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ABSTRACT

This dissertation consists of two parts. Part I is about Electromagnetic Compatibility

(EMC) in power electronics and part II is about the Maximum Radiated Electromagnetic

Emissions Calculator (MREMC), which is a software tool for EMC in printed circuit

board (PCB) design.

Switched-mode power converters can be significant sources of electromagnetic fields

that interfere with the proper operation of nearby circuits or distant radio receivers. Part I

of this dissertation provides comprehensive and organized information on the latest EMC

developments in power converters. It describes and evaluates different technologies to

ensure that power converters meet electromagnetic compatibility requirements. Chapters

2 and 3 describe EMC noise sources and coupling mechanisms in power converters.

Chapter 4 reviews the measurements used to characterize and troubleshoot EMC

problems. Chapters 5 – 8 cover passive filter solutions, active filter solutions, noise

cancellation methods and reduced-noise driving schemes.

Part II describes the methods used, calculations made, and implementation details of

the MREMC, which is a software tool that allows the user to calculate the maximum

possible radiated emissions that could occur due to specific source geometries on a PCB.

Chapters 9 – 13 covers the I/O coupling EMI algorithm, Common-mode EMI algorithm,

Power Bus EMI algorithm and Differential-Mode EMI algorithm used in the MREMC.
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PART I

INTRODUCTION TO EMC IN POWER ELECTRONICS

Electromagnetic Compatibility (EMC) is the ability of devices and systems to operate

without error in their intended electromagnetic environment. An electronic device should

not interfere with other devices or be susceptible to electromagnetic emissions from other

devices. Electromagnetic interference (EMI) is a key concern in the design of switched-

mode power converters. Power converters can be significant sources of electromagnetic

fields that interfere with the proper operation of nearby circuits or distant radio receivers.

They can also be susceptible to electrical transients or strong coupled fields.

Compared to digital electronics, EMC design in power electronics didn’t get much

attention until the late 1990s when new developments in power semiconductor

technologies made switched-mode power converters more popular due to their high

efficiency. In this dissertation, only switched-mode power converters are discussed.

Therefore, the term ‘power converter’ or just ‘converter’ in the text always refers to

switched-mode converters.

Although there are many power converter topologies, this dissertation focuses on

basic converters, such as the DC-DC buck converter, boost converter, fly-back converter

and the DC-AC inverter. This is because, from an EMC standpoint, most converter

topologies share the same characteristics, and the EMC solutions introduced here can be

implemented on similar converter topologies with very little effort.
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The purpose of this part of the dissertation is to provide comprehensive and organized

information on the latest EMC developments in power converters. It describes and

evaluates different technologies to ensure that power converters meet electromagnetic

compatibility requirements.

Chapters 2 and 3 describe EMC noise sources and coupling mechanisms in power

converters. Chapter 4 reviews the measurements used to characterize and troubleshoot

EMC problems. Chapters 5 – 8 cover passive filter solutions, active filter solutions, noise

cancellation methods and reduced-noise driving schemes.

Abbreviations used in Part I of the dissertation are listed below:

AC Alternating current

AZSPWM Active-Zero-State-Pulse-Width-Modulation

CDCCFB Current-detecting-current-compensating-feedback

CDCCFF Current-detecting-current-compensating-feed-forward

CDVC Current-detecting-voltage-compensating

CM Common-mode

DC Direct current

DM Differential-mode

DUT Device under test

EM Electromagnetic
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EMC Electromagnetic compatibility

EMI Electromagnetic interference

EMS Electromagnetic susceptibility

ESL Equivalent series inductance

ESR Equivalent series resistance

FCC Federal Communications Commission

HF High frequency

IC Initial condition

IPEM Integrated power electronics module

KCL Kirchhoff's current law

KVL Kirchhoff's voltage law

LF Low frequency

LISN Line impedance stabilization network

NSPWM Near-State-Pulse-Width-Modulation

PCB Printed circuit board

PFC Power factor correction

PWM Pulse width modulation

QP Quasi-peak
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RF Radio frequency

RSPWM Remote-State-Pulse-Width-Modulation

SVPWM Space-Vector-Pulse-Width-Modulation

THD Total harmonic distortion

VDCC Voltage-detecting-current-compensating

VDVCFB Voltage-detecting-voltage-compensating-feedback

VDVCFF Voltage-detecting-voltage-compensating-feed-forward
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NOISE SOURCES

Electromagnetic noise is electromagnetic energy that produces undesirable effects,

such as degraded performance or system malfunctions. Examples of electromagnetic

noise sources include lightning, radio frequency transmitters and CPUs operating at high

clock speeds. Rapid changes in the electric field (voltage) or the magnetic field (current)

are a common characteristic of these noise sources. In switching power converters, high

efficiency is achieved by making the power transistors operate either in their cut-off or

saturation regions. The less time the power transistors operate in their linear region, the

less power loss there will be. As a result, these transistors can generally be modeled as

switches, either on (in saturation) or off (in cut-off). The high voltage change rate (dv/dt)

and the high current change rate (di/dt) associated with the switching operation of the

power transistors are the main sources of electromagnetic noise in modern switching

power converters. Typically, the voltage waveforms associated with the switching noise

are:

 The switching waveform,

 the ripple waveform,

 ringing after a transition, and

 the diode reverse recovery waveform.
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2.1 Switching Waveforms

2.1.1 Switching Waveforms in DC-DC Converters

The switching waveform in power converters is similar to a pulse-width modulated

(PWM) signal. In DC-DC converters, the duty cycle of the pulse waveform is constant if

the load is constant. FIGURE 2.1, FIGURE, 2.2, FIGURE 2.3 and FIGURE 2.4 show the

schematic of a DC-DC buck converter, its SPICE model, the simulated voltage waveform

at node A and the simulated current waveform flowing through branch B, respectively.

The circuit simulation here and in the rest of the dissertation is performed using NI

Multisim software’s SPICE simulation. A 30- resistor is inserted between the NMOS

gate and the pulse signal to control the voltage rise time at node A for better

demonstration of the noise waveform. In the buck converter, when the switch, S, closes,

the voltage source, Vin, supplies current to the load and the voltage at node A will be

same as Vin in the ideal circuit model. When the switch opens, the current from Vin is cut

off, but the inductor, L, keeps the current flowing to the load through the freewheeling

diode, D. The voltage at node A becomes -1 V, due to the 1-V voltage drop across the

diode. The average voltage across the load is regulated by controlling the duty cycle of

the switching operation.
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FIGURE 2.1 DC-DC buck converter schematic.

FIGURE 2.2 DC-DC buck converter model for simulation.



8

FIGURE 2.3 Voltage waveform at node A: (a) time domain, (b) frequency domain.

FIGURE 2.4 Waveform of the current flows through B.

Using the Fourier series expansion, a periodic signal can be represented by a sum of

its frequency components. For example, the perfect square wave with a period, T, and a

duty cycle, T/2, shown in FIGURE 2.5(a), has the frequency spectrum shown in FIGURE



9

2.5(b) [1]. In the figure, the magnitude of the even harmonics is zero and the magnitudes

of the odd harmonics decrease linearly with frequency (-20 dB/decade). In real power

converters, the switching waveform has a finite rise and fall time, tr and tf, as shown in

FIGURE 2.6. Assuming tr and tf are equal, the frequency representation of the trapezoidal

waveform is shown in FIGURE 2.7. The envelope of the spectra shows that magnitudes

of the harmonics decrease linearly with frequency until a certain frequency, which is

usually referred to as the cutoff frequency. Beyond the cutoff frequency, the magnitudes

of the harmonics are proportional to 1/f2, (-40 dB/decade). The magnitude of the

harmonics of the switching frequency and the cutoff frequency of an ideal trapezoidal

waveform with the same rise and fall time are given by,

  sinsin2
r

n
r

n tn TA TV
n n tT

T T

ππττ
πτ π

                

(2.1)

1
c

r

f
tπ

 , (2.2)

where A is the amplitude of the trapezoidal waveform, n is the number of the harmonic,

τ is the duty cycle, tr is the rise time, and T is the period. FIGURE 2.3(b) shows the

harmonics of the switching waveform rolling off by 20 dB per decade from 100 kHz to

approximately 6 MHz. At higher frequencies, the harmonics roll off by 40 dB per decade.

From (2.2), the waveform in FIGURE 2.3(a) has a rise/fall time of about 50 ns.
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FIGURE 2.5 Periodic signals in the time and frequency domain. [1]

FIGURE 2.6 Trapezoidal waveform. [1]

FIGURE 2.7 Frequency Domain representation of a trapezoidal signal. [1]

Although the switching frequencies of power converters are generally much lower

than that of most digital circuits, power converters can still generate a lot of high-
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frequency noise due to the high magnitude of the fundamental frequency component and

the very fast rise times.

2.1.2 Switching Waveform in DC-AC Inverters

In DC-AC inverters, in order to output an AC voltage, the duty cycle of the pulse

waveform is constantly changing. FIGURE 2.8 shows the schematic of a three-phase DC-

AC inverter. In each phase, there are two transistor switches. When the low-side switch at

node A is open and the high-side switch is closed, node A is tied to DC+ and current

flows from the DC source to the load. When the high-side switch opens, the load

inductance keeps the current flowing through the body diode of the low-side switch and

node A is tied to DC– through the diode. After a short period of time while both switches

are open, the low-side switch is closed and the current changes from being routed through

the body diode to being routed through the transistor’s pn junction. This is similar to a

synchronous DC-DC buck converter. The waveform at node A will have a shape

approximated by a series of trapezoidal pulses. The difference between the inverter and

the buck converter is that the time-average output current of each phase of the inverter is

sinusoidal AC. PWM is employed to change the duty cycle of the voltage waveform as

illustrated in FIGURE 2.9(a). In this example, the PWM carrier frequency (switching

frequency) is 20 kHz and the AC output waveform has a frequency of 50 Hz. The

frequency-domain plot of the waveform in FIGURE 2.9(b) exhibits a 50-Hz peak with a

magnitude equal to that of the resulting sinusoidal waveform. The 50-Hz component is

the power frequency that drives the load. It is referred to as the normal operating

frequency, or power frequency, of the power converter in the rest of this dissertation. The
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20-kHz switching frequency and its harmonics can be a source of EMC problems. As a

result, we want to design an EMC solution that reduces the switching noise while

preserving the power frequency component.

FIGURE 2.8 Three phase inverter model.

FIGURE 2.9 Waveform at node A. (a) Time domain. (b) Frequency domain.

This type of three-phase inverter is often used to drive three-phase AC motors. It is

the current that generates torque in the motors, and the inductance of the motor windings

filters (averages) the high-frequency current harmonics, so there is generally no need to
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filter the switching noise to make the motor work. FIGURE 2.10 shows a time-domain

plot of the phase currents for the inverter model above. As shown in the figure, the

waveforms are very close to perfect sine waves. However, from an EMC point of view,

the switching noise induces high-frequency currents on the phase cables that can result in

conducted or radiated emissions. Thus, quite often, an EMI filter at the inverter output is

required.

FIGURE 2.10 Phase current waveforms.

2.1.3 CM Voltage Waveform in Three-phase Inverters

Since common-mode (CM) noise on the inverter output cables is the main EMC

concern, let’s take a look at the CM noise source waveform. FIGURE 2.11 illustrates the

Space Vector Pulse Width Modulation (SVPWM) [2] scheme commonly used to drive a

three phase motor. The waveform in the lower left of the figure illustrates one period of

the SVPWM voltage waveform on each of the three phases. As shown in the figure, the

sum of the three phase voltages (relative to ground) is not constant with time. A CM

voltage is generated. This CM voltage can drive currents that flow to ground through

parasitic capacitances in the inverter and/or motor resulting in various EMC problems.

The CM voltage and its spectrum for the inverter model in FIGURE 2.7 are plotted in

FIGURE 2.12. Compared to the spectrum for the voltage on a single phase (FIGURE
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2.9(b)), the 50-Hz peak is significantly reduced. However the harmonics of the 20-kHz

PWM carrier frequency are about 10 dB higher. The three phase voltages cancel each

other at the power frequency, but add at the switching frequency and its harmonics. CM

currents on the inverter output cables don’t contribute to the motor torque. Counter-

measures must be employed when there are excessive CM currents that cause EMC

problems.

FIGURE 2.11 SVPWM driving scheme
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FIGURE 2.12 CM voltage of a three phase inverter. (a) Time domain. (b) Frequency
domain.

2.2 Current Ripple Waveforms

Current ripples are very common in power converters. They are the result of charging

and discharging of an inductor during the switching operation. Compared to the

trapezoidal switching waveform, current ripple is a series of triangular waveforms with

much smaller amplitude. It is usually much less of a concern as a noise source than the

switching harmonics, but can be problematic in some situations.

2.2.1 Continuous Current Mode

Using the DC-DC boost converter in FIGURE 2.13(a) as an example, the voltage at

node A and the current flowing through branch B are plotted in FIGURE 2.15(a) and

FIGURE 2.15(b), respectively. During operation, when the switch S closes, current flows

from the DC source to charge the inductor, L. When S opens, the energy stored in L will
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raise the voltage across the diode until it conducts. When the diode, D, is conducting, the

voltage at node A will be same as the output voltage. As shown in the figure, this voltage

is a trapezoidal waveform. The current fluctuates between about 21.48 A and 21.54 A

and never reaches zero. This operation mode is referred to as the continuous current

mode. The magnitude of the ripple current, I , can be calculated as [3],

sV d
I

Lf
  , (2.3)

where VS is the DC input voltage, d is the switching duty cycle, and f is the switching

frequency. Since the magnitude of the ripple is only 6 m thanks to the large value of L,

the magnitude of the fundamental frequency component is very small as shown in

FIGURE 2.15(c). The harmonics of the triangular current waveform decrease at a rate of

40 dB per decade.

FIGURE 2.13 DC-DC boost converter schematic.
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FIGURE 2.14 DC-DC boost converter model for simulation.

FIGURE 2.15 Waveforms. (a) Voltage at node A. (b) Current flows through B. (c)
Current waveform spectrum.
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2.2.2 Discontinuous Current Mode

The boost converter can also operate in a mode called discontinuous current mode. In

this mode, the current flowing through node A will decrease to zero during the operation.

One example of this is the boost Power Factor Correction (PFC) circuit shown in

FIGURE 2.16. The PFC, inserted between the AC rectifier output and the load, has the

same topology as a boost converter. As its name implies, it is used to correct the power

factor of the converter. As shown in FIGURE 2.17, with the PFC, the average input

current has the same sinusoidal waveform as the rectified input voltage, resulting in a

power factor close to 1. For low power applications, the boost PFC often works in the

discontinuous current mode as shown in the figure. The switch opens when the current

increases to the reference peak and closes when the current decreases to zero. One

advantage of the discontinuous current mode is that when the switch turns on, the current

going through the diode, D, is zero. As a result, the circuit will not suffer from the diode

reverse recovery effect, which will be discussed later in this chapter. With a 50-Hz AC

input and the reference peak current set to 10 A, the spectrum of the ripple current was

simulated and is plotted in FIGURE 2.18. As shown in the figure, the harmonics of the

switching frequency roll off by 40 dB per decade, similar to the ripple waveform in the

continuous current mode. However, the magnitude of the harmonic at the switching

frequency is much higher compared to the magnitude of the same peak in the continuous

current mode.
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FIGURE 2.16 Boost PFC circuit model

FIGURE 2.17 Ripple current flows through A.

FIGURE 2.18 Spectrum of the ripple current flows through A.

2.3 Ringing in the Switching Waveform

The switching waveform in FIGURE 2.3(a) represents the ideal situation where none

of the parasitic parameters of the transistor drive circuitry are considered. In reality, high

frequency ringing in the switching waveform, as shown in FIGURE 2.19(a), is often

observed. Correspondingly, a peak in the spectrum at harmonics near the ringing
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frequency is observed as shown in FIGURE 2.19(b). Since the peak between 70 MHz and

80 MHz is far above the cut-off frequency, it might be ignored in the early product design

stages. Understanding the ringing mechanism is an important aspect of the EMC design

of power converters.

FIGURE 2.19 Ringing in the switching waveform: (a) time domain, (b) frequency
domain, (c) ringing during voltage rising in time domain, (d) ringing during voltage

falling in time domain.

2.3.1 Ringing in the Rising Edge

When ringing occurs, there is generally an equivalent RLC circuit involved. Kam and

others [4] have studied the ringing waveform in synchronous buck converters. The

synchronous buck converter has the same topology as the buck converter except that the

diode is replaced by a MOSFET to reduce power loss. They concluded that the ringing is

generated by the RLC loop shown in FIGURE 2.20. R is the loop resistance including the

on-state resistance of the MOSFET, Q1. L is the parasitic inductance associated with the
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loop, L1+L2. C is the drain-to-source capacitance of the power MOSFET, Q2. When the

low-side MOSFET is turned off and the high-side MOSFET is turning on, the voltage

transient at node A will  be equivalent to the step response of the underdamped RLC loop,

as shown in FIGURE 2.21(a), assuming R = 50 m, L1 = L2 = 10 nH, and C = 200 pF.

The ringing at node A is plotted in FIGURE 2.21(b). The ringing frequency can be

calculated as,

1 1
79 MHz

2 2 20 200
f

LC nH pFπ π
   . (2.4)

The RLC circuit models most of the oscillation mechanism, however, it doesn’t account

for the freewheeling current (i.e. the current that flows through the reverse recovery

diode). Also, it doesn’t apply to the ringing on the falling edge of the switching

waveform.

FIGURE 2.20 Ringing loop of a buck dc-dc converter.



22

FIGURE 2.21 Simplified RLC model for voltage rising.

Assuming the ripple current in the load is negligible, a DC current source

representing the load current that freewheels through the reverse recovery diode is added

to the circuit in FIGURE 2.21(a) to model the ringing when the high-side MOSFET

closes, as shown in FIGURE 2.22(a). The voltage rise is simulated and plotted in

FIGURE 2.22(b) and FIGURE 2.23(b) for 6-amp and 30-amp load currents, respectively.

As shown in the figure, the voltage is about 5 V prior to the transition. The delay before

the ringing is due to the time needed to shut off the diode. When the Q1 switch closes,

current flows from the source and raises the voltage across the body diode in Q2 to shut it

off. The time needed to turn off the diode depends on the magnitude of the current

flowing in the diode and also on the loop inductance and resistance. By KCL, the current

increase in the Q1 branch and the current decrease in the Q2 branch must be the same.

Thus, the voltage across the inductances of the two branches, VL1 and VL2 must be equal.

As a result, the voltage at node A will be constant with a value approximately equal to

half the source voltage if the loop resistance is ignored. At the point when the body diode

of Q2 is completely turned off, the circuit can be as modeled as the circuit shown in
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FIGURE 2.24(a). IC stands for ‘Initial Condition’ here. The 200-pF capacitor in the

figure represents the drain-to-source capacitance of Q2. Since the circuit is now linear,

superposition theory can be applied to remove the current source and the circuit can be

simplified as shown in FIGURE 2.24(b). In this figure, when the switch S closes, ringing

at node A is expected.

FIGURE 2.22 Synchronous buck converter model for voltage rise with 6 A load current:
(a) model schematic, (b) voltage waveform at A.

FIGURE 2.23 Synchronous buck converter model for voltage rise with 30 A load current:
(a) model schematic, (b) voltage waveform at A.
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FIGURE 2.24 Circuit model when diode is off: (a) with current source, (b) without
current source.

In reality, the MOSFETs won’t turn on instantaneously. A rise time on the order of

tens of nanoseconds to hundreds of nanoseconds is typical. FIGURE 2.25(b) and

FIGURE 2.26(b) show the ringing waveforms during the voltage rise when the ideal

switch and the 50-m resistance in the above models are replaced by a SPICE MOSFET

model for 6-amp and 30-amp load currents, respectively. As shown in the figures, the

ringing is superimposed on the rising edges of the trapezoidal switching waveforms.
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FIGURE 2.25 Synchronous buck converter model for voltage rise with 6A load current:
(a) schematic with SPICE MOSFET model, (b) voltage waveform at A.

FIGURE 2.26 Synchronous buck converter model for voltage rise with 30 A load current:
(a) schematic with SPICE MOSFET model, (b) voltage waveform at A.

2.3.2 Ringing in the Falling Edge

The ringing on the falling edge of the trapezoidal waveform is due to the same RLC

loop, however, the R is mainly the on-state resistance of the body diode of Q2, and the C

is the drain-to-source capacitance of Q1. FIGURE 2.27(a) shows the circuit model for the

ringing on the falling edge. The same 6-A current source representing the load current is

used. The 200-pF capacitance in parallel with the diode is shorted as soon as the diode

starts conducting. When Q1 is turned off, the current flowing through node A to the load
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decreases from 6 A to zero. Meanwhile, the current flowing through the body diode of

Q2 increases from zero to 6 A. As a result, the voltages, VL1 and VL2 are induced across

the loop inductances, L1 and L2. The polarities of VL1 and VL2 are shown in the figure and

their magnitudes can be estimated by,

B
1 1 2 2,A

L L

di di
V L V L

dt dt
  (2.5)

where BAdi di

dt dt
 are the rates of current change at nodes A and B. Unlike the ringing

edge, VL1 + VL2 does not depend on the source voltage, Vs. After the MOSFET, Q1, is

completely turned off, all of the load current freewheels through the body diode of Q2 as

shown in FIGURE 2.24(a). Using superposition theory, this model can be simplified to

the model in FIGURE 2.24(b). Due to the RLC loop in the model, ringing on the falling

edge of the trapezoidal waveform is expected as shown in FIGURE 2.27(b). In the

simulation, the switch opens at 5 microseconds and the voltage at node A decreases to –

VL2 and starts ringing. The ringing magnitude depends on the initial value of VL1 + VL2,

which is load current and switching time dependent. FIGURE 2.29 shows the ringing

waveform with the ideal switch replaced by a SPICE MOSFET model. The ringing

magnitude is significantly reduced due to the longer switching time associated with the

MOSFET.
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FIGURE 2.27 Synchronous buck converter model for voltage fall with 6 A load current:
(a) model schematic, (b) voltage waveform at A.

FIGURE 2.28 Circuit model Q1is completely turned off: (a) with current source, (b)
without current source.
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FIGURE 2.29 Synchronous buck converter model for voltage rise with 6A load current:
(a) schematic with SPICE MOSFET model, (b) voltage waveform at A.

2.3.3 Ringing in Inverters

The three-phase DC-AC power inverter shown in FIGURE 2.30 has three branches

employing the same MOSFET pair that can be found in a synchronous buck converter.

