 

health concern include ciprofloxacin-resistant Campylobacter spp, cephalosporin-

resistant Salmonella spp and E. coli, multi-drug resistant a Salmonella Typhimurium 

DT104 and multi-drug resistant Salmonella Newport. In foodborne illnesses where 

antibiotic therapy may be necessary, patient recovery could be compromised by 

antimicrobial pathogen resistance (Doyle and Erickson, 2006). 

Preservation methods to enhance microbiological safety 

      There are a number of conventional and new preservation technologies which are 

effectively used to control the growth and multiplication of pathogenic organisms in 

food. Thermal pasteurization and sterilization are predominantly used in food industry for 

their efficacy and product safety (Lado and Yousef, 2002). Advances in technology have 

allowed the optimization of thermal processing for maximum efficacy against 

microorganisms and minimum deterioration of food quality (Lado and Yousef, 2002). 

      The most publicized new preservation methods include non-thermal processes like 

high pressure processing (HPP), pulsed electric fields (PEF), irradiation, new packaging 

systems such as modified atmosphere packaging (MAP) and active packaging, natural 

antimicrobial compounds and biopreservation (Devlieghere et al., 2004). 

      Another food preservation approach that is being extensively studied is the ‘hurdle 

technology’ concept (Leistner and Gorris, 1995; Leistner, 2000). Hurdle technology uses 

the deliberate combination of existing and new preservation techniques in order to 

establish a series of hurdles that microorganisms present in the food must overcome to 

survive. Sometimes, because of their synergistic effect, the individual hurdles may be set 

at lower intensities than would be required if only a single hurdle were used as a 

preservative method (Leistner and Gorris, 1995). The most commonly applied hurdles in 
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food preservation include temperature, pH, redox potential, preservatives and competitive 

microorganisms (Leistner, 2000). 

Developments in food safety management systems 

      The food supply chain is rapidly growing in size and diversity because of changes in 

lifestyle, demographic compositions and food market globalization. In order to keep pace 

with these changes in the food supply chain, it has been necessary to adapt and improve 

the food safety management systems on a continuous basis (Gorris, 2005). Hazard 

Analysis Critical Control Points (HACCP) and pre-requisite systems like Good 

Manufacturing Practice (GMP) and Good Hygiene Practice (GHP) have been used as 

excellent tools in food safety management (van Schothorst, 2004). These systems are 

very specific to the food production facility for which they have been developed (Gorris, 

2005). Considering the complex nature of the food chain, specific concepts have been 

developed recently in food safety management (Gorris, 2005). The acceptable level of a 

microbiological hazard is currently not often expressed in terms of its frequency and/or 

concentration, but just as the level which is as low as reasonably achievable (ALARA) by 

the industry (van Schothorst, 2005; Walls and Buchanan, 2005). The latest developments 

in food safety control advocate a shift from ALARA food safety management to a more 

risk based and targeted approach (van Schothorst, 2005). The International Commission 

on Microbiological Specifications for Foods (ICMSF, 2002) has proposed the 

establishment of Food Safety Objectives (FSO) to give more clear and firm guidance to 

food industries on the level of hazard deemed tolerable in a product at consumption. The 

FSO is defined as the maximum frequency and/or concentration of a microbial hazard in 

a food considered tolerable for consumer protection at the time of consumption (ICMSF, 
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2002). A hypothetical example for a FSO is “L. monocytogenes in a ready-to-eat food 

product shall not exceed 3.5 log10 cfu/serving size of food when eaten” (Gorris, 2005). 

Setting the FSO at the time of consumption requires consideration of the likelihood and 

impact of contamination at all points further back in the food chain (Walls and Buchanan, 

2005).  In order to meet the FSO, food chains need to employ a set of target points like 

Performance Objectives (PO) and Performance Criterion (PC) earlier in the supply chain 

(van Schothorst, 2005; Walls and Buchanan, 2005). Performance Objective is defined as 

the maximum frequency and/or concentration of a hazard in a food at a specified point in 

the food chain that should not be exceeded in order to achieve an FSO. If a ready-to-eat 

food product supports the growth of L. monocytogenes during normal refrigerated 

storage, the PO at the point of manufacture will be more stringent than the FSO to 

account for the potential growth of the organism during distribution and home use (Walls 

and Buchanan, 2005). Performance Criterion is defined as the effect in frequency and/or 

concentration of a hazard in a food that must be achieved by one or more control 

measures to contribute to a PO or an FSO (CAC, 2004). PC is the outcome of a 

processing step or a combination of steps to reduce the levels of a microorganism. A 

specific reduction of L. monocytogenes that is set for a post-lethality treatment of RTE 

meat products is an example for a PC. 

      The current health status of a population is evaluated by conducting a Microbiological 

Risk Assessment (MRA) which is composed of a Risk Assessment, Risk Management, 

and Risk Communication (Reji et al., 2004). The outcome of a risk analysis can be 

guidelines for handling food products or microbiological criteria that helps to minimize 

the number and impact of foodborne outbreaks (Reji et al., 2004). Epidemiologic data of 
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human disease, especially those from outbreak investigations, guide immediate 

preventive measures by contributing to assessing risk, helping to prioritize food safety 

problems, providing dose-response information from outbreak investigations, and 

validating risk estimates (ICMSF, 2006). 

LISTERIA MONOCYTOGENES 

Characteristics of the organism 

      L. monocytogenes is a gram-positive, motile, facultative anaerobic bacterium that is 

found in a broad ecologic niche. The organism is psychrophilic and takes advantage 

against other Gram-positive and Gram-negative microorganism in cold environments, 

such as refrigerators (Schlech, 2006). The organism can exist in an intracellular state 

within monocytes and neutrophils, and its name is derived from the fact that large 

numbers of monocytes are often found in peripheral blood of monogastric animals 

infected by this organism (Gray and Killinger, 1966). L. monocytogenes is able to initiate 

growth in the temperature range of 0 to 45°C. The average generation times for L. 

monocytogenes strains were 43, 6.6, and 1.1 h at 4, 10, and 37°C, and respective lag 

times were 151, 48, and 7.3 h (Barbosa et al., 1994). Although L. monocytogenes grows 

best in the pH range of 6-8, the organism can initiate the growth in laboratory media at 

pH values as low as 4.4 (Lou and Yousef, 1999). The organism grows optimally at water 

activity (aw) ≥ 0.97. For most strains the minimum aw for growth is 0.93, but some strains 

may grow at aw values as low as 0.90 (Lou and Yousef, 1999). L. monocytogenes is able 

to grow in the presence of 10 to 12% of sodium chloride. The bacterium survives for long 

periods in high salt concentrations and the survival is significantly increased by lowering 

the temperature (Swaminathan, 2001).The nutritional requirements of Listeriae are 
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typical of those for many other Gram-positive bacteria. They grow well in many common 

media such as brain heart infusion, trypticase soy, and tryptose broth (Jay et al., 2005). 

Public health significance 

       L. monocytogenes causes a foodborne disease, listeriosis which is recognized as an 

important worldwide public health problem. Incidence of listeriosis in developed 

countries ranges from 4 to 8 cases per 1,000,000 individuals (FAO/WHO, 2000). Due to 

its severe character, the hospitalization rate for listeriosis is 92%, while the case fatality 

rate is 20% (Mead et al., 1999). Almost all listeriosis cases (99%) have a foodborne 

source. Human listeriosis, although an uncommon disease, accounts for approximately 

28% of the estimated annual disease deaths in the United States that are associated with a 

known pathogen (Mead et al., 1999). The population groups most commonly affected by 

listeriosis are pregnant women, neonates, the elderly, and people with suppression of 

immune system, such as AIDS, cancer, or transplant patients (Gerba et al., 1996). Severe 

cases of listeriosis are often manifested as septicemia and / or meningoencephalitis. The 

mortality rate associated with listeriosis is on average 30% compared to a 0.38% and 

0.1% for Salmonellosis and Campylobacteriosis, respectively, which makes listeriosis a 

serious public health problem (Wing and Gregory, 2002). 

      The first confirmed foodborne outbreak of listeriosis was associated with 

consumption of locally prepared coleslaw in 1981 in Nova Scotia, Canada. Thirty four 

pregnancy associated cases and seven cases in non-pregnant adults occurred during a 6 

month period (Swaminathan, 2001). Pasteurized milk was identified as the most likely 

source of infection in another large outbreak of listeriosis in Boston, Massachusetts, in 

1983 involving 42 immunosuppressed adults and 7 pregnant women (Fleming et al., 

1985). In December 1998, an outbreak of invasive listeriosis was reported through 
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consumption of hot dogs and processed meats produced by a firm in which over 100 

people became ill and 20 died (Wing and Gregory, 2002). A multistate outbreak of 

listeriosis occurred from May to November 2000 and was attributed to delicatessen meat 

(CDC, 2000). In 2002, a major outbreak of listeriosis in northeastern United States 

associated with consumption of sliceable turkey deli meat resulted in 46 cases including 7 

deaths (CDC, 2002). Mead et al. (2006) described a nation wide outbreak of listeriosis 

involving residents of 24 US states. They used molecular subtyping to investigate the 

outbreak and suggested that L. monocytogenes strains vary widely in virulence and 

confirmed that large outbreaks can occur even when only low levels of contamination 

was detected in sample foods. Public health surveillance, outbreak investigations, and 

applied and basic research conducted during past two decades have helped characterize 

listeriosis, define the magnitude of its public health problem, determine its impact on the 

food industry, identify the risk factors associated with the disease, and develop 

appropriate control strategies (Swaminathan, 2001).  

  Fig. 2.1.  Annual Listeria cases 2000 – 2004 (CDC, 2005). 
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Contamination of Ready-to-Eat (RTE) meat and poultry products 

      RTE meat and poultry products are products that are in a form that is edible without 

additional preparation but may receive additional preparation for palatability or aesthetic, 

gastronomic, or culinary purposes (FSIS, 2003a). RTE foods including red meats, 

poultry, seafood and vegetables have been documented as vehicles for several bacterial 

pathogens resulting in foodborne outbreaks (Gibbons et al., 2006). L .monocytogenes has 

been recovered from RTE meats worldwide due to its ability to survive and multiply in 

vacuum and gas-packaged products at refrigeration temperatures (Duffy et al., 1994). 

Post-processing contamination during steps such as slicing, peeling and packaging is the 

main route through which Listeria spp. contaminates RTE meat products (Wang and 

Muriana, 1994). The initial phase of contamination of these meat surfaces is presumably 

bacterial attachment followed by subsequent survival and growth (Dickson, 1991). 

Because of the ability of L. monocytogenes to multiply at refrigeration temperatures in 

some food products, even low-level contamination of a ready- to-eat product could result 

in substantial numbers of L. monocytogenes eventually being ingested by a susceptible 

individual (Seman et al., 2002). In 1989, the USDA implemented a zero-tolerance policy 

for L. monocytogenes in ready-to-eat meats (USDA, 1989). The immediate reason for 

implementation of this zero-tolerance policy was a clear link, established in 1989, 

between human listeriosis and a plant that produced turkey frankfurters (Wenger et al., 

1990; CDC, 1989). As a result of this policy, current United States rules require that there 

be no detectable L. monocytogenes colonies within 25 g sample of RTE food product 

(Kathariou, 2002; Tompkin, 2002). However, complete elimination of L.  monocytogenes 

from food products and prevention of post-processing contamination remains a challenge 

for food manufacturers. 
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      The source and mechanism of contamination of RTE meat and poultry products by L. 

monocytogenes was investigated by several research workers. Cross-contamination 

between processing equipment and deli meats by L. monocytogenes was studied by Lin et 

al. (2006). The commercial slicer blade was inoculated with the organism and then meat 

samples were sliced and five consecutive meat slices were packed per package, vacuum 

sealed, stored at 4°C, and sampled at 1 and 30 days post-slicing. They found that the 

organism could be transferred from a contaminated slicer onto meats and can survive or 

grow on deli meats with preservatives. Higher L. monocytogenes cell numbers inoculated 

on the slicer blade resulted in more L. monocytogenes positive sliced meat samples. 

Attachment of bacterial cells to surfaces can be affected by cell surface charge; 

hydrophobicity; hydrophilicity; steric hindrance and roughness (Cunliffe et al., 1999). 

The mechanism of attachment of five strains L. monocytogenes in a mixed cocktail to 

frankfurters, ham, and bologna was studied by Foong and Dickson (2004). They found 

that approximately 84 to 87% L. monocytogenes were found to strongly attach on to RTE 

meats within 5 min regardless of strain or meat type. No differences were observed in cell 

surface charge or cell surface hydrophobicity among strains. 

      Control strategies are needed at certain stages from pre-harvest to consumption 

(during processing, at retail and food service, and in the home) to minimize the likelihood 

that food will become contaminated with L. monocytogenes and to prevent the growth of 

the organism to high numbers (ILSI Research Foundation, 2005). Tompkin (2002) 

provided guidance to food processors in controlling L. monocytogenes in processing 

environments which included prevention of the establishment and growth of the organism 

in sites that can lead to contamination of RTE foods. Implementation of a sampling 
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program that can assess in a timely manner whether the environment to which RTE foods 

are exposed is under control and can verify by follow-up sampling that a source of 

contamination has been detected and corrected.  Porto et al. (2004) studied the effect of 

reheating on viability of a five strain mixture of L. monocytogenes in vacuum-sealed 

packages of frankfurters following refrigerated or frozen storage. These researchers 

found about a 5-log reduction was achieved by reheating to a surface temperature of 70°C 

for about 2 min or 80 or 90°C for about 0.6 min regardless of storage conditions or 

formulations. Proper storage and handling of refrigerated RTE meats can help reduce the 

risk of listeriosis. Consumer knowledge on storage, and handling practices regarding 

Listeria spp. in frankfurters and deli meats was evaluated by Cates et al. (2006) through a 

web-based survey.  Despite limited awareness of Listeria spp. (44% compared to 94% for 

Salmonella spp. and E. coli) responses found many people were following recommended 

storage guidelines for frankfurters and deli meats. They also found that most individuals 

who were aware of Listeria spp. had limited knowledge about the pathogen and were 

unable to identify possible food vehicles. Thus, there is a need to educate consumers 

about the possible sources of Listeria spp. food products and proper handling and storage 

of RTE foods such as frankfurters and deli meats to help prevent listeriosis. 

Impact on the food industry 

      As a result of the regulatory attention that RTE food products have received based on 

the “zero tolerance” policy for the presence of L .monocytogenes, there have been 

significant numbers of Listeria-related recalls (Marsden et al., 2001). The negative 

impact of a product recall may affect consumer demand for the product involved, leading 

to millions in lost sales, as well as loss of brand equity (Ivanek et al., 2004). Meat and 

poultry recalls have a direct economic and public perception impacts on the food industry 
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(Kramer et al., 2005). Research has shown that when meat recalls are announced there is 

a direct negative effect on demand for meat products with an associated move towards 

non-meat products (Marsh et al., 2004).  A product recall is an action taken voluntarily by 

food manufacturers or distributors after they determine independently or are informed by 

a government agency of the possibility of negative health concerns for consumers from 

eating their products. Recalls are initiated by the manufacturer or distributor of the meat 

or poultry, sometimes at the request of FSIS. All recalls are voluntary. However, if a 

company refuses to recall its products, then FSIS has the legal authority to detain and 

seize those products in commerce (FSIS, 2002). The purpose of the recall is to effectively 

remove meat, poultry, or egg products which are believed to be adulterated or 

misbranded from commerce (Teratanavat and Hooker, 2004). Additional expenses 

incurred to the industry due to L. monocytogenes contamination include plant closings, 

clean up after recall, product liability costs, and insurance administration costs (Ivanek et 

al., 2004). Preventive control measures against L. monocytogenes contamination of RTE 

meat products require extra work, cleaning, disinfection, alteration of production 

procedures, and education, which all cost money. Some of these costs are reflected in 

changing stock market prices for the meat industry (Thomsen and McKenzie, 2001). 
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Fig. 2.2. Listeria related food product recalls – 2000-2005 (Source: FSIS recall center).        
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USDA –FSIS regulations  

      In the US, the Food Safety and Inspection Service (FSIS) of the US Department of 

Agriculture (USDA) is responsible for ensuring safe meat, poultry, and pasteurized egg 

products produced in Federally Inspected Plants (FIP) (USDA, 2000). The Food and 

Drug Administration (FDA) and FSIS have unrestricted enforcement authority to 

selectively sample and test for L. monocytogenes (Shank et al., 1996). FSIS designed the 

regulations to encourage establishments to employ more effective Listeria control 

measures. All establishments that produce RTE products that are exposed to the 

environment after lethal treatments will be required to develop written program, such as 

Hazard Analysis and Critical Control Points (HACCP) systems, Sanitation Standard 

Operating Procedures (Sanitation SOPs) or other programs to control L. monocytogenes 
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(FSIS, 2003b). In 2001, FSIS issued a proposed RTE rule (66 FR 12590) to require that 

all establishments producing RTE meat and poultry products conduct environmental 

testing of food contact surfaces for Listeria spp. after lethality treatment and before final 

product packaging (FSIS, 2001). Data gathered during an outbreak of Listeria related 

illness during the summer of 2002, combined with other food safety investigations and 

in-depth verification reviews, led FSIS to conclude that some establishments were not 

adequately addressing the potential for bacterial contamination in their HACCP plans, 

Sanitation SOPs or other control measures (FSIS, 2003b). In December 2002, FSIS 

implemented a directive outlining additional steps to be taken by USDA inspectors to 

ensure that establishments producing RTE meat and poultry products are preventing L. 

monocytogenes contamination. Under this directive, plants producing deli meats and hot 

dogs without validated Listeria programs to eliminate the organism on the product, on 

food contact surfaces, and in the environment were subject to an intensified FSIS testing 

program (FSIS, 2003b). In 2003, FSIS released compliance guidelines to control L. 

monocytogenes in post-lethality exposed RTE meat and poultry products and updated 

these guidelines in May 2006 (FSIS, 2006). The interim final rule (9CFR 430) includes 

three alternative approaches that establishments can take in the processing of RTE meat 

and poultry products during post-lethality exposure. Alternative 1 requires the use of a 

post-lethality treatment to reduce or eliminate L. monocytogenes and an antimicrobial 

agent or process to suppress or limit the growth of the pathogen. An establishment that 

identifies its products in Alternative 2 must apply either a post lethality treatment or an 

antimicrobial agent or process that controls the growth of L. monocytogenes. Under 

Alternative 3, the establishment does not apply a post-lethality treatment or an 
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antimicrobial agent or process to control the growth of L. monocytogenes in the post-

lethality exposed product, instead must control the pathogen in its post-lethality 

processing environment through the use of sanitation control measures, which may be 

incorporated in the establishment’s HACCP plan, Sanitation SOP or prerequisite program 

(FSIS, 2006). In the first two alternative approaches, the establishment must validate the 

use of post-lethality treatment or antimicrobial agent for its specific products. In case of 

using third alternative, since the establishment is not relying upon a post-lethality 

treatment or an antimicrobial agent or process to control L. monocytogenes, the product 

will be subjected to more frequent FSIS verification testing compared to the other 

alternatives. 

      Continued efforts from Government regulatory agencies, researchers, and 

manufacturers are needed to bring the overall level of food-borne listeriosis to the USA 

Healthy People 2010 goal of 0.25 cases per 100,000 individuals per year (DHHS, 2000). 

