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ABSTRACT

The nanotechnology today is continuously boosting the application of

nanostructured materials in the development and innovation of electronic devices,

such as Nano-Electromechanical Systems (NEMS), electrical transistors,

thermoelectric devices, and solar cells. Due to the size miniaturization, quantum

mechanical effects play important roles in the performance of such devices. To

correctly capture the quantum mechanical effects and understand how these effects

influence the electrostatic and electrical transport properties of nanomaterials,

efficient and accurate computational models are highly desirable. Currently, the

commonly used model for electrostatic analysis of nanoscale devices is based on

self-consistent solution of the effective-mass Schrödinger equation coupled with the

Poisson equation. However, a major drawback of this model is its inefficiency to

simulate systems with large Degrees of Freedom (DOFs). To reduce the

computational cost, in this thesis, two Component Mode Synthesis (CMS)

approaches, namely the fixed-interface CMS and the free-interface CMS, are

incorporated into the Schrödinger-Poisson model to speed up the electrostatic

analysis in nanostructures. The new model is employed to analyze the quantum

electrostatics in both nanowires and FinFETs. Numerical results demonstrate the

superior computational performance in terms of efficiency and accuracy.

In addition to the electrostatic analysis, carrier transport in nanostructures
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with perturbation from quantum effects also merits careful consideration. Among

the computational models developed for quantum mechanical carrier transport

analysis, the Non-Equilibrium Green’s Function (NEGF) coupled with Poisson

equation has gained vast application in both ballistic and diffusive transport

analysis of nanodevices. In this thesis, the NEGF model is expanded to include

mechanical strain and carrier scattering effects. Two important multiphysics

systems are investigated in this work. We first study the effect of mechanical strain

on the electrical conductivity of Si/Si1−xGex nanocomposite thin films. The strain

effect on the bandstructures of nano-thin films is modeled by a degenerate two-band

k · p theory. The strain induced bandstructure variation is then incorporated in the

NEGF-Poisson model. The results introduce new perspectives on electrical

transport in strained nano-thin films, which provides useful guidance in the design

of flexible electronics. Secondly, nanoporous Si as an efficient thermoelectric

material is studied. The Seebeck coefficient and electrical conductivity of

nanoporous Si are computed by using the NEGF-Poisson model with scatterings

modeled by Büttiker probes. The phonon thermal conductivity is obtained by using

a Boltzmann Transport Equation (BTE) model while the electron thermal

conductivity is captured by the Wiedemann-Franz law. The thermoelectric figure of

merit of nanoporous Si is computed for different doping density, porosities,

temperature and pore size. An optimal combination of the material design

parameters is explored and the result proves that nanoporous Si has better

thermoelectric properties than its bulk counterpart.

In the electrical transport analysis of nanomaterials, we found that the

standard NEGF-Poisson model using the Finite Difference (FD) method has a high

computational cost, and is inapplicable to devices with irregular geometries. To

overcome these difficulties, an accelerated Finite Element Contact Block Reduction
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(FECBR) method is developed in this thesis. The performance of the accelerated

FECBR is evaluated through the simulation of two types of electronic devices:

taper-shaped DG-MOSFETs and DG-MOSFETs with Si/SiO2 interface roughness.

Numerical results show that the accelerated FECBR can be applied to model

ballistic carrier transport in devices with multiple leads, arbitrary geometry and

complex potential profile. The accelerated FECBR significantly improves the

flexibility and efficiency of electrical transport analysis of nanomaterials and

nanodevices.
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CHAPTER 1

INTRODUCTION

Due to the advancement in nanotechnology, nanomaterials have opened many

new possibilities in different areas, such as Nano-Electromechanical Systems

(NEMS) [1–4], electrical transistors [5, 6], flexible electronics [7, 8],

thermoelectrics [9,10] and solar cells [11,12]. The unique properties of nanomaterials

are as a result of quantum effects. Within nanometer regime, those quantum effects

play a dominant role in shaping material properties. Many nanostructured materials

have been proposed in the past few decades for different state-of-the-art devices.

Compared with Micro-Electromechanical Systems (MEMS), NEMS typically

integrate transistor-like nanoelectronics with mechanical actuators, pumps, or

motors, and may thereby form physical, biological, and chemical sensors. The

miniaturization of the systems leads to low mass, high mechanical resonance

frequencies, potentially large quantum mechanical effects such as zero point motion,

and a high surface-to-volume ratio useful for surface-based sensing mechanisms [13].

Those advantages are being explored massively. Silicon nanostructures [2, 3] have

been applied in NEMS, such as actuators, biological and chemical sensors, moreover,

the carbon nanotubes [4] are also proposed to be used in RF-NEMS. In
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microelectronics industry, the development of the Complimentary

Metal-Oxide-Semiconductor (CMOS) device scaling [14, 15] in the past few decades

has led to the limit of the Moore’s law [16], which states that the transistor density

on a single microprocessor doubles every three years. Such device scaling causes

contemporary electronic devices to enter into nanometer regime. At nanoscale,

device performance becomes increasingly complicated as new physical phenomena at

short dimensions comes into play, and material properties are close to their limits.

Different approaches have been proposed to improve the device performance to

overcome the the current difficulties. Among them, nanomaterials and

nanostructures have attracted much attention. New nano-structures such as

FinFETs [5] and nanowires [6] have been developed and investigated concretely in

terms of their operational performance. Meanwhile, new alternative channel

materials have been explored, such as Ge-thin film [17], carbon nanotubes [18] and

so on. Another important application of nanomaterials is thermoelectric energy

conversion. Thermoelectric materials have the ability to directly convert heat energy

into electricity. More importantly, they have the advantages of being clean,

economical and sustainable. They have great potentials to be used in power

generation, cooling systems and waste heat recovery [19–21]. However, the current

difficulty in massive application of thermoelectric materials lies in their relatively

low conversion efficiency [22, 23]. To overcome the difficulty, a significant increase of

their efficiency is required. The efficiency of thermoelectric materials is evaluated by

the dimensionless figure of merit ZT = S2σT/k , where σ is the electrical

conductivity, S is the Seebeck coefficient, k is the thermal conductivity contributed

from both electrons and phonons, and T is the temperature. The product of S2σ is

called the power factor. To increase ZT , thermoelectric materials with lower and

higher power factor are preferred. One of the key challenges to increase ZT is that
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optimizing one parameter in ZT often causes sacrifice of another. Many approaches

have been proposed to increase in ZT . Quantum well and quantum dot superlattice

structures which are poor thermal conductors due to quantum effects are proposed

and investigated. Bi2Te3/Sb2Te2 [24] thin film superlattices show a high ZT up to

2 and the ZT of embedded PbSeTe quantum dots [25] has been reported to be

larger than 1. The obstacles of massive application of those thermoelectric materials

are their limited resources and expensive fabrication process. One-dimensional

nanowire structures are also considered. It’s indicated that Si nanowires [10] and Bi

nanowires [26] have great thermoelectric capabilities. Si nanowires with diameter

ranging from 10nm to 20nm show a high ZT up to 1.0. The increase of ZT in

nanowires is also due to the large reduction in their thermal conductivity, which

could be as a result of surface roughness and phonon drag effect. Meanwhile, carbon

nanotubes [27] and carbon nanoribbons [28] are explored to improve thermoelectric

performance. From manufacturing perspective, the fabrication process of those

newly emerged nano-structures becomes much more complicated and

time-consuming [29], consequently, the performance optimization cannot merely

depend on the experimental trial-and-error approaches. To better understand the

properties of those contemporary devices, computational simulations can be used as

an economical and efficient tool to provide a fundamental understanding of the

physics involved in those structures before engaging in experiments. The massive

application of nano-structures in different fields requires an accurate and efficient

understanding of the material properties, including mechanical, thermal, electrical

properties, etc. The conventional simulations of electrostatic and electrical

properties are based on classical or semiclassical models, in which the charge carriers

are treated as semiclassical particles. With contemporary nanoscale structures,

those models lose their validity due to their incapability to accurately describe the
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quantum effect which is pronounced in those structures. To properly capture those

effects, quantum-based simulation models are required. Below is a short summary of

the current models which are widely used and some of their limitations.

1. To model the electrostatics in nano-structures, the Poisson equation needs to

be solved. The Poisson equation describes the space charge effect on the

electrostatics in the systems. To obtain the charge distribution in the domain

of simulation interest, proper models have to be chosen at different length

scales, when it comes to nanoscale structures, the effective-mass Schrödinger

equation with closed boundary condition coupled with Poisson has been

widely adopted [30–32] to simulate the electrostatics. It can be used for

quantum mechanical electrostatic analysis of nano-structures such as quantum

well, quantum dots, nanoelectromechanical systems (NEMS), etc. The model

is attractive due to its simplicity and straightforward implementation by using

standard Finite Difference Method (FDM) or Finite Element Method (FEM).

However, as it is required to solve a generalized eigenvalue problem generated

from the discretization of the Schrödinger equation with closed boundary

conditions, the computational cost of the analysis increases quickly when the

system’s degrees of freedom (DOFs) increases. Furthermore, the newly

emerged MOSFETs with multiple gates [30, 33], such as Trigates, FinFETs

and Pi-gates, imply that multi-dimensional analysis is necessary to gain a full

understanding of the electronic properties in those devices. To deal with

simulations with large number of DOFs, current numerical methods become

inefficient. For this reason, techniques that enable efficient solution of

discretized Schrödinger equations in multidimensional domains with large

DOFs are desirable.
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2. The electrical transport analysis in nanostructures can provide the electrical

properties of those structures, such as charge distribution, potential profiles,

current density, etc. The development of nanostructured materials, such as

particulate, layered and fibrous nanocomposites, has opened the possibilities

of tailoring material electrical properties in a controlled manner [34, 35], for

example, nanocomposite thin-films have been fabricated to produce

high-mobility MOS thin-film transistors (TFT) for displays, active RF tags

and thin-film sensors [36], moreover, nanowires have been proposed to be an

efficient thermoelectric alternatives in the future. The current modeling and

analysis of electrical transport properties has been mainly based on the

Boltzmann Transport Equation (BTE) under the relaxation-time

approximation [37–39], the model is not accurate within nano-scale. To solve

for carrier transport in the nano-structures, the electrostatics has to be solved

self-consistently with governing equations which describe the carrier flow due

to all sources of driving forces. One of the well-developed formalism to

calculate the carrier transport in a nanoscale structure is Landauer-Büttiker

formalism [40, 41], which calculates the current flow by transmission function.

The transmission function in the nanostructures can be obtained by solving

Schrödinger equation directly [42] or by using non-equilibrium Green’s

function (NEGF). A well-developed approach to solve the Schrödinger

equation directly is the transfer matrix method [43], which proves to be

unstable when the DOFs in a system becomes large. To overcome the

limitation, the Quantum Transmitting Boundary Method (QTBM) [42,44] has

been developed. The implementation of this approach involves repeated

solutions of a linear system of equations whose size is proportional to the

DOFs in the entire simulation domain. It’s been used to simulate ballistic

5



transport in electronic systems from 1D [45] to 3D [46]. Instead of directly

solving for the electron eigenstates within the device through Schrödinger

equation, NEGF [47], within which a self-energy function has been introduced

to denote the interaction between the active device region and the large

carrier reservoirs, is also widely adopted. Its capability to account for different

scattering scenarios in the electron transport within different systems largely

favors its popularity. The scatterings are usually denoted by the Büttiker

probes model [48], more accurate treatment can be also derived rigorously in

NEGF formalism [49]. However, the computational cost caused by directly

inverting a matrix repeatedly whose size resting on the number of mesh grids

in the simulation domain impedes its application in 2D and 3D simulations.

Once the DOFs increases high enough, the computation cost becomes

intractable with a single PC, under this circumstance, parallel computing is

required to solve for the direct Green’s function [50]. Meanwhile, to ease the

computational burden, instead of inverting the matrix directly, recursive

Green’s function method [51] and mode-space Green’s function method [52]

have been developed. The former has been used to 2D devices [53] and

nanowires [6], the latter has been incorporated in the simulator

NanoMOS [52]. However, the recursive Green’s function is limited to be used

in the device simulations with no more than two ohmic contacts since it relies

on the tri-diagonality of system Hamiltonian. The mode-space Green’s

function method is only applicable when the device domain is of high

symmetry where the Schrödinger equation is separable in different directions.

To deal with the foregoing limitations, a new approach which is named

Contact Block Reduction (CBR) [29, 54] has been developed to simulate

ballistic transport in nanoscale devices with any geometry, potential profile
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and the number of leads. By using the CBR, the Green’s function can be

obtained by a one-time solution of the eigen-pairs for a closed system (the

entire simulation domain without perturbations from external sources) and

repeated inversion of a small matrix of size dependent on the DOFs along the

boundaries connecting the active domain to the carrier reservoirs.

Unfortunately, the current available numerical algorithm for implementing this

approach is limited to FDM. To deal with irregular geometries, FEM serves as

a better and proper approach which allows for non-uniform mesh of the device

domain. However, finite element formulation for CBR is currently not

available. Whether this model could remain its efficiency with FEM is not

clear. In addition, when the number of DOFs involved in the device simulation

increases, the computational time consumed by solving for the electron

eigenstates is increased significantly, therefore, more efficient algorithm to

solve for the eigenstates is needed to maintain its feasibility to accurately and

efficiently model the ballistic transport in 2D and 3D electronic devices.

To address these issues, the objectives of this research are: 1) to develop a new

efficient TCAD (technology computer aided design) model for quantum mechanical

electrostatic analysis in nano-structures which can deal with systems with large DOFs.

2) to numerically investigate the electrical transport properties of newly proposed

nanostructures, such as nanocomposite thin films, nanoscale thermoelectric materials,

etc. 3) to develop a new efficient finite element formalism model for quantum transport

analysis which enables efficient simulations of 2D and 3D simulations of modern

nano-structures and nanodevices with rational accuracy. The research work can be

summarized into the following four parts.

1. Development of a robust and efficient model to simulate the electrostatics in

7



the nanoscale structures. In this part, we propose a component mode synthesis

(CMS) approach to accelerate the numerical solution of the Schrödinger

equations. As a model order reduction method, the CMS was originally

developed for dynamic analysis of large mechanical systems. Here the CMS

approaches are extended in the quantum mechanical electrostatic analysis. In

CMS, the whole simulation domain is divided into a set of small components,

in each component, an eigenvalue problem of size equal to the DOFs in the

local component (much smaller than the total DOFs) is solved to obtain the

eigen-pairs in it. A small set of component eigen-pairs is retained along with

some other modes (either constraint modes or attachment/rigid body modes)

to construct the Ritz basis vectors which could be used to approximate the

wavefunctions in each component. By assembling those vectors from all the

components, a global transformation matrix composed of a complete and

orthogonal basis could be obtained and the Hamiltonian could be projected

into this vector space, usually, the size of Hamiltonian could be largely

reduced and approximate results for global eigen-pairs could be solved. The

two most commonly used CMS approaches are the fixed-interface CMS and

the free-interface CMS. While the former composes Ritz basis vector by using

fixed interface wave functions and constraint modes, the latter makes use of

free interface wave functions, attachment modes and rigid body modes. The

performance of both approaches is illustrated to solve for the electrostatics in

different electronic devices.

2. Computational modeling and computational analysis of strain effect on

electronic properties of devices and materials. Crystal strains and external

applied strains can induce band structure changes in semiconductor materials.
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The band structure variation is commonly composed of band splitting and

band wrapping [55,56]. Band splitting may cause electron redistribution in the

band valleys while band warping can result in conductivity effective mass

change. Strain can be also used to tailor the band offsets between different

semiconductor materials. In this part, we propose a modeling approach for

investigating the effects of mechanical strain on electrical conductivity of

semiconductor nanocomposite thin films, and analyze the effect of uniaxial

and biaxial strains on the electrical conductivity of Si/Si1−xGex

nanocomposite thin films with Si1−xGex nanowires embedded in Si host. We

utilize a degenerate two-band k · p theory to calculate the variation of the

electronic band structures in deformed crystal lattices of Si and Si1−xGex. To

calculate the electrical conductivity, we adopt a real-space NEGF for the

analysis of electron transport in the nanocomposite thin films. The NEGF can

reliably capture the quantum effect which may play a key role in the

performance of these nanoscale systems. In addition, by coupling with the

Poisson equation, the space charge effect can be properly considered. In this

part, by solving the NEGF and Poisson equations self-consistently, we

explicitly calculate the energy band profile, electron density and current

density within the nanocomposite material. The IV curve can then be

obtained by applying different voltages across the material. Finally, the

electrical conductance of the material can be calculated from the slope of the

IV curve when the applied voltage is small. By including the strain-induced

band structure change in the NEGF, a set of IV curves under different strains

are calculated. The electrical conductance of the nanocomposite material as a

function of the applied strains is computed from these IV curves.
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3. Computational analysis of electrical transport in nanoporous thermoelectric

materials. Nano-porous Si [57] has been proposed to be an efficient

thermoelectric material ever since it is found to have very low thermal

conductivity. To analyze and better understand the thermoelectric properties

of nanoporous Si, in this part, a numerical model combining (NEGF) and

Poisson equations and phonon Boltzmann Transport Equation (BTE) is used.

To our knowledge, this is the first time that a numerical model is proposed

and applied to investigate the thermoelectric performance of nanoporous Si.

The NEGF-Poisson model is solved self-consistently with FDM to numerically

calculate the electrical conductivity and Seebeck coefficient of the material

while the phonon BTE is solved by Finite Volume Method (FVM) to obtain

its phononic thermal conductivity. Meanwhile, the electronic thermal

conductivity is well considered by the Wiedemann-Franz Law [58]. The

numerical procedures of the computation for the electrical conductivity and

Seebeck coefficient mimic experiments. The scattering in the material is

modeled by Büttiker probes. The electronic thermal conductivity is obtained

with a simple relation to the electrical conductivity of the material through

Wiedemann-Franz Law. Finally, after the electrical conductivity, the Seebeck

coefficient and the thermal conductivity are obtained, the figure of merit is

easily obtained. By using the model, the effect of porosity, the size of unit cell,

the temperature and the doping density on the thermoelectric properties of

nanoporous silicon is investigated. To optimize the thermoelectric efficiency of

nanoporous silicon, the best combination of those parameters is also studied.

4. Finite element formulation and efficient numerical analysis of ballistic

quantum transport in contemporary electronic nanostructures with efficiency
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and accuracy. As discussed, the mostly common used model, i.e.,

NEGF-Poisson is inefficient when it comes to electronic devices of more than

two leads and arbitrary potentials. Moreover, although the CBR-Poisson

model seems to be able to handle those limitations, current FDM

implementation cannot be used when the electronic devices have irregular

geometries. As a result, in this part, we develop a Finite Element Contact

Block Reduction (FECBR)-Poisson model and test its performance by using

different devices with irregular geometries. The percentage of kept eigenstates

to ensure the accuracy of the final results is investigated and the

computational efficiency of the model is ensured. Furthermore, since the

computation of the CBR-Poisson model is dependent on the eigenstates

obtained by solving the Schödinger equation with closed boundary conditions,

when the number of DOFs in the device gets large, the available solver

becomes very inefficient, consequently, we incorporate the CMS approaches

into CBR-Poisson model to resolve this issue. Simulations for devices with

large DOFSs are implemented with the new model, which make it possible to

simulate large 2D and 3D electronic devices with the least computational

resource.

The rest of this thesis is arranged as follows, in Chapter 2, CMS approaches

for quantum mechanical electrostatic analysis of nanoscale devices have been

developed. The results showed that the CMS can produce a large computational

cost saving. The work of developing numerical models to simulate the effect of

strains on the nanocomposite thin films has been presented in Chapter 3. With the

numerical analysis, the strain proves to be a very useful technique to tune electrical

properties of nanocomposite thin films. In Chapter 4, the thermoelectric properties
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of nanoporous Si is investigated with a newly proposed numerical method, the

results demonstrated that the nanoporous Si could be considered as an efficient

thermoelectric materials. With the understanding and development of methods used

in computational electronics within quantum regime, we proposed a new accelerated

model, namely, the accelerated Finite Element Contact Block Reduction (FECBR)

approach, to facilitate the modeling and simulations of ballistic transport in devices

and materials in Chapter 5, finally, the conclusions are shown in Chapter 6.
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CHAPTER 2

COMPONENT MODE

SYNTHESIS APPROACHES FOR

QUANTUM MECHANICAL

ELECTROSTATIC ANALYSIS OF

NANOSCALE DEVICES

2.1 Introduction

As the dimensions of commonly used semiconductor devices have shrunk into

nanometer regime [59–62], it is recognized that the influence of quantum effects on

their electrical properties cannot be ignored [63–66]. Various computational models

and approaches [2, 3, 5, 30–32, 47, 52, 67, 68] have been developed to analyze these

properties including the quantum effects in nanostructures and devices in the past

few decades. Among these computational models, the Schrödinger-Poisson
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model [2, 5, 30–32] has been widely adopted for quantum mechanical electrostatic

analysis of nanostructures and devices such as quantum wires, MOSFETs and

nanoelectromechanical systems (NEMS). The numerical results allow for evaluations

of the electrical properties such as charge concentration and potential profile in

these structures. The emerge of MOSFETs with multiple gates, such as Trigates,

FinFETs and Pi-gates, offers a superior electrostatic control of devices by the gates,

which can be therefore used to reduce the short channel effects within those devices.