Although the load current is AC, it is relatively low frequency and at the moment of

phase voltage transition (rise/fall of the trapezoidal waveform), the load current can still

be modeled as a DC current source. The major difference between the DC-AC inverter

and the DC-DC converter is that the load current can flow in both directions. As shown in

the figure, at some point during the operation current is flowing out on phase A and

coming back through phase B and phase C. For phases B and C, the load current is in the

opposite direction compared to the synchronous DC-DC converter we discussed above.

Using phase B as an example, the switching pattern in a PWM cycle can be

decomposed into following steps where initially the load current flows through the pn

junction of S4 to DC- and VB=0. (VB is voltage on phase B)
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Step 1: S4 opens, the load current flows through the body diode of S3 to DC+, VB =

VDC. (voltage drop across the body diode is neglected)

Step 2: S3 closes, the load current flows through the pn junction of S3 to DC+, VB =

VDC.

Step 3: S3 opens, the load current flows through the body diode of S3 to DC+, VB =

VDC.

Step 4: S4 closes, the load current flows through the pn junction of S4 to DC-, VB = 0.

The ringing associated with the voltage rise and fall can be modeled as shown in

FIGURE 2.31(a) and FIGURE 2.32(a) using the method introduced above. Note that in

these models the negative terminal of the battery is the zero-volt reference, branch A is

the S3 branch and branch B is the S4 branch.

FIGURE 2.30 Three phase DC-AC inverter model.
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FIGURE 2.31 Inverter phase model for voltage rise with 6 A load current: (a) model
schematic, (b) voltage waveform at A

FIGURE 2.32 Inverter phase model for voltage fall with 6 A load current: (a) model
schematic, (b) voltage waveform at A.

2.4 Waveform Due to Diode Reverse Recovery

Another well-known EMI source waveform in power electronics is caused by the

Diode Reverse Recovery effect. It produces a sharp negative current and voltage spike on

the output as shown in FIGURE 2.33. When the voltage across a diode transitions from a

forward bias to a reverse bias voltage, Vr, it makes the diode transit from the on state to

the off state. However, this doesn’t occur instantaneously. As shown in FIGURE 2.33(a),

the current in the diode decreases to zero when Vr is first applied. In contrast to an ideal

diode in which the current would stay at zero, the current in a real diode increases in the

opposite direction to a peak value of Ip, and returns to zero only after a time, tr. tr is called
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the reverse recovery time. As a result, the voltage across the diode will have a negative

spike, Vp, before it settles at Vr, as shown in FIGURE 2.33(b). More information about

the diode reverse recovery effect can be found in [5].

FIGURE 2.33 Diode reverse recovery.

The reverse recovery time of a diode can be of the order of nanoseconds and the

negative current spike can be very high. These narrow current spikes produce wide band

noise. In power converters, this wideband noise can enhance the ringing in the voltage

and current waveforms due to the parasitic L and C in the circuit. In Section 2.3, where

the turn-on and turn-off transient response of power converters was modeled, accounting

for the diode reverse recovery can significantly increase the amplitude of the ringing.
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COUPLING MECHANISMS

In this section, main mechanisms that couple noise sources to victim circuits will be

discussed. They include:

 DM conducted emissions due to ESR and ESL of the filter capacitor,

 CM conducted emissions through parasitic capacitance,

 Radiated emissions from attached cables, and

 Near-field coupling.

The conducted emissions, both DM and CM, can contaminate the power grid and

interfere with the electronic devices connected to it. Radiated emissions and near-field

coupling can affect devices whether they are connected to the grid or not. These

electromagnetic emissions need to comply with a variety of EMC regulations before the

product can be shipped.

3.1 DM Conducted Emissions

The conducted emissions measurements described in regulations such as the FCC

Rules and Regulations, Title 47, Part 15, require a Linear Impedance Stabilization

Network (LISN) be inserted in the power supply lines to measure the conducted noise

from 150 kHz to 30MHz. In this frequency range, the LISN provides a constant 50-Ω

power line impedance from each phase to ground, thus the buck converter in FIGURE 2.1

in a DM conducted emissions test can be modeled by the circuit shown in FIGURE 3.1.

In the figure, Is is the noise current source, whose waveform can be found in FIGURE 2.4,
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if the ringing and diode reverse recovery effects are ignored. The total LISN impedance

is 100Ω, which is the sum of two 50-Ω LISN impedances connected in series. In this

model, the converter’s filter capacitor (X capacitor) is represented by the capacitor

labeled Cin. The filter capacitor shunts the noise current source, Is. Theoretically, if the

value of the capacitor is large enough, the DM conducted noise can be reduced to an

arbitrarily low value. However, the ESR and ESL associated with the filter capacitor will

limit its effectiveness.

FIGURE 3.1 Simplified noise model of a buck converter with LISN.

A model of the ESR and ESL of the filter capacitor for the buck converter is shown in

FIGURE 3.2. Assuming the value of Cin is large enough that it can be considered to have

an insignificant impedance in the EMI noise frequency range, the DM noise received by

the LISN can be calculated as,

50( )

50
in in

DM S
in in

R j L
V I

R j L

ω
ω




 
. (3.1)

Even at 30 MHz (the upper end of the conducted emissions frequency band), in inR j Lω

is often much smaller than 50 ohms, given that Rin is typically much smaller than 1 ohm



34

and Lin is usually on the order of tens of nanohenries at most. As a result, Equation (3.1)

can be simplified to,

( )DM in in SV R j L Iω  . (3.2)

From (3.2), we can see how the ESR and ESL of the filter capacitor result in conducted

emissions. As discussed above, the harmonics of Is decrease at a rate of 20 dB per decade

up to the cutoff frequency and at 40 dB per decade thereafter. As a result, harmonics of

VDM due to the ESR roll off quickly with frequency, while harmonics of VDM due to the

ESL stay flat up to the cut-off frequency. Consequently, the ESL of the filter capacitor is

often a primary factor affecting DM conducted emissions in the megahertz range, while

the ESR can dominate at lower frequencies. Both the ESL and ESR of the filter capacitor

depend on the capacitor packaging and layout. For this reason a poor choice of capacitor

or a poor layout can result in DM conducted emissions that exceed the regulatory limits.

FIGURE 3.2 ESR and ESL of a filter capacitor.
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The example shown in FIGURE 3.3(a) illustrates how DM conducted emissions in a

buck converter can originate. As shown in the figure, a LISN model is inserted in the

power supply lines. The simulated spectrum of the noise current is shown in FIGURE

3.3(b). The magnitude of the noise harmonics at 300 kHz and 5 MHz are 121 dBA and

94 dBA, respectively. The FCC class B conducted EMI limits at 300 kHz and 5 MHz

are 60 dBV and 56 dBV, respectively. From (3.2), we can calculate and predict that an

ESR that is larger than 1 m, or an ESL larger than 2 nH will make the conducted EMI

exceed the FCC limit. FIGURE 3.4 compares the noise received by the LISN when the

filter capacitor has no ESR or ESL to the noise received when the ESR is 1 m and the

ESL is 2 nH, respectively. The FCC Class B conducted emissions limit is also plotted in

the figures. For a large electrolytic filter capacitor, the ESR and ESL are often greater

than 1 m and 2 nH, respectively, when the capacitor leads and connected traces are

taken into consideration. Thus, in order to design a buck converter meeting the above

specification, additional noise mitigation solutions may be required.
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FIGURE 3.3 Buck converter DM conducted emissions example. (a) Circuit model. (b)
Noise spectrum.
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FIGURE 3.4 Effects of ESR and ESL of a filter capacitor.

For a boost converter operating in the continuous current mode, the noise source

(harmonics of Is) is much smaller. For the boost PFC operating in the discontinuous

current mode that we discussed in Section 2.2.2, the low frequency noise is large and the

ESR of the filter capacitor may cause the converter fail to comply with the EMC

regulations.
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3.2 CM Conducted Emissions

Parasitic capacitance to ground is usually the main coupling path that contributes to

CM conducted emissions in power converters. Three important types of parasitic

capacitance that commonly exist in power converters will be discussed. They are:

 I. Parasitic capacitance between thermal pads of the power transistors and the

heat sink,

 II. Inter-winding parasitic capacitance in the inductors or transformers, and

 III. Parasitic capacitance between the motor windings and the motor chassis.

3.2.1 Parasitic Capacitance in a Buck Converter

Using the buck converter as an example, the three types of the parasitic capacitances

are shown as C1, C2, and C3, respectively, in FIGURE 3.5.

FIGURE 3.5 Model of parasitic capacitances in a buck converter.

Considering only the switching noise at node A, FIGURE 3.5 can be redrawn as the

noise source and LISN model shown in FIGURE 3.6, where Vs is the switching noise

voltage. FIGURE 3.6 can be further simplified to the model shown in FIGURE 3.7.
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FIGURE 3.6 Model of parasitic capacitances in a buck converter with noise source and
LISN.

FIGURE 3.7 Simplified model of parasitic capacitances in a buck converter with noise
source and LISN.

As shown in the figure, C1 is the parasitic capacitance between the power diode

thermal pad and the heatsink. In a synchronous buck converter where the power diode is

replaced by a power MOSFET or IGBT, C1 will be the parasitic capacitance between the

drain/emitter of the MOSFET/IGBT and the heatsink. The heatsink is usually bolted to

the converter chassis for thermal and safety purposes. (If the heatsink were floated, it

could become a shock hazard if the insulation between the transistor and the heatsink

broke down.) As a result, C1 couples current from the noise source, V1, to the ground and

results in CM conducted emissions. Since the value of C1 is relatively large, this type of

parasitic capacitance is usually considered the biggest contributor to the CM conducted
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emissions. From the circuit model, the CM conducted emissions, VCM, due to C1 can be

easily calculated by,

25

25 1/ 2 1CM SV V
j fCπ




(3.3)

where f ranges from 150 kHz to 30 MHz for the FCC test.

The second type of the parasitic capacitance is the inter-winding parasitic capacitance.

It makes the inductor look like a capacitor at high frequencies and provides a path for the

high frequency noise. In the buck converter, the switching noise is coupled to the load

and then to ground through the load parasitic capacitance. In isolated converter

topologies, this type of parasitic capacitance exists between the transform windings and

couples switching noise from the primary side of the transformer to the secondary side.

Increasing the space between the windings can reduce this parasitic capacitance; however,

it also increases the volume of the inductor or transformer.

Strictly speaking, the third type of parasitic capacitance is not in the converter.

However, it does contribute to the CM conducted emissions in many applications. One

example is electric motor drive systems. Since the motor chassis is usually electrically

and mechanically connected to the system ground, the parasitic capacitance between the

motor windings and the motor chassis can pass PWM noise currents to the chassis ground

and cause various EMC problems.

An example of CM conducted emissions in the buck converter is modeled as shown

in FIGURE 3.8(a). The filter capacitor in this model doesn’t have associated ESR or ESL
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in order to excluding the DM conducted emissions. The spectrum of the noise measured

by the LISN is shown in FIGURE 3.8(b). At 500 kHz, the magnitude of the harmonic is

124 dBV. The FCC class B conducted EMI limit at 500 kHz is 56 dBV. From (3.3),

we know that the value of the parasitic capacitance, C1, that could make the CM

conducted emissions exceed the FCC limit is only 5 pF. FIGURE 3.9 plots the simulated

noise received by the LISN with a 5-pF parasitic capacitance. As shown in the figure, the

noise level just touches the FCC Class B conducted emissions limit. The parasitic

capacitance between the thermal pad of a power MOSFET and the heatsink can range

from tens of picofarads to hundreds of picofarads. Thus, without additional effort, the

converter will fail to comply with the FCC regulation.



42

FIGURE 3.8 Buck converter CM conducted emissions example: (a) circuit model, (b)
noise spectrum at node A.

FIGURE 3.9 CM mode conducted emissions with 5pF parasitic capacitance.
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3.2.2 Parasitic Capacitance in Other Types of Converters

In an isolated DC-DC converter such as the fly-back DC-DC converter shown in

FIGURE 3.10, the parasitic capacitances, through which the CM noise current passes, are

similar to those in a buck converter, except that the Type II parasitic capacitance is the

parasitic capacitance between the primary and secondary winding of the transformer in

the fly-back converter. Note that Type III parasitic capacitance is shorted if the load

negative is grounded to the chassis ground as shown in the figure. The switching noise

voltage at the drain of the MOSFET generates CM current flowing through C1 and C2 to

the chassis ground as shown in the figure.

FIGURE 3.10 Model of parasitic capacitances in a flyback converter

In a single phase DC-AC inverter, the three types of parasitic capacitances and the

CM current route are shown in FIGURE 3.11. Type I and Type III parasitic capacitances

are the same as they were in a buck converter. Noise voltages at the drains of the low side
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MOSFETs generate CM current that flows through C1 and C3 to the chassis ground as

shown in the figure.

FIGURE 3.11 Model of parasitic capacitances in a single phase inverter

3.3 Radiated Emissions

Noise sources can couple energy through EM radiation and affect nearby or distant

systems. This coupling usually requires relatively efficient radiators, such as structures

approximating resonant dipole or monopole antennas. In power converters, attached

cables are most likely to be the radiators, because the converter circuit board is usually

electrically small at the frequencies where the converter noise is strongest. Also, it is

mostly likely to be a CM current that causes the radiated emissions if the cables are

placed close to each other [6]. Two common radiated emissions mechanisms in power

converters occur when a CM voltage drives:

 Attached cables against other electrically large objects, or

 A large cable-chassis loop.
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3.3.1 Attached Cables

A power converter PCB layout is illustrated in FIGURE 3.12(a). In this example both

input and output have ground connections, and Vo represents the DM output noise. Note

that the DM noise voltage cannot radiate efficiently if the output cables are close to each

other. As stated earlier, it is usually the CM noise voltage that drives a cable against

another electrically large object that causes radiation.

Su and Hubing [7] described a model for determining the CM currents on cables

attached to a PCB  based on the concept of imbalance difference. This model is used here

to estimate radiated emissions on the above buck converter. In FIGURE 3.12(a), h1, h2

and h3 are the imbalance parameters for the part of the board-cable geometry to the left

of point a, between points a and b, and to the right of point b, respectively. An imbalance

parameter can be defined for any transmission line geometry. It is a number between 0

and 0.5, where a perfectly balanced structure (e.g., two symmetric conductors with

identical cross sections) has an imbalance parameter of 0.5. Perfectly unbalanced

structures (e.g., a coaxial cable or a trace over an infinite ground plane) have imbalance

parameters equal to 0 [7]. As a result, the model in the figure has h1 = 0, h3 = 0.5, and h2

being between 0 and 0.5. The change in the imbalance at the interconnection can be used

to define an equivalent common-mode voltage source. As shown in the figure, there is a

change in the imbalance parameter, h, at both ends, a and b, of the output trace. At these

two points, CM voltages are generated as shown in FIGURE 3.12(b) and their

magnitudes can be calculated by,
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( 2 1)a oV h h V  (3.4)

( 3 2)b oV h h V  (3.5)

For microstrip trace structures, the imbalance parameter is given by [7],

trace

trace board

C
h

C C



(3.6)

where Ctrace and Cboard are the stray capacitances per unit length of the signal trace and

the ground plane, respectively. Apparently, h2 is very close to zero if Cboard is much

larger than Ctrace. For the worst case scenario, we assume h2 = 0, then Va will be zero.

The model becomes a CM voltage, Vb, driving the input and output cables as shown in

FIGURE 3.12(c), assuming the cables are much longer than the length of the PCB. The

magnitude of Vb will be half of the DM noise source, according to (3.5).
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FIGURE 3.12 Imbalance difference model. (a) Trace-board geometry. (b) Equivalent
model. (c) Simplified model.

For a DC-DC buck converter, the output DC voltage usually doesn’t have radiated

emissions problems because the high frequency content of the output can be easily

filtered. However, the noise in the output of DC-AC inverters is not easy to filter and thus

must be addressed. For example, the single phase inverter shown in FIGURE 3.13 has a

trapezoidal DM output waveform similar to that of a three phase inverter, and its

spectrum decreases by 20 dB per decade up to the cut-off frequency and 40dB per decade

thereafter. Assuming the output power frequency AC voltage has a magnitude of 6 V, and

the switching waveform has a rise/fall time of 50 ns, the magnitude of the harmonic at the

switching frequency, 20 kHz, will be 6 V, or 135 dBV, and the cutoff frequency is at
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about 6MHz. Thus the DM noise at 30MHz is about 73 dBV. Using the imbalance

difference mode, the CM noise at 30 MHz can be estimated as half of the DM voltage, or

about 67 dBV. If the input and output cable happen to be 2.5 m long, the inverter will

become a half-wave dipole at 30 MHz. The resulting maximum electric field can be

calculated by [8],

max
max

60
I

E
r

 (3.7)

where r is the distance from the inverter and Imax is the peak CM current on the cables.

For the dipole antenna, Imax can be found by,

max 73
CMV

I  (3.8)

At r = 10 m, the maximum electric field can then be calculated to be 45 dBV/m, which

is about 15 dB above the FCC class B radiated emissions limit.

FIGURE 3.13 Single phase DC-AC inverter.

The above example is the worst case scenario for radiation from a cable-inverter

configuration. In such cases, it doesn’t require a lot of output DM noise to cause the
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inverter to fail the FCC radiated emissions test. In real applications, the input voltage may

be much higher and the switching faster (shorter rising/falling time, or higher cutoff

frequency), which further increases the radiated emissions.

3.3.2 Large Current Loop

If both the inverter and the load are connected to the same chassis ground, a CM

current will be generated through the type I and type III parasitic capacitances, as shown

in FIGURE 3.14. Assume both parasitic capacitances are 300 pF, and the output cables

are 1 m long and 20 cm above a large chassis ground. Using image theory, the current

loop is equivalent to a 100 cm × 40 cm rectangular loop. At 30 MHz, the loop is

electrically small and the far field can be calculated from [8],

2
max

2max

120 I A
E

r

π
λ

 (3.9)

where Imax is the peak current in the loop, r is the distance from the loop, A is the loop

area which is 0.4 m2, and λ is the wavelength at 30 MHz which equals 10 m. Imax can be

found using,

max
1 4

DM

C C rad

V
I

Z Z R


 
(3.10)

where VDM is the magnitude of the DM output noise source at 30 MHz, which is 73 dBV,

or 4.5 mV from the previous example. ZC1 + ZC4 is the impedance of the two parasitic

capacitances in series, which is 35 Ω at 30 MHz. Rrad is the radiation resistance of the

electrically small loop, which can be found by,
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   (3.11)

Substituting VDM, ZC1 + ZC4 and Rrad into (3.10), we have Imax = 128 . Then substituting

Imax into (3.9), at r = 10 m, the field strength can be calculated to be 60.6 V/m, or 35.6

dBV/m. This is 6 dB above the FCC class B radiated emissions limit.

FIGURE 3.14 Single phase DC-AC inverter with chassis ground.

The above example shows the mechanism by which the EM noise is radiated from the

CM current loop. As demonstrated in the example, if the parasitic capacitances are large,

they could easily cause the inverter to fail to comply with the FCC radiated emissions

regulations.

3.4 Near-Field Coupling

The near field usually refers to a distance that is much smaller than a wavelength. For

example, the wavelength at 100 MHz is 3 m in free space. Most PCBs for power

converters are considered electrically small at that frequency. Thus the coupling from the

switching noise to other sensors or devices on the same PCB is considered near-field
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coupling. Similarly, at frequencies below 10MHz, the coupling between the converter

and sensors or devices several meters away can still be considered near-field coupling.

For example, interference between a power inverter on an electric hybrid vehicle and an

AM radio in the same vehicle is near-field coupling. There are three types of near-field

coupling mechanisms:

 Common impedance coupling,

 Electric field coupling, and

 Magnetic field coupling.

3.4.1 Common Impedance Coupling

FIGURE 3.15 shows two simple circuits sharing a common return path with a finite

impedance of RRET. If the source voltage of circuit 2, VS2, is zero, the voltage appearing

on the load of circuit 2 due to current in circuit 1 will be VRL2 = I1RRET. Thus the current

in circuit 1 affects the load voltage in circuit 2 when the two circuits share a return path.

This coupling mechanism is called common impedance coupling. Details on calculating

common impedance coupling can be found in [9].

FIGURE 3.15 Common impedance coupling model [9]
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Since high current is usually involved in power converters, special care must be taken

when laying out the PCB to avoid common impedance coupling. Take the single phase

inverter shown in FIGURE 3.16, for example. The inverter controller requires feedback

from a sensor at the load, and both the controller and the sensor are referenced to the

chassis ground. CM current can cause a potential difference between the inverter chassis

ground and load chassis ground due to the finite inductance and resistance of the chassis

ground. As a result, the output signal of the sensor will be affected, which may lead to

degraded performance or even malfunction of the whole system.

FIGURE 3.16 Common impedance coupling in a single phase DC-AC inverter.

3.4.2 Electric Field Coupling

Electric field coupling occurs when energy is coupled from one circuit to another

through an electric field [10]. The coupling path for electric field coupling between two

simple circuits can be modeled as a mutual capacitance connecting the two circuits. As

shown in FIGURE 3.17, if VS2 is zero, a voltage appears on RL2 due to VS1 because of the

coupling path C12. Thus the source voltage in circuit 1 affects the load voltage in circuit 2
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due to electric field coupling. Details about calculation of electric field coupling can be

found in [10].

FIGURE 3.17 Capacitive coupling path between two circuits. [10]

In power converters, the switching operation of the power transistors will generate

high dv/dt in the circuit. If the trace or wire with high dv/dt is placed close to other

sensitive circuits, it can interfere with those sensitive circuits through electric field

coupling. FIGURE 3.18 is an example of this coupling mechanism in an inverter. Due to

the switching operation, the trapezoidal phase voltage has a very high dv/dt during

voltage rise and fall, especially for high voltage applications. If the phase wire is placed

close to some I/O wire with critical signals, the mutual capacitance, C12, will be large and

it will couple energy from the phase wire to the signal wire, causing problems for the

system.

FIGURE 3.18 Electric field coupling in a single phase DC-AC inverter.
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3.4.3 Magnetic Field Coupling

Magnetic field coupling occurs when energy is coupled from one circuit to another

through a magnetic field [11]. Magnetic field coupling between two simple circuits can

be modeled using a mutual inductance. As shown in FIGURE 3.19, if VS2 is zero, a

voltage appears on RL2 due to the current in circuit 1 because of the mutual inductance,

M12. Thus the source voltage in circuit 1 produces a load voltage in circuit 2 due to

magnetic field coupling. Details about the calculation of magnetic field coupling can be

found in [11].