Heat resistance 

      Thermal treatment destroys foodborne pathogens and is one of the primary techniques 

employed to ensure the safety of foods. Therefore, the survival and heat resistance of L. 

monocytogenes under a variety of conditions in many foods have been investigated. Heat 

resistance of L. monocytognes is influenced by many factors such as strain, previous 

growth conditions, exposure to heat shock, acidity, other stresses, and composition of the 

heating menstruum (Doyle et al., 2001). Results from numerous studies indicate that L. 

monocytogenes is more resistant to heat when tested in foods than when it is suspended in 

laboratory media (Boyle et al., 1990; Cassadei et al., 1998). High fat (30.5%) ground beef 

was more protective of L. monocytogenes at 57.2 and 62.8°C than low fat (2%) beef as 

indicated by higher D values of 5.8 vs. 2.6 and 1.2 vs. 0.6 min, respectively (Fain et al., 
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1991). The effect of heat shock on thermal resistance of L. monocytogenes in meat was 

investigated by Farber and Brown (1990). A sausage mix inoculated with approximately 

107 cfu of L. monocytogenes / g was initially subjected to a heat shock temperature of 

48°C before being heated at a final test temperature of 62 or 64°C. Cells heat shocked for 

120 min showed an average 2.4-fold increase in the D64°C value. Heat-shocked cells 

shifted to 4°C appeared to maintain their thermotolerance for at least 24 h after heat 

shock. Juneja et al. (1998) studied the effect of pH, acidulant, and growth temperature on 

the heat resistance of L. monocytogenes in brain heart infusion broth acidified to pH 5.4 

or 7 with either lactic or acetic acid. The thermal resistance of cells cultured at a 

particular temperature was significantly lower when lactic acid was used to acidify the 

medium to pH 5.4.  Regardless of acid identity, D values significantly decreased with 

increased growth temperature when the pH of the growth medium was 5.4, whereas D 

values significantly increased with increased temperature at pH 7. These results indicate 

that the heat resistance of L. monocytogenes depends upon its growth conditions. Slow 

heating (1.3°C/min) of inoculated ground pork samples allowed survival of more L. 

monocytogenes than rapid heating (8.0°C/min). More survivors were also detected in 

pork that was heated aerobically rather than anaerobically (Kim et al., 1994). Addition of 

curing salts to beef and pork enhances the thermotolerance of L. monocytogenes by two- 

to eightfold (Farber, 1989; Mackey et al., 1990). Further experiments determined that this 

protective effect was primarily due to NaCl and not due to the addition of fat often added 

to sausage or to sodium nitrite, sodium lactate, or sodium erythorbate (Mackey et al., 

1990; Yen et al., 1991). The influence of aw lowering ingredients such as salt and sugar 

on thermal resistance in yolk was investigated by Palumbo et al. (1995) using a five strain 
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mixture of L. monocytogenes. The D value for L. monocytogenes at 64.4°C increased 

from 0.44 min in plain yolk to 8.26 min after a 21.5 min lag in yolk with 10% salt and 

5% sugar, and 27.3 min after a 10.5 min lag in yolk with 20% salt. Thus a Aw lowering 

solutes in liquid yolk increased the thermal resistance of L. monocytogenes. 

NISIN 

General Properties 

      Nisin is the most commonly used natural antimicrobial compound which was 

approved for use in food in 1969 and was awarded generally recognized as safe (GRAS) 

status in the United States in 1988 (FDA, 1988). Nisin is effective in a number of food 

systems, inhibiting the growth of a wide range of Gram-positive bacteria, including many 

important foodborne pathogens such as L. monocytogenes (Tagg et al., 1976). Nisin is a 

low- molecular- weight, heat stable and non-toxic polypeptide produced by the bacterial 

starter culture Lactococcus lactis subspecies lactis. The polypeptide can be prepared from 

culture fluids or the cells of the producer organism. Nisin is a 34-amino acid polypeptide 

with a molecular mass of 3510 Daltons. Nisin contains the thioether amino acids 

lanthionine and β-methyllanthionine, as well as amino butyric acid, dehydroalanine, and 

dehydrobutyrine (Thomas and Delves-Broughton, 2005). Nisin is a cationic molecule due 

to the combination of three lysine residues and one or more histidine residues together 

with lack of glutamate and aspartate. Nisin is most soluble at acidic pH, and becomes less 

soluble with increasing neutrality (Thomas et al., 2000).  

Mode of action 

      Nisin is predominantly active against Gram-positive bacteria. By providing an 

induced damage of the outer membrane by some chelating agents, nisin can also made to 

act against Gram-negative bacteria (Ray, 1993). In a vegetative bacterial cell, the primary 
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site of action for nisin is the cytoplasmic membrane. Nisin produces pores on the 

membrane, which results in the rapid efflux of small cytoplasmic compounds like amino 

acids, potassium, inorganic phosphate, glutamate and ATP (Abee et al., 1994). The 

increase in membrane permeability results in the collapse of vital ion gradients and in 

complete dissipation of components of the proton motive force (PMF), transmembrane 

potential and pH gradient, leading to a rapid cessation of all biosynthetic processes 

(Bruno and Montville, 1993; Ruhr and Sahl, 1985). Collapse of the PMF leads to cell 

death through cessation of energy requiring reactions (Bauer and Dicks, 2005). Nisin is 

found to inhibit bacterial cell wall biosynthesis in vitro through a slow process (Linnet 

and Strominger, 1973; Reisinger et al., 1980). Nisin may also induce autolysis of 

susceptible staphylococcal cells (Bierbaum and Sahl, 1985). The peptides replace lytic 

enzymes from their cell wall intrinsic inhibitors. This apparent non-specific activation of 

cell wall hydrolysis by nisin results in extensive cell wall degradation, particularly in the 

septum area between dividing daughter cells. Cell lysis is encouraged by a combination 

of increased osmotic pressure and a weakened cell wall which results in pore formation 

(Bauer and Dicks, 2005). Spore-forming bacilli and clostridia and their spores are 

sensitive to nisin. Nisin inhibits the post-generation swelling and subsequent stages of 

spore development (Gould, 1964; Hitchins et al., 1963). This action may be due to the 

modification of sulfhydryl groups in the envelopes of germinated spores by nisin’s 

dehydro residues (Morris et al., 1984; Montville et al., 1995). 

Synergistic antibacterial activity with other compounds and methods. 

      Nisin is shown to have synergistic antibacterial activity with several preservative 

compounds and processes. This property makes nisin an ideal compound for use as a part 

of a multiple hurdle preservation program. One advantage of using nisin in combination 
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with other microbial hurdles is that nisin concentration required to have a targeted 

reduction can be lowered and thereby processor may be able to reduce the costs involved 

in using high concentrations of nisin. Another advantage of using nisin in combination 

with other methods or compounds is that it can be a way to overcome the problems of 

survival and growth of nisin resistant cells (Crandall and Montville, 1998). 

Physical methods: 

Heat: 

      Nisin is a heat stable bacteriocin which is reported as heat-stable at 100°C for 100 

min (Mahadeo, 1995). This property is very useful in using nisin along with thermal 

preservation methods without inactivation of the compound. Various studies have shown 

the synergistic effect of nisin and heat in inactivating spoilage as well as pathogenic 

bacteria. The synergy is explained by heat induced changes in membrane permeability 

acting in concert with nisin-induced changes in membrane composition to facilitate 

poration that leads to rapid cell death (Ueckert et al., 1998; Mazzotta and Montville, 

1997; Winkowski et al., 1994). Mahadeo and Tatini (1994) studied the effect of a 

combination of nisin (100 IU/ml) and heat (52°C for 3min) on scald water samples and 

found that it had lower microbial counts when compared with those with either nisin or 

heating alone. They also reported the same trend in L. monocytogenes populations 

inoculated into scald water samples. Budu-Amako et al. (1999) investigated the 

synergistic effect of nisin and moderate heat on the reduction of L. monocytogenes 

populations in cans of cold-packed lobster. Addition of nisin at a level of 25mg/kg of can 

contents to the brine surrounding the lobster, in combination with a heat process giving 

internal can temperatures of 60°C for 5 min and 65°C for 2min, resulted in 3-5 log 
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reductions whereas heat or nisin alone resulted in decimal reductions of 1 to 3 logs. D 

values were determined for Bacillus cereus T spores and B. stearothermophilus spores in 

skim milk supplemented with various concentrations (0, 2000, 4000 IU/ml) of nisin using 

an immersed, sealed capillary tube procedure (Wandling et al., 1999). These researchers 

found that for both organisms, the addition of nisin lowered the apparent D values. They 

also suggested that spore control is likely due to enhanced sensitivity of spores to heat 

and the presence of residual nisin in the recovery medium that could prevent outgrowth 

of survivors. Knight et al. (1999) determined the D- values and z-values for L. 

monocytogenes in liquid whole egg with nisin and NaCl by a submerged glass ampoule 

procedure. Nisin significantly decreased D-values at lower (< 58º C) temperatures in both 

unsalted and salted liquid whole egg but had little effect on minimum US pasteurization 

temperatures of 60º C without NaCl and 63º C with NaCl. However, addition of nisin 2 h 

prior to heat treatment reduced the D values significantly at these temperatures. Ueckert 

et al. (1998) studied the synergistic antibacterial action of mild heat (48 and 56°C) in 

combination with low concentrations of nisin (4 IU and 20 IU/ml) on Lactobacillus 

plantarum and reported synergistic reduction in viability. The synergistic effect of heat 

treatment (55°C) and nisin (500 IU/ml) on nisin resistant and wild-type L. monocytogenes 

Scott A was studied by Modi et al. (2000). When nisin resistant cells were grown in 

presence of nisin, they were more sensitive to heat than wild-type cells with a D-value of 

2.88 min and 3.72 min respectively. When nisin resistant cells were subjected to a 

combined treatment of heat and nisin, there was approximately a 4 log reduction during 

the first 7 min of treatment. Synergistic effect of nisin and heat treatment on the growth 

of Escherichia coli O157:H7 was determined in vitro by Lee et al. (2002). They found 
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that addition of 100 IU/ml nisin into the plates containing the organism which underwent 

a heat treatment of 50 and 52.5ºC for 15 min significantly inhibited E .coli growth but not 

with shorter heating times and lower temperatures.  

High pressure processing: 

      High pressure processing (HPP) is an alternative nonthermal food preservation 

method to avoid post-processing contamination, especially for foods having 

thermosensitive nutritional, sensory, and functional properties (Aymerich et al., 2005). 

Nisin is found to have a good synergistic effect with HPP against various food pathogens. 

HPP kills or sub lethally injures cells by disruption of the cell wall and membrane, 

dissociation of protein and ribosomal subunit structures, and loss of activity of some 

enzymes (Hoover et al., 1989). This altered cell permeability will facilitate the enhanced 

activity of nisin. Both Gram-positive bacteria (L. monocytogenes) and Gram-negative 

bacteria (E .coli and S. Typhimurium) showed increased levels of inactivation when nisin 

was present during pressure treatment (Kalchayanand et al., 1994).  Nisin in combination 

with high-pressure treatment showed strong synergistic effects against L. plantarum and 

E. coli at temperatures less than 15°C (ter Steeg et al., 1999). Elimination of both 

organisms was achieved at 10°C with synergistic combination of nisin (4 IU/ml for L. 

plantarum and 80 IU/ml for E. coli) at 200 MPa for 10 min. Addition of nisin (5mg/l) and 

HPP treatment (450 MPa) of liquid whole egg resulted in 5 log reductions of E. coli and 6 

log reductions in L .innocua (Ponce et al., 1998). This treatment resulted in complete 

elimination of both organisms after 1 month of storage at 4°C. The combined effect of 

high pressure, nisin and acidification on the mesophilic and psychrotrophic bacteria of 

mechanically recovered poultry meat was evaluated by Yuste et al. (2002). Significantly 
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highest decrease (5.3 log cfu/g for mesophiles and above 7.5 log cfu/g for psychrotrophs) 

in populations occurred in samples with 200 ppm of nisin treated at 450 MPa pressure. 

 Kalchayanand et al. (2004) studied the viability loss of L. monocytogenes, Salmonella 

Typhimurium, and E. coli O157:H7 by hydrostatic pressure in the presence and absence 

of a combination of nisin and pediocin.  There was a significant reduction in bacterial 

counts by using the combination of high pressure and bacteriocin mixture compared to 

the use of the methods individually. 

Pulsed electric fields (PEF): 

      The use of shorter duration high voltage pulses for non-thermal inactivation of 

microorganisms in food is a new preservative method. The bactericidal effect of PEF 

treatment is believed to be based on membrane electrocompression as a result of induced 

transmembrane potential. When this transmembrane potential reaches about 1 V (natural 

potential of the cell membrane), the electrocompressive force exceeds the elasticity of the 

membrane resulting in pore formation (Sale and Hamilton, 1968; Zimmermann, 1986). 

The combination of PEF and nisin treatments could be a means of achieving the desired 

level of microbial inactivation since both acts on destabilizing the cell membrane 

(Dutreux et al., 2000).  Pol et al. (2000) reported inactivation of vegetative cells of B. 

cereus by a combined low dose of nisin (0.06μg/ml or 2.4 IU/ml) and mild PEF 

(16.7Kv/cm, 50 pulses each of 2 μs) by an additional 1.8 log cfu /ml greater than the sum 

of reductions obtained with single treatment. The exposure of L. innocua to nisin after 

PEF in skim milk had an additive effect on the inactivation of microorganism compared 

to that exhibited by the PEF alone (Calderon-Miranda et al., 1999a). Reduction of the 

organism as a result of exposure to 10 IU nisin /ml after 32 pulsed electric fields was 2, 
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2.7, and 3.4 logs for an electric field intensity of 30, 40, and 50kV/cm, respectively. The 

same research group (Calderon-Miranda et al.,1999b) found that in liquid whole egg, L. 

innocua exposed to 10 IU nisin /ml after PEF exhibited a 4.1 log reduction for an electric 

filed intensity of 50kV/cm and 32 pulses. Death and injury of Micrococcus leuteus 

following exposure to nisin and PEF were investigated in phosphate buffer by Dutreux et 

al. (2000) and found that application of nisin clearly enhanced the lethal effect of PEF 

treatment. PEF treatment (50 pulses at 33 kV/cm) followed by nisin (100 IU/ml) caused 

of 5.2 log reduction in comparison with a 4.9 log reduction obtained with nisin followed 

by PEF. 

Incorporation into packaging films:  

      The use of packaging films as antimicrobial delivery systems to reduce spoilage and 

pathogenic bacteria has been extensively studied. Various approaches have been 

proposed and demonstrated for the use of edible and polymer films to deliver 

bacteriocins, such as nisin, to a variety of food surfaces including muscle foods (Cutter et 

al., 2001). Padgett et al. (1998) tested packaging films with nisin or lysozyme 

incorporated into the film structures (produced by two methods- heat press and casting) 

separately for inhibition against L. plantarum and both compounds in combination with 

EDTA in films against E. coli. The minimum concentration of nisin (as Nisaplin™) that 

was effective in heat-press soy film was 0.1 mg/g of film, and as the concentration 

increased from 0.1 to 6.0 mg of nisin/g of film, the inhibition increased. Nisin 

concentration of 6 and 40 mg/g of film in heat-press corn zein films demonstrated 

inhibition with higher concentration showing more effect.  Natarajan and Sheldon (2000) 

investigated the efficacy of polymer packaging films treated with purified nisin-
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containing formulations to reduce Salmonella contamination of fresh broiler drumstick 

skin. Polyvinyl chloride, linear low density polyethylene, and nylon films were coated 

with 100µg/ml of nisin and varying concentrations of citric acid, EDTA, and Tween 80. 

Log reductions of 0.4 to 2.1 were obtained in Salmonella Typhimurium populations. Ko 

et al. (2001) studied physical and chemical properties of edible films containing nisin and 

their action against L. monocytogenes. As the nisin concentration increased (4.0-160 IU/ 

film disk), the amount of inhibition progressively increased in all tested films. In a series 

of five experiments, EDTA, lauric acid (LA), nisin, and the combinations of three 

antimicrobial agents were incorporated into a corn zein film and exposed to broth 

cultures of L. monocytogenes and Salmonella Enteritidis (Hoffman et al., 2001). There 

was a 4 log reduction in L. monocytogenes counts after 48 h exposure to films containing 

lauric acid and nisin alone. Of all film agent combination tested, none had greater than a 

1 log reduction of S. Enteritidis when a108 cfu/ml initial inoculums were used. 

Effectiveness of packaging films coated with a methylcellulose/hydroxypropyl 

methylcellulose-based solution containing 10000, 7500, 2500, or 156.3 IU/ml nisin for 

controlling L. monocytogenes on the surfaces of vacuum-packaged hot dogs were 

investigated by Franklin et al. (2004). Packaging films coated with a cellulose-based 

solution containing 10, 000 and 7, 500 IU/ml nisin significantly decreased L. 

monocytogenes populations on the surface of hot dogs by greater than 2 log cfu/package 

throughout the 60-day study. 

      Diffusivity of nisin impregnated corn zein and wheat gluten films into water were 

affected by film type (wheat gluten or corn zein), environmental temperature and film 

forming methods (cast or heat-set) (Teerakarn et al., 2002). Cast wheat gluten film had 
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the greatest diffusivity while the cast corn zein film had the lowest and heat-pressed 

wheat gluten and corn zein films did not differ in diffusivity. Dawson et al. (2003) 

evaluated the effect of protein type (wheat or corn) and film forming method (casting or 

heat-pressing) on films for the retention of biologically active nisin and release of activity 

into water at four different temperatures (5, 25, 35, and 45°C). Cast corn zein and cast 

wheat gluten films retained 12.1% (8.1 × 104 IU/g film) and 15.8% (1.1 × 105 IU/g film) 

of the original activity after film formation, respectively. Heat-pressed corn zein and 

heat-pressed wheat gluten films retained 6.5% (4.3 × 104 IU/g film) and 7.4% (4.9 × 

104IU/g film) of the original activity after film formation, respectively. 

      Nisin is sometimes adsorbed onto various surfaces and added to packaging films. 

Dawson et al. (2005) studied the antimicrobial activity of nisin-adsorbed silica and corn 

starch powders against L. plantarum and L. monocytogenes and found that nisin-adsorbed 

powders were highly efficient at both adsorption and release of antimicrobial activity. 

Modified Atmosphere Packaging: 

      Modified Atmosphere Packaging (MAP) is one of the most investigated and effective 

food preservation methods. Carbon dioxide has a demonstrated antimicrobial activity 

among the gases used for MAP; however MAP alone may not be effective for use with 

cooked meat products to inhibit the growth of L. monocytogenes (Fang and Lin, 1994). 

The influence of carbon dioxide (CO2) combined with various nisin concentrations on the 

growth of L. monocytogenes Scott A and Pseudomonas fragi on cooked tenderloin pork 

stored at 4 and 20°C was investigated by Fang and Lin (1994). Colony counts of P. fragi 

were appreciably reduced by MAP alone, but not for L. monocytogenes. Although P. 

fragi on cooked tenderloin was unaffected by 1 × 104 IU/ml of nisin, growth of L. 
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monocytogenes was prevented by the same concentration of nisin. But the MAP (100% 

CO2, 80% CO2 + 20% air) and nisin (103, 104 IU/ml) combination system decreased 

growth of both organisms, and this effect was more pronounced when samples were 

stored at 4 °C than at 20°C.  The same authors (1994b) conducted a similar study to 

determine the effect of MAP (100% CO2, 80% CO2 + air) and nisin (0, 104, and 5 × 104 

IU/ml) on the inactivation of L. monocytogenes on raw pork. In combination with nisin, 

100% and 80% CO2 were inhibitory to the growth of the organism. The combination 

treatment was also increasingly effective with increasing CO2 and nisin concentrations. 

Nilsson et al. (1997) investigated the inhibitory effect of nisin in combination with CO2, 

NaCl and low temperature on the survival of L. monocytogenes in in vitro model studies, 

and in trials with cold-smoked salmon. The antilisterial effect of nisin was improved in 

the presence of 100% CO2 and increasing NaCl concentrations (0.5 to 5.0% w/v). 

Addition of nisin (500 or 1000 IU/g) to cold-smoked salmon inoculated with L. 

monocytogenes and stored at 5°C, delayed, but did not prevent the growth of the 

organism in vacuum-packs. Addition of nisin to CO2 packed cold-smoked salmon 

resulted in 1-2 log reduction of L. monocytogenes followed by a lag phase of 8 and 20 

days with 500 and 100 IU nisin/g respectively.  Mechanism of combined antilisterial 

effect of nisin and CO2 was investigated by Nilsson et al. (2000). These researchers 

examined the synergistic action of CO2 (100%) and nisin (2.5µg/ml) on L. 

monocytogenes Scott A wild type and nisin resistant cells grown in broth at 4°C. Nisin 

did not decrease the viability of nisin resistant cells however for wild-type cells an 

immediate 2-log reduction of viability was observed when they were grown in air and a 

4-log reduction when they were grown in 100% CO2. They attributed the enhanced lethal 
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action of nisin on cells grown in a CO2 atmosphere to a change in cell membrane 

permeability by expanding the hydrophobic regions of the membrane and modification of 

their membrane fatty acid composition by increasing the short chain fatty acids at the 

expense of long chain fatty acids. A study on the combined effect of nisin, headspace 

CO2 levels, and EDTA on the survival of Pseudomonas aeruginosa and Enterococcus 

faecium was carried out in a water-soluble fish muscle extract at 3°C (Cabo et al., 2001a). 