A full 2D electrostatic analysis [69, 70] in the cross-section perpendicular to the

transport direction in those nanodevices can be used to better understand the

scalability of devices, moreover, many simulations and studies [33,71–75] focusing on

the corner effects, the properties of inversion layers, current oscillations due to the

applied gate voltages, and threshold voltages of multiple-gate MOSFETs have been

carried out by applying the Schrödinger-Poisson model. This model is also used in

the quantum simulation of silicon nanowire transistors by NEGF recently [6], an

application of this model to obtain the electron sub-bands and wave functions in the

devices is necessary to analyze transport characteristics of the transistors. It is

reported [76, 77] that solving Schrödinger equation to obtain the electron sub-bands

and wave functions within the cross-section perpendicular to the transport direction

consumes most of the CPU time in the whole simulation. The Schrödinger-Poisson

model is attractive due to its simplicity and straightforward implementation by

using standard finite difference or finite element methods. However, as it is required

to solve a generalized eigenvalue problem generated from the discretization of the

Schrödinger equation, the computational cost of the analysis increases quickly when

the system’s degrees of freedom (DOFs) increase. For this reason, techniques that

enable an efficient solution of discretized Schrödinger equation in multidimensional

domains are desirable. In this chapter, we seek to accelerate the numerical solution
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of the Schrödinger equation by using component mode synthesis (CMS)

approaches [77–88]. As a model order reduction method, the CMS was originally

developed for dynamic analysis of large mechanical systems. In the mechanical

analysis using CMS approaches, a large structure is discretized into substructures or

components. The component vibrational modes are computed for each substructure.

Only a small set of component modes are retained to construct a set of Ritz basis

vectors [85]. The basis vectors are used to approximate the displacement of the

substructure. The approximations of the substructures are then assembled to obtain

a global approximation of the entire structure’s displacement. In this chapter, the

CMS approaches are extended in the quantum mechanical electrostatic analysis

where a set of basis vectors are constructed to approximate the wave functions in

each component. The global energy levels and wave functions are then recovered by

the synthesis of these component wave functions. Different from mechanical analysis

where only a few vibrational modes are sufficient to model the dynamic response, in

some cases, it is necessary to calculate many energy levels and wave functions in

order to compute the charge concentrations accurately. In our analysis, it is

observed that the construction of the basis vectors plays a critical role in the

accuracy of the final results. We investigate the performance of two CMS approaches

with different ways of constructing basis vectors, namely, the fixed interface CMS

approach and the free interface CMS approach. The fixed interface CMS approach

computes fixed interface wave functions and constraint modes [38] to form the basis

vectors while the free interface CMS approach employs a set of free interface wave

functions, attachment modes and rigid body modes [85, 86] to form the basis

vectors. The two CMS approaches are applied to compute the charge concentrations

and potential profiles of several 2D semiconductor devices including quantum wire,

and multiple-gate MOSFETs. It is shown that both approaches greatly reduce the
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computational cost while the free interface CMS approach gives significantly more

accurate results of the energy levels and wave functions. However, when large

degrees of freedom are included in the simulation, the fixed interface CMS approach

is more efficient than the free interface CMS approach. The rest of the chapter is

organized as follows. First of all, the self-consistent numerical solution of

Schrödinger-Poisson equations is described in Section 2.2, then the CMS approaches

for solving the Schrödinger equation are presented in Section 2.3 and numerical

examples are presented in Section 2.4, finally, a summary is shown in Section 2.5.

2.2 Quantum Mechanical Electrostatic Analysis

2.2.1 Governing equations of the Schrödinger-Poisson model

In the 2D quantum mechanical electrostatic analysis using Schrödinger-Poisson

model, the two dimensional effective mass Schrödinger equation is given by [69],

Hψn = − ~2

2m∗x

∂2ψn
∂x2

− ~2

2m∗y

∂2ψn
∂y2

+ Uψn + ∆Eψn = Enψn (2.1)

where H is the Hamiltonian, U is the potential energy, and m∗x and m∗y are the

effective masses of electrons or holes in x and y directions, respectively, ψn is the wave

function corresponding to the energy level En , and ∆E is the pseudo-potential energy

due to the band offset at the heterostructure interface. By solving the Schrödinger

equation, Eq. (2.1), the energy levels En and the corresponding wave functions ψn

can be obtained for electrons and holes. The Schrödinger equation is coupled with
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the Poisson equation through the quantum electron and hole concentrations,

n =
Nnd

π

(
2m∗nzkBT

~2

)1/2

×
∞∑
n=1

ψ2
nF−1/2

(
EF − En
kBT

)
(2.2)

p =
Npd

π

(
2m∗pzkBT

~2

)1/2

×
∞∑
n=1

ψ2
nF−1/2

(
En − EF
kBT

)
(2.3)

where Nnd and Npd are the band degeneracy of electrons and holes, respectively, m∗nz

and m∗pz are the effective masses of electrons and holes in z-direction, respectively,

kB is the Boltzmann constant, T is the temperature, EF is the Fermi energy, and

F−1/2 is the complete Fermi-Dirac integral of order −1/2. The electron and hole

concentrations can then be substituted into Poisson equation to obtain potential

profile in semiconductor devices. The Poisson equation is expressed as,

∇ · [εr∇U ] = e2[−n+ p+N+
d −N

−
a ] (2.4)

where εr is the dielectric constant, e is the unit electric charge, n and p are electron

and hole concentrations given in Eq. (2.2) and Eq. (2.3), N+
d and N−a are ionized

donor and acceptor concentrations. To obtain a self-consistent solution of the

coupled Schrödinger-Poisson equations, one needs to iterate between the

Schrödinger and Poisson equations. By solving the Schrödinger equation with a trial

potential energy Uinitial, the eigenvalues and eigenvectors are obtained. The electron

and hole concentrations are then computed based on these eigen-pairs. Substituting

the computed electron and hole concentrations into the Poisson equation, a new

potential profile U can be calculated. The new potential profile is then used to solve

the Schrödinger equation again to obtain new eigenvalues En and corresponding

eigenvectors. By following this iteration procedure, with a number of iterations, a
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final solution of charge concentration and potential profile satisfying given

convergence criteria can be obtained. While this relaxation scheme is

straightforward, it has been shown that its convergence property is poor [32, 69, 70].

In this chapter, instead of solving the linear Poisson equation shown in Eq. (2.4), we

employ a predictor-corrector approach proposed by Trellakis, et al. [69] to obtain

improved convergence. In the predictor-corrector approach, assuming an electron

dominant case, n[U ] in the Poisson equation is replaced by a modified quantum

electron concentration,

∇ · [εr∇U ] = e2[−ñ+ p+N+
d −N

−
a ] (2.5)

where

ñ =
Nnd

π

(
2m∗nzkBT

~2

)1/2

×
∞∑
n=1

ψ2
nF−1/2

(
EF − Ek

n + e(U − Uk)

kBT

)
(2.6)

The superscript k denotes the quantities obtained from the previous

Schrödinger-Poisson iteration. Note that the Poisson equation becomes nonlinear

due to the modified quantum electron concentration.

2.2.2 Finite element solution of coupled Schrödinger-Poisson

equations

The governing equations given in Eq. (2.1) and Eq. (2.5) are solved by using

the Finite Element Method (FEM). The governing PDE of the Schrödinger equation

can be converted to its weak form by using Galerkin weighted residual method.

Multiplying both sides of Eq. (2.1) by the variation of the wave functions, δψn, and
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integrating the product over the 2D domain, we obtain,

∑
i

−~2

2

∫
Γi

δψ
1

m∗−→ni
(∇ψ · −→ni) dΓi+

~2

2

∫
Ω

(∇δψ)TM∗∇ψdΩ+

∫
Ω

UδψψdΩ = E

∫
Ω

δψψdΩ

(2.7)

where Ω is the simulation domain, −→ni is the normal vector to the boundary Γi, m
∗−→ni is

the electron effective mass in −→ni direction, M∗ is a 2× 2 diagonal matrix with 1/m∗x

and 1/m∗y as its diagonal elements. In this chapter, the Dirichlet boundary condition

ψn = 0 for the wave functions along the boundaries of the simulation domain Ω is

applied. In FEM, such boundary conditions can be automatically applied by dropping

the first term in Eq. (2.7). Therefore, Eq. (2.7) for closed system can be obtained as,

~2

2

∫
Ω

(∇δψ)TM∗∇ψdΩ +

∫
Ω

UδψψdΩ = E

∫
Ω

δψψdΩ (2.8)

After meshing the simulation domain into a series of small elements, in each element,

the unknown wavefunction ψ(x, y) can be expanded in the basis of 2D shape functions

N2D as,

ψe =
ns∑
s=1

N2D
s ψes =

(
N2D

1 N2D
2 . . . N2D

ns

)


ψe1

ψe2

. . .

ψens


= N2Dψe (2.9)

where ns is the total number of nodes in a single element, ψes is the nodal value of ψ

at sth node in the element and N2D is a 1×ns vector. Based on Eq.(2.9), the gradient
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of the wave function can be written as,

∇ψe =

∂ψe

∂x

∂ψe

∂y

 =

∂N2D
1

∂x

∂N2D
2

∂x
. . .

∂N2D
ns

∂x

∂N2D
1

∂y

∂N2D
2

∂y
. . .

∂N2D
ns

∂y

 ·


ψe1

ψe2

· · ·

ψens


= ∇N2D ·ψe (2.10)

Similar approximation can be made to the test function δψ, substituting Eqs. (2.9)

and (2.10) into Eq. (2.8), the results for each element can be assembled into the

following generalized eigenvalue problem,

H0ψ = (K + U)ψ = EMψ (2.11)

where ψ is the global nodal wavefunction vector, K, U and M are assembled from

the element matrices which are given by

Ke =
~2

2

∫
Ωe

(∇N2D)TM∗∇N2DdΩe (2.12)

Me =

∫
Ωe

(N2D)TN2DdΩe (2.13)

Ue =

∫
Ωe

(N2D)TUN2DdΩe (2.14)

Eq. (2.11) shows an eigenvalue problem and it is used to solve for the eigen-pairs

in the closed system. By solving the generalized eigenvalue problem, Eq. (2.11), a

set of energy levels En and wave functions ψn can be obtained. Substituting the

eigen-pairs into Eq. (2.2) and Eq. (2.3), the electron and hole concentrations can be

computed. The Poisson equation is solved over the same domain Ω to obtain the

potential profile. By using the Galerkin weighted residual method, the weak form of
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the Poisson equation is obtained as,

∑
i

∫
Γi

εr
∂U

∂ni
δUdΓi +

∫
Ω

εr∇U · ∇δUdΩ =

∫
Ω

e2[−ñ+ p+N+
d −N

−
a ]δUdΩ (2.15)

where δU is the variation of the potential. Note that when there is no voltage

applied on the boundaries of simulation domains, the Dirichlet boundary conditions

are applied on the boundaries, otherwise, the Neumann boundary conditions are

applied. In either of the cases, the first term in Eq. (2.15) can be eliminated. Then

the Poisson equation is solved by using the Newton-Raphson method. The system

equations can be written as,

J∆u = −R (2.16)

where J is the Jacobian matrix, ∆u is the potential increment and R is the residual

vector. Note that in the calculation of the Jacobian matrix, the derivative of the

modified quantum electron concentration with respect to U is computed by [69],

∂ñ

∂U
=
eNnd

π~

(
2m∗nz
kBT

)1/2

×
∞∑
n=1

(ψkn)2F−3/2

(
EF − Ek

n + e(U − Uk)

kBT

)
(2.17)
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2.3 CMS Approaches for Solving Schrödinger

Equation

Figure 2.1: Domain decomposition in CMS approaches.

The general CMS framework is comprised of four basic steps: the division of the

domain Ω into a set of components, the definition of component basis vectors, the

coupling of the components to form a reduced-order global system, and the recovery

of the global wave functions. Fig. (2.1) shows an example of domain decomposition in

the CMS approaches. A meshed domain is discretized into a set of components. When

a component boundary edge is on the global domain boundary with a homogeneous

Dirichlet boundary condition, the component is referred to as a restrained component.

Otherwise it is referred to as an unrestrained component. A component boundary

edge that is shared by another component is referred to as an interface edge. After

the domain decomposition, depending on the methods of defining the component

basis vectors, there are two major variants of the CMS: the fixed-interface CMS

approach [77] and the free interface CMS approach [82]. In this section, we describe

the procedures of solving the effective mass Schrödinger equation (Eq. (2.1)) by using

each of the approaches.
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2.3.1 Fixed-interface CMS

For each component obtained from the domain decomposition as shown in Fig.

(2.1), the eigenvalue problem can be denoted as,

(
H0j − EjMj

)
ψj = 0, j = 1, 2, 3, · · · ,m (2.18)

where j denotes the component number, m is the total number of components. In an

electrostatic analysis, the wave functions are zero on the domain boundary. Therefore,

the degrees of freedom (DOFs) on the global boundary can be discarded. In fixed

interface CMS approach, the wave function ψj, is partitioned into two parts which are

referred to as the attachment part and interior part. The attachment part contains

the wave function DOFs at nodes on interface edges which are shared by different

components, and interior part contains the DOFs associated with the interior nodes

of the component. The attachment and interior parts of ψj are denoted by subscripts

a and i, respectively. With respect to the attachment and interior DOFs, Eq. (2.18)

can be partitioned as,


H0j

ii H0j
ia

H0j
ai H0j

aa

− Ej

Mj
ii Mj

ia

Mj
ai Mj

aa



ψji
ψja

 =

0

0

 (2.19)

In fixed interface CMS approach, the attachment DOFs are set to be fixed, i.e.,

ψja = 0, we obtain from Eq. (2.19),

(
H0j

ii − EjMj
ii

)
ψji = 0 (2.20)

The eigen-pairs (Ej,ψji ) can be thus computed from Eq. (2.20) for a component j. In

CMS, a small set of corresponding to a few lowest energy levels obtained from Eq.
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(2.20) are retained and assembled column-wisely into the component modal matrix

D̄j
i , i.e.,

D̄j
i =

[
ψji1 ψji2 ψji3 · · ·ψ

j
ik

]
(2.21)

where k is the number of kept wavefunctions and k � interior DOFs. Next, a

constraint modal matrix is obtained by applying Ej = 0 in the component and

enforcing a unit wave function on the attachment DOFs in Eq. (2.19),

H0j
ii H0j

ia

H0j
ai H0j

aa


Xj

i

Ia

 =

 0

Rj
a

 (2.22)

where each column of the identity matrix Ia is used to enforce a unit magnitude of the

wave function on one attachment DOFs with the wave functions on other attachment

DOFs fixed to zeros, Rj
a is the resultant boundary reaction at the attachment DOFs.

The expression of the constraint modal matrix for the interior DOFs can be obtained

from Eq. (2.22) explicitly as,

Xj
i = −

(
H0j

ii

)−1

H0j
ia (2.23)

Having obtained D̄j
i and Xj

i , the component wave functions are then approximated

by,

ψj =

ψji
ψja


n×1

=

D̄j
i Xj

i

0a Ia


n×r

 zji

Ψj
a


r×1

(2.24)

where n is the total component DOFs, r = k + a is the sum of retained component

ψji and the attachment DOFs, Ia and 0a are identity and zero matrix associated with

attachment DOFs, the vector,

zji
ψja

, is a generalized coordinate vector. Equation
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(2.24) can be rewritten in short form as,

ψj = Tjzj (2.25)

where T is referred to as the transformation matrix of component j. Equation (2.25)

shows that the wave functions of a component can be approximated as a linear

combination of the column vectors of T j with elements of the vector zj acting as the

coefficients, i.e., the column vectors of T j are the basis vectors of component j. Note

that, since k � interiorDOFs, r � n. This property enables CMS to reduce the

computational cost of calculating both component and global wave functions, on the

other side, introduces an approximation error. Substituting Eq. (2.25) into Eq.

(2.18), we obtain,

(H0j − EjMj)Tjzj = 0 (2.26)

Multiplying the transpose of T j to both sides,

(Tj)T (H0j − EjMj)Tjzj = 0 (2.27)

Eq. (2.27) can be rewritten in the short form as,

(H̄0j − EjM̄j)zj = 0 (2.28)

where

H̄0j = (Tj)TH0jTj (2.29)

M̄j = (Tj)TMjTj (2.30)
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are the reduced matrices for the jth component. Following the standard finite element

assembly procedure, one can assemble Eq. (2.28) of the connected components into a

global modal system, i.e.,

(Ĥ0 − EM̂)ẑ = 0 (2.31)

where,

Ĥ0 = assemble
(
H̄01, H̄02, H̄03, · · · , H̄0m

)
(2.32)

M̂ = assemble
(
M̄1, M̄2, M̄3, · · · , M̄m

)
(2.33)

By solving Eq. (2.31), the z eigenvectors can be obtained. The global wavefunctions

ψ can be restored by,

ψ = T̂ẑ (2.34)

where,

T̂ = assemble
(
T1, T2, T3, · · · ,Tm

)
(2.35)

Note that, since the number of the component basis vectors is much less than the

component DOFs, the dimension of Eq. (2.31) is much less than the total DOFs of

the system. Consequently, the computational cost of solving the Schrödinger equation

is largely reduced. The fixed interface CMS approach has several advantages including:

(1) its simple procedures for computing the basis vectors in the transformation matrix,

(2) the straightforward implementation of coupling the components to form the global

modal system, and (3) its high accuracy in computing the low eigenvalues and their

corresponding eigenvectors. For these reasons, the fixed interface CMS approach has

been widely adopted for large scale structural dynamic problems.
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2.3.2 Free-interface CMS

In the free interface CMS approach, the eigenvalue problem for the components

is also given by Eq. (2.18). However, while the component basis vectors are obtained

by fixing the wave functions at the component interfaces in the fixed interface CMS

approach, the free interface CMS makes use of a set of pre-selected free interface wave

functions along with a set of attachment modes and rigid body modes [85, 86]. In

solving Eq. (2.18), the free interface CMS does not set the component wave functions

on the component interfaces to be zeros. Instead, the wave functions on the interfaces

are free. Therefore, Eq. (2.18) is solved directly without being converted to Eq. (2.20).

In addition, the free interface CMS approach treats the restrained and unrestrained

components separately.

2.3.2.1 Restrained components

For the restrained components as shown in Fig. (2.1), the free interface CMS

approximation of the component wave functions is in the form of,

ψj =

ψji
ψja


n×1

=

D̄j
i Xj

i

D̄j
a Xj

a


n×r

pji

pja


r×1

(2.36)

where D̄j is the matrix of retained free interface component wave functions, Xj is

the attachment modal matrix, and pj is the vector of generalized coordinates. Once

again, D̄j, Xj and pj are partitioned into the interior (subscript i) and attachment

(subscript a) parts for each component. The set of basis vectors included in D̄j

represents the intrinsic wave functions of the component, while the attachment

modal matrix Xj contains the wave functions excited by the adjacent components.

It has been shown that, without Xj , the component basis set is incomplete, which
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will lead to unacceptable results [85]. D̄j is assembled column-wisely by a small set

of ψj corresponding to the lowest energy levels obtained from Eq. (2.18), i.e.,

D̄j
i =

[
Ψj
i1 Ψj

i2 Ψj
i3 · · ·Ψ

j
ik

]
n×k (2.37)

where k denotes the number of the component wave functions kept in D̄j. Note

that, in the solution of Eq. (2.18), the wave functions ψj should be mass normalized.

This condition is assumed throughout the paper. Like Eq. (2.25), Eq. (2.36) can be

rewritten in a short form as,

ψj = Tjpj (2.38)

where T j is the transformation matrix containing all the component basis vectors.

We apply an analogy to structural dynamics analysis, the attachment modal matrix

Xj for restrained components are obtained by applying unit forces on the interface

coordinates and setting Ej = 0 for Eq. (2.19), i.e.,

H0j
ii H0j

ia

H0j
ai H0j

aa


n×n

ψ̄ji
ψ̄jb


n×a

=

0

Ija


n×a

(2.39)

where

ψ̄ji
ψ̄jb

 represents the wave function response to the right hand excitation. The

portion of the wave function response contributed by the retained component wave

functions (i.e. the k basis vectors retained in D̄j as shown in Eq. (2.37)) should be

deducted to ensure the obtained attachment modes to be Hamiltonian orthogonal to

the retained component wave functions [85]. The attachment modal matrix can then
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be obtained as,

Xj =

ψ̄ji
ψ̄ja


n×a

−
(
D̄j
)
n×k

(
Ej
)−1

k×k

(
D̄j
)T
k×n

0ji

Ija


n×a

(2.40)

where the second term on the right hand side is the wave function response contributed

by D̄j.

2.3.2.2 Unrestrained components

For the unrestrained components (those with rigid body modes), the free

interface CMS approximation has the same form of Eq. (2.36),

ψj =

ψji
ψja


n×1

=

D̄j
i Xj

i

D̄j
a Xj

a


n×r

pji

pja


r×1

(2.41)

As the wave functions of unrestrained components are not constrained, there is a rigid

body mode corresponding to the zero energy level in the solution of Eq. (2.18). While

there are 3 rigid body modes for 2D structural analysis, there is only one rigid body

mode for each unrestrained component in the solution of the Schrödinger equation.

