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ABSTRACT 

 

 

Gray mold caused by the fungus Botrytis cinerea is the economically most 

important pre- and postharvest disease of blackberry. As part of a South Carolina fungicide 

resistance monitoring program, blackberry fruit were collected to survey for pathogenic 

fungi. Phylogenetic as well as morphological analysis indicated a new species, described 

as Botrytis caroliniana. A rapid method using polymerase chain reaction was developed to 

differentiate B. cinerea and B. caroliniana. A distribution and prevalence study indicated 

these two species co-existed in four out of six locations investigated. The control of gray 

mold in commercial fields largely relies on fungicide application. Therefore, survey was 

conducted to determine the occurrence and prevalence of fungicide resistance. The 

fungicide resistance profile was described in 198 B. cinerea isolates from blackberry. Of 

these isolates, 72% were resistant to thiophanate-methyl, 59% were resistant to 

pyraclostrobin, 56% were resistant to boscalid, 11% were resistant to fenhexamid, 10% 

were resistant to cyprodinil, 8.6% were resistant to iprodione, and 1% were resistant to 

fludioxonil. A statistical model revealed that multifungicide resistance patterns did not 

evolve randomly in populations. Resistance to thiopanate-methyl, pyraclostrobin, boscalid, 

and fenhexamid was based on target gene mutations, including E198A and E198V in β-

tubulin, G143A in cytochrome b, H272Y and H272R in SdhB, and F412I in Erg27, 

respectively. In addition, a new genotype associated with fenhexamid resistance was found 

in one strain (i.e., Y408H and deletion of P298). Two levels of resistance, low resistance 
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(LR) and moderate resistance (MR), to fludioxonil were found in three field isolates, and 

MR was caused by a previously described mutation (R632I) in transcription factor Mrr1. 

The LR and MR isolates were able to cause lesions and sporulated on detached fruit. The 

results obtained in this study contribute to our understanding of fungal biology and 

fungicide resistance development in gray mold fungi and are useful for improving 

resistance management practices. 
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CHAPTER ONE 

  

A REVIEW OF BOTRYTIS CINEREA CAUSING GRAY MOLD ON 

BLACKBERRIES 

 

Botrytis cinerea - The Pathogen of Gray Mold Disease 

 

 The fungus Botrytis cinerea Pers. Fr. is the causal agent of gray mold disease on 

over 200 plant species, including lettuce, cucumber, strawberries and blackberries (127). It 

is an ascomycete which belongs to the subphylum Pezizomycotina, class Leotiomycetes, 

order Helotiales, and family Sclerotiniaceae (8). Gray mold is considered the second most 

economically important fungal plant pathogen worldwide, the most important being 

Magnaporthe grisea (20). 

Etymology and taxonomy. The name Botrytis cinerea means “bunch of grape-like 

berries” and “gray color ashes”, which refers to the conidiophore and gray color of 

sporulation of this fungus. The genus Botrytis was first named by Pier Antonio Micheli in 

1729, who grouped it into the "Nova Plantarum Genera", and was later revised by 

Hennebert (61) and Botrytis cinerea was first described by Persoon (53). The teleomorph 

is named Botryotinia fuckeliana (de Bary) Whetz. also known as Botryotinia cinerea (126). 

However, under the 2013 International Code of Nomenclature the accepted name is 

Botrytis cinerea.  

 The genus Botrytis currently comprises about 25 to 30 species, all of which are 

considered to be necrotrophic plant pathogens. Since the report of a sequenced-based 
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phylogeny of 22 recognized species in 2005 (107), several new species have been reported: 

B. pseudocinerea (121), B. caroliniana (this manuscript) (82), B. fabiopsis (137), B. 

sinoallii (138). There is one hybrid, polyploid species, which arose from hybridization 

between B. aclada and B. byssoidea (107). The current classification is largely based on 

morphological characters and, to a minor extent, on physiology and host range (107). 

Botrytis species were grouped into two distinct phylogenetic clades. The major clade (in 

terms of number of species), which can be divided into five subclades, contains mainly 

species from monocot hosts. The other clade contains five species, including B. cinerea, 

that only infect dicot hosts (107, 121). 

Biology, Host Range and Distribution. It has been long established that B. cinerea 

is a multinucleate fungus in both hyphal cells and conidia, with numbers for conidia usually 

in the range 3 to 6 (52, 84). However, the microconidia, which function primarily as male 

gametes in sexual crosses, are uninucleate (84). Microconidia can be found in ageing 

cultures of the fungus or those which are contaminated by other organisms, and in 

association with sclerotia (63). Microconidia develop from germ tubes produced by 

maroconidia, more mature hyphae, inside empty hyphal cells, and from appressoria and 

sclerotia (65). Although their sole function is believed to be one of spematization, they may 

also help the fungus to survive adverse conditions (63). It`s been reported that B. cinerea 

is haploid and mostly heterothallic, carrying either the mating type allele MAT1-1 or 

MAT1-2 (9, 29, 30). The apothecia of B. cinerea can be readily obtained in the laboratory 

following protocols refined by Faretra and Antonacci (28). Observations of apothecia in 
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nature, however, are extremely rare (8). One was reported from grapevine in Switzerland, 

and a second from a peach mummy in New Zealand (8), which suggests that sexual 

reproduction in the field is not common.  

Botrytis species have a broad host range which is more than 200 species and able 

to infect many different plant species and tissues under a wide range of environmental 

conditions (20). These host plants include nursery plants, ornamentals, and crops, many of 

which are economically important such as beans, lettuce, cucumber, cabbage, and small 

fruits like grapes, blueberries, blackberries, and strawberries (107). 

Botrytis may have originated from the northern hemisphere, since the host range 

primarily includes plants in the northern hemisphere. It has been suggested that most of the 

distribution of Botrytis species was through human activity (8). Now B. cinerea can be 

found in almost every continent of the world (127). 

Diversity. Botrytis cinerea has a high level of diversity in terms of morphology and 

genetics. Different strains of B. cinerea usually expresses itself in various mycelial colors, 

sporulation capacity, types of aerial mycelia, and number/size of sclerotia (89). A 

population study based on strains collected from grapes suggested that isolates collected 

from the same plant always had different haplotypes and up to five different haplotypes 

were found in spores isolated from a single berry (47). This extensive genotypic diversity 

indicates limited clonal propagation and a significant role for recombination. However, this 

is contradictory to the finding that sexual reproduction of B. cinerea is rare in the field. 

This might indicates the high levels of genotypic diversity is not caused by sexual 
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reproduction. It might be caused by already diversified B. cinerea spreading through the 

population, or, caused by the transposable elements movement which might play a 

significant role in genotypic diversification (92).  

 

 

Gray Mold of Blackberries 

 Blackberry is an important fruit crop in the United States and worldwide (110). 

The production of blackberry is often threatened by diseases and insect pests. Gray mold 

caused by Botrytis spp. is probably the most important pre- and postharvest disease of 

blackberry. The genus Botrytis Pers. was originally erected by Micheli in 1729 and later 

validated in 1801 by Persoon (65). The genus Botrytis has at times included up to 380 

species according to the mycobank records (http://www.mycobank.org/MycoTaxo.aspx). 

But presently includes just over 25 species (107, 137, 138). Most species of Botrytis are 

considered specialists possessing a narrow host range (87), while Botrytis cinerea Pers.:Fr. 

(teleomorph: Botryotinia fuckeliana Whetzel) has a much wider host range recorded by the 

United States Department of Agriculture (USDA) (25).  

Knowledge of what species is causing disease is critical for disease control. 

Different species may have different infection requirements, host tissue preference, and 

fungicide sensitivity. To our knowledge only two Botrytis species, B. patula and B. cinerea, 

have been described to cause gray mold of blackberry. While B. cinerea is ubiquitous and 

commonly found on blackberry, few reports of B. patula are in the records of the USDA 
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(United States Department of Agriculture) and this species is now considered a synonym 

of Olpitrichum patulum (Sacc. & Berl.) Hol.-Jech. (62). Raspberry plants comprised of 

multiple other Rubus species have been described by USDA to be attacked by Botrytis 

vulgaris (Pers.) Fr., which is the synonym of Botrytis cinerea (42). 

Symptoms and Signs. On blackberry, the pathogen may cause soft rots of all aerial 

plant parts. During early growing season rotting tissue, such as freeze-damaged flowers or 

fruits, produce abundant gray conidiophores and conidia (127), which are dispersed by 

wind and rain and can cause secondary infections. The young blossoms are usually very 

susceptible to infection. One or several blossoms in a cluster may show blasting, in 

browning and drying, which may extend down the pedicel. Fruit infections usually appear 

as soft, light brown, and rapidly enlarging areas on the fruit. Then the berry usually dries 

up and “mummifies”, also covered with a gray, dusty powder, which gives the disease its 

name “gray mold.” 

Survival and Disease Cycle. Botrytis cinerea overwinters and survives in the form 

of sclerotia, chlamydospores, conidia or mycelium in dead plant tissues mummified berries, 

mulch, and weeds (Fig 1.1)(8). Sclerotia are considered to be the most important structures 

involved in the survival of Botrytis species, because they may withstand adverse 

environmental conditions, and produce apothecia after sexual recombination (17). 

Chlamydospores of B. cinerea are hyaline cells of extremely variable form and size (115). 

They are generally found in ageing cultures and commonly occur in the stromatic sectors 

of cultures of the fungus which are contaminated by other organisms, and in association 
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with sclerotia. Conidia of B. cinerea are generally considered as short-lived propagules in 

the field and their survival will largely be determined by temperature extremes, moisture 

availability, microbial activity and sunlight exposure (8). However, Salinas et al. (101) 

reported that conidia stored dry were able to survive at room temperature for up to 14 

months, germinated in vitro, and were pathogenic to flowers. The survival of mycelium of 

Botrytis species under natural conditions is poorly understood. It is often difficult in 

practice to determine whether survival is based on mycelium, microsclerotia, or 

chlamydospore structures. Some evidence suggests that the mycelium of certain Botrytis 

species can survive in bulbs, seeds and other vegetative plant parts (17). 

The disease cycle starts with sporulation on sclerotia or plant debris. Conidia are 

considered to be the primary source of inoculum for prebloom infection of flowers and 

leaves. The conidia are spread by both wind and rain to plant tissue surfaces. Germination 

can occur when temperatures are between 34-86° Fahrenheit (or 1-30° Celsius), and liquid 

water is present or the relative humidity is at least 90% (96). Fruit infections are initiated 

near late bloom. Hyphae from germinated spores directly penetrate through susceptible 

tissues such as senescing blossom parts (stigma, pistil, stamen, etc…), cap scars, and parts 

of old blossoms and facilitate infection. Later in the season, hyphae will penetrate directly 

through the epidermis of healthy berries. After infecting the berry, Botrytis may stay 

dormant in the form of mycelia in the plant tissue until the fruit sugar content increases and 

the acid level decreases enough to support the pathogens growth (27).  
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Non-Chemical Disease Management. The control of gray mold on blackberry 

largely relies on the integration of a variety of cultural management practices which include 

increased ventilation, limiting vegetative growth, and reduction of Botrytis spp.’ alternative 

hosts. The increase of ventilation is to promote air circulation to quicken drying of plant 

tissue by pruning the plants to open the canopy. In order to create dry conditions for the 

plant, the use of sites with good air drainage or high tunnels with open sides are also 

suggested (98). The limited use of nitrogen fertilizer can help reduce vegetative growth. 

Effective weed control in the field can help reduce the disease incidence by eliminating the 

gray mold`s alternative hosts.  

Although blackberries are resistant to most diseases, fruit rots do occur in some 

years and B. cinerea is likely the primary disease-causing post-harvest rot of ripe 

blackberries (69). Two less-sensitive cultivars, “Kiowa” and “Navaho”, were identified 

(69), but disease incidence can still be high in years favoring fungal development. Due to 

the limited availability of resistant cultivars in pre-harvest and post-harvest disease control, 

the primary means of controlling disease in commercial blackberry production is to rely on 

the application of fungicides. 

Biocontrol of gray mold diseases has been extensively investigated over the last 50 

years (26). Genera of filamentous fungi, Trichoderma, Gliocladium, Ulocladium,  

bacteria, Bacillus and Pseudomonas, and yeasts, Pichia and Candida, have shown great 

potential for Botrytis disease control (26, 72, 83). Commercial success has been achieved 

in glasshouse and post-harvest environments where stable environmental conditions are 
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provided (26). However, environmental conditions are usually unpredictable and may 

influence the survival, establishment and activity of the biological control agent. Under 

field conditions, the plant surface is subjected to fluctuating temperatures, vapor pressure 

deficits, surface wetness, gases and air movement (15), which give limitations to the use 

of biocontrol agents. (98) 

 

 

Chemical Control of Gray Mold Disease 

Chemical control is the most effective method for controlling gray mold. Seven 

classes of site-specific fungicides are currently available for the control of gray mold 

disease in the United States. They include anilinopyrimidines (APs), dicarboximides (DCs), 

hydroxyanilides (HAs), methyl benzimidazole carbamates (MBCs), phenylpyrroles (PPs), 

quinone outside inhibitors (QoIs; disease suppression only) and succinate dehydrogenase 

inhibitors (SDHIs). For blackberry, there are four classes of fungicides recommended, 

Roval (Iprodione), Elevate (Fenhexamid), Pristine (Pyraclostrobin+Boscalid), and Switch 

(Cyprodinil+Fludioxonil) (98). 

Among these site-specific fungicides, MBCs were introduced in the 1970s and 

therefore have been used for the longest period of time. The DCs were also introduced in 

the 1970s but usage dropped in 1999 after the US Environmental Protection Agency in 

1999 drastically limited the maximum number of applications because of concerns about 

dietary exposure. The first QoI, SDHI, AP, and HA fungicides were registered within one 
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to four years of each other in the US; in 2001, 2003, 2001, and 1999 for disease control of 

strawberries and 2001, 2003, 2003, and 2002 for disease control of blackberries, 

respectively (3). While most active ingredients are sold as solo products, some are sold as 

mixtures. For example, the QoI pyraclostrobin and the SDHI boscalid are sold as Pristine 

38 WG (BASF Corporation, Research Triangle Park, NC) or the AP cyprodinil and the PP 

fludioxonil are sold as Switch 62.5 WG (Syngenta Crop Protection, Inc. Greensboro, NC). 

Most conventional growers use several different chemical classes of fungicides during the 

season in mixtures or rotations for resistance management of gray mold disease. Seven 

chemical classes of fungicides that were registered to against Botrytis can be grouped 

according to their modes of action: fungal respiration inhibitors (QoI and SDHI), anti-

microtubule toxicants (MBC), osmoregulatory inhibitors (DC and PP), sterol biosynthesis 

inhibitors (HA), and methionine biosynthesis inhibitors (AP). 

All of these seven classes of fungicides have a different modes of action and 

different target sites. QoI fungicides inhibit the mitochondrial respiration of fungus by 

binding to the cytochrome bc1 enzyme complex (complex III) at the Qo site. SDHI 

fungicides target succinate dehydrogenase (SDH, so-called complex II in the mitochondrial 

respiration chain), which is a functional part of the tricarboxylic cycle and liked to the 

mitochondrial electron transport chain. MBC fungicides inhibit fungal tubule function and 

block the polymerization of tubulin, thus preventing nuclear division of fungal cells. DC 

and PP fungicides interfere with the osmotic signal transduction pathway, which affects 

germination of spores and growth of mycelium (with different target enzyme, DC targets 
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histidine-kinase (OS-1) and PP’s target is unknown). HA fungicides target 3-keto reductase 

(Erg27) in the sterol biosynthesis pathway. AP fungicide inhibit methionine biosynthesis 

and secretion of hydrolytic enzymes.  