E. faecium was completely deactivated by all processing after 2 days of storage but P. 

aeruginosa was less susceptible to treatments. Cabo et al. (2001b) studied the 

effectiveness of CO2 (30-90%) and Nisaplin (500-1500 mg/kg) on increasing shelf-life of 

fresh pizza. The combined use of Nisaplin and MAP lead to significant increases in shelf-

life of commercially stored samples and this was ascribed to complementary effects of 

nisin and CO2 against lactic acid bacteria and yeast. 

Chemical preservative compounds: 

      Nisin is shown to have synergistic antimicrobial action with many chemical 

preservative agents including organic acids and their salts, chelating agents, and other 

chemical compounds. Nykanen et al. (2000) studied the inhibition of L. monocytogenes 

and mesophilic aerobic bacteria in cold-smoked rainbow trout by nisin (4000-6000 

IU/ml), sodium lactate (60%) or their combination (1:1). Both nisin and lactate inhibited 

the growth of L. monocytogenes in smoked fish, but the combination of the two 

compounds was even more effective. The combination of nisin and sodium lactate 

injected into smoked fish decreased the count of L. monocytogenes from 3.26 to 1.8 log 

cfu/g over 16 days of storage at 8 ºC. Effect of nisin or nisin combined with EDTA on the 

survival of L. monocyogenes and E .coli O157:H7 on vacuum packaged fresh beef was 
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evaluated by Zhang and Mustapha (1999). Treatment with nisin or with nisin combined 

with EDTA reduced the population of L. monocyogenes by 2.01 and 0.99 log cfu/cm2 

respectively as compared to control. The high pH of nisin-EDTA solutions must have 

contributed to the decreased activity of nisin and thereby lower reduction in microbial 

count. However, the effect of nisin and nisin combined with EDTA against E .coli 

O157:H7 was marginal at 1.02 log cfu/ cm2. Hydrogen peroxide (2.5%) alone or 

hydrogen peroxide (1%) in combination with nisin (25µg/ml), sodium lactate (1%), and 

citric acid (0.5%) were investigated as potential sanitizers for reducing E. coli O157:H7 

or L. monocytogenes populations on whole cantaloupe and honeydew melons by Ukuku 

et al. (2005). At days 0 and 7 melons treated with the combination were significantly 

lower in population for both pathogens, by 3 to 4 log cfu/cm2 and the combination was 

more effective than with 2.5% hydrogen peroxide. A study by Long and Phillips (2003) 

investigated the effectiveness of sodium lactate (2% w/w), sodium citrate (1.5% w/w), 

and nisin (500 IU/g) singly as well as in combination on the survival of Arcobacter 

butzleri NCTC 12481 on chicken stored at 5 and 30°C. A. butzleri was insensitive to 500 

IU/g of nisin at both temperatures while at 5°C, 2% sodium lactate alone, 2% sodium 

lactate + 500 IU/g nisin resulted in a statistically significant log reductions compared 

with a control (no antimicrobial treatment). The inhibitory effects of nisin (100 IU/ml) 

and monolaurin (250 µg/ml), used alone or in combination, were investigated against 

four Bacillus species as vegetative cells in milk at 37°C for 5 days by Mansour and 

Milliere (2001). Even though nisin induced an immediate reduction in population level, 

cell concentrations reached the control culture level because of recovery and regrowth. 

On the other hand, monolaurin had a sustained bacteriostatic effect followed by regrowth 
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to a level constantly lower than that of control culture. The combination of the two agents 

induced a synergistic bactericidal effect leading to total inhibition throughout 5 days 

except in case of Bacillus cereus. Samelis et al. (2005) evaluated dipping solutions of 

nisin (5000 IU/ml), with or without lactic or acetic acid (1, 3, 5g/100ml), sodium acetate 

or diacetate (3, 5g/100ml), and potassium benzoate or sorbate (3g/ml) as inhibitors of L. 

monocytogenes introduced on sliced cooked pork bologna before vacuum packaging and 

storage at 4°C for 120 days. Nisin alone reduced the organism by 1.0-1.5 log cfu/cm2 at 

day-0 followed by a listeriostatic effect for 10 days. Nisin in combination with 3 or 

5g/100 ml acetic acid or sodium diacetate or 3g/100 ml potassium benzoate did not 

permit growth before day-90. 

      Combined antimicrobial effect of nisin and other natural antimicrobial compounds 

like bacteriocins, plant extracts, animal derived compounds, fatty acids and their 

derivatives has been extensively studied. Inoculation studies on tofu prepared with nisin 

and protective cultures showed that lower amounts of nisin were required for an effective 

inhibition of L. monocytogenes when protective bacterial cultures of either Enterococcus 

faecium BFE 900-6a or Lactococcus lactis BFE 902 were used (Schillinger et al., 2001). 

The combination of nisin with these bacteriocinogenic lactic acid bacteria resulted in a 

complete suppression of listerial growth in homemade tofu stored at 10°C for 1 wk. Plant 

extracts intended for use as antioxidants in foods may also have bactericidal effects on 

bacteria. A bearberry (Arctostaphylos uva-ursi) leaf extract alone displayed no 

antimicrobial activity of its own but enhanced the activity of nisin against Brochothrix 

thermosphacta (Dykes et al., 2003). Thymol, a major essential oil component of thyme, 

has been tested for antibacterial effects against a wide range of organisms including L. 
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monocytogenes, Staphylococcus aureus and oral bacteria (Juven et al., 1994). Synergistic 

antimicrobial effects of nisin and thymol on the survival of L. monocytogenes and 

Bacillus cereus in broth was investigated by Ettayebi et al. (2000) who found that nisin 

activity was greatly enhanced by sub-inhibitory concentrations thymol. Paula and 

Moezelaar (2001) studied the combined effect of nisin and carvacrol, which is a phenolic 

compound present in the essential oil fraction of oreganum and thyme, at different pH 

and temperature levels on the viability of different strains of B. cereus. Carvacrol 

enhanced the inhibitory effect of nisin at lower pH values. Combination of nisin and 

lactoperoxidase system (LPS) showed a synergistic antimicrobial effect on L. 

monocytogenes in skim milk. The synergy was enhanced when nisin and LPS were added 

after 3 and 5 h of growth (Zapico et al., 1998). Bacteriophages form part of the 

microbiological flora of many foods and represent a potential natural mechanism to 

control bacteria that act as their host (Greer, 1986). The effect of nisin and listeriophage 

LH7, alone and in combination, on the growth and survival of two strains of L. 

monocytognes in broth and two model food systems was determined by Dykes and 

Moorehead (2002). The combination of the two compounds displayed an enhanced 

antibacterial effect in broth, but in model food systems, nisin alone had an effect and no 

combined action was found. 

Synergy with lysozyme: 

      The antibacterial properties of lysozyme and nisin have been proven against Gram-

positive bacteria. Lysozyme presently has a small number of applications in the food 

industry with the major usage involving the prevention of Clostridium tyrobutyricum 

spore outgrowth in hard cheeses (Wasserfall and Teuber, 1979). Combined effect of nisin 
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and lysozyme on different microorganisms has been reported by various researchers. 

Minimal inhibitory concentrations (MIC) of nisin and lysozyme mixtures (1:1 and 1:3) 

against lactic acid bacteria were found to be significantly greater than the parent 

molecules (Chung and Hancock, 2000). The authors pointed out the benefits of using the 

mixture against food spoilage bacteria, over the use of individual agents as 1) reducing 

the amount of expensive nisin by adding lysozyme which is 3-fold cheaper to the 

required quantity and 2) the ability of the combination to sustain activity even at high salt 

concentrations compared to a reduced activity of lysozyme. These researchers attributed 

the increased efficacy of the mixture to increased membrane damage, cell lysis, or the 

inhibition of energy dependent processes that repair nisin/lysozyme damage to the cell. 

The antimicrobials lysozyme, nisin, and the mixtures of the two were studied to ascertain 

their abilities to control the growth of the meat-borne spoilage bacteria, Brochothrix 

thermosphacta B2 and Carnobacterium sp.845 in APT broth, in a meat juice extract, and 

on cores of lean and fat tissue (Natress et al., 2001). These researchers hypothesized that 

lysozyme, in combination with nisin, at a higher concentration than 65µg/cm2 might 

improve the antimicrobial activity of the mixture, as well as extend the time during which 

it would be effective. A mixture of nisin and lysozyme at a ratio of 1:3 (w/w) and at a 

surface concentration of 260 µg/cm2 was effective in controlling the growth of lactic acid 

bacteria on naturally contaminated pork loins that were stored in vacuum packages at 2°C 

for up to 6 weeks (Nattress and Baker, 2003). But, interestingly the numbers of 

Enterobacteriaceae were higher in treated samples than untreated samples possibly due 

to the inhibition of lactic acid bacteria. A mixture of nisin and lysozyme (1:3) and EDTA 

were evaluated for the antibacterial effect on bologna and ham by incorporating the 
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agents as ingredients before cooking (500 mg/kg of nisin-lysozyme and 500 mg/kg of 

EDTA) as well as through surface application on the final product (25.5 g/liter of nisin-

lysozyme plus 25.5 g/liter of EDTA) by Gill and Holley (2000 a, b) in two sets of 

experiments. In the first experiment where agents were used as ingredients, treatment 

reduced initial populations at different times of 4 weeks storage at 8°C. Treatment 

prevented the growth of Brochothrix thermosphacta, to week 4, Lactobacillus curvatus to 

week 3, Leuconostoc mesenteroids and L. monocytogenes, to week 2. In the second 

experiment, where antimicrobial treatments were applied to the surface in a 0.2 g of 7% 

gelatin, the treatment had an immediate bactericidal effect up to 4 log cfu/cm2 on the four 

Gram-positive organisms tested (B. thermosphacta, L. sakei, Lc.  mesenteroids, and L. 

monocytogenes) and inhibited the growth of these organism during 4 weeks of storage. 

The antimicrobial treatment also had a bactericidal effect on the growth of Salmonella 

Typhimurium during storage. In a study to investigate inactivation of high pressure 

resistant E. coli by lysozyme and nisin under pressure, Massachalk et al. (2000) found 

that a combination of nisin and lysozyme was better in reducing the tailing of high 

pressure survivor curves due to its ability to reduce the fraction of cells that survived the 

treatment compared to the use of nisin or lysozyme separately. 

LYSOZYME 

      Antimicrobial enzymes play a significant role in the defense mechanisms of living 

organisms against infection by bacteria and fungi (Fuglsang et al., 1995). Lysozyme is an 

enzyme that belongs to a class of enzymes that lyse the cell walls of certain Gram-

positive bacteria, as they split the bond between N-acetylmuramic acid and N-

acetylglucosamine of the peptidoglycan in the bacterial cell wall. Lysozyme is widely 
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distributed in various biological fluids and tissues, including avian egg, plant and animal 

secretions, tears, saliva, and respiratory and cervical secretions, and is secreted by 

polymorphonuclear leukocytes (Jolles and Jolles, 1984). Lysozyme functions as a food 

preservative by destroying certain bacteria. Hen egg white lysozyme (HEWL) is one of 

the few natural antimicrobials derived from an animal source that are applied as a food 

preservative. It occurs naturally in high concentrations in eggs (up to 0.3 to 0.4 g per egg 

or 3% of the egg white protein) making it a low cost product (Masschalck and Michiels, 

2003). Lysozyme has a long history of safe use as a natural food component, and the low, 

additional intake as a preservative was not considered as a hazard to consumer health. 

Therefore, it received the generally recognized as safe (GRAS) status by WHO/FDA 

(Masschalck and Michiels, 2003). 

Physical and chemical characteristics 

      The molecular weight of chicken lysozyme is 14,307 and the isoelectric point is 10.7 

(Losso et al., 2000). Lysozyme has four disulfide bonds, making the molecule unusually 

compact with high heat stablity. In dried powder forms, lysozyme can be stored for a 

long time (> 6months) at temperatures up to 30°C without losing lytic activity. Chicken 

lysozyme is stable at 100°C for 2 min at pH 4.5 and at 100°C for 30 min at pH 5.29 

(Losso et al., 2000). Proteolytic enzymes (except for pepsin) such as trypsin, 

chymotrypsin, and papain do not hydrolyze native lysozyme; but these enzymes do 

hydrolyze denatured lysozyme. Lysoyme is inactivated by components of egg yolk such 

as lipovitellin (Proctor and Cunningham, 1988).   

Mechanism of antimicrobial activity 

      Lysozyme is a peptidoglycan N-acetylmuramoylhydrolase and its natural substrate is 

peptidoglycan, also called murein, the major component of the bacterial cell wall 
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(Masschalck and Michiels, 2003). Gram-positive bacteria have a thick cell wall 

composed of up to 40 layers of peptidoglycan whereas Gram-negative bacteria typically 

have only a single layer of peptidoglycan that is, however, surrounded by an asymmetric 

bilayer membrane, called the outer membrane (Masschalck and Michiels, 2003). 

Therefore in Gram-negative bacteria, because the cell wall is protected by the outer 

membrane, it prevents lysozyme access to the cell wall. But Gram-negative bacteria were 

susceptible to lysozyme after the outer membrane of the bacteria had been disrupted by 

compounds such as EDTA, aprotinin, organic acids or when lysozyme was conjugated to 

carbohydrates (Johnson, 1994; Pellegrini et al., 1992). Lysozyme has been found to 

possess the ability to inactivate certain viruses, regardless of its enzymatic activity, by 

forming an insoluble complex (Hasselberger, 1978). Lysozyme’s antibacterial property is 

mainly attributed to its catalytic (enzymatic) function on bacterial cell wall. But recently 

some researchers have found evidence that the antibacterial activity of lysozyme is 

independent of its enzymatic action (During et al., 1999; Ibrahim et al., 1996; Ibrahim et 

al., 2001). The evidence comes from the finding that the reduction or elimination of the 

enzymic activity of lysozyme by heat- or dithiothreitol denaturation or site directed 

mutagenesis did not necessarily reduce its bactericidal activity (Masschalck and Michiels, 

2003). 

Animicrobial activity against food spoilage and pathogenic bacteria 

      The most important commercial application of hen egg white lysozyme in the food 

industry is the prevention of late blowing in cheese production. Lysozyme prevents the 

growth of Cl. tyrobutyricum which will ferment lactate produced from lactose in the 

primary fermentation by the lactic acid starter bacteria instead, producing butyric acid, 

acetic acid, carbon dioxide and hydrogen causing the cheese to blow (Masschalck and 
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Michiels, 2003). A study by Wasserfall and Teuber (1979) found that a 500 AU/ml of 

egg white lysozyme was able to kill 99% of 5 × 105 resting vegetative cells of Cl. 

tyrobutyricum within 24 h of incubation at 25°C. But spores were completely resistant to 

lysozyme. Lysozyme was demonstrated to have antibacterial activity against organisms 

of concern in food safety, including L. monocytogenes and certain strains of Cl.      

botulinum (Hughey and Johnson, 1987). Antibacterial activity of HEWL against L. 

monocytogenes Scott A in various foods was evaluated by Hughey et al. (1987). They 

found that lysozyme was more active in vegetables than in animal-derived foods and 

maximum activity in some foods was obtained when they used lysozyme along with 

EDTA. Lysozyme, at 20 to 200mg/L delayed the growth of all four strains of L. 

monocytogenes isolated during a food poisoning outbreak (Johnson, 1994). The 

sensitivity of the pathogen to lysozyme depended mostly on the physiological state of the 

microbe and on the growth medium. Antimicrobial peptides released by enzymatic 

hydrolysis of HEWL showed bacteriostatic activity against Gram-positive bacteria 

(Staphylococcus aureus 23-394) and Gram-negative bacteria (E. coli K-12) (Mine et al., 

2004). These peptides broadened the antimicrobial activity of lysozyme to include Gram-

negative bacteria. Abdou et al. (2005) used commercially available lysozyme peptide 

preparations (100µg/ml) against Bacillus species and observed that the compound 

completely inhibited most of the organisms in the Bacillus species except B. cereus and 

B. stearothermophilus which showed slightly higher resistance. 

Synergy with other antimicrobials  

      Lysozyme is not totally effective against all Gram-positive bacteria and is ineffective 

against most Gram-negative bacteria. Hurdle technology using lysozyme has shown 

significant improvement in lysozyme activity against wide range of bacteria (Losso et al., 
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2000). Chelators are compounds that are added to sequester cations which destabilize the 

lipopolysaccharides of the outer membrane and allow the antimicrobials like lysozyme 

and nisin to penetrate the lipopolysaccharide layer, resulting in lysis of the cell (Boland et 

al., 2003). Razavi-Rohani and Griffiths (1996) studied the effect of lysozyme combined 

with ethylene diamine tetra acetic acid (EDTA) against 7 Gram-positive and 8 Gram-

negative organisms. Lysozyme in combination with EDTA was found to be more 

effective than either agent alone against the majority of the organisms tested. The 

effectiveness of polyphosphates or lipases to increase the lytic activity of lysozyme was 

evaluated both on L. monocytogenes suspended in buffer and on growing cultures 

incubated at different temperatures (Liberti et al., 1996). At 5 and 37°C, polyphosphates 

combined with lysozyme did not result in a decrease in the number of non-growing L. 

monocytogenes cells. Under the same incubation conditions, the addition of lipase to 

lysozyme significantly enhanced the bactericidal activity of lysozyme to an extent 

determined by pH, NaCl concentration, and temperature. Carneiro del Melo et al. (1998) 

showed that use of low concentrations of (5mM) of trisodium phosphate sensitized C. 

jejuni, E. coli, Psuedomonas fluorescens, and S. Enteritidis for lysozyme. These 

researchers hypothesized that sublethal levels of trisodium phosphate may cause 

disruption of the outer membrane of Gram-negative bacteria. Ellison and Giehl (1991) 

observed that the combination of lysozyme and lactoferrin was synergistic and 

bactericidal for Vibrio cholerae, S. Typhimurium, and E. coli. Lactoferrin, a milk protein, 

damaged the outer membrane of Gram negative bacteria and thereby increased 

penetration of lysozyme through the outer membrane (Ellison and Giehl, 1991; Yamauchi 

et al., 1993). Helander et al. (1998) found that carvacrol, thymol, and trans-
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cinnamaldehyde sensitized E. coli and S. Typhimurium to lysozyme. Malicki et al. (2004) 

evaluated the effect of 2% sodium lactate alone or in combination with 200 ppm of 

lysozyme on the microbial status, stability and physicochemical properties of the steamed 

sausage. Both compounds worked synergistically against lactic acid bacteria but no 

synergism was detected against total aerobes. Sensitivity of L. moncytogenes Scott A was 

found to be enhanced by other egg white proteins such as ovomucoid, conalbumin, and 

by alkaline pH conditions (Wang and Shelef, 1991). 

Synergy with high hydrostatic pressure 

      High pressure processing (HPP) is one of the more extensively studied non-thermal 

preservation techniques that induce lethal or sublethal injury to bacteria with minimal 

effects on the organoleptic qualities of food. Several studies have looked into 

sensitization of Gram-negative bacteria to lysozyme under high hydrostatic pressure. 

Hauben et al. (1996) observed the sensitization of E. coli MG1655 in phosphate buffer in 

the presence of 10µg/ml HEWL, using pressures in the range of 180 to 320 MPa. Cells 

were only sensitized to lysozyme during pressure exposure, because addition of lysozyme 

to pressurized cell suspensions immediately after pressure treatment did not cause any 

inactivation. Masschalck et al. (2001) studied the inactivation of six Gram-negative 

bacteria (E. coli, Psuedomonas fluorescens, Salmonella enterica serovar Typhimurium, 

Salmonella enteritidis, Shigella sonnei, and Shigella flexneri) by high hydrostatic 

pressure treatment in the presence of hen egg-white lysozyme, partially or completely 

denatured lysozyme, or a synthetic cationic peptide derived from either hen egg white or 

colliphage T4 lysozyme. None of these compounds showed antibacterial effect at 

atmospheric pressure. But under high pressure, all organisms except both Salmonella 

species showed higher inactivation in the presence of 100µg of lysozyme/ml than without 
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this additive. They also found that complete removal of enzymatic activity of lysozyme 

by heat treatment fully eliminated its antibacterial properties under pressure, but partially 

denatured lysozyme was effective against some bacteria. The effect of high pressure 

homogenization on the activity of antimicrobial enzymes, lysozyme and lactoperoxidase 

against a selected group of Gram positive and Gram negative species inoculated in skim 

milk was studied by Vannini et al. (2004). The enzyme addition enhanced the efficacy of 

the pressure treatment and also affected recovery and growth of several of the tested 

species. 