Thus D̄j contains an additional column vector in Eq. (2.41) compared to in Eq. (2.36).

Due to the existence of the rigid body mode, the attachment modes Xj in Eq. (2.41)

are computed differently to exclude the influence of the rigid body mode which is

already included in D̄j. To obtain Xj, the Hamiltonian matrix in Eq. (2.18) is first

partitioned as,

H0j =


H0j

ii H0j
if H0j

ir

H0j
fi H0j

ff H0j
fr

H0j
ri H0j

rf H0j
rr


n×n

(2.42)
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where i denotes the number of interior nodes, r denotes the number of rigid body

coordinates (r=1 for the 2D Schrödinger equation) and f = a−r denotes the number

of interface coordinates excluding the rigid body coordinate. Note that the rigid body

coordinate can be assigned on any boundary node of the component. Similar to the

restrained component case, we apply an analogy to structural dynamics analysis, the

attachment modes for the wave functions can be written as,

Xj = Fj
n×n

0ji

Ija


n×a

−
(
D̄j
)
n×k

(
Ej
)−1

k×k

(
D̄j
)T
k×n

0ji

Ija


n×a

(2.43)

where the first term on the right hand side is the wave function response to the unit

excitation at the interface coordinates excluding the contribution of the rigid body

mode, the second term is the wave function response contribution from the retained

wave functions same as in Eq. (2.40). The effect of the rigid body mode is excluded

from Xj through the matrix F j which is obtained as,

Fj =
(
Pj
r

)T
Fj
cP

j
r (2.44)

where P j
r is the inertia-relief projection matrix defined by,

Pj
r = I−Mj

(
Dj
R

)
n×r

(
Dj
R

)T
r×n (2.45)
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with Dj
R being the constant rigid body mode vector, and F j

c being the constrained

flexibility matrix given by,

Fj
c =


H0j

ii H0j
if

H0j
fi H0j

ff


−1

0

0 0


n×n

(2.46)

Detailed derivation F j, P j
r and F j

c can be found in [85]. For the sake of brevity, it

is not repeated here. To this end, the transformation matrix T j of both restrained

and unrestrained components are obtained. To simplify the coupling and assembly

procedure, we can rewrite the transformation matrices given in Eq. (2.36) and Eq.

(2.41) in the same form as that in the fixed interface CMS approach given in Eq. (2.24)

[86]. By using the lower part of Eq. (2.36) or Eq. (2.41), the generalized coordinate

vector pja can be expressed in terms of ψja, and the result is applied back into the

upper part of Eq. (2.36) or Eq. (2.41). As a result, they can be rewritten in terms

of the modal generalized coordinate vector pji and the interface physical vector ψja,

which leads to,

ψj =

ψji
ψja


n×1

=

D̄j
i −Xj

i (X
j
a)
−1D̄j

a Xj
i (X

j
a)
−1

0ja Ija


n×r

pji

ψja


r×1

= Ťj žj (2.47)

With the free interface component wave function approximation shown in Eq. (2.47)

and the transformation matrix computed, the component model reduction, assembly

of the components and the recovery of the global wave functions are carried out by

using the same procedure described in Eq. (2.27) to Eq. (2.35) which is not repeated

here.
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2.4 Results

2.4.1 Quantum wires

To demonstrate the validity and the efficiency of the CMS approaches for

quantum mechanical electrostatic analysis of nanostructures and devices, in the first

example, we consider a simple 2D GaAs/AlGaAs quantum wire as shown in Fig.

(2.2a). The effective electron masses of GaAs and AlGaAs are set to be

m∗GaAs = 0.0665me and m∗AlGaAs = 0.0858me, respectively, where me is the vacuum

electron mass. The relative dielectric constants for the silicon substrate and oxide

are set to be εGaAs = 13.18ε0 and εAlGaAs = 12.3064ε0, respectively, where ε0 is the

vacuum dielectric constant. The cross-sectional dimensions of the quantum wire are

150Å × 150Å for the outer boundary and 100Å × 100Å for the GaAs core. The

heterojunction step potential between GaAs and AlGaAs is set to be 0.276eV . The

AlGaAs region is n-typed with a donor concentration of 1018cm−3. As electrons

dominate, we ignore the hole concentration in our simulation. The Dirichlet

boundary condition is applied along the external boundary when solving the

Schrödinger equation while the Neumann boundary condition is used for Poisson

equation. In the calculation by the CMS approaches, we decompose the entire

domain into a set of components as shown in Fig. (2.2b). Both the fixed and free

interface CMS approaches are applied to solve the Schrödinger equation with the

same number of components to obtain the energy levels and corresponding wave

functions in the structure.

Fig. (2.3) and Fig. (2.4) show the electron concentrations and potential profiles

obtained from the two CMS approaches on a 120 × 120 mesh domain with 5 × 5

equal-size components (576 elements in each component). For each component, 5

component wave functions are retained in each component for the construction of
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(a) (b)

Figure 2.2: (a)Quantum wire geometry (unit: Å), and (b) Domain decomposition.

(a) (b)

Figure 2.3: Electron concentration computed using (a)fixed interface CMS and (b)
free interface CMS.
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(a) (b)

Figure 2.4: Potential profiles computed using (a)fixed interface CMS and (b) free
interface CMS.

the basis vectors in both approaches. In calculation of the electron concentration,

10 eigen-pairs computed by the Schrödinger equation are used, which proved to be

sufficient to provide a an accurate solution for the electron concentration. The results

obtained from two CMS approaches are almost identical to the results obtained from

the direct finite element solution (not shown). To compare the computational cost

of the two CMS approaches and direct method, the total number of elements within

the domain is varied from 30 × 30 to 240 × 240 while the number of components

is kept fixed, which is 25. Fig. (2.5) shows CPU time comparison of those three

approaches. It is shown that, for a coarse mesh, the CPU time of the direct FEM

and the CMS approaches is similar. However, when the DOFs increases, the CMS

approaches reduce the computational cost significantly. As shown in the figure, when

the domain is meshed with 240 × 240 elements, the CPU time used by direct FEM

is nearly 60 times and 17 times of those used by the fixed interface CMS approach

and the free interface CMS approach, respectively. Between the CMS approaches, the

free interface CMS is more expensive than the fixed interface CMS due to the extra

matrix manipulations required in the method as described in Section 2.3. To further
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investigate the accuracy of the CMS approaches, we vary the number of components

as well as the number of retained component wave functions in each component.

The error between the results computed with CMS and that computed with direct

FEM is measured by using a global error measure with respect to the direct FEM

solution [89],

ε =
1

|ue|max

√√√√ 1

Nt

Nt∑
i=1

[uei − uci ]2 (2.48)

where ε is the error in the solution and the superscripts (e) and (c) denote the direct

FEM and CMS results, respectively, Nt denotes the total DOFs. Fig. (2.6) shows the

final electron concentration errors between the FEM and the CMS approaches as a

function of the number of components and retained component wave functions. It is

shown that the error decreases in both CMS approaches as the number of components

and retained component wave functions increases. However, the error of the free

interface CMS is significantly smaller than that of the fixed interface CMS. The

convergence rate of the free interface CMS is consistently larger than that of the fixed

interface CMS. To achieve the same accuracy, the free interface CMS requires much

less retained component wave functions in each component as shown in the figure.
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Figure 2.5: CPU time comparison of the three methods.
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Figure 2.6: Error in electron concentration for the fixed and free interface CMS.

2.4.2 Gate-All-Around (GAA) MOSFET

In the second example, we simulate a GAA MOSFET and compute the electron

concentration and potential profile in the cross section perpendicular to the transport

direction within the device. The cross section of GAA MOSFET is depicted in Fig.

(2.7). The size of the device is 240Å × 240Å. The central part of the MOSFET is

intrinsic Si with a dimension of 200Å× 200Å. The thickness of the surrounding SiO2

layer is 20Å. The metal gate work function is assumed to be 4.05eV . A voltage of

0.5V is applied on the gates. The effective mass of SiO2 is 0.5me. The conduction

band of Si has six equivalent valleys, with three different pairs of conduction band

minima. The transverse and longitudinal electron masses are defined as m∗t = 0.19me

and m∗l = 0.91me, respectively. The Schrödinger equation is solved three times for

each pair of the conduction band minima. Then three different sets of eigen-pairs

can be obtained. The heterojunction step potential between silicon substrate and the

oxide is 3.34eV . The relative dielectric constants for the silicon substrate and oxide
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(a) (b)

Figure 2.8: Electron concentration computed using (a)fixed interface CMS and (b)
free interface CMS.

are set to be εSi = 11.7ε0 and εSiO2 = 3.9ε0, respectively. The first 30 eigen-pairs are

used to obtain an accurate description of electron concentration within the device.

Figure 2.7: GAA MOSFET transverse cross-section (unit: Å).

Fig. (2.8) and Fig. (2.9) show the electron concentration and electrostatic

potential obtained with the fixed and free interface CMS approaches, respectively.

In both simulations, 16 components of the same size and 5 retained component wave
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(a) (b)

Figure 2.9: Potential profiles computed using (a)fixed interface CMS and (b) free
interface CMS.

functions in each component are used. The mesh size is 96 × 96. It is observed that

the results obtained by both CMS approaches are consistent with the results

obtained by the direct FEM (not shown). The CPU time for the GAA MOSFET

simulations by using the direct FEM, the fixed and free interface CMS approaches

with 5 retained component wave functions per component is compared in Fig. 10. In

the computation, the whole domain is decomposed into 16 equal-sized components.

The mesh size is ranging from 48 × 48 to 192 × 192. It is shown that with more

elements (finer mesh), the computational cost reduction through the CMS

approaches becomes more significant. In this example, when the domain is meshed

with 192 × 192 elements, the fixed and free interface CMS approaches are about 28

times and 11 times faster than the direct approach, respectively.
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Figure 2.10: CPU time comparison of the three methods.
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Figure 2.11: Error in electron concentration for the fixed and free interface CMS.

By using the error measure given in Eq. (2.48), the electron concentration error

of the CMS approaches as a function of the number of components and retained

component wave functions in each component is calculated and shown in Fig. (2.11).

The convergence behavior is similar to that shown in Fig. (2.6). While the result

improves as the number of retained component wave functions increases, error of the

free interface CMS is significantly lower compared to the fixed interface CMS. As
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shown in the first two examples, with the same number of component wave functions

kept in each component, the results obtained with the free interface CMS approach

are more accurate than those by the fixed interface CMS approach. To investigate

the reasons, the eigenvalues computed by both methods are compared with those

obtained by direct approach. Fig. (2.12) shows the relative error of eigenvalues of the

CMS solutions compared to the direct solution. The results are obtained by keeping

10 wave functions in each component, and the first 30 eigen-pairs are calculated. It

is shown that the relative error introduced by the free interface CMS approach is

much smaller than that from the fixed interface CMS approach. Since the accuracy

of the electron concentration obtained in every Schrödinger-Poisson iteration directly

depends on the accuracy of the calculated eigen-pairs, the free interface CMS can

therefore offer more accurate final results of electron concentration and potential.
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Figure 2.12: Error of computed eigenvalues from both CMS approaches.

2.4.3 Trigate MOSFET with rounded corners

In the third example, we simulate a trigate MOSFET with rounded corners as

shown in Fig. (2.13a). The dimensions of the device are shown in the figure. The
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(a) (b)

Figure 2.13: (a)Trigate MOSFET with rounded corners(unit: Å), and (b) Domain
decomposition.

central part of the MOSFET is intrinsic Si. The remaining part is the SiO2 layer.

All the parameters for the Si and SiO2 are the same as given in the second

example. In this case, the gates are attached to the boundary of the device above

y = 20Å (depicted by the red line in Fig. (2.13a)). A voltage of 0.5V is applied on

the gates. In the CMS calculations, the domain is decomposed into 39 components

(shown in Fig. (2.13b)). To correctly describe the electron concentration in the

cross-section perpendicular to the carrier transport direction, 40 eigen-pairs are

retained in computing the electron concentration using Eq. (2.21). In this example,

the performance of two CMS approaches is similar to that in the second example.

The electron concentration and electrostatic potential obtained with both CMS

approaches match the results by the direct approach well. Fig. (2.14) and Fig. (2.15)

show the final results obtained by both CMS approaches with a mesh of 15600

elements. In the calculation, five component wave functions are retained in each

component to solve for the 40 eigen-pairs that are used to compute the electron

concentration.
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(a) (b)

Figure 2.14: Electron concentration computed using (a)fixed interface CMS and (b)
free interface CMS.

(a) (b)

Figure 2.15: Potential profiles computed using (a)fixed interface CMS and (b) free
interface CMS.
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The CPU time comparison for the MOSFET simulations is shown in Fig.

(2.16). The CPU time for the trigate MOSFET simulations by using the direct

approach, the fixed and free interface CMS approaches with 5 retained wave

functions per component is compared. It is shown that for the fine mesh with 47775

elements in total, the fixed and free interface CMS approaches are about 13 times

and 7 times faster than the direct FEM, respectively. The error comparison for the

CMS approaches is shown in Fig. (2.17). Once again, the free interface CMS

approach shows a superior performance in the solution accuracy as well as the

convergence rate.
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Figure 2.16: CPU time comparison of the three methods.
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Figure 2.17: Error in electron concentration for the fixed and free interface CMS.

2.5 Summary

In this chapter, two component mode synthesis (CMS) approaches, namely,

the fixed interface CMS approach and the free interface CMS approach, are

presented and compared for 2D quantum mechanical electrostatic analysis of

nanoscale structures and devices with arbitrary geometries. The CMS approaches

are employed to compute the charge concentrations and potential profiles of several

nanoscale structures and devices, including a quantum wire, a GAA MOSFET and

a trigate MOSFET. The results obtained from the CMS approaches are compared

with those obtained from the direct FEM. It is shown that both CMS approaches

can yield accurate results with much less computational cost compared to the direct

finite element analysis. To achieve the same accuracy, the number of component

wave functions required to be retained in the free interface CMS approach is much

less than that in the fixed interface CMS approach. The reduction of computational

cost becomes more significant as the total degrees of freedom of the system increase.
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In general, the fixed interface CMS approach is more efficient than the free interface

CMS approach due to its simpler matrix operations in the computational process.
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CHAPTER 3

STRAIN EFFECT ANALYSIS ON

THE ELECTRICAL

CONDUCTIVITY OF Si/Si1−xGex

NANOCOMPOSITE THIN

FILMS

3.1 Introduction

The development of nanostructured materials, such as particulate, layered and

fibrous nanocomposites, has opened the possibilities of tailoring material thermal

and electrical properties in a controlled manner [9, 34–36, 90–92]. Si/Si1−xGex

nanocomposite thin-films have been fabricated to produce high-mobility MOS

thin-film transistors (TFT) for displays, active RF tags and thin-film sensors,

etc. [36]. Bulk or thin film Si/Ge nanocomposite thermoelectric materials, where
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Si1−xGex nanowires, nanolayers or nanoparticles are embedded in Si host, have also

been proposed recently [9, 35, 90–92]. It has been reported that the thermoelectric

energy conversion efficiency can be significantly improved in nanocomposites

because of their largely increased material interfaces, which strongly scatter

phonons but only slightly influence the charge carrier (electron or hole) transport,

leading to significantly reduced phonon thermal conductivity and a maintained or

improved power factor. While modeling and analysis of both thermal and electrical

conductivities in nanocomposite materials has been investigated by different

groups [37–39] mainly based on the Boltzmann transport equation under the

relaxation-time approximation, the effect of strain on electrical transport, which

plays an important role in single crystal semiconductor materials, has not yet been

addressed for nanocomposite materials. Strain has been serving as an important

tool in enhancing the performance of modern CMOS devices [93–95]. Crystal lattice

deformation can induce band structure changes in semiconductor materials. The

band structure variation is commonly composed of band splitting and band

wrapping [55, 56]. Band splitting may cause electron redistribution in the band

valleys while band warping can result in conductivity effective mass change. For

example, there are six degenerate conduction band valleys in unstrained single

crystal silicon. A uniaxial 〈100〉 strain can destroy the degeneracy and split the six

equivalent valleys into a two-fold and a four-fold valleys. The band splitting can

reduce the inter-valley scattering and increase electron occupancy in the valleys

with lower energies, and consequently influence the electron transport in the

material. Strain effect on the lineup band offsets of different semiconductor

materials has been studied extensively in the literature [96–100]. It has been shown

that strain can be used to tune the band structure of a single material or tailor the

band offsets between different semiconductor materials. While most of the existing
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strain effect analysis has been focused on the strains at hetero-junctions due to

lattice mismatch of dissimilar crystalline semiconductor materials, variation of

electron transport properties due to externally applied mechanical strains has not

been studied in details. As there has been increasing effort in developing flexible

electronic materials for various applications [101–103], the effect of externally

applied mechanical strains on the electron transport properties of thin-film

semiconductor materials becomes important. However, in nano-sized semiconductor

thin films where electron transport is ballistic and quantum effect plays an

important role, it is not yet clear how externally applied strains will affect the

electron transport, especially when there are different materials in the system. A

better understanding on this matter will benefit the design and control of the

electron transport in flexible electronic devices.

In this chapter, we propose a modeling approach for investigating the effects of

mechanical strain on electrical conductivity of semiconductor nanocomposite thin

films, and analyze the effect of uniaxial and biaxial strains on the electrical

conductivity of Si/Si1−xGex nanocomposite thin films with Si1−xGex nanowires

embedded in Si host. To the best of our knowledge, this is the first computational

study of strain effects on electrical conductivity of nanocomposite materials. We

utilize a degenerate two-band k · p theory [104–106] to calculate the variation of the

electronic band structures in deformed crystal lattices of Si and Si1−xGex. To

calculate the electrical conductivity, we adopt a real-space non-equilibrium Green’s

function (NEGF) approach [49, 52] for the analysis of electron transport in the

nanocomposite thin films. The NEGF can reliably capture the quantum effect which

may play a key role in the performance of these nanoscale systems. In addition, by

coupling with the Poisson equation, the space charge effect can be properly

considered. The NEGF method has been successfully applied in the calculation of
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electrical transport properties of superlattices [107], nanotubes [27], nanowires [6]

and molecular electronics [108]. In this chapter, by solving the NEGF and Poisson

equations self-consistently, we explicitly calculate the energy band profile, electron

density and current density within the nanocomposite material. The IV curve can

then be obtained by applying different voltages across the material. Finally, the

electrical conductivity of the material can be calculated from the slope of the IV

curve. By including the strain-induced band structure change in the NEGF, a set of

IV curves under different strains are calculated. The electrical conductivity of the

nanocomposite material as a function of the applied strains is computed from these

IV curves. The rest of the chapter is organized as follows. Section 3.2 describes the

theoretical model and computational procedures for the calculation of

strain-dependent electrical conductivity of the Si/Si1−xGex nanocomposite thin

films, numerical results and discussions are presented in Section 3.3, and Section 3.4

presents the summary.

3.2 Theoretical Model and Computational

Procedures

3.2.1 Si/Si1−xGex nanocomposite thin films

Fig. (3.1) shows a Si/Si1−xGex nanocomposite thin film considered in this

chapter. In the thin film, a layer of Si1−xGex nanowires are uniformly embedded in

the Si host material. The distance between the nanowires is denoted as s in the

figure. Note that, when s = 0 the nanowires merge into a Si1−xGex layer and the

thin-film structure becomes a superlattice. The Cartesian x, y and z directions are

assumed to align with the [100], [010] and [001] directions of the crystal lattice,
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respectively. The thin film’s dimensions in the y and z directions are much larger

than the thickness. The through-thickness electrical conductivity (x-direction) of

the thin film is to be calculated. Due to the translational symmetry of the thin film

in the y-direction ([010] direction) and invariant material properties in the

z-direction, a two-dimensional unit cell with periodic boundary conditions on the

top and bottom edges is taken as our simulation target, as shown in Fig. (3.1). A

positive voltage, Vd, is then applied to two semi-infinite electrode contacts attached

to the unit cell. In the computational analysis, the electrode contacts are modeled

as the source and drain regions with different electrochemical potentials, namely, µ1

and µ2, and the electrochemical potentials are separated by the positive voltage

with a relation µ2 = µ1 − eVd, where e is the unit charge. Equilibrium condition is

assumed within the ideal contacts. By applying different voltages on the contacts, a

set of current densities can be calculated, which can be used to produce the IV

curve of the material. Due to the small thickness of the thin film, the through

thickness electron transport is assumed to be ballistic. In addition, the crystal

lattice constants of Si and Si1−xGex are assumed to be preserved across the

material interface. Therefore, interface strains due to lattice mismatch and grain

boundary scattering are not considered. In this chapter, we consider a n-type

nanocomposite thin film with a doping density of 5 × 1017 ∼ 1019cm−3. The doping

density is set to be the same in Si and Si1−xGex regions. The contribution of hole

transport to the current is neglected. Under unstrained condition, the conduction

band edge discontinuity between Si and Si1−xGex included in the Hamiltonian,

∆E, is calculated with electron affinity model by 0.05 × x, where x is the Ge

content in Si1−xGex alloy [109]. The doping density of source and drain regions is

set to be 1020cm−3. Note that, the size of the source and drain regions is taken to be

sufficiently large such that charge neutrality within the computational domain is
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ensured [52].

Figure 3.1: Si1−xGex nanocomposite thin film and corresponding simulation domain.