FIGURE 3.19 Magnetic field coupling between two circuits.[11]

In power converters, the switching operation of the power transistors will generate

high di/dt in the circuit. If the trace or wire with high di/dt is close to other sensitive

circuits, it may couple noise to the circuits through magnetic field coupling. FIGURE

3.20 shows an example of this coupling mechanism in an inverter. Due to the switching

operation, the trapezoidal current waveform in circuit loop1 has a very high di/dt during

current rise and fall, especially for high current applications. If the circuit loop is placed

close to another circuit loop, the mutual inductance, M12, can be very large. This is

illustrated in FIGURE 3.20 where loop1 is located close to loop2. For an inverter, the
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affected loop could be a MOSFET driver circuit or a voltage/current sensing circuit, both

of which are critical to the operation of the inverter.

FIGURE 3.20 Magnetic field coupling in a single phase DC-AC inverter.
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MEASUREMENT

Chapters 2 and 3 discussed how EMI is generated in power converters through

various coupling mechanisms. For better EMI mitigation strategy design, it would be

helpful to characterize different types of noise source, loads, and coupling paths. It is also

important to evaluate a solution for comparison. The most common way to obtain such

information is through measurements. This chapter discusses measurements used in EMI

mitigation strategy development for power converters.

For noise quantification, 4.1 introduces measurements used for EMC compliance tests,

such as conducted and radiated emissions tests. These tests are documented in detail in

different standards and regulations, and must be performed with standardized instruments,

test setups and test procedures. Obtaining detailed information about the noise source,

such as its CM and DM components and its impedance, is the subject of 4.2 and 4.3. To

characterize the EMI noise coupling paths, 4.4 introduces a method to extract the key

parasitic parameters in power modules used in power converters. Finally, characterization

of external filters to predict and evaluate performance is introduced in 4.5.

4.1 EMI Noise Measurement

Although the ultimate motivation of mitigating EMI in power converters is to reduce

the risk of problems in real situations, compliance with EMC regulations is usually the

main priority. This is because EMC compliance tests are more tangible and consistent;

there are clear pass or fail standards. Fortunately compliance with EMC standards does

reduce the likelihood of EMI problems in real situations. As a result, EMC compliance
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tests are the most common measurements we conduct to determine EMI issues and

evaluate EMC solutions. This section uses the EMC compliance test documented in FCC

Title 47 Part 15 as an example to introduce a measurement that quantifies the EMI noise

level.

4.1.1 Conducted Emissions Test

In a conducted emissions measurement, a Line Impedance Stabilization Network

(LISN) is employed to provide consistent test results. An LISN is a device that is placed

between the power line and the device under test (DUT), presenting a precise impedance

over a designated frequency range during the measurement. The LISN simplifies the

measurement of the noise current passing out the power line by converting it to a voltage.

FIGURE 4.1 shows the schematic of an LISN used in the conducted emissions test in

FCC Title 47 Part 15. The 50 μH inductor and the 1μF capacitor form a CL filter, which

prevents noise on the power line from entering the DUT and contaminating the

measurement. The 0.1 μF capacitor couples the conducted emissions from the DUT to the

measuring instrument. Note that the 0.1 μF capacitor has an impedance of 10 Ω to 0.05 Ω

in the range of 150 kHz to 30 MHz, which is much smaller than the 50-Ω input

impedance of the measuring instrument. The 1-kΩ resistor is used to discharge the

capacitors when the LISN is disconnected. The 150 kHz to 30 MHz conducted emissions

frequency range is specified by the regulation. Other regulations in different areas for

different products may have different frequency ranges and emissions limits. LISN

designs could also vary, however, the principle of the LISN of providing a known
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impedance for converting noise current to a voltage signal should be the same. The

impedance of the DUT port of the LISN in FIGURE 4.1 is plotted in FIGURE 4.2.

FIGURE 4.1 Schematic of a common LISN.

FIGURE 4.2 DUT port impedance of the LISN.

From the plot, we can see that the LISN presents a constant impedance of about 48 Ω

from 500 kHz to 30 MHz. For simplicity, the LISN is usually modeled as a 50-Ω

impedance over the frequency range of the conducted emissions measurement. Multiple

power lines require multiple LISNs.
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The voltages across the 50-Ω input resistances of the measuring instrument, vp and vn,

are recorded to determine the conducted emissions level. Although separation of the DM

and CM noises is not required by most regulations, they are extremely important for

characterizing the noise and developing noise mitigation strategies. Taking the single

phase AC power line for example, the vector form of the conducted noise current on each

line, pi and ni can be found by,

50
p

p

v
i  , (4.1)

50
n

n

v
i  . (4.2)

The CM and DM conducted noise currents, cmi and dmi , are given by,

   1 1

2 100cm p n p ni i i v v    , (4.3)

   1 1

2 100dm p n p ni i i v v    . (4.4)

(4.3) and (4.4) require both the magnitude and phase information of the two LISN outputs

at the same time to calculate the CM and DM noise. As a result, a spectrum analyzer or

EMI receiver that doesn’t record phase information can’t be used to extract the CM or

DM noises from the measurement. Separation of the CM and DM conducted emissions

will be discussed in 4.2.
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4.1.2 Radiated Emissions Test

Radiated emissions tests use antennas to measure the electric field at an open area or

in an anechoic chamber. Similar to the LISN in the conducted emissions test, the

anechoic chamber shields RF radiation from outside to prevent contamination of the test.

It also absorbs RF radiation at the walls inside the chamber to prevent reflection. A

tunable half-wave dipole that can be used for sweep-frequency measurements is ideal for

the E-field measurement, however, not practical in reality. As a result, antennas with

large bandwidths like rod antennas, bi-conical antennas, long-periodic antennas and horn

antennas are used for radiated emissions measurements in different frequency ranges.

FIGURE 4.3 Radiated emissions test in a semi-anechoic chamber.

4.2 CM and DM Noise Separation

The separated CM and DM noise information is very useful for noise diagnosis and

EMI filter design in power converters. However, the standard conducted emissions test

does not provide such information. Additional steps can be taken to separate the CM and

DM noise.
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4.2.1 Vector Spectral Analyzer Measurement

As discussed in 4.1.1, the recorded total conducted emissions in the conducted

emissions test, pv or nv is the vector sum or vector difference of the CM and DM

noises. (4.3) and (4.4) suggest that the CM and DM noise can be obtained only if we can

record both the magnitude and phase of the signal. As shown in FIGURE 4.4, a two-port

vector spectral analyzer can be used to obtain pv and nv . Then by using Equations (4.3)

and (4.4), the CM and DM noise can be obtained. This method requires more a

sophisticated measurement instrument and additional data processing compared to the

normal conducted emissions test. Alternatively, a noise separator can be designed for

easier CM and DM conducted noise measurement.

FIGURE 4.4 CM DM noise separation using a two-port vector spectrum analyzer.

4.2.2 CM and DM Conducted Noise Separator

In practice, it is more convenient to use a noise separator with the LISN to separate

the CM and DM conducted emissions, because except for the separator, the same

instruments for the conducted emissions test can be used and there is no additional data

processing required after the measurement. FIGURE 4.5 shows the noise separator used

in the conducted emissions measurement. It is usually a three-port system with two input
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ports connected to the LISN outputs and one output port connected to a spectrum

analyzer. The output of the noise separator is designed to be either |(vp-vn)/2| for DM

noise measurement or |(vp+vn)/2| for CM noise measurement. Also, 50-Ω input

impedances for both input ports that are independent of the noise source are required. Let

the two input ports and one output port of the noise separator be defined as Ports 1, 2 and

3, respectively. Then the S parameters of the system should have S11, S22, S12 and S21

as small as possible and S31 = S32 = 0.5. S31 and S32 should be out of phase for the DM

noise measurement, and be in phase for CM noise measurement.

FIGURE 4.5 Noise separator used with LISN.

FIGURE 4.6 is an example of the noise separator proposed in [12]. As shown in the

figure, by toggling the DM-CM switch, the polarity of the primary winding of the upper

transformer can be changed. For DM measurement, the DM-CM switch is toggled into

the position that makes the upper half circuit and the lower half circuit symmetrical. The

voltage across the 50-Ω spectrum analyzer input will be 1 2v v . For CM noise

measurement, the DM-CM switch is in the opposite position so that the voltage received

by the spectrum analyzer is 1 2v v . Two 82-Ω resistors are located in parallel with the

transformers so that the input impedances of port 1 and port 2 is around 50 Ω.
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FIGURE 4.6 Noise separator proposed in [12].

4.2.3 Current Probe Measurement

A current probe measures the current that penetrates a surface by measuring the

magnetic field induced around the contour of the surface that the current penetrates,

which is basically an application of Ampere’s law. The induced magnetic field then

induces a voltage on the wire winded around the contour according to Faraday’s law (I

don’t understand this sentence). Since the relation between the current to be measured

and its induced magnetic field, and the relation between the magnetic field and its

induced voltage are well defined by Ampere’s law and Faraday’s law, by recording the

voltage, we can find the current. FIGURE 4.7 (a) shows a current probe made by Fischer

Custom Communications. To measure current, the probe is simply clamped on all

relevant cables and connected to a spectrum analyzer or oscilloscope for frequency or

time domain measurements. The transfer impedance of this probe is shown in FIGURE

4.7(b) [13].
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FIGURE 4.7 Current probe, (a), probe, (b), transfer impedance plot. [13]

For conducted CM and DM noise separation, first we measure the CM noise by

clamping the current probe on the cable bundles which contain the CM noise. After the

CM noise current, |icm|, is measured, we place the current probe on an individual cable

and measure the current, |ip| or |in|. The DM noise current can then be found by,

dm p cmi i i  , or (4.5)

dm n cmi i i  . (4.6)
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4.3 Impedance Measurement

Besides quantifying and separating EMI noise sources, knowledge of the impedances

of the noise source and the load is also essential to a good EMI solution. As discussed in

Chapter 3, in the switched-mode power converters, the noise source impedance depends

on its coupling mechanism. For example, the CM noise source impedance of a

synchronous buck converter is mainly dependent on the parasitic capacitance between the

switching semiconductors and the converter chassis (FIGURE 3.7), while its DM noise

source impedance depends on the ESR and ESL of the X capacitor (FIGURE 3.2). For

the load impedance, different load types (LISN, electric motor, etc.) and noise types (CM,

DM) should be treated individually. These impedances are usually obtained through

measurements.

4.3.1 Source Impedance

At high frequencies, or the EMI frequency range, the noise source impedance of the

switched-mode power converters can be considered independent of switch states (on or

off). Ignoring thermal effects, an easy way to estimate the source impedances is by

powering off the converter and using an impedance analyzer to measure its input

impedances. FIGURE 4.8 shows an example of measuring the DM and CM noise source

impedances of the conducted emissions. By connecting the impedance analyzer port to

the PG (or NG) port, and PN-G port, the DM and CM source impedances can be

measured, respectively.
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FIGURE 4.8 Source impedance measurements with an impedance analyzer.

Perez, etc. [14] introduced a method to measure the source impedances of the

conducted emissions when the converter is powered on, using LISNs and a vector

network analyzer. As shown in FIGURE 4.9, the conducted emissions of the power

converter can be modeled as a three-impedance network with two voltage sources

connected to the P and N terminals. To measure Z1, Z2 and Z3, a network analyzer is

connected to the LISN outputs, as shown in FIGURE 4.10. The S parameters of the

power converter can be obtained from de-embedding the LISN from the measurement.

Z1, Z2 and Z3 can be calculated by,

0 11 22 0 12 21
1

11 22 12 21 21

(1 )(1 )

(1 )(1 ) 2

Z S S Z S S
Z

S S S S S

  


   
, (4.7)

0 11 22 0 12 21
2

11 22 12 21 12

(1 )(1 )

(1 )(1 ) 2

Z S S Z S S
Z

S S S S S

  


   
, (4.8)

0 11 22 0 12 21
3

12 21

(1 )(1 )Z S S Z S S
Z

S S

  



, (4.9)



67

where S11 through S22 are the de-embedded S parameters of the converter, and Z0 is the

input impedance of the VNA. Note that, the noise level, V1 and V2, must be negligible

compared to the power output of the vector network analyzer.

FIGURE 4.9 Three-impedance network of power converters.

FIGURE 4.10 Characterizing power converters with a vector network analyzer.

The next step is to convert Z1, Z2 and Z3 into the CM and DM noise impedances, ZCM

and ZDM. FIGURE 4.11 shows the model of the power converter in terms of the CM and

DM sources and impedances. Their values can be found by,

1 2

1 2

2

3CM

Z Z
Z

Z Z



(4.10)

1 2 3

1 2 2 3 1 3

4

4 3DM

Z Z Z
Z

Z Z Z Z Z Z


 
(4.11)



68

1 2

1 2

2
TM

Z Z
Z

Z Z



(4.12)

ZTM determines the conversion between the CM and DM noise. (4.12) indicates that

for a perfectly balanced system where Z1 = Z2, ZTM is infinity and there will be no

conversion between CM and DM conducted noises.

FIGURE 4.11 CM-DM network model of power converters.

Although additional data processing is involved, this method provides a direct way to

measure the noise source impedances of the power converters while they are under

normal operating conditions.

4.3.2 Load Impedance

LISN

The actual power line is the load for the conducted emissions. Since its impedance is

not consistent, the impedance of the LISN is usually used instead. Often making sure the

power converter complies with EMC regulations is a priority in EMC designs. As

discussed in Chapter 3, the CM and DM impedances of the LISN are 25 Ω and 100 Ω,

respectively.

Electric motor
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Another common load type is the electric motor at the converter output. Similar to

measuring the source impedance when the converter is powered off, an impedance

analyzer can be used to measure the CM and DM impedances of the motor, as shown in

FIGURE 4.12.

FIGURE 4.12 Motor impedance measurements with an impedance analyzer.

FIGURE 4.13 shows the CM and DM impedances of an IPM motor [15]. The CM

impedance is mainly the parasitic capacitance between the stator winding and the motor

housing. The DM impedance is the inductance of the stator winding at low frequencies,

and above 500 kHz, the inter-winding capacitance dominates DM impedance.
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FIGURE 4.13 IPM motor impedances. [15]
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This measurement is conducted when the IPM motor is sitting still. Note that when

the rotor of the motor is at a different angle, the DM impedance at low frequencies will

be different because the mutual inductance between stator and rotor windings is different.

However, this doesn’t affect the impedance measurement at high frequencies, where the

parasitic capacitances dominate.

4.4 Parasitic Parameters Extraction

In 2.3, we discussed the parasitic parameters in the synchronous buck converter that

affect the ringing in the noise waveform. In 3.2, we discussed the main CM noise

coupling path which is parasitic capacitors in the power module. Later, we will introduce

methods of EMI reduction that rely on the knowledge of the parasitic parameters. In this

section, we will introduce a method for extracting the parasitic parameters in power

modules.

FIGURE 4.14 shows the Integrated Power Electronics Module (IPEM) that is found

in many power converters. The IPEM is gaining popularity because it is an off-the-shelf

module with wide applications, including motor drives. As shown in the figure, the

parasitic parameters of interest are the loop inductances, Lp, Lo1, Lo2, and Ln, and the

parasitic capacitances between the terminals and the module housing, Cp, Co, and Cn. As

discussed in 2.3 and 3.2, the ringing waveform is affected by L di/dt and the CM

conducted emissions are due to C dv/dt. We want to find the value of these parasitic

parameters.
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FIGURE 4.14 IPEM model used in a synchronous buck converter.

Methods that use software to extract the parasitic parameters can be found in [16]–

[18]. These methods require detailed geometrical information about the structure of the

IPEM, which may not be available in some cases. As a result, a method to extract the

parasitic parameters based on measurements [19] will be introduced here.
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FIGURE 4.15 Partial inductances in an IPEM.

FIGURE 4.15 shows the partial inductances, Lp, Lo1, Lo2, and Ln, that we want to

extract. Assuming the resistances are negligible, the following steps can to be taken to

extract these parameters:

Step 1. Apply gate voltage on G1 and measure the impedance between P and O to

obtain Lp + Lo1 + Lo2.

Step 2. Apply gate voltage on G2 and measure the impedance between O and N to

obtain Lo2 + Ln.

Step 3. Apply gate voltages on both G1 and G2 and measure the impedance between

P and N to obtain Lp + Lo1 + Ln.

Step 4. Measure the impedance between P and G1 to obtain L1 + Lp.

Step 5. Measure the impedance between O and G1 to obtain L1 + Lo1 + Lo2.

From the five equations obtained in Steps 1 through 5, the values of the partial

inductances in an IPEM, Lp, Lo1, Lo2, and Ln, can be calculated.
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FIGURE 4.16 Parasitic capacitances in an IPEM.

Next, we will need to extract the parasitic capacitances. FIGURE 4.16 shows the

parasitic capacitances Cp, Co and Cn, between terminals P, O, N, respectively, and the

IPEM chassis. The following steps can be taken to obtain Cp, Co and Cn:

Step 1. Measure the total capacitance, Cp + Co + Cn, by shorting the three terminals.

Step 2. Measure Cp using the setup shown in FIGURE 4.17(a).

Step 3. Measure Cn using the setup shown in FIGURE 4.17(b).

Step 4. Subtract measured Cp and Cn from the measured total capacitance in Step 1 to

obtain Co.
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FIGURE 4.17 Setup for Cp and Cn measurements.

The setup in FIGURE 4.17(a) shows an inductor with a known value, L1, in parallel

with C1, so that when L1 and C1 hit the resonant frequency, they can be seen as an open

circuit. At this resonant frequency, the measured impedance between port P and the

IPEM chassis, ZP, reflects only the value of CP. In the measurement, the impedance is

recorded over a frequency range and the peak value is picked to calculate Cp. The same

method is used to measure Co using the setup in FIGURE 4.17(b).

Although many steps and additional calculations are involved in this method, it

provides an alternative way for the extracting the parasitic parameters when the internal

structure of the power electronics module is not available.
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4.5 Filter Characterization

4.5.1 Insertion Loss

To evaluate an EMI solution, such as an EMI filter, the concept of Insertion Loss (IL)

is very useful. IL is defined as a ratio of the signal level without the filter to the signal

level with the filter implemented, and can be expressed as,

1

2

V
IL

V
 , or (4.13)

1
10

2

( ) 20 log
V

IL dB
V

 . (4.14)

V1 and V2 are the noise levels without and with the filter implemented, respectively, as

shown in FIGURE 4.18. The EMI solution should have its IL maximized in the EMI

noise frequency range and minimized in the power frequency range of the power

converter.

FIGURE 4.18 Insertion loss of a filter.
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To measure the IL of an EMI filter, we measure the noise level of the converter with

the filter installed, and compare the result with the noise level of the converter without

the filter installed. For example, we can use the LISN to measure the conducted

emissions of a power converter, as described in 4.1.1, with and without a filter, and apply

(4.13) or (4.14) to calculate the IL of the filter.

4.5.2 Filter Characterization

For an external filter, assuming the noise source and the load impedances are already

known, the IL of the filter can be obtained without installing the filter onto the converter.

Using a two-port filter as an example, two steps are required to obtain the IL of a filter

using this method:

Step 1. Measure the S parameters of the filter using a VNA, as shown in FIGURE

4.19.

FIGURE 4.19 Filter characterization with VNA.
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Step 2. Calculate the IL of the filter using the measured S parameters from Step 1 by,

011 22 12 21 11 22 12 21

21 21

11 22 12 21 11 22 12 21

0 21 21
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. (4.15)

where S11, S12, S21 and S22, are the S parameters of the filter, Zs and ZL are the source and

load impedances, respectively, and Z0 is the input impedance of the VNA, which is

usually 50 Ω.

FIGURE 4.20 Noise model with the filter represented by an ABCD matrix.

S parameters are easy to measure with the VNA, thus are used for the IL

measurement. For circuit analysis purposes, we will use the ABCD matrix to derive

(4.15) here. FIGURE 4.20 shows the noise model with the EMI filter represented by an

ABCD matrix. The input voltage and current, of the filter, Vin and Iin, can be represented

by,
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At the source end, applying KVL, we have,

0s in s inV I Z V   . (4.18)

Combining (4.16), (4.17) and (4.18), the noise level of the DUT with the filter, V2, can be

represented by,
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From FIGURE 4.18, the noise level of the DUT without the filter, V1, can be calculated

by,
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. (4.20)

Combining (4.13), (4.19) and (4.20) gives,

L s L s
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. (4.21)

Since the S matrix can be converted from the ABCD matrix by,
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, (4.22)

we can substitute (4.22) into (4.21), to arrive at (4.15) .

(4.15) and (4.21) are very useful in filter designs. With the known source and load

impedances, the filter performance can be estimated using these equations.
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PASSIVE FILTERS

Passive filters are commonly used to help ensure EMC compliance in power

converters. As the name implies, these filters use only passive components. The simple

LC filters that we are familiar with, and the relatively complicated high-order Cauer-

Chebyshev filters both belong to this category. Specific passive filter designs for power

inverters can be found in [20] and [21]. This chapter introduces the passive filter in power

converters in order to compare them to active filter technologies that will be introduced

later.

5.1 Passive Filters in Power Converters

The noise source and the coupling mechanism in power converters are represented by

the simple models in FIGURE 5.1. As shown in the figure, for conducted emissions, a

Line Impedance Stabilization Network (LISN) is used to represent the load. Its

impedance is 25 Ω and 100 Ω for CM and DM models, respectively. The converter

output load depends on the actual application.
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FIGURE 5.1 EMI noise models in power converters: (a) CM conducted emissions, (b)
CM output noise, (c) DM conducted emissions, (d) DM output noise.

Typically, a passive filter is inserted between the noise source (converter) and the

load (LISN or output load) and acts as a low-pass filter as shown in FIGURE 5.2. It

should have a negligible effect at the power frequency and provide a large attenuation to

the noise in the EMI frequency range. Passive filters can be integrated into the power

converter to reduce size and cost and improve high frequency performance [22]. But they

can also be separated from the power converter topologically to evaluate their

performance.
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FIGURE 5.2 Filters in power converters for: (a) CM conducted emissions, (b) CM output
noise, (c) DM conducted emissions, (d) DM output noise.

Information about the noise source and the load impedances are essential in order to

optimize the filter design. Unlike filters in microwave applications, where the source and

load impedances are usually well defined, the noise source and the load impedances in

power converters varies depending on the application. As a result, the first step in the

design of the filter is to estimate both the CM and DM source and load impedances.

Methods to obtain this information through measurements were introduced in Chapter 4.