Incorporation into packaging films 

      Appendini and Hotchkiss (1997) investigated the feasibility of incorporating 

lysozyme into polymers which are suitable for food contact. Hen egg white lysozyme was 

immobilized on polyvinyl alcohol (PVOH) beads, nylon, 6, 6 pellets and cellulose 

triacetate (CTA) films and tested against a suspension of dried Micrococcus lysoseikticus 

cells. Polyvinyl alcohol and nylon, 6, 6 yielded low activity, while CTA yielded the 

highest activity. Padgett et al. (1998) studied the graduated levels of lysozyme (2.5, 5.0, 

10, 17, 33, 66, and 133 mg/g of film) incorporated into cast films with corn zein against 

L. plantarum and various concentrations of lysozyme in combination with EDTA in corn 

zein cast films against E. coli. The minimum concentration of lysozyme that had some 

inhibition against L. plantarum was 10 mg of lysozyme/ g of film solution and maximum 

amount of lysozyme that could be incorporated without affecting physical properties of 

the film was 133 mg/g of film. Against E. coli, the maximum zone size was found with 

the combination of 66 mg lysozyme/ g of film and 30mM EDTA. The effect of whey 

protein isolate (WPI) films and coatings incorporating lysozyme on the inhibition of L. 

monocytogenes both in and on microbial media, as well as on cold-smoked salmon, were 
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studied by Min et al. (2005). WPI films incorporating 204 mg of lysozyme/ g of film (dry 

basis) inhibited the growth of a of 4.4 log cfu/cm2 L. monocytogenes preparation. The 

WPI coatings incorporating lysozyme efficiently retarded the growth of L. 

monocytogenes at both 4 and 10°C. The anti-listerial effect of lysozyme-WPI coating was 

more noticeable when the coating was applied before inoculation than when the coating 

was applied after inoculation. Zein films incorporated with partially purified hen egg 

white lysozyme showed antimicrobial effect on Bacillus subtilis and L. plantarum 

(Mecitoğlu et al., 2006). By the addition of disodium EDTA, the films also became 

effective on E. coli.  Conte et al. (2007) found that an immobilized lysozyme based active 

poly vinyl alcohol films were effective in inhibiting the growth of M. lysodeikticus. 

IN-PACKAGE PASTEURIZATION OF RTE MEAT PRODUCTS 

Effect on bacterial lethality  

      In-package pasteurization is an effective method to reduce post process surface 

contamination and can be an additional processing hurdle to reduce surface pathogen 

contamination. Cooksey et al. (1993) reported a 4 log reduction of L. monocytogenes in 

pre-cooked vacuum packaged beef using post-packaging pasteurization at 85°C for 16 

min. The potential for L. monocytogenes to survive various times and temperatures of 

post-pasteurization in pre-cooked beef roasts was investigated by Hardin et al. (1993). 

They found that lethality of the treatment was directly related to an increase in dwell time 

and post pasteurization temperature.  The impact of in-package pasteurization of Vienna 

sausages on survival of spoilage bacterial populations, primarily lactic acid bacteria 

(LAB) during storage at 8°C for 128 days was studied by Franz and von Holy (1996a). 

Depending on the severity of the applied thermal treatment, LAB were reduced from 

84.4% of the total bacterial population to between 52.9 and 74.6% of the total population 
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for Vienna sausages.  However, in-package pasteurization did not delay the rate of 

spoilage by eliminating these bacteria and also increased the predominance of Bacillus 

spp. Another study by the same authors (Franz and von Holy, 1996b) evaluated the heat 

resistance of three meat spoilage LAB (Lactobacillus sake, Leuconostoc mesenteroides, 

Lactobacillus curvatus). Decimal reduction values (D-values) at 57, 60, and 63°C were 

52.9, 39.3 and 32.5 s for L. sake, 34.9, 31.3, and 20.2 s for L. mesenteroides and 22.5, 

15.6, and 14.4 s for L. curvatus, respectively.   The combination of organic acid addition 

and in-package pasteurization or pasteurization alone extended the microbiological shelf 

life (set to a level of 5 × 106 cfu/g) of Vienna sausages by 4-fold (2 week vs. 8week) 

compared to non-treated samples (Dykes et al., 1996). Roering et al. (1998) evaluated the 

effect of hot water pasteurization of vacuum-sealed packages of summer sausages on the 

survival of a three-strain mixture of L. monocytogenes. Bacterial numbers were reduced 

by about 3 log cfu /g within 30, 60, and 90 s at 99, 88, 77°C respectively, whereas 

numbers were reduced by < 2 log cfu /g after 240 s of heating at 66°C. The calculated D 

values were 2.08, 0.84, 0.37, and 0.28 min at 66, 77, 88, and 99°C, respectively. Murphy 

& Berrang (2002) found that post-process pasteurization of fully cooked vacuum 

packaged chicken breast strips in steam or hot water at 88 °C for 10 to 35 min lowered 

Listeria innocua population. There were 2 and 7 log reductions at 25 and 35 min, 

respectively. No significant difference was found on the survivors of L. innocua between 

steam and hot water treatments.  Muriana et al. (2002) conducted a study on post package 

pasteurization of RTE deli meats by submersion heating for reduction of L. 

monocytogenes. A mixed cocktail of four strains of L. monocytogenes was resuspended in 

product purge and added to a variety of RTE meat products. Post-pasteurization at 90.6, 
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93.3, and 96.1°C for 2 to 10 min resulted in 2 to 4 log reductions in bacterial count. 

However, reductions of L .monocytogenes in product challenge studies were much lower 

than in the previous study to determine decimal reduction assays and the authors 

attributed this difference to a combination of surface imperfections that may shield 

bacteria from the heat and migration of chilled purge to the product surface.  Ingham et 

al. (2005) conducted a study to evaluate small-scale hot-water post-packaging 

pasteurization as a post lethality treatment for L. monocytogenes on ready-to-eat beef 

snack sticks and natural-casing wieners. They obtained ≥ 2 log reductions in bacterial 

population when heated at 100°C for 1 min for individually packaged beef snack sticks 

and 4 min for packages of four sticks and seven sticks. A treatment of 7 min for packages 

of four natural –casing wieners achieved ≥ 1 log reduction in L. monocytogenes.  

Heat resistance 

      Heat resistance of bacteria during in-package pasteurization is an important criterion 

for evaluating the effectiveness of in-package pasteurization. Heat resistance of the 

organism is usually expressed as Decimal reduction time (D- value) and z –value.  

Murphy et al. (2003a) determined D and z values of Salmonella spp, L. innocua, and L. 

monocytogenes in different RTE poultry products during in-package pasteurization at 

different temperatures ranging from 55-70°C. Significant differences were found for the 

heat resistance of Salmonella spp, L. innocua, and L. monocytogenes among turkey, 

duck, and chicken products, indicating that the kinetic values of a certain pathogen in a 

specific product should be used for determining process lethality in fully cooked and 

vacuum-packaged poultry products during post-cook heat treatments. A study by 

McCormick et al. (2003) determined the D values of L. monocytogenes and Salmonella 

Typhimurium at various surface pasteurization temperatures for low fat turkey bologna 
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and demonstrated that complete inactivation of S. Typhimurium and L .monocytogenes 

cells can be achieved using an in-package pasteurization process. The D-values for L. 

monocytogenes at 61 and 65°C were 124 and 16.2 s respectively; whereas S. 

Typhimurium D-values were 278 s at 57 and 81 s at 60°C. z values were 4.44 and 5.56°C 

for L. monocytogenes and S. Typhimurium, respectively. 

Factors affecting the efficiency 

      A limited number of studies have been conducted to determine the effect of product 

surface characteristics, product thickness, and packaging film thickness on the 

effectiveness of in-package pasteurization. The effect of thickness and composition on 

surface heating rate of bologna during in-package pasteurization was investigated by 

Mangalassary et al. (2004). Three thickness levels (4,12, and 20 mm) corresponding to 1, 

3, and 5 slices bologna; two types of bologna having 13 and 18% fat content, and four 

pasteurization temperatures (60, 70, 80, and 90°C) were used in the study. Surface 

heating rate was fastest in the thinnest (4 mm) and slowest in the thickest (20mm) 

samples for all 4 temperatures. Surface heating rate was slower in bologna with the 

higher fat content compared with the lower fat bologna. Results from this study indicate 

that meat product thickness inside the bag and meat product fat content significantly 

affect surface heating rate and final surface temperature during in-package pasteurization 

of bologna and in turn the heat inactivation of  pathogenic bacteria at the surface of the 

food product.  The inactivation of L. monocytogenes during postcook in-package hot 

water pasteurization at 96°C was evaluated for fully cooked 4 kg turkey breast meat 

products by Murphy et al. (2003b). They found that the effectiveness of heat treatment 

for inactivating the pathogen was affected by product surface roughness. About 50 min of 

heating time was needed to achieve a thermal kill of 7 log cfu/cm2 on products with 
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surface roughness up to 15 mm in depth. A study was conducted to determine the effect 

of packaging film thickness on thermal inactivation of Salmonella and L. innocua in 

chicken breast meat during hot water in-package pasteurization at 68°C for 10 to 120 s 

(Murphy et al., 2002). The results from this study indicated that increasing film thickness 

reduced heating rate and subsequently reduced thermal inactivation for the organisms. 

More than a 2 log difference in reduction of Salmonella and L. innocua was reported 

between the meat packaged in 0.0762 and 0.2032 mm thick film. Murphy et al. (2003c) 

suggested a model to predict thermal lethality of Salmonella spp. and L. innocua for 

different thicknesses of fully cooked, vacuum packaged chicken breast meat products 

during post cooking in-package pasteurization. This model can be used to predict the heat 

treatment time needed to achieve 7 log reductions of Salmonella spp. or L. innocua for 

different thicknesses of fully cooked vacuum-packaged chicken breast meat products that 

would be pasteurized in a hot-water cooker at a treatment temperature of 90°C. The 

model prediction was validated with an inoculation study involving the same product at a 

95% confidence level up to 107cfu/g for Salmonella spp. and L. innocua. 

Combination with antimicrobials 

      Combining in-package pasteurization with antimicrobial agents is a novel approach in 

food preservation. This approach may help to reduce the heat resistance of the organism 

and thereby to reduce the duration of severe heat treatment in the form of in-package 

pasteurization. Murphy et al. (2004) studied the effect of sodium lactate on thermal 

inactivation of L.  monocytogenes and Salmonella spp. in ground chicken thigh and leg 

meat during in-package pasteurization at temperatures ranging from 55-70°C. No 

significant difference was found for the D-values of Salmonella spp. at 55 to 70°C 

between the meat with and that without sodium lactate. The z values of both L. 
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monocytogenes and Salmonella spp. were not affected by sodium lactate. Chen et al. 

(2004) combined surface application of pediocin (ALTA 2341) with post-packaging 

thermal pasteurization in hot water at 71, 81, or 96°C for 30, 60, or 120 s for  control of 

L. monocytogenes on frankfurters. L. monocytogenes was reduced by all treatments, but 

81°C or higher temperatures for at least 60 s in combination with pediocin were 

necessary to achieve at least a 50% reduction of initial populations. Little or no growth 

occurred on frankfurters for 12 weeks at 4 or 10°C, and for 12 days at 25 °C. The 

inhibitory effects of in-package pasteurization combined with a nisin containing wheat 

gluten film were tested over 8 weeks storage period against L. monocytogenes and S. 

Typhimurium populations inoculated on refrigerated bologna (McCormick et al., 2005). 

Bologna slices subjected to in-package pasteurization process reduced L. monocytogenes 

populations 3.8-7.0 log cfu/g and the remaining population fluctuated between 1.2-3.8 

log cfu/g over 2 months refrigerated storage period. S. Typhimurium was reduced 5.7-7.3 

log cfu/g and the remaining population progressively declined from 100 to <10 cfu/g over 

2 months storage. Combining both treatments significantly reduced L. monocytogenes 

populations and prevented outgrowth over 2 months storage period but provided no 

added inhibitory effect against S. Typhimurium compared with only pasteurization.  
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CHAPTER 3 
THICKNESS AND COMPOSITIONAL EFFECTS ON SURFACE HEATING 

RATE OF BOLOGNA DURING IN-PACKAGE PASTEURIZATION 
 

ABSTRACT 

The surface heating rate (γ) and final surface temperature (α) during in-package 

pasteurization were determined for different thickness levels of 2 types of bologna having 

different (13 and 18%) fat contents. Three different thicknesses (4, 12, and 20 mm) 

corresponding to 1, 3, and 5 slices of bologna, were vacuum-packaged separately in a 

clear polymer pouch after placing thermocouple on the surface. Refrigerated samples 

were immersed in a water bath set to 1 of 4 predetermined temperatures (60, 70, 80, and 

90° C), and time and temperature data were recorded for 10 min. Surface- heating rate 

was fastest in the thinnest (4mm) and slowest in the thickest (20mm) samples for all 4 

temperatures. Surface- heating rate was slower in bologna with the higher fat content 

compared with the lower fat bologna. Final surface temperature attained after 3 min was 

lower with increased thickness levels for all temperatures. Thus, meat sample thickness 

and fat content significantly affect surface heating rate and final surface temperature 

during in-package pasteurization of bologna. 

INTRODUCTION 

Ensuring the safety of meat and meat products is always a challenge to researchers. 

Reports of microbial foodborne illness and contaminated product recalls have been on the 

increase in recent years. Information obtained from Food Safety and Inspection Service 

records indicates that, in 2002, there were 81 recalls of meat and poultry products 

resulting from microbial contamination alone, accounting for 56.78 million pounds 



66 

      (FSIS, 2002). About half of these recalls were for ready-to-eat (RTE) meat products. 

Contamination of RTE meats with Listeria monocytogenes and Salmonella spp. occurs 

mainly at postprocessing (Mbandi and Shelef, 2002).  

Numerous food preservation methods including heating, chilling, freezing, curing, 

smoking, acidification, and irradiation can be used to inhibit microbiological spoilage and 

to prevent foodborne disease (Leistner, 1987). Thermal processing is considered one of 

the most efficient methods and various techniques have been developed to thermally 

process food before and after packaging (Farkas, 1997). Postprocess handling is a cause 

of recontamination of RTE meat products. In-package pasteurization is used as an 

effective method to reduce postprocess surface contamination and can be an additional 

processing hurdle to reduce surface pathogen contamination. Cooksey et al. (1993) 

reported reduction of L. monocytogenes in precooked vacuum-packaged beef using 

postpackaging pasteurization in 85°C water for 16 min. The potential for L. 

monocytogenes to survive various times and temperatures of postpasteurization in 

precooked beef roasts was investigated by Hardin et al. (1993). They found that lethality 

of the treatment was directly related to an increase in dwell time and postpasteurization 

temperature. Murphy and Berrang (2002) found that postprocess pasteurization of fully 

cooked vacuum-packaged chicken breast strips with hot water or steam lowered L. 

innocua population.  

Muriana et al. (2002) conducted a study on postpackage pasteurization of L. 

monocytogenes-inoculated RTE deli meats and achieved a 2 to 4 log cycle reduction 

when processed at 90.6, 93.3, or 96.1°C and heated for 2 to10min. 
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      A study by McCormick et al. (2003) demonstrated that significant reductions in 

bacterial populations and complete inactivation of Salmonella Typhimurium and L. 

monocytogenes could be achieved using an in-package thermal pasteurization process. 

Murphy et al. (2003) suggested a model to predict thermal lethality of Salmonella and L. 

innocua for different thicknesses of fully cooked, vacuum-packaged chicken breast meat 

products during post-cooking in-package pasteurization. Commercial in-package 

pasteurization systems for meat have determined that several minutes of pasteurization  

is required to obtain 2 to 3 log reductions in target bacteria (Unitherm, 2003). Meat 

thickness during in-package pasteurization may have an effect on the surface temperature 

and therefore, on the efficiency of the pasteurization. Although numerous studies report 

on the effect of meat thickness and composition on heat penetration, there are limited 

studies on their effect on surface heating rates. The objective of this study was to evaluate 

the effect of product thickness on the surface heating rate and final surface temperature 

during in-package pasteurization for 2 bologna types differing in fat content. 

MATERIALS AND METHODS 

Product preparation 

      Two types of RTE meat bolognas were used in this experiment; a beef bologna 

containing 12 g (18%) of fat and 5 g of protein per serving, and a mixed species type 

containing chicken, pork, and beef with 8 g (13%) of fat and 3 g of protein per serving. 

Bologna slices with a thickness of 4 mm were cut into 16-cm2 pieces using a sterile 

cutting template and the pieces were stacked together as in a commercial package to 

achieve the desired thickness level. 
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     Three thicknesses (4, 12, and 20 mm) corresponding to 1, 3, and 5 slices of bologna 

were used in this study. K-type Teflon insulated thermocouples (Omega Engineering Inc., 

Stamford, CT) were placed on the surface of the samples. Using forceps, each of the 

samples (thickness levels) was separately placed inside a clear polymer pouch (Model 

P64x, Cryovac, Duncan, SC). The pouch is conventionally laminated with a nylon skin, a 

linear low-density polyethylene sealant, and a nylon barrier film. The pouch had an 

oxygen transmission rate of 60 mL/m2 per day at 23°C and 0% RH. Pouches were sealed 

using a vacuum sealer (Koch Model UV 250, Koch Supplies Inc., Kansas City, MO) and 

held at 4 ± 2°C overnight. 

Thermal processing (Pasteurization) 

      Thermal Processing (Pasteurization) Thermal processing of bologna was performed 

using a Precision digital water bath (Microprocessor controlled 280 series water bath, 

Jouan Inc., Winchester, VA) set to 1 of 4 predetermined temperatures (60, 70, 80, or 

90°C). Refrigerated samples were directly immersed into the water bath. Time and 

temperature data were recorded using a channel datalogger (CALPlex 32, TechniCAL, 

New Orleans, LA) and thermal processing software (CALSoft Version 1.32, TechniCAL, 

New Orleans, LA) for10 min. 

Experimental Treatments     

      Three thickness levels, 2 types of bologna, and 4 pasteurization temperatures were 

used in this study. In a single experiment, 3 packages containing 3 different thicknesses 

[4 mm (1 slice), 12 mm (3 slices), and 20 mm (5 slices)] of the same type of bologna 

were immersed in the water bath at one of the specific pasteurization temperatures. The 

experiment was replicated 3 times on different days using 3 separate batches of meat.                               
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Heating rate models 

      Two models were considered for calculating surface heating rate in this study. The 

first was a double exponential that is often used to describe the relationship between 

temperature and time as in this study. For some exponential decays, where the decline 

toward asymptotic value appears prolonged, with a decay rate in later stages that is 

slower than would be expected, a double exponential formation may be necessary. This 

model has the form of  

                   yi = α + β1 exp(− λ1x) + β2 exp(− λ2x) + ei  

where yi is the surface temperature of replicate i, x is the time of pasteurization, α is the 

surface temperature of the asymptote as x reaches ∞, and α + β1 + β2 is the surface 

temperature at x = 0. The rate of increase is given by 

                       −λ1β1 exp (−λ1x) −λ2β2 exp (−λ2)  

where ei is the random error for replicate i. Estimates for the parameters α, β1, λ1, β2,and 

λ2 were obtained using the NLIN procedure from SAS  (Version 8.0, SAS Institute, 

2000). Although the model fit well for many of the replicates, there were 2 problems. 

First, the NLIN procedure failed to converge for several replicates, and secondly, there 

were cases when the estimates for λ1 varied greatly for different replicates (from values 

of 10−1 to 1010). This suggested the estimates may not follow the properties of the 

samples and that is the model may be “over fitting” the data.  

      In this study, 2 asymptotes are not parallel, but perpendicular. This is considered a 

special case of the exponential form, which yields a rectangular hyperbola. Therefore a 

rectangular hyperbola model was considered next for this experiment because the value 

on the y axis (surface temperature) starts at about 4°C in all thickness levels during in-
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package pasteurization and increases to a maximum plateau value (set pasteurization 

temperature), over time.  

      A rectangular hyperbolae model was considered having the form of 

                                  yi = α + β/(1 + γx) + ei 

where yi is the surface temperature for replicate i, x is the time, γ is the heating rate, α is 

the asymptote as x reaches ∞, α + β is the surface temperature at x = 0, and ei is the 

random error for replicate i. The rate of increase is given by γβ/(1 + γx)2.  

      When observations are obtained at x > 0, this form closely mimics the exponential 

form:  

                                       yi = α + β exp (−λ x).  