3.2.2 Strain effect on band structures of Si and Si1−xGex

To calculate the electrical conductivity of the nanocomposite films under

different strain conditions, it is necessary to study strain effect on band structures of

Si and Si1−xGex individually. For a Si crystal under no strain, there are six

degenerate valleys with the same energy minima and the population of electrons in

each distinct valley can be considered equivalent. However, advantageous strain

reduces the symmetry of those valleys, causing band energy splitting and warping,

resulting in a variation of the conduction band minima and the effective

mass [55, 56, 95, 110]. Fig. (3.2) shows a diagram of band structure change under

uniaxial stress for bulk n-type Si. The longitudinal tensile strain in [100] direction

splits the six originally equivalent subbands, causing the ∆4 subbands, i.e., valleys

perpendicular to [100] direction, to shift down and the ∆2 subbands, i.e., valleys

along [100] direction, to shift up and leading to electron re-population from the ∆2
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valleys to the ∆4 valleys. If the current transports in [100] direction, since the

valleys in [010] and [001] directions with lower conductivity effective mass have

relatively higher electron mobility compared to the other two valleys in [100]

direction, with more electrons distributed in the four-fold valleys, the conductivity

will be increased. For Si1−xGex alloys, generally the band structure and electronic

properties can be modeled as Si-like with the lowest conduction minima near the

X-point in the Brillouin zone for x < 0.85 and as Ge-like with conduction band

minima at the L-point for x > 0.85 [109]. Here we assume that the lowest

conduction band of Si1−xGex lies at the 0.85X points of ∆ valleys, the same as that

in Si.

Figure 3.2: Simplified band structure change under uniaxial strain for bulk n-type Si.

A degenerate two-band k · p theory [104–106] is adopted here to quantitatively

calculate the energy subband shift due to an applied strain. For Si and Si1−xGex

conduction band edges, the energy shift of a given conduction band valley can be

described by,

∆EC = Ξd · (εxx + εyy + εzz) + Ξu · (k̂ · εij · k̂) (3.1)

where ε is the strain, Ξd and Ξu are the dilation and uniaxial-shear deformation

potentials at the conduction band edges, respectively, which can be obtained from
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electronic structure calculations [111]. In Eq. (3.1), i and j represent x, y or z and k

is the unit vector along the valley in the reciprocal space. Note that Eq. (3.1) holds

for arbitrary strain conditions. However, since shear strain is not considered in this

chapter, the band shift obtained from Eq. (3.1) is only due to the normal (uniaxial

and biaxial) strains. Based on the degenerate two-band k · p theory, since the band

warping and effective mass changes are due to the shear strains, without shear

strain, the effective masses of Si and Si1−xGex remain unchanged. Table 3.1

summarizes the parameters we use for the calculation of band shift of Si and

Si1−xGex. Note that the band offset ∆E = EC(Si1−xGex)−EC(Si). As a test of the

parameters shown in Table 3.1, we calculate the band splitting of silicon with 〈100〉

uniaxial strain and compare our results with the results from Ref. [55, 56]. For 1%

〈100〉 uniaxial strain, the conduction band edge splitting between two-fold and

four-fold conduction bands is 0.15 eV measured from experiments in Ref. [55],

0.11eV obtained from first principles calculation in Ref. [55]and 0.1344eV from our

calculation, respectively. The results are in reasonable agreement.

Table 3.1: Parameters used to calculate the band structure of Si and Si1−xGex.

Material parameters Symbols Values Ref.

electron longitudinal/transverse effective mass of Si m∗l /m
∗
t 0.92me/0.19me [109]

electron longitudinal/transverse effective mass of Si1−xGex m∗l /m
∗
t 0.92me/0.19me [109]

Dilation/uniaxial-shear deformation potentials of Si Ξd/Ξu 1.1eV/10.5eV [112]

Dilation/uniaxial-shear deformation potentials of Si1−xGex Ξd/Ξu

(1.1 + 3.4x)eV
(10.5− 0.75x)eV [112]

Band offset between Si and Si1−xGex conduction band edges ∆E 0.05xeV [109]
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3.2.3 Electrical transport analysis of strained nanocomposite

thin films

After obtaining the variation of the electronic band structures induced by

external strains, the current due to a given applied voltage across the thin films is

solved by using a 2D real-space Non-equilibrium Green’s Function (NEGF)

formulation coupled self-consistently with the Poisson equation [49, 52]. Considering

the periodicity of the unit cell in y-direction, the 2D wave function in the thin film

can be written in the Bloch form as ψ(x, y ± na) = ψ(x, y)e±ikyna where ψ(x, y) is

the wave function in the unit cell, ky is the reciprocal space wave vector in y

direction, a is the unit cell size in y direction, and n = 0, 1, 2, · · · , are integers. The

Hamiltonian of the unit cell can be obtained as,

H̃(x, y) = H(x, y) + H′c(x, y)e−ikya + Hc(x, y)eikya (3.2)

In this chapter, 9 ky points within the first Brillouin Zone are used to obtain a

correct description of energy bands in y direction. The 2D representative unit cell

is discretized into a uniform grid with Nx × Ny nodes. By using the effective mass

approximate and a finite difference (FD) scheme, the Hamiltonian on the right hand

side of Eq. (3.2) can be written in matrix form as,

H(x, y) =



α β 0 · · · 0

β α β · · · 0

· · · · · · · · · · · · · · ·

0 · · · · · · · · · β

0 0 · · · β α


NxNy×NxNy

(3.3)
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and

Hc(x, y) =



γ 0 0 · · · 0

0 γ 0 · · · 0

· · · · · · · · · · · · · · ·

0 · · · · · · · · · 0

0 0 · · · 0 γ


NxNy×NxNy

(3.4)

where the blocks α, β and γ can be written as,

α(x) =



2tx + 2ty + V1(x) −ty 0 · · · 0

−ty 2tx + 2ty + V2(x) −ty · · · 0

0 · · · · · · · · · · · ·

0 0 · · · −ty 2tx + 2ty + VNy(x)


Ny×Ny

(3.5)

β =



−tx 0 · · · 0

0 −tx · · · · · ·

· · · · · · · · · · · ·

0 · · · · · · −tx


Ny×Ny

(3.6)

γ =



0 0 · · · 0

0 0 · · · · · ·

· · · · · · · · · · · ·

−ty · · · · · · 0


Ny×Ny

(3.7)

where tx = ~2/2m∗vx (∆x)2, ty = ~2/2m∗vy (∆y)2, ∆x and ∆y are the mesh sizes in the

x- and y-directions, respectively, m∗vx and m∗vx are the effective masses of electrons of

v-th valley in x- and y-directions, respectively. In block α,

Vi = Ui + ∆Ev
i + ∆Ev

Ci i = 1, 2, 3, · · · (3.8)
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where U is the potential energy obtained by solving the Poisson equation, ∆Ev is the

band offset between different material regions for valley v, and ∆Ev
c is strain-induced

energy shift of v-th conduction band edge calculated from Eq. (3.1). By definition,

the retarded real-space NEGF can be expressed as [49,52],

G(E) = [(E + jγ)I− H̃(x, y)]−1 (3.9)

where j is the imaginary unit, γ is a very small positive number and H̃(x, y) has

infinite dimensions due to the semi-infinite contacts the unit cell is attached to. To

truncate it into finite dimensions, a self-energy function, which describes the

interactions between the contacts and the active conductive region is introduced.

The retarded real-space NEGF can then be rewritten as,

G(E) = [(E + jγ)I− Ĥ(x, y)− ΣS − ΣD]−1 (3.10)

where Ĥ(x, y) is the Hamiltonian with reduced dimensions, ΣS and ΣD are the

source and drain contact self-energy matrix, respectively. According to Ref. [113],

for any contact which the simulation domain is attached to, since it is assumed to

be semi-infinite, before the self-energy matrix is introduced into NEGF, by using

Finite Difference (FD) method, the entire system Hamiltonian can be written as,

H(x, y) =

Ĥ(x, y) Uc

U†c Hcont(x, y)

 (3.11)

where Ĥ is the Hamiltonian for the central simulation domain, Hcont is the

Hamiltonian for any single semi-infinite contact region which the device attaches to
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and Uc is the coupling block matrix which could be written as,

Uc =


0 0 ... 0

... ... ... ...

β ... ... 0

 (3.12)

where the block β is defined in Eq. (3.6). By definition, the retarded Green’s function

for the whole domain can be partitioned as,

 G(x, y) Gd,cont(x, y)

Gcont,d(x, y) Gcont(x, y)

 =

EI− Ĥ(x, y) −Uc

−U†c EI−Hcont(x, y)


−1

(3.13)

The only matrix block of our interest is G(x, y), using simple algebra for the inversion,

it can be written as,

G(x, y) =
[
EI− Ĥ(x, y)−Σcont

]−1

(3.14)

where the self-energy matrix could be written as,

Σcont =


0 0 ... 0

... ... ... ...

β ... ... 0





EI− α̃ β ... ... ...

β EI− α̃ β ... ...

... ... ... ... ...

... ... ... β EI− α̃



−1 
0 ... ... β

... ... ... ...

... ... ... 0


(3.15)
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where α̃ can be written as,

α̃ =



2tx + 2ty + U1(x) −ty 0 ... 0

−ty 2tx + 2ty + U2(x) −ty ... 0

0 ... ... ... ...

0 ... ... −ty 2tx + 2ty + UNy(x)


Ny×Ny

(3.16)

Ui denotes the potentials on the nodes connecting the central simulation domain to

the contact. As can be seen in Eq. (3.15), we only need to obtained the first block of

the matrix inverse in the middle. Dividing the matrix into four blocks as shown, note

that the diagonal blocks in it are invariant based on the assumption of translational

invariance of the contacts, additionally, the contacts are assumed to be semi-infinite,

combining those properties, the following expression for calculating the first block of

the matrix inverse could be obtained,

I = gcont [EI− α̃− βgcontβ] (3.17)

where gcont denotes the first block of the matrix inverse. Once gcont is obtained, the

self-energy matrix could be calculated as,

Σcont =


0 ... ... 0

... ... ... ...

0 ... ... βgcontβ

 (3.18)

By using Eq. (3.11) to Eq. (3.18), ΣS and ΣD can be obtained straightforwardly.

Note that, for the small thickness of the nanocomposite thin films considered in this

chapter (a few nanometers), ballistic electron transport is assumed. This assumption is
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appropriate when the thickness of the thin films is less or comparable to the electron

mean free path in the material. For a thin film with a thickness larger than the

electron mean free path (larger than 10 nm in our case), carrier scattering effects can

be considered by including a scattering term in Eq. (3.8) [48]. In this chapter, for an

efficient calculation of the retarded NEGF, a recursive algorithm is adopted [51]. The

self-energy matrices can be used to obtain the broadening functions for the source and

drain contacts, which are used to account for the electron exchange rates between the

source and drain reservoirs and the active conductive region. The broadening functions

are given by [49,52],

ΓS = j[ΣS −Σ†S], ΓD = j[ΣD −Σ†D] (3.19)

where † denotes the Hermitian conjugate. With the retarded NEGF (Eq. (3.10)) and

the broadening matrices (Eq. (3.19)), the spectral functions for the reservoirs can be

computed as,

AS = GΓSG†, AD = GΓDG† (3.20)

The correlation function Gn(E) measuring the contribution from the reservoirs can

then be calculated by,

Gn(E) = AS(E)F (E,EfS) + AD(E)F (E,EfD) (3.21)

where the Fermi function F (E,Ef ) is given by,

F (E,Ef ) =

√
2m∗zkBT

π~2
F−1/2

(
Ef − E
kBT

)
(3.22)

where F−1/2 is the complete Fermi-Dirac integral of order −1/2, m∗z is the electron
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effective mass in the z direction. Finally, the local electron density is obtained by,

n(E) =
1

2π∆x∆y
diag(Gn(E)) (3.23)

Note that an integration of n(E) over the in-plane energy E is required to obtain

the total electron density within the simulation domain. When there are multiple

conduction valleys, contributions from all the valleys should be included.

After the electron density is obtained by using Eq. (3.23), the 2D Poisson

equation is solved to obtain the potential energy in the domain. Based on Eq. (2.4),

in an electron dominant case, the Poisson equation can simplified as,

∇ · (εr∇U) = e2(N+
d − n) (3.24)

For a better convergence and stability of the numerical solution, in this chapter, we

employ a predictor-corrector approach for solving the Poisson equation [52,114],

∇ · (εr∇U) = e2(N+
d −NcF1/2

(
Fn − U
kBT

)
) (3.25)

where Nc is the effective density of states in the conduction band and Fn is defined

as a quasi-Fermi level which is given by,

Fn = Ũ +
kBT

e
F−1

1/2

(
n

Nc

)
(3.26)

where Ũ is the potential energy obtained from the previous NEGF-Poisson iteration

and F−1
1/2 is the inverse of the complete Fermi-Dirac integral of order 1/2. The nonlinear

Eq. (3.25) is solved by using the Newton-Raphson method as that in Eq. (2.16). A

self-consistent solution of the electron density and potential profile is obtained by
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iterating between the NEGF and Poisson equations. Upon convergence of the solution,

the current density from source to drain can be calculated by [49,52],

I =
e

2π~

∫
TSD(E)[F (E,EfS)− F (E,EfD)]dE (3.27)

where TSD is the transmission function and it is defined as,

TSD = Trace[ΓSGΓDG†] (3.28)

Note that, the contributions from all the valleys need to be included in Eq. (3.27)

to compute the final current density in the material. The IV curve can be obtained

by applying a set of voltages on the source and drain contacts. Finally, the electrical

conductivity of the material is calculated from the slope of the IV curve in its linear

regime.

3.3 Results and Discussions

Figure 3.3: The simulation domain for Si/Si1−xGex nanocomposite thin film.

In this part, we first calculate the electron transport properties of the Si1−xGex

61



nanocomposite thin-films under unstrained condition. We start with a Si1−xGex

nanowire composite thin-film with dimensions shown in Fig. (3.3), and then increase

the height of the nanowire (i.e. reduce the distance s between the nanowires) to

reach the limiting case in which the nanocomposite thin film becomes a superlattice.

Note that, although the particular composition and geometry of the thin film is

chosen here to demonstrate the effect of strain on the electrical transport in

thin-film nanocomposites, the analysis approach is general. It is straightforward to

apply this approach to study other types of nanocomposite materials with different

dimensions. As an example of the computed solutions of the conduction band edge

and electron density in the thin films, Fig. (3.4a) shows the results for a Si0.2Ge0.8

thin film with a doping density of 1018cm−3 and Vd = 0.01V . Note that, for the

clarity of the plots, the electron density is shown in Fig. (3.4b) for the Si0.2Ge0.8

region (in the range x = 5nm ∼ 7nm). Fig.(3.5) shows the conduction band edge of

the nanocomposite thin film along line y = 1.5 nm as a function of applied voltage.

It is shown in Fig. (3.4a) and Fig. (3.4b) that the quantum tunneling effect plays an

important role in the electron transport. A potential barrier is initially built along

the interfaces of the thin film and the source and drain contacts due to the

difference in the doping density. Within the thin film, another potential barrier is

built due to the conduction band discontinuity between Si and Si0.2Ge0.8, as shown

in Fig. (3.5). Since the transport within the material is ballistic, the resistance of

the material comes from both the source and drain contact interfaces [28] and the

potential barriers standing in the path of electron transport. Fig. (3.5) shows that

when the applied voltage increases, the downward shifting Fermi level in the drain

contact leads to an increasing slope of the conduction band edge toward to the

drain.
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(a) (b)

Figure 3.4: (a)The conduction band edge in the thin film, and (b)the electron density
within Si0.2Ge0.8 region.

Figure 3.5: Conduction band edges along y = 1.5nm.

63



Figure 3.6: IV curve variation due to applied strains.

Next, three types of strains are applied to the thin film: (1) uniaxial strains in [100]

direction (x-direction), (2) biaxial strains in [100]/[001] directions (x/z-directions)

and (3) biaxial strains in [100]/[010] directions (x/y-directions). Note that, although

the thickness of thin films is only several nanometers, it is technologically feasible

to apply strains in the thickness direction [40]. Fig. (3.6) shows the variation of the

IV curve due to uniaxial and biaxial strains. Fig. (3.7) and Fig. (3.8) show the

variation of the conduction band edges in [100], [010] and [001] directions along the

line y = 1.5nm in the thin film subjected to uniaxial (Fig. (3.7)) and biaxial (Fig.

(3.8)) strains for Si/Si0.2Ge0.8, note that the same trend can be observed in other

Si/Si1−xGex systems with differentGe content. In the figures, Ecx, Ecy and Ecz denote

the conduction band edges in [100], [010] and [001] directions, respectively. As the

variation of conduction band edges under [100]/[001] strains is similar to that under

[100]/[010] biaxial strains, only the former is presented. It is shown that there are two

simultaneous changes of the electronic band structure. First, the band degeneracy

of both Si and Si0.2Ge0.8 in 〈100〉 directions is broken by applied strains. When a

uniaxial tensile strain is applied in [100] direction, the conduction band edges in [010]
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and [001] directions shift down while the conduction band edge in [100] direction

shifts up. The originally degenerate conduction band is split into ∆2 and ∆4 bands.

When a [100]/[001] biaxial tensile strain is applied, the conduction band edge in

[010] direction shifts down and the band edges in [100] and [001] direction shift up.

Similarly, a [100]/[010] biaxial tensile strain lowers the conduction band edges in

[001] and lifts the ones in [100] and [010] directions. Since electrons are more easily

populated in the valleys with lower conduction band edges, and the electron mobility

in [010] and [001] valleys is higher due to its relatively lower conductivity effective

mass in the x-direction, higher electron occupancy in lowered [010] or [001] valleys

enhances electron transport in x-direction. Second, due to the band shift difference

in Si and Si0.2Ge0.8 regions, the band offset at Si and Si0.2Ge0.8 interfaces also varies

with applied strain. As shown in Fig. (3.7) and Fig. (3.8), the band offset is reduced

with compressive uniaxial and biaxial strains while it is increased with tensile strains.

For example, under 1% [100]/[001] biaxial compressive strain, the band offset in [100]

and [001] directions becomes quite small, effectively removing the potential barrier

induced by the nanowire.
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Figure 3.7: Electronic band structure variation in the nanocomposite thin film under
uniaxial strains. The flat band edges are the strain-induced initial band shift in
Si (left), Si0.2Ge0.8 (middle) and Si(right) regions. Ecx, Ecy and Ecz denote the
conduction bands in x, y and z directions after the shift.

Figure 3.8: Electronic band structure variation in the nanocomposite thin film under
biaxial strains.
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The new locations of the conduction band edges and band offsets are then used in the

self-consistent solution of NEGF and Poisson equations. The shift of energy bands and

change of band offsets is included in the Hamiltonian as shown in Eq. (3.2). Fig. (3.9)

shows the computed electrical conductivities of a set of Si/Si1−xGex nanocomposite

thin films with [100] uniaxial, [100]/[001] biaxial and [100]/[010] biaxial strains. As

shown in the figures, with different Ge content in Si1−xGex alloys, the electrical

conductivities decrease as Ge content increases. This is due to the increase of band

offset built between Si and Si1−xGex. The band offset increase lifts the energy levels

within the nanowire region. Therefore, the electron density in this region is reduced.

Because of the decrease in the number of carrier densities for the current transport,

the current density is decreased, resulting in a lower electrical conductivity. It is also

observed that while the value of electrical conductivity depends on the Ge content,

the variation of the electrical conductivity with the applied strains shows similar

patterns for different Ge content. Fig. (3.10) shows the effect of doping density on the

electrical conductivity of Si/Si0.2Ge0.8 thin films with uniaxial and biaxial strains.

The doping density is varied from 5 × 1017cm−3 to 1019cm−3. It is shown that the

electrical conductivity increases significantly with increasing doping density. However,

similar variations of the electrical conductivity with the applied strains are observed

for different doping densities.

To better understand the mechanisms leading to the variation of electrical

conductivity with different strains, we take Ge content x = 0.8 and a doping density

of 1018cm−3 as a specific case to analyze the strain effects in details. Fig. (3.11)

shows the electrical conductivity of a Si/Si0.2Ge0.8 nanocomposite thin film with

the dimensions shown in Fig. (3.3) as a function of externally applied strains. Note

that the [010]/ ± 0.5%[100] biaxial strains shown in the figure denote a 0.5% tensile

or compressive [100] strain combined with a varying [010] strain. A significant effect
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(a)

(b)

(c)

Figure 3.9: Effect of Ge content on the electrical conductivity of Si/Si1−xGex
nanocomposite thin films under (a) [100] uniaxial strains, (b) [100]/[001] biaxial
strains, and (c) [100]/[010] biaxial strains.
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(a)

(b)

(c)

Figure 3.10: Effect of doping density on the electrical conductivity of Si/Si1−xGex
nanocomposite thin films under (a) [100] uniaxial strains, (b) [100]/[001] biaxial
strains, and (c) [100]/[010] biaxial strains.
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of the strains on the electrical conductivity is observed for the nanocomposite thin

film. With [100] uniaxial, [100]/[001] and [100]/[010] biaxial tensile strains, the

electrical conductivity of the Si0.2Ge0.8 nanocomposite is improved, but in a

nonlinear fashion. The increasing rate of the electrical conductivity of the thin film

reduces when the tensile strains increase. A significant decrease in electrical

conductivity is observed for compressive [100] strain while the trend of

[010]/ − 0.5%[100] strain is the opposite. Next, we investigate the effect of the

nanowire size. The height of the Si0.2Ge0.8 nanowire shown in Fig. (3.3) is increased

and the strain effect on the electrical conductivity is calculated for the different

nanowire sizes. Fig. (3.12) shows the limiting case when the height of the nanowire

is approaching 3nm, i,e, the space between the nanowires in the thin film reducing

to zero and the thin film is becoming a superlattice. It is shown that, while the

electrical conductivity variation characteristics are similar as the height of the

Si0.2Ge0.8 nanowire increases, the rate of variation becomes more significant. In

addition, the overall electrical conductivity of the thin film becomes smaller due to

the increase in nanowire size.