Once the noise sources and the impedances are known, the filter topology can be chosen

and filter components can be selected. Although methods of designing the passive filters

without the knowledge of the source impedance or load impedance have been proposed
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in the literature (e.g. [23], [24]), these methods either tend to overdesign the filter or

require additional tuning.

5.2 Passive Filter Topologies

Different passive filter topologies might be used in power inverter circuits depending

on the noise source and load impedances.

5.2.1 Standard Topologies

Passive filters consist of only passive components, such as capacitors, inductors and

CM chokes. A single capacitor or an inductor, can provide a first-order low-pass filter as

shown in FIGURE 5.3(a) and FIGURE 5.3(b). Its attenuation increases with frequency by

20 dB per decade above its cut-off frequency. The LC (or CL) filter is one of the most

commonly used passive filters in power electronics. As its name implies, it consists of

one inductor and one capacitor as shown in FIGURE 5.3(c) and FIGURE 5.3(d). It is a

second-order low-pass filter and its attenuation increases with frequency by 40 dB per

decade above its cut-off frequency. Combining a first-order C filter and a second-order

CL filter forms a -filter as shown in FIGURE 5.3(e). Similarly, combining a first-order

C filter and a second-order LC filter forms a T-filter as shown in FIGURE 5.3(f). The -

filter and T-filter are third-order low-pass filters. Their attenuation increases with

frequency by as much as 60 dB per decade above its cut-off frequency. Higher order

filters can be formed similarly by cascading lower order filters to provide a sharper

increase in the noise attenuation.
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FIGURE 5.3 Passive filter topologies: (a) C filter, (b) L filter, (c) CL filter, (d) LC filter,
(e) filter, (f) T filter.

In power electronics, if the power lines are not balanced, the CM and DM noise can

be coupled to each other as suggested by (4.12) and [25]. In other words, an unbalanced

DM filter can increase the CM noise; and similarly, an unbalanced CM filter can increase

the DM noise. Generally, this issue is addressed by dividing the DM filter inductor into

two equal halves and inserting it on both power lines as shown in FIGURE 5.4. Similarly,

capacitors for CM noise reduction should also be distributed equally on both power lines

as shown in FIGURE 5.5.

FIGURE 5.4 Balancing filter inductors.
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FIGURE 5.5 Balancing filter capacitors.

In practice, the leakage inductance of the CM inductor provides some DM inductance

as shown in FIGURE 5.6. The total inductance presented to the DM noise is the DM

inductor, L, plus the leakage inductance of the CM choke. The total capacitance is

approximately equal to the capacitance of the X-capacitor, because the Y-capacitors are

relatively small in order to avoid excessive leakage currents to ground. For CM noise

filtering, the total inductance is the inductance of the CM choke plus the ¼ of L, because

the evenly distributed DM inductances present two L/2 inductances in parallel to the CM

noise. The total capacitance for CM filtering is the sum of the evenly distributed Y-

capacitors as shown in the figure.
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FIGURE 5.6 LC filter and its CM and DM equivalent circuits: (a) LC filter, (b) CM
equivalent circuit, (c) DM equivalent circuit.

5.2.2 IL of Passive Filters

The concept of Insertion Loss (IL) introduced in 4.5.1, is very useful in designing and

evaluating passive filters in power converters. The goal of the filter design in power

converters is to maximize the IL of the filter in the EMI noise frequency range, and

minimize the IL in the power frequency range. Using (4.21), the IL of the common filter

topologies illustrated in FIGURE 5.3 can be easily calculated. From there, we can

analyze the advantages and disadvantages of these filter types.

C Filter

The ABCD matrix of the C filter in FIGURE 5.3(a) can be expressed as,
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1 0

1
C filter

A B

C D j Cω


   
   

   
(5.1)

Substituting it into (4.21) gives,

IL 1C filter
s L

C
j
Y Y

ω
  


. (5.2)

To maximize IL, Cω should be much great than Ys + YL. Thus the C filter should be

chosen when both source and load impedances are high.

L Filter

The ABCD matrix of the L filter in FIGURE 5.3(a) can be expressed as,

1

0 1
L filter

A B j L

C D

ω



   
   

   
. (5.3)

Substituting it into (4.21) gives,

IL 1L filter
s L

L
j

Z Z

ω
  


. (5.4)

To maximize IL, Cω should be much great than Zs + ZL. Thus the L-filter should be

chosen when both the source and load impedances are low.

CL Filter

The ABCD matrix of the CL filter in FIGURE 5.3(a) can be expressed as,

2

1

1
CL filter

A B j L

C D j C LC

ω
ω ω



   
      

. (5.5)
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Substituting it into (4.21) gives,

2 ( )
IL 1 s L s
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As frequency increases, the term
2

s

s L

LCZ

Z Z

ω


will dominate. To maximize the IL, Zs should

be much great than ZL. Thus the CL filter should be chosen when the source impedance is

much greater than the load impedance.

LC-Filter

The ABCD matrix of the LC filter in FIGURE 5.3(a) can be expressed as,

21
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ω ω
ω
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Substituting it into (4.21) gives,
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As frequency increases, the term
2

L

s L

LCZ

Z Z

ω


will dominate. To maximize the IL, ZL should

be much great than Zs. Thus the LC filter should be chosen when the source impedance is

much smaller than the load impedance.

Π-Filter

The ABCD matrix of the π filter in FIGURE 5.3(a) can be expressed as,

2

3 2 2
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Substituting it into (4.21) gives,
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. (5.10)

As frequency increases, the term
3 2

s L

LC

Y Y

ω


will dominate. To maximize the IL, 3 2LCω

should be much great than Ys + YL. Thus the π filter should be chosen when both source

and load impedances are high.

T-Filter

The ABCD matrix of the T-filter in FIGURE 5.3(a) can be easily found as,

2 3 2
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Substituting it into (4.21) gives,
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As frequency increases, term
3 2

s L

L C

Z Z

ω


will dominate. To maximize the IL, 3 2L Cω should

be much great than Zs + ZL. Thus the T filter should be chosen when both source and load

impedances are low.
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5.2.3 Summary of the Passive Filter Topologies

The IL and the maximum IL conditions for the six filter types in the previous section

are listed in Table 5.1 and FIGURE 5.7. From the table and figure, we can observe that in

order to maximize IL, the high-impedance filter element (the inductor) should face the

low-impedance source or load and the low-impedance filter element (the capacitor)

should face the high-impedance source or load.

Table 5.1 Summary of the IL and maximum IL condition of the passive filters.

Passive Filter Type Insertion Loss (IL) Maximum IL
condition

1st

order

C-filter
1

s L

C
IL j

Y Y

ω
 


s LC Y Yω 

L-filter
1

s L

L
IL j

Z Z

ω
 


s LL Z Zω 

2nd

order

CL-filter 2 ( )
1 s L s

s L s L

LCZ L CZ Z
IL j

Z Z Z Z

ω ω 
  

 
Large ω2LC

& Zs>>ZL

LC-filter 2 ( )
1 L sL

s L s L

L CZ ZLCZ
IL j

Z Z Z Z

ωω 
  

 
Large ω2LC

& ZL>>Zs

3rd

order

π-filter 3 2
2 ( 2 )

1 ( )L s

s L s L

L CZ Z LC
IL LC j

Z Z Y Y

ω ωω 
   

 

3 2
s LL C Y Yω 

T-filter 3 2
2 (2 )

1 ( )L s

s L s L

L CZ Z L C
IL LC j

Z Z Z Z

ω ωω 
   

 

3 2
s LL C Z Zω 
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FIGURE 5.7 Maximum IL condition for EMI filters: (a) C filter, (b) L filter, (c) CL filter,
(d) LC filter, (e) filter, (f) T filter.

5.3 Passive Filter Components

After the filter topology is determined, we need to select the filter components. The

passive filter mainly consists of capacitors and inductors as shown in FIGURE 5.3. The

capacitors and inductors used in passive filters for power converters are discussed in this

section.
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5.3.1 Filter Capacitor

For DM noise filtering, capacitors are generally placed between the power lines.

Capacitors connecting one power phase to another are referred to as the X-capacitors. For

CM noise filtering, capacitors are placed between each power phase and the ground.

These capacitors are referred to as Y-capacitors. In the previous section, the IL of the C

filter was calculated assuming that the capacitors in the filter were ideal. But in reality, a

capacitor will have an equivalent series resistance (ESR) and an equivalent series

inductance (ESL) as indicated in FIGURE 5.8. The ESR and ESL affect the high

frequency performance of passive filters, because above a certain frequency, the ESL

dominates and the X-capacitor starts to act like an inductor. Extra attention must be paid

when designing the layout to make sure that the effect of ESR and ESL is minimized.

FIGURE 5.8 Capacitor model.

The rated voltage of the capacitor should also be considered. As a rule of thumb, the

rated voltage of the capacitor should be at least twice the maximum power line voltage.

Y-capacitors are limited by leakage current requirements imposed by many safety

agencies. Excessive leakage current to ground is considered a shock hazard, and therefore

is regulated. The leakage requirements vary from 0.5 mA to 5 mA depending on the

application and the safety agency certification required.
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For safety reasons, a resistor, typically 1 kΩ, is sometimes added in parallel with an

X-capacitor to discharge the capacitor when power is removed.

5.3.2 Filter Inductor

While a filter capacitor provides a low impedance shunt path for the EMI noise, the

filter inductor provides high series impedance to block EMI noise. Both the DM inductor

and CM chokes typically have similar wire-wound-on-core structures. At high

frequencies, the parasitic inter-winding capacitance of the inductor can significantly

lower the impedance of the inductor and decrease the performance of the filter. The

model of a typical inductor and its parasitics is illustrated in FIGURE 5.9. Minimizing the

effect of the parasitic capacitance of the inductor during the filter design is very important.

FIGURE 5.9 Inductor model.

For DM filter inductors, the power rating and the core saturation current of the

inductor must be accounted for, because the DM filter inductor carries all of the power

line current. DM inductors are usually wound on low permeability cores so as not to

saturate.

For CM filter inductors, to prevent core saturation resulting from the large ac power

line currents, the two windings of the inductor are usually wound on the same core. This

coupled inductor topology is generally referred to as a CM choke. Because the power line
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currents are in opposite directions, the magnetic flux produced in the core by these

currents cancels. This prevents the power line currents from saturating the core. CM

chokes are generally designed to have a specific value of leakage inductance, such that

they also provide a certain amount of DM filtering. Typical power line chokes will have

leakage inductances somewhere between 0.5 and 5% of their CM inductance.

5.4 Passive Filter Application

With the help of Table 5.1 and FIGURE 5.7, we will study some applications of

passive filters in power converters.

5.4.1 CM Conducted Emissions Filtering

For CM conducted emissions, the power converter is a high-impedance source,

because the parasitic capacitance between the source and the chassis is usually small. The

LISN is a low-impedance load (a 25-Ω resistance). For maximum IL, the high-impedance

filter element (the inductor) should face the low-impedance load (the LISN), and the low

impedance filter element (the capacitor) should face the high-impedance source (the

power converter). Thus, a CL-filter is generally suitable in this case. As shown in

FIGURE 5.10, two line-to-ground Y-capacitors, C1 and C2, and the CM choke L1 form a

low-pass CL-filter.
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FIGURE 5.10 Passive filter for CM conducted emissions.

The value of the Y-capacitors is usually limited by the leakage current requirements

and the value of the CM choke is limited by the inter-winding capacitance. For a given

value of inductance, less inter-winding capacitances usually requires a bigger choke

volume. If more inductance is required to achieve the necessary IL, multiple chokes can

be used in series.

5.4.2 DM Conducted Emissions Filtering

For DM conducted emissions, the power converter is a low-impedance source,

because of the low impedance of the filter capacitor. The LISN is a relatively high-

impedance load (a 100-Ω resistance). For maximum IL, the high-impedance filter

element (the inductor) should face the low-impedance source (the converter), and the low

impedance filter element (the capacitor) should face the high-impedance load (the LISN).

Thus, an LC-filter will be suitable in this case. As shown in FIGURE 5.11, a line-to-line

X-capacitor, C3, and the two inductors, L2 and L3, form a low-pass LC- filter, where C3

is located on the LISN side of the filter.
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FIGURE 5.11 Passive filter for DM conducted emissions.

The value of the X-capacitor is not limited by leakage requirements. It can be on the

order of several millifarads or more. As discussed in the previous section, the leakage

inductance of the CM choke can provide DM inductance. If the X-capacitor is large

enough, for applications where both CM and DM filtering are needed, the DM

inductances, L2 and L3, can be provided by the CM choke, as shown in FIGURE 5.12.

Too much leakage inductance, however, can cause the CM choke to saturate.

FIGURE 5.12 Passive filter for CM and DM conducted emissions.

5.4.3 Noise Filtering for an Inverter Output

For CM inverter output noise, assuming the value of Y-capacitors on the power lines

is much greater than the parasitic capacitance between the load (motor) and the ground,
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the power inverter is treated as a low-impedance source and the motor is treated as a

high-impedance load. For maximum IL, the high-impedance filter element (the inductor)

should face the low-impedance source (the inverter), and the low impedance filter

element (the capacitor) should face the high-impedance load (the motor). As a result, an

LC-filter will be suitable in this case. As shown in FIGURE 5.13, a CM choke, L1, and

two Y-capacitors, C1 and C2, form a low-pass LC-filter where L1 is located on the

inverter side. Note that C1 and C2 are limited by the leakage current requirement. This

usually results in bulky CM chokes in the passive filter application. To reduce or even

eliminate the CM choke, active filters and other methods will be introduced in Chapters

6-8.

FIGURE 5.13 Passive filter for CM inverter output noise reduction.

The DM inverter output noise has the same low-impedance source and high-

impedance load. Thus, the same LC-filter can be employed. When designing filters for

both CM and DM noise, the leakage inductance of the CM choke can be used for DM

noise filtering.
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ACTIVE FILTERS

As the name implies, active filters use active components, such as amplifiers, to filter

EMI noise. Compared to passive EMI filters, active filters can be designed to be cheaper

and lighter, and they can be more effective. The bandwidth of the active filter is usually

limited compared to that of a passive filter. However, because of EMI standards such as

MIL-STD-461E and CISPR 11 that concern EMI noise at 10 kHz, the advantages of the

active filters in size, weight and cost at those low frequencies make them a very good

option for EMI noise reduction. This chapter provides general analysis and comparison of

different types of active filters as well as details about active filter design and application

in switched-mode power converters.

6.1 Mechanisms of Active Filters

The reason that active filters outperform passive filters at low frequencies can be

explained by the following example. FIGURE 6.1 shows two passive filter topologies

that were discussed in Chapter 5. The voltage across the filter inductor, VL, and the

current through the filter capacitor, IC, can be expressed by,

L LV j L Iω  , (6.1)

C CI j C Vω  . (6.2)

VL blocks the noise voltage, Vs, and IC shunts the noise current, Is. They both attenuate the

noise level at the load. As shown in the equations, VL and IC are dependent on IL and VC,

respectively. As a result, the filter inductor can be modeled as a current controlled voltage
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source with a transfer impedance, GL = j Lω . Similarly, the filter capacitor can be seen as

a current controlled voltage source with a transfer admittance, GC = j Cω . Since GL and

GC are functions of the frequencyω , the attenuation of passive filters is also frequency

dependent.

FIGURE 6.1 Example passive filters: (a) L-filter, (b) C-filter.

Applying the same concept, active filters use active components to create the current

controlled voltage source and the voltage controlled current source, as shown in FIGURE

6.2.  These two filters are also referred to as the current-detecting-voltage-compensating

(CDVC) type active filter and voltage-detecting-current-compensating (VDCC) type

active filter, respectively. The transfer impedances/admittances of the controlled sources

are both denoted G in the figure. Compared to the passive filters, G of the active filters

can be designed to be a large value over a certain low frequency range, independent of

the frequency, as shown in FIGURE 6.3. Gains in excess of 100 at 1 MHz were

demonstrated [26]. As a result, a large G, which can only be achieved by bulky passive

inductors or capacitors at high frequencies, can be realized by much smaller, lighter and

cheaper active components at low frequencies.
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FIGURE 6.2 Type I active filters: (a) CDVC type, (b) VDCC type.

Size, weight and cost are key elements to consider when designing power converters.

One reason the switching frequency keeps increasing is that higher frequencies allow for

reduction in the size of the energy storage elements, such as inductors and capacitors.

With the help of active filters, the size, weight and cost of power converters can be

further reduced.

FIGURE 6.3 Typical transfer impedance of an inductor and a current controlled voltage
source.

Because active filters are better for low frequency EMI noise reduction, while passive

filters are more cost-effective at high frequencies. Hybrid filters using both passive and

active filters can have the advantages of both. The desired IL of the hybrid filter is shown

in FIGURE 6.4.
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FIGURE 6.4 IL of active and passive hybrid filter.

6.2 Active Filter Topologies

Active filters can be grouped based on the characteristics of the amplification gain, G.

The amplification gain of the Type I active filter represents the transfer impedance or

admittance. This is similar to the C-type and L-type passive filters. Amplification gain of

the Type II active filter is unit-less. This is similar to the noise cancellation method in

Chapter 7.

The active filters shown in FIGURE 6.2 are referred to as Type I active filters, where

the gain of the feedback loop is the transfer impedance or admittance. The active filters

shown in FIGURE 6.5 are referred to as Type II active filters. These feature a unit-less

gain, G. Based on the compensating method, active filters can be further grouped as

feedback type and feed-forward type. FIGURE 6.5 shows all four configurations of the

Type II active filters, the current-detecting-current-compensating-feedback (CDCCFB)

type, the voltage-detecting-voltage-compensating-feedback (VDVCFB) type, the current-

detecting-current-compensating-feed-forward (CDCCFF) type and the voltage-detecting-

voltage-compensating-feed-forward (VDVCFF) type. The difference between the
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feedback and feed-forward types is the locations of the detecting and compensating

circuits between the load and source. Note that this difference doesn’t exist in Type I

active filters.

FIGURE 6.5 Type II Active filters: (a) VDVCFB type, (b) VDVCFF type, (c) CDCCFB
type, (d) CDCCFF type.

Details about the different topologies will be discussed in the next section. Besides

the advantages of active filters over passive filters, there are also limitations for the active

filters, such as the limited bandwidth much more complicated circuits. These limitations

make the active filters less attractive compared to passive filters in some applications.

6.3 Insertion Loss of Active Filters

Using the method introduced in 4.5. The insertion loss (IL) of each active filter

topology can be calculated and its maximized IL condition can be found.
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6.3.1 IL of Type I Active Filter

FIGURE 6.6 shows the schematic of the CDVC type active filter and its two-port-

system representation. The ABCD matrix of the filter can be found as,

1

0 1
CDVC

A B G

C D

   
   

   
. (6.3)

Substituting (6.3) into (4.21) gives,

IL 1CDVC
s L

G

Z Z
 


. (6.4)

To maximize the IL, G must be much greater than Zs + ZL. Thus this topology should be

chosen when both source and load impedances are low, similar to conditions where the

L-filter or T-filter should be applied.

FIGURE 6.6 CDVC topology: (a) schematic, (b) two-port system.
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FIGURE 6.7 shows the schematic of the VDCC type active filter and its two-port-

system representation. Its ABCD matrix can be found as,

1 0

1
VDCC

A B

C D G

   
   

   
. (6.5)

Substituting this into (4.21) gives,

IL 1 1s L
VDCC

s L s L

GZ Z G

Z Z Y Y
   

 
, (6.6)

where Ys and YL are the admittance of the source and load, respectively. To maximize the

IL, G must be much greater than Ys + YL. Thus this topology should be chosen when both

source and load impedances are high, similar to conditions where the C-filter and π-filter

should be applied.

FIGURE 6.7 VDCC topology: (a) schematic, (b) two-port system.
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6.3.2 IL of Type II Active Filter

FIGURE 6.8 shows the schematics of the VDVCFB and VDVCFF type active filters

and their two-port-system representations. Their ABCD matrixes can be found as,

1 0

0 1
VDVCFB

A B G

C D

   
   

   
, and (6.7)

1
0

1
0 1VDVCFF

A B
G

C D

           

. (6.8)

Substituting these into (4.21) gives,

IL 1 L
VDVCFB

s L

GZ

Z Z
 


, and (6.9)

1
IL 1

1
s

VDVCFF
s L

GZ

G Z Z

 
    

. (6.10)

To maximize the IL, ZL must be much greater than Zs for both topologies. Thus these

types of filters should be chosen when the load impedance is much higher than the source

impedance, similar to conditions where the LC-filter should be applied. Note that for the

feed-forward type active filter, the gain, G, must be close as to 1 to maximize the IL

according to (6.10).
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FIGURE 6.8 VDVC topologies: (a) feedback schematic, (b) feed-forward schematic, (c)
feedback two-port system, (d) feed-forward two-port system.

FIGURE 6.9 shows the schematics of the CDCCFB and CDCCFF type active filters

and their two-port-system representations. Their ABCD matrixes can be found as,

1 0

0 1
CDCCFB

A B

C D G

   
      

, and (6.11)

1 0

1
0

1CDCCFF

A B

C D
G

          

. (6.12)

Substituting these into (4.21) gives,

IL 1 s
CDCCFB

s L

GZ

Z Z
 


, and (6.13)

1
IL 1

1
L

CDCCFF
s L

GZ

G Z Z

 
    

. (6.14)

To maximize the IL, ZL must be much smaller than Zs for both topologies. Thus these

types of filters should be chosen when the load impedance is much lower than the source
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impedance, similar to conditions where the CL-filter should be applied. Also, the gain, G

of the feed-forward type active filters must be as close as to 1 to maximize the IL as

suggested by (6.14).

FIGURE 6.9 CDCC topologies: (a) feedback schematic, (b) feed-forward schematic, (c)
feedback two-port system, (d) feed-forward two-port system.

From the calculations, we can find that, just as with passive filters, the insertion loss

of active filters depends on source and load impedance.  The feed-forward type active

filters require the gain of the filters to be as close as possible to one. In an ideal situation,

that means the compensated voltage / current is exactly the same as the detected voltage /

current. As a result, this type of active filters is sometimes referred to as active

cancellation. The concept of cancellation, or compensating the opposite of what’s

detected, can also be realized with passive components. The passive cancellation method

will be introduced in Chapter7.
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6.3.3 Summary of the Active Filter Topologies

All active filter topologies and their maximum IL conditions are summarized in Table

6.1. From the table, we can observer that to maximize the IL of an active filter, voltage-

detecting should be used to detect the low impedance source, while current-detecting

should be used to detect the high impedance source.