Estimates for the parameters α, β, and γ were obtained using the NLIN procedure from 

SAS (Version 8.0, SAS Institute, 2000). Although in many cases this model did not fit as 

closely as the double exponential, it did converge for all replicates and the parameter 

estimates did not vary to the same extent as with the double exponential model. It was 

felt that the rectangular hyperbolae model better fitted the physical phenomenon than the 

double exponential model. Results applied to the second model were used for further 

analyses. 

Statistical Analysis 

      The effects of bologna thickness (4, 12, and 20 mm), bologna type (beef and mixed 

species) and water bath temperature (60, 70, 80, and 90°C) on bologna surface heating 

rate and final surface temperature during in-package pasteurization were evaluated. 

Specifically, the parameters square root of γ (surface heating rate) and α (final surface 

temperature) from the rectangular hyperbolae previously described were statistically 
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analyzed. The 3 treatment factors were arranged in a 2 × 4 × 3 complete factorial design. 

A split-plot design was used with bologna type and water bath temperature as the whole 

plot factors in a completely randomized design and bologna thickness as the subplot 

factor. Fisher’s protected least significant difference was used for all multiple 

comparisons. The analyses were carried out using the mixed procedure of SAS (Version 

8.0, SAS Institute, 2000). 

RESULTS AND DISCUSSION 

Surface heating rate (γ) 

      Because the estimates for γ were not normally distributed, a square root 

transformation was used, resulting in a normal distribution for surface heating rates. The 

surface heating rate was slower with increased thickness levels (Figure 3.1, lower fat 

bologna) and slower in bologna with higher fat content (Figure 3.2). There was a 

difference (P < 0.0001) in the mean value for square root of γ for 3 thickness levels at all 

4 pasteurization temperatures used in the study with the thinnest samples having the 

fastest rate of surface heating (Table 3.1). This difference in surface heating rate between 

different thickness levels may be due to a heat sink effect. During pasteurization, heat 

from the water bath passes through the package to the bologna surface and diffuses to the 

meat interior. The thicker the meat sample, the greater the diffusion of heat energy to the 

meat interior, resulting in a loss of surface heat energy. After pulling heat away from the 

meat surface, the meat bulk accumulates heat energy. The heat slowly diffuses back to 

the surface until the interior and surface reach the final set temperature. Considering this 

phenomenon, thickness of meat and meat product composition are important factors in 

attaining the required surface temperature. As meat thickness increases, surface heating 
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rate decreases. Therefore, product thickness is an important factor for in-package surface 

pasteurization of meat and meat products. For uncooked meat products, the cold spot at 

the food core is the most important consideration for thermal processing. However, with 

RTE meats, post-processing contamination is a surface phenomenon, making the meat 

surface the main concern of the thermal treatment. Furthermore, determination of a 

mathematical model to predict the relationship between meat thickness and surface 

heating is important in developing surface pasteurization processes. 

      Murphy et al. (2002) reported that packaging film thickness has an effect on heating 

rate during in-package pasteurization. In contrast with our results, they expressed the 

view that the effect of product thickness would be more important for internal 

pasteurization of packaged meat or poultry products. Previous studies found that in-

package pasteurization results in sufficient log reductions of surface bacterial populations 

(Muriana et al., 2002; McCormick et al., 2003). Thus, attaining a rapid surface heating 

rate would be of great importance in reducing the pasteurization time and maintaining the 

quality of the product. 

      Difference (P < 0.0001) was also found for square root of γ for the 2 bologna types. 

The mixed species bologna with a lower fat content had a faster surface heating rate 

compared with the higher fat beef bologna. These results were same for the 4 

pasteurization temperatures used in the study (Table 3.1). The lower heating rate in high 

fat bologna could be attributed to the difference in heat transfer mechanism. The 

decreased surface heating rate in bologna with higher fat content may be due to the 

insulating effect of fat to heat. Woodams and Nowrey (1968) stated that an increase in fat 

content resulted in a decrease in thermal conductivity of meat products because the 
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thermal conductivity of fat is less than that of lean meat. However, Shilton et al. (2002) 

observed that heat transfer in higher fat beef patties during cooking did not occur by 

conduction alone, but also by internal convection resulting from movement of moisture 

and fat, whereas in low fat beef patties, heat transfer was thought to occur by conduction 

only. Thus, the 2 modes of heat transfer (conduction and convection) may have reduced 

the surface heating rate in meat with higher fat content. Although one bologna was from 

mixed species (lower fat) and the other was from pure beef (higher fat), proximate 

composition of a comminuted product has a strong effect on thermal conductivity, 

particularly moisture content followed by fat and protein. A formula estimating the 

specific heat of food was proposed by Singh and Heldman (1984) using the mass of the 

proximate components (carbohydrate, protein, fat, ash, and water). Despite thermal 

conductivity models that support this, the authors cannot overlook the possibility that the 

different meat species sources did not affect surface heating to some extent. It can be 

stated that these 2 types of bologna products differed in surface heating rate. Both the 

conduction and convection of heat from the meat surface and transfer of heat throughout 

the product may have an effect on surface heating rate. There was no difference (P = 

0.2524) in the mean value for square root of γ for the set pasteurization temperatures. 

There was no interaction (P > 0.05) between any of these 3 factors (thickness, bologna 

type, and pasteurization temperature). 

Final Surface Temperature (α) 

       From a practical standpoint, federal regulations require that an endpoint temperature 

be reached in cooking raw meat products. The same strategy could be applied to ensure 

the safety of packaged RTE meat products. Temperature is easier to measure and record 
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in the processing environment than calculation of a log reduction. Thus, various factors 

such as meat thickness and meat composition can be compared for their effect on heating 

rate by measuring the final temperature attained after a specific time.  

      The meat surface temperature (α) attained after 10 min of pasteurization was lower 

with increased thickness levels (data not shown). There was a difference (P < 0.0001) in 

the mean value of α for 3 thickness levels at 4 pasteurization temperatures. The higher 

final surface temperature attained in the thinnest sample resulted from a faster surface 

heating rate compared with thicker meat samples. This trend was evident even for a 

shorter pasteurization time of 3 min (Table 3.2). The difference in 3-min bologna surface 

temperature between 4 and 12 mm thick samples ranged from 7.2 to 9.3°C for 18% fat  

samples for the 4 pasteurization temperatures. The 3 min surface temperature for 13% fat 

bologna was also constant across the 4 pasteurization temperatures, and ranged from 4.6 

to 6.3°C. The thinner sample/faster heating rate trend was less evident when the 12-and 

20-mm samples were compared, ranging from 1.6 to 5°C (18% fat) and 3.5 to 5.5°C 

(13% fat). Thus, thickness of the product plays an important role in attaining the required 

surface temperature by a set pasteurization time, which is essential in reducing the 

surface pathogen contamination.  

      The impact of surface heating rate on microbiological safety can be estimated by 

using the experimentally measured D-and z-values for specific product conditions. Using 

the D-and z-values determined for in-packaged pasteurized bologna, the process time 

required to attain a 5 log reduction in L. monocytogenes can be calculated. The impact of 

sample thickness on attaining a surface 5 log reduction at various temperatures was 2.5 to 
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6 times longer for 20 mm thick samples compared with 4 mm thick lower fat samples 

(Table 3.3). A similar trend was found for the higher fat (18%) bologna.  

CONCLUSIONS 

      Rapid processing can reduce costs and increase efficiency, therefore product 

thickness has a significant effect on in-package pasteurization of RTE meats. The USDA 

issued a rule in October 2003 that certain RTE meat and poultry products must 

implement 1 of 3 risk-based alternatives with written program and verification through 

testing to control L. monocytogenes. A post-lethality treatment is included in 2 of the 3 

alternatives. A practical approach of in-package pasteurization as a post-lethality 

treatment to target surface L. monocytogenes would reduce the risk of its presence. Thus, 

factors affecting the surface heating rate, such as product thickness, need to be clearly 

understood to eliminate the pathogen and its related costs to the industry. 
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Table 3.1. Surface heating rates (√°C/s) for 3 thicknesses of 2 types of bologna during 
in-package pasteurization. 
 
 
                                          18% fat                                                 13% fat        

                                         Thickness                                              Thickness 

Processing   
Temperature (°C)   4mm            12mm            20mm       4mm          12 mm         20 mm             
 

60                          0.277b            0.153d           0.155f        0.347a         0.247c          0.177e

70                          0.259b            0.239d           0.180f        0.372a          0.248c          0.234e

80                          0.303b            0.199d           0.168f        0.349a          0.239c         0.198e  

90                          0.268b            0.216d           0.154f         0.348a          0.229c         0.187e      

 

a-eMeans within a row lacking a common superscript differ (P < 0.0001) 
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Table 3.2. Surface temperature (°C) at 3min for 3 thicknesses (4, 12, 20 mm) of 2 types 
(13 and 18% fat) of packaged bologna during in-package pasteurization. 
 
 
                                          18% fat                                                 13% fat        

                                         Thickness                                              Thickness 

Processing   
Temperature (°C)   4mm            12mm            20mm       4mm          12 mm         20 mm             
 

60                          59.40a            50.15b           48.51c        59.62a         53.25b          49.71e

70                          69.36a            62.15b           57.35c        69.76a          65.11b         61.72e

80                          79.12a            70.89b           65.78c        80.03a          74.82b         69.29e  

90                          89.00a            79.97b           72.99c         89.42a          83.26b         77.21e      

 

a-cMeans within a row and for each meat type (%fat) lacking a common superscript differ 
(P < 0.0001). 
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Table 3.3. Calculated time1 (min) required to achieve 5 log reductions in Listeria 
monocytogenes population for 3 thicknesses (4, 12, and 20mm) of packaged bologna 
(13% fat) during in-package pasteurization at different temperatures. 
 
 
                                                               Pasteurization temperature (°C) 

Thickness (mm)                           60                      70                      80                       90                

     4                                            >10                      1.5                    0.72                    0.35 

12                                           >10                      5.4                    2.56                    0.59 

20                                           >10                      9.5                    4.12                    0.97                              

 

1The 5 log reduction was calculated based on D- and z- values determined from in-
package pasteurized bologna by McCormick et al. (2003). 
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Fig. 3.1. Surface temperature profile for 3 thicknesses of packaged bologna (13% fat) 
corresponding to 1 (4mm), 3 (12mm), and 5 (20mm) slices during in-package 
pasteurization at 60°C. 
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Fig. 3.2. Surface heating rates for 3 thicknesses of 2 types of packaged bologna during in-
package pasteurization for 4 temperatures pooled. a-c;x-zValues within fat content marked 
with different letters differ at P < 0.0001.  
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CHAPTER 4 
EFEECT OF COMBINING NISIN AND/OR LYSOZYME WITH IN-PACKAGE 

PASTEURIZATION ON THERMAL INACTIVATION OF LISTERIA 
MONOCYTOGENES IN READY-TO-EAT TURKEY BOLOGNA 

 
 

ABSTRACT 
    
      Achieving the targeted lethality with minimum exposure to heat is a challenge as well 

as a need to the poultry industry to preserve the product quality during pasteurization. 

The objective of this study was to evaluate the effect of surface application of nisin 

and/or lysozyme in combination with in-package pasteurization of ready-to-eat (RTE) 

low fat turkey bologna on the inactivation of L. monocytogenes. Sterile bologna samples 

were treated with solutions of nisin (2mg/ml = 5000 AU/ml), Lysozyme (10mg/ml = 80 

AU/ml), and a mixture of nisin and lysozyme (2mg nisin + 10 mg lysozyme/ml). Bologna 

surfaces were uniformly inoculated with a Listeria suspension resulting in a population of 

8 log cfu/slice. Samples were vacuum-packaged and subjected to heat treatment (60, 62.5 

or 65°C).  Two non-linear models (Weibull and log-logistic) were used to fit the data and 

using the parameters of the models, time needed to achieve a 4 log reduction was 

calculated. Nisin-lysozyme combination and nisin treatments were effective in reducing 

the time required for 4 log reductions at 62.5 and 65°C, but not at 60°C. At 62.5°C, nisin-

lysozyme treatment required 23% less time than the control sample to achieve 4 log 

reductions and 31% less time at 65°C. Lysozyme alone did not show enhanced 

antilisterial activity with heat. Results from this study can be useful to the industry in 

developing an efficient intervention strategy against contamination of RTE meat products 

by L. monocytogenes.  
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INTRODUCTION 
                                                  
      Post-cooking contamination of RTE meat and poultry products by L. monocytogenes 

is a major food safety problem as well as an economic hardship to the food industry. L. 

monocytogenes is an important foodborne pathogen that can cause life-threatening 

invasive infections in neonates, pregnant women, elderly, and immunocompromised 

individuals (Slutsker and Schuchat, 1999; Gerba et al., 1996). In 2002, a major outbreak 

of listeriosis in northeastern United States associated with sliced turkey deli meat resulted 

in 46 cases including 7 deaths (CDC, 2002). Majority of the food product recalls 

associated with listeriosis involve RTE meat and poultry products. These food product 

recalls have serious economic and public perception impacts on the food industry (Ivanek 

et al., 2004; Kramer et al., 2005; Marsh et al., 2004; Teratanavat and Hooker, 2004; 

Thomas and McKenzie, 2001). 

      Post-process operations in the preparation of RTE meat products such as peeling, 

sorting, loading, and slicing are potential sources for recontamination of the products 

with L. monocytogenes (Murphy et al., 2005). The organism can survive in food-

processing facilities for long periods (Tompkin, 2002) and thus, processing equipment 

and other food contact surfaces can act as a source of this organism during post-process 

operations. In deli meat products, contaminated slicers act as an important contamination 

site of the organism (Humphrey, 1990; Hudson and Mott, 1993). Because of the ability of 

L. monocytogenes to grow and multiply at refrigeration temperatures in vacuum packaged 

meat products, even a low level of initial contamination could result into a substantial 

number by the time of product consumption (Seman et al., 2002). The fact that most RTE 
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and deli meat products are often consumed without further heating adds to the 

seriousness of the problem. 

    Because of the high fatality rate of listeriosis in human beings, and also due to the 

high susceptibility of RTE meat products to Listeria contamination and growth, the 

United States Department of Agriculture (USDA) implemented a “zero-tolerance” policy 

for this pathogen in RTE products (USDA, 1989). In 2003, the U.S. Department of 

Agriculture Food Safety and Inspection Service (USDA-FSIS) released an interim final 

rule to control L. monocytogenes for post-lethality treatments used for RTE meat and 

poultry products (USDA-FSIS, 2003). This ruling includes three alternative approaches 

that establishments can implement in the processing of RTE meat and poultry products 

using a post-lethality treatment, antimicrobial agent, and sanitation control measures. 

      Various post-lethality treatments such as surface pasteurization, high pressure 

processing, pulsed electric field, irradiation, and use of antimicrobial agents have been 

tested to reduce the contamination and to eliminate L. monocytogenes from RTE meat 

and poultry products (Zhu et al., 2005; Luchansky et al., 2006). Thermal processing is 

one of the most efficient methods in controlling microbial contamination of food 

products. Heat treatment in the form of pre and post-package pasteurization using hot 

water or steam was found to be an effective method to reduce post-process surface 

contamination by L. monocytogenes (Muriana et al., 2004; Murphy et al., 2003; 

McCormick et al., 2003; Roering et al., 1998). Murphy and Berrang (2002) found that 

post-process pasteurization of fully cooked vacuum packaged chicken breast strips in 

steam or hot water at 88°C for 35 min resulted in 7 log reduction in Listeria innocua 

population. Effect of various factors like product thickness, composition, product surface 
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characteristics, and packaging film thickness on the efficiency of in-package 

pasteurization have also been investigated (Mangalassary et al., 2004; Murphy et al., 

2003; Murphy et al., 2002). Researchers found that various product characteristics have 

an effect on the total bacterial lethality during in-package pasteurization. Another 

important factor is the time or duration of pasteurization since processors would prefer 

shorter treatments which would be cost effective and less detrimental to product quality. 

Combining in-package pasteurization with other preservative methods may be an 

effective approach to reduce pasteurization times in attaining a targeted bacterial 

lethality. 

      Surface application of various antimicrobial agents alone as well as in combination 

are also effective at controlling L. monocytogenes in RTE meats (Gill and Holley, 2000; 

Samelis et al., 2001). Post-process surface application of antimicrobials may be more 

advantageous than addition to the formulation because the cells may be present on the 

surface and also surface application in smaller quantities may have less potential for 

negative effects on the sensory qualities of the product (Samelis et al., 2001; Chen et al., 

2004).  

       Nisin and lysozyme are two antimicrobials approved for many food applications. 

Nisin is an antibacterial peptide produced by Lactococcus lactis subsp. lactis that 

effectively inhibits Gram-positive bacteria (Delves-Broughton et al., 1996). Nisin is one 

of  the most commonly used natural antimicrobial compounds and was approved for use 

in food in 1969 and was awarded generally recognized as safe (GRAS) status in the 

United States in 1988 (FDA, 1988). Nisin has shown synergistic antibacterial activity 

with heat against L. monocytogenes (Knight et al., 1999; Budu-Amako et al., 1999; Modi 
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et al., 2000). This synergism may yield targeted lethality in shorter time when nisin is 

combined with in-package surface pasteurization. Lysozyme is an enzyme found in 

biological fluids and tissues, which lyse the cell walls of certain Gram-positive bacteria 

by splitting the bond between N-acetylmuramic acid and N-acetylglucosamine of the 

peptidoglycan layer in the bacterial cell wall (Proctor and Cunningham, 1988). Enhanced 

antibacterial activity of a mixture of nisin and lysozyme against pathogenic and spoilage 

bacteria was reported by various investigators (Chung and Hancock, 2000; Nattress and 

Baker, 2003; Gill and Holley, 2000). But studies on synergy of this mixture along with 

heat have not been reported. 

      Considering the synergy of the various intervention methods explained in previous 

studies mentioned above, combining in-package pasteurization along with pre-surface 

application of nisin and lysozyme may have a positive effect on achieving the targeted 

bacterial reduction with shorter pasteurization treatment. Therefore the objective of this 

study was to evaluate the surface application of nisin and/or lysozyme in combination 

with in-package pasteurization of RTE low fat turkey bologna to eliminate L. 

monocytogenes, particularly to see the changes in heat inactivation kinetics of the 

organism. 

MATERIALS AND METHODS 
       
Food product preparation 

 
  Ready-to-eat low fat turkey bologna averaging 14.3% fat, 10.7% protein, and 71.4% 

moisture was used for the experiment. Bologna samples were batch irradiated for 521 

min using a cobalt 60 source with a total dose of 2.4 Mrad at 4,607 R/minute at Auburn 

University. Irradiation was carried out to eliminate background flora before inoculation 
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studies. Bologna samples were kept frozen at -70°C and thawed overnight at 4°C prior to 

experimentation. For inoculation and thermal inactivation studies, bologna slices of 

approximately 2.5 mm thickness were cut into 4cm × 4cm pieces using a sterile cutting 

template and each piece was used as an experimental unit. 

Culture preparation 

      L. monocytogenes ATCC 15313 was preserved by freezing the cultures at -70°C in 

vials containing brain heart infusion (BHI) broth (Difco Laboratories, Detroit, MI) 

supplemented with 20% (v/v) glycerol (Sigma, St. Louis, MO). To propagate the culture, 

a frozen vial was thawed at room temperature, and 0.1 ml of the thawed culture was 

transferred to 9.9 ml of BHI broth in screw-cap tubes and incubated aerobically for 16-18 

h at 37°C with agitation at 200 revolutions per min (Thermolyne Maxi-Mix III type 

65800, Barnstead/Thermolyne, Dubuque, IA).  The inoculum was prepared from a 

second transfer of this culture (0.1ml) to another 9.9 ml tube of BHI broth, and incubated 

aerobically for 16-18 h at 37°C with agitation. After incubating for 16 h, a washed cell 

suspension of the organism was prepared by harvesting the cells by centrifugation at 

3000 × g (IEC HN-SІI centrifuge, International Equipment Co., Inc., Needham Heights, 

MA), washing with 10 ml of  0.1% sterile peptone water (Bacto peptone, Difco 

Laboratories, Detroit, MI), and resuspending in 0.1% sterile peptone water to obtain a 

population of approximately 8- 9 log10 cfu/ml. Initial cell populations were verified by 

enumerating the cells after pour-plating in BHI agar and incubating at 37°C for 48 h. 
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Antimicrobial preparation 

Nisin 

      Nisaplin, a commercial nisin product (2.5% nisin with 106 IU/g) was provided by 

Danisco (Danisco USA Inc, New Century, KS). Solutions of required concentrations of 

nisin were prepared on the day of the experiment by dissolving appropriate amount of 

nisin in sterile distilled water. 