The exhibited characteristics of the electrical conductivity variation can be

attributed to the combined effects of (1) the strain-induced band splitting of the

conduction band edges, (2) the strain-induced change of band offset, (3) electron

quantum effect due to the Si0.2Ge0.8 nanowire and (4) the size of the Si0.2Ge0.8

nanowire. To better understand the behavior of the electrical conductivity of the

nanocomposite thin film under the external strains, the variation of electron

population in the thin film is studied in detail. Percentages of electron contribution

to the total electron density from different valleys are obtained under different

strain conditions, as shown in Fig. (3.13). We first observed that, in the unstrained

case, the electron contributions from [100], [010] and [001] valleys are quite close.
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This is due to the fact that the thin film is connected to the source and drain in the

x-direction (thickness direction), and its dimensions are large in both y- and

z-directions. Electrons are not tightly confined in all three directions. The 3D

density of states in [100], [010] and [001] valleys are quite similar when no strain is

applied. Second, when [100] uniaxial tensile strains are applied, the conduction band

edges of [010] and [001] valleys shift down as shown in Fig. (3.7), leading to more

electrons populated in those valleys. It is shown in Fig. (3.13a) that the electron

contributions from [010] and [001] valleys increase to 49.5% and 45.8%, respectively.

Meanwhile, the electron contribution from [100] valleys decreases to 4.7%. Since, as

discussed in Section 3.2.2, higher electron density in [010] and [001] valleys is

advantageous for the electrical conductivity of the thin film, the electrical

conductivity increases with [100] uniaxial tensile strain. For the [100]/[001] and

[100]/[010] biaxial tensile strains, the increase of electrical conductivity comes from

the large downward shift of band edges of high-mobility [010] and [001] valleys,

respectively. Nevertheless, the [100]/[001] biaxial tensile strain gives a little larger

electrical conductivity increase than the [100]/[010] biaxial tensile strain, as shown

in Fig. (3.11). This is due to the quantum confinement effect introduced by the

band offset produced by the Si0.2Ge0.8 nanowire. It should be kept in mind that the

difference is small as the potential barrier height in our case is relatively small (<0.1

eV). This can be shown in the superlattice case where the material structure

becomes equivalent in y- and z-directions. In this case, valleys in [010] and [001] are

degenerate, and the [100]/[010] and [100]/[001] biaxial strains work the same.

Another observed effect is that the electrical conductivity of the Si/Si0.2Ge0.8 thin

film does not improve further when the [100]/[010] biaxial tensile strain reaches

beyond 0.25%. As shown in Fig. (3.13b) and Fig. (3.13c), with 0.5% [100]/[001] and

[100]/[010] biaxial tensile strains, more than 93% and 92% of the electrons are
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already located in [001] and [010] valleys, respectively. When the biaxial strains

increase, further increase in [001] or [010] valley electron occupancy is limited.

However, as shown in Fig. (3.8), the band offset between Si and Si0.2Ge0.8 continues

to increase linearly with the strain, impairing the electrical conductivity

improvement from the increase of occupancy in [001] and [010] valleys.

Figure 3.11: Electrical conductivity variation of the nanocomposite thin film due to
externally applied strains.

Figure 3.12: Electrical conductivity variation: the limiting case of superlattice.

The combined effect of band-splitting and band-offset on the electrical conductivity is
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(a)

(b)

(c)

Figure 3.13: Percentage of electron contribution from the different valleys under (a)
[100] uniaxial strains, (b) [100]/[001] biaxial strains, and (c) [100]/[010] biaxial strains.
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also evident for compressive strains. When [100] uniaxial compressive strain is applied,

the conduction band edge of [100] valleys shifts down while the conduction band edges

of the other two valleys shift up (Fig. (3.7)), resulting in less electrons in [010] and [001]

valleys (Fig. (3.13a)) and lower electrical conductivity in the thin film (Fig. (3.11)).

For the [100] uniaxial compressive strain, the band-splitting effect is more significant

than that of the band offset decrease. When the [100]/[001] biaxial compressive strain

is applied, the electrical conductivity first decreases then increases. This behavior can

be attributed to the simultaneous decrease of band offsets and the increase of electron

density in [001] and [100] valleys due to band splitting. When the compressive stain is

small, the increased electron contribution in [100] and [001] valleys leads to a reduction

in electrical conductivity. As the compressive strain increases, the increase of electron

contribution in [001] and [100] valleys becomes limited (Fig. (3.13b)) while the band

offset height keeps lowering, leading to an increase of electrical conductivity in the

thin film. Similar behavior is observed in [100]/[010] biaxial compressive strain case.

3.4 Summary

In this chapter, a computational approach for calculating the electrical

conductivity of strained semiconductor nanocomposite thin films is proposed. The

effect of uniaxial and biaxial strains on the electrical conductivity of Si/Si1−xGex

nanocomposite thin films is computed. The effect of strains on the band structures

of the nanocomposite thin films is calculated with a degenerate two-band k · p

theory. The electrical conductivity of the thin films is computed by using a 2D

real-space Non-Equilibrium Green’s Function approach coupled with the Poisson

Equation. Numerical results demonstrate that the external strains have a significant

influence on the electrical conductivity of the nanocomposite thin films. The
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electrical conductivity can be increased by as much as 40% in the superlattice case.

The electrical conductivity variation of the nanocomposite thin films can be

attributed to combined effects of strain-induced splitting of the conduction band

edges and change of band offsets, electron quantum confinement, and size of the

Si1−xGex nanowires. Evidently, externally applied strain should be included as a

design parameter and, possibly, a control mechanism of electron transport in the

development of flexible electronic devices.
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CHAPTER 4

COMPUTATIONAL MODELING

AND ANALYSIS OF

THERMOELECTRIC

PROPERTIES OF

NANOPOROUS SILICON

4.1 Introduction

Thermoelectric materials enables direct conversion of heat energy into

electricity in a clean, economical and sustainable fashion. They offer great potential

in applications such as power generation, cooling systems and waste heat

recovery [19–21]. However, the current difficulty in massive application of

thermoelectric materials lies in their relatively low conversion efficiency [22, 23]. The

efficiency of thermoelectric materials is evaluated by the dimensionless figure of
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merit ZT = S2σT/k, where σ is the electrical conductivity, S is the Seebeck

coefficient, k is the thermal conductivity contributed from both electrons ke and

phonons kp, and T is the temperature. The product of S2σ is called the power

factor. To increase ZT , thermoelectric materials with lower k and higher power

factor are preferred. Many approaches have been proposed to increase ZT in the

literature. It has been demonstrated that the ZT of compound semiconductors such

as Bi2Te3 can reach 1.0 [115]. The relatively high ZT of Bi2Te3 is attributed to the

large atomic masses of Bi and Te, which lead to a low thermal conductivity.

Another option to increase ZT is to reduce the dimensions of the thermoelectric

materials. With the help of quantum confinement effects, superlattices and quantum

dots have demonstrated superior performance in experiments. For example,

Bi2Te3/Sb2Te2 thin film superlattices have ZT up to 2.0 [24]. ZT of embedded

PbSeTe quantum dots was reported to be larger than 1.0 [25]. One-dimensional

semiconductor materials such as Si and Bi nanowires have also been investigated

extensively [26, 116]. It was reported that Si nanowires with diameter ranging from

10nm to 20nm show a high ZT up to 1.0 [10]. The increase of ZT in nanowires is a

result of the large reduction in their thermal conductivity, which is considered due

to surface roughness and phonon drag effect. More recently, it has been shown that

nanostructured materials such as SiGe nanocomposites have a good thermoelectric

performance with ZT reaching 1.5 [9,117]. The mechanism driving the improvement

of ZT in those materials mainly lies in the large reduction of their thermal

conductivity due to significant grain boundary phonon scattering. While the

potential is promising, the obstacles of large scale application of those

thermoelectric materials are the limited resources and high-cost fabrication

processes. Porous Si has been proposed to be an efficient thermoelectric material

ever since it is found to have very low thermal conductivity [57]. As nano-sized
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pores become achievable in fabrication of porous Si, it has been shown

experimentally that the ZT of p-type porous silicon with 35% porosity can reach up

to 0.4 [118] at room temperature. Moreover, it is predicted theoretically by using

molecular dynamics and ab initio density functional theory that the ZT of n-type

nanoporous silicon with pore size of 1nm × 1nm can reach around 1.0 [119].

Compared with other thermoelectric materials, nanoporous silicon has two major

advantages: first, Si is an abundant resource on earth and has simple and

economical fabrication processes; and second, from device fabrication perspective,

connecting nanoporous Si to electrical leads is more straightforward than attaching

low-dimensional materials such as nanowires to the external leads. While the design,

optimization, and fabrication of nanoporous Si for thermoelectric applications can

be accelerated through computational analysis of the material, numerical study on

the thermoelectric properties of nanoporous silicon is still quite limited. How the

thermoelectric performance is influenced by factors such as the porosity,

temperature, doping density and pore size remains unclear.

In this chapter, for computational analysis of thermoelectric properties of

nanoporous silicon, we present a comprehensive computational approach combining

non-equilibrium Green’s function (NEGF)-Poisson equation [49, 120] for electrical

transport calculation and phonon Boltzmann transport equation (BTE) [39] for

phonon thermal transport calculation. To the authors’ best knowledge, this is the

first time that a complete continuum-level computational approach is proposed and

applied in the investigation of the thermoelectric performance of nanoporous Si.

The NEGF-Poisson model is solved self-consistently by using the finite difference

method (FDM) to numerically calculate the electrical conductivity and Seebeck

coefficient of the material while the phonon BTE is solved by using the finite

volume method (FVM) to obtain the phonon thermal conductivity. Meanwhile, the
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electronic thermal conductivity is obtained by using the Wiedemann-Franz law [58].

The NEGF-Poisson model used in this chapter has been successfully applied in

electrical transport analysis of various nanodevices and nanomaterials [27,120,121].

Results in the literature show that it can well capture the quantum effects including

tunneling and quantum confinement in nanoscale semiconductor materials and

devices. It is also demonstrated in this chapter that the numerical results for the

electrical conductivity and Seebeck coefficient match well with the published

experimental results [121]. The phonon BTE has been applied to phonon thermal

transport analysis for many nanostructured materials with demonstrated accuracy

and efficiency [122–124]. Once the electrical conductivity, the Seebeck coefficient

and the thermal conductivity are obtained, the figure of merit, ZT , is obtained

straightforwardly. By using the model, the effects of porosity, size of nanopores,

temperature and doping density on the thermoelectric properties of nanoporous

silicon are investigated. Optimal combination of the parameters for a better

thermoelectric ZT of nanoporous Si is also studied. The rest of the chapter is

organized as follows. The computational models and their implementations are

described in Section 4.2. In Section 4.3, simulation results and parametric studies

are presented for the thermoelectric properties of nanoporous Si. Finally, the

summary is given in Section 4.4.
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4.2 Theoretical Model and Computational

Procedures

4.2.1 Nanoporous Silicon

Fig. (4.1) shows the nanoporous silicon material used in our study. The

nanoscale pores are assumed uniformly distributed in the silicon host material. Due

to the uniform arrangement of the pores, a unit cell is taken from the material as

the computational domain. As shown in the figure, L, W , pl and pw denote the

length and the width of the unit cell and the pore, respectively. The porosity is

calculated by the ratio between the porous area and the unit cell area, that is,

P = (pl × pw)/(L × W ). The Cartesian x and y directions are assumed to be

aligned with the [100] and [010] directions of the crystal lattice, respectively. In this

chapter, the in-plane (x-y plane) thermoelectric properties (electrical conductivity,

Seebeck coefficient, thermal conductivity and figure of merit) are investigated. The

periodic property of the unit cell is used in solving both NEGF and phonon BTE.

Details of the thermoelectric analysis are presented in the following sections.

L

W

pl

pw

Si host

x

y

Pore

Unit Cell

Figure 4.1: Left: nanoporous silicon; right: the unit cell taken for computational
analysis.
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4.2.2 Electrical Conductivity

To numerically measure the current flow in the unit cell, two semi-infinite

electron reservoirs, namely, source and drain, are attached to the unit cell. The

current flow in the simulation domain due to an applied voltage or a temperature

difference between the left and right ends is solved by using a 2D real-space NEGF

formulation coupled self-consistently with the Poisson equation. The basic material

parameters for Si used in the calculations are as follows: the permittivity of silicon

is taken as 11.7ε0, where ε0 is the permittivity of free space. The longitudinal and

transverse effective masses for silicon are ml = 0.92me and mt = 0.19me,

respectively, where me is the free electron effective mass. All the three different pairs

of valleys in silicon are considered. N-doped Si is considered in this chapter, hole

transport is not included. The real space NEGF formulation is obtained from the

two dimensional effective mass Schrödinger equation which is given by Eq. (2.1). By

discretizing the domain into a uniform grid, through the finite difference method,

the Schrödinger equation can be expressed in a matrix form as,

H(x, y)ψ = Eψ (4.1)

where E is the energy in the x-y plane. In the z direction, the depth of the material is

assumed to be very large, the plane wave condition can therefore be applied. The total

energy of the system is expressed as Etotal = E+Ez, where Ez is the continuous energy

in the z direction. In addition, periodic boundary condition is applied on the top and

bottom edges of the 2D domain in obtaining the Hamiltonian matrix in Eq. (4.1).

By definition, the retarded 2D real-space NEGF can be expressed as Eq. (3.9), with

the introduction of self-energy functions for source and drain contacts, the retarded

real-space NEGF can be rewritten as Eq. (3.10). Note that, the tunneling through
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the pores is not included in our calculation. In this chapter, we apply a hard-wall

boundary condition on the interface between the pore and silicon host material when

composing the system Hamiltonian. In other words, an infinite potential barrier is

assumed within the pore region. When the electron transport is ballistic, Ĥ(x, y) can

be easily obtained without considering any other perturbation sources in addition to

source and drain contacts. However, if the scattering within the simulation domain

can not be ignored, Eq. (3.10) must be modified to include the scattering effects. In

this chapter, to account for electron scattering, the Büttiker probes, which have been

successfully used to model dissipative electron transport in electrical transistors [120],

are adopted. In the scattering model, a set of probes are introduced to model the

scattering effects on the charge carrier transport within the material. The probes are

treated like source and drain contacts but with fundamental differences on how they

perturb the Hamiltonian. The source and drain contacts inject or extract electrons

from the channel materials, resulting in a current flow in the channel. However, the

Büttiker probes only change the energy/momentum of the electrons without changing

the number of electrons in the channel material. The probes’ perturbation to the

Hamiltonian is also introduced by self-energy matrices. The modified retarded real-

space NEGF in Eq. (3.10) can be written as,

G(E) = [(E + jγ)I− Ĥ(x, y)−Σ]−1 (4.2)

where Σ is the sum of self-energy matrices from the source and drain contacts and

the Büttiker probes. Assuming the simulation domain is discretized into Nx×Ny grid

points and the x direction is the transport direction, the first and last column of the

grid points are the source and drain contacts, respectively, and each of the remaining

(Nx − 2) grid-point columns is attached to a Büttiker probe. The strength of the
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scattering perturbation depends on the coupling strength associated with the probes.

The electrons are perturbed more as the coupling strength increases. In this chapter,

a model presented in Ref. [125] relating the electron mobility in the material to the

coupling strength is exploited. The relation between the electron mean free path and

the coupling strength of probes is given by

λ = 2∆x
t2x
t2i

(4.3)

where λ is the mean free path of electrons and ti is the coupling strength of for the

i-th probe. To calculate the electron mean free path, the relation between the low

field mobility and the mean free path is [120,125],

ξ = λ

√(
e2

2πkBTm∗x

)
F1/2(Efi − Ui)F−1(Efi − Ui)

F 2
0 (Efi − Ui)

(4.4)

where e is elementary charge, T is the temperature, ξ is the low field mobility of the

material which can be obtained from experimental data, Efi is the Fermi level of a

certain probe i and kB is the Boltzmann constant. F0, F−1 and F1/2 are the Fermi

Dirac integrals of order 0, −1 and 1/2, respectively. Once the coupling strength ti

is obtained (note that ti needs to replace tx in the coupling matrix in Eq. (3.12)

with Büttiker probes), the self-energy matrices for source, drain and Büttiker probes

can be calculated following the procedures described from Eq. (3.11) to Eq. (3.18).

The self-energy matrices are also used to obtain the broadening functions for all the

reservoirs (i.e. source, drain and Büttiker probes). The broadening function for i-th

reservoir is

Γi = j[Σi −Σ†i ] (4.5)
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where † denotes the Hermitian conjugate and j is the imaginary unit. With the

retarded NEGF (Eq. (4.2)) and the broadening matrices (Eq. (4.5)), the spectral

functions for the reservoirs can be computed as

Ai = GΓiG
† (4.6)

The correlation function Gn(E) measuring the contribution from the reservoirs can

then be calculated by

Gn(E) =
∑
i

Ai(E)F (E,Efi) (4.7)

where the Fermi function F (E,Efi) is given by Eq. (3.22). Finally, the local electron

density is obtained by Eq. (3.23).

As indicated in Eq. (4.7), to calculate the charge density in the simulation

domain, Fermi levels in all the reservoirs have to be obtained. While the Fermi levels

of source and drain contacts can be easily defined by the external voltages applied,

the Fermi levels in the Büttiker probes have to be calculated numerically. Note that

the probes only perturb the electrons’ energy/momentum without changing their

numbers. Therefore, the net current flow in each probe must be zero, i.e., the current

continuity within the simulation domain must be maintained. To relate the current

flow to the Fermi levels within each probe, the net current density in a certain reservoir

can be written as

Ip =
e

2π~
∑
q

∫
T pq(E)[F (E,Efp)− F (E,Efq)]dE, (4.8)

where Ip is the net current density in reservoir p, T pq is the transmission function

from reservoir p to reservoir q. Note that q runs over all the reservoirs including the
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source and drain contacts. The transmission T pq is defined as

T pq = Trace[ΓpGΓqG
†] (4.9)

To ensure the current continuity, the net current density in each probe must satisfy,

Ip = 0, p = 2, 3, ..., Nx − 1 (4.10)

The above equation imposes a set of nonlinear constraints on the Fermi levels in

the Büttiker probes. In this chapter, the probe Fermi levels are obtained iteratively

by using Newton’s method. After obtaining the Fermi levels for all the probes, the

correlation function can be directly calculated from Eq.(4.7) and the electron density

can be obtained by using Eq.(3.23).

After the electron density is obtained, the 2D Poisson equation, i.e., Eq. (3.25),

is solved to obtain the potential energy in the domain. A self-consistent solution of

the electron density and potential profile is obtained by iterating between the NEGF

and Poisson equations. Upon convergence of the solution, the current density I from

source to drain can be calculated with Eq. (4.8). The flow chart illustrating the

solution procedure for the Büttiker probe treatment of scattering is shown in Fig.

(4.2). Finally, the electrical conductance of the material is calculated as G = I/∆V

and the electrical conductivity can be obtained as σ = GL/W , where L and W are

the length and width of simulation domain.
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Figure 4.2: Schematic of NEGF algorithm flow.

In the implementation of the computational process described above, a source

and drain regions (i.e., reservoirs) need to be attached to the unit cell in order to apply

a voltage difference and obtain the current density. In addition, extra silicon regions

are added to remove the artificial effect of depletion region caused by the doping

difference between the reservoirs and unit cell. To obtain the electrical conductivity

of the unit cell, we first attach a source of length (Ls) and a drain of length (Ld) to

a silicon region of length (2 × LSi), as shown in the left part of Fig. (4.3). A small

voltage difference (∆V ) is applied between source and drain contacts, the current

density (I1) in the domain, denoted as R1, is calculated by using the NEGF-Poisson
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model. The electrical conductance of R1 is obtained byG1 = I1/∆V . Next the unit cell

is inserted in the middle of R1 and the same voltage difference ∆V is applied between

the source and drain, as shown in the right part of Fig. (4.3). The current density

(I) and electrical conductance G = I/∆V are then calculated for the entire material

region. Since G = G1G2/(G2 +G1), the electrical conductance for the unit cell can be

obtained as G2 = G1G/(G1 −G). The electrical conductivity of the unit cell is then

σ = G2L/W . By using the scheme described above, the contact resistances related

to the source and drain regions and effects of depletion regions can be effectively

eliminated.

Si Si

unit cell

drain
N

+

SiSi

Figure 4.3: Schematic of electrical conductivity calculation of the unit cell.