 

 

Fungicide Resistance and Resistance Management 

The definition of the term “fungicide resistance” was first proposed in 1984 

following the EPPO (European and Mediterranean Plant Protection Organization) 

conference on fungicide resistance in Brussels (23). It was defined as stable, inheritable 

adjustment by a fungus to a fungicide, resulting in a less than normal sensitivity to that 

fungicide (toxicant). This term is generally used for strains of a sensitive species which 

have changed, usually by mutation, to be significantly less sensitive to a toxicant (23). The 

growth or development of the resistant fungus strain is often uncompromised by the 

fungicide at concentrations which are inhibitory to the original wild-type population (23). 

Usually, resistance can be observed in field isolates after exposure to the fungicides. In 

some particular cases, there are isolates with natural resistance to certain kinds of 

fungicides. It has been reported that B. pseudocinerea is naturally resistant to fenhexamid 

(39), for example.  

Mechanisms of Resistance. The molecular basis of resistance has been described 

for six out of seven classes of fungicides registered against B. cinerea. Fungicide resistance 

is most commonly caused by target gene modifications in form of point mutations (1, 7, 
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11, 37, 51, 64). The resulting amino acid changes can cause structural changes of the 

protein, which results in low affinity and thus reduces fungicide efficacy (112). The 

mechanism of resistance for PP is caused by an increase of fungicide efflux out of cells. It 

is caused by the over expression of transporter proteins (59, 60, 73, 90, 118). The details 

of this resistance mechanism will be introduced in the following section. 

Multi-Drug Resistance. Multidrug resistance (MDR) is the resistance of organisms 

to a variety of unrelated toxic compounds. The resistance is caused by a transporter protein 

located on the membrane, which transports a wide variety of undesired compounds out of 

the cell. It was first described in mammalian cells resistant to anti-tumor drugs and has 

been described in various other classes of organisms (77). In fungi, this phenomenon was 

extensively studied in Saccharomyces cerevisiae with the name of pleiotropic drug 

resistance (PDR). There are two categories of membrane proteins, ATP-Binding Cassette 

transporters and Major Facilitators Super-family transporter. Both are able to cause multi 

drug resistance in B. cinerea (73, 76, 90).  

ABC transporters (ATP-Binding Cassette) are able to bind and hydrolyze ATP and 

use the energy generated to transport a variety of chemicals across cell membranes. The 

structural unit of an ABC transporters is composed of two homologous halves, each 

containing six trans-membrane domains (TMDs) and a conserved nucleotide binding fold 

(NBF). The majority of ABC transporters are composed of 1300-1600 amino acid residues 

(109). The complete genome sequence of B. cinerea revealed 46 putative ABC proteins (2) 

and 13 of them have been cloned (59, 118, 133). In this array of ABC transporters, only 
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AtrB is found to be related to the multi-drug resistance in the field isolates of B. cinerea 

(73, 76). The resistance is caused by point mutations in the gene that encodes transcription 

factor Mrr1, which leads to the overexpression of atrB that encodes AtrB transporter. This 

type of resistance is also called MDR1. Isolates with the MDR1 phenotype show reduced 

sensitivity to APs and PPs, as well as tolnaftate, a chemical that has never been sprayed in 

the field (50, 73).  

MFS transporters (Major Facilitators Super-family) facilitate the transport of 

various compounds using energy from electrochemical gradients across membranes 

without the hydroxylation of ATP. They are usually composed of 400-800 amino acid 

residues and share a common topology consisting of two-times six TMDs separated by a 

large cytoplasmic loop and some of them exhibit two additional TMDs at the C-terminal 

domain of the protein (109). In B. cinerea field isolates, it has been reported that a special 

re-arrangement of the promoter region of the mfsM2 gene can cause the overexpression of 

this MFS transporter, thus leads to the resistance phenotype which is called MDR2 (73, 

90). Isolates with MDR2 phenotype show reduced sensitivity to AP, DC, and HA, as well 

as tolnaftate and cyclohexamid (73). Both tolnaftate and cyclohexamid have not been 

applied in the field for disease control and can be used to detect the MDR2 phenotype. 

MDR3 phenotypes possess both MDR1 and MDR2 (73). These isolates have reduced drug 

sensitivity to all of the chemicals in the spectrum of MDR1 and MDR2 (73).  

Resistance Management. The development of fungicide resistance is threating plant 

health and yields quality, which eventually bring a serious issue to growers, pesticide 
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companies, and the environment (122). It may reduce farmers’ income by requiring more 

fungicide applications to control the disease and exposes the environment to more 

pesticides than necessary. Despite the intensive screening by companies, fungicides with 

original modes of action, meeting safety requirements, are rarely discovered (122). It is 

said that it costs 10 years and about $200 million dollars for the manufacturers to develop 

a new fungicide product (49). Thus, a successful resistance management strategy is helpful 

to preserve the efficacy of currently registered fungicides to against the plant pathogen in 

the fields. In general, the resistance management has two major component: monitoring 

and anti-resistance strategy. 

Fungicide resistance monitoring is a vital component of the resistance management 

strategies. It provides important information about the resistant profile and evolution of 

resistance in the field. The information obtained can help to predict the emergence of 

resistance, develop management strategies, and provide fungal materials to advance the 

knowledge of fungicide resistance (122). 

The other component, anti-resistance strategies, are based on the skillful 

deployment antifungal compounds to delay resistance. Fungicides may be alternated over 

time at the seasonal or multiseasonal scale or be used as a mixture of two different chemical 

classes. However, the ranking of these two strategies (alternation and mixture) based on 

their efficacy to delay resistance may seem to be a riddle (122). There is evidence showing 

that a mixed application containing compounds with different selection pressures is 

associated with longer-term sustainability of pest or pathogen control. And the chemical 
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mixtures usually outcompete other resistance management strategies because they ensure 

‘multiple intragenerational killing’ (100). However, alternations also have advantages 

under certain circumstances. A simple argument shows that alternation is effective to delay 

the resistance development only when resistance comes with a fitness cost to the resistant 

strain in the absence of the selection pressure from the target fungicide. The reasoning 

behind this is based on the assumption that the resistance to alternative fungicide can be 

developed in all populations (sensitive or resistant to previous applied fungicide) with the 

same chance. Without a fitness cost, the fraction of the pathogen population resistant to the 

fungicide will not change during the time window where the target fungicide is not used 

(Fig. 1.2.) (24, 103). In that case, it might be true that the resistance developed to one class 

of fungicide is only relevant to the overall doses of the chemical applied to that field. The 

alternation would delay the resistance to build up by replacing the usage of certain 

chemicals with the others. In the situation when resistance does come with a fitness cost, 

alternation of fungicides is potentially a powerful strategy (103). These results have been 

also obtained from antibiotic resistance models (10, 12, 24). 

Resistance management is in the best interest of the grower and the provider of 

pesticides. The Fungicide Resistance Action Committee (FRAC) was established in 1981 

to “provide fungicide resistance management guidelines to prolong the effectiveness of at 

risk fungicides and to limit crop losses should resistance occur (www.frac.info)”. FRAC 

was funded by major fungicide manufacturer companies and aims to: 1, Identify existing 

and potential resistance problems. 2, Collate information and distribute it to those involved 

http://www.frac.info/
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with fungicide research, distribution, registration and use. 3, Provide guidelines and advice 

on the use of fungicides to reduce the risk of resistance developing, and to manage it should 

it occur. 4, Recommend procedures for use in fungicide resistance studies. 5, Stimulate 

open liaison and collaboration with universities, government agencies, advisors, extension 

workers, distributors and farmers. FRAC has provide multiple resources for the fungicide 

management practices including “Mode of Action Code List”, “Pathogen Risk List”, 

“Recommendations for Fungicide Mixtures”, etc… to help achieve its goal. 

As stated above, blackberry is a valuable commercial crop and that IPM practices 

are needed to control key pests. Gray mold is a key pathogen that can only be controlled 

effectively with fungicides. However, the safest products are vulnerable to resistance 

development.   

 

 

Aim of This Study 

 The objectives of this study were to: 

 identify and determine the Botrytis species causing gray mold disease of 

blackberry in the southeastern United States 

 assess the occurrence and distribution of the Botrytis species in North and South 

Carolina blackberry fields 

 develop a molecular technique to differentiate co-existing Botrytis species in the 

field 
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 assess the occurrence and frequency of resistance to seven classes of fungicides in 

B. cinerea from commercial blackberry fields in the Carolinas 

 Identify and determine the molecular bases of resistance  

 

     The information obtained from this study will help us understand the pathogenic 

Botrytis species in the Carolinas’ blackberry fields. Fungicide resistance information will 

help to determine fungal evolution under fungicide pressure as well as develop 

management strategies that avoid the selection of resistant phenotypes that would 

eventually maintain the effectiveness of fungicides and avoid control failure.  
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Fig. 1.1. Disease cycle of Botrytis gray mold diseases (adapted from Amselem, 2011 (2)) 
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Fig. 1.2. Effect of fitness cost on efficacy of fungicide alternation. 
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CHAPTER TWO 

  

BOTRYTIS CAROLINIANA, A NEW SPECIES ISOLATED FROM 

BLACKBERRY IN SOUTH CAROLINA 

 

 

This work has been published: 

X.P. Li, J. Kerrigan, W. Chai and G. Schnabel. 2012. Botrytis caroliniana, a new species 

isolated from blackberry in South Carolina. Mycologia. 104(3):650-658. 

[Fungal isolates used in this study were collected by Anja Grabke and Xingpeng Li, and 

single spore isolation was performed by Wendi Chai and Xingpeng Li, and “NEP1/2 

sequences of B. fabiopsis” were provided by Jing Zhang, Huazhong Agricultural 

University] 

 

Abstract: 

Blackberry fruit symptomatic for gray mold were collected from three commercial 

blackberry fields located in the northwestern part of South Carolina. Single spore isolates 

were generated and two distinct phenotypes were discovered in each location; one 

sporulated on PDA and one did not. One isolate of each phenotype and location (six isolates 

total) were selected for in depth molecular and morphological characterization. 

Glyceraldehyde-3-phosphate dehydrogenase (G3PDH), heat-shock protein 60 (HSP60) 

and DNA-dependent RNA polymerase subunit II (RPB2) coding sequence alignment 

revealed Botrytis cinerea as the sporulating phenotype and a new, yet undescribed species 

as the non-sporulating phenotype. The new Botrytis sp., described herein as Botrytis 
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caroliniana, was most closely related genetically to B. fabiopsis and B. galanthina, the 

causal agents of gray mold disease of broad bean and snowdrop, respectively. It produces 

smaller conidia than either B. fabiopsis or B. galanthina and sequence analysis of genes 

encoding necrosis and ethylene-inducing proteins (NEPs) also indicated that the Botrytis 

isolates represent a separate and distinct species. The new species is pathogenic on 

blackberry fruits and broad bean leaves, which distinguishes it further from B. galanthina. 

The new species formed white to pale gray colonies with short, tufted aerial mycelium and 

produced black sclerotia on PDA at 20 C. To our knowledge this is only the third Botrytis 

species discovered to cause disease on blackberry in the United States.  

 

Introduction 

Blackberry (Rubus fruticosus and other species) is an important fruit crop in the 

United States and around the world. In 2005, an estimated 20035 ha of blackberries were 

commercially cultivated worldwide, 7159 ha in North America and 4818 ha in the United 

States, which is the second largest producer (110). Blackberries rank highly among fruits 

for antioxidant strength, particularly due to their dense contents of polyphenolic 

compounds such as ellagic acid, tannins, ellagitannins, quercetin, gallic acid, anthocyanins 

and cyanidins (55, 120). 

Gray mold caused by Botrytis spp. is probably the most important pre- and 

postharvest disease of blackberry. The genus Botrytis Pers. was originally erected by 

Micheli in 1729 and later validated in 1801 by Persoon (65). The genus has at times 
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included up to 380 names according to the mycobank records 

(http://www.mycobank.org/MycoTaxo.aspx). But presently includes just over 20 species 

(107, 137, 138). Most species of Botrytis are considered specialists possessing a narrow 

host range (87), while Botrytis cinerea Pers.:Fr. (teleomorph: Botryotinia fuckeliana 

Whetzel) has more than 200 hosts recorded by the United States Department of Agriculture 

(USDA) (http://nt.ars-grin.gov/fungaldatabases/fungushost/FungusHost.cfm; (25). On 

blackberry, the pathogen may cause soft rots of all aerial plant parts. During early growing 

season rotting tissue, such as freeze-damaged flowers or fruits, produce abundant gray 

conidiophores and conidia (127), which are dispersed by wind and rain and can cause 

secondary infections. To our knowledge only two Botrytis species, B. patula and B. cinerea, 

have been described to cause gray mold of blackberry. While B. cinerea is ubiquitous and 

commonly found on blackberry, few reports of B. patula are in the records of the USDA 

(United States Department of Agriculture) and this species is now considered a synonym 

of Olpitrichum patulum (Sacc. & Berl.) Hol.-Jech. (62). Raspberry plants comprised of 

multiple other Rubus species have been described by USDA to be attacked by Botrytis 

vulgaris (Pers.) Fr., which is the synonym of Botrytis cinerea (42). 

As part of a South Carolina fungicide resistance monitoring program, blackberry 

fruits were collected to survey for pathogenic fungi. During this survey, two species of 

Botrytis were found. This study was undertaken to characterize and identify the species of 

Botrytis using sequence analysis and morphology. Additionally pathogenicity studies were 

undertaken to understand the role of these species in fruit decay. 
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Material and Methods 

Sample collection, single-spore isolation and selection of isolates. Symptomatic 

blackberry fruit were collected in Aug 2010 from three commercial farms (GPS 

coordinates +34°46`27``,-83°15`31``; +34°48`43``,-82°50`6``; +34°34`39``,-82°29`48``; 

designated CB, CA, and WM) in the north-western part (Piedmont) of South Carolina, 

USA. The farms were located within 200 miles of each other. Each isolate came from an 

individual fruit from different plants with at least one buffer plant in between the sampled 

plants. Each fruit was placed in an individual plastic bag, sealed and stored at 4 C for up to 

five days. For single spore isolation, conidia were scraped off without touching the fruit 

using a sterile scalpel and suspended in 1 ml sterile, distilled water with 1% tween-60. 

Then, 200 μl of the suspension were spread on water-agar (brand) amended with lactic acid 

(0.1%, v/v) and streptomycin (100 µg/ml) in Petri dishes (90 mm diam). After incubation 

at 22 C for 24–36 h, three germinated conidia were transferred and placed 2 cm apart in 

equal distances onto potato dextrose agar (PDA) amended with streptomycin (100 ug/ml) 

and propiconazole (0.1 ug/ml) and Petri dishes were incubated at 22 C for another 36 h. 