Lysozyme 

      Egg white lysozyme was provided by Q.P. Corporation (Q.P. Corporation, Japan). 

Solutions of lysozyme were prepared on the day of the experiment by dissolving 

appropriate amount in sterile distilled water. 

Antimicrobial activity assay 

      Activities of nisin and lysozyme were determined by critical dilution assay (Pucci et 

al., 1988). Serial two-fold dilutions of the antimicrobial agents were tested against L. 

monocytogenes ATCC 15313. Ten μl of each dilution was spotted on the surface of the 

BHI agar medium seeded uniformly with a suspension of L. monocytogenes. After 

incubation (48h at 37°C), the plates were checked for zones of inhibition. Titer of nisin 

and lysozyme in Arbitrary Units per ml (AU/ml) was expressed as the reciprocal of the 

highest dilution showing a definite inhibition zone. Activity of the antimicrobial 

compounds was expressed in AU/mg based on the weight of the antimicrobial 

compounds used in serial dilution and converted into AU/ml based on the weight (mg) of 

the antimicrobial compound used in the application solution.  
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Antimicrobial treatment and inoculation 

      Sterile, frozen bologna samples were thawed overnight at refrigeration temperature 

(4±1°C). On the day of the experiment, bologna samples were removed from refrigerator 

and aseptically transferred to a sterile surface under a Germfree ®Bioflow chamber 

(Ormond Beach, FL). Each bologna slice was cut into 4cm × 4cm pieces using a sterile 

cutting template as previously described. Meat samples for the thermal treatment were 

uniformly surface-treated with 0.1 ml of the antimicrobial solutions. The activity units 

applied for each treatment were control: 0, nisin: 500 AU (5000 AU/ml=2 mg/ml), 

lysozyme: 8 AU (80 AU/ml=10 mg/ml), and nisin-lysozyme: 508 AU (5000 AU nisin + 

80 AU lysozyme/ml). After the antimicrobial treatment, all bologna surfaces were 

inoculated uniformly with a 0.1 ml of a 9 log cfu/ml suspension of L. monocytogenes to 

have a cell concentration of 8 log cfu/slice. All samples were aseptically transferred to a 

post-pasteurization bag (Model CNP-310, Cryovac, Duncan, SC). Insulated 

thermocouples (K type Teflon, Omega Engineering, Inc, Stamford, CT) were attached to 

the surface of two un-inoculated bologna samples to measure the temperature during 

thermal treatment. All bags were then vacuum packaged (Koch Model, UV 250, Koch 

Supplies Inc, Kansas City, MO) (vacuum: 98, seal: 2, and gas: no) 

Thermal processing and heat resistance determination 

      Packaged bologna samples were simultaneously submerged into a water bath 

(Precision, model 186, Precision Scientific Incorporated, Chicago, USA) set to a pre-

determined temperature (60, 62.5 and 65°C). The surface temperature and time data were 

monitored using a channel datalogger (CALPlex 32, TechniCAL, New Orleans, LA) and 

thermal processing software (CALSoft, Version 1.32, TechniCAL, New Orleans, LA) 
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during the entire process. Once the temperature of bologna surface reached the 

equilibrium temperature, samples from each treatment were removed from the water bath 

at selected time intervals (Total 7 samples in each run with 10, 20, and 120 s time interval 

for 65, 62.5, and 60°C, respectively) and rapidly cooled by immersing in ice-water slurry 

for 10 s to minimize any further heat effect. Each sample was subsequently aseptically 

removed from the pasteurization bag and homogenized with 99 ml of sterile 0.1% 

peptone water by placing the samples into a stomacher (Seward Stomacher 400 

Circulator, Seward, Inc, UK) for 1 min at 230 rpm. Homogenates were then serially 

diluted and appropriate serial dilutions were pour plated in duplicate using BHI agar. 

Plates were incubated at 37°C for 48 h before enumerating colonies. Colony forming 

units (cfu) counts were converted to log10 cfu/cm2 of the sample for the analysis of the 

data.  

      One set of all 4 treatments were sampled microbiologically without any heat 

treatment to enumerate survivors at 0 time. 

Statistical Analysis 
 
Experiment was replicated 3 times at each pasteurization temperature. 
 
Initial inhibitory effect of antimicrobial agents 

      A 2 × 2 factorial design was used to statistically analyze the initial inhibitory effect of 

antimicrobial agents at 0 h before in-package pasteurization. Two levels of nisin and 

lysozyme (present, not present) and the interaction of nisin*lysozyme was used in the 

model. Data were analyzed by ANOVA using the GLM procedure of SAS (SAS Institute, 

2003). Least square difference (LSD) multiple comparison procedure was used to 

evaluate significant differences (P < 0.05) among means. 
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Bacterial lethality for antimicrobial-heat treatment combination 

      Log reductions were calculated by subtracting the log count for each treatment after 

specific duration of heating from the initial log count obtained for the untreated control 

sample before heating. Treatment differences (P < 0.05) within each pasteurization 

temperature were evaluated using LSD multiple comparison procedure. 

Modeling of inactivation curves 

      Survivor log counts obtained for all treatments over time were tested for linearity 

using orthogonal polynomials. None of the survivor “curves” tested was linear. Therefore 

various non-linear mathematical models were tested to obtain a “best fit” to the data. A 

single model could not be satisfactorily used to fit all survivor curves at the 3 different 

temperatures. Therefore both a Weibull model and a modified log-logistic model were 

selected to model the data for all treatments and temperatures. The goodness of fit by the 

two models was determined using an extra sum of squares test (Ramsey and Schafer, 

2002). The model having the better fit for each treatment at a particular temperature was 

selected and used from that point forward. 

Weibull model 

      The cumulative form of the Weibull distribution suggested by Peleg & Cole (1998) 

was used to describe survivor curves obtained at 62.5 and 65°C. Its equation is given by  

Log 
0N

N  = - btn 

where N0 = the initial number of cells after come up time 

            N = the number of survival cells after an exposure time t. 

 b is the scale factor which is a characteristic of time and n is the shape factor. A small 

value of time (0.1) was used to approximate time=0. 
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Log-logistic model 

      A modified version of the original log-logistic model (Cole et al., 1993) with the 

following equation was used to fit the survivor curves obtained at 60°C. 

Log 
0N

N  =  
e  1

A
  - 1)time( log ( τσ +−+

 

where A is the difference between lower and upper asymptotes, σ is the maximum rate of 

inactivation (maximum slope of inactivation curve) and τ is the log time to the maximum 

rate of inactivation.  

      The PROC NLIN procedure of SAS (SAS Institute, 2003) was used to the fit both the 

equations and to estimate the parameters for each treatment at a particular temperature. 

By using the estimated parameters in the equation of a specific model for a particular 

temperature-treatment combination, the time required for a specific log reduction was 

estimated by substituting the value for the targeted log reduction in place of the log 

reduction ratio (Log N/N0). For the Weibull model, the time was estimated using the 

equation 

                 t = (
b
N/N Log 0 )1/n 

where N0 = the initial number of cells after come up time 

            N = the number of survival cells after an exposure time t. 

b and n are parameters from Weibull model where b is the scale factor which is a 

characteristic of time and n is the shape factor (when n = 1, the curve is linear). 

For the log-logistic model, the time was estimated by the following formula 

                t = (10LN(A/ Log N/N
0

- 1)/ (-σ) + τ) – 1 
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where A is the difference between lower  and upper asymptotes, σ is the maximum rate of 

inactivation and τ is the log time to the maximum rate of inactivation.  

The variance for the estimated time was calculated using the delta method (Billingsley, 

1986). The values obtained for antimicrobial treatments at a particular temperature were 

compared using z statistics.                                     

RESULTS AND DISCUSSION 

Antimicrobial activity assay 

      Nisin activity as determined by critical dilution assay was 2.5 × 103 AU/mg. We used 

2 mg of nisin/ml and thus the activity of nisin in the solution used was 5000 AU/ml. 

Lysozyme activity was 8 AU/mg and thus in the solution (10 mg/ml) used for the 

experiment, the activity was 80 AU/ml. 

Temperature profile 

      The surface temperature profile of bologna samples was monitored throughout 

pasteurization for all three temperatures (Fig.4.1). Come up time, which is the time 

required for the bologna surface to reach the set water bath temperature, did not differ 

among three temperatures. The consistency in come-up times among samples was 

facilitated by the use of single slice bologna in all the thermal studies. The average come-

up time was 60 s and surface temperature profiles did not fluctuate during the entire 

pasteurization process. 

Initial inhibitory effect of antimicrobial treatments. 

       Nisin, and Nisin-lysozyme treatment resulted in a ~ 0.5- 0.6 log cfu/cm2 reduction (P 

< 0.05) in cell counts almost immediately (at 0 h) compared to the control and lysozyme 

treatments (Table 4.1). The other three treatments did not differ (P > 0.05) in 0 time cell 
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counts and ranged from 7.38 (control) to 6.99 (nisin) log cfu/cm2. There was no 

interaction effect (P > 0.05) between nisin and lysozyme indicating that there was an 

additive antibacterial effect for the nisin-lysozyme combination at 0 h. Previous studies 

reported a synergistic effect of nisin and lysozyme on spoilage as well as on pathogenic 

bacteria (Chung and Hancock, 2000; Gill and Holley, 2000; Nattress and Baker, 2003). 

Gill and Holley (2000) reported bactericidal action of a nisin and lysozyme (1:3) mixture 

and EDTA on the surface bologna and ham against L. monocytogenes when applied in a 

7% gelatin coating. The short exposure time should be considered in the current study in 

discussing the small difference in reduction of L. monocytogenes due to the antimicrobial 

treatments. Extended exposure times will be examined in a subsequent study. 

Bacterial lethality for the antimicrobial – heat treatment combination 

      Log reductions attained by the combined antimicrobial and heat treatment after a 

specific duration of heating at 3 pasteurization temperatures are given in Table 4.2. 

The cut off point for duration of heating for each temperature was selected as the time 

interval at which there were detectable cells for all four treatments, not the complete 

duration of pasteurization used in this study (Antimicrobial treatments resulted in 

reduction of L. monocytogenes cells to below detection levels at 60 and 65°C by the 

completion of pasteurization for 720 and 60 s respectively). At 60°C, nisin and the nisin-

lysozyme treatments resulted in a greater log reduction (P < 0.05) compared to control 

and lysozyme treatments after 9 min (540 s) of pasteurization (including come-up time). 

Nisin and nisin-lysozyme treatment resulted in a greater log reduction (P < 0.05) in L. 

monocytogenes counts compared to the control and lysozyme treatments when heated for 

3 min (including come-up time) at 62.5°C. At 65°C, all antimicrobial treatments resulted 
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in a significant bacterial reduction (P < 0.05) compared to the control sample. The 

reductions obtained for control, lysozyme, nisin and nisin-lysozyme treatments were 

4.02, 4.81, 5.54, and 5.83 log cfu/cm2 respectively. Nisin and nisin-lysozyme treatments 

also resulted in higher reductions (P < 0.05) compared to the lysozyme treatment.  

      For all three pasteurization temperatures used, the nisin-lysozyme treatment resulted 

in lower (P < 0.05) L. monocytognes populations compared to the control and lysozyme 

treatments. At 65°C, the nisin treatment also reduced (P < 0.05) L. monocytogenes 

population on bologna compared to all treatments not containing nisin. Synergistic 

antibacterial activity of the combination of nisin and heat in various food matrices and 

laboratory media was reported by various research workers (Ueckert et al., 1998; Budu-

Amako et al., 1999; Modi et al., 2000). Budu-Amako et al. (1999) investigated the 

combined effect of nisin and moderate heat to increase the killing of L .monocytogenes in 

cans of cold-pack lobster. Addition of nisin at a level of 25 mg/kg of can contents to the 

brine surrounding the lobster, in combination with a heat process giving internal can 

temperatures of 60°C for 5 min and 65°C for 2 min, resulted in 3-5 log reductions 

whereas heat or nisin alone resulted in decimal reductions of 1 to 3 logs. A synergy of 

nisin-lysozyme mixtures and heat in reducing L. monocytogenes populations was 

observed in the present study. The nisin-lysozyme treatment with heat resulted in an 

additional 1 log cfu/cm2 reduction after 100 s of pasteurization at 65°C compared to the 

bactericidal effect obtained without heat treatment. Chung and Hancock (2000) attributed 

the increased efficacy of the mixture of nisin and lysozyme to increased membrane 

damage, cell lysis, or the inhibition of energy dependent processes that repair 
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nisin/lysozyme damage to the cell. The added inhibitory effect of this mixture with heat 

might be attributed to the additional changes in membrane permeability caused by heat. 

The enhanced inhibitory effect of in-package pasteurization combined with various 

antimicrobial agents was investigated in previous studies (Chen et al., 2004; Murphy et 

al. 2004; McCormick et al., 2005). Chen et al. (2004) combined the surface application of 

pediocin (ALTA 2341) with post-packaging thermal pasteurization in hot water at 71, 81, 

or 96°C for 30, 60, or 120 s to  control L. monocytogenes on frankfurters. L. 

monocytogenes populations were reduced by all treatments, but 81°C or higher 

temperatures for at least 60 s in combination with pediocin were necessary to achieve at 

least 50% reduction of initial populations. In the present study, nisin and nisin-lysozyme 

treatments resulted in reduction of L. monocytogenes cells to below detectable levels on 

the bologna surface after pasteurizing for 60 s at 65°C. Food product type, packaging 

materials, and antimicrobial agents influence the thermal inactivation of the organism 

during in-package pasteurization and are likely the reason for differences in inactivation 

levels from similar applications.  

      There was an obvious effect of the three processing temperatures used in this study on 

the inactivation of L. monocytogenes. To obtain a reduction of 4-5 log cfu/cm2 for various 

treatments used in the study, the time taken was about 3 fold longer at 60°C compared to 

62.5°C, about 2 fold longer at 62.5°C compared to 65°C and more than 5 times longer at 

60°C compared to 65°C.  

Survival of Listeria monocytogenes on the bologna surface after pasteurization 

      Survivor curves for L. monocytogenes at the three temperatures tested were obtained 

by plotting log cfu/cm2 versus the pasteurization time in seconds. The time scale started 
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when the bologna surface temperature reached the set water bath temperature (0 time). 

Total duration of pasteurization after reaching the come-up time at 65°C was 60 s with a 

dwell time of 10 s (Fig. 4.2). At 0 time, the L. monocytogenes population for 

antimicrobial treatments were lower than the control sample. This reduction was resulted 

from the bactericidal action of the antimicrobial treatments and also from the effect of 

heat during come-up. At 65°C, there were no viable L. monocytogenes cells recovered at 

50 s for nisin and nisin-lysozyme treated samples and no cells were recovered at 60 s for 

lysozyme treated samples. At 62.5°C, duration of heating after reaching the come-up time 

was 120 s (Fig. 4.3). There was a reduction in bacterial population for nisin and nisin-

lysozyme treatments at 0 time. However, beyond this point, all 4 treatments displayed a 

similar pattern. At 60°C, in order to have enough survival points in the curve, the 

duration of heating after come-up time was extended to 720 s (Fig. 4.4). Again, nisin and 

nisin-lysozyme treatments resulted in reduction of L .monocytogenes at 0 time. There 

were no detectable cells for any of the antimicrobial treatments at the end of 

pasteurization (720 s); however, the nisin-lysozyme treated bologna attained the no 

detectable L. monocytogenes threshold by 600 s. 

Modeling of inactivation curves 

      Statistical analysis of the survivor data showed a non linearity and therefore a simple 

first-order linear model was not appropriate to model the bacterial death time 

relationship. Curves for some treatments showed a shoulder and also a small degree of 

tailing. The most common approach to describe microbial inactivation by thermal 

processing is to assume first-order kinetics. However, a first-order kinetics model is not 

compatible with curvature, a shoulder, or tailing of the survival curve (Virto et al., 2006). 
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The first-order approach to thermobacteriology assumes that each microorganism has the 

same probability of dying (van Boekel, 2002). In the present study, since antimicrobial 

agents were applied on the bologna surface before exposure to heat, the population of L. 

monocytognes at the beginning of heating could consist of cells with varying sensitivities 

to heat leading to a non-linear curve due to these differences in heat sensitivities. 

      The model that best fit the survivor curves obtained for 62.5 and 65°C was based on 

the Weibull distribution (Figs. 4.5 and 4.6). This is a very flexible model since it allows 

describing survivor curves showing a shoulder, a tail or even a linear behavior. Two 

parameters of this model, b and n are scale and shape parameters respectively. The 

estimates obtained for these parameters are given in Table 4.3. A n<1 corresponds to a 

concave upward survival curve, n>1 to a concave downward curve and n equal to 1 to a 

straight line. In the present study all of the treatments yielded a value of n<1 indicating an 

upward concavity of the curve. But values of the estimate of n in all cases were close to 1 

(0.75-0.95) indicating that the upward concavity was minimal. Upward concavity can be 

interpreted as evidence that weak or sensitive members of the population are destroyed at 

a relatively fast rate leaving behind survivors of higher resistance (Peleg, 2000). But in 

this study, nisin and nisin-lysozyme treatments reduced the L. monocytogenes population 

to below detection levels indicating that there were only a minimum number of cells with 

higher heat resistance. This is also supported by the fact that there was no evidence of 

tailing which indicates the presence of heat resistance survivors at the end of the 

pasteurization. Massachalk et al. (2000) reported that a combination of nisin and 

lysozyme was helpful in reducing the tailing of high pressure survivor curves due to its 

ability to reduce the fraction of cells that survive the treatment compared to the use of 
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nisin and lysozyme separately. The parameter b did not show any systematic pattern 

among treatments nor between two pasteurization temperatures. According to Mafart et 

al. (2002) parameter b has no immediate physical significance. Rajan et al. (2006) used 

the Weibull model to fit the survivor curves while studying the inactivation of Bacillus 

stearothermophilus spores in egg patties by pressure assisted thermal processing, and 

observed that parameter b of the Weibull model increased for a treatment that yielded a 

greater log reduction. At 65°C, all of the antimicrobial treatments yielded b values more 

than 2-times that of the control treatment. 

      A modified log-logistic model was the best fit for the survivor curves at 60°C (Fig. 

4.7). The parameter estimates obtained for this model are given in Table 4.3. The values 

of σ which is the maximum rate of inactivation (maximum slope of inactivation curve) 

and τ which is the log time to the maximum rate of inactivation did not show any obvious 

pattern among antimicrobial treatments. Stephens et al. (1994) reported a linear increase 

in τ with decrease in temperature. But in the present study, the model was fitted to curves 

obtained during heating at a constant temperature (60°C). Raso et al. (2000) used log-

logistic model to predict inactivation of Salmonella senftenberg by pulsed electric fields 

and found a quadratic relationship between τ value and the electric field strength of 

treatment. While the Weibull model fits data that shoulders or tails but not data that 

displays both upper and lower asymptotes. The log-logistic model does fit asymptotic 

data which is what was found at 60°C. 

  Even though two models used in this study fit the bacterial heat inactivation very 

closely, the parameters of this model did not directly give a clear indication of 

inactivation kinetics. The influence of antimicrobial treatments on the parameters of the 
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models was not conclusive. A more useful measure of thermal processing to the industry 

would be the number of log reductions of the target organism achieved by the process 

and the time needed to achieve a targeted log reduction. This point was also raised in the 

Institute of Food Technologists’ (IFT) second research summit to advance the 

understanding of microbial inactivation kinetics and models for non-log-linear survivor 

curves. It was suggested that “the performance of food preservation processes should be 

communicated in terms of the number of log cycles of reduction that the process is 

expected to deliver for the microorganism of concern rather than the D-value” (Heldman 

and Newsome, 2003). Therefore by using the estimated parameters in the equation of the 

specific model, and by substituting the required value for the decimal reduction ratio in 

the equation, the time required for specific log reduction was calculated. Calculated time 

of first decimal reduction (time required for initial decimal reduction) which is restricted 

to first decimal reduction of surviving cells from N0 to N0/10 is given in Table 4.4. In 

case of survivor curves, where a Weibull model was fitted, when the value of the 

parameter n is close to 1, the curve is close to a linear one and the estimate of time of first 

decimal reduction will be closer to an estimate of the D value used in first-order kinetics. 