Fig. (4.4) shows an example of the self-consistent solution of the electron density

within the unit cell. In this case, the doping of the unit cell is 1019cm−3 and the

porosity of the unit cell is 6.25%. It is clear that the quantum effect induced by the

infinite barrier in the pore region is properly captured. It is important to note that,

when the pore size becomes very small, to remove the non-physical quantum effect

caused by the small unit cell size in y direction, we include multiple unit cells in y

direction to obtain accurate results [126].

4.2.3 Seebeck Coefficient

When a temperature difference is applied between the two ends of a

thermoelectric material, different electron energy distributions in the reservoirs
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Figure 4.4: The electron density profile within the unit cell.

results in a flow of charge carriers in the material. The direct method to compute

the Seebeck coefficient of the material is to calculate the open circuit voltage ∆V

caused by a temperature difference ∆T applied at the two ends of the material. By

definition, the Seebeck coefficient can then be obtained by S = −∆V/∆T . In this

chapter, with conductance of the material calculated as described in Section 4.2.2,

the Seebeck coefficient can be computed more conveniently by using an alternative

approach [121].

Sisource drainSi

Figure 4.5: Schematic of Seebeck coefficient calculation.
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When a temperature and voltage difference, ∆T and ∆V , respectively, are

applied between the ends of the source and drain, as shown in Fig. (4.5), the current

density can be expressed as [121],

I = G∆V + SG∆T (4.11)

Note that G has already been obtained by using the NEGF-Poisson model described

in Section 4.2.2. To obtain the S in Eq. (4.11), a temperature difference ∆T is applied

across the material while ∆V is kept to be zero. By using the NEGF-Poisson model,

the current density I can be calculated, and S can be obtained from S = I/G∆T .

It should be noted that the S obtained is the Seebeck coefficient of the unit cell

combined with source, drain and the extra silicon regions. To obtain the Seebeck

coefficient of the unit cell itself, further steps are necessary. As shown in Fig. (4.5), the

whole simulation domain is divided into two regions: one is composed of source/drain

contacts and the extra silicon region (R1), and the other is the unit cell region (R2).

With the applied ∆T 6= 0, ∆V = 0, and the current continuity conditions, the current

density flowing in R1 and R2 can be written as,

I = S1G1∆T1 +G1∆V1 = S2G2∆T2 +G2∆V2 (4.12)

where indexes 1 and 2 denote R1 and R2, respectively. In addition, the following

equations can be readily obtained,

∆T = ∆T1 + ∆T2 (4.13)

∆V = ∆V1 + ∆V2 = 0 (4.14)
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Combining Eqs. (4.12-4.14), one can obtain

I =
G1G2(S1∆T1 + S2∆T2)

G1 +G2

(4.15)

Knowing I = SG∆T , Eq. (4.15) can be rewritten as

S =
S1∆T1 + S2∆T2

∆T
(4.16)

Equation (4.16) shows that the overall S for the whole region is the average of

S values of its components weighted by the temperature drop in each region. Our

calculations show that the temperature drop across the simulation domain is

approximately linear, except for the regions immediately left and right to the pore

along the heat flux direction. Similar temperature profiles have also been obtained

for Si/Ge and Bi2Te3/Sb2Te3 nanocomposites [127] [128]. Moreover, the

temperature difference applied between source and drain contacts in the calculation

of the Seebeck coefficient is set to be small (∆T = 2K). Therefore, a linear

distribution of temperature is assumed across the whole domain. However, it should

be noted as an approximation. Therefore, in Eq. (4.16), ∆T1 and ∆T2 are assumed

to be linearly proportional to the length of R1 and R2, respectively. Next, by using

the the NEGF-Poisson model, an additional simulation is performed on the material

structure R1 shown on the left of Fig. (4.3) with a temperature difference ∆T1

applied at the two ends and ∆V1 = 0. The current density I1 flowing through R1 is

computed from the simulation. Note that the electrical conductance G1 has already

been obtained as discussed in Section 4.2.2. Then S1 can be calculated from the

90



following relation

I1 = S1G1∆T1 (4.17)

Finally, the Seebeck coefficient for the unit cell, S2, can be calculated from Eq. (4.16).

4.2.4 Phonon Thermal Conductivity

Doping, 

temperature

Phonon 

scattering

Refined

Callaway model

Bulk thermal 

conductivity, 

phonon mean 

free path

Phonon thermal 

conductivity of 

porous Si

Diffusely reflective

interface

Boltzmann 

transport 

equation

Periodic boundary

Figure 4.6: Theoretical model and procedure for phonon thermal transport analysis.

In this section, we employ a phonon BTE based approach to compute the phonon

thermal conductivity of porous Si, as shown in Fig. (4.6). In this approach, the bulk

thermal conductivity of doped Si at various temperatures is computed by a refined

Callaway model incorporating various phonon branches and scattering mechanisms.

Once the bulk thermal conductivity is computed, the averaged phonon mean free path

is calculated by using the kinetic theory. The doping and temperature dependent

phonon scattering properties are then incorporated into the BTE to describe the

thermal transport in the nanoporous silicon. The diffusive scattering mechanism is

adopted for the Si/pore interface and periodic boundary condition is applied to the

simulation domain boundary. In the numerical solution of BTE, FVM is used over

an unstructured mesh of the domain. Once the solutions are obtained in terms of
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the phonon intensity, the thermal conductivity along with heat fluxes and effective

temperature profile can be calculated, all of which depend on both doping density

and temperature.

The thermal model employed in this chapter is based on a refinement of Callaway’s

approach [129], which can be characterized by the following: (1) isotropic Debye

phonon spectrum with single averaged group velocity per mode is assumed; (2) full

Callaway’s approach with the correction term k2 included to account for the fact

that phonon normal (N) process plays a role of indirect thermal resistance; (3)

relaxation rates τ−1 for different phonon scattering mechanisms are empirical, which

are dependent on a number of intrinsic factors, such as phonon frequency ω and

group velocity v, and extrinsic factors such as doping density n and temperature T ;

(4) the scattering mechanisms are assumed to be independent of each other and

follow Matthiessen’s rule; and (5) the phonon thermal conductivity kbulk is

calculated by summing the components over all the longitudinal and transverse

modes, i.e. [129],

kbulk = k1 + k2 (4.18)

where k1 and k2 are defined as,

k1 =
1

3

∑
j=L,T

CjT
3

∫ θj/T

0

τj,Cx
4ex

(ex − 1)2
dx (4.19)

k2 =
1

3

∑
j=L,T

CjT
3

[
∫ θj/T

0

τj,Cx
4ex

τj,N (ex−1)2
dx]2∫ θj/T

0

τj,Cx4ex

τj,N τj,R(ex−1)2
dx

(4.20)

where x = (~ω)/(kBT ) is the dimensionless phonon frequency, θj/T is the upper limit

of dimensionless phonon frequency for the jth mode – longitudinal (L) or transverse
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(T ), Cj is the phonon specific heat capacity for the j-th mode, expressed by,

Cj =
kB

4

2π2vj~3
(4.21)

In Callaway’s formulation, τj,R contains all the resistive scattering mechanisms. Under

the assumption of Matthiessen’s rule, it is given by,

τ−1
j,R = τ−1

j,U + τ−1
j,I + τ−1

j,B + τ−1
j,e (4.22)

where the subscripts U, I, B and e denote phonon-phonon U -process,

phonon-impurity, phonon-boundary and phonon-electron interactions, respectively.

τj,C is the combined relaxation time of τj,R and τj,N for phonon-phonon N process,

which is given by,

τ−1
j,C = τ−1

j,R + τ−1
j,N (4.23)

In our calculations, common form of U -process and N -process for different phonon

modes is adopted [120,129–131].For N -process,

τ−1
T,N = BT,NωT

4 (4.24)

τ−1
L,N = BL,Nω

2T 3 (4.25)

where BT,N and BL,N represent the strength of scatterings. For U -process, the form of

scattering rates for U -process was suggested to be proportional to T ae(θ/bT ) for both

longitudinal and transverse modes [132] as

τ−1
T,U = BT,Uω

2Te(θ/3T )) (4.26)

τ−1
L,U = BL,Uω

2Te(θ/3T ) (4.27)
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The scattering rates due to dopant, Si isotope and other impurities are approximated

based on the calculation of scattering rates on point defects as [133],

τ−1
j,I = τ−1

j,M + τ−1
j,R (4.28)

where τ−1
j,M and τ−1

j,R are the scattering rates due to the substitutional mass of

impurity point defects and relative distortion of lattices introduced by impurity

atoms, respectively. They are given as,

τ−1
j,M = (AδM + Ax)ω

4 (4.29)

τ−1
j,R = ARω

4 (4.30)

where AδM , Ax and AR represent the strength of interactions of mass

substitution(both dopant and Si isotope atoms), unintentional impurities such as

oxygen contamination introduced during fabrication, and lattice distortion,

respectively. The analytical form of AδM and AR in Ref. [134] shows that they can

be assumed to have a relatively linear dependency on the doping density n. Their

values for bulk silicon doped with phosphorus can be found in Table II in Ref. [134].

The scattering rate due to phonon-boundary interaction τ−1
j,B is only included in the

thermal conductivity calculation at low temperatures. The boundary scattering

effect of the nanoporous Si is treated in the BTE transport model. The scattering

rates due to phonon-electron interaction is classified into two scenarios depending

on whether the electrons are in non-metallic or metallic state. Non-metallic state

electrons are bound to doped or unintentional impurities, whereas metallic state

electrons are free electrons in the conduction band. The change from non-metallic

state to metallic state occurs when doping density is increased above a critical level,
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which is found to be around 3 × 1018cm−3 for phosphorus-doped silicon [135] [136].

In this chapter, we focus on heavily phosphorus-doped degenerate silicon (doping

density > 5 × 1018cm−3) for thermoelectric energy conversion applications.

Consequently, electrons are considered to be in metallic state. In this case, τ−1
j,e can

be obtained by using Ziman’s phonon-electron scattering rate equation for

degenerate semiconductors as [137],

τ−1
j,e =

(meED)2kBT

2πρ~4v2
j

xω (4.31)

where the me is the effective mass of electrons, ED is the deformation potential which

is proportional to
(
N+
d

) 2
3 [138], ρ is the mass density of silicon. The parameter values

used in our calculations are summarized in Table 4.1.

Table 4.1: Parameters for thermal conductivity calculation of Si.

Threshold θ from phonon dispersion curve [139]

Transverse θT = 240 K

Longitudinal θL = 586 K

Averaged phonon group velocity [139]

Transverse vT = 5.84× 103 m/s

Longitudinal vL = 8.43× 103 m/s

Three-phonon scattering [139]

N-process for transverse phonons BT,N = 7.1× 10−13 /K4

U-process for transverse phonons BT,U = 1.0× 10−19 /sK

N-process for longitudinal phonons BL,N = 2.4× 10−24 /sK3

U-process for longitudinal phonons BL,U = 5.5× 10−20 /sK

Electronic Scattering [134]

Effective mass of electron(me/m0 me/m0 = 0.9,m0 = 9.1× 10−31

Density ρ = 2330 kg/m3
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By performing numerical integration over all the phonon modes in Eq. (4.18), the

bulk thermal conductivity can be obtained. The averaged phonon mean free path can

be calculated using the kinetic theory:

Λ =
3kbulk
Cαv

(4.32)

where v is the sound velocity in Si, Cα = CT + CL is the acoustic phonon specific

heat. Since the optical phonons contribute little to the thermal conductivity for Si

due to their small group velocity, they are not taken into consideration. Note that the

sound velocity and acoustic phonon specific heat can be calculated by using either

lattice dynamics with interatomic potentials [140] or analytical form of summation

over the frequency range and phonon modes [141], both of which produce consistent

results. In our model, the latter approach is adopted.

After obtaining the bulk mean free path, we solve BTE to obtain the phonon

thermal conductivity of nanoporous silicon, and examine the pore size, geometry and

boundary condition effects on the thermal conductivity. These effects are considered

less frequency-dependent than other scattering mechanism. Furthermore, in this way,

such effects are no longer empirical, which are desirable to perform numerical analysis

for engineering design purposes. In our analysis, the grey BTE model is adopted,

which assumes phonons with an effective group velocity and relaxation rates. For

the calculation of cross-plane phonon thermal conductivity, the grey BTE has been

demonstrated to be a reasonably good approximation to the frequency-dependent

phonon BTE model in the previous works [142] [124]. However, it should be noted

that, as a limitation of the grey-BTE model, phonon confinement effect is neglected

in the adoption of a single value of relaxation time and group velocity. It has been

shown that phonon confinement effect in a free-standing quantum well [143] and
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semiconductor nanowires [144] results in modification of phonon dispersion and a

reduction in the group velocities and phonon density of states. Thus, the thermal

conductivity of nanoporous Si is expected to be further reduced [145], if the phonon

confinement effect is properly taken into account.

x

y

z

s

r

Figure 4.7: Directional phonon intensity.

The governing equation of gray BTE model is given in terms of spatial phonon

intensity as [146],

∇ · (I(r, s) · s) = −I(r, s)− I0(r)

Λ
(4.33)

where I(r, s) is the total phonon intensity at a spatial position r = (x, y, z) over a

path length ds in the direction of unit vector s. As shown in Fig. (4.7), s is defined

by,

s = sinθcosφex + sinθsinφey + cosθez (4.34)

where θ and φ are the polar and azimuthal angles, respectively, ex, ey and ez is the

basis vector set in the Cartesian coordinate system. I0(r) is the averaged equilibrium

phonon intensity given by,

I0(r) =
1

4π

∫ 2π

0

∫ π

0

I(r, s)sinθdθdφ (4.35)
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Figure 4.8: Unit cell computational domain for thermal transport analysis.

In this chapter, we adopt the FVM implementation described in Ref. [39] to solve

Eq. (4.33).The computational domain is a 2D square unit cell shown in Fig. (4.1).

Periodic boundary conditions are employed across the outer boundary, and diffusive

interface scattering model is employed across the inner porous boundary as shown

in Fig. (4.8). Note that, theoretically the effect of surface roughness at the

silicon/pore interface on phonon thermal conductivity can be significant for small

pore sizes, as shown in Fig. (4.9). However, as discussed in Ref. [127], even one

monolayer surface roughness of a silicon lattice would give Ziman’s interface

specularity parameter≈0, leading to a total diffusive interface condition. For this

reason, we adopt a total diffusive phonon scattering condition at the silicon/pore

boundary. On the contrary, our results show that the effect of surface roughness on

the electron flow is small. This is due to the smaller electron mean free path and the

stronger quantum effect over the surface roughness effect when fewer number of

subbands conduct [147]. Therefore, the effect of surface roughness on the electrical

conductivity is neglected in the simulations. For the top and bottom outer
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boundaries, the periodic boundary condition is expressed as,

I(x,W, s) = I(x, 0, s), (4.36)

for all x and s. For the right and left outer boundaries, the periodic boundary

condition is expressed as [39],

I(0, y, s)− I(L, y, s) =
vSiC

a
Si∆T

4π
, (4.37)

where vSi and Cα
Si are the phonon group velocity and acoustic specific heat of Si,

respectively. This additional term on the right hand side of the equation represents

an imposed temperature drop ∆T , so that phonon transport can take place along

the horizontal direction. The diffusive interface scattering across the inner porous

boundary is modeled such that all the directional phonon intensities I(r, s) on the

inner boundary are reflected and evenly distributed over the solid angles on the Si

side, as shown in Fig. (4.8). Further details of the implementation are summarized in

Ref. [39]. Once the solution to the BTE is obtained in terms of total phonon intensity

I(x, y, s). The local effective temperature is calculated as,

T (x, y) =
4πI0(x, y)

Ca
SivSi

(4.38)

Note that the effective temperature used here represents the local energy density

since the local thermal equilibrium condition breaks down in nanostructures.

Furthermore, the average temperature at each vertical plane along the horizontal

direction is obtained as,

T̄ (x) =
1

L

∫ L

0

T (x, y)dy (4.39)
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The averaged heat flux in the horizontal direction is calculated as,

qx(x, y) =

∫ 2π

0

∫ π

0

I(x, y, s)sin2θcosφdθdφ (4.40)

The effective phonon thermal conductivity is calculated by Fourier’s Law as,

kp =

∫ L
0
qx(x, y)dy

T̄ (0)− T̄ (L)
(4.41)

Following the procedure, we obtain kp as a function of pore size, porosity, doping

density and temperature.
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Figure 4.9: Surface roughness effect on thermal conductivity.

4.2.5 Electronic Thermal Conductivity

For semiconductor materials, the thermal conductivity contributed from

electrons is ignored since it is quite small compared with that contributed from

phonons. However, as the size of the material decreases, its influence cannot be

neglected. With the electrical conductivity results for nanoporous Si obtained in

Section 4.2.2, the electronic thermal conductivity ke can be calculated using the
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Wiedemann-Franz law,

ke = σLzT (4.42)

For metals, Lz = 2.45 × 10−8WΩK−2. For semiconductors, Lz depends on doping

density. The doping density dependent Lz used in our calculations are obtained from

Ref. [58]. The total thermal conductivity is the sum of phononic thermal conductivity

and electronic thermal conductivity.

4.3 Results and Discussions

In this section, by using the model introduced in the previous section, the

simulation results for thermoelectric properties of nanoporous silicon are presented.

The thermoelectric figure of merit of nanoporous silicon and its bulk nonporous

counterpart are compared. Moreover, the effects of doping density, porosity,

temperature and the unit cell/pore size are investigated.

4.3.1 Model Validation

As a validation of the electron transport model used in this chapter, we compare

our simulation results on the electrical conductivity and Seebeck coefficient of bulk

silicon with the results shown in [148] and ab-initio simulation results shown in [149].

In the simulation, the unit cell size is set to be 20nm × 20nm, the source (Ls) and

drain (Ld) regions are both 3nm, the length of extra silicon (LSi) region is 5nm. The

mesh sizes in x direction (∆x) and in y direction (∆y) are both 0.5nm. The doping

density for source and drain is set to be 1020cm−3. For comparison, the doping density

of extra silicon and unit cell regions varies from 5 × 1017cm−3 to 1019cm−3. In the

calculation of the coupling strength of the Büttiker probes, the mobility of silicon
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with different doping densities is obtained from [148–150]. Figs. (4.10) and (4.11)

show the calculated resistivity and Seebeck coefficient of bulk silicon with different

doping densities in comparison with the experimental data and ab-initio calculation

results shown in Refs. [148] and [149], respectively. It is shown that the results match

quite well with each other.
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Figure 4.10: Resistivity variation of Si as a function of doping.
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Figure 4.11: Seebeck coefficient variation of Si as a function of doping.
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Figure 4.12: Pore size effects on thermal conductivity of multi-pore Si nanostructure.
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Figure 4.13: Local energy density profile within the unit cell.

The thermal conductivity of intrinsic nanoporous silicon has been calculated

previously by using the BTE [124]. By excluding the phonon-dopant-impurity and

phonon-electron scatterings in our model, we calculate the thermal conductivity of

undoped nanoporous silicon with pore size ranging from 100nm to 2000nm

(porosity from 0.08% to 32%), and compare the results with those presented in

Ref. [124]. Fig. (4.12) shows that the results shown in Ref. [124] are reproduced by

our calculations. As an example, Fig. (4.13) shows the profile of local energy density
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within a unit cell. It is clear that local phonon energy is impeded and trapped near

the left and right pore boundaries, resulting in a hot and a cold spot. Thus, phonon

thermal conductivity is reduced compared to the bulk thermal conductivity.

4.3.2 Effect of Doping and Porosity

Fig. (4.14) shows the electrical conductivity, Seebeck coefficient, phonon thermal

conductivity and figure of merit of nanoporous silicon with different doping densities

and porosities at room temperature (T = 300K). The results are obtained with a unit

cell size of 20nm× 20nm and different porosities are obtained by changing the pore

size in the unit cell. As indicated in Fig. (4.14)(a), while the electrical conductivity

increases with higher doping density, it decreases with the increase of the porosity.

With a doping density of 1020cm−3, when the porosity increases to 36%, the electrical

conductivity is reduced by more than 62% compared to its nonporous counterpart.

This reduction in the electrical conductivity is mainly caused by the reduction of

media for electron transport and the infinite barrier of the pores. The absolute value

of Seebeck coefficient, as shown in Fig. (4.14)(b), decreases with the increase of doing

density. As discussed in Refs. [151,152], the Seebeck coefficient mainly depends on the

distance from the conduction band edge to the Fermi level in the material. Increase

of the doping density narrows this distance, leading to the reduction in the Seebeck

coefficient. When pores are introduced in the media, it becomes more difficult for the

electrons with low energies to transport within the channel. However, this filtering

effect of the nanopore, while increases the absolute value of Seebeck coefficient of

porous silicon, is not as significant as the effect of doping. Fig. (4.14)(c) shows the

effect of porosity and doping on the thermal conductivity. It is shown that the porosity

has a significant effect on the thermal conductivity. When the porosity reaches 36%,
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the thermal conductivity is reduced by 94% compared to the bulk value. Note that,

while the thermal conductivity of bulk Si shows an appreciable decrease with the

increase of doping density, the decrease is much smaller for nanoporous Si. This

implies that, for nanoporous Si, phonon scattering at the pore boundary dominates

other scattering mechanisms. The figure of merit (ZT ) of nanoporous silicon is shown

in Fig. (4.14)(d). The ZT is largely enhanced by the inclusion of nanopores. It is

clear that the nanopores result in a much larger reduction in the phonon thermal

conductivity than the reduction in the electrical conductivity. With doping density

near 1020cm−3 and porosity of 36%, the ZT is improved by 5 times compared with

its bulk counterpart. However, as shown in the figure, the ZT starts to decrease with

further increase of the doping density. This is due to the increase in the electronic

thermal conductivity, ke, which becomes higher with increasing doping density. When

ke reaches to a level comparable to kp, the overall thermal conductivity of the material

increases rapidly with the doping density, leading to a decrease in ZT .