Only one of the three single-spore colonies was kept for further studies. Upon culturing 

single-spore isolates from all locations on KMB medium (4), some isolates sporulated after 

seven days in culture and some never produced conidia in culture. One isolate of each type 

from each location (six isolates total) were selected for further analysis. 
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DNA extraction and PCR amplification. Genomic DNA was extracted as described 

previously (16). An aliquot of 1 µl of DNA solution (about 50 ng of DNA) was added as 

template for polymerase chain reaction (PCR) of the ITS region or the partial sequences of 

glyceraldehyde-3-phosphate dehydrogenase (G3PDH), heat-shock protein 60 (HSP60) and 

DNA-dependent RNA polymerase subunit II (RPB2). The primer pair ITS1/ITS4 was used 

to amplify the ITS1-5.8S-ITS2 region (White et al. 1990). Primer pairs 

G3PDHfor/G3PDHrev, HSP60for/HSP60rev and RPB2for/RPB2rev were used to amplify 

majority fragments of the G3PDH, HSP60 and RPB2 genes (107). PCR products were 

purified using the ExoSAP-IT PCR purification kit (USB Corporation, Cleveland, Ohio) 

following manufacturer’s instructions and directly sequenced in both directions at the 

Clemson University Genomics Institute, Clemson, South Carolina using LiCOR dye-

terminator sequencing technology. Some PCR products were cloned prior to sequencing if 

PCR yield was insufficient for direct sequencing. Briefly, PCR products were extracted 

from 1.5% agarose gel using the MinElute Gel Extraction Kit (QIAGEN Sciences, 

Maryland), ligated into the pCR4-TOPO vector (Invitrogen Co., Carlsbad, California) and 

transformed into competent cells of Escherichia coli DH5α-T1. Positive E. coli clones 

grown on Luria-Bertani agar medium (brand) containing ampicillin (50 μg/ml) were 

selected and sequenced in both directions using vector-specific primers. ITS and nuclear 

gene sequences were analyzed and aligned with DNASTAR sequence analysis software 

(DNASTAR, Inc., Madison, Wisconsin).  
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Phylogenetic analysis. G3PDH, HSP60, and RPB2 gene sequences of the selected 

isolates collected for this study were subjected to phylogenetic analysis separately and as 

combined datasets and compared to corresponding sequences of other recognized Botrytis 

species (107) using Monilinia fructigena strain 9201 as an outgroup. Alignment of the 

DNA sequences was examined by the neighbor-joining (NJ) method (Kimura’s two-

parameter distances) in DNAMAN software (Version 6.0.3. Lynnon BioSoft, USA): 

Pairwise alignment parameters: gap opening penalty 15, gap extension penalty 6.66; 

multiple alignment parameters: gap opening penalty 15, gap extension penalty 6.66, delay 

divergent cutoff 30% and 1000 bootstrap replicates were performed. Nucleotide 

gaps/missing data in the DNA sequences were deleted (111). 

Analyses of NEP genes. To further investigate the relationship between B. fabiopsis, 

B. galanthina, and the species isolated in this study, the necrosis and ethylene-inducing 

proteins 1 and 2 (NEP1 and NEP2, respectively) were amplified with primer pairs 

NEP1for/NEP1revB and NEP2forE/NEP2revE, respectively, as described previously 

(106). PCR products were purified using the ExoSAP-IT PCR purification kit (USB 

Corporation, Cleveland, Ohio) following manufacturer’s instructions. Purified PCR 

products were sequenced in both directions as described above. Multiple sequence 

alignment of NEP1 and NEP2 was conducted and homology trees were produced with 

DNAMAN software (Version 6.0.3. Lynnon BioSoft, USA). Alignment parameters were 

identical to the ones described above.  
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Phenotypic characterization of single-spore isolates. Colony morphology and 

mycelium growth rate were determined on PDA in Petri dishes. Agar plugs (6 mm diam) 

containing actively growing mycelium were removed from the colony margin of 2-day-old 

cultures grown at 20 C using a cork borer and the mycelium side of the plug was placed 

individually onto the center of Petri dishes (90 mm) containing 30 ml of PDA. The dishes 

were incubated at 20 C in the dark and the radial growth rate was determined after 24 and 

48 h incubation. After 18 days three dishes of three isolates from different location each, 

were randomly selected to measure sclerotia length and width. 

Conidia and conidiophores production. Mature blackberry fruit of an unknown 

cultivar were purchased from the local grocery store, surface sterilized and used to produce 

conidia for morphological studies. Fruit were surface sterilized in 5% bleach for 10 min 

and rinsing twice with sterile water. Agar plugs (6 mm diam) containing actively growing 

mycelium were removed from 2-day-old cultures grown on PDA and placed individually 

onto the top of a blackberry fruit. Each inoculated blackberry was placed singly in a 

Magenta box (60×60×95 mm), which were incubated at 20 C for 7 d at 12 h intervals of 

fluorescent light and darkness. The infection where the conidia suspension was placed were 

examed to ensure that no other source of pathogen was involved. Conidiophores and 

conidia produced by each isolate on where the conidia inoculation settled were examined 

under a microscope (Olympus BX60F) using Isolution Lite software (Vancouver, British 

Columbia, Canada). Length and width of 10 conidiophores and 50 conidia per isolate were 

measured.  
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Pathogenicity of Botrytis spp. isolates on broad bean. Broad beans cv. ‘Windsor’ 

were grown from seed in the greenhouse between 21–28 C and 14/10 daylight/night cycle. 

Leaves were cut off at the stem end with a razor blade from the middle part of 3 to 6-week-

old plants. Agar plugs (6 mm diam) containing actively growing mycelium were removed 

from 2-day-old colonies grown on PDA and placed upside down on the center of detached 

leaves. For each isolate, five leaves (each from a different plant) were used and each was 

inoculated with a single plug. Leaves were placed onto moist paper towels in plastic trays 

(50×24 cm) in a randomized complete block design with 3-tray replicates. The trays were 

covered with a transparent plastic foil (Polyvinyl-Chloride, Fisher scientific, Pittsburgh, 

Pennsylvania) to maintain high humidity and incubated at 20 C under fluorescent light and 

in darkness each for 12 h d-1. Uninoculated bean leaves served as negative controls. After 

three days, the diameters of developing lesions were measured. All in vitro experiments 

were replicated once. 

Data analysis. Datasets of two independent experiment in vivo were combined after 

verifying homology of variances using Bartlett’s test (P = 0.221). All data were analyzed 

using one way ANOVA and means were separated using Fishers’ LSD at α = 0.05. All 

statistical analyses were conducted using SigmaStat version 3.0 (Jandel Co. San Rafael, 

CA).  

Results 

The isolates collected from blackberry fruit in commercial orchards from South 

Carolina were identified as Botrytis cinerea and a new undescribed species based on 
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molecular and morphological characteristics. The new species is designated Botrytis 

caroliniana  

Analysis of G3PDH+HSP60+RPB2 gene sequences, NEP1 gene sequences, and 

the ITS regions. The combined data set of G3PDH+HSP60+RPB2 sequences of the new 

species was therefore compared to B. fabiopsis and B. galanthina and eight other closely 

related Botrytis spp. including B. fabae, B. cinerea, B. aclada, etc. A total of 22 taxa of 

Botrytis spp., in addition to B. fabiopsis and one of M. fructigena, were included in this 

study and represented 2965 nucleotides. Maximum parsimony (MP) analysis of the 

combined dataset produced a single most parsimonious tree (Fig. 2.1.). A distinct clade 

with 100% bootstrap support was formed between all Botrytis spp. and the closely related 

outgroup M. fructigena. Within the Botrytis clade, B. cinerea and B. fabae formed a clade 

distinct from all other Botrytis species. Isolates of B. caroliniana were clustered in a 

separate clade with 100% bootstrap support. B. caroliniana was most closely related to B. 

fabiopsis and B. galanthina. The three gene sequences (G3PDH, HSP60 and RPB2) from 

B. caroliniana isolates CB15, CA3 and WM4 were submitted to GenBank (Table 2.1.) 

Nucleotide sequence variation in the NEP1 gene was previously used to distinguish 

closely related B. fabiopsis and B. galanthina (106, 137); therefore, this gene was used to 

further distinguish B. caroliniana from B. fabiopsis and B. galanthina. Comparison of the 

749-bp core sequence of the NEP1 gene showed that the three species formed a clade 

separate from B. cinerea. A distinct nucleotide identity difference was also observed 

between B. fabiopsis and B. caroliniana (90%) and between B. caroliniana and B. 
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galanthina (97%; Fig. 2.2). NEP1 sequences from three B. caroliniana isolates were 

submitted to GenBank (accession nos. JF811593, JF811594 and JF811595). The 

comparison of the 808-bp core sequence of the NEP2 genes showed 98.9% nucleotide 

identity between B. caroliniana and B. galanthina; and 98.4% identity between B. 

caroliniana and B. fabiopsis (data not shown). 

The complete ITS1-5.8S-ITS2 regions of B. caroliniana isolates CB15 and CA3 

were 463 bp in length and 100% identical. The same region for isolate WM4 was 464 bp 

in length and revealed 99.8% identity compared to the above mentioned regions. The ITS 

sequences of the three isolates CB15, CA3, and WM4 were submitted to GenBank 

(Accession nos. JF777531, JF777532 and JF777533). In contrast to the above mentioned 

coding sequences, the ITS sequences were non-informative for delineating B. caroliniana 

from other Botrytis spp. There were very few to no ITS nucleotide sequence differences 

between the new Botrytis species and many other Botrytis spp. including closely related B. 

fabiopsis and distantly related B. cinerea (data not shown). 

Morphological analyses. Radial colony growth rates of B. caroliniana isolates fell 

within the values obtained for our B. cinerea isolates. Interestingly, our B. cinerea isolates 

appeared to be growing slower compared to published data (137)(Table 2.3.); however a 

direct comparison was not possible in this study. Cultures of B. caroliniana on PDA were 

white to pale gray with fluffy then matted and tufted aerial mycelium and black sclerotia 

in concentric rings, but did not produce conidia (Fig. 2.3.). In contrast, B. cinerea colonies 

collected from the same farms were gray-white with less fluffy aerial mycelium and 
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abundant conidia formation. The sclerotia of B. caroliniana were black and thus 

distinguishable from B. fabiopsis (Table 2.3.). On inoculated blackberry fruit the B. 

caroliniana conidiophores were as long as B. fabiopsis conidiophores (137) but half the 

size of B. cinerea conidiophores. Conidia of B. caroliniana were indistinguishable in size 

from B. cinerea conidia (data not shown) but were significantly smaller than B. galanthina 

or B. fabiopsis conidia (137) (Table 2.2). 

Pathogenicity. Koch’s postulates were fulfilled for B. caroliniana on blackberry 

and broad bean. The fungus was able to infect blackberries via mycelium and spore 

germination (data not shown), colonize the tissue and produce conidia on the host (Fig. 

2.4.). The conidia were reisolated and confirmed to be B. caroliniana according to 

conidiophore and conidia morphology on PDA and the fact that they could not produce 

spores on PDA. The spores of the B. caroliniana from the blackberry were harvested to 

cause disease on broad beans leaves (Table 2.4.) in the form of necrosis of leaf tissue (data 

not shown). Mycelia inoculation also performed as an inoculation method and after three 

days conidia were produced on the leaves, reisolated, and confirmed to be B. caroliniana.   

Botrytis caroliniana X.P. Li & G. Schnabel sp. nov. Fig. 2.3. – 2.4. 

Mycobank MB561754 

Etymology, “caroliniana” refers to the place, South Carolina, where the fungus was 

originally isolated. 

Coloniis in PDA ad 20 C 9.5–11.5 mm diam d-1 crescentibus, albis et pallidis 

cinereis, mycelio aerio primo floccoso tum implicito et caespitoso. Sclerotiis in PDA ad 20 
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C in annulis concentricis dispositis, discretis vel aggregatis, nigris, irregularibus, 0.9–3.7 x 

0.9–10.1 mm. Conidiophoris et conidia ex Rubus fruticosus fructibus non in PDA. 

Conidiophoris erectis, septatis, brunneis usque subhyalinis ab basibus usque apicibus, 

cellula basali inflata contracta usque ad apicem, alternis vel verticillatis ramis ad apicem, 

649–1698 × 9.1–18.5μm, cellulis conidiiferis inflatis. Conidiis subhyalinis vel pallidis 

brunneis, glabris, ellipsoideis, ovoideis vel obovoideis, variabilibus, 7.63–15.53 × 6.03–

11.98 μm. 

Holotype. USA, SOUTH CAROLINA, from a diseased fruit collected from Rubus 

fruticosus, Aug 2010, collector Xingpeng Li and Guido Schnabel, strains CB15, CA3 and 

WM4. 

Colonies on PDA at 20 C growing 9.5–11.5 mm diam d-1 (Table 2.2.), white to pale-

gray, with aerial mycelium at first floccose then matted and tufted (Fig. 2.3.). On PDA at 

20 C, sclerotia arranged in concentric rings, discrete to aggregated, black, irregular in shape, 

0.9–3.7 x 0.9–10.1 mm (Fig. 2.3.). Conidiophores and conidia produced on Rubus 

fruticosus (blackberry) fruits, not seen in PDA culture. Conidiophores erect, thick-walled, 

smooth, septate, brown to subhyaline from the base to apex, with swollen basal cell, 

gradually tapering to the apex, with alternate or whorled branches near the top, 649–1698 

× 9.1–18.5 μm, with multiple inflated conidiogenous cells. Conidia subhyaline to light 

brown, smooth, ellipsoid, ovoid, or obovoid, variable in size, 7.63–15.53 × 6.03–11.98 μm. 

Teleomorph not seen. Differing significantly from other Botrytis spp. in DNA sequence 

structure. 
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Discussion 

In this study two Botrytis species were isolated from blackberry fruit grown in three 

locations of South Carolina including B. cinerea, which is commonly found on blackberry 

but has not been formally reported on that host in South Carolina, and a new species 

designated B. caroliniana. The new species was genetically and morphologically 

sufficiently distinct from other described Botrytis species and represents a new species and 

pathogen causing gray mold of blackberry.  

Phylogenetic analysis of nucleotide sequences of G3PDH, RPB2 and HSP60 genes 

clearly distinguished B. caroliniana from other Botrytis species. Those coding sequences 

were used previously to characterize and delineate Botrytis species (107). B. caroliniana 

was genetically closest to B. fabiopsis, a species discovered in China and first reported in 

2010 on broad beans (137). Because B. caroliniana was genetically closest related to B. 

fabiopsis and B. galanthina, we cloned and sequenced the NEP1 gene from B. caroliniana, 

which was used in previous studies to distinguish between B. fabiopsis and B. galanthina. 

The alignment of this gene sequence from B. caroliniana with those from the two closely 

related species support the above mentioned phylogenetic analysis of G3PDH, RPB2 and 

HSP60 genes and further supported the genetic-based distinction between the three species. 

The ITS regions 1 and 2, which are commonly used to differentiate species and genera in 

fungi (97) revealed little phylogenetically informative variation between B. caroliniana 

and other Botrytis species, which is consistent with earlier reports (106, 107).  
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The phylogenetic differentiation of B. caroliniana from other Botrytis species was 

supported with morphological characteristics. The branching types of conidiophores, 

conidia size and sclerotia arrangement on PDA were different from B. cinerea, B. fabiopsi, 

and B. galanthina (137) (Fig. 2.3. – 2.4., Table 2.2. – 2.3.). The conidiophores exhibited 

whorled branches compared to alternate branches described for B. fabiopsis (137). The 

dimension of conidia produced by B. galanthina (114) and B. fabiopsis (137) are bigger 

than conidia produced by B. caroliniana. The size of sclerotia of B. fabiopsis were reported 

to be 1.0-29.2×0.9–8.0 mm which is much bigger than sclerotia produced by B. caroliniana 

(0.9×10.1-0.9×3.7 mm) (137). The sclerotia produced by B. caroliniana were black, which 

is also different from the gray sclerotia produced by B. fabiopsis (137).  