When survivor curves are linear, the estimate of time of first decimal reduction allows 

comparison of microbial resistance because the inactivation rate is constant and 

independent of the pasteurization time (Virto et al., 2006). Since the survivor curves 

obtained in this study were not linear, the values of time of first decimal reduction are not 

suitable for comparing the effect of various antimicrobial treatments on the heat 

resistance of the organism. 



  102 

      A more useful measure would be the estimation of the time required for a targeted log 

reduction required to completely eliminate or reduce the Listeria population to a very low 

level. Again, since the curves were non-linear, extrapolating the targeted log reduction 

beyond the maximum reduction obtained in this experiment would not be ideal. 

Therefore considering the flexibility of both the models used in this study, the time 

required for a 4 log reduction in L. monocytogenes population was calculated (Table 5). 

The data obtained at 62.5 and 60°C were adequate to accurately determine 5-6 log 

reductions using the Weibull model parameters whereas at 60°C, the data could not be 

accurately extrapolated beyond a 4 log reduction due to the asymptotic nature of the 

logistic curve (lower asymptote). At 60°C, none of the antimicrobial treatments resulted 

in a significant difference in the time required to achieve a 4 log reduction compared to 

the control sample. At 62.5°C, nisin and nisin-lysozyme treatments resulted in a 

significant reduction (P < 0.05) in the 4 log reduction time compared to control and 

lysozyme treatments. The time required for 4 log reduction was 149.07, 138.15, 123.63, 

and 115.49 s for control, lysozyme, nisin, and nisin-lysozyme treatments, respectively. 

The nisin-lysozyme treatment required about 35 s less than the control sample to achieve 

4 log reduction at 62.5°C. The time required for 4 log reduction in L. monocytogenes 

population at 65°C was 66.74, 65.47, 55.48, and 45.79 s for control, lysozyme, nisin, and 

nisin-lysozyme treatments, respectively. Nisin and nisin-lysozyme treatments resulted in 

a reduction (P < 0.05) in the time compared to control and lysozyme treatments. Nisin-

lysozyme treatment required about 21 s less than the control sample to achieve the 

targeted reduction at 65 °C. At 62.5 and 65°C, the time required for a 5 log reduction 
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showed a similar trend as was seen for the 4 log reduction for the antimicrobial 

treatments (Data not shown). 

      The estimated values for the time required for 4 log reduction at 62.5 and 65°C 

indicated that pre-surface application of nisin and the nisin-lysozyme combination with 

in-package pasteurization was effective in reducing the time required for a targeted log 

reduction. With a higher concentration of the antimicrobial agents than the ones used in 

this study, this effect may be more pronounced. In the present study, the concentrations 

of the antimicrobial agents used were optimized (reduced) to obtain log reduction points 

in a range along with the control sample to allow meaningful comparisons. At 60 °C, the 

lowest of the temperature used in the study, the time estimates obtained for any of the 

antimicrobial treatments were not different (P > 0.05) from the control sample. This may 

be due to the fact that the synergy of these antimicrobials with heat was less pronounced 

at the lower temperature.    

      In previous studies where a first order kinetics model was fitted to obtain a decimal 

reduction time values (D-values), researchers have reported the ability of nisin and other 

antimicrobial agents in reducing the D value. A study by Wandling et al. (1999) found 

that the addition of 2000 IU of nisin per ml of skim milk lowered (P < 0.05) the D value 

of Bacillus cereus spores compared to a control sample. 2000 IU of nisin/ml resulted in a 

D value of 4.8 min whereas the D value for the control sample was 7.0 min. In the same 

study, for Bacillus stearothermophilus  spores, 2000 IU of nisin /ml of skim milk lowered 

the D value from 16.0 (control) to 13.8 s. Knight et al. (1999) reported that nisin at a 

concentration  10µg/ml (40 IU/ml) significantly reduced the D value of L. monocytogenes 

in liquid whole egg at lower pasteurization temperatures (<58°C). From a practical point 
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of view, results form these two studies also suggest that nisin treatment resulted in 

significant reduction in the time required for a targeted log reduction. 

CONCLUSIONS 

      Results from the present study indicate that pre-surface application of nisin and a 

combination of nisin and lysozyme (1:5) was effective in reducing the time required for a 

targeted log reduction in L. monocytogenes populations on the RTE bologna surface at 

62.5 and 65°C. Another advantage of combining these two methods (heat + antimicrobial 

agents) is the possibility of reducing the concentration levels of the antimicrobial agents 

required to achieve adequate lethality compared to concentrations required to attain the 

same lethality when used without heat. Furthermore, the most aggressive USDA post-

lethality option includes the use of an inhibitor for L. monocytogenes outgrowth during 

storage and application of nisin or nisin-lysozyme may also meet this guideline. Results 

from this study may be useful to the industry in developing a cost-effective in-package 

pasteurization process. Shorter duration of pasteurization will also help to preserve the 

desirable qualities of the food product. Future studies are needed to determine the 

antilisterial activity of this combined method on various RTE poultry products with 

different compositions, thicknesses and other characteristics.  
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Table 4.1. The mean Listeria monocytogenes population (log cfu/cm2) on inoculated 
bologna slices at 0 h for different treatments before subjecting to in-package 
pasteurization. 

      Treatment                                                  Bacterial count (mean ± S.D) 

        Control1                                                                 7.38 ± 0.06a

        Lysozyme                                                              7.31 ± 0.16ab

        Nisin                                                                      6.99 ± 0.15b

        Nisin - Lysozyme                                                  6.71 ± 0.21bc   

 
a,b,cMeans with different superscripts are significantly different (P < 0.05).  
 

1Control = no antimicrobial added 
 Lysozyme = 0.1 ml of a 10 mg/ml (80 AU/ml) solution 
 Nisin = 0.1 ml of a 2mg/ml (5000 AU/ml) solution 
 Nisin-Lysozyme = 0.1 ml of a 2mg nisin + 10mg lysozyme/ml solution. 
  
 Each solution spread onto the 4 × 4 cm bologna surface of a 2.5 mm thick slice. 
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Table 4.2. The mean reductions* (log cfu/cm2) in Listeria monocytogenes populations by 
combined antimicrobial and heat treatment after specific duration of heating (including 
60 s come-up time) for 3 different pasteurization temperatures. 
 
 
      Temperature             Time                Treatment        Bacterial reductions (mean ± S.D)          

         60°C                    9 min (540 s)       Control1                           3.93 ± 0.61a

                                                                  Lysozyme                       4.17 ± 0.38a

                                                                  Nisin                               4.91 ± 0.25b                                           
                                                                  Nisin-Lysozyme             5.36 ± 0.13b

         

        62.5°C                 3 min (180 s)        Control                             3.83 ± 0.35a 

                                                                  Lysozyme                        4.10 ± 0.47a  
                                                                  Nisin                                4.99 ± 0.30b

                                                                  Nisin-Lysozyme              5.27 ± 0.29b

          

         65°C                   1.6 min (100 s)      Control                            4.02 ± 0.31a

                                                                   Lysozyme                       4.81 ± 0.11b

                                                                   Nisin                               5.54 ± 0.18c

                                                                   Nisin-Lysozyme             5.83 ± 0.02c                                          
 
 
 * Log reductions attained by the combined antimicrobial and heat treatments after a 
specific duration of heating were calculated by subtracting the log count for each 
treatment after the duration from the initial log count obtained for the untreated control 
sample before heating. 
 
a,b,cMeans within each temperature with different superscripts are significantly different 
(P < 0.05).  
 

1Control = no antimicrobial added 
 Lysozyme = 0.1 ml of a 10 mg/ml (80 AU/ml) solution 
 Nisin = 0.1 ml of a 2mg/ml (5000 AU/ml) solution 
 Nisin-Lysozyme = 0.1 ml of a 2mg nisin + 10mg lysozyme/ml solution. 
 
 Each solution spread onto the 4 × 4 cm bologna surface of a 2.5 mm thick slice. 
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Table 4.3. Parameters of Weibull and log-logistic models for antimicrobial treatments at 
different temperatures.  
 
 
   Temperature       Treatment                 Weibull                               Log-logistic 
                                                                b            n                             σ              τ              
       
        60°C              Control1                                                               2.987       2.582 
                              Lysozyme                     -                                     2.545        2.984 
                              Nisin                                                                    2.437        2.698 
                              Nisin-Lysozyme                                                  6.827        2.433 
 

       62.5°C            Control                   0.067      0.815 
                              Lysozyme               0.038      0.942                            - 
                              Nisin                       0.066      0.853 
                              Nisin-Lysozyme     0.042      0.959 
 

       65°C               Control                   0.074       0.951 
                              Lysozyme               0.172       0.752                            - 
                              Nisin                       0.168       0.788 
                              Nisin-Lysozyme     0.174       0.819   
                                                                             

1Control = no antimicrobial added 
 Lysozyme = 0.1 ml of a 10 mg/ml (80 AU/ml) solution 
 Nisin = 0.1 ml of a 2mg/ml (5000 AU/ml) solution 
 Nisin-Lysozyme = 0.1 ml of a 2mg nisin + 10mg lysozyme/ml solution.  
  
 Each solution spread onto the 4 × 4 cm bologna surface of a 2.5 mm thick slice. 
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Table 4.4. Time (seconds) for first 1 log cfu/cm2 reduction in Listeria monocytogenes 
population on the surface of turkey bologna subjected to in-package pasteurization at 
different temperatures. 
 
            Temperature                    Treatment                               Time (Mean ± S.D)            

               60°C                               Control1                                      97.13 ± 15.30a     
                                                      Lysozyme                                 101.89 ± 13.03a

                                                      Nisin                                           80.26 ±   8.46a

                                                      Nisin-Lysozyme                       175.22 ±   9.22b

 

               62.5°C                            Control                                       27.23 ±   3.09a    
                                                      Lysozyme                                   31.73 ±   3.35a

                                                      Nisin                                           23.98 ±   2.25a

                                                      Nisin-Lysozyme                         27.24 ±   2.53a

 

               65°C                               Control                                       15.51 ±   1.63a

                                                      Lysozyme                                   10.36 ±   1.62b

                                                      Nisin                                             9.57 ±   0.85b

                                                      Nisin-Lysozyme                           8.43 ±   1.64b                                    
    

a,bMeans with different superscripts within each temperature are significantly different 
(P< 0.05).  
 

1Control = no antimicrobial added 
 Lysozyme = 0.1 ml of a 10 mg/ml (80 AU/ml) solution 
 Nisin = 0.1 ml of a 2mg/ml (5000 AU/ml) solution 
 Nisin-Lysozyme = 0.1 ml of a 2mg nisin + 10mg lysozyme/ml solution. 
  
 Each solution spread onto the 4 × 4 cm bologna surface of a 2.5 mm thick slice. 
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Table 4.5. Time (seconds) required for 4 log cfu/cm2 reduction in Listeria 
monocytogenes population on the surface of turkey bologna subjected to in-package 
pasteurization.  
 
            Temperature                    Treatment                               Time (Mean ± S.D)            

               60°C                               Control1                                     497.29 ± 22.45a     
                                                      Lysozyme                                  462.22 ± 12.34a

                                                      Nisin                                          519.10 ± 12.43a

                                                      Nisin-Lysozyme                        515.18 ± 47.68a

 

               62.5°C                            Control                                      149.10 ±   9.68a    
                                                      Lysozyme                                  138.15 ± 10.10a

                                                      Nisin                                          123.63 ±   4.86b

                                                      Nisin-Lysozyme                        115.49 ±   6.75b

 

               65°C                               Control                                        66.74 ±   3.30a

                                                      Lysozyme                                    65.47 ±   4.75a

                                                      Nisin                                            55.48 ±   2.69b

                                                      Nisin-Lysozyme                          45.79 ±   3.34b                                    
   

 a,bMeans with different superscripts within each temperature are significantly different 
(P< 0.05).  
 

1Control = no antimicrobial added 
 Lysozyme = 0.1 ml of a 10 mg/ml (80 AU/ml) solution 
 Nisin = 0.1 ml of a 2mg/ml (5000 AU/ml) solution 
 Nisin-Lysozyme = 0.1 ml of a 2mg nisin + 10mg lysozyme/ml solution. 
  
 Each solution spread onto the 4 × 4 cm bologna surface of a 2.5 mm thick slice. 
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Fig. 4.1. Surface temperature profile of bologna during in-package pasteurization.                
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Fig. 4.2. Survivor curves for Listeria monocytogenes on bologna surface at 65°C for 
various antimicrobial treatments. Each data point represents the mean of three 
experimental replications. Standard deviation ranged between 0.01-0.6 log cfu/cm2.    
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Fig. 4.3. Survivor curves for Listeria monocytogenes on bologna surface at 62.5°C for 
various antimicrobial treatments. Each data point represents the mean of three 
experimental replications. Standard deviation ranged between 0.05-0.7 log cfu/cm2. 
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Fig. 4.4. Survivor curves for Listeria monocytogenes on bologna surface at 60°C for 
various antimicrobial treatments. Each data point represents the mean of three 
experimental replications. Standard deviation ranged between 0.03-0.8 log cfu/cm2. 
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Fig. 4.5. Weibull model fitted to the survivor curves of various treatments at 62.5°C.  
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Fig. 4.6. Weibull model fitted to survivor curves of various treatments at 65°C.  
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Fig. 4.7. Log-logistic model fitted to survivor curves of various treatments at 60°C.   
 
 
    
                         
                            CONTROL                                                                            LYSOZYME       
 
                      σ = 2.987       τ = 2.582                                                     σ = 2.545       τ = 2.984 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

- 6

- 5

- 4

- 3

- 2

- 1

0

0 100 200 300 400 500 600 700 800

- 5

- 4

- 3

- 2

- 1

0

0 100 200 300 400 500 600

 
                             NISIN                                                                         NISIN-LYSOZYME 
 
              σ = 2.437      τ = 2.698                                                              σ = 6.827      τ = 2.433                                                   
 
 
 
 
 
 

-5

-4

-3

-2

-1

0

0 100 200 300 400 500 600

-4

-3

-2

-1

0

0 100 200 300 400 500

 
 
 
 
 
 
 
 
 
 
 



122 

CHAPTER 5 
EFEECT OF COMBINING NISIN AND/OR LYSOZYME WITH IN-PACKAGE 

PASTEURIZATION FOR CONTROL OF LISTERIA MONOCYTOGENES IN 
READY-TO-EAT TURKEY BOLOGNA DURING REFRIGERATED STORAGE    

 
 

ABSTRACT 
                                           
      Post-processing contamination of ready-to-eat (RTE) meat and poultry products by L. 

monocytogenes is a major food safety issue. Because of the ability of L. monocytogenes 

to grow and multiply at refrigeration temperatures, even a low level of initial 

contamination can result in a substantial number on the food product at the time of 

consumption. This study investigated the efficacy of in-package pasteurization combined 

with pre-surface application of nisin and/or lysozyme to reduce and prevent the 

subsequent recovery and growth of L. monocytogenes during refrigerated storage on the 

surface of low-fat turkey bologna. Sterile bologna samples were treated with solutions of 

nisin (2mg/ml = 5000 AU/ml), lysozyme (10mg/ml = 80 AU/ml) and a mixture of nisin 

and lysozyme (2mg nisin+ 10mg lysozyme/ml) before in-package pasteurization at 65°C 

for 32 s. In-package pasteurization resulted in an immediate 3.5-4.2 log cfu/cm2 reduction 

in L. monocytogenes population for all treatments. All pasteurized treatments also 

resulted in a significant reduction of L. monocytogenes by 12 weeks compared to un-

pasteurized bologna. In-package pasteurization in combination with nisin or nisin-

lysozyme treatments was effective in reducing the population below detectable levels by 

2-3 weeks of storage. Results from this study could have a significant impact for the  
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industry since a reduction in bacterial population was achieved by a relatively short 

pasteurization time and antimicrobials reduced populations further during refrigerated 

storage. 

INTRODUCTION 
 
      Listeria monocytogenes is a pathogenic bacterium causing listeriosis and is 

considered as an important worldwide public health problem. Incidence of listeriosis in 

developed countries ranges from 4 to 8 cases per 1,000,000 individuals (FAO/WHO, 

2000). The mortality rate for listeriosis averages 30% compared to 0.38% and 0.1% for 

Salmonellosis and Campylobacteriosis, respectively (Wing and Gregory, 2002). About 

99% of listeriosis cases reported in the United States had a foodborne source (Mead et al., 

1999). Control of L. monocytogenes growth in food is problematic since the organism can 

grow at temperatures ranging from 1 to 45°C, tolerate high salt concentrations, and 

initiate growth at a relatively low pH (Vignolo et al., 2000). Foods considered as high-

risk sources of listeriosis include foods which are ready-to-eat, require refrigeration, and 

are stored for extended time periods (ILSI research foundation, 2005). These food types 

have potential for L. monocytogenes contamination and can support its growth to 

dangerous levels. Recent listeriosis outbreaks have been epidemiologically linked to deli 

meats and RTE meat and poultry products. A majority of food product recalls associated 

with L. monocytogenes contamination involve RTE meat and poultry products (FSIS, 

2005). Because of the public health significance of this organism and high susceptibility 

of RTE meat products for contamination and growth, the United States Department of 

Agriculture (USDA) implemented a “zero-tolerance” policy for this pathogen in RTE 

meat products (USDA, 1989). 
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      L. monocytogenes is often present in meat processing environments. Routine 

sanitation steps are sometimes not effective in eliminating this organism from the 

processing environment because of biofilm formation on various surfaces (Houben and 

Eckenhausen, 2006). This organism can contaminate RTE meat and poultry products 

during post-lethality steps such as slicing, peeling, and packaging (Murphy et al., 2005). 

Post-processing contamination of RTE meat products with L. monocytogenes is of even 

greater concern because often these products are consumed without additional heating. In 

an effort to control post-processing L. monocytogenes contamination of RTE meat and 

poultry products, the United States Department of Agriculture Food Safety and 

Inspection Service (USDA-FSIS) established an interim final rule in 2003 (USDA FSIS, 

2003). The establishments that produce RTE meat and poultry products are required to 

comply with one of three alternatives proposed by this rule. Alternatives 1 and 2 require 

the use of a post lethality treatment to reduce or eliminate L. monocytogenes and/or 

antimicrobial agents to limit or suppress the growth of the organism throughout the 

storage, whereas alternative 3 relies on sanitation measures and testing to control the 

organism in the processing environment. 

      There have been a number of intervention methods tested to reduce L. monocytogenes 

population on RTE meat surfaces. These methods include surface pasteurization, high 

pressure processing, pulsed electric field, irradiation, and application of various 

antimicrobial agents. In-package pasteurization of RTE meat products using steam or hot 

water was useful in reducing the number of L. monocytogenes cells on the surface of RTE 

meat products (Roering et al., 1998; Muriana et al., 2002; McCormick et al., 2004). 

Muriana et al. (2002) reported a 2 to 4 log reduction of L. monocytogenes populations in 
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RTE deli-style vacuum-packaged whole or formed turkey, ham, and roast beef following 

post-package pasteurization at 90.6 to 96.1°C for10 min. McCormick et al. (2003) 

determined the D values of L. monocytogenes and Salmonella Typhimurium at various 

surface pasteurization temperatures for low fat turkey bologna slices. These researchers 

found that complete inactivation of S. Typhimurium and L. monocytogenes cells can be 

achieved using an in-package pasteurization process. A study to evaluate small-scale hot-

water post packaging pasteurization as a post lethality treatment for L. monocytogenes on 

RTE beef snack sticks and natural-casing wieners by Ingham et al. (2005) found a ≥ 2 log 

reductions in bacterial populations when heated at 100°C for 1 min for individually 

packaged beef snack sticks and 4 min for packages of four and seven sticks. 

      Combining in-package pasteurization with antimicrobial treatments is a novel 

approach in food preservation (Samelis et al., 2002; Chen et al., 2004; McCormick et al., 

2005). The combined process may have a greater impact on bacterial populations 

compared to interventions using a single treatment and help to reduce the needed 

intensity of the heat treatment. McCormick et al. (2005) tested the inhibitory effect of in-

package pasteurization combined with a nisin-impregnated wheat gluten film over 8 

weeks storage against L. monocytogenes and S. Typhimurium populations on refrigerated 

bologna. These researchers found that combining both treatments significantly reduced 

the L. monocytogenes population and prevented outgrowth over 8 weeks storage 

compared to the individual treatments. 