4.3.3 Temperature Effect

The effect of temperature on the thermoelectric properties of nanoporous

silicon is shown in Fig. (4.15). The calculations are performed in the temperature

range of 200K to 600K with a porosity P = 16%. For comparison, thermoelectric

properties with two different doping densities are computed. It is shown that, when

the temperature increases, the electrical conductivity of the material decreases due

to stronger electron scattering at higher temperature. For Seebeck coefficient, as

temperature increases, more electrons with higher energy contributes to the current

flow, leading to an increase in the absolute value of S. For phonon thermal

conductivity, at doping level of 1020cm−3, as temperature increases, the thermal
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Figure 4.14: The effect of doping and porosity on the thermoelectric properties
of nanoporous Si. : (a) electrical conductivity; (b) Seebeck coefficient; (c) phonon
thermal conductivity; (d) figure of merit.

conductivity decreases slightly from 12.7 W/mK to 11.4 W/mK. In this

temperature range, while the phonon-pore boundary scattering still dominates the

overall phonon scattering, the thermal conductivity reduction is mainly due to the

stronger phonon-phonon scattering at higher temperature. Finally, the figure of

merit, ZT , increases as the temperature becomes higher. As shown in Fig. (4.15),

with a doping density of 1020cm−3, the ZT is increased by 7 times when the

temperature changes from 200K to 600K. The variation trend is the same for

different doping densities, only the ZT increases more quickly when the doping

density is higher.
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Figure 4.15: The effect of temperature on the thermoelectric property of nanoporous
Si.

4.3.4 Size Effect

In this section, the effect of pore size on the thermoelectric properties is

investigated. For a given porosity of the material, the size of the pore is proportional

to the size of the unit cell. Based on the calculated results in the previous two

sections, for an optimal figure of merit, we select doping density of 1020cm−3 and

temperature of 600K in the analysis of pore effect on the thermoelectric properties

of nanoporous Si. The simulation results are shown in Fig. (4.16). It is shown that,

for a given porosity, the electrical conductivity increases with the increase of

nanopore size. However, for a given unit cell size, the electrical conductivity

107



decreases quickly with the increase of nanopore size (i.e. the increase of porosity).

Fig. (4.16) shows that, for a given porosity, the absolute value of Seebeck coefficient

decreases as the size of unit cell increases. The observed trend can be explained by

using the carrier concentration [151]

n3D =
M

Leff

∫
Ec

D2D(E)F (E − Ef )dE (4.43)

where n3D is the doping density in the materials, M is the number of subbands

introduced in y direction, Leff is the effective length in y direction, Ec is the

conduction band edge and Ef is the Fermi level. From Eq. (4.43), since the 2D

density of states only depends on the effective mass of the sub-bands, the main

factor leading to the change of the Fermi Dirac distribution lies in the ratio between

M and Leff . When the unit cell size decreases, with the same porosity, the distance

in y direction between two neighboring pores narrows. For instance, when P = 4%,

this distance is 4nm for a unit cell size of 5nm× 5nm while it is 24nm for a unit cell

size of 30nm × 30nm. As discussed in Ref. [151], the number of sub-bands M in y

direction could be reduced to only one when Leff becomes smaller than 10nm. After

M reaches one, further decrease of the distance between two neighboring pores will

increase M/Leff . In order to keep n3D the same, the Fermi Dirac function must

decrease, suggesting a larger gap between the band edge and Fermi level. As a

result, the absolute value of Seebeck coefficient becomes higher while the electrical

conductivity decreases. This characteristic may shed a light on the design and

optimization of nanoporous semiconductor materials. With the same porosity, the

thermal conductivity increases with increasing unit cell size. This result shows that

phonon transport is less influenced by the volume fraction of pores, but more by the

spacing between the pores which determines the phonon mean free path of the
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material. For a given porosity, the distance between the pores increases with the

unit cell size, resulting in a larger phonon mean path, and consequently a larger

thermal conductivity. Finally, combining the above results, a large increase in the

ZT of nanoporous Si compared with its bulk counterpart is obtained when the

nanoporous silicon has a large porosity and small pore size. In the current study, the

highest figure of merit reaches 0.28 with P = 36%.
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Figure 4.16: The effect of unit cell size on the thermoelectric property of nanoporous
Si.
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4.4 Summary

In this chapter, thermoelectric properties of nanoporous Si are numerically

analyzed. A quantum NEGF-Poisson model is used to numerically calculate the

electrical conductivity and Seebeck coefficient of nanoporous Si. Meanwhile, phonon

BTE is solved by using the finite volume method to obtain the phonon thermal

conductivity of the material. In addition, the thermal conductivity contributed from

electrons is considered by using the Wiedemann-Franz law. From the computational

analysis, the effects of doping density, porosity, temperature and pore size on the

thermoelectric performance of nanoporous Si are systematically investigated. The

results show that larger porosity, smaller pore size and higher temperature are all

beneficial for improving ZT . In addition, there exists an optimal doping density for

ZT . The degradation of electrical conductivity of nanoporous Si due to the

inclusion of nanopores is compensated by the large reduction in the phonon thermal

conductivity and increase of absolute value of the Seebeck coefficient, resulting in a

significantly improved ZT . Results show a ZT of 0.28 can be obtained with doping

density of 1020cm−3, T = 600K, P = 36% and pore size of 3nm× 3nm.
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CHAPTER 5

ANALYSIS OF BALLISTIC

TRANSPORT IN NANOSCALE

DEVICES BY USING AN

ACCELERATED FINITE

ELEMENT CONTACT BLOCK

REDUCTION APPROACH

5.1 Introduction

As discussed in Chapter 2, as the size of electronic devices goes down to

nanoscale regime, quantum effects such as quantum confinement and tunneling

become important. Therefore, quantum-based simulation models are required to

obtain a reliable understanding of electronic properties of nanoscale devices such as
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quantum dots [153], nano-MOSFETs [113], electron waveguide structures [154], etc.

Various computational models [42, 44, 47] have been proposed for computational

analysis of such nano-devices. These models can be broadly categorized into two

types. The first solves the Schrödinger equation directly on the device domain with

open boundary conditions to obtain the density matrix. A well-developed model of

this type is the Quantum Transmitting Boundary Method (QTBM) [42, 44], which

has been successfully applied to simulate ballistic transport in various

devices [155, 156]. However, the difficulty to include scattering mechanisms has

barricaded its wide application [44]. The other type is based on Non-equilibrium

Green’s Function (NEGF) [47], within which a self-energy function is introduced to

describe the coupling between the active device region and external carrier

reservoirs. It has been shown that various scattering mechanisms can be

incorporated in NEGF [114, 157]. However, its application in device simulation is

limited by its high computational cost. In the implementation of NEGF model,

repeated inversions of a matrix with dimension equal to the system degrees of

freedom (DOFs) are required to obtain the retarded Green’s function. For systems

with very large DOFs, the computation becomes intractable on desktop computers

and it is necessary to resort to parallel computing [50] which generally requires

significant implementation effort and enormous computational resources. To

alleviate this problem, instead of inverting the involved matrix directly, the

recursive Green’s function method [51] and mode-space Green’s function

method [52] have been developed. They have been used to analyze many nanoscale

systems, such as DG-MOSFETs [51, 52, 158], resonant-tunneling diodes [159],

nanowires [6, 160], carbon nanotubes [18, 161], thermoelectric

nanomaterials [126,128], etc. However, while the former is limited to devices with no

more than two leads, the latter is only applicable when the device domain and
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spatial potential profile are of high symmetry so that the Schrödinger equation is

separable in orthogonal directions. To eliminate these limitations, a Contact Block

Reduction (CBR) method was developed [54,162] within the NEGF framework. The

method can be used to simulate multi-terminal devices with arbitrary spatial

potential profile. By utilizing the Dyson equation, the method obtains the retarded

Green’s function by carrying out a one-time solution of an eigenvalue problem on

the closed device domain and repeated inversions of a small matrix of size equal to

the DOFs on the contact interfaces connecting the device domain to external carrier

reservoirs. By applying the Neumann boundary conditions on the contact interfaces,

only a small percentage of the eigen-pairs is needed to obtain accurate results [54].

The reduction of the number of eigen-pairs reduces the computational cost.

Furthermore, by projecting the involved matrices into lead mode space [162], more

computational cost can be saved. To include the space charge effect, the Poisson

equation is solved self-consistently with the retarded Green’s function. Iterations

between those two models are carried out until the solution satisfies the

self-consistency criterion. Upon convergence, the current flow and electron density

can be obtained straightforwardly.

While the CBR/Poisson model has been adopted to investigate electrical

transport properties of devices such as nano-FinFET [163] and double-gate

MOSFETs [53, 164], the numerical formulation of the model has been restricted to

the Finite Difference method (FDM). This limitation impedes its applicability to

devices with irregular geometry and/or unstructured mesh. In this chapter, we

present a Finite Element formulation for the CBR/Poisson model. The formulation

is referred to as the Finite Element Contact Block Reduction (FECBR) approach.

The FECBR approach enables NEGF based analysis for devices with arbitrary

geometry. Furthermore, in addition to the eigen-pair reduction and lead mode space
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projection, we introduce a third level of model order reduction in the FECBR by

using a component mode synthesis (CMS) technique developed in Chapter 2 to

further enhance the computational efficiency. The FECBR with CMS is referred to

as the accelerated FECBR. In this chapter, the accelerated FECBR is used to

perform ballistic transport analysis of a DG-MOSFET with taper-shaped extensions

and a DG-MOSFET with rough Si/SiO2 interfaces. For both devices, the electrical

transport properties obtained from the accelerated FECBR approach and the

associated computational cost are compared with those obtained from the original

CBR and direct inversion methods. The performance of the accelerated FECBR in

both its accuracy and efficiency is demonstrated.

The rest of the chapter is organized as follows. Section 5.2 presents the theory,

computational formulation and implementation of the FECBR approach and its

model reduction techniques. In Section 5.3, numerical results and performance

comparison for a DG-MOSFET with taper-shaped leads and a DG-MOSFET with

Si/SiO2 interface roughness are presented. Conclusions follow in Section 5.4.

5.2 Method

5.2.1 A review of the CBR method

The CBR method [54, 162] was developed for efficient simulations for ballistic

transport analysis in electronic devices. Instead of directly inverting the matrices

involved in the NEGF model, the Dyson equation is used to obtain the retarded

Green’s function which is the key parameter in calculating the electronic transport

properties of open quantum systems, such as the transmission function, local density

of states, current and electron densities. In the CBR method, the simulation domain
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is first discretized into a grid of nodes (or points). The grid nodes are further divided

into two groups, namely the contact grid nodes and the device grid nodes. The former

contains all the grid nodes on the portion of boundary connecting the device to

the external reservoirs (i.e. the leads). The latter includes all the remaining grid

nodes. The advantage of the CBR is that it only requires numerical inversion of small

matrices with size equal to the number of contact grid nodes in order to obtain the

retarded Green’s function. The retarded Green’s function can be written as [54],

GR = [(E + jγ)I−H0 −Σ]−1 (5.1)

where E is the energy level, j is the imaginary unit, γ is a very small positive number

used to avoid numerical singularity in the calculation, H0 is the Hamiltonian of the

closed (decoupled) system without perturbations from exterior sources, Σ is the self-

energy matrix representing the interactions between the closed device system and

external reservoirs and I is an identity matrix. Assuming the total number of grid

nodes in the system is Nt, the typical computational complexity of inverting the right-

hand-side of Eq. (5.1) is O(N3
t ). As the inversion needs to be computed for each energy

level, it becomes extremely inefficient when Nt becomes large. For this reason, in CBR,

the retarded Green’s function is calculated by using the Dyson equation [54,162],

GR = [I−G0Σ]−1G0 (5.2)

where G0 can be expressed by the eigen-pairs of the closed system as

G0 = [(E + jγ)I−H0]−1 =
nt∑
n=1

|ψn〉〈ψn|
E − En + jγ

(5.3)
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The latter expression in the above equation is the spectral representation of G0, where

ψn is the nth wavefunction, En is the nth energy level and nt is the total number of

eigen-pairs (En, ψn) in the closed system. ψn and En are the solutions of the following

eigenvalue problem,

H0ψ = EMψ (5.4)

In Eq. (5.2), Σ has non-zero values only for the contact grid nodes [54]. It can be

decomposed into four blocks as

Σ =

Σc 0

0 0d

 (5.5)

where the subscripts c, d denote the contact and device grid points in the simulation

domain, respectively. Note that Σc has a dimension of Nc×Nc, where Nc is the total

number of contact grid nodes. Similarly, G0 can be written with four blocks as,

G0 =

G0
c G0

cd

G0
dc G0

d

 (5.6)

Denoting (I−G0Σ) in Eq. (5.2) as A, one can write the matrix in a four-block form

as,

A =

Ac Acd

Adc Ad

 =

I−G0
cΣc 0

−G0
dcΣc I

 (5.7)

The inverse of matrix A can be obtained as

A−1 =

 (I−G0
cΣc)

−1
0

G0
dcΣc(I−G0

cΣc)
−1 I

 (5.8)
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Substituting both Eq. (5.8) and Eq. (5.6) into Eq. (5.2), the retarded Green’s function

GR can be obtained as,

GR = A−1G0 =

 A−1
c G0

c A−1
c G0

cd

G0
dcΣcA

−1
c G0

c + G0
dc G0

dcΣcA
−1
c G0

cd + G0
d

 (5.9)

where A−1
c = (I−G0

cΣc)
−1. Computing the four blocks in Eq. (5.9) only requires an

inversion of Ac. Since the size of Ac is equal to the number of contact grid nodes,

Nc, and Nc � Nt, the computational cost of the inversion reduces from O(N3
t ) to

O(N3
c ). After GR is obtained, the local density of states, transmission function,

electron and current densities can be calculated by following the standard

self-consistent CBR/Poisson procedures described in Refs. [54,162].

5.2.2 Finite Element Contact Block Reduction (FECBR)

approach

To our best knowledge, the CBR/Poisson model has only been formulated for

numerical analysis using the Finite Difference schemes. A major drawback of the

FDM is that it is only suitable for computational domains with simple geometry and

structured grid. To extend the application of CBR into device simulations involving

irregular geometries and/or unstructured mesh, we develop a Finite Element

formulation for the CBR/Poisson model. By following Section 2.2.2, the weak form

of the 2D Schrödinger equation can be obtained as in Eq. (2.7). In the following, we

illustrate the procedures on how to derive G0 and Σc with Eq. (2.7). First, to

obtain G0, the Hamiltonian H0 for the closed system needs to be calculated. This

could be achieved by applying the Neumann boundary condition (∇ψ · −→ni) = 0 on

the contact grids and the Dirichlet boundary condition ψ = 0 on the rest of the
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boundary nodes to Eq. (2.7). Note that the Neumann boundary condition [54, 162]

is the key to guarantee the accuracy of simulations with an incomplete set of

eigen-pairs. In FEM, such boundary conditions can be automatically applied by

dropping the first term in Eq. (2.7). Therefore, Eq. (2.7) for closed system can be

obtained as that in Eq. (2.8). By following the same procedures to approximate the

wavefunctions in the domain as those in Section 2.2.2, Eq. (2.11) is obtained and it

is used to solve for the eigen-pairs in the closed system. By using those eigen-pairs,

G0 in Eq. (5.3) can be obtained, which can be used to obtain GR in Eq. (5.9).

Device
region

Lead 

Figure 5.1: Semi-infinite leads connected with device region.

Next, we calculate the self-energy matrix Σi by applying open boundary conditions

to Eq. (2.7). As shown in Fig. 5.1, at the contact interface between the device region

and the i-th lead, the wavefunctions in the lead and device must satisfy,

ψilead|ηi=0 = ψ|ηi=0 (5.10)

∇ψilead|ηi=0 = ∇ψ|ηi=0 (5.11)

where ψilead is the wavefunction in the i-th lead and ψ|ηi=0 is the wavefunction in the

device evaluated at the contact interface. The leads are assumed to be semi-infinite

and homogeneous. Consequently, the wavefunction ψilead can be expressed as a linear

combination of the products of 1D plane waves in the ηi-direction and localized lead
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modes in the ξi-direction [165], i.e.,

ψilead (ηi, ξi) =
ms∑
m=1

bimχ
i
m(ξi)exp(jk

i
mηi) (5.12)

where ms is the total number of lead modes and kim is the m-th mode wavevector in

the i-th lead which can be calculated from kim =
√

2m∗ηi/~2(E − Ei
m). Ei

m and χim can

be obtained by solving a 1D Schrödinger equation with closed boundary conditions,

− ~2

2m∗ξi

∂2χi(ξi)

∂ξ2
i

+ U i(ξi)χ
i(ξi) = Eiχi(ξi) (5.13)

where U i is the potential on the contact boundary Γi obtained from the solution of

the 2D Poisson equation over the device domain. Multiplying both sides of Eq. (5.12)

with χin, we obtain,

〈χin(ξi)|ψilead(ηi, ξi)〉 = binexp(jk
i
nηi) (5.14)

Note that 〈χim(ξi)|χin(ξi)〉 = δm,n, where δm,n is the Kronecker Delta function.

Therefore, by using Eq. (5.12) and the above equation, the derivative of ψilead in the

normal direction can be obtained as,

(∇ψilead · −→ni)|ηi=0 =
ms∑
m=1

jkimχ
i
m(ξi)〈χim(ξi)|ψiout(0, ξi)〉 (5.15)

By using the continuity conditions in Eq. (5.10) and Eq. (5.11) along with the above

equation, the first term in Eq. (2.7) for the ith lead can be transformed to be,

B =
∑
m

−~2jkim
2m∗ηi

∫
ξi

δψi(ξi)χ
i
m(ξi)dξi

∫
ξi

χim(ξi)ψ
i(ξi)dξi (5.16)
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By using the 1D finite element approximation of the wavefunction and test function

along the contact interface, Eq. (5.16) can be written in discretized form as,

B =

(
δψi1 δψi2 · · · δψinξ

)
Σi



ψi1

ψi2
...

ψinξ


(5.17)

where ψij is the wavefunction at the j-th node on the contact interface connecting the

i-th lead, nξ is the number of nodes on that contact interface, and Σi is the self-energy

matrix obtained from the finite element discretization which can be written as,

Σi = (SQ)Λ(SQ)T (5.18)

where S is assembled from the following element matrices of 1D element along ξi,

Se =

∫
ξei

(N1D)TN1Ddξei (5.19)

and, 

χi1(ξ1) χi2(ξ1) · · · χim(ξ1) · · · χims(ξ1)

χi1(ξ2) χi2(ξ2) · · · χim(ξ2) · · · χims(ξ2)

· · · · · · · · · · · · · · · · · ·

χi1(ξms) χi2(ξms) · · · χim(ξms) · · · χims(ξms)


(5.20)

Λ = − ~2

2m∗ηi
diag(jki1, jki2, . . . , jkim, . . . , jkims) (5.21)

The global self-energy matrix Σc is a diagonal assembly of all the Σi. Once G0 and

Σc are computed, the retarded Green’s function in Eq. (5.9) can be calculated
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straightforwardly. To account for the space charge effect, the Poisson equation, i.e.,

Eq. (3.24) is solved by FEM self-consistently with CBR in this chapter. The

Dirichlet boundary condition is applied on the boundary along gates and the

Neumann boundary condition is applied on the rest of the boundary in the domain.