The host range of B. caroliniana is not yet known, but in this study we verified it 

can cause disease on plants from different classes. With the exception of B. cinerea, which 

infects more than 200 eudicot hosts, all other known Botrytis species infect only one or few 

closely related species within the same plant genus (87). B. fabae, for example, can infect 

species of the genera Vicia, Lens, Pisum, and Phaseolus, all belonging to the Fabaceae 

(66). All Botrytis species with a narrow host range are pathogenic on corolliferous 

monocotyledons and on members from the four eudicot families Fabaceae, Ranunculaceae, 

Geraniaceae, and Paeoniaceae (66). In this study we established blackberry and broad 

bean belonging to the plant classes Eudicots and Magnoliopsida, respectively, as hosts for 

B. caroliniana. This host range differentiated this species even further from B. galanthina, 

which is a pathogen of Galanthus spp. (57, 114) but not broad bean (137).  
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Botrytis cinerea has more than 200 hosts and cause serious yield losses in many 

agronomically important crops, such as grapevine, tomato, bulb flowers and ornamental 

crops (25, 66). It has been reported to cause blackberry disease all around the world 

including Australia, China, New Zealand, South Africa, Norway, and the United States 

according to the records of USDA. (http://nt.ars-

grin.gov/fungaldatabases/fungushost/FungusHost.cfm). In the United States, B. cinerea 

was only reported on Rubus species in Alaska, California, North Carolina and Washington.  
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Table 2.1. Origin of Botrytis spp isolates used in this study and relevant GenBank 

accession numbers of nucleotide sequences 

 

aDr. P. van den Boogert, Plant Research International, Wageningen.  
bN/A = not available; cREF. = sequence obtained from the author of the associated 

reference. 

 

 

 

 

 

ITS G3PDH HSP60 RPB2 NEP1

CB17 Long Creek, SC JN672673 JN672671
JN672675
JN672677
JN672679


WM6 Six Mile, SC JN164269 JN164270 JN164271 JN164272 JN672681

CA25 Cheddar, SC JN672674
JN672672
JN672676
JN672678
JN672680

BC-27 Ba Dong, China EU563124 EU563107 EU563101 EU563118

BC-1 Wuhan, China EU563120 EU563103 EU563096 EU563113 N/A

BC-15 Xian Ning, China EU563123 EU563108 EU563099 EU563114 N/A

MUCL87 (ex type) The Netherlands N/A AJ705004 AJ716065 AJ745676 N/A

BC-17 Yi Du, China EU563119 EU563104 EU563095 EU563112 N/A

BC-22 Xuan En, China EU563121 EU563105 EU563102 EU563111 N/A

BC-25 Xiang Fan, China EU563125 EU563110 EU563098 EU563116 N/A

MUCL98 (ex type) Spain N/A AJ705014 AJ716075 AJ745686 N/A

BC-2 Wuhan, China EU519204 EU519211 EU514482 EU514473 REF

BC-13 Xian Ning,China EU563122 EU563109 EU563100 EU563115 REF

BC-30 Yi Chang, China EU563126 EU563106 EU563097 EU563117 REF

CB15 Long Creek, SC JF777531 JF811584 JF811587 JF811590 JF811593

WM4 Six Mile, SC JF777532 JF811585 JF811588 JF811591 JF811594

CA3 Cheddar, SC JF777533 JF811586 JF811589 JF811592 JF811595

MUCL435 The Netherlands N/A AJ705018 AJ716079 AJ745689 AM087057

MUCL3204 The Netherlands N/A AJ705017 AJ716078 AJ745690 AM087067

B. tulipae BT9001 The Netherlands N/A AJ705040 AJ716101 AJ745712 N/A

B. narcissicola MUCL2120 Canada N/A AJ705026 AJ716087 AJ745697 N/A

B. polyblastis MUCL21492 UK N/A AJ705031 AJ716092 AJ745703 N/A

B. croci MUCL436 The Netherlands N/A AJ705009 AJ716070 AJ745681 N/A

B. squamosa MUCL1107 USA N/A AJ705037 AJ716098 AJ745710 N/A

B. aclada PRI006
a

N/A AJ716295 AJ704993 AJ716051 AJ745665 N/A

M. fructigena 9201 N/A N/A AJ705043 AJ716047 AJ745715 N/A

OriginSpecies Strain GenBank accession numbers

B. cinerea

B. fabiopsis

B. caroliniana

B. galanthina

B. fabae
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Table 2.2. Conidia size average and range of isolates of B. caroliniana, B. fabiopsis and 

B.galanthina  

    Averagea (μm)   Range (μm) 

Species Isolate 
Length 

(L) 

Width 

(W) 
L/W Length Width 

B. 

caroliniana 

CB15 11.3 8.1 1.4 8-14.2 6.3-10.5 

CA3 10.9 8.7 1.3 7.6-14.1 6.1-11.0 

WM4 12.4 8.9 1.4 9.8-15.5 6.0-11.0 

B. fabiopsis 

(Zhang et 

al. 2010) 

BC-2 ND ND ND 15.7-24.1 10.8-19.2 

BC-13 ND ND ND 15.0-26.2 13.3-21.7 

BC-30 ND ND ND 15.0-23.4 10.1-17.8 

B. 

galanthina 

(Zhang et 

al. 2010) 

/ ND ND ND 10.3-21.3 7.8-12.3 

aAverage and range of 50 measurements. 
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Table 2.3. Radial growth rate (RGR), conidiophores length, and sclerotia color of 

Botrytis caroliniana, B. cinerea, and B. fabiopsis.  

Species Isolate 
RGR 

(mm/d) 

Conidiophore 

length (μm) 

Sclerotia 

color 

B. 

caroliniana  

CB15 11.5bz 649-1006 Black 

CA3 10.2bc 784-1319 Black 

WM4 9.5c 569-1698 Black 

B. cinerea CB17 8.8c 2155-3925 Black 

CA25 13.8a 741-2193 Black 

WM6 14.3a 1367-2674 Black 

B. fabiopsis 

(Zhang et al. 

2010) 

BC-2 12 698-1466 Gray 

BC-13 13 558-1396 Gray 

BC-30 12 530-1326 Gray 

B. cinerea 

(Zhang et al. 

2010) 

BC-1  17 935-1605 Black 

BC-15 18 712-1745 Black 

BC-27 19 810-1619 Black 
ZMean values followed by the same letters within columns indicate no significant 

difference (α = 0.05) according to least significant difference (LSD) test. 
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Table 2.4. Disease incidence and lesion diameter on detached leaves of broad bean 

inoculated with mycelia of Botrytis caroliniana, B. cinerea, B. fabiopsis, and B. 

galanthina 

Species Isolate 
Disease 

incidence (%) 

Lesion diameter 

(mm) 

B. caroliniana       

CB15 100 8.7bc 

CA3 100 7.6bc 

WM4 100 6.4c 

B. cinerea           

CB17 100 17.9a 

CA25 100 9.9b 

WM6 100 18.8a 

B. fabiopsis 

(Zhang et al. 

2010) 

BC-2 100 14 

BC-13 100 11 

BC-30 100 10 

B. cinerea 

(Zhang et al. 

2010) 

BC-1 100 27 

BC-15 100 26 

BC-27 100 28 

B. galanthina 

(Zhang et al. 

2010) 

MUCL435 0 0 
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Fig. 2.1. Molecular phylogeny of 24 taxa of presented by a neighbor joining tree inferred 

from the dataset based on combined DNA sequences of HSP60, RPB2, and G3PDH. The 

numbers labeled at each node indicate the bootstrap (BS) percentage (N=1000), BS value 

from the neighbor-joining analysis. Bootstrapping below 50% are not provided.  Branch 

length is proportional to the numbers of nucleotide substitutions as measured by the scale 

bar (5% sequence divergence). 
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Fig. 2.2. Nucleotide identity (%) of the partial DNA sequences encoding necrosis and 

ethylene-inducing protein1 NEP1 among Botrytis carolinianae, B. fabiopsis, B. cinerea 

and B. galanthina (nucleotide identity percentage was rounded-up).  
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Fig. 2.3. Colony of Botrytis caroliniana incubated on PDA for 3 (left) and 18 (right) days 

at 20oC. 
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Fig. 2.4. Morphological characteristics of Botrytis caroliniana from blackberry. (A) 

sporulation on blackberry fruit; (B) conidiophores formed on blackberry showing 

botryose clusters of conidia; and (C) conidia. 
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CHAPTER THREE 

  

IDENTIFICATION AND PREVALENCE OF BOTRYTIS SPP. FROM 

BLACKBERRY AND STRAWBERRY FIELDS OF THE CAROLINAS 

 

 

This work has been published: 

X.P. Li, D. Fernández-Ortuño, W. Chai, F. Wang and G. Schnabel. 2012. Identification 

and Prevalence of Botrytis spp. from Blackberry and Strawberry Fields of the Carolinas. 

Plant Disease. 96:1634-1637 

X.P. Li and G. Schnabel. 2011. First Report of Gray Mold of Blackberry Caused by 

Botryis cinerea in South Carolina. Plant Disease. 95:1592 

[Fungal isolates used in this study were collected by Fei Wang, Anja Grabke, and 

Xingpeng Li, and blackberry isolates` single spore isolation was performed by Wendi 

Chai and Xingpeng Li, and strawberry isolates` single spore isolation was performed by 

Dr. Dolores Fernández-Ortuño, and molecular characterization as well as methods 

development was performed by Xingpeng Li] 

 

Abstract 

Gray mold disease of blackberry and strawberry is caused by Botrytis cinerea and B. 

caroliniana in the southeastern United States. In this study, methods to distinguish both 

species were established and their prevalence was determined in commercial blackberry 

and strawberry fields. Using DNA from B. cinerea and B. caroliniana reference strains, a 
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species-differentiating PCR amplification was developed that amplified G3PDH gene 

fragments of two different sizes depending on the species. The PCR is performed with 

three primers (two species-differentiating forward primers and one universal reverse 

primer) and amplified a 238 bp product from B. cinerea and a 536 bp fragment from B. 

caroliniana reference isolates. A total of 400 Botrytis isolates were collected from 6 

commercial blackberry and 11 strawberry fields of the Carolinas and identified to the 

species level with the new PCR method.  Both Botrytis spp. were identified in blackberry 

and strawberry fields, but B. caroliniana was less common than B. cinerea. Only 33 of 202 

isolates from blackberry fields were identified as B. caroliniana and the majority of these 

isolates came from two fields in South Carolina. Only 1 of 198 isolates from strawberries 

was identified as B. caroliniana and this isolate was found in central North Carolina. B. 

cinerea but not B. carolinana isolates sporulated on potato dextrose agar and Kings 

medium B. Our results show that B. cinerea and B. caroliniana coexist in at least some 

commercial blackberry and strawberry fields of the Carolinas with B. cinerea being the 

more prevalent species.  

 

Introduction 

Among the economically most important small fruit crops in the southeastern 

United States affected by gray mold disease are strawberries (Fragaria x ananassa) and 

blackberries (Rubus). In 2010, more than 950 ha of strawberries were planted in North and 

South Carolina valued at about $30 million (116). Other states in the Southeast with 
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significant strawberry production include Florida, Georgia, and Tennessee. Almost all 

commercial strawberries are produced with the plasticulture annual cropping system. In 

the Carolinas plants are typically obtained from nurseries, planted in September or October, 

and cropped in the spring and early summer of the following year. In contrast, blackberries 

have biennial canes and perennial roots and the same planting may be cropped for a decade 

or longer. Often, winter injury and cool temperatures create ideal conditions for gray mold 

disease in both crops. 

Botrytis cinerea Pers. is the causal agent of tissue blight, rots and gray mold disease 

of over 200 plant species including strawberry and blackberry (127). B. cinerea generally 

overwinters in decaying plant debris or as sclerotia. The pathogen prefers cool and moist 

weather conditions for infection and for post infection disease development (134). In the 

plant the pathogen may remain latent if disease development conditions are unfavorable. 

Eventually, the pathogen triggers host-cell death, which causes the progressive decay of 

infected petals, leaves, fruit, and various other plant tissues. On the surface of infected 

tissue it produces abundant conidia, which can be transported by wind over long distances. 

B. cinerea also has a sexual, teleomorphic stage named Botrytis fuckeliana (61).       

 Although B. cinerea has been recognized to be a complex of species in Europe (41), it 

was until recently considered the only species causing gray mold of small fruits in the 

United States. A new species designated Botrytis caroliniana X.P. Li & G. Schnabel was 

isolated in 2010 from blackberry fruit in South Carolina (82), adding to the Botrytis spp. 

list in North America. Based on phylogenetic and morphological analysis, B. caroliniana 
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is most closely related to B. fabiopsis (137), a broad bean (Vicia faba) pathogen from 

Central China (139) and B. galanthina (57, 114), a species isolated from snowdrop 

(Galanthus spp.) – a bulbous herbaceous plants. The prevalence and host range of B. 

caroliniana is unknown, but it is becoming increasingly clear that this species causes 

disease on various small fruits, including blackberry and strawberry (35, 82).  

The objective of this study was to develop simple and reliable tools to distinguish 

B. caroliniana from B. cinerea and to determine the prevalence of the two species in 

commercial blackberry and strawberry fields of the Carolinas. 

 

Material and Methods 

Origin of isolates. Isolates from symptomatic blackberry fruit were collected in the 

fall of 2010 and 2011 from commercial fields in Oconee- (isolate code CB), Anderson- 

(isolate code CA), Pickens- (isolate code WM), Chesterfield- (isolate code MC), and 

Chesnee County (isolate code CO) in South Carolina, and Cleveland County (isolate code 

KC) in North Carolina. Isolates collected in 2011 are indicated with an ‘a’ following the 

isolate code. The isolates from strawberries were collected from commercial fields in 

Cleveland- (isolate code SBY), Duplin- (isolate code NC), Guilford- (isolate code HP), and 

Iredell County (isolate code MV) in North Carolina and Aiken- (isolate code GIK), 

Cherokee- (isolate code JEY), Chesterfield- (isolate code KUD), Florence- (isolate code 

FLOR), Lexington- (isolate code MER), Saluda- (isolate code WIC) and Spartanburg 

County (isolate code MOD) in South Carolina. All isolates from blackberry and strawberry 
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fields came from individual fruits of different plants. Each fruit was placed in an individual 

plastic bag after harvest and stored at 4oC for up to five days prior to single spore isolation. 

Three B. cinerea isolates (CA25, CB17, and WM6) and three B. caroliniana reference 

isolates (CA3, CB15, and WM4) originally obtained from blackberry fruit (82)were 

included in this study. They are designated ‘reference isolates’ because they were 

characterized in a previous study (82) 

Development of a species-differentiating PCR assay. Three primers targeting a 

partial sequence of the glyceraldehydes-3-phosphate dehydrogenase (G3PDH)  gene 

were designed based on sequences published from B. cinerea and B. caroliniana reference 

isolates (Table 3.1.).  Forward primers G3PDH-F1 and G3PDH-F2 are specific for B. 

caroliniana and B. cinerea, respectively, and were used with reverse primer G3PD-R for 

species-differentiating DNA amplification. Genomic DNA was extracted as described 

previously (16). PCR amplification was performed in a total reaction volume of 50 µl. The 

following compounds were added, with final concentrations indicated: 1X ThermoPol 

reaction buffer (BioLabs, Ipswich, MA), dNTP’s (0.25 mM of each dATP, dGTP, dCTP, 

dTTP; BioLabs, Ipswich, MA), 0.6 pmol μl-1 of each primer (Table 3.1.), Taq DNA 

polymerase (1.25 units; BioLabs) and 10 ng – 100 ng of fungal DNA. The following 

thermocycling protocol was used to amplify the G3PDH fragment: 94℃ for 3 min (1 

cycle); 94℃ for 30 s, 56℃ for 30 s, and 72℃ for 1 min (32 cycles), and 72℃ for 5 min 

(1 cycle). Fragments were separated on a 1% agarose gel, stained with ethidium bromide, 
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and visualized under UV-light. The fragment size of the PCR product was verified by 

comparison to a Low Range Plus DNA Ladder (Fisher Scientific). 