      Nisin is the most commonly used natural antimicrobial compound and was approved 

for use in food in 1969 and was awarded generally recognized as safe (GRAS) status in 

the United States in 1988 (FDA, 1988). Nisin is effective in a number of food systems, 
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inhibiting the growth of a wide range of Gram-positive bacteria, including many 

important foodborne pathogens such as L. monocytogenes (Tagg et al., 1976). Nisin has 

shown synergistic antibacterial activity with several compounds and processes.  

Lysozyme is an enzyme that lyses the cell wall of certain Gram-positive bacteria. Hen 

egg white lysozyme is one of the few natural antimicrobials derived from an animal 

source that are applied as a food preservative. Synergistic antibacterial activity between 

nisin and lysozyme has been reported by various researchers (Chung and Hancock, 2000; 

Gill and Holley, 2000; Nattress and Baker, 2003). 

      L. monocytogenes is a psychrotrophic organism capable of survival and growth at 

refrigeration temperatures. Application of additional hurdles to control the growth of this 

organism would provide an increase margin of safety during refrigerated storage. Since 

refrigeration is a common method for storing RTE food products, understanding the 

survival and growth of L. monocytogenes at refrigeration temperatures in meat samples 

subjected to a combination of in-package pasteurization and antimicrobial treatments is 

important. Therefore the objective of this study was to evaluate the efficacy of surface 

application of nisin and/or lysozyme in combination with in-package pasteurization of 

RTE low fat turkey bologna against L. monocytogenes on the bologna surface during 

refrigerated storage (4°C) for 3 months. 

                                        
MATERIALS AND METHODS 

 
Food product preparation 

 
  Ready-to-eat low fat turkey bologna averaging 14.3% fat, 10.7% protein, and 71.4% 

moisture was used for the experiment. Bologna samples were batch irradiated for 521 

min using a cobalt 60 source with a total dose of 2.4 Mrad at 4,607 R/minute at Auburn 
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University. Irradiation was carried out to eliminate background flora before inoculation 

studies. Bologna samples were kept frozen at -70°C and thawed overnight at 4°C prior to 

experimentation. For inoculation and thermal inactivation studies, bologna slices of 

approximately 2.5 mm thickness were cut into 4cm × 4cm pieces using a sterile cutting 

template and each piece was used as an experimental unit. 

Culture preparation 

      Listeria monocytogenes ATCC 15313 was preserved by freezing the cultures at -70°C 

in vials containing brain heart infusion (BHI) broth (Difco Laboratories, Detroit, MI) 

supplemented with 20% (v/v) glycerol (Sigma, St. Louis, MO). To propagate the culture, 

a frozen vial was thawed at room temperature, and 0.1 ml of the thawed culture was 

transferred to 9.9 ml of BHI broth in screw-cap tubes and incubated aerobically for 16-18 

h at 37°C with agitation at 200 revolutions per min (Thermolyne Maxi-Mix III type 

65800, Barnstead/Thermolyne, Dubuque, IA).  The inoculum was prepared from a 

second transfer of this culture (0.1ml) to another 9.9 ml tube of BHI broth, and incubated 

aerobically for 16-18 h at 37°C with agitation. After incubating for 16 h, a washed cell 

suspension of the organism was prepared by harvesting the cells by centrifugation at 

3000 × g (IEC HN-SІI centrifuge, International Equipment Co., Inc., Needham Heights, 

MA), washing with 10 ml of  0.1% sterile peptone water (Bacto peptone, Difco 

Laboratories, Detroit, MI), and resuspending in 0.1% sterile peptone water to obtain a 

population of approximately 8- 9 log10 cfu/ml. Initial cell populations were verified by 

enumerating the cells after pour-plating in BHI agar and incubating at 37°C for 48 h. 
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Antimicrobial preparation 

Nisin 

      Nisaplin, a commercial nisin product (2.5% nisin) was provided by Danisco (Danisco 

USA Inc, New Century, KS). Solutions of required concentrations of nisin were prepared 

on the day of the experiment by dissolving appropriate amount of nisin in sterile distilled 

water. 

Lysozyme 

      Egg white lysozyme was provided by Q.P. Corporation (Q.P. Corporation, Japan). 

Solutions of lysozyme were prepared on the day of the experiment by dissolving 

appropriate amount in sterile distilled water. 

Antimicrobial activity assay 

      Activities of nisin and lysozyme were determined by critical dilution assay (Pucci et 

al., 1988). Serial two-fold dilutions of the antimicrobial agents were tested against L. 

monocytogenes ATCC 15313. Ten μl of each dilution was spotted on the surface of the 

BHI agar medium seeded uniformly with a suspension of L. monocytogenes. After 

incubation (48h at 37°C), the plates were checked for zones of inhibition. Titer of nisin 

and lysozyme in Arbitrary Units per ml (AU/ml) was expressed as the reciprocal of the 

highest dilution showing a definite inhibition zone. Activity of the antimicrobial 

compounds was expressed in AU/mg based on the weight of the antimicrobial 

compounds used in serial dilution and converted into AU/ml based on the weight (mg) of 

the antimicrobial compound used in the application solution. 
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Antimicrobial treatment and inoculation 

      Sterile, frozen bologna samples were thawed overnight at refrigeration temperatures 

(4±1°C). On the day of the experiment, bologna samples were removed from refrigerator 

and aseptically transferred to a sterile surface under a Germfree ®Bioflow chamber 

(Ormond Beach, FL). Each bologna slice was cut into 4cm × 4cm pieces using a sterile 

cutting template as previously described. Meat samples were uniformly surface-treated 

with 0.1 ml of the antimicrobial solutions. The activity units applied for each treatment 

were control: 0, nisin: 500 AU (5000 AU/ml=2 mg/ml), lysozyme: 8 AU (80 AU/ml=10 

mg/ml), and nisin-lysozyme: 508 AU (5000 AU nisin + 80 AU lysozyme/ml). After the 

antimicrobial treatment, all bologna surfaces were inoculated uniformly with a 0.1ml of a 

9 log10 cfu/ml suspension of L. monocytogenes resulting in a population of 8 log10 

cfu/slice. All samples were aseptically transferred to a post-pasteurization bag (Model 

CNP-310, Cryovac, Duncan, SC). Insulated thermocouples (K type Teflon, Omega 

Engineering, Inc, Stamford, CT) were attached to the surface of two un-inoculated 

bologna samples to measure the temperature during thermal treatment. All bags were 

then vacuum packaged (Koch Model, UV 250, Koch Supplies Inc, Kansas City, MO) 

(vacuum: 98, seal: 2, and gas : no.). 

A set of all treatments were stored in a refrigerator at 4°C without subjecting to heat 

treatment for 12 weeks and another set was subjected to heat treatment before storage. 

Thermal treatment/microbiological analysis 

      Bologna samples were exposed to 65°C for 32 s (After 60 s of come up time). This 

thermal treatment was targeted to achieve a 3 log reduction based on the results obtained 

in the previous part of this study (This target was set in order to have sufficient number of 
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surviving cells after the heat treatment to evaluate surviving cells during refrigerated 

storage). Vacuum-packaged bologna samples were simultaneously submerged into a 

water bath (Precision, model 186, Precision Scientific Incorporated, Chicago, USA) set to 

65°C. The surface temperature and time data were monitored using a channel datalogger 

(CALPlex 32, TechniCAL, New Orleans, LA) and thermal processing software 

(CALSoft, Version 1.32, TechniCAL, New Orleans, LA) during the entire process. Once 

the bologna surface reached the treatment temperature, samples were held for 32 s, 

removed from the water bath, and rapidly cooled by immersing in ice-water slurry for 10 

s to minimize further cell death, then stored in a refrigerator at 4°C for 12 weeks. Both 

pasteurized and non-pasteurized samples were tested on at day 0 and weeks 1, 2, 3, 4, 6, 

8, 10, and 12 for L. monocytogenes populations. Samples were aseptically removed from 

the pasteurization bag and homogenized with 99 ml (20 ml for pasteurized samples since 

those samples had lower populations) of sterile 0.1% peptone water by placing the 

samples into a stomacher (Seward Stomacher 400 Circulator, Seward, Inc, UK) for 1 min 

at 230 rpm. Homogenates were then serially diluted and appropriate serial dilutions were 

pour plated in duplicate using BHI agar. Plates were incubated at 37°C for 48h before 

enumerating colonies. Colony forming units (cfu) counts were converted to log10 cfu/cm2 

of the sample before data analysis. 

Statistical Analysis             

      The experiment was replicated 3 times on different days. Average L. monocytogenes 

populations during refrigerated storage for various treatments within pasteurized and non-

pasteurized groups were compared using linear contrasts of treatment means. Where 

significant difference were detected (P < 0.05), treatment means were compared using the 
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LSD comparison procedure. The data were analyzed using the general linear model 

procedure of SAS (SAS Institute, 2003). 

RESULTS AND DISCUSSION 

Antimicrobial activity assay 

      Nisin activity as determined by critical dilution assay was 2.5 × 103 AU/mg. We used 

2mg of nisin/ml and thus the activity of nisin in the solution used was 5000 AU/ml. 

Lysozyme activity was 8 AU/mg and thus in the solution (10mg/ml) used for the 

experiment, the activity was 80 AU/ml. 

Initial inhibitory effect 

      Treatment of bologna surfaces with antimicrobial agents alone did not reduce (P > 

0.05) the L. monocytogenes population at 0 day (Fig. 5.1). This may be due to the fact 

that the concentrations of antimicrobials used in the present study were not high enough 

to have an immediate bactericidal effect. We chose the antimicrobial concentrations in an 

attempt to elucidate any advantage of combining antimicrobial application with in-

package pasteurization (with minimum intensities of both treatments) and also to have 

sufficient surviving cells after heat treatment to study their behavior during refrigerated 

storage. With this in mind, the lack of an initial reduction is not surprising. This also 

made any synergism between heat and antimicrobials more obvious. 

      In-package pasteurization at 65°C for 32 s reduced (P < 0.05) the L. monocytogenes 

population at 0 day for all four treatments used in this study (Fig. 5.1). For the control 

sample, the process reduced bacterial population from 7.6 to 4.1 log cfu/cm2 and for 

lysozyme treatment from 7.4 to 3.5 log cfu/cm2. In-package pasteurization of nisin and 

nisin-lysozyme treated samples resulted in a reduction from 7.0 to 3.2 and 6.9 to 2.7 log 



  132 

cfu/cm2, respectively. For pasteurized samples, at 0 day, the L. monocytogenes 

populations for nisin and nisin-lysozyme treated samples were lower (P < 0.05) than the 

control treatment. Nisin-lysozyme treatment had lower L. monocytognes populations (P < 

0.05) compared to the lysozyme treatment. In-package pasteurization is an effective 

method to reduce L. monocytogenes populations on meat surfaces. Roering et al.(1998) 

found that hot water pasteurization of vacuum-sealed packages of summer sausages 

reduced a three-strain mixture of L. monocytogenes population by about 3 log cfu/g 

within 30, 60, and 90 s at 99, 88, and 77°C, respectively. Results from a study to evaluate 

the efficiency of hot water post-package pasteurization of RTE deli meats for reduction 

of L. monocytogenes by Muriana et al. (2002) indicate that minimal heating regimens of 2 

min at 90.6 to 96.1°C can readily provide 2 log reductions in most RTE deli meats. The 

relatively long heating time reported by these research workers compared to the present 

study is probably due to differences in sample thickness. Mangalassary et al. (2004) 

found that surface heating rate during in-package pasteurization of turkey bologna was 

higher for lower product thickness levels. McCormick et al. (2005) found that in-package 

pasteurization of low fat turkey bologna at 65°C for 81 s resulted in a 4.8 log cfu/g 

reduction of L. monocytognes population.  In the present study, in-package pasteurization 

at 65°C for 32 s resulted in a 3.5 log cfu/cm2 reduction in L. monocytogenes population 

on the bologna surface for the control treatment. In the above mentioned study by 

McCormick et al. (2005) as well as in the present study, the use of a single slice of 

bologna with approximate thickness of 2.5 mm might have contributed to a higher 

surface heating rate and thereby a higher reduction of L. monocytogenes populations even 
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by a less intensive treatment at 65°C and for the differences in inactivation levels from 

similar applications described above. 

    Combining in-package pasteurization of meat products with antimicrobial agents has 

been tested for enhanced bactericidal activity by various research workers (Chen et al., 

2004; Murphy et al., 2004; McCormick et al., 2005). In the present study, nisin-lysozyme 

treatment resulted in an additional reduction of 1.4 log cfu/cm2 in L. monocytogenes 

population (2.7 log cfu/cm2) immediately after in-package pasteurization compared to the 

control sample (Fig. 5.1). There was an additive inhibitory effect of nisin and lysozyme. 

In-package pasteurized bologna combined with no antimicrobial, lysozyme or nisin had 

4.1, 3.4 and 3.2 log cfu/cm2 L. monocytogenes populations, respectively. McCormick et 

al. (2005) reported an additional 1.5 log cfu/g reduction of L. monocytogenes population 

for bologna samples treated with a nisin containing film compared to a control sample 

when subjected to in-package pasteurization at 65°C for 81 s. Chen et al. (2004) 

combined the surface application of pediocin (ALTA 2341) with post-packaging thermal 

pasteurization in hot water at 71, 81, or 96°C for 30, 60, or 120 s to control L. 

monocytogenes on frankfurters. These researchers found that sample immersed in hot 

water at 96°C for at least 60 s or at 81°C for 120 s in combination with pediocin reduced 

the L. monocytogenes population to below detectable levels. 

Survival of Listeria monocytogenes during refrigerated storage 

      For non-pasteurized bologna samples, the L. monocytogenes population remained  

relatively constant for each treatment during 12 weeks refrigerated storage (Fig.5.1) 

fluctuating between 7 to 8 log cfu/cm2. There was no difference (P < 0.05) in the average 

L. monocytogenes populations for various treatments during 12 weeks of storage. 
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Absence of significant growth on non-pasteurized bologna surfaces during refrigerated 

storage could be attributed to vacuum packaging and the relatively high inoculation level 

since at 8 log cfu/cm2, bacterial growth may be limited by the environment (nutrients, 

metabolites). Sheridan et al. (1995) reported that Listeria spp. did not grow in vacuum-

packed lamb at 5°C. Absence of L. monocytogenes growth on vacuum packaged beef 

stored at 2, 4, 5 or 7°C were also reported by others (Kaya and Schmidt, 1991; Gibbs et 

al., 1993). In the present study, the concentration levels of antimicrobial treatments used 

were not high enough to reduce a relatively high initial concentration (7.58 log cfu/cm2) 

of L. monocytogenes during storage. In a previous study by Schillinger et al. (2001), 

when nisin was used at a concentration of 1000 IU/ml, regrowth was prevented in tofu 

inoculated with a low number of L. monocytogenes (60 cfu/g) but not at a 10- fold higher 

inoculum. But nisin was effective in reducing the L .monocytogenes population level at a 

concentration of 5000 IU/ml in vacuum-packaged bologna and ham when an initial 

inoculum level of 3 to 4 log cfu/cm2 was used (Geornaras et al., 2005). 

      Significant differences (P < 0.05) in L. monocytogenes populations were found 

among treatments at week 1 for pasteurized bologna samples. Nisin and nisin-lysozyme 

treatments had lower (P < 0.05) bacterial populations compared to control and lysozyme 

treatments. At week 2, no differences (P > 0.05) were found in L. monocytogenes 

populations among 4 treatments. In-package pasteurization of control samples resulted in 

a reduction (P < 0.05) of 2.4 log cfu/cm2 in L. monocytogenes population by 12 weeks of 

storage (Fig. 5.1). Bacterial population reduced almost linearly for first 4 weeks (from 4.1 

to 1.5 log cfu/cm2), after which there was an increase (P < 0.05) at 6 weeks to 2.9 log 

cfu/cm2. From 6 to 12 weeks, the population reduced (P < 0.05) to 2 log cfu/cm2. Even 
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though in-package pasteurization was effective in reducing the L. monocytogenes 

population during refrigerated storage, it did not completely eliminate its presence with 

about 2 log cfu/cm2 of cells remaining on the bologna surface after 12 weeks. This is 

probably due to the fact that there was no continuous inhibitory effect on the organism 

during storage as there was no additional inhibitory mechanism employed to suppress the 

growth. In-package pasteurization of lysozyme treated bologna samples resulted in a 1.9 

log cfu/cm2 reduction (from 3.5 to 1.6 log cfu/cm2) of L. monocytogenes by 8 weeks of 

refrigerated storage, after which no cells were detected through 12 weeks (Fig. 5.1). 

There was a 1.7 log cfu/cm2 reduction (P < 0.05) in L. monocytogenes populations (from 

3.2 to 1.5 log cfu/cm2) for nisin treated, pasteurized bologna during storage at 4°C from 

day 0 to week 3 (Fig. 5.1). After week 3, the L. monocytogenes population further 

declined to undetectable levels for the remainder of storage. Pasteurized nisin-lysozyme 

treatment reduced L. monocytogenes populations from 2.7 log cfu/cm2 to 1.5 log cfu/cm2 

over 2 weeks of refrigerated storage (Fig. 5.1) and after week 2, further declined to 

undetectable levels through 12 weeks. These results support the premise of the USDA 

RTE meat L. monocytogenes intervention ruling that the use of inhibitor is effective in 

reducing bacterial population during storage. The combination of in-package 

pasteurization with antimicrobial treatments reduced bacterial populations below 

detectable levels by 9 weeks. McCormick et al. (2005) studied the inhibitory effects of in-

package pasteurization at 65°C combined with a nisin (7% w/w) containing wheat gluten 

film over 8 weeks of storage against L. monocytogenes on refrigerated bologna. These 

researchers also reported that the combined treatment reduced the L. monocytogenes 

populations to below detectable levels by 8 weeks of refrigerated storage. The combined 
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effect of pediocin (3000 and 6000 AU) with post-packaging pasteurization (71, 81, 96°C) 

frankfurters during storage at 4, 10, and 25°C for 12 weeks resulted in no increase in L. 

monocytogenes populations up to 7 weeks for the combined treatment at any of the 

temperatures tested, however after 7 weeks, the counts increased for most samples (Chen 

et al., 2004). Survival data of L. monocytogenes from the studies mentioned above 

indicate that the survival and subsequent growth of L. monocytogenes on RTE meat 

surfaces would depend on various factors such as heating temperature, product 

characteristics, and the antimicrobial agents used. 

CONCLUSIONS 

      Data on the levels of L. monocytogenes contamination during post-processing 

operations in the preparation of RTE meat products is limited. Epidemiologic data 

indicate that foods involved in listeriosis outbreaks are those in which the organism has 

multiplied and in general have contained levels significantly higher than100 cfu/g 

(Buchanan et al., 1997; ICMSF, 2002). Therefore controlling the growth of the organism 

during refrigerated storage is an important step in reducing the risk of listeriosis.                                        

The main objective of this study was to evaluate the efficacy of surface application of 

nisin and/or lysozyme in combination with in-package pasteurization of RTE low fat 

turkey bologna against L. monocytogenes on the bologna surfaces during refrigerated 

storage for 3 months. Previous studies have demonstrated that a single intervention 

method is not adequate to control the growth of L. monocytogenes on RTE meat products 

during refrigerated storage. Results from this study indicate that combining in-package 

pasteurization of vacuum packaged RTE low fat turkey bologna at 65°C for 32 s with 

pre-surface application of nisin and nisin-lysozyme treatments significantly reduced a 
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relatively high initial inoculated population of L. monocytogenes and prevented the 

outgrowth during refrigerated storage. There were no L. monocytogenes cells detected 

after 3 weeks of storage for nisin and nisin-lysozyme treatments and no cells detected 

after 8 weeks for lysozyme treated bologna. The intervention methods used in the present 

study satisfies the requirements of alternative 1 of the interim final rule implemented by 

the USDA which requires the use of a post-lethality treatment to reduce the initial L. 

monocytogenes population and an antimicrobial agent or process to suppress or limit the 

growth of the pathogen during storage. Another advantage observed for combining 

pasteurization with antimicrobials was that the desirable antilisterial effects were 

obtained using lower levels of both treatments. This fact would help the industry in 

developing a cost-effective pasteurization method to control L. monocytogenes in RTE 

meat products and to preserve the desirable qualities of the food product. 
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Fig. 5.1. Mean Listeria monocytogenes populations on pasteurized and non-pasteurized 
turkey bologna for various antimicrobial treatments during refrigerated storage. Each data 
point represents mean of 3 replications. 0.00 log cfu/cm2 represents an undetectable 
(lowest detection limit 0.5 log cfu/cm2) number of Listeria cells. 
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