5.2.3 FECBR-modal approach: lead mode space projection

As discussed in Ref. [54], by projecting the involved matrices in real space into

lead mode space which is formed by the lead modes, the computational cost can be

further reduced by neglecting the decaying lead modes. In the lead mode space, the

self-energy matrix is diagonal [54,162],

(Σi)LM = − ~2

2m∗ηi
diag(jki1, jki2, . . . , jkim, . . . , jkims) (5.22)

It’s proved [166] that the purely real elements in (Σi)LM have negligible effect on

the calculation of device electrical transport parameters. Those real elements are

corresponding to decaying modes from the leads with Ei
m > E. The lead modes

having Ei
m < E are the propagating modes. The n-th wavefunction in the 2D closed

system along the contact interface ψn,c can be transformed into the lead mode space

as,

ωn =

(
ωi=1
n,m=1 . . . ωi=1

n,m=µ1
. . . ωi=λn,m=1 . . . ωi=λn,m=µλ

)T
(5.23)

where µi is number of propagating modes kept in the ith lead and,

ωin,m = 〈ψin,c|χim〉 =

∫
ξi

ψin,c(ξi)χ
i
m(ξi)dξi (5.24)
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To calculate the current, the block G0
c in the lead mode space can be transformed as,

(G0
c)LM =

α∑
n=1

ωnω
T
n

E − En + jγ
(5.25)

where α is the number of kept eigen-pairs in the 2D closed system. It will be shown in

later sections that only a small percentage of all the eigen-pairs needs to be calculated

from Eq. (2.11). In the calculation of the electron density, the left column of blocks in

G0 needs to be transformed into a mixed-space (real/lead mode space) representation

as [167],

(G0
tc)R+LM =

α∑
n=1

ψnω
T
n

E − En + jγ
= ΨΦT (5.26)

where Ψ and Φ are

Ψ = (ψ1, ψ2, . . . , ψn, . . . , ψα) (5.27)

Φ =
1

E − En + jγ
(ω1, ω2, . . . , ωn, . . . , ωα) (5.28)

By using (Σi)LM , (G0
c)LM and (G0

tc)R+LM , the current and electron densities can be

obtained [162,166]. Since only propagating modes are kept from the whole set of lead

modes and typically the number of propagating modes µi is small compared to ms,

the size of involved matrices and associated computation cost is further reduced. Note

that, if all the lead modes were kept in the calculation, the results would be identical

to those obtained in real space. More details of the lead mode space projection can

be found in Ref. [167].
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5.2.4 Accelerated FECBR using component mode synthesis

(CMS)

By using the lead mode space and keeping a small set of eigen-pairs of the 2D

closed system, the computational cost can be reduced significantly in the calculation

of the retarded NEGF [54, 162]. However, when the system’s degrees of freedom

(DOFs) continue to increase, the computational cost of solving the generalized

eigenvalue problem in Eq. (5.4) becomes dominant. In Section 2.3, we have

introduced component mode synthesis (CMS) approaches for efficient quantum

mechanical electrostatic analysis of closed systems. In this chapter, the CMS

approaches are employed to accelerate the calculation of Eq. (5.4) in the FECBR

approach. To obtain the generalized eigenvalue problem, in FECBR approach, the

Neumann boundary condition is applied on the contact grids while the Dirichlet

boundary condition is applied on the rest of the boundary nodes. Note that the

Neumann boundary condition [54, 162] is the key to guarantee the accuracy of

simulations with an incomplete set of eigen-pairs in FECBR. As discussed in Section

2.3, to implement CMS approaches, there are four basic steps [168]: (1) the division

of the domain Ω into a set of components, (2) the definition of component basis

vectors, (3) the coupling of the components to form a reduced-order global system,

and (4) the recovery of the global wave functions. Based on different ways to

compose the basis vectors, there are two commonly used CMS approaches, i.e., the

fixed-interface CMS and the free-interface CMS. More implementation details can

be found in Section 2.3, they are not repeated here. By using the CMS approaches,

the required eigen-pairs to obtain G0 in Eq. (5.3) can be calculated efficiently.
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5.3 Results and Discussions

Two examples are shown in this section to demonstrate the performance of the

accelerated FECBR approach. In the first example, analysis of ballistic transport in

a DG-MOSFET with taper-shaped lead extensions is presented. The second

example investigates the effect of Si/SiO2 interface roughness on the electrical

transport properties of a DG-MOSFET with rectangular lead extensions. Note that

both cases involve irregular geometries which can only be handled properly using

unstructured meshes. For both examples, electrical transport properties including

the electron density, potential profile and current density are computed. The

accuracy and efficiency of the FECBR, FECBR-modal, accelerated FECBR and the

direct inversion approaches are compared. In both examples, the material in the

channel and leads is Si. The material parameters used in the calculations are as

follows: the permittivity of Si is taken as 11.7ε0, where ε0 is the permittivity of free

space. The electron effective masses are ml = 0.92m0 and mt = 0.19m0, where ml,

mt and m0 are the longitudinal, transverse and free electron effective mass,

respectively. The effective mass and permittivity of SiO2 are 0.4m0 and 3.9ε0,

respectively. For both devices, the leads are assumed n-doped and the channel is

considered as intrinsic. Therefore, the three pairs of conduction valleys are

considered and hole transport is not included. The doping density in the source and

drain is set to be 1020 cm−3. Source and drain reservoirs are assumed to be in

equilibrium condition. The Fermi levels for source and drain are taken as Efs = 0

and Efd = −Vd, respectively. The x, y and z directions of the simulation domain are

assumed to be aligned with crystal directions 〈100〉. The electron transport in [100]

direction is considered and assumed to be coherent. When solving the Poisson

equation, the gate metal work function is 4.55eV , the Neumann boundary condition
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is applied on the lead boundaries to maintain charge neutrality in the

extensions [52].

5.3.1 Example 1: taper-shaped DG-MOSFET

Figure 5.2 shows a DG-MOSFET with taper-shaped lead extensions. The taper-

shaped DG-MOSFET was proposed in Ref. [44]. The denotations are as follows: Lc

and Ld are the lengths of leads and channel, respectively; Hc and Hd is the widths

of leads and channel, respectively; Gt and Gb are the top and bottom gates for the

channel, respectively. Note that there is no overlap between gates and lead extensions.

The two lead extensions are treated as source and drain reservoirs, respectively. In

our simulations, the parameters are taken as: Lc = Ld = 5 nm, Hc = 5 nm and Hd =

3 nm. The SiO2 thickness tox is set to be 1 nm. Note that no wavefunction penetration

into the dioxide region is considered in this case. To investigate the computational

cost as a function of system DOFs, the domain is discretized using different meshes.

As an example, the calculated electron density and potential profile of the device are

shown in Fig. 5.3 and Fig. 5.4, respectively. The results are obtained using a mesh

with 1616 nodes, Vds = 0.5 V and Vgs = 0.5 V. In addition, the IV curves of the

device are also obtained using the direction inversion, FECBR and FECBR-modal

approaches, the comparison of the results is shown in Figs. 5.5 and 5.6. It is shown

that the FECBR and the direct inversion method give identical results while the

results from FECBR-modal neglecting the decaying modes from the leads are quite

accurate.
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Figure 5.2: DG-MOSFET with taper-shaped lead extensions.

Figure 5.3: Electron density distribution in the DG-MOSFET shown in Fig. 5.2.

Figure 5.4: Potential profile in the DG-MOSFET shown in Fig. 5.2.
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Figure 5.5: IV curve with varying drain voltage.
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Figure 5.6: IV curve with varying gate voltage.

As indicated previously, one only needs to keep a small percentage of the closed-

system eigen-pairs in the retarded Green’s function calculation to achieve a reasonable

accuracy of the final results, which leads to a significant reduction in computational

cost. Figures 5.7 and 5.8 show the computed electron density and potential profiles

along the x-direction at y = 2 nm, respectively. The results are obtained by using the

FECBR-modal approach with Vds = 0.5 V, Vgs = 0.5 V and a mesh with 5332 nodes.
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It is shown that the results are still quite accurate when as few as 3% of the eigen-

pairs corresponding to the lowest energies are computed from Eq. (2.11). Note that

the FECBR-modal approach using 3% of the closed-system eigen-pairs is denoted as

FECBR-modal (3%). The result shows that the current densities obtained by using

100% and 3% eigenstates are 94.8 A/m and 95.27 A/m, respectively. The error is

about 0.5%. However, by reducing the number of eigen-pairs in the simulation, the

computation cost is reduced significantly.

Table 5.1 shows the computational cost comparison of the methods. It is shown

that the FECBR approach largely reduces the computational cost by avoiding the

direct inversion of the right hand side of Eq. (5.1). The FECBR-modal further speeds

up the calculation by neglecting the decaying modes in the leads. The computational

cost is reduced further by computing only a small portion of the closed-system eigen-

pairs corresponding to the lowest energies. For example, the computational cost of

the direct inversion is about 48, 58 and 1495 times of that required by the FECBR,

FECBR-modal and FECBR-modal (3%) approaches when the system DOFs is 5332.

In addition, as the number of nodes (i.e. DOFs) increases, the CPU time increase rates

of the FECBR methods are lower that that of the direct inversion method. Therefore,

the computational cost saved by the FECBR and FECBR-modal approaches becomes

more significant for larger DOFs. As shown in Table 5.1, when the DOFs increase to

10251, while the direct inversion approach becomes intractable on a desktop PC, the

FECBR-modal (3%) can still solve the problems fairly efficiently.
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Table 5.1: Comparison of computational cost per Green’s function/Poisson iteration.

PPPPPPPPPPPPPPP
Methods

DOFs
1616 2556 3916 4496 5332 10251

Direct inversion 603.48s 2108.46s 7069.58s 9917.86s 19599.54s n/a

FECBR 40.98s 78.45s 179.71s 240.13s 410.02s 2387.77s

FECBR-modal 18.28s 57.04s 143.11s 198.87s 340.47s 1728.97s

FECBR-modal (3%) 1.58s 2.8s 5.75s 7.5s 13.11s 53.8s
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Figure 5.7: Electron density distribution along the x-direction at y = 2 nm.
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Figure 5.8: Potential profile along the x-direction at y = 2 nm.
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Figure 5.9: Potential profile along the x-direction at y = 2 nm.
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Figure 5.10: Variation of error in electron density with number of retained component
modes.
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Figure 5.11: Computation cost for eigen-pairs calculation.
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Figure 5.12: Total computation cost per Green’s function/Poisson iteration.

When the system DOFs continue to increase, it is observed that the CPU time

consumed by solving for the closed-system eigen-pairs (i.e. the solution of Eq.

(2.11)) starts to dominate the total computational cost. For example, when DOFs =

5.8201 × 104, the total computational cost for a single Green’s function/Poisson

iteration is 5777.7s in which 5368.2s is used for calculating the required eigen-pairs

from Eq. (2.11). In such cases, the FECBR-modal approach is accelerated by
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incorporating the CMS methods for calculating the required eigen-pairs. In this

example, the entire domain is decomposed into 16 components and 3% of the global

eigen-pairs are retained to obtain the retarded Green’s function. The accuracy of

the accelerated FECBR-modal is investigated by using different number of

component modes and the results are shown in Fig. 5.9 and Fig. 5.10. The error

shown in Fig. 5.10 is evaluated by Eq. (2.48). Figure 5.9 shows the potential profile

along the x-direction at y = 2 nm with 20 component modes retained in each

component. Figure 5.10 shows that, as the number of retained component modes

increases, the error of both CMS methods reduces. However, the accelerated

FECBR with the free interface CMS has a better convergence property than that of

the fixed interface CMS. The explanation can be found in Ref. [168]. Next, the

computational cost of the original and accelerated FECBR-modal (3%) are

compared. Figure 5.11 shows the computational cost comparison for calculating the

required eigen-pairs. Figure 5.12 shows the total time consumed by each Green’s

function/Poisson iteration. It is evident that the CMS acceleration techniques lead

to a large reduction of the computational cost. Specifically, as shown in the figures,

with the number of nodes = 5.8201 × 104, the CPU time with CMS acceleration is

about 1/50 of that used by the standard eigensolver for computing the eigen-pairs.

If including all the calculations in the global iteration, the CPU time ratio is less

than 1/10. This result also implies that, by using the CMS acceleration, the

computational cost of computing the eigen-pairs is still a small portion of the total

cost. The results also show that the fixed and free interface CMS acceleration

methods offer similar efficiency.
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5.3.2 Example 2: DG-MOSFETs with Si/SiO2 interface

roughness

Gt

Gb

Ld

Hc
Lc

tox

source channel drain
ty  Δ(x)

x

y

Figure 5.13: DG-MOSFET with Si/SiO2 interface roughness.

The effect of interface roughness on the performance of planar MOSFETs has been

investigated using different approaches including Monte Carlo [169] and mode-space

NEGF [170] methods. It is shown that the interface roughness may degrade the

electron mobility in the channel and increase gate threshold voltage [169, 170]. In

this section, we show that by using the accelerated FECBR approach, the effect of

geometrical Si/SiO2 interface roughness on the electrical transport properties of

DG-MOSFETs can be captured properly and efficiently.

The morphology of a rough interface is obtained by following the steps described

in Ref. [171, 172]. The interface roughness is assumed to be due to the fluctuation of

the SiO2 thickness from its ideal position ty as shown in Fig. 5.13. For a given position

x, the Si/SiO2 interface position can be denoted by

Ty = ty + ∆(r) (5.29)

where ty is the ideal Si dioxide position without roughness and ∆(r) is the thickness

deviations from its ideal position. ∆(r) can be modeled by the following exponential
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autovariance function [171,172],

〈∆(r)∆(r − r′)〉 = ∆2
me
√

2x/Lm (5.30)

where ∆m is the rms fluctuation, Lm is the correlation length, r is the distance

between two sampling points along the interface. Based on the autovariance function,

the interface position function Ty can be obtained. More calculation details can be

found in Refs. [171,172]. The generated rough Si/SiO2 interface is then incorporated

into the geometry of the DG-MOSFET. In this example, the parameters shown in

Fig. 5.13 are set to be: Lc = 5 nm, Ld = 10 nm, Hc = 3 nm and tox = 2 nm. To

better capture the effect of interface roughness, wavefunction penetration into the

SiO2 region is included in the calculation. Three different interface roughness cases

are simulated and the parameters are taken from Ref. [172]: roughness I with ∆m =

0.14 nm, roughness II with ∆m = 0.2 nm and roughness III with ∆m = 0.28 nm. Lm

is taken as 0.7 nm. As an example, Fig. 5.14 shows a meshed computational domain

for interface roughness I. The domain is decomposed into 14 components as shown

by the colored regions.

Figure 5.14: Computational domain mesh and component decomposition.

The effect of interface roughness on the current flow in the device is shown in Figs. 5.15

and 5.16. The interface roughness degrades the current density in the device and

the degradation becomes more severe as ∆m increases. This is due to the increase of
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threshold voltage and decrease of electron mobility caused by the interface roughness.

Similar trend has been observed in another analysis of interface roughness effect on

electrical transport in Si nanowires [147].

Next, the performance of the FECBR-modal approaches is studied. Note that

all the computational cost results shown in this section is obtained by using interface

roughness I. The accuracy of the computed electron density and potential profile

along the x-direction at y = 3.5 nm using the unaccelerated FECBR-modal approach

with different percentages of kept eigen-pairs is shown in Fig. 5.17 and Fig. 5.18. The

results are obtained by using 5164 nodes, Vds = 0.1 V and Vgs = 0.65 V. Similar to

Example 1, it is shown that keeping a small percentage of closed-system eigen-pairs

is sufficient to achieve a good accuracy in the results. Moreover, with 3% kept eigen-

pairs, the CPU time consumed by FECBR-modal is 12.13 s which is 1/1570 of that

consumed by the direct inversion method (19046 s).

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
600

700

800

900

1000

1100

1200

1300

1400

1500

V
ds

 (V)

C
u

rr
e

n
t 

d
e

n
s
it
y
 (

A
/m

)

 

 

Smooth

Roughness I

Roughness II

Roughness III

Figure 5.15: Current density as a function of Vds.
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Figure 5.16: Current density as a functions of Vgs.
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Figure 5.17: Electron density along the x-direction at y = 3.5 nm.
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Figure 5.18: Potential profile along the x-direction at y = 3.5 nm.

Finally, the performance of accelerated FECBR-modal is examined by using a

fine mesh with a large number of nodes. The domain is decomposed into 14

components as shown in Fig. 5.14 and 3% of the global eigen-pairs are retained in

the calculation of the retarded Green’s function. As shown in Fig. 5.19 and

Fig. 5.20, the accelerated FECBR-modal (3%) provides accurate results compared

to the original FECBR-modal approach. The potential profile in Fig. 5.19 is along

the x-direction at y = 3.5 nm. Once the accuracy is ensured, the computational cost

of the unaccelerated and accelerated FECBR-modal approaches are compared for

different number of nodes (DOFs). Figure 5.21 shows the computational cost used

to solve for the required eigen-pairs in the simulations. Figure 5.22 shows the total

CPU time consumed for a single retarded Green’s function/Poisson iteration. The

computational cost reduction ratio of the accelerated FECBR-modal observed in

this case is similar to that shown in Example 1. With a mesh of 53144 nodes, the

accelerated FECBR-modal reduces the CPU time of computing the required

eigen-pairs by 98% and the total computational cost per iteration by 90%.
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Figure 5.19: Potential profile in the x-direction at y = 3.5 nm.
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Figure 5.20: Variation of error in electron density with number of kept component
modes.
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Figure 5.21: Computation cost for eigen-pairs calculation.
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Figure 5.22: Total computation cost per Green’s function/Poisson iteration.

5.4 Summary

In this chapter, an accelerated Finite Element Contact Block Reduction

(FECBR) approach is developed for computational analysis of ballistic transport in

electronic devices. The FECBR approach enables the simulation of electronic

devices with irregular geometry using unstructured meshes. The enhanced
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computational efficiency of the accelerated FECBR is achieved through three levels

of model reduction and acceleration: (1) neglecting the decaying modes in the lead

mode space; (2) neglecting high energy eigen-pairs in the closed-system; and (3)

employing component mode synthesis techniques in solving for the closed-system

eigen-pairs. By using the accelerated FECBR approach, the electrical transport

properties of a DG-MOSFET with taper-shaped lead extensions are computed. In

addition, the effect of Si/SiO2 interface roughness on the electrical transport

properties of a DG-MOSFET is investigated. The performance of the accelerated

FECBR approach is studied for both cases. Our results show that the accelerated

FECBR approach provides accurate results with a computational cost orders of

magnitude less than that of the direct inversion method. It is demonstrated that the

accelerated FECBR method is suitable for computational analysis of nanoscale

electronic devices with irregular geometry and very large degrees of freedom.
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CHAPTER 6

CONCLUSIONS

In this thesis, the electrostatic and electrical transport analysis in

nanomaterials and devices is presented, the performance of currently available

models are improved by new proposed algorithms. New numerical models are

developed to simulate newly emerged physics in materials with quantum effects,

such as the Si/Si1−xGex nanocomposite thin films with mechanical strains and

thermoelectric performance of nanoporous Si. Moreover, noval models with better

computational performance are developed to investigate device physics in modern

nanoscale semiconductor devices, such as DG-MOSFETs, nanowires, FinFETs, etc.

To speed up the electrostatic analysis in contemporary nanoscale structures

and devices with arbitrary geometries, two component mode synthesis (CMS)

approaches, namely, the fixed interface CMS approach and the free interface CMS

approach, are presented and compared for an efficient self-consistent solution of 2D

Schrödinger-Poisson equations. Numerical calculations show that both CMS

approaches can largely reduce the computational cost. The free interface CMS

approach can provide significantly more accurate results than the fixed interface

CMS approach with the same number of retained wave functions in each component.
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However, the fixed interface CMS approach is more efficient than the free interface

CMS approach when large degrees of freedom are included in the simulation.

When an external voltage is applied to a nanoscale system, the charge carriers

start to transport due to the non-equilibrium state caused by the external

perturbations. By developing a numerical electrical transport model based on

NEGF, the effect of various externally applied strains on the electrical conductivity

of Si/Si1−xGex nanocomposite thin films is studied. A degenerate two-band k · p

theory is utilized to calculate the variation of the electronic band structure in the

semiconductor nanocomposite thin films as a function of externally applied strains.

The strain-dependent electrical conductivity of the material is computed by using a

two dimensional NEGF-Poisson model. Numerical results demonstrate that the

external strains have a significant influence on the electrical conductivity of the

nanocomposite thin films. We show that the electrical conductivity variation can be

attributed to combined effects of strain-induced splitting of the conduction band

edges and change of band offset, electron quantum confinement, and size of the

inclusion material in the thin films.

The non-equilibrium state of a system can be also caused by a temperature

difference, by making use of the Seebeck effect, energy conversion between thermal

domain and electrical domain can be realized. A numerical model is developed to

study the thermoelectric properties of nanoporous silicon. The computational

approach combines NEGF-Poisson for electrical transport analysis, a phonon BTE

for phonon thermal transport analysis and the Wiedemann-Franz law for calculating

the electronic thermal conductivity. The effects of doping density, porosity,

temperature and nanopore size on thermoelectric properties of nanoporous silicon

are investigated. It is confirmed that nanoporous silicon has significantly higher

thermoelectric energy conversion efficiency than its nonporous counterpart.
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Specifically, this chapter shows that, with a n-type doping density of 1020cm−3, a

porosity of 36% and nanopore size of 3nm × 3nm, the figure of merit ZT can reach

0.28 at 600K. The results also show that the degradation of electrical conductivity

of nanoporous Si due to the inclusion of nanopores is compensated by the large

reduction in the phonon thermal conductivity and increase of absolute value of the

Seebeck coefficient, resulting in a significantly improved ZT .

As the size of the problem increases, the computation becomes intractable on

a single PC with the conventional models for electrical transport analysis, therefore,

an accelerated FECBR method coupled with Poisson equation self-consistently is

developed to analyze the ballistic transport in nanoscale electronic devices. The

results show that, when very large DOFs is included, the efficiency of CBR is largely

degraded due to the computational cost consumed by solving for the required

eigen-pairs, nevertheless, the accelerated FECBR model can save computational

cost significantly. By analyzing ballistic transport analysis in taper-shaped

DG-MOSFETs and the effect of interface roughness on the electrical transport

properties of DG-MOSFETs, both efficiency and accuracy of the accelerated

FECBR are demonstrated. As a result, the accelerated FECBR model could be

considered as an efficient algorithm to analyze and simulate ballistic transport in

nanoscale devices with arbitrary geometry and large number of DOFs.
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