Single-spore isolation and cultural characterization. For single spore isolation, 

conidia were scraped off without touching the fruit using a sterile scalpel and suspended in 

1 ml sterile, distilled water with 1% Tween-60. Then, 200 μl of the spore suspension were 

spread on water-agar in petri dishes (90 mm diameter) amended with lactic acid (0.1%, 

vol/vol) and streptomycin (100 µg/ml). After incubation at 22oC for 24–36 h, three 

germinated conidia were scooped up by a glass needle under a microscope and placed 2 

cm apart in equal distances onto potato dextrose agar (Difco Laboratories, Sparks, MD) 

amended with streptomycin (100 μg/ml) and propiconazole (0.1 μg/ml) and petri dishes 

were incubated at 22oC for 36 h. One of the three single-spore colonies was kept for further 

studies.  

To investigate spore production ability in vitro, agar plugs (6 mm diameter) 

containing actively growing mycelium were placed on Kings medium B (KMB: 20g 

Proteose Peptone No.3 (Difco), 1.5g K2HPO4, 0.738g MgSO4 (Anhydrous), 15g Agar, 10 

ml Glycerol and 990 ml water for 1 Liter medium) (4) and PDA with the mycelia side 

down. KMB was used previously to produce conidia from B. cinerea cultures for 

experimental purposes (40). Plates were incubated at 20oC for 7 d at 12 h intervals of 

fluorescent light and darkness. Conidiophores and conida were observed on plates with 

sporulating isolates but not on plates with non-sporulating isolates. 



 48 

DNA extraction and PCR amplification of G3PDH, HSP60, and RPB2 gene 

fragments. While most B. cinerea isolates sporulated heavily on PDA and KMB, isolate 

WM8a sporulated weakly on both media and was therefore subjected to more vigorous 

molecular analysis for species verification. It was isolated from a decayed blackberry fruit 

collected in a field where both species were present. Genomic DNA was extracted as 

described previously (16). The partial sequence of the glyceraldehydes-3-phosphate 

dehydrogenase (G3PDH), heat-shock protein 60 (HSP60) and DNA-dependent RNA 

polymerase subunit II (RPB2) were PCR amplified using primer pairs 

G3PDHfor/G3PDHrev, HSP60for/HSP60rev and RPB2for/RPB2rev, respectively (107). 

The PCR products were purified using the ExoSAP-IT purification kit (USB Corporation, 

Cleveland, Ohio) following manufacturers recommendations. Purified products were 

sequenced at Clemson University Genomic Center. Nucleotide sequences were analyzed 

and aligned with DNASTAR sequence analysis software (DNASTAR, Inc., Madison, WI).  

 

Results 

Distinction of B. cinerea and B. caroliniana using species-differentiating PCR and 

cultural characteristics. B. cinerea reference isolates CA25, CB17, and WM6 produced a 

238 bp fragment with primer set G3PDH-F1, G3PDH-F2, and G3PDH-R. The same primer 

set produced a 536 bp fragment for B. caroliniana reference isolates CA3, WM4, and CB15 

(Fig. 3.1.). The species-differentiating PCR was further validated by HSP60 gene sequence 

analysis. The majority of the HSP60 gene was sequenced from 10 B. cinerea isolates and 
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10 B. caroliniana isolates from different geographic locations and sequence analysis 

verified that the species-differentiating PCR accurately detected isolates to the species level 

(data not shown). Using this technique, 33 and 1 additional B. caroliniana isolates were 

identified from blackberries and a single strawberry, respectively (Table 3.2.).  

Botrytis cinerea reference isolates CA25, WM6, and CB17 as well as 158 B. 

cinerea isolates from blackberries and 197 isolates from strawberries sporulated on PDA 

and KMB media. Isolate WM8a was identified by PCR as B. cinerea but sporulated only 

weakly on PDA and KMB (Fig. 3.2.). The culture characteristics therefore are different 

from all other sporulating isolates. Subsequent sequence analysis of the G3PDH, RPB2, 

and HSP60 genes confirmed that the gene sequences were identical to B. cinerea reference 

isolate sequences available in GenBank (data not shown; accession numbers JN672671, 

JN672675, and JN672677, respectively for isolate CB17; JN164270, JN164271, and 

JN164272, respectively for isolate WM6; and JN672672, JN672676, and JN672678, 

respectively for isolate CA25). Thus, both sporulation phenotypes observed in this 

collection of 202 isolates corresponded to the PCR-based species differentiation assay. 

Prevalence of B. cinerea and B. caroliniana isolates in blackberry and strawberry 

fields of the Carolinas. B. cinerea was the dominant species in blackberry and strawberry 

fields of the Carolinas. Only 33 of 202 (16.3%) isolates from blackberry and only 1 of 198 

(0.5%) isolates from strawberry were identified as B. caroliniana (Table 3.2.). B. cinerea 

and B. caroliniana were found to coexist in four of six populations from blackberry fields; 

three from South Carolina and one from North Carolina. The four fields were located close 



 50 

to the western border of the Carolinas (Fig. 3.2. A). Although isolates from 10 strawberry 

fields were included in this study, only one located in the center of North Carolina revealed 

a B. caroliniana isolate (Fig. 3.2. B). 

 

Discussion 

B. caroliniana and B. cinerea are distinct species of Botrytis as determined by 

phylogenetic analysis of the HSP60, G3PDH and RPB2 gene sequences and unique cultural 

characteristics (82). In this follow-up study we developed and validated tools to more easily 

distinguish B. cinerea from B. caroliniana. The molecular distinction based on species-

differentiating PCR amplification and the morphological distinction based on sporulation 

ability on PDA and KMB provided consistent results for the reference isolates and all 400 

isolates obtained from strawberries and blackberries for this study. While our data indicate 

a strong correlation between species and sporulation ability on PDA and KMB, the cultural 

characteristics should not be used as a sole indicator for a species. That is because 

sporulation intensity varied among isolates and weak sporulators of the B. cinerea spp. may 

therefore be mistaken for B. caroliniana. For example, isolate WM8a sporulated only 

weakly whereas all other B. cinerea isolates sporulated profusely on PDA and KMB media. 

HSP60, G3PDH, and RPB2 gene sequence analysis, however, confirmed this isolate to be 

B. cinerea. Furthermore, it is possible that variability in the population may produce non-

sporulating B. cinerea and/or sporulating B. caroliniana in other locations.  
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Our results are consistent with other observations identifying B. cinerea to be a 

species complex (41). In the latter study, B. pseudocinerea was identified to be a part of 

this complex (121) in Europe. This species is genetically closely related to B. cinerea based 

on phylogenetic analysis of the HSP60 and G3PDH genes and is therefore only distantly 

related to B. caroliniana, which clusters closest to B. galanthina and B. fabiopsis (82). 

Sympatry of B. cinerea and B. caroliniana was detected in four of six populations, however, 

it is possible that B. caroliniana may have been present in all six populations but escaped 

collection. Morphologically similar but genetically diverse sub-species of B. cinerea (3, 4), 

Lophodermium pinastrii (91), and Phialocephara fortinii (54) have been shown to inhabit 

the same ecological niche. Similarly, species of Colletotrichum may co-inhabit certain 

geographical areas (85). It has also been suggested that B. cinerea is a complex of sibling 

species with similar morphology and a high level of genetic diversity occupying different 

ecological niches (46). The population genetics analysis revealed a high level of diversity 

within B. cinerea.  The present study suggests that B. cinerea and B. caroliniana, which 

are morphologically and genetically diverse (82), not only share the same ecological niche; 

they also share a common host.  

 B. caroliniana was nearly absent in commercial strawberry fields, which may be 

related to the strawberry production system. Strawberries are annuals and have been 

produced in plasticulture systems for the last 15 to 20 years. This system, in contrast to 

matted row culture, calls for roguing the entire crop after the production season is over and 

soil fumigation prior to planting. Thus, the field is virtually devoid of gray mold inoculum 
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at planting. The planting material in form of plugs and bare-root plants derives largely from 

nurseries in Western North Carolina and Prince Edward Island and Ontario provinces of 

Canada. While inoculum may migrate into strawberry fields from other crops and weeds, 

gray mold infections may also origin from latent infections in the planting material. The 

virtual absence of B. caroliniana in strawberry fields indicates that strawberry may not be 

a preferred host of B. caroliniana. Another explanation is that the planting-material 

produced by nurseries may have been devoid of this species. In contrast, blackberries are 

cropped for many years with roots being perennial and canes being biennial. The two 

species of Botrytis are therefore much more likely to successfully establish a long-term 

sympatry in blackberries.  

B. caroliniana occurred overwhelmingly in a cluster of commercial fields located 

at the most western part of South Carolina. This area is characteristic for its diverse 

vegetation, including woodlands, wildflowers, ornamentals, wild berries and more. 

Furthermore, the three farms with high B. caroliniana prevalence contained at the time of 

collection a variety of fruit crops, including various berry types, which could have served 

as additional hosts. If the pathogen has more than one preferred host, it is possible that 

other, still unknown hosts are more abundant in this region compared to other regions in 

the Carolinas. This would have resulted in high disease pressure and could explain the 

higher disease incidence on blackberry in this region. 

In conclusion, B. cinerea and B. caroliniana coexist in commercial blackberry and 

to a lesser degree in commercial strawberry fields of North and South Carolina. The two 
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species can be distinguished using species-differentiating PCR amplification and based on 

sporulation ability on PDA and KMB.  
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Table 3.1. Nucleotide sequences of primers designed to distinguish Botrytis cinerea from 

B. caroliniana 

Name Nucleotide sequence (5` - 3`) 

G3PDH-F1 GGACCCGAGCTAATTTATGTCACGT 

G3PDH-F2 GGGTGTCAACAACGAGACCTACACT 

G3PDH-R ACCGGTGCTCGATGGGATGAT 
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Table 3.2. Molecular and cultural distinction of B. cinerea and B. caroliniana isolates 

from blackberry and strawberry 

aPCR fragment was amplified with primers G3PDH-F1, G3PDH-F2, and G3PDH-R in a 

single reaction. 

Species Host Isolates 

No. 

isolates 

PCR 

fragment 

size (bp)a 

Sporulation 

PDA/KMB 

B. cinerea Blackberry KC1, KC3-27, KC30-52, WMa1, WMa3-

5, WMa8,WMa9, WMa12-14, WMa17,  

WMa24, WMa26-27, WMa31, WMa33-

35, WMa39-41, WMa44-46, WMa48, 

WMa55, WMa57, WMa61, WMa68, 

WMa71, WMa75, WM6, MC1, MC5, 

MC9, MC12-15, MC21-22, MC26-28, 

MC31-34, COa1, COa3, COa5, COa7, 

COa9-18, COa20-21, COa23-24, CO2-4, 

CO6-8, CO10-12, CO15-17, CO20-21, 

CAa3, CA1, CA11, CA25, CB17, CBa1, 

CBa3-7, CBa10-14, CBa16-17, CBa19-

20, CBa22-23, CBa26-29, CBa31, 

CBa35-37, CBa40-42, CBa45, CBa47, 

CBa49, CBa55, CBa57, CBa60-62 

169 238 yes 

 Strawberry BC11KUD1-21, BC11MOD2-20, 

BC11GIK1-6, BC11GIK9-21, 

BC11JEY1-25, BC11FLOR1-13, 

BC11MER1-3, BC11WIC1-21, 

BC11HP1-30, BC11HP32, BC11HP34, 

BC11MV1-2, BC11MV4-6, BC11MV8-

11, BC11Sby1-19, BC11SBY21, 

BC11SBY23-37 

197 238 yes 

B. 

caroliniana 

Blackberry KC29, WM4, WMa6-7, WMa18, 

WMa22, WMa30, WMa32, WMa47, 

WMa62, WMa64, WMa67, WMa72, 

CAa2, CA3, CA8, CA9, CBa2, CBa8-9, 

CBa24, CBa30, CBa33, CBa34, CBa39, 

CBa46, CBa48, CBa51-54, CB9, CB15 

33 536 no 

  Strawberry BC11HP33 1 536 no 
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Fig. 3.1. Amplification of the G3PDH gene fragment with primer set G3PDH-F1, 

G3PDH-F2, and G3PDH-R followed by electrophoresis on a 1 % agarose gel. Lanes 1, 3, 

and 5 are B. caroliniana isolates CA3, CB15 and WM4; lanes 2, 4, and 6 are B. cinerea 

isolates CA25, CB17, and WM6; lane L on the left is the Middle Range Plus DNA 

Ladder (Fisher Scientific, Hampton, NH), lane L on the right is the 50 bp Mini DNA 

Ladder (Fisher Scientific). 
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Fig. 3.2. The origin and prevalence of Botrytis cinerea and B. caroliniana isolates from 

blackberry (A) and strawberry (B) in the Carolinas. The diameter of each circle is scaled 

to population size examined.   
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Fig. 3.3. Cultural characteristics of weakly sporulating Botryits cinerea isolate WM8a 

(A), abundantly-sporulating, respresentative isolate MC31 (B), and B. caroliniana isolate 

CB15 (C) after 6 days of incubation on PDA at 22oC under discontinuous light exposure. 
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CHAPTER FOUR 

  

LOCATION-SPECIFIC FUNGICIDE RESISTANCE PROFILES AND 

EVIDENCE FOR STEPWISE ACCUMULATION OF RESISTANCE IN 

BOTRYTIS CINEREA 

 

 

This work has been published: 

X.P. Li, D. Fernández-Ortuño, S. Chen, A. Grabke, C.X. Luo, W.C. Bridges and G. 

Schnabel. 2014. Location-Specific Fungicide Resistance Profiles and Evidence for 

Stepwise Accumulation of Resistance in Botrytis cinerea. Plant Disease. 98:1066-1074. 

["Fungal isolates and culture conditions" of strawberry and blackberry isolates were 

performed by Dr. Dolores Fernández-Ortuño and Xingpeng Li, respectively; “Sequence 

analysis of target genes” were performed by Xingpeng Li and Shuning Chen; “Statistical 

analysis” were performed by Dr. William C. Bridges and Xingpeng Li] 

 

Abstract 

The fungicide resistance profiles to seven chemical classes of fungicides were 

investigated in 198 Botrytis cinerea isolates from five blackberry fields and 214 B. cinerea 

isolates from 10 strawberry fields of North and South Carolina. Populations of B. cinerea 

tended to have a single dominant, location-specific resistance profile that consisted of 

resistance to multiple fungicides in fields sprayed weekly with site-specific fungicides. The 

most prevalent profile in blackberry fields consisted of resistance to thiophanate-methyl, 

pyraclostrobin, and boscalid. The most prevalent resistance profile found in conventional 
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strawberry fields consisted of resistance to thiophanate-methyl, pyraclostrobin, boscalid, 

and cyprodinil. A statistical model revealed that multifungicide resistance patterns did not 

evolve randomly in populations from both crops. Instead, strains resistant to thiophanate-

methyl were more likely to acquire resistance to pyraclostrobin, the resulting dual-resistant 

population was more likely to acquire resistance to boscalid, the resulting triple-resistant 

population was more likely to acquire resistance to cyprodinil, and the resulting quadruple-

resistant population was more likely to acquire resistance to fenhexamid (strawberry 

population only) compared to random chance. Resistance to iprodione and fludioxonil 

appeared to have evolved by random chance from a pool of strains with different fungicide 

resistance profiles. Resistance to thiophanate-methyl, pyraclostrobin, boscalid, and 

fenhexamid in blackberry isolates was without exception based on target gene mutations, 

including E198A and E198V in b-tubulin, G143A in cytochrome b, H272Y and H272R in 

SdhB, and F412I in Erg27, respectively. A new genotype associated with fenhexamid 

resistance was found in one strain (i.e. Y408H & deletion of P298). Fungicide resistant 

strains were present but rare in an unsprayed blackberry field, where some unique 

phenotypes, including low and medium resistance to fludioxonil, had emerged in the 

absence of fungicide pressure. The isolates resistant to fludioxonil had EC50 values of 0.16 

µg/ml (low resistance) and 0.32 and 0.38 µg/ml (medium resistance) and were also resistant 

to AP fungicide cyprodinil indicating that this and similar phenotypes will eventually be 

selected by continued applications of the fludioxonil+cyprodinil premixture Switch. This 

study shows that multifungicide-resistant phenotypes are common in conventionally 
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maintained strawberry and blackberry fields and that resistance to multiple fungicides 

evolved from stepwise accumulation of single resistances. 