Table 6.1 Summary of the IL and maximum IL condition of the active filters.

Active Filter Type Insertion Loss (IL) Maximum IL
condition

Type I

CDVC
1

s L

G
IL

Z Z
 



G >> Zs+ZL

VDCC
1

s L

G
IL

Y Y
 



G >> Ys+YL

Type II

VDVCFB
1 L

s L

GZ
IL

Z Z
 



High G & ZL >> Zs

VDVCFF 1
1

1
s

s L

GZ
IL

G Z Z

 
    

G = 1 & ZL >> Zs

CDCCFB
1 s

s L

GZ
IL

Z Z
 



High G & Zs >> ZL

CDCCFF 1
1

1
L

s L

GZ
IL

G Z Z

 
    

G = 1 & Zs >> ZL

The effective bandwidth is also an important factor when designing an active filter.

Similar to passive filters, the differential mode (DM) IL for active filters should only

block or shunt the EMI noise, not the power. Thus, in the power frequency range, the



110

active filter should have negligible IL to the converter. This is usually realized by

implementing band control circuits in the active filters. In the next section, active filter

design will be introduced.

6.4 Active Filter Components

Active filters have more components than passive filters. Active filters include both

passive components, such as capacitors and inductors, and active components, such as

amplifiers. As a result, designing an active filter for reducing EMI in power converters

can be more challenging than designing a passive filter. This section will break down the

major components of an active filter and provide insights into active filter design.

6.4.1 Detecting Circuit

Voltage detecting

FIGURE 6.10 Voltage detecting circuit.

Like a voltage probe, voltage-detecting circuit shown in FIGURE 6.9 can detect the

voltage noise by directly connecting to the power lines and feeding the signal to an

amplifier, as long as the input impedance of the amplifier is high at the power frequency.

Note that active filters focus on low frequency noise reduction, so impedance matching is

not necessary.
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When detecting the CM voltage noise, direct contact with all power cables means

shorting all cables. As a result, a high impedance at the power frequency should be

inserted between the detecting circuit and the power cable, as shown in FIGURE 6.11.

Inductors are not suitable here because it is desired to have large impedances at the power

frequency. Large resistors can provide isolation, however, in the EMI frequency range,

they could significantly attenuate the detected noise signal because their values can be

larger than the input impedance of the amplifier in that frequency range. (In the

megahertz range, the input capacitance of an amplifier on the order of tens of picofarads

has an impedance of several kilo-ohms. Thus, resistors of hundreds of ohms are desired.

However, resistors of this size will cause significant power loss for high voltage power

systems.) As a result, capacitors are a common choice for the voltage detecting circuit.

Capacitors insulate power lines at the power frequency and provide low impedance to the

detecting circuit at the EMI frequency.

FIGURE 6.11 CM voltage detecting circuit.

Capacitors are also needed for DM noise voltage detection because they can block the

power line signal from being detected, thus effectively controlling the bandwidth of the
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active filter. As discussed earlier, the bandwidth of the active filter should be carefully

controlled to minimize the insertion loss (IL) at the power frequency.

To detect the CM voltage, the values of the capacitors for each power cable should be

identical. The equivalent CM voltage detecting circuit is shown in FIGURE 6.12(a),

where the effective capacitance, Ce, of the detecting circuit is the sum of the individual

capacitors connecting each power line. The model also applies for DM voltage detection

where the number of power lines is one. Rin and Cin represent the input resistance and

input capacitance of the amplifier, respectively. As shown in the figure, Ce and Rin form a

high pass filter with a cut off frequency, fL, of,

e

1

2L
in

f
R Cπ

 . (6.15)

fL should be designed to be between the power frequency and the switching frequency of

the power converter so that only the switching frequency and its harmonics can be

detected and reduced. Also Ce must be much smaller than Cin to avoid the detected signal

being attenuated. Note that for high voltage applications, the CM voltage noise may

exceed the rated value of the amplifier input. In that case, a voltage divider can be

employed in the detecting circuit as shown in FIGURE 6.12(b). The voltage division

factor is usually negligible compared to the amplification gain in the feed-back type

active filters. However, in the feed-forward type filters, in order to achieve overall unity

gain, the voltage division factor needs to be compensated either by the amplification

circuit or the compensating circuit.
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FIGURE 6.12 Low frequency voltage detecting circuit model: (a) w/o voltage divider, (b)
w/ voltage divider.

FIGURE 6.13 shows the high frequency model of the voltage detecting circuit, where

the equivalent series inductance (ESL) of the capacitors can no longer be neglected.

Although the ESL could theoretically attenuate the signal, for a reasonable circuit layout,

the ESL can be controlled within the order of nanohenries. Assuming Ce is on the order

of nanofarads, the ESL will only attenuate the detected voltage when the frequency

reaches tens of megahertz, which is usually not the target frequency range of the active

filters. As a result, fL of the voltage detecting circuit is usually the main concern when

designing active filters.

FIGURE 6.13 High frequency voltage detecting circuit model.

An example of the detecting circuit design can be found in [27]. When detecting the

output CM voltage of a three phase power inverter, the inverter efficiency is also a

consideration because higher valued capacitors permit more leakage current between

phase wires.



114

Also, attention must be paid when laying out the detecting circuit to avoid EM

coupling from other high speed circuits on the converter PCB.

Current Detecting

FIGURE 6.14 Current detecting circuit.

In active filter applications, transformers are often used to detect the noise current, as

shown in FIGURE 6.14. The low frequency and high frequency models of the current

transformer are shown in FIGURE 6.15(a) and FIGURE 6.15(b), respectively. The low

frequency model consists of the primary winding magnetizing inductance, Lmp, an Np: Ns

ideal transformer and the load, R. Lmp should be large enough to be considered open

circuit in the noise frequency range, so that the desired relation between the output

voltage, vs, and the detected current noise, ip, can be determined by,

p
s s p

s

N
v i R Ri

N
  (6.16)

To find the minimum acceptable Lmp, the load, R, was reflected to the primary side of

the transformer, as shown in FIGURE 6.16(a). In the model, is’, vs’ and R’ are the
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reflected secondary-winding current, voltage and load, respectively. Their relations to the

non-reflected secondary-winding parameters are,

' s
s s

p

N
i i

N
 , (6.17)

' p
s s

s

N
v v

N
 , (6.18)

2

' p

s

N
R R

N

 
  
 

. (6.19)

The input impedance of the detecting circuit, Zin, and the reflected output voltage, vs’, can

be calculated by,

'

'
mp

in
mp

j L R
Z

R j L

ω
ω




, and (6.20)

'
'

'
mp

s in p p
mp

j L R
v Z i i

R j L

ω
ω

 


. (6.21)

Combining (6.18), (6.19) and (6.21) gives,

2

2

p
mp

ss
s p

p p
mp

s

N
j L R

NN
v i

N N
R j L

N

ω

ω

 
 
 

 
 

 

. (6.22)

(6.22) suggests that at low frequencies, the transformer is like a high pass filter, and its

cutoff frequency can be found by,
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2

2
p

L
s mp

N R
f

N Lπ
 

  
 

. (6.23)

The term  2

p sN N R is predetermined for a given amplification factor. Lmp should be

tuned so that fL is between the power frequency and the lowest noise frequency (usually

the switching frequency) of the switched-mode power converters, and provide enough

attenuation to the noise. Note that the load, R, is much smaller than the input impedance

of the amplifier so that the increased power line impedance will be small, according to

(6.20).

The primary side magnetizing inductance of the transformer, Lmp, can be estimated by,

2
0p r

mp

N A
L

l

μ μ
 , (6.24)

where l, A and μr are the length of the primary winding, section area of the magnetic core

and the relative permeability of the core material, respectively. μ0 is the absolute

permeability, and its value is 4π×10-7.

FIGURE 6.15 Current detecting transformer model: (a), low frequency model, (b), high
frequency model.
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FIGURE 6.16 Current detecting transformer model with reflected secondary side circuit:
(a) low frequency model, (b) high frequency model.

Transformers are not ideal. Even at frequencies where the active filter is designed to

work, their leakage inductance and the inter-winding parasitic capacitance can degrade

the performance of current detection. The frequency range in which these parasitic

parameters start to affect the current detecting circuit will be referred to as the ‘high

frequency range’ in this text, as compared to the low frequency range discussed earlier.

The simplified high frequency transformer model is shown in FIGURE 6.15(b), Lp, Cp, Ls,

and Cs are the primary-winding leakage inductance, primary-winding parasitic

capacitance, secondary-winding leakage inductance and secondary-winding parasitic

capacitance, respectively. By reflecting the secondary side circuit to the primary side, the

high frequency model of the transformer can be further simplified to the circuit in

FIGURE 6.16(b), where is’, vs’, and R’ can be calculated using (6.17), (6.18), and (6.19),

respectively. Lls’ and Cls’ can be calculated by,

2

' p
ls ls

s

N
L L

N

 
  
 

, and (6.25)

2

' p
ls ls

s

N
C C

N

 
  
 

. (6.26)
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Lmp will be considered an open circuit at high frequencies. Lp, Cp, Ls’, and Cs’ form a low

pass π-filter with cutoff frequency,

2

2

3

1

2 C

s
H

p
p

pl sl pl sl
s

N
f

N N
L L C R

N
π

 
        

      

. (6.27)

fL and fH are the lower end and upper end, respectively, of the noise detecting bandwidth.

This bandwidth should be designed to include the targeted noise band, but exclude the

power frequency band of the converter.

One disadvantage of the transformer is its size. Thick power cables wound around a

magnetic core will significantly increase the size of the core. As a result, the clamp-on-

type current transformer shown in FIGURE 6.17, is desired. Since the secondary winding

only carries small noise current, it can be made very thin. When clamping on all cables,

the CM noise current can also be measured conveniently. The disadvantage of the clamp-

on transformer is that the magnetizing inductance of the primary winding is very small,

which could make the low side cut-off frequency, fL, too high, leading to degraded

performance of the active filter in low frequency range. However, from (6.23), this

problem can be mitigated by increasing the number of secondary winding and the output

resistance.
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FIGURE 6.17 Clamp-on current transformer.

6.4.2 Compensating Circuit

Voltage compensating

FIGURE 6.18 Voltage compensating circuit.

To compensate a voltage onto the power cables, transformers are usually employed

(FIGURE 6.18). They are basically same as the current-detecting transformers, except

their secondary windings are terminated by the actual load, Zs + ZL, of the power system.

The low and high frequency models of the voltage transformer are shown in FIGURE

6.19. The circuit models with reflected secondary side circuit are shown in FIGURE 6.20.

At low frequencies, the compensating voltage, vs, can be expressed by,

s
s p

p

N
v v

N
 . (6.28)

It can also be expressed in terms of the amplifier output current as,
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2

2

p
mp L s

ss s
s in p p

p p p
L s mp

s

N
j L Z Z

NN N
v Z i i

N N N
Z Z j L

N

ω
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. (6.29)

At low frequencies, the compensated voltage is usually limited by the output current of

the amplifier. Assuming the amplifier output current is constant, the lower end of the

bandwidth of the compensating voltage can be calculated from (6.29).

FIGURE 6.19 Voltage compensating transformer model: (a) low frequency model, (b)
high frequency model.

FIGURE 6.20 Voltage compensating transformer model with reflected secondary side
circuit: (a) low frequency model, (b) high frequency model.

At high frequencies, due to the leakage inductance and inter-winding capacitance, the

compensating voltage starts to roll off at certain frequencies, just as with the current

detecting transformer. Similarly, controlling the leakage inductance and inter-winding

capacitance of the transformer benefits its high frequency performance.

The clamp-on voltage compensating transformer is similar to the clamp-on current

detecting transformer and is desired for the same reason; that is, it can significantly
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reduce the size of the active filter for high current applications. However, for the voltage

compensating transformer, the clamp-on side is the secondary winding, which

significantly reduces the magnetizing inductance of the secondary winding; Lms. Lms is

related to Lmp by,

2

p
mp ms

s

N
L L

N

 
  
 

. (6.30)

Substituting (6.30) into (6.29) gives,

 
 

p ms L s
s p

s L s ms

N j L Z Z
v i

N Z Z j L

ω
ω
 

     
. (6.31)

Small Lms will significantly reduce vs. One solution is to increase Np/Ns, which requires

the output voltage of the amplifier, vp, to be very large, according to(6.28). Increasing the

output current of the amplifier, ip, also helps. In practice, this kind of clamp-on

transformer has rarely been employed in active filter applications. An example of its

application is the current injection probe used in the Bulk Current Injection (BCI) test.

Note the BCI probe usually requires very large amplifiers to output large vp and ip.

Current compensating

Current compensating is used to create a shunt current source, as shown in FIGURE

6.21(a). Since a current source is high impedance, direct contact with power lines for DM

noise current compensating is allowed. However, as shown in FIGURE 6.21, capacitors

are commonly employed for filtering the power frequency signals and for isolating power

lines when compensating the CM current. Similar, mechanisms for voltage detecting
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circuits were discussed in 6.4.1. The values of the capacitors must be identical for CM

current compensation to avoid the compensated CM current being converted to DM

current.

FIGURE 6.21 Current compensating circuit: (a) DM, (b) CM.

The low frequency model of the current compensating circuit is shown in FIGURE

6.22. Vam represents the maximum output voltage of the amplifier. The load is ZL and Zs

in parallel. Assuming the output impedance of the amplifier is small, the compensated

current can be calculated by,

am
c

e L s

V
I

j C Z Zω



. (6.32)

For CM conducted emissions in power converters, L sZ Z is usually capacitive. In that

case, the circuit cannot block the power frequency signal. The bandwidth control can

only be done in the detecting circuit. For DM conducted emissions, L sZ Z is mainly

resistive. Letting L s LZ Z R , the cut-off frequency of the circuit can then be found as,

e

1

2L
L

f
R Cπ

 . (6.33)
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Similarly, fL should be between the power frequency and the noise frequency.

FIGURE 6.22 LF current compensating circuit model.

High frequency (megahertz range) performance of the current compensating circuit is

usually not a concern, because the ESR and ESL of the small capacitors in the detecting

circuit can be well controlled.

6.4.3 Amplifying Circuit

The detected noise needs to be amplified before being compensated back. As

analyzed in 6.3, for active filters it is desirable to have a high gain amplifier for feedback

topologies, and a unit gain amplifier for feed-forward topologies. Transistor amplifiers

and operational amplifiers (op-amps) are the most commonly used amplifier types in

active filters because of their small size, low cost and easy implementation. Selection and

design of amplifiers for active filters is discussed in this section.



124

Amplifier type

FIGURE 6.23 Class-A amplifier for voltage compensation.

A single NPN transistor can be used as an amplifier in the active filter, as shown in

FIGURE 6.23. This type of amplifier is classified as a Class A amplifier in which the

active element (the NPN transistor in this case) remains conducting all the time. In other

words, the output stage is biased by a DC bias current, I_bias. Besides its higher power

loss, this kind of amplifier is not suitable for active filters because it makes implementing

the high pass filter on the output very difficult, if not impossible. As a result, class-B or

class-AB amplifiers are commonly used in the design of active filters for power

converters. FIGURE 6.24(a) and FIGURE 6.24(b) show a class-B and a class-AB push-

pull amplifier being used to feed the voltage compensating circuit. FIGURE 6.25 shows a

class-B push-pull amplifier being used to feed a current compensating circuit. The

capacitor, Cf, in the figures is used to filter the output of the amplifier so that only the

EMI noise signal is compensated.
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FIGURE 6.24 Push-pull amplifier for voltage compensation: (a) class-B, (b) class-AB.

FIGURE 6.25 Class-B push-pull amplifier for current compensation.

Op-amps are also widely used in active filters. Compared to BJT transistors, off-the-

shelf op-amps provide much higher bandwidth but lower output capability. Depending on

the application and noise level, the op-amp can be a better choice in some cases. FIGURE

6.26(a) and FIGURE 6.26(b) show the op-amp being used to feed a voltage compensating

circuit and a current compensating circuit, respectively. An example of the active filter

using Texas Instruments OPA552 as the power amplifier is demonstrated in [27].
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FIGURE 6.26 Op-amp in active filters: (a) voltage compensation, (b) current
compensation.

Darlington configurations of BJT transistors can also be used, as demonstrated by Di

Piazza and etc. [28] (FIGURE 6.27).

FIGURE 6.27 Active filter application with push-pull amplifier in Darlington
configuration. [28]

Amplifier power supply

The active components, or the amplifiers, in active filters need power sources. They

can be sources from the DC bus of the power converters or from additional voltage

regulators. These voltage regulators can be switched-mode power supplies or linear
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power supplies, of which the latter is usually preferred because the power required by the

amplifier is small in most cases, and the linear regulator is cheaper and less noisy.

The power supply for amplifiers can be either isolated from the power lines of the

power converter or not isolated. FIGURE 6.24(a) and FIGURE 6.25 show the isolated

amplifier power supply for voltage compensation and current compensation, respectively,

and FIGURE 6.28 shows the non-isolated version for voltage compensation. As shown in

FIGURE 6.28, for the non-isolated power supply, two power sources, V1 and V2, are

needed. The magnitudes of V1 and V2 must be greater than Vs/2 so as not to saturate the

amplifier. One advantage of the non-isolated configuration is that its power supply is

usually cheaper because the isolated power supply usually requires isolation

transformers. An example of the design of the non-isolated amplifier power supply for

active filters used in a three phase power inverter output can be found in [27].

FIGURE 6.28 Non-isolated amplifier power supply.

Unity-gain active filter

In 6.3.2, the maximum insertion loss for type II active filters was discussed. For feed-

forward type topologies, a unity-gain amplification factor is required. Since the detecting

and compensating circuits also have their own voltage or current amplification factors,
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the amplifier must compensate them to achieve the overall unity-gain amplification

factor. Besides correcting the amplification factor in the compensating circuit by

adjusting the turns ratio of the compensating transformer, correction can also be made in

the amplification circuit, such as by adding a linear amplifier.

For the voltage-detecting-voltage-compensating-feed-forward (VDVCFF) active

filter, shown in FIGURE 6.29, the voltage detecting circuit has a dividing factor of

Ce/(Ce+Cd), and the voltage compensating circuit has a amplification factor of Ns/Np. As

a result, an op-amp with a feedback loop is employed to correct the overall gain. The

resistors in the feedback loop of the op-amp should satisfy,
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. (6.34)

In this expression, R1 and R2 are both large-value resistors.

FIGURE 6.29 Unity-gain VDVCFF active filter.

Amplifier selection

The bandwidth, rated voltage and output current are among the most important

parameters for selecting an amplifier for active filter applications. The bandwidth of an
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amplifier should be selected based on the target bandwidth of the active filter. Rated

voltage and current depends on the power converter. A wideband, high voltage and high

power amplifier is either hard to find or very expensive, which defeats the purpose of the

active filter as a cost-effective EMI solution. It is always a compromise when selecting

the amplifiers. For example, if the low voltage rate amplifier is selected, a voltage divider

circuit can be added to lower the detected voltage. A multiple-stage amplifier can be

cascaded to increase the output power to meet the noise reduction requirement.

6.5 Active Filter Applications

Active filter applications in power converters have been studied for many years. This

section will summarize these applications and discuss the advantages and disadvantages

for different types of applications.

6.5.1 DM Conducted Emissions Filtering

The differential mode (DM) conducted noise source can be modeled as a current

source with a parallel bulk filter capacitor (FIGURE 3.4). The source impedance is

determined by the ESR and ESL of the filter capacitor. The DM load impedance, (the

LISN impedances in series) is well defined as 100 Ω for the DC or single phase AC

inputs. In the low frequency range up to several megahertz, the impedance of the ESL

and ESR of the filter capacitor is much smaller than 100 Ω. From Table 6.1, the

VDVCFB and VDVCFF topologies are the best options. FIGURE 6.30 shows the

schematic of the VDVCFB type active filter being applied to attenuate the DM conducted

emissions.
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FIGURE 6.30 Schematic of the VDVCFB type active filter for DM conducted noise
reduction.

Active filters for the DM conducted emissions are not very common because there is

no leakage requirement for the X-capacitors. Using multiple X-capacitors that have small

ESR and ESL can be more cost-effective than using the active filter.

6.5.2 CM Conducted Emissions Filtering

FIGURE 6.31 CM conducted emissions model.

From the CM conducted emissions model in FIGURE 6.31, we can find that the load

impedance is the 25 Ω LISN impedance, and the source impedance is the stray

capacitances between the power module and the converter ground. The source impedance

is considered much greater than the load impedance in the conducted emissions
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frequency range, 150 kHz to 30 MHz. From Table 6.1, the Type II current-detecting-

current-compensating (CDCC) active filter topology provides the maximum insertion

loss. An example of the CDCCFB active filter for CM conducted emission reduction is

proposed in [29]. Its schematic is shown in FIGURE 6.32 and the result of the CM

conducted noise reduction is shown in FIGURE 6.33.

FIGURE 6.32 Schematic of the CDCCFB type active filter for CM conducted emission
reduction. [29]

FIGURE 6.33 Comparison of the noise level w/ and w/o the CDCCFB active filter. [29]

For comparison, a CDVCFB type active filter is also designed for the same power

converter in [29]. Its schematic and noise reduction result are shown in FIGURE 6.34 and
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FIGURE 6.35, respectively. Comparing FIGURE 6.33 and FIGURE 6.35, it is clear that

the CDCCFB type active filter works much better than the CDVCFB type active filter for

this case.

FIGURE 6.34 Schematic of the a CDVCFB type active filter for CM conducted emission
reduction [29]

FIGURE 6.35 Compare of the noise level w/ and w/o the CDVCFB active filter. [29]

Other examples can be found in [26], [30]–[32] .
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6.5.3 CM Inverter Output Noise Filtering

CM noise on the inverter output is another common EMI issue in power converters.

Compared to DM noise on the inverter output, CM noise is more likely to cause radiated

emissions. Because of the limitation of the Y-capacitors, passive filters have to use bulky

CM chokes to achieve the noise reduction requirement. As a result, the advantages of the

active filter make it a very good option for the inverter output CM noise reduction.

A high voltage inverter normally has its DC bus isolated from the inverter chassis, as

shown in FIGURE 6.36.  As discussed in Chapter 4, the CM impedance of the motor is

capacitive, and is on the order of hundreds of picofarads for medium-size electrical

motors. The source impedance, which is the parasitic capacitance between the power

MOSFETs / IGBTs and the inverter chassis, can be of the same order. Thus, in this case,

both source and load impedances can be considered large in the active filter’s targeted

frequency range. As a result, the VDCC type active filter should be chosen.