 

Introduction 

Gray mold is one of the most economically important diseases of commercially 

produced blackberry and strawberry fruit. In the southeastern United States, the disease is 

caused by Botrytis cinerea Pers. and B. caroliniana X.P. Li & G. Schnabel, a species that 

has only recently been reported in North and South Carolina blackberry fields (65, 82) and 

a North Carolina strawberry field (35). Botrytis cinerea can affect yield in different ways. 

The pathogen may cause blight on leaf or petal tissues, crown rot, stem cankers, cutting rot, 

and damping-off (18, 65). The fungus produces germ tubes from conidia that can infect 

through natural openings or wounds. It is a cool season disease and infection is favored 

under wet conditions with temperatures below 22oC (65, 105). Besides actively causing 

disease during the growing season, the fungus is also able to cause latent infections leading 

to disease after harvest, either during storage, transit, in the store, or after purchase by the 

consumer (66, 107, 123). 

Seven classes of site-specific fungicides are currently available for the control of 

gray mold disease in the United States. They include anilinopyrimidines (APs), 

dicarboximides (DCs), hydroxyanilides (HAs), methyl benzimidazole carbamates (MBCs), 

phenylpyrroles (PPs), quinone outside inhibitors (QoIs; disease suppression only) and 

succinate dehydrogenase inhibitors (SDHIs). Among these site-specific fungicides, MBCs 
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were introduced in the 1970s and therefore have been used for the longest period of time 

compared to other six site specific fungicides mentioned above. The DCs were also 

introduced in the 1970s but usage dropped after the United States Environmental Protection 

Agency decided in 1999 to drastically limit the maximum number of applications allowed 

because of concerns about dietary exposure. A survey among growers in the Carolinas 

revealed that most had not used DCs at all over the last decade. The first QoI, SDHI, AP 

and HA fungicides were registered within 1 to 4 years of each other in the US; in 2001, 

2003, 2001, and 1999 for disease control of strawberries and 2001, 2003, 2003, and 2002 

for disease control of blackberries, respectively (3). While most active ingredients are sold 

as solo products, some are sold as mixtures. For example, the QoI pyraclostrobin and the 

SDHI boscalid are sold as Pristine 38 WG (BASF Corporation, Research Triangle Park, 

NC) or the AP cyprodinil and the PP fludioxonil are sold as Switch 62.5 WG (Syngenta 

Crop Protection, Inc. Greensboro, NC). Most conventional growers use several different 

chemical classes of fungicides during the season in mixtures or rotations for resistance 

management. The use of multiple fungicide products over time, however, may produce 

pathogen populations with multifungicide resistance (1, 76, 124). Some isolates recovered 

from strawberries in Germany and France exhibited multifungicide resistance in form of 

ATP-binding cassette (ABC) transporter and major facilitator super family (MFS) 

transporter activity (73). But in the southeastern United States, resistance to many 

fungicide classes, including the MBCs, QoIs, SDHIs and HAs is based on target gene 

alterations (1, 33, 36, 50). The objective of this study was to investigate phenotypic and 
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evolutionary patterns of multifungicide resistance in B. cinerea isolates collected from 

commercial blackberry and strawberry farms in the Carolinas.  

 

Materials and Methods 

Origin of isolates and conidia production. Single spore isolates of B. cinerea were 

obtained from decayed blackberry (198 isolates) and strawberry (214 isolates) fruits in 

2010 and 2011. Isolates were either verified to be B. cinerea in a previous study (81) or as 

part of this study using cultural and molecular methods. The blackberry samples were 

collected from five commercial fields in Oconee (isolate code CB), Pickens (isolate code 

WM), Chesterfield (isolate code MC), and Chesnee (isolate code CO) counties in South 

Carolina, and Cleveland County (isolate code KC) in North Carolina. The strawberry 

samples were collected from different commercial strawberry fields encoded HP, MV, NC, 

and SBY of North Carolina and FLOR, GIK, JEY, KUD, MOD, and WIC of South 

Carolina. All but one blackberry field (CB) had received fungicide applications in years 

prior to sampling. Growers from locations CO, KC, and MC used MBC, QoI, SDHI, AP, 

and HA fungicides in rotation or as a mixture on a weekly schedule, making an average of 

over 12 applications per season. None of the growers interviewed had used DCs over the 

last decade. Growers from locations in WM sprayed only occasionally prior to rain events 

and used less than five applications on average per season. Weekly applications of site-

specific fungicides were conducted at strawberry locations GIK, JEY, KUD, MOD, and 

SBY. The spray history from location NC is not known, but locations FLOR, HP, and MV 
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only received occasional fungicide treatments (less than five per season). Location WIC 

only received fungicides approved for organic strawberry production. We previously 

characterized the isolates from strawberry for resistance to APs, HAs, MBCs, QoI, PPs, 

and SDHIs (32, 33, 36, 51), but their multifungicide resistant phenotypes are reported here 

for the first time.  

For conidia production, all isolates were grown on potato dextrose agar medium 

(PDA; Difco Laboratories, Sparks, MD) in 9-cm-diameter Petri dishes for one to two weeks 

at 22oC with 12-h intervals of fluorescent light and darkness. Conidia were gently scraped 

from the colonies without touching the agar with a sterile, disposable 10-µl inoculation 

loop (VWR international LLC, Radnor, PA). Conidia were then suspended in 1 ml of sterile 

distilled water, and adjusted to 1 to 5 × 104 spores/ml up to 2 h prior to use. 

Sensitivity of B. cinerea isolates from blackberry to cyprodinil, iprodione, 

fenhexamid, thiophanate-methyl, fludioxonil, pyraclostrobin, and boscalid. The following 

active ingredients were obtained as formulated products: AP fungicide cyprodinil (Vangard 

WG, Syngenta Crop Protection, Greensboro, NC), DC fungicide iprodione (Roval 4 FL, 

Bayer CropSciences, Research Triangle Park, NC), HA fungicide fenhexamid (Elevate 50 

WDG, ArystaLifeScience, Cary, NC), MBC fungicide thiophanate-methyl (Topsin M 70 

WP, Ceraxagri, King of Prussia, PA), PP fungicide fludioxonil (Scholar SC, Syngenta), 

QoI fungicide pyraclostrobin (Cabrio EG, 20% W/W, BASF Corporation, Research 

Triangle Park, Raleigh, NC) and SDHI fungicide boscalid (Endura 70% W/W, BASF). 

Sensitivity was assessed using a previously published germination assay (128) that 
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evaluates fungicide sensitivity based on spore germination on a medium amended with 

discriminatory doses of fungicides. The experiments were repeated once. Germination was 

assessed visually under a light microscope (Olympus BX41TF, Olympus Optical Co. Ltd., 

Japan). There were 12 isolates that germinated at 5 µg/ml iprodione, but were unable to 

germinate at 50 µg/ml. This phenotype was not described by Weber & Hahn (125) and was 

described in this study as low-resistance (LR). The LR and sensitive phenotypes for 

iprodione were merged in Tables 4.1. and 4.2. for simplicity reasons because the low-

resistant phenotype has not been associated with field resistance. The distinction between 

medium resistance (MR) and low resistance to fludioxonil was based on differences in 

germination at the two discriminatory doses of 0.1 and 10 µg/ml fludioxonil (125). Isolates 

were assigned to the low resistance category if germ tube growth exceeded 60% at 0.1 

µg/ml and 5% at 10 µg/ml compared to the non-fungicide treated control. For the DC and 

PP groups, where there is no discontinuity in the sensitivity distribution, experimental 

evidence was provided recently that the ‘resistant’ isolates are pathogenic on fruit treated 

with field rates of formulated product (50).  

The effective doses that inhibit 50% of mycelial growth (EC50 values) were 

investigated in vitro for fludioxonil as described previously (73) with minor modifications. 

Briefly, 5,000 spores were transferred to 0.1 ml malt extract broth containing a series of 

dilutions of fungicides in a 96-well microplate. Final concentrations for all compounds 

were 10, 3, 1, 0.3, 0.1, 0.03, 0.01, and 0 µg/ml. After 48 h of incubation at 22oC in darkness, 

the optical density at wavelength A600 was determined. The experiment was performed 
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twice. 

Molecular identification of point mutations in target genes erg27, sdhB, cytb, and 

β-tubulin. Nucleic acid sequence alterations in the strawberry isolates associates with the 

here described resistance phenotypes were reported previously (32, 33, 36, 51). Sequence 

alterations in target genes of B. cinerea isolates from blackberry were assessed in this study. 

Isolates were cultured on PDA plates at 22oC in darkness. Mycelia was collected from the 

developing margin of an actively growing colony using a sterile toothpick. Genomic DNA 

was extracted as described previously (16). The partial 3-keto reductase gene (erg27) was 

amplified and sequenced with primer pair F412_F and F412_R (51). The entire erg27gene 

of isolate KC52 was amplified with primer pair erg27Beg and erg27End because sequence 

analysis of the fragment amplified with primers F42_F and F412_R did not show the 

suspected F412 mutations. Sequencing was conducted with primers erg27Beg, erg27End, 

erg1800down, and erg2000up (39). 

Point mutations in the sdhB gene were identified as described previously with 

primer pair IpBcBeg and IpBcEnd2 (79) with minor modifications of the PCR protocol. 

The initial denaturation was at 95°C for 3 min, followed by 35 cycles at 95°C for 30 s, 

58°C for 30 s, and 72°C for 1 min and a final extension at 72°C for 10 min. The PCR 

products were purified using the ExoSAP-IT PCR purification kit (USB Corporation, 

Cleveland, OH) following manufacturer’s instructions and sequenced at the Clemson 

University Genomics Institute, Clemson, South Carolina using LiCOR dye-terminator 

sequencing technology. 
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Nucleotide sequence variation at amino acid (aa) codon 143 of the cytochrome b 

gene (cytb) was detected as described previously using the primer pair Qo13ext and 

Qo14ext (79). The amplicon was digested with restriction enzyme Fnu4HI (New England 

Biolabs, Beverly, MA) at 37oC for 2h.The nucleotide variation at aa codon198 of the β-

tubulin gene was identified as described previously (36, 86). The partial β-tubulin gene was 

amplified with primer pair BCF/BCR (86) and the amplicon was digested with ThaI (New 

England Biolabs, Beverly, MA) at 60oC for 3h. The PCR products were sequenced if the 

digestion did not reveal the expected fragments. Amplicons were purified prior to 

sequencing using the ExoSAP-IT PCR purification kit (USB Corporation, Cleveland, OH) 

following manufacturer’s instructions. All PCR amplification or digestion products 

mentioned above were separated on 1.5% agarose gels. 

Data analysis. Statistical analysis was performed to determine if the probability 

resistance (P(R)R) to a fungicide in subpopulations, which were derived from previous R 

population, differed from the probability of resistance in the over-all population (P(R)E). A 

chi-square test was used to test the hypothesis H0: P(R)R = P(R)E. Not included in this 

analysis were observations for fungicides fludioxonil and iprodione because of the low 

numbers of representative isolates. For all other fungicides, if less than 10 isolates 

represented a subpopulation, the Fisher`s exact test was conducted to verify the chi square 

result. All calculations were performed by SAS, version 8.01. (SAS Institute Inc., Cary, 

NC), Chi-square test p-value <0.05 were considered evidence of significant differences in 

the P(R).  
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Results 

Fungicide resistance profiles of B. cinerea isolates from blackberry and strawberry 

fields. A total of 17 different fungicide resistance profiles containing 0 to 5 single resistance 

phenotypes (0SR to 5SR) were found in blackberry and strawberry fields of North and 

South Carolina; 15 phenotypes were present in blackberry fields and 11 in strawberry fields 

(Table 4.1.). All but one location had a predominant resistance profile. For blackberry 

fields, the majority of isolates in the unsprayed field CB were sensitive to all fungicides 

and the majority of isolates from occasionally-treated field WM were resistant to 

thiophanate-methyl. In all other locations a majority of the isolates were resistant to at least 

three chemical classes: thiophanate-methyl, pyraclostrobin and boscalid. A similar pattern 

emerged from the strawberry fields. The majority of isolates from the organic farm and 

from fields sprayed less than six times per season were sensitive to all of the fungicides. 

However the majority of isolates from most fields sprayed weekly were resistant to four 

chemical classes of fungicides: thiophanate-methyl, pyraclostrobin, boscalid, and 

cyprodinil. The two most heavily sprayed strawberry fields were located within 1 km of 

each other (SBY and MOD) and isolates from these fields had the greatest number of 

isolates resistant to five fungicides. Interestingly, isolates with resistance to fungicides 

were found in the organic field WIC, which was geographically isolated (at least 5 km from 

next strawberry field) from other strawberry or blackberry fields. Two isolates from heavily 

sprayed, commercial field KC had a very unique phenotype not found anywhere else; they 
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were resistant to thiophanate-methyl, pyraclostrobin, cyprodinil, iprodione, and fludioxonil. 

Although from the same location, the two isolates resistant to fludioxonil were genetically 

different based on nucleotide sequence variations in the mrr1, bos2 and rrg-1 genes (data 

not shown). Iprodione-MR isolates were only found in the JEY and SBY locations (Table 

4.1.). 

Of the 198 blackberry field isolates collected from 5 locations in the Carolinas, 142 

(72%) were resistant to thiophanate-methyl, 117 (59%) were resistant to pyraclostrobin, 

111 (56%) were resistant to boscalid, 22 (11%) were resistant to fenhexamid, 19 (10%) 

were resistant to cyprodinil, 17 (8.6%) were resistant to iprodione, and 3 (1%) were 

resistant to fludioxonil (2 from field KC were medium-resistant and one from field CB was 

low-resistant; Table 4.1.). A majority of the blackberry isolates resistant to more than two 

fungicides was from three commercial fields CO, KC, and MC (Fig. 4.1.). Of these isolates, 

37% were resistant to 3 classes, 18% to four classes, and 2% were resistant to five classes 

of fungicides (Table 4.2.). All other isolates from blackberry resistant to at least one 

fungicide were resistant to 1 (13%), 2 (2%), and 5 (2%) classes of fungicides. 

Of the 214 strawberry field isolates, 149 (70%) were resistant to thiophanate-methyl, 

142 (66%) were resistant to pyraclostrobin, 133 (62%) were resistant to boscalid, 46 (22%) 

were resistant to fenhexamid, 101 (47%) were resistant to cyprodinil, and 4 (2%) were 

resistant to iprodione (Table 4.3.). The majority of resistant isolates from strawberry 

possessed resistance to three or more fungicide classes (13%, 37%, and 13% resistant to 

three, four, and five classes, respectively). Most of these were from commercial fields SBY, 
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JEY and KUD, all located at the border of North and South Carolina, which also possessed 

the highest frequency of multifungicide resistance. The lowest frequencies of 

multifungicide-resistant isolates were observed in locations HP, MV and FLOR (Fig. 4.2.). 

Among the isolates resistant to three fungicides, 97% and 90% of the blackberry 

and strawberry isolates respectively, were resistant to thiophanate-methyl, pyraclostrobin, 

and boscalid. Among isolates resistant to four fungicides, more than half of the blackberry 

(19 of 36) and more than three quarters of the strawberry (67 of 79) isolates were resistant 

to thiophanate-methyl, pyraclostrobin, boscalid, and fenhexamid. Most of the other 4SR 

isolates were resistant to thiophanate-methyl, pyraclostrobin, boscalid, and cyprodinil (15 

of 36 for blackberry and 11 of 79 for strawberry; Table 4.3.).  

To further characterize the rare occurrence of resistance to fludioxonil, the effective 

dose that inhibited 50% of mycelial growth (EC50) was determined for the three resistant 

isolates. The EC50 value of isolate CBa82 was 0.16 µg/ml and was categorized as low-

resistant. This EC50value was about 16-fold higher than the EC50 of the two sensitive 

isolates investigated (EC50 0.01 µg/ml). The other two isolates resistant to fludioxonil 

(KC25 and KC33) had EC50 values of 0.324 and 0.383 µg/ml, respectively, and were 

categorized as medium-resistant. All three isolates were also resistant to iprodione.  

A model was introduced to test whether the distribution of susceptible and resistant 

phenotypes of isolates to a specific fungicide was random or biased. For the blackberry 

population, the results indicated that the subpopulation resistant to thiophanate-methyl was 

more likely to have evolved into a subpopulation resistant to thiophanate-methyl and 
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pyraclostrobin (p <0.05), which was more likely to have evolved into a subpopulation 

resistant to thiophanate-methyl, pyraclostrobin and boscalid (p<0.05). There was a bias 

toward developing strains resistant to thiophanate-methyl, pyraclostrobin, boscalid and 

cyprodinil from the subpopulation resistant to thiophanate-methyl, pyraclostrobin, and 

boscalid (p<0.05). The low number of isolates (n=2) resistant to all five chemical classes 

including the hydoxyanilides (fenhexamid) did not support significant differences between 

the S/R ratio that derived from the subpopulation resistant to four chemical classes of 

fungicides (Fig. 4.3.A). A very similar pattern was observed for strawberry isolates (Fig. 

4.3.B). The 5SR phenotype characterized by resistance to thiophanate-methyl, 

pyraclostrobin, boscalid, cyprodinil, and fenhexamid was more likely to have derived from 

the subpopulation resistant to thiophanate-methyl, pyraclostrobin, boscalid and cyprodinil 

(p<0.05); the latter phenotype was more likely to have derived from the population resistant 

to thiophanate-methyl, pyraclostrobin, and boscalid (p<0.05) and the isolates resistant to 

thiophanate-methyl and pyraclostrobin were more likely to have derived from the 

subpopulation resistant to thiophanate-methyl (p<0.05).  

Detection of target gene mutations. To determine whether resistance was based on 

single gene resistances, the presence or absence of mutations in genes encoding target 

proteins for fenhexamid, boscalid, pyraclostrobin, and thiophanate-methyl were 

investigated for all blackberry isolates with resistance phenotypes. All 23 blackberry 

isolates resistant to fenhexamid yielded a band approximately 586 bp in size when DNA 

was amplified with primers F412_F and F412_R. Sequence analysis revealed that 18 
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isolates possessed the F412S mutation, 4 had the F412I mutation, and one isolate (KC52) 

had a new mutation Y408H. Because the latter mutation had not been described before, 

The entire erg27 gene was sequenced and found that this gene also lacked aa P298 (Table 

4.4.). Three fenhexamid-sensitive isolates were randomly chosen and screened for 

mutations in the erg27 gene but none were found (data not shown). Primers IpBcBeg and 

IpBcEnd2 amplified PCR fragments of about 950 bp in length from the sdhB gene of 24 

blackberry isolates resistant to boscalid. Sequence analysis revealed nucleotide variations 

in resistant isolates but not the sensitive isolate from “CAC” to “TAC” in 8 isolates 

and ”CGC” in 16 isolates. This mutation changed the aa at position 272 from histidine (H) 

to tyrosine (Y) or arginine (R) (Table 4.4.). Primers Qo13ext and Qo14ext amplified the 

expected 560 bp product from the cytb gene of all 93 blackberry isolates resistant to 

pyraclostrobin and 1 isolate sensitive to pyraclostrobin. Enzyme Fnu4HI cut all amplicons 

from resistant isolates into two fragments of 318 bp and 242 bp in length indicating the 

presence of the G143A mutation (Table 4.4.). The PCR product from the isolates sensitive 

to pyraclostrobin remained undigested. A PCR product of approximately 380 bp in size 

was amplified from 137 blackberry isolates (136-resistant and 1 sensitive to thiophanate-

methyl, respectively). The amplicon from 119 blackberry resistant isolates was 

successfully digested with ThaI, indicating the presence of the E198A mutation. The PCR 

product from the isolates sensitive to thiophanate-methyl remained undigested (data not 

shown). The remaining 17 blackberry isolates (all from location WM) resistant to 

thiophanate-methyl were not digestable with ThaI and therefore subjected to sequence 
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analysis. The target gene revealed a nucleotide change from “GAG” to “GTG” at aa 

position 198, which changed glutamic acid to valine (E198V mutation; Table 4.4.).  

 

Discussion 

Current models suggest that fungicide-resistant genotypes pre-exist at a low 

frequency (about 10-9) in a genetically diverse population (48, 136) prior to the introduction 

of a fungicide. In the absence of other constraints, one, two, or more independent forces, 

such as pressure from single or multiple fungicides, could select for single, dual, or greater 

levels of resistances. This is especially so if fungicides with different modes of action act 

on targets at different places in the genome. The phenotypic fungicide resistance patterns 

observed for populations from both crops (Tables 4.2. and 4.3.) did not evolve randomly 

(Fig. 4.3.A and B). Phenotypes resistant to multiple fungicides were more likely to have 

evolved from previously resistant subpopulations. The model suggests a stepwise 

accumulation of single resistance loci in B. cinerea populations from both crops. 

Populations resistant to thiophanate-methyl gave rise to populations resistant to 

pyraclostrobin, which gave rise to populations resistant to boscalid, which gave rise to 

populations resistant to cyprodinil and/or fenhexamid. Fungicide pressure narrows the 

populations gene pool due to targeted selection of genotypes, but evolution in form of 

progressive changes in the gene pool causes the population to diversify and therefore 

allows emergence of new phenotypes (58). A simplified version of this standard population 

genetics theory describing stepwise selection, diversification, and accumulation of 

http://en.wikipedia.org/wiki/Glutamic_acid
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resistances is outlined in figure 4.4. In this model, field applications of fungicides of a 

single chemical class followed by population recovery selects for genotypes resistant to 

fungicides of this chemical class and allows for diversification of the population. 

Diversification allows for emergence of strains with preexisting resistance to the next 

fungicide. The combined or alternated application of fungicides of the two chemical classes 

allows for the selection of preexisting genotypes with triple fungicide resistance (Fig. 4.4.).  

 Populations of B. cinerea from blackberry and strawberry fields in the Carolinas 

were resistant to multiple chemical classes of fungicides. Populations from conventionally 

sprayed fields (i.e. KC, MC, CO, MOD, SBY, JEY, and KUD) had, with the exception of 

field SBY, a single-most prevalent resistance phenotype. These phenotypes were a 

resistance to thiophanate-methyl, pyraclostrobin, and boscalid and a resistance to 

thiophanate-methyl, pyraclostrobin, boscalid and iprodione in blackberry fields, and 

resistance to thiophante-methyl, pyraclostrobin, and boscalid and a resistance to 

thiophanate-methyl, pyraclostrobin, and cyprodinil in strawberry fields. This suggests that 

weekly applications of alternating fungicides, or mixtures of site-specific fungicides, 

selected for multifungicide resistant strains. In contrast, the most prevalent phenotype for 

less frequently sprayed fields, such as WM (blackberry), MV, HP, and FLOR (strawberry), 

consisted of either only one (1SR) or no (0SR) single-resistances phenotypes. These data 

support common risk assessments that a reduction in the number of applications per season 

is an effective strategy to slow resistance development (14). Interestingly, multifungicide-

resistant phenotypes existed at low frequency in the organic field, WIC, and many of the 



 75 

less-frequently sprayed fields (WM, MV, HP, FLOR). This suggests that if growers were 

to increase their use of fungicides, selection for multifungicide resistance could occur 

within a few sprays or a single season. 

 Resistance to four or five chemical classes (4SR and 5SR) was found in almost all 

blackberry and strawberry fields, raising the question whether these phenotypes are a result 

of independent selection with small amounts of migration, or successive expanding foci. 

Some locations were well over 100 km apart suggesting that the multifungicide-resistant 

genotypes may have evolved independently from another with little migration. 

Furthermore, recent evidence suggests that strawberry plug plants are a source of B. cinerea 

infections in plastic culture production systems (95). Therefore B. cinerea multifungicide-

resistant strains may have evolved at the nursery level and then be distributed to producers 

by way of planting material. This could also explain the presence of multifungicide-

resistant strains in the organic field WIC. 

 With only one exception, all fungicide-resistant isolates from both crops were 

resistant to MBC fungicide thiophanate-methyl. MBC fungicides were introduced in the 

1970s and therefore used more often than the other six chemical classes, most of which 

were introduced much later. The combination of spray frequency, the existence of naturally 

resistant strains in the field (128), the qualitative type of resistance (13, 22), and stability 

of the resistance (21, 113) may have probably caused a shift in the endemic population 

towards a dominant MBC resistance dominance. Our data suggest that virtually all other 

resistance phenotypes derived from that dominant population. Dual resistance to QoIs and 
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SDHIs have been reported in field strains from Europe (7, 79, 88), the United States (70), 

and Asia (64). The delay in resistance development to AP fungicides may be because this 

product is mostly used in combination with fludioxonil, a compound that has proven quite 

resilient to resistance development (141). The delay in resistance to the HA fungicide 

fenhexamid may be the result of a documented reduced fitness of mutants with point 

mutations in the erg 27 gene (11, 19). As for the DC fungicide iprodione, resistance was 

rare despite the fact that it had been registered for over 30 years. However strawberry 

producers have not been using iprodione or used it rarely, due to its label restricted use of 

one application prior to bloom. Although more applications are available to blackberry 

growers, the compound is not commonly used. In addition, multiple-genes could be 

involved in the development of resistance to DC fungicides, explaining the slower shift 

toward resistance (113). 

  Resistance to fludioxonil has only been described in isolates from grapevines in 

Germany (76), some apple isolates from apple in Washington State (141), and one isolate 

from strawberry in Virginia (31). The EC50 values for fludioxonil in resistant isolates 

ranged from 0.04 to 1.5 µg/ml based on sampling location and assay method: Germany 

(1.5 µg/ml, germination assay), Washington (0.04 µg/ml, mycelia growth assay), and 

Virginia (0.26 µg/ml. germination assay). Isolates with resistance to fludioxonil possessed 

fitness penalties (141), which may explain the lack or low frequency of fludioxonil-

resistant isolates in B. cinerea populations (32, 76). Both isolates from orchard KC that 

were resistant to fludioxonil were also resistant to thiophanate-methyl, pyraclostrobin, 
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cyprodinil, and iprodione. Whether the fludioxonil-resistant strains described in this study 

are capable of causing significant yield loss following field applications of formulated 

product (i.e., Switch) is unclear. 

Consistent with results published for our strawberry isolates (33, 36, 51), resistance 

to thiophanate-methyl, pyraclostrobin, boscalid, and fenhexamid was without exception 

associated with target site mutations. The predominant mutation conferring resistance to 

fenhexamid in blackberry fields of the Carolinas was F412S. This was consistent with our 

investigation of B. cinerea from strawberry fields in the Carolinas, where F412S was found 

in 80.6 % of the isolates (51). In both studies the F412I mutation was found rarely. The 

resistance phenotype associated with the Y408H mutation combined with the P298 deletion 

is described here for the first time. Other mutations such as the T63I and F412C, found at 

low frequencies in isolates from strawberries resistant to fenhexamid (51), were not found 

in the blackberry isolates we examined. 

Although many mutations in the sdhB gene, such as H272L (79), P225L, and P225F 

(108), can cause resistance to SDHI fungicides, the predominant mutations in our 

collection were H272R and H272Y. Both genotypes were also the most prevalent found in 

our strawberry collection from the Carolinas (33). In both studies, the two mutations 

appeared at a ratio of 2 to 1. This may indicate a slight fitness advantage of genotype 

H272R, as described previously (117), or may be evidence that the blackberry and 

strawberry populations share a common habitat and that there is an exchange of isolates 

among populations from different hosts. If this is true, it is more likely that the blackberry 
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populations provide inoculum for the strawberry populations, because blackberries are 

perennials while most strawberry varieties in the Carolinas are grown as annuals in plastic 

culture-production systems.  

The G143A mutation is the most frequently found and most powerful mutation in 

the cytochrome b protein conferring resistance to QoI fungicides (37). In this study, all 

isolates resistant to pyraclostrobin analyzed had the G143A mutation. The same mutation 

also was responsible for resistance to pyraclostrobin in B. cinerea from strawberry (33). 

Other point mutations, such as G143R were found to contribute to resistance in 

Pyrenophora spp., but were not present in our studies (104). The sole presence of G143A 

in B. cinerea isolates resistant to QoI fungicides further validates further the use of 

molecular techniques specific for the detection of the mutation in this pathogen. 

In our study, 87.5% of the blackberry isolates resistant to thiophanate-methyl 

contained the E198A mutation, which makes this mutation the most prevalent one in B. 

cinerea from blackberry and strawberry in the Carolinas (36). A total of 12.5% of the 

-tubulin gene. Variations at 

position 198 are commonly found in isolates highly resistant to thiophanate-methyl (6, 86), 

but the E198V mutation is rather rare. It was first reported in 2008 in isolates from various 

of hosts (i.e., cucumber, eggplant, tomato and ornamental crops) in Japan (3) and to the 

best of our knowledge it has never been identified anywhere else.  

In conclusion, this study shows that B. cinerea populations from blackberry and 

strawberry fields tend to have a single dominant fungicide resistance profile and that this 
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profile is represented by multiple fungicides in fields frequently sprayed with site specific 

fungicides. Multifungicide resistance likely evolved through stepwise selection and 

accumulation of resistance. The discovery of isolates resistant to fludioxonil and cyprodinil 

indicates that repeated application of Switch, may eventually select for resistance to both 

fungicides. The continued use of site-specific fungicides, applied as mixtures or in 

alternation, will likely increase the prevalence of strains resistant to multiple fungicides. 

This assumption will decrease the growers` ability to control gray mold in the future. New 

strategies may have to be implemented to delay the selection of multifungicide resistance. 

These strategies may include a more frugal use of site-specific fungicides, a more frequent 

use of multisite inhibitors, and emphasis on clean plant sources and sanitation. 
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Table 4.1. Phenotypic variation in fungicide resistance of Botrytis cinerea isolates from 

blackberry and strawberry fields in North and South Carolina 

No.