FIGURE 6.36 Inverter schematic: DC chassis isolated.
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In practice, inverters normally employ Y-capacitors on the DC bus (FIGURE 6.37),

with capacitance values that can be much greater than the parasitic capacitances. These

Y-capacitors significantly lower the source impedance in our model and make the VDCC

type active filter not a good choice anymore. Instead, VDVC type active filters should be

chosen for this situation, according to Table 6.1. FIGURE 6.38 shows an application of

the VDVCFF type active filter designed for a three-phase power inverter [33]. As shown

in the figure, a class B push-pull amplifier is used. Other similar applications can be

found in [28], [33]–[36].

FIGURE 6.37 Inverter schematic: with Y capacitors.

FIGURE 6.38 VDVC type active filter for inverter output CM noise reduction. [33]
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NOISE CANCELLATION

This chapter will introduce a new method for EMI mitigation in power converters

called the noise cancellation method. Depending on whether active devices are used, the

noise cancellation method can be classified as either passive cancellation or active

cancellation.

7.1 Cancellation Mechanism

Several approaches similar to the Noise Cancellation Method have appeared in the

literature [37]–[44], some of which are classified as internal filters and others topological

solutions. These approaches are similar to the new method in that the EMI noise is

reduced by duplicating the EMI noise source, inverting the duplicated the source, and

then compensating it back to the power system. These steps characterize a feed-forward

type active filter, which detects the noise source and compensates a complementary

signal (same magnitude, opposite polarity) back into the circuit. The difference between

the two is the way they compensate the signal. Active filters electrically or magnetically

couple the signal back into the circuit through capacitors or transformers. That’s why

they usually don’t affect the converter topology and can be seen as external to the

converter. The noise cancellation method, on the other hand, duplicates the noise

coupling path of the converter to couple the signal back. It is often considered an

integrated part of the power converter.
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7.1.1 Ideal Cancellation

We will use the simple source-load model shown in FIGURE 7.1 as an example to

explain the mechanism of how the noise cancellation method works. Vs, Zs and ZL are the

noise source, source impedance and load impedance, respectively. V1 is the voltage

across the load, which is used to represent the EMI noise at the victim. The noise

cancellation method creates a signal, Vs’, which has the same magnitude but opposite

polarity of Vs, and the same coupling path (Zs’= Zs), as shown in FIGURE 7.2. Now the

voltage across the load becomes V2. The noise reduction performance of this method can

be evaluated by the insertion loss (IL), or V1/V2.

FIGURE 7.1 Noise source-load model.
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FIGURE 7.2 Noise cancellation model.

Using the voltage division and the superposition theorem, we have,
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Ideally, if we have Vs’=Vs and Zs’=Zs, V2 becomes zero. This means IL is infinite and the

noise cancellation is perfect. The noise current only circulates in the Zs-Zs’ loop. This is

the mechanism of the noise cancellation method.

FIGURE 7.3 Type II feed-forward active filer model.
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Comparing the noise cancellation model in FIGURE 7.2 with the Type II feed-

forward active filer model in FIGURE 7.3, we can see that the active filter only

duplicates the noise source.

7.1.2 Practical Cancellation

In practice, Vs and Zs can’t be perfectly duplicated. Assuming we have

's sV GV , (7.3)

combining (7.1), (7.2) and (7.3), the IL of the cancellation circuit can be obtained by,
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where G represents the imperfect duplication factor of the noise source. If Zs = Zs’, (7.4)

can be rewritten as,
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The IL of the VDVCFF type active filter discussed in Chapter 6 is,
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(7.6)

where G is the gain of the compensated voltage relative to the source voltage, the same

as the imperfect duplication factor. Comparing (7.5) and (7.6), we can see that the IL of

the noise cancellation method is less dependent on the source and load impedance

because,
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(7.5) also suggests that the IL of the noise cancellation method depends on the quality of

the duplicated noise. The closer G is to 1, the larger the IL will be.

Similarly, substituting G = 1 into (7.4), we have
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(7.8) suggests that the IL of the noise cancellation method also depends on the quality of

the duplicated noise coupling path. The closer Zs’ is to Zs, the larger the IL that can be

achieved.

7.1.3 Noise Source and Coupling Path Duplication

Noise source duplication

In passive cancellation circuits, a transformer with opposite winding direction is used

to duplicate the noise source and change its polarity, as shown in FIGURE 7.4. As a

result, G in (7.4) and (7.5) is dependent on the chosen transformers. Just as in feed-

forward type active filters, G should be designed to be close to one in the EMI noise band,

and be close to zero in the power frequency range. Generally, the leakage inductance

determines the lower end of the bandwidth of G, and the inter-winding parasitic

capacitance affects the upper end of the bandwidth of G. The transformer model in

FIGURE 6.19 also applies here.
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FIGURE 7.4 Passive noise source duplication example.

In active cancellation circuits, the noise source is often duplicated by adding

additional MOSFET/IGBT legs that switch complementarily to the existing switches.

Using the MOSFET bridge in FIGURE 7.5(a) as an example, the noise source is the pulse

generated by the MOSFET switching. The noise source can be duplicated by adding

another identical MOSFET leg and making it switch complementarily to the existing leg,

as shown in FIGURE 7.5(b). The pulse generated by the added leg has the same

magnitude but opposite polarity compared to the pulse from the existing leg.

FIGURE 7.5 Active noise source duplication example: (a) MOSFET leg, (b) active noise
duplication.

The difficulty in the active method is the switch control. A perfect match of the rising

and falling edges is usually very difficult to achieve. (FIGURE 7.6)



141

FIGURE 7.6 Switch control.

Coupling path duplication

To duplicate the coupling path, we need to characterize the coupling path first. For

example, the common mode (CM) noise goes through the parasitic capacitances, C1

through C3, in the buck converter as shown in FIGURE 7.7. The parasitic capacitances

and their associated loop inductances and resistances comprise the coupling path we need

to duplicate. These parasitic parameters can be extracted using the measuring techniques

introduced in Chapter 4. They can also be obtained by numerical simulation tools if the

detailed converter model is available.

FIGURE 7.7 Coupling path for CM conducted emission in buck converters.

Since the parasitic parameters vary from device to device, it’s very hard to achieve Zs

=Zs’. From (7.8), we know the phase information of Zs is a very sensitive factor. In the
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above example, we know the parasitic capacitance dominates Zs, in the frequency range

of interest. If the variation of the parasitic capacitance is small, a lumped capacitor with

approximately the same value could make the noise cancellation circuit work.

7.2 Passive Noise Cancellation

The passive cancellation method can be cost-effective for CM noise reduction in

power converters. Applications of passive noise cancellation for CM conducted

emissions reduction in DC-DC converter and CM output noise reduction in DC-AC

inverters will be discussed here.

7.2.1 CM Conducted Emissions Reduction in non-isolated DC-DC Converters

Buck converter

FIGURE 7.8 shows the passive noise cancellation method applied in the synchronous

buck converter. The dotted capacitor Zs represents the parasitic capacitance between the

low side MOSFET drain and the heatsink/converter chassis, which is the main coupling

path for the CM conducted emissions. The circuit in the dotted box in the middle is the

added noise cancellation circuit. A transformer is used to duplicate the noise source

(voltage across the low side MOSFET). A lumped capacitor Zs’ is added to match Zs. The

load is the 25 Ω LISN impedance in this case. Just as in the active filter, a filter capacitor,

Cf, is used to isolate the power frequency current. If the noise current that flows through

Zs to the converter chassis ,and the compensating current  that flows from the chassis

through Zs’ to the source are equal to each other, Icm = Icomp, then the noise current only

circulates within the converter and results in no CM conducted emissions.



143

FIGURE 7.8 Passive noise cancellation in a synchronous buck converter with added
transformer.

FIGURE 7.9 Passive noise cancellation in a synchronous buck converter with added
winding.

Another way to duplicate the noise source in the buck converter without adding a

transformer is to utilize the existing inductor, L, by just adding an anti-phase winding, as

shown in FIGURE 7.9. This approach could potentially save money and PCB space. As

shown in the figure, at the EMI frequency, the output capacitor, C, is considered a short

circuit, thus the voltage across the primary winding of the inductor / transformer is the
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noise source. Since the power frequency doesn’t need to be isolated in this case, C f can

also be saved. (Zs is large at the power frequency.)

Boost converter

Similarly, the boost converter can also use the passive noise cancellation method to

mitigate CM conducted emissions. Two schemes using an additional transformer and

added anti-phase winding are shown in FIGURE 7.10 and FIGURE 7.11, respectively.

FIGURE 7.10 Passive noise cancellation in a boost converter with added transformer.
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FIGURE 7.11 Passive noise cancellation in a boost converter with added winding.

Although utilizing an existing inductor to duplicate the noise source is cost-saving,

the inductor has to operate in the power frequency band and may not be optimized for

EMI noise duplication. For better control of the bandwidth of the noise cancellation, it is

recommended that a new transformer be used to duplicate the noise source. Note that the

added transformer can also be replaced by a unity gain amplifier with inverted output.

7.2.2 CM Conducted Emissions Reduction in Isolated DC-DC Converters

The passive noise cancellation application for CM conducted emissions reduction in

isolated DC-DC converters is similar to the non-isolated case, because the noise source

and the coupling path are very similar. FIGURE 7.12 and FIGURE 7.13 show the passive

noise cancellation method used in a flyback DC-DC converter with an added transformer

and added winding, respectively. As shown in the figures, the noise source is the voltage

across the low side MOSFET and the coupling path is the parasitic capacitance between

the MOSFET drain and the converter chassis, just as in the non-isolated converters.
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FIGURE 7.12 Passive noise cancellation in a flyback converter with added transformer.

FIGURE 7.13 Passive noise cancellation in a flyback converter with added winding.

7.2.3 CM Noise Reduction in DC-AC Inverters

The DC-AC inverter has the same MOSFET / IGBT legs as the synchronous DC-DC

converter, thus the CM conducted emissions can be reduced by the passive noise

cancellation method in a similar way, as shown in FIGURE 7.14. The CM noise voltage

is detected by the capacitor network, similar to the approach used with active filters. It is
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then duplicated by a transformer. Since there are no inductors in the inverter topology,

the anti-phase winding option no longer applies here.

FIGURE 7.14 Passive noise cancellation for CM conducted emissions reduction in a
three phase inverter.

For inverters, we are also interested in reducing the CM noise on the output phase

cables, which may cause radiated emissions and other issues. The CM output noise

source is the same as the CM conducted emissions source, which is the CM phase voltage

relative to the inverter chassis. The coupling path, however, is different. As shown in

FIGURE 7.15, assuming the DC bus is isolated from the inverter chassis, the CM current

flows through the parasitic capacitance between the load and the chassis, ZL, to the

chassis, and through the parasitic capacitance between the DC bus and the chassis, Zs

(3×Zs/3), back to the source. According to the noise cancellation mechanism, we need to

duplicate the source and one of the impedances, Zs or ZL.  The reason that we have two

options here for coupling path duplication is illustrated in FIGURE 7.16, which shows an

alternative way to cancel the noise current, Is. This model treats the load ZL as the
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coupling path and cancels the noise current by making the noise current circulate inside

the ZL’ – ZL loop, which is different from the passive cancellation model in FIGURE 7.2.

For conducted emissions reduction this is not an option because this alternative method

does not cancel the voltage, V2, appearing on the load (LISN).

FIGURE 7.15 and FIGURE 7.17 show the passive noise cancellation schematic for

phase noise reduction in a three-phase power inverter with Zs and ZL duplicated. In the

case when ZL is duplicated, the cancellation circuit makes the noise current circulate in

the ZL-ZL’ loop in an ideal situation. As a result, we need to extend the wire that connects

the source and ZL’ to minimize the ZL-ZL’ loop. In other word, by duplicating ZL, we

cannot reduce the CM current on the three phase cables. We are adding another cable in

parallel with the three phase cables so that the CM current on all four cables can be

canceled out. Compared to the duplication of Zs, this requires more modifications to the

system, such as the additional output cable.
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FIGURE 7.15 Passive noise cancellation for CM output noise reduction in a three phase
inverter with Zs duplicated.

FIGURE 7.16 Alternative passive cancellation model.
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FIGURE 7.17 Passive noise cancellation for CM phase noise reduction in a three phase
inverter with ZL duplicated.

7.3 Active Noise Cancellation

The active cancellation method can also be used for CM noise reduction in power

converters. We will discuss several active cancellation topologies here.

7.3.1 Complementary Switching Topology

To duplicate the noise source, an identical switch leg with a complimentary switching

pattern can be employed. An example of the synchronous buck converter is shown in

FIGURE 7.18. An identical MOSFET leg is added to the existing one. The voltage across

the low side MOSFET of the added leg has the same magnitude and opposite polarity as

the noise source resulting from the complementary switching. For the coupling path, as

shown in the figure, the parasitic capacitance Zs’ of the added leg should be close to Zs

with a good layout.
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FIGURE 7.18 Active noise cancellation for CM conducted emissions reduction in
synchronous buck converter.

For canceling the CM noise on inverter output phase cables, the complementary

switching method can also be used. Just as with the passive cancellation method, either Zs

or ZL must be duplicated, as shown in FIGURE 7.19 and FIGURE 7.20, respectively.

When duplicating ZL, the forth cable is also required. This topology is referred to as the

fourth-leg topology in [38]. As shown in FIGURE 7.19 and FIGURE 7.20, besides the

simultaneous switching challenge, the added leg must be switched complementary to all

the other three bridges. For example, if phase A ties high and generates a rising edge in

the CM noise voltage, the added leg needs to be tied low to generate a falling edge

canceling signal. If phase B ties high next in the sequence, the added leg which is already

tied low can’t be tied low again. As a result, this method restricts the driving scheme of

the converter. Details of the driving scheme will be discussed in Chapter 8.
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Also, adding a leg is more expensive than adding a small transformer or an amplifier.

With respect to cost, this is not as good an option as passive cancellation.

FIGURE 7.19 Active noise cancellation for CM phase noise reduction in a three phase
inverter with Zs duplicated.

FIGURE 7.20 Active noise cancellation for CM phase noise reduction in a three phase
inverter with ZL duplicated.

7.3.2 Dual-Fed Topology

Dual-fed topology also utilizes complementary switching to duplicate the noise

source. It solves the driving scheme restriction issue with the fourth-leg topology at a cost
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of two additional switch legs and a dual-winding motor. As shown in FIGURE 7.21, the

dual-fed topology is designed to cancel the CM output noise in the three phase motor

drive. The mechanism of the cancellation method is to duplicate the CM noise source

with the three additional switch legs, and to duplicate ZL by using the duel-winding motor.

Since the there are three additional legs, any combination of the switching can be

complementarily compensated. The result is the CM noise is reduced on all six phase

cables. Compared to the fourth-leg topology, although it has two additional bridges, all

the power MOSFETs are used to drive the motor. In other words, for a given power

output, the required power rate for each MOSFET is lowered. However, the dual-winding

motor is not as common as the single winding motor, and thus may result in increased

system cost.
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FIGURE 7.21 Dual-fed noise cancellation topology for CM phase noise reduction in a
three phase inverter.

A multilevel inverter also adds MOSFET bridges, and thus offers more switching

combinations and can reduce the CM noise on the inverter output [45]. However, it

doesn’t duplicate the coupling path, thus is not classified as an active noise cancellation

method.
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COMMON MODE NOISE SOURCE REDUCTION

The common mode (CM) noise source reduction method is based solely on the

switching pattern modification to cancel or reduce the CM noise source. Compared to the

filtering and topological cancellation solutions, it requires neither additional components

nor topological modifications to the power converter, thus is the most cost-effective

solution among the all. This chapter will introduce its mechanism and its application in

the three-level-three-phase voltage source power inverters.

8.1 Noise Source Reduction Mechanism

As its name implies, the CM noise source reduction method reduce the CM noise

source only. It modifies the switching sequence in a PWM cycle to cancel or reduce the

CM noise. Compared to the other hardware based modification, this solution is all about

the software.

FIGURE 8.1 Full-bridge inverter.

The full-bridge DC-AC inverter shown in FIGURE 8.1 will be used as an example to

show how the CM noise source is reduced. To output a sinusoidal waveform, one period

of the sine wave is divided into many PWM cycles, as shown in FIGURE 8.2. In each
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PWM cycle, an average voltage, referred to as the reference voltage, will be generated by

the inverter as shown in the figure. For example, to generate a reference voltage, DVdc, in

one PWM cycle, S1 will be on and S4 will be off for a time of DT as shown in FIGURE

8.3(a). When S1 and S2 are both closed, the output differential mode (DM) voltage, Vo,

equals Vdc. When S2 and S4 are both closed, Vo = 0. As a result the average output

voltage can be found by,
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The CM voltages are also plotted in FIGURE 8.3(a). Similarly, to generate the reference

voltage, -DVdc, the switching pattern in FIGURE 8.3(b) can be used, and the DM and CM

output voltages are plotted in the same figure.

FIGURE 8.2 PWM scheme for sinusoidal waveform output.
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FIGURE 8.3 Switching schemes in one PWM cycle: (a) Vref = DVdc, (b) Vref = -DVdc.

As discussed in Chapter 3, the CM voltage at the inverter output couples noise to the

power lines (or LISN) through the parasitic capacitances between the power switches and

the inverter chassis. It also generates CM current flowing through the parasitic

capacitances between the load to the chassis ground.

Unlike the noise cancellation method, which duplicates both the noise source and the

coupling path, the CM noise source reduction method only modifies the switching pattern

to reduce the CM noise source. Because there are no topological changes in the inverter,

any passive or active filter can be added for additional noise attenuation. As shown in
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FIGURE 8.3, the traditional switching pattern only closes one switch at a time. If

simultaneous switching is allowed, the switching pattern can be modified so that S1 and

S2 are turned on and off at the same time to output Vdc, as shown in FIGURE 8.4(a). The

duty cycle is changed to (1+D)T/2, so that the average output voltage in the PWM cycle

is,
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The modified switching pattern results in a constant CM voltage of Vdc/2 relative to the

DC negative. It theoretically eliminates the CM noise source. Similarly, the switching

pattern can be modified to output –DVdc with CM noise eliminated as shown in FIGURE

8.4(b).
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FIGURE 8.4 Modified switching schemes in one PWM cycle: (a) Vref = DVdc, (b) Vref = -
DVdc.

The vector approach can also be used to analyze the PWM scheme. As shown in

FIGURE 8.5(a), V0, V1, V2 and V3, denote the inverter output voltage vectors. When S1

and S3 are closed, the output voltage is denoted V0. When S1 and S2 are closed, the

output is V1. When S3 and S4 are closed, the output is V2. When S3 and S4 are closed,

the output is V3. Both V1 and V2 have a magnitude of Vdc but are 180 degrees out of

phase, and V0 and V3 are zero vectors, as shown in FIGURE 8.5(a). To generate the

reference voltage, Vref, different combinations of these inverter output vectors can be

used. For example, the traditional switching pattern in FIGURE 8.3(a) uses V0 and V1 to
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generate the reference voltage, Vref, while the modified switching pattern in FIGURE

8.4(a) uses V1 and V2 to generate Vref, as shown in FIGURE 8.6. The two different

switching patterns both output an average voltage of Vref in the PWM cycle, however,

result in different CM voltages.

FIGURE 8.5 Vector representations of the full-bridge inverter output: (a), by the vector
name, (b), by the ‘0-1’ notation.

FIGURE 8.6 Vectors used to generate the reference voltage: (a) traditional scheme, (b)
modified scheme.

The voltage vectors, V0, V1, V2 and V3, can also be represented by the states of each

inverter leg. We use ‘1’ to represent a high output (high side switch on and low side

switch off) and ‘0’ to represent a low output (high side switch off and low side switch on).
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For example, V1 can be represented by 10 because the left leg of the inverter is high and

the right leg is low. Similarly, V2 can be represented by 01 and V0, V3 are 00 and 11,

respectively, as shown in FIGURE 8.6(b). The CM voltage can be found by averaging the

two numbers in the ‘0-1’ denotation of the voltage vector and multiply it with the DC

input voltage. For example, the traditional switching scheme in FIGURE 8.3(a) used 00-

10-00 to generate Vref. We would expect that the CM voltage changes from 0 to Vdc/2

and then to 0. The modified switching scheme in FIGURE 8.4(a) only uses 10 and 01 to

generate the Vref. We would expect the CM voltage to be at constant Vdc/2.

Note the above CM voltage analysis used the DC negative as the reference. If the

inverter has balanced Y-capacitors at the power line, the chassis voltage should be Vdc/2.

The CM noise source reduction method is based solely on the modification of the PWM

switching patterns, thus doesn’t have any additional cost to the product. We will explore

its application in the most popular three-phase motor drives next and discuss the

disadvantages of this method.

8.2 Application in the Three-Phase Power Inverter

The application of the noise source reduction method in the three-phase motor drives

is based on the modification of the PWM driving schemes. Different modified schemes

will be introduced here.
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FIGURE 8.7 Three-phase inverter.

8.2.1 PWM Driving Schemes

FIGURE 8.8 Three-phase inverter output.

Similar vector approaches can be applied to the three-phase power inverter. For

example, an inverter drives a motor at a constant speed, by outputting three sinusoidal

waveforms with the same magnitude and 120 degrees apart from each other, as shown in

FIGURE 8.8. In each PWM cycle, although the reference voltages of each inverter leg

varies in magnitudes and phases, the vector sum of the three reference voltages is a space

vector with its tip on a circular locus that rotates at the same frequency as the sinusoidal
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inverter outputs, as shown in FIGURE 8.9. The vector, V1, representing only phase A has

a high output (phase A is tied high, phase B and C are tied low), is at 0˚ position. V3 and

V5, representing only phase B and only phase C has a high output, respectively, are 120˚

and 240 ˚ apart from V1, respectively. The eight different inverter outputs are V0(000),

V1(100), V2(110), V3(010), V4(011), V5(001), V6(101) and V7(111). Vectors, V2, V4 and

V6, are the opposite switching combinations to the vectors, V1, V3 and V5, respectively.

V0, V7 are zero vectors. The six active vectors and the two zero vectors divide the space

into six segments as shown in FIGURE 8.9.

FIGURE 8.9 Generation of the reference voltage by SVPWM.

SVPWM

The Space-Vector-Pulse-Width-Modulation (SVPWM) generates the reference

voltage, Vref, by using its two adjacent vectors and the two zero vectors. For example, to

generate the Vref between 0˚ and 60˚, V0, V1, V2 and V7 are used as shown in FIGURE
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8.9. The sequence of the switching is V7-V2-V1-V0-V1-V2-V7, as shown in FIGURE 8.10.