Resistance to

fungicide
a

CB
0

WM
<5

KC
>12

MC
>12

CO
>12

WIC
0

MV
<5

HP
<5

FLOR
<5

NC
N/A

GIK
>12

MOD
>12

SBY
>12

JEY
>12

KUD
>12

Total %

1 None 0SR 51 4 1 0 0 8 8 29 10 5 3 2 0 0 0 121 29.37

2 Py 1SR 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0.24

3 Tm 1SR 0 24 0 0 0 0 0 3 0 0 1 0 0 0 0 28 6.80

4 Tm-bo 2SR 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0.24

5 Tm-cy 2SR 0 0 0 0 0 2 0 0 0 0 1 0 0 0 0 3 0.73

6 Tm-py 2SR 0 2 1 0 0 3 0 0 0 0 2 0 1 0 0 9 2.18

7 Tm-ip-fl 3SR 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0.24

8 Tm-py-bo 3SR 0 7 33 3 19 2 1 0 1 0 6 3 3 2 8 88 21.36

9 Tm-py-cy 3SR 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 3 0.73

10 Tm-py-fe 3SR 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0.24

11 Tm-py-bo-cy 4SR 0 0 0 4 8 6 2 0 2 3 5 8 11 18 12 79 19.17

12 Tm-py-bo-fe 4SR 0 1 14 0 4 0 0 0 0 1 0 0 8 1 1 30 7.28

13 Tm-py-bo-ip 4SR 0 1 0 7 3 0 0 0 0 0 0 0 1 0 0 12 2.91

14 Tm-py-bo-cy-ip 5SR 0 1 0 1 0 0 0 0 0 0 0 0 1 2 0 5 1.21

15 Tm-py-bo-ip-fe 5SR 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0.24

16 Tm-py-bo-cy-fe 5SR 0 0 2 0 0 0 0 1 0 3 3 5 11 2 0 27 6.55

17 Tm-py-cy-ip-fl 5SR 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 2 0.49

Total       … 53 42 53 16 34 21 11 33 13 12 21 20 37 25 21 412 100.00

Number of isolatesb

Phenotype Single

resistances

(SR)

Blackberry field Strawberry field

apy = pyraclostrobin (QoI), tm = thiophanate methyl (MBC), bo = boscalid (SDHI), cy = 

cyprodinil (AP), ip = iprodione (DC), fl = fludioxonil (PP), fe = fenhexamid (HA). 

bnumbers in superscript following field names indicate the estimated number of sprays 

with site-specific fungicide per season. 

cthe number of isolates of a majority phenotype is displayed in bold. 

 

 

 

 

 

 

 



 81 

Table 4.2. Fungicide-resistant phenotypes in North and South Carolinia blackberry fields 

No. %

Single

resistances Tm Py Bo Cy Fe Ip Fl

56 28.3 0SR S S S S S S S

1 0.5 1SR S R S S S S S

24 12.1 1SR R S S S S S S

1 0.5 3SR R S S S S R LR

1 0.5 2SR R S R S S S S

3 1.5 2SR R R S S S S/LR S

1 0.5 3SR R R S S R S S

2 1.0 5SR R R S R S R MR

70 35.4 3SR R R R S S S/LR S

21 10.6 4SR R R R S R S/LR S

2 1.0 4SR R R R S S R S

14 7.1 4SR R R R R S S/LR S

2 1.0 5SR R R R R R S/LR S

Isolates Phenotype*

*Tm = thiophanate methyl (MBC), py = pyraclostrobin (QoI), bo = boscalid (SDHI), cy = 

cyprodinil (AP), fe = fenhexamid (HA), ip = iprodione (DC), fl = fludioxonil (PP); S = 

sensitive, R = resistant, LR = low resistance, MR = medium resistance. 
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Table 4.3. Fungicide-resistant phenotypes in North and South Carolinia strawberry fields 

No. %

Single

resistances Tm Py Bo Cy Fe Ip Fl

65 30.4 0SR S S S S S S S

4 1.9 1SR R S S S S S S

3 1.4 2SR R S S R S S S

6 2.8 2SR R R S S S S/LR S

3 1.4 3SR R R S R S LR S

26 12.1 3SR R R R S S S/LR S

11 5.1 4SR R R R S R S/LR S

1 0.5 4SR R R R S S R S

67 31.3 4SR R R R R S S/LR S

3 1.4 5SR R R R R S R S

25 11.7 5SR R R R R R S/LR S

Isolates Phenotype*

*Tm = thiophanate methyl (MBC), py = pyraclostrobin (QoI), bo = boscalid (SDHI), cy = 

cyprodinil (AP), fe = fenhexamid (HA), ip = iprodione (DC), fl = fludioxonil (PP); S = 

sensitive, R = resistant, LR = low resistance. 
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Table 4.4. Mutations in target genes in blackberry isolates of Botrytis cinerea resistant to 

thiophanate-methyl, boscalid, pyraclostrobin, and fenhexamid 

Cytochrome b (n=93)

E198A E198V H272Y H272R G143A F412I F412S

Y408H &

deletion

P298

number 119 17 8 16 93 4 18 1

% 87.5 12.5 33.3 66.7 100 17.4 78.3 4.3

Amino acid substitutions in target genes

β -tubulin (n=136) SdhB (n=24) Erg27 (n=23)
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Fig. 4.1. Occurrence and prevalence of single resistances (SR) in Botrytis cinerea isolates 

from blackberry farms in North and South Carolina. The circle diameter corresponds to 

the number of isolates tested in each location. 
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Fig. 4.2. Occurrence and prevalence of single resistance (SR) in Botrytis cinerea isolates 

from strawberry fields in North and South Carolina. The circle diameter corresponds to 

the number of isolates tested in each location, which is also indicated in parenthesis. The 

black arrow indicates the center of the circle for commercial field JEY. 
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Fig. 4.3. Statistical model indicating bias toward the evolution of phenotypic fungicide 

resistance patterns in Botrytis cinerea from strawberry and blackberry fields. An asterisk 

(*) indicates the probability of resistance (R) in the subpopulation, which derived from a 

previous R population is significantly higher (chi-square test; p-value <0.05) than the 

probability of R in the over-all population for a certain fungicide. The number above or 

below the box indicates the ratio of that phenotype derived from the previous population. 

The numbers in parenthesis in the box indicates the isolate number in that group.  The 

bottom line indicates the fungicide (tm = thiophante-methyl, py = pyraclostrobin, bo = 

boscalid, cy = cyprodinil, and fe = fenhexamid) in each selection stage and below is the 

resistant ratio in over-all population to that fungicide. 
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Fig. 4.4. Simplified representation of standard population genetics theory showing 

stepwise selection and accumulation of single resistances. A genotype (gray circle) with 

preexisting resistance to chemical class A is emerging from a genetically diverse 

population. The process of application of fungicides of chemical class A (gray arrow) and 

recovery (white arrow) selects for genotypes resistant to chemical class A and allows for 

diversification of the population. The introduction of chemical class B (black arrow) in 

rotation or mixture with A allows for the selection of pre-existing phenotypes with dual 
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resistance (combined gray and black circle). The single, empty circle outside the boxes 

indicates influx of genotypes from the outside. 
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CHAPTER FIVE 

  

RESISTANCE TO FLUDIOXONIL IN BOTRYTIS CINEREA ISOLATES FROM 

BLACKBERRY AND STRAWBERRY 

 

 

This work has been published: 

X.P. Li, D. Fernández-Ortuño, A. Grabke and G. Schnabel. 2014. Resistance to Fludioxonil 

in Botrytis cinerea Isolates from Blackberry and Strawberry. Phytopathology. 104:724-732. 

["Fungal isolates and culture conditions" of strawberry and blackberry isolates were 

performed by Dr. Dolores Fernández-Ortuño and Xingpeng Li, respectively; "RNA 

extraction and cDNA synthesis" was performed by Xingpeng Li and Anja Grabke] 

 

Abstract 

Site-specific fungicides, including the phenylpyrrole fludioxonil, are frequently 

used for gray mold control but are at risk for the development of resistance. In this study 

field isolates with low resistance (LR) and moderate resistance (MR) to fludioxonil from 

blackberry and strawberry fields of North Carolina, South Carolina, and Virginia were 

characterized. Genes involved in osmoregulation, including bcsak1, BcOS4, bos5 and 

BRRG-1, were cloned and sequenced to detect potential target gene alterations, but none 

were found. A previously described mutation (R632I) in transcription factor Mrr1, which 

is known to increase the expression of ABC transporter AtrB, was found in MR but not in 

sensitive (S) or LR isolates. Expression of atrB in MR isolates was about 200-fold 
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increased compared to a sensitive isolate, but 30 to 100-fold overexpression was also 

detected in LR isolates. Both MR isolates exhibited increased sensitivity to salt stress in 

form of mycelial growth inhibition at 4% NaCl, indicating a disruption of osmoregulatory 

processes in those strains. However, the glycerol content was indistinguishable between S, 

LR and MR isolates with and without exposure to fludioxonil suggesting that the glycerol 

synthesis pathway may not be a part of the resistance mechanism in LR or MR strains. An 

investigation into the origin of LR and MR isolates from blackberry revealed two insertions 

in the mrr1 gene consistent with those found in the Botrytis clade group S. The emergence 

of strains overexpressing atrB in European and now in North American strawberry fields 

underscores the importance of this resistance mechanism for resistance development to 

fludioxonil in B. cinerea.  

 

Introduction 

Fludioxonil is a phenylpyrrole fungicide with broad spectrum activity against 

fungal plant pathogens among ascomycetes and basidiomycetes (45). Fludioxonil is 

effective against most diseases of seeds, including seedling blight, stem-base browning, 

snow mold, and common bunt. It is very effective against Botrytis cinerea Pers.:Fr, the 

causal agent of gray mold disease of many vegetables and small fruits, and inhibits both 

mycelial growth and spore germination (78). It is registered in the United States against 

various post-harvest rots of pome fruits, stone fruits, and sweet potato. Fludioxonil was 
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first registered in 2002 and is listed under Fungicide Resistance Action Committee (FRAC) 

code 12 with FRAC resistance risk category low to medium.  

Resistance in B. cinerea to fludioxonil is rarely found in the field (32, 80, 119) 

worldwide. One isolate from apples grown in Washington State exhibited moderate 

resistance (MR) to fludioxonil but were impaired in fitness and pathogenicity on apple fruit 

(141). Isolates with reduced sensitivity to fludioxonil were found in strawberry fields in 

Virginia (31) , Maryland and South Carolina (34). Low resistant (LR) and MR B. cinerea 

isolates were reported from European small fruits, including strawberry (73, 76) and 

grapevines (73, 75, 90). The EC50 values for isolates with MR to fludioxonil from Germany 

and Washington ranged from 0.04 to 1.5 µg/ml depending on the evaluation method (76, 

141). High levels of resistance to fludioxonil have not been reported in the field, probably 

due to fitness penalty in such isolates (14, 80).  

The precise mode of action of fludioxonil is still unknown, but fludioxonil 

treatment induced cell death in filamentous fungi by improperly activating the Hog1-type 

mitogen-activated protein kinase (MAPK) (71, 135, 140), indicating possible disruption of 

the osmoregulation pathway. High levels of fludioxonil resistance in laboratory mutants 

are linked to enzymes involved in osmoregulation pathway, such as histidine-kinases (HK) 

and specifically the group III HK is considered to be a target for fludioxonil in yeast and 

filamentous fungi (5, 56, 94, 135). Some evidence was provided for fludioxonil resistance 

to be linked to at least two different genes (119). Genes assumed to be involved in 

osmoregulation in B. cinerea were identified by gene disruption and include bos1 (), bcsak1 
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(102), BcOS4 (132), bos5 (131) and BRRG-1 (130). Corresponding knock out mutants 

revealed reduced salt tolerance and increased resistance to fludioxonil. Hypersensitivity to 

osmotic stress has also been associated with lack of glycerol accumulation and resistance 

to the fludioxonil (68). 

Moderate resistance to fludioxonil in B. cinerea is associated with the multidrug 

resistance phenotypes MDR1 and MDR1h (73, 76). Both phenotypes are associated with 

overexpression of the ATP-binding cassette (ABC) transporter gene atrB and mutations in 

transcription factor Mrr1 (73, 118). While MDR1 phenotypes express atrB about 50- fold, 

MDR1h phenotypes express atrB at even higher levels (76). The overexpression of two 

other multidrug transporters has been linked to multifungicide resistance in B. cinerea, 

including mfsM2 and atrD. MfsM2 belongs to the major facilitator superfamily (MFS) and 

overexpression is associated with increased resistance to multiple fungicides (designated 

MDR2), including low levels of resistance to fludioxonil (17). AtrD is an ATP-binding 

cassette (ABC) transporter that was linked previously to azole resistance in strains of 

B. cinerea (59, 60).  

  As part of a region wide fungicide resistance monitoring program involving 

B. cinerea from blackberry and strawberry, we identified several isolates MR and LR to 

fludioxonil. The goal of this study was to characterize the molecular basis of resistance to 

fludioxonil in these isolates. Specific objectives were to investigate (i) potential alterations 

in genes involved in osmoregulation and promoter rearrangements upstream mfsM2, (ii) 

overexpression of atrB and atrD, (iii) glycerol synthesis and hypersensitivity to salt stress, 
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and (iv) fitness components and cross resistance with dicarboxamide fungicide iprodione 

in isolates LR and MR to fludioxonil. 

 

Material and Methods 

Isolates and fungicides. B. cinerea isolates were isolated from North and South 

Carolina blackberry fields, a Virginia strawberry field, and obtained from Germany (Table 

5.1.). Single spore isolations from symptomatic blackberry and strawberry fruits were 

conducted as described previously (81). B. cinerea strain Do9_K_A31 (designated Do9 in 

this study) from a strawberry field in Germany was obtained from Dr. Matthias Hahn, 

University of Kaiserslautern, Kaiserslautern, Germany and used as multi-drug resistance 

type 1 (MDR1h), group S reference strain (76). Formulated fludioxonil (Scholar SC 

fungicide, Syngenta, Research Triangle Park, Raleigh, NC; 20.4% a.i. vol/vol) and 

iprodione (Rovral 4 FL, Bayer CropScience, Research Triangle Park, NC; 41% a.i. vol/vol) 

were used to determine sensitivities to these fungicides in vitro. Tolnaftate and 

cycloheximide were purchased from Sigma-Aldrich (St. Louis, MO), dissolved in 100% 

ethanol, and diluted in ultra-purified water before added to the liquid medium. Fungicide 

stock solutions were adjusted to keep final solvent concentrations below 1.5% (vol/vol). 

No significant growth inhibition was observed for strains on media with less than 1.5% 

ethanol (73, 90). 

Fungicide sensitivity tests. Fungicide sensitivity categories to fludioxonil and 

iprodione were determined using a spore germination assay (50, 125). The effective doses 
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that inhibit 50% of mycelial growth (EC50 values) were determined as described previously 

(73) with minor modifications. Briefly, 5000 spores were transferred to 0.1 ml 96-

microplate cultures. Final concentrations for all compounds were 10, 3, 1, 0.3, 0.1, 0.03, 

and 0.01 µg/ml. Tests were performed in malt extract broth. After 48 h of incubation at 

22oC in darkness, the optical density at wavelength A600 was determined. The experiment 

was repeated.  

DNA extraction, amplification and sequencing of mrr1 and the mfsM2 promoter 

regions. DNA was extracted as described previously (16). The mrr1 gene was amplified in 

two parts; the upstream region was amplified with primers mrr1_atg and TF1-2_new and 

the downstream region was amplified with TF1-3_new and TF1-4 (76). The mfsM2 

promoter region of B. cinerea was amplified with primers Prom_Mfs2_1fw and 

Prom_Mfs2_2rev (73). Fragments were separated on a 1.5% agarose gel, stained with 

ethidium bromide, and visualized under UV-light. The fragment sizes of PCR products 

were verified by comparison to a Low Range Plus DNA Ladder (Fisher Scientific, 

Waltham, MA). The PCR products were purified using the ExoSAP-IT Purification Kit 

(USB Corporation, Cleveland, Ohio) following manufacturers recommendations. Purified 

products were sequenced at Clemson University Genomic Center (Clemson, SC). 

Nucleotide sequences were analyzed, assembled, and aligned with DNASTAR