The duty cycles for V1 and V2 are D1 and D2, respectively. The average output voltage of

the PWM cycle can be found by summing the four inverters,

1 2 1 2
. 0 1 1 2 2 7

1 1 2 2

1 1

2 2o avg

ref

D D D D
V V D V D V V

D V D V

V

   
   

 



, (8.3)

as shown in FIGURE 8.9. Reference voltages at other sections of the space can be

generated in a similar way.

FIGURE 8.10 Switching pattern of SVPWM.
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The CM output voltage relative to the DC negative in this PWM cycle changes

between 0 and 1, as shown in FIGURE 8.10, where ‘1’ represents Vdc. Next, we will

introduce other PWM driving schemes that can reduce the CM voltage.

AZSPWM I

The Active-Zero-State-Pulse-Width-Modulation (AZSPWM) scheme generates the

reference voltage, Vref, by using its two adjacent vectors and another two opposite active

(non-zero) vectors. Compared to the SVPWM, AZSPWM uses two opposite active

vectors of the same magnitude (same duty cycle) to replace the zero vectors (as its name

implies). Depending on the selection of the opposite active vectors, different types of

AZSPWM schemes were proposed in [46]–[49].  As shown in FIGURE 8.11(a), the Type

I AZSPWM generates Vref by using V0, V1, V3 and V6. The sequence of the switching is

V3-V2-V1-V6-V1-V2-V3, as shown in FIGURE 8.11(b). The duty cycles for V1 and V2 are

D1 and D2, respectively and the duty cycles for V3 and V6 are both (1-D1-D2)/2. Because

V3 and V6 are opposite vectors, the average output voltage in this PWM cycle can be

found by,

1 2 1 2
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1 1 2 2

1 1
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, (8.4)

as shown in FIGURE 8.11(a).
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FIGURE 8.11AZSPWM I: (a) generation of the reference voltage, (b) switching pattern.

The CM voltage of the Type I AZSPWM in a PWM cycle varies from 1/3 to 2/3, as

shown in FIGURE 8.11(b). As a result, the CM noise magnitude of AZSPWM I is only

1/3 of that of the SVPWM.

AZSPWM II

Type II AZSPWM uses one of the adjacent vectors as one of the opposite active

vector as shown in FIGURE 8.12(a). As a result, the total number of the used vectors to

generate Vref is only three. The duty cycles of the V1 and V4 are (1+D1-D2) /2 and (1-D1-

D2)/2, respectively. Since V4 = -V1, the average output voltage in this PWM cycle can be

found by,
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as shown in FIGURE 8.12(a). The sequence of the switching is V1-V2-V4-V2-V1, as

shown in FIGURE 8.12(b).

FIGURE 8.12 AZSPWM II: (a) generation of the reference voltage, (b) switching pattern.

The CM voltage of the Type II AZSPWM in each PWM cycle varies from 1/3 to 2/3,

as shown in FIGURE 8.12(b). The CM voltage magnitude of AZSPWM II is only 1/3 of

the CM voltage generated by the SVPWM.
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NSPWM

The Near-State-Pulse-Width-Modulation (NSPWM) scheme proposed in [50]–[52]

generates the reference voltage, Vref, by using its two adjacent vectors and another active

vector that is closest to the reference voltage. For example, as shown in FIGURE 8.13(a),

Vref is generated by two adjacent vectors, V1 and V2, and another vector V6, if the angle

between Vref and V1 is smaller than 30˚.  The sequence of the switching is V2-V1-V6-V1-

V2, as shown in FIGURE 8.13(b). The duty cycles for V1, V2 and V6 are 2D1+D2-1, 1-D1

and 1-D1-D2, respectively. The average output voltage in this PWM cycle can be found

by,

     
       
       

1 2 1 1 2

1 2 1 1 2 1

. 1 2 6

1 2 1 52

1 2 1 1 2 1 2

1 2

1 2 1 2

1 2

1

1

1

2 1 1

2 1 1 1

2 1 1 1

o avg

ref

V V V V

V V V V

V V V V

V

D D D D D

D D D D D D D

D D D D D D D

D D V

V

   

    



   

     

        

 



, (8.6)

as shown in FIGURE 8.13(a).
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FIGURE 8.13 NSPWM: (a) generation of the reference voltage, (b) switching pattern.

The CM voltage of the NSPWM in each PWM cycle varies from 1/3 to 2/3, as shown

in FIGURE 8.13(b). The CM voltage magnitude of NSPWM is only 1/3 of the CM

voltage generated by the SVPWM.

RSPWM

The Remote-State-Pulse-Width-Modulation (RSPWM) scheme proposed in [49], [53]

generates the reference voltage, Vref, by using three remote active vectors, either V1, V3,

and V5, or V2, V4, and V6. FIGURE 8.14(a) shows an example of the RSPWM where,

Vref is generated by V1, V3, and V5.  The sequence of the switching is V3-V1-V5-V1-V3, as

shown in FIGURE 8.14(b). The duty cycles for V1, V3 and V5 are 1-D2, 1-D1-D2 and 1-

D1-2D2, respectively. The sum of the three vectors can be found by,
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as shown in FIGURE 8.14(a).

FIGURE 8.14 RSPWM: (a) generation of the reference voltage, (b) switching pattern.

The CM voltage of the RSPWM in each PWM cycle is constant in an ideal situation,

as shown in FIGURE 8.14(b). As a result, the CM voltage of the RSPWM scheme can be

eliminated theoretically.
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8.2.2 Performance Analysis

CM voltage reduction

As analyzed above, the theoretical CM voltage source reduction of the AZSPWM,

NSPWM and RSPWM schemes are listed in Table 8.1. For the three phase inverter, the

CM voltage relative to the DC negative rail is the average of the numbers in the ‘0-1’

notation of the inverter output voltage times Vdc. For example, V1(100) has a CM voltage

relative to the DC negative of Vdc / 3 and V7(111) has a CM voltage of Vdc. Both

AZSPWM and NSPWM avoid using zero vectors, V0(000) or V7(111), when generating

the reference voltage, thus, reduce the variation of the CM voltage in one PWM cycle

from Vdc to Vdc/3, which is 10dB reduction. The RSPWM produces a constant CM

voltage by using only odd-number or even-number active vectors to generate the

reference voltage. Theoretically, it eliminates the CM noise source. Although these

methods reduce the CM voltages of the power inverter, practically, they have several

disadvantages compared to the traditional SVPWM scheme, such as limited voltage

linearity region, increased harmonic distortion and simultaneous switching issues.

Table 8.1 CM voltage source reduction comparison.

AZSPWM I AZSPWM II NSPWM RSPWM

CM voltage source reduction 10dB 10dB 10dB ∞

Linearity region

Note that the duty cycles of all the voltage vectors used to generate the reference

voltage always add up to one. As a result, the range of the reference voltage that can be
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generated by the inverter output voltages is limited. Such range of the reference voltage is

referred to as the voltage linearity region. Take the SVPWM for example, its voltage

linearity region is the grey hexagon region shown in FIGURE 8.15. As discussed above,

to output three sinusoidal waveforms in FIGURE 8.8, the reference voltage vector rotates

around the hexagon center. As a result, the real useful region, or the fundamental linearity

region, is the area inside the circle shown in FIGURE 8.15. The modulation index of the

PWM driving scheme can be found by,

1

4

3

ref

i

V
M

V
 . (8.8)

As a result, the SVPWM can have a Mi up to 1.15 in its fundamental linearity region.

FIGURE 8.15 Voltage linearity region of SVPWM.

The linearity region of the AZSPWM scheme is the same as that of the SVPWM

scheme. But the linearity regions of the NSPWM and RSPWM schemes are very limited

compared to the SVPWM scheme, as shown in FIGURE 1.16 (grey area). The
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fundamental linearity region of the NSPWM is contained in a ring area, which

corresponds to a modulation index from 0.77 to 1.15. The fundamental linearity region of

the RSPWM is the circle inside a triangular, which corresponds to a modulation index

from 0 to 0.67. It can be improved by employing bothV1, V3, V5, and V2, V4, V6, to

generate the reference voltage. For example, when the angle of reference voltage is

between -30˚ and 30˚, V1, V3, V5 are used. When its angle is between 30˚ and 90˚, V2, V4,

V6 are used. The result is the increased linearity region and maximum modulation index

of 0.77, as shown in the figure.
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FIGURE 8.16 Voltage linearity regions of the CM-voltage-source-reduction schemes.

Output quality

Besides the linearity region, the actual inverter output quality is also a concern when

selecting the PWM schemes. The sinusoidal waveforms in FIGURE 8.8 are never perfect

in reality. The harmonics of the PWM carrier frequency distort the waveform and cause

current and torque ripples at the motor it is driving. Criteria, such as the Total Harmonic

Distortion (THD) factor, are used to evaluate such distortion. THD depends on the

modulation index, but in general, the closer the active vectors used to generate the

reference voltage are to each other, the smaller the THD is. The SVPWM uses two
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adjacent active vectors to generate reference vector. Its THD is the smallest among the all.

The NSPWM uses three adjacent vectors, so its THD is larger than SVPWM. The

AZSPWM has two opposite actives vector thus, high THD is expected. The RSPWM

uses three remote active vectors. Its THD could be the highest among the all.

Simultaneous switching

Observe the switching patterns, SVPWM, AZSPWM I and NSPWM switch one

inverter leg at a time, while AZSPWM II and RSPWM involve switching two inverter

legs at the same time. In practice, simultaneous switching doesn’t happen due to the

difference in the power components and the dead time. Also instantaneous line-to-line

voltage reversal caused by the simultaneous switching could result in significant over

voltage at the motor terminals. [54]

8.2.3 Summary of Noise Source Reduction Schemes

Table 8.2 listed the PWM schemes that reduce the CM noise source in the three-

phase power inverter for comparison. The traditional SVPWM has the largest CM output

noise source. However, it performs very well by other criteria, which is why it is favored

and employed in many of the today’s three-phase motor drives. The CM-voltage-

reducing PWM schemes are favored from the EMC standpoint of view, especially for

those without the simultaneous switching problem.
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Table 8.2 Noise source reduction schemes comparison.

CM voltage

reduction

Linearity

Region

Output

Quality

Simultaneous

Switching

SVPWM 0 dB Mi≤1.15 Good No

AZSPWM I 10 dB Mi≤1.15 Poor No

AZSPWM II 10 dB Mi≤1.15 Poor Yes

NSPWM 10 dB 0.77≤Mi≤1.15 Moderate No

RSPWM ∞ Mi≤0.77 Poor Yes

8.3 Other Noise Source Reduction method

This chapter reviewed the methods for CM noise source reduction. Although the

AZSPWM, NSPWM and RSPWM reduce the CM noise compared to the standard

SVPWM method, they have many disadvantages, such as smaller linearity region, poor

output quality and simultaneous switching issues, which are not favored in practical

applications.

Compared to the three-level inverter example, multilevel inverters have advantages

for applying the CM-source-reduction method because they offer more switching

combinations. Better performance of such applications were reported in [55], [56].
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Other methods such as the Random PWM (RPWM) proposed in [57]–[59] can also

improve the EMC performance of the motor drive. It uses a non-constant PWM carrier

frequency to spread the noise energy in a wide frequency range so that the peak noise in

the switching frequency harmonics can be reduced.
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PART II

INTRODUCTION TO MREMC

The Maximum Radiated Electromagnetic Emissions Calculator (MREMC) is a

software tool that allows the user to calculate the maximum possible radiated emissions

that could occur due to specific source geometries on a printed circuit board. The I/O

coupling EMI algorithm determines the maximum possible radiated emissions that could

occur due to coupling from a source signal on one trace to another (I/O) trace that could

carry the coupled signal off the board. The Common-mode EMI algorithm determines the

maximum possible radiated emissions that could occur when a signal on a microstrip

trace induces CM currents on the cables attached to the circuit board. The Power Bus

EMI algorithm determines the maximum possible radiated emissions that could occur

from a rectangular power bus structure. The Differential-Mode EMI algorithm determines

the maximum possible radiated emissions that could occur due to direct radiation from

the differential currents flowing on circuit board traces. The methods used, calculations

made, and implementation details are described.
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IO COUPLING EMI ALGORITHM

10.1 Introduction

High frequency signals on one circuit board trace can couple to input/output (I/O)

traces that carry the coupled energy away from the board. The common-mode currents

induced on cables attached to I/O nets can result in significant radiated emissions. The

I/O coupling EMI calculator was developed to calculate the maximum possible radiated

emissions from structures like this. The calculator utilizes formulas for crosstalk between

PCB traces described by Gupta [60] and expressions for the maximum radiated emissions

from PCB-cable structures developed by Deng [61]. This report is an extension of the

method described by Su [62] and is intended to provide details of the implementation

sufficient to allow others to develop their own version of this calculator.

FIGURE 10.1 I/O Coupling model: (a) top view, (b) section view.

Two parallel sections of microstrip circuit board traces are illustrated in FIGURE 10.1.

The cross-sectional view in FIGURE 10.1(b) shows that both traces have a width, a, a

height, h, and edge-to-edge separation, s. The board length, L, board width, W, relative

dielectric constant, rε , coupling length, lcoupling, and I/O trace length, ltrace, are the other

geometrical parameters required for this calculation. VSignal and RL represent the signal
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source voltage and the load resistance of the signal trace respectively. RNE is the near end

resistance of the I/O trace.  The I/O cable length is unspecified, but board is assumed to

be 1 meter over a ground plane, as it would be in most radiated emissions tests[61].

The calculator calculates the maximum radiated electric field at a distance of 3 meters

from the board and plots the results in /dB V mμ from 0 to 100 MHz as shown in

FIGURE 10.2.

FIGURE 10.2 MREMC plot example.

10.2 Description of Algorithm

The algorithm used by the calculator can be broken into two main parts. The first is to

determine the equivalent common-mode (CM) source based on the trace geometry. The

second is to determine the maximum radiated emissions based on the CM source and
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cable-board geometry. To determine the CM source, the total voltage coupled to the

victim circuit is determined by the coupling algorithm and the Thevenin equivalent

algorithm. After the CM source is obtained, the maximum radiated emissions are then

estimated by the estimation algorithm.

10.2.1 The Coupling Algorithm

I/O coupling model

FIGURE 10.3(a) shows the coupling model, which can be represented more simply as

shown in FIGURE 10.3(b). VS, ZL and ZNE are the same as VS, RL and RNE indicated in

FIGURE 10.1. Note that in this calculator, ZL and ZNE only support resistive input. ZFE is

the far-end load of the I/O trace, representing the input impedance of the antenna formed

by the I/O cable being driven against the wide PCB ground plane. Lm represents the

mutual inductance between the two trace-ground loops. Cm represents the mutual

capacitance between the two traces. Inductive coupling occurs when changing current in

the signal trace induces a voltage on the I/O trace through Lm. Similarly, the capacitive

coupling occurs when a changing voltage on the signal trace induces a current on the I/O

trace through Cm.
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FIGURE 10.3 Coupling algorithm: (a) coupling model, (b) simplified model, (c)
inductive coupling schematic, (d) capacitive coupling schematic.

Inductive Coupling

FIGURE 10.3(c) is the lumped-element circuit model for the inductive coupling. The

I/O trace and return plane are represented as a transmission line of length l. Vind

represents the induced electromotive force due to inductive coupling, which is given by

ind m sourceV j L Iω (10.1)

where Isource is the current on the signal which can be obtained by VSignal / ZL. Note that

the self inductance of the signal trace loop is ignored since at a frequency where the loop

inductance matters, the trace usually has a matched load. In the algorithm, only the

magnitude of the Vind is calculated,

2ind m sourceV fL Iπ . (10.2)
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Capacitive Coupling

FIGURE 10.3(d) is the lumped-element circuit model for the capacitive coupling. An

independent current source, Icap , represents the induced current due to capacitive

coupling, which is given by

signalcap m m L sourceI j C V j C Z Iω ω  . (10.3)

In the algorithm, only the magnitude of the Icap is calculated. Then magnitude of Vcap is

obtained by

2cap cap NE m L NE sourceV I Z fC Z Z Iπ  . (10.4)

Total Coupling

Assuming the lines are weakly coupled, the maximum possible coupling is a linear

combination of contributions due to the inductive and capacitive coupling [63]. The

maximum voltage induced in the victim circuit is the sum of the two coupled voltages,

 total ind cap m m L NE source ind capV V V j L C Z Z I V Vω       . (10.5)

Mutual Inductance and Capacitance

The mutual inductance Lm and mutual capacitance Cm are required to calculate the

induced voltages. The algorithm calculates Lm and Cm by [60]

 1
( ) ( )

2m o r e r couplingC C C lε ε  (10.6)

0 0 1 1

2 ( 1) ( 1)m coupling
e r o r

L l
C C

μ ε
ε ε
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where Co and Ce are even and odd mode capacitances per unit length respectively. lcoupling

is the coupling length for user input. (10.6) and (10.7) only apply to symmetrical traces

(traces with same width) [60]. For coupled microstrip lines, the components of the line

capacitance are illustrated in FIGURE 10.4. The algorithms to calculate are Co and Ce are

included in the subroutine calcCeCo(epsr).

FIGURE 10.4 Configuration of coupled microstrip line (a) general equivalent circuit (b)
and breakup of even mode (c) and odd mode (d) capacitance

For the even mode, the capacitance Ce is given as [60],

'( )e r p f f
C C C Cε    (10.8)

where,
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where,
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where reε is effective relative permittivity, which can be found by [64],

r 1 1 1

2 2 1 12 /
r

re
h a

ε εε  
 


. (10.14)

The values are found to be accurate to within 3 percent, compared with the values

obtained from [6], over the following range of parameters [60],

0.1 / 10w h  0.1 / 5s h  1 18rε 

For the odd mode, the capacitance Co is found by [60],

'( ) 0.5e r p f ga gd os cpsf
C C C C C C C Cε        (10.15)

where,
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The function K(k) and K(k’) are the complete elliptic function and its complement and

their ratio is given by
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Same applies to K(k0) / K(k0’)

The capacitances obtained by using the above equations are accurate within 3 percent,

compared with values obtained from [65], over the range of parameters [60],

0.1 / 10w h  0.1 / 4s h  2 18rε 
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10.2.2 Thevenin Equivalent Algorithm

A Thevenin equivalent source model was derived to account for all of the coupling

without requiring the input impedance of the attached cable to be known. The I/O trace

may or may not be electrically short and is modeled as a transmission line as indicated in

FIGURE 10.5(a). The open-circuit voltage at the far end (i.e., the connector) Veq, and the

equivalent impedance looking back toward the near end from the connector Zeq, can be

readily calculated from transmission line theory yielding the Thevenin equivalent circuit

in FIGURE 10.5(b).

FIGURE 10.5 Thevenin equivalent model

Veq and Zeq can be found by [62]

0
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where Z0 is the characteristic impedance of the transmission line, which is given in

(10.13) and lβ is the wavenumber, which is given by

0

2 trace rfl
l

c

π ε
β  . (10.25)



188

In the algorithm, the magnitude of Veq , the real part of Zeq and the imaginary part of Zeq

are calculated separately by
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FIGURE 10.3(a) can then be replaced by the model in FIGURE 10.6 with the

Thevenin equivalent source voltage and impedance. The new model is ready for use in

the radiated emission estimation.

FIGURE 10.6 I/O coupling model with CM source and impedance

10.2.3 Maximum Radiated Emission Estimation Algorithm

Board-source-cable geometry

A simplified geometry representing a typical EMC test environment is shown in

FIGURE 10.7, where the PCB board is 1m above the ground. Study in [61] suggests that

the peak emissions from such geometry are relatively independent of the connection point

to the board and relatively insensitive to the total cable length or orientation. The
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parameters that matter are the vertical distance traversed by the cable and the maximum

current. Also the maximum radiated electric field for this geometry can be estimated by

comparing the emissions from this structure to the emissions from a thin-wire monopole

above an infinite ground plane. In [61], a closed-form formula was developed to estimate

the maximum radiated emissions from the antenna model in FIGURE 10.7. This formula

was enhanced in [66] to be more accurate over the larger frequency ranges.

FIGURE 10.7 Board-source-cable geometry

Maximum Radiated Emission Estimation

The maximum electric field at 3m as shown in FIGURE 10.6 is calculated by [61],

max
20 ( , , )peak cableE I f k lθ   (10.29)

where ( , , )cablef k lθ can be obtained by [66],
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where lcable is the length of the attached cable, which is set to 1m in the calculator. f is the

frequency, and c0 is the propagation velocity in free space. Ipeak is the highest current that

actually exists on the cable and is given by

min

_ _

eq
peak

eq

V
I

R
Z

board factor cable factor






(10.31)

where Rmin is the input resistance (about 37 Ω) of a resonant quarter-wave monopole.

Two factors account for the effect that the finite cable length and the small board size

have on this minimum resistance, which are given by,

 boardsin 2 l
_ 4

1.0

boardwhen l
board factor

otherwise

λπ λ  


(10.32)
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(10.33)

where lboard is the effective length of a rectangular board. It can be approximated as,

2 2
21 W

2board

L
l L W

L
W


   (10.34)

where L and W denote the board length and width, respectively as shown in FIGURE

10.1. (10.31) is then calculated as,
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. .imag
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. (10.35)
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10.2.4 Assumptions Made in this Derivation

1. Signal trace and I/O trace are weakly coupled.

The induced currents and voltages in the victim circuit will induce currents and

voltages back into the generator circuit. By assuming weak coupling, the currents

and voltages coupled back into the generator circuit are ignored. [63]

2. Portion of the signal trace coupling to the I/O line is electrically short with a self-

capacitance and self-inductance that are negligible compared to the source and

load impedances. This is frequently the case, but similar equations that do not

depend on the value of ZFE could be readily derived for longer signal traces. [62]

3. The I/O trace can be model as a lossless transmission line, which is a reasonable

approximation.

4. The attached cable has negligible diameter, which is a good approximation when

the cable diameter is considerably smaller than the wavelength.

10.2.5 Limitations due to Implementation

1. These calculations are designed for symmetric microstrip lines.

2. The coupling algorithm provides reasonably accurate values in the following

range, 0.1 / 10w h  0.1 / 4s h  2 18rε 

3. The Estimation algorithm currently calculates emissions for a typical EMC test

environment with the EUT set 1 meter above the ground and the measuring

antenna located at 3 meters away.
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10.3 Conclusion

This calculator determines the maximum possible radiated emissions due to coupling

from a signal trace to an I/O trace on a circuit board. It is limited to symmetric microstrip

lines and assumes that the length of the coupled section is small relative to a wavelength

at the highest frequency of the analysis. Applied to longer coupled sections, the calculator

will overestimate the possible radiated emissions.
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COMMON-MODE EMI ALGORITHM

11.1 Introduction

A very common source of unwanted radiated emissions from electronic devices is the

common-mode current induced on attached cables. Energy from signal currents can be

coupled to attached cables through electric or magnetic fields. High frequency signals on

a circuit board trace can couple energy to the cables attached to the ground plane directly

through their electric field. They can also couple energy to the cables through the

magnetic field wrapping around the ground plane generated by the signal currents

returning through the finite-impedance ground plane. Both mechanisms can induce CM

currents on the cables resulting in radiated emissions. The first source mechanism is

referred to as electric-field coupling, by which, the magnitude of the induced CM current

is proportional to the signal voltage, but independent of the signal current. The second

source mechanism is referred to as magnetic-field coupling, by which the magnitude of

the induced CM current is proportional to the signal current, but independent of the signal

voltage. The CM EMI calculator was developed to calculate the maximum possible

radiated emissions from structures like this due to the two coupling mechanisms. The

calculator utilizes models for equivalent noise source calculations described by Su [7]

and expressions for the maximum radiated emissions from PCB-cable structures

developed by Deng [61] and Su [66]. This report is an extension of the method described

above and is intended to provide details of the implementation sufficient to allow others

to develop their own version of this calculator.
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FIGURE 11.1 CM EMI model: (a) side view, (b) top view.

A simple circuit board with a microstrip trace and a ground plane is illustrated in

FIGURE 11.1. The circuit board has a length, L, a width, W, and a dielectric layer

thickness, t. The signal trace has a width, a, and a length, lt. The positions of the trace and

the attached cables are other geometrical parameters required for this calculation. The

coordinates of the two end points of the trace are entered into the calculator manually.

Cable attachment points (connector positions) are to be chosen from the 16 position

options around the perimeter of the circuit board indicated by the green squares in

FIGURE 11.1(b). RL and CL represent the load resistance and capacitance, respectively.

The user can choose one of them depending on whether the signal terminates in a CMOS

component or a matched load.

The calculator calculates the maximum radiated electric field due to both coupling

mechanisms at a distance of 3 meters from the board. It plots the results in /dB V mμ

from 0 to 500 MHz if the “Digital Signal” source type is chosen; or from f0 to f1 if the

“Swept Frequency” source type is chosen. A representative output plot is shown in

FIGURE 11.2. f0 and f1 are the lower and the upper limits for the frequency sweep

respectively.



195

FIGURE 11.2 MREMC plot example.

11.2 Description of Algorithm

The algorithm used by the calculator can be broken into two main parts. The first part

determines the equivalent CM source based on the source geometry using the CM Source

algorithm. The second part determines the maximum radiated emissions based on the CM

source and the cable-board geometry using the Radiated Emission Estimation algorithm.

Both parts can be further broken into two subparts: the Electrical Coupling algorithm and

the Magnetic Coupling algorithm.
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11.2.1 The CM Source Algorithm

In [7], Su described a method called the Imbalance Difference Method to model the

differential-mode (DM) to CM conversion of a signal routed on a trace over a solid

ground plane with cables attached to both sides of the ground plane, as shown in

FIGURE 11.3(a). The equivalent model is shown in FIGURE 11.3(b), where the trace

and the loads are replaced by two CM voltages on the ground plane. h1, h2, h3 are the

imbalance factors, which can be defined for any transmission line geometry and are used

to calculate the magnitude of the CM voltages. They can be calculated using the equation,

trace

trace board

C
h

C C



(11.1)

where, Ctrace and Cboard are the stray capacitances per unit length of the signal trace and

ground plane. Note that the imbalance factor h is always between 0 and 0.5.

FIGURE 11.3 Imbalance difference model (a) Trace-and-board configuration. (b)
Equivalent model.
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In FIGURE 11.3, there is a change in the imbalance factor h at both ends of the

microstrip. As a result, voltages are generated that drive common-mode currents in the

ground plane. These voltages have amplitudes

2 1( ) ( ) ( )C NV A h h V A   (11.2)

3 2( ) ( ) ( )C NV B h h V B   . (11.3)

Since h1 and h3 are both zero (there is no trace, so Ctrace=0), (11.2) and (11.3) can be

rewritten as,

2( ) ( )C NV A hV A  (11.4)

2( ) ( )C NV B hV B  . (11.5)

If VN(B) is the signal on the load end of the circuit, VN(A) can be expressed in terms of

VN(B) as,

( ) ( ) 2 ( )N N trace return DMV A V B j f L L Iπ   (11.6)

where Ltrace and Lreturn are the partial inductance of the trace and the board respectively.

Combining (11.4) and (11.6), we have,

2(A) h ( ) 2 ( )C N trace return DMV V B j f L L Iπ    . (11.7)

The two CM source amplitudes obtained from (11.5) and (11.7) drive the common-

mode currents on the structure. Their magnitudes and phases depend on VN(B) and IDM

given the imbalance factor h2 is a constant. As a result, we can further decompose the
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radiated emissions source into two parts. One part depends on the signal voltage, VN(B),

and is the electric-field coupled component. The other part depends on the signal current,

IDM, is the magnetic-field coupled component. Separating the two coupling mechanisms

allows users to better understand the cause of the radiated emissions from the circuit

board.

Electric-Field Coupling

The source components representing the electric-field coupling can be derived by

making the circuit in FIGURE 11.3(a) an open circuit as shown in FIGURE 11.4(a), so

that the DM current, IDM, becomes zero. This configuration results when the two CM

voltages have the same magnitude and are 180o out of phase. In this case, the sources

drive the attached cables against the board and the induced CM currents flow in opposite

directions on cables attached to each side of the board, as shown in FIGURE 11.4(b). The

magnitudes of the electric-field component of the CM voltages can be calculated by,

CM DMV hV (11.8)

where h and VDM are the same as h2 and VN(B) in Equation (11.7), (i.e. the imbalance

factor of the trace-board geometry and the signal voltage at the load, respectively).
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FIGURE 11.4 Imbalance difference model for the open circuit structure.

Magnetic-Field Coupling

The sources representing the magnetic-field coupling can be derived by making the

circuit in FIGURE 11.3(a) a short circuit as shown in FIGURE 11.5(a). This makes the

DM signal voltage, VDM, zero. The load-end CM voltage is also zero, as shown in

FIGURE 11.5(b), leaving only the source end CM voltage with an amplitude that is given

by,

2 ( )CM trace return DMV h f L L Iπ  . (11.9)

Since h can also be expressed as,

return

return trace

L
h

L L



. (11.10)

Combining (11.9) and (11.10), we have,

2CM return DMV fL Iπ . (11.11)

IDM can be found by,
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/DM DM LI V Z (11.12)

where ZL is the load impedance. Note that the calculator doesn’t allow ZL to be zero,

because this would cause the signal voltage to also be zero.

The CM voltage obtained from (11.11) drives one cable relative to another if cables

are attached to opposite sides of the board. It drives the cables relative to the board if all

cables are attached to the same side of the board. The induced CM currents flow in the

same directions on the cables attached to opposite sides of the board, as shown in

FIGURE 11.5(b).

FIGURE 11.5 Imbalance difference model for the shorted trace structure. [7]

Calculating the Imbalance Factor

The calculator calculates the imbalance factor, h, using (11.10). Ltrace is obtained by

[64],
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where 0μ is the permeability of free space and t and lt are the dielectric thickness and

trace length, respectively. Lreturn is calculated by [67],

0
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1 4(1 2 / )( / )
t

return

tl
L

W t W s W

μ
π


 

, (11.14)

where s is the offset of the trace from the center of the board and W is the board width as

shown in FIGURE 11.6. The algorithm will calculate the coordinates of the trace center,

C, and obtain the offset, s, by,

2

2
yW C

s


 (11.15)

where Cy is the y coordinate of point C. Note that when the trace is at the corner of the

board as shown in FIGURE 11.7, the magnetic field generated by the returning current

can wrap around the board’s corner instead of the whole width of the board and thus,

make Lreturn larger. To avoid underestimating Lreturn, the algorithm will replace W in

(11.14) by dist1 + dist2, the sum of the distances from the trace center to the two nearest

board edges, when the trace is located at the corner of the board as shown in FIGURE

11.7. Offset, s, is correspondingly replaced by,

1 2

2

dist dist
s


 . (11.16)
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FIGURE 11.6 Trace position relative to the board.

FIGURE 11.7 Trace at the corner of the board.

11.2.2 Radiated Emissions Estimation Algorithm

A detailed description of the radiated emissions estimation algorithm is provided in

10.2.3. The CM emissions calculator supports multiple-cable geometries. It also separates

the emissions due to electric-field coupling from the emissions due to magnetic-field

coupling. Both components are calculated by the same estimation algorithm in 10.2.3

using different effective board lengths for the different coupling mechanisms.
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Electric-Field Coupling

As shown in FIGURE 11.4(b), the out-of-phase components of the two CM noise

sources are responsible for electric-field coupling. These source components drive the

attached cables relative to the board. Different board-cable configurations are treated

individually by the algorithm to calculate the effective board length. FIGURE 11.8 shows

a PCB layout with horizontally and vertically oriented traces. The angle between the trace

and the board centerline is beta. If beta is smaller than 45 degrees, the trace is considered

horizontally oriented. Otherwise, it is considered to be vertically oriented. As discussed

in 10.2.3, when a cable is driven relative to the board, an estimate of the effective board

length is required to calculate the radiated emissions. The effective board length is

determined by assigning the trace-board-cable configurations to one of four cases.

FIGURE 11.8 Trace orientation.



204

Case 1: Horizontal trace with cables attached to one side. (FIGURE 11.9)

FIGURE 11.9 Electric field coupling: Horizontal trace with cables attached to one side.

This is equivalent to the single-source-single-cable case in 10.2.3, except that the

effective board length used to calculate the board factor is different. In this case, the CM

source, V1, is driving board region A and attached cables against board region B as

shown in FIGURE 11.9, so the algorithm sets the effective board length equal to the trace

length.

Case 2: Horizontal trace with cables attached to both sides. (FIGURE 11.10)

FIGURE 11.10 Electric field coupling: Horizontal trace with cables attached to both sides.
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If the cables are attached to opposite ends of the board as shown in FIGURE 11.10,

the CM source V1 will drive the cables attached to area A against the board area B and

the source V2 will drive the cables attached to the area C against the board area B. The

algorithm handles this case by setting the effective board length equal to twice the trace

length. While this is not an exact solution, it is a reasonable worst-case approximation for

electrically small boards.

Cables attached to board area B are treated as though they were attached to one side

of the board. In other words, if there are already cables attached to area A and C of the

board, cables attached to B will have no effect on the effective board length.

Case 3: Vertical trace with cables attached to one side. (FIGURE 11.11)

FIGURE 11.11 Electric field coupling: vertical trace with cables attached to one side.

When the angle between the trace and the board center line exceeds 45 degrees, the

algorithm considers the trace to be vertically oriented and arranges the board areas A, B

and C as shown in FIGURE 11.11. Calculation of the effective board length
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corresponding to the different cable positions is same as the cases where the trace is

horizontally oriented.

In Case 3, all cables are attached to one side of the board (area A or C), so the

algorithm uses the trace length for the effective board length.

Case 4: Vertical trace with cables attached to both sides. (FIGURE 11.12)

FIGURE 11.12 Electric field coupling: vertical trace with cables attached to one side.

In Case 4, the cables are attached to both sides of the board, so the algorithm makes

the effective board length equal to twice the length of the trace.

Magnetic-Field Coupling

As shown in FIGURE 11.5 (b), the magnetic-field coupled component is modeled

using only one CM noise source. As a result, the CM source will drive the attached cables

against the board, if all cables are attached to one side of the board, and will drive some

attached cables against others if they are attached to both sides of the board.
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Case 5: Horizontal trace with cables attached to one side. (FIGURE 11.13)

FIGURE 11.13 Magnetic field coupling: Horizontal trace with cables attached to one side.

As shown in FIGURE 11.13, the CM source, V3, drives board area A and the cables

against board area B. The algorithm uses the diagonal length of the board area B for the

effective board length. If the cables are attached to area B instead of A, the diagonal

length of board area A will be used as the effective board length.

Case 6: Horizontal trace with cables attached to both sides. (FIGURE 11.14)

In this case, since the CM voltage is driving cables against cables, the algorithm

ignores the effective board length and sets the board factor equal to 1.
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FIGURE 11.14 Magnetic field coupling: Horizontal trace with cables attached to both
sides.

Case 7: Vertical trace with cables attached to one side. (FIGURE 11.15)

FIGURE 11.15 Magnetic field coupling: Vertical trace with cables attached to one side.

When the trace is vertically oriented, the algorithm arranges the board areas A and B

as shown in FIGURE 11.15. Calculation of the effective board length corresponding to

the different attached cables positions is same as it is for horizontally oriented traces.
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In Case 7, all cables are attached to one side of the board (area A or B), so the

algorithm uses the diagonal length of the opposite board area as the effective board length.

Case 8: Vertical trace with cables attached to both sides. (FIGURE 11.16)

FIGURE 11.16 Magnetic field coupling: Vertical trace with cables attached to both sides.

In Case 8, the cables are attached to both sides of the board, so the algorithm sets the

board factor to 1.

11.2.3 Assumptions Made in the Derivation and Implementation of These Algorithms

The width of the microstrip trace and the thickness of the dielectric layer are small

relative to a wavelength. This ensures the propagation on the trace is quasi-TEM. This

assumption was made in order to calculate and apply the imbalance difference method in

(11.10), (11.13) and (11.14).
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The signals are in phase on both ends of the trace. The algorithm does not currently

account for any phase shift between the signal at the source end and the signal at the load

end.

11.3 Conclusion

This calculator determines the maximum possible radiated emissions due to common-

mode currents induced on cables attached to a PCB with a microstrip trace. The current

implementation is limited to microstrip traces that are short relative to a wavelength at the

highest frequency of the analysis. The algorithm could be extended by using complex

values for the differential-mode voltages and equivalent common-mode voltage sources

at each end of the trace.
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POWER BUS EMI ALGORITHM

12.1 Introduction

High frequency noise on the power bus can result in significant radiated emissions.

The Power Bus EMI calculator was developed to calculate the maximum possible

radiated emissions from printed circuit board power plane structures. The calculator

utilizes simple closed-form expressions developed by Leone [68], Shim [69] and Zeng

[70].

FIGURE 12.1 Power plane structure.

The power bus structure is illustrated in FIGURE 12.1. The power planes have a

length, L, a width, W, and a conductivity, σ . The dielectric layer has a thickness, t, a

relative dielectric constant, rε , and a loss tangent, tanδ . The noise source can be

expressed as the maximum current drawn from the planes by the active devices, Ii, or the

maximum voltage fluctuation at the board edge, Vmax. For the current source, parameters

of the components on the board are needed to estimate the voltage fluctuations that will

appear on the planes. These parameters include the number of active and passive
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component connections to the power bus, Nc, the equivalent series resistance of these

components, Rc, and the connection inductance of these components, Lc [69].

The calculator calculates the maximum radiated electric field at a distance of 3 meters

from the board and plots the results in /dB V mμ from a specified minimum frequency, f1,

to a specified maximum frequency, f2, as shown in FIGURE 12.2.

FIGURE 12.2 Example of output from Power Bus EMI calculator.

12.2 Description of Algorithm

The calculator uses one of two separate algorithms depending on the type of noise

source specified. The Components on Board algorithm determines the maximum radiated

emissions based on the maximum noise current drawn from the power planes and

information about the components on the board. The Maximum Voltage at Board Edge
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algorithm determines the maximum radiated emissions based the maximum voltage

fluctuation at the board edge.

12.2.1 Components on Board Algorithm

The derivation of the closed-form expression used by the algorithm is well

documented in [69]. For relatively high-Q resonances, the maximum radiated field from a

populated rectangular board can be expressed as,
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where r is the distance from the board, sis the skin depth of the plane conductors, and

C0 is the capacitance between the power planes. r is set to three meters in the calculator,

sand C0 can be found by,

0
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ωμ σ
 (12.2)

0 0r

W L
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ε ε 

 . (12.3)

The calculator returns an error if the input value of the board width, W, is greater than the

input value for the board length, L. As a result, the term, min (W, L), in (12.1) is

equivalent to W.
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12.2.2 Maximum Voltage at Board Edge Algorithm

The noise current drawn from the power planes causes voltage fluctuations. For boards

that have already been built, it is usually easier and more accurate to measure the power

bus voltage instead of estimating it based on the current drawn by the active components.

The Maximum Voltage at Board Edge algorithm is based on the closed-form equation in

[70], which calculates the maximum radiated emissions from a rectangular power bus

with a given maximum voltage along the board edge. The maximum radiated electric

field strength is expressed as,
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where ft1 is a transition frequency that occurs midway between adjacent resonances just

below the cutoff frequency of the TM01 mode and fc2 is the cutoff frequency of the TM11

mode. They can be found by [70],
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The term
0

1

2 r

m

Lμε ε
in (12.5) is the cutoff frequency of the TMm0 mode that occurs at

the mode frequency closest to, but lower than, the TM01 mode.

12.2.3 Assumptions Made in this Derivation

The closed-form equations in both algorithms are developed based on a resonant

cavity model that assumes the spacing between the two planes is electrically small and

much smaller than the length and width of the board. Also, the shape of the planes must

be rectangular (or nearly rectangular).

The Components on Board algorithm makes additional assumptions in order to

estimate the voltage fluctuations caused by the active components on the board. This

algorithm assumes that the active and passive components are distributed fairly uniformly

over the board. It also assumes that a worst-case equivalent series resistance and

connection inductance can be defined that adequately represents the majority of the board

components. For boards with large numbers of decoupling capacitors, the ESR and

connection inductance of these capacitors should be used. The decoupling capacitor

capacitances are not relevant, since the inductance will typically dominate at board

resonance frequencies.

12.3 Conclusion

This calculator determines the maximum possible radiated emissions from a

rectangular power bus structure based on equations derived and validated in [68], [69]

and [70]. It can be applied to power buses consisting of two nearly rectangular planes
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with a small spacing relative to the length and width of the planes. It calculates the

maximum radiated fields for a board in free space and does not model near-field

interactions with cables or enclosures that might also contribute to a radiated emissions

problem.



217

DIFFERENTIAL-MODE EMI ALGORITHM

13.1 Introduction

Differential-mode (DM) currents are currents that travel from the source to the load on

one trace and return on another trace or plane along a path that is parallel and very near to

the out-going path. Because the fields from the out-going current are nearly canceled by

the fields from the returning current, differential-mode currents are inefficient radiation

sources. They are much less likely to radiate significant amounts of electromagnetic

energy when compared to common-mode currents that flow in one direction on one or

more conductors with no near-by return path. Nevertheless, large differential-mode signal

currents on circuit board traces are capable of causing radiated emission problems. The

differential-mode EMI calculator was developed to calculate the maximum possible

radiated emissions due to the DM currents on PCB traces. The calculator utilizes simple

closed-form expressions described by Paul [71]. This report is intended to provide details

of the implementation sufficient to allow others to develop their own version of this

calculator.

The circuit board trace configuration to be analyzed is illustrated in FIGURE 13.1.

The trace with a length, lt, is located above a plane that carries the return current. The

dielectric layer has a thickness of t. The differential-mode signal on the trace is

terminated with a capacitive or resistive load. The calculator determines the maximum

radiated electric field from this configuration at a distance of 3 meters and plots the

results in /dB V mμ up to 500 MHz, as shown in FIGURE 13.2.
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FIGURE 13.1 Printed circuit board trace above a plane.

FIGURE 13.2 Example of output from the Differential-Mode EMI calculator.

13.2 Description of Algorithm

To calculate the maximum possible radiated electric field above the PCB, image

theory is applied. The ground plane is replaced by an image trace on the other side of the

ground plane carrying the same current as the original trace flowing in the opposite
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direction. For electrically short sections, the trace and its image can be treated as two

Hertzian dipoles and their radiated electric field strength can be calculated using the

closed-form expression in [72].

2
14

max

2
1.316 10 DM tI f l t

E
r

 
  . (13.1)

In this implementation the distance from the board, r, is set to three meters; so (12.1) can

be further simplified to,

15 2
max 8.8 10 DM tE I f l t  . (13.2)

The magnitude of the differential-mode current flowing on the trace is,

Signal
DM

load

V
I

Z
 . (13.3)

The algorithm caps the trace length, lt, at one sixth of a wavelength because above

that, the assumption of a uniform current along the trace will be inaccurate. As long as

the trace is less than about one wavelength, (2) provides a reasonable upper-bound when

lt is capped at /6. For trace lengths greater than one wavelength, the traveling wave

antenna model described in [73] is recommended. The expression for the maximum

possible radiated emissions from a traveling wave antenna is similar to (2) with no

limitation on the trace length, lt; however this has not been implemented in the algorithm.

Electrically long microstrip traces are capable of producing significant radiated emissions

due to differential-mode currents, but they usually don’t. Losses in the structure and

details of the routing generally prevent DM radiation from these traces from being an
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issue. For this reason, electrically long microstrip traces should generally be modeled

using full-wave analysis techniques when one suspects that radiation from these traces

may be a problem.

This algorithm provides a reasonably accurate estimate of the maximum possible

emissions due to radiation directly from the trace/return structure provided that:

5. The length of the trace and the thickness of the dielectric layer are electrically
small.

6. The ground plane width is much greater than the trace width and the dielectric
thickness.

7. The trace length is limited to one wavelength. At the maximum frequency, 500
MHz, that this calculator supports, the wavelength is 60 cm.

13.3 Conclusion

This calculator determines the maximum possible radiated emissions due to

differential-mode currents flowing on PCB traces. It is limited to traces with lengths that

are smaller than a wavelength. For longer traces, the travelling wave antenna model in

[73] could be used.

It is important to note that for most realistic circuit board trace structures and currents,

the differential-mode radiation should be well below the FCC or CISPR radiated

emission limits. Any circuit that has loop areas sufficient to cause excessive differential-

mode radiation is likely to have other EMC problems as well.

Differential-mode radiation is rarely, if ever, the dominant source of a radiated

emissions problem. For that reason, the relatively simple closed-form equation provided

in [63] is accurate enough to flag a significant problem. Precise calculations of the
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radiation from differential signal currents on a printed circuit board are not helpful when

common-mode currents are the dominant EMI source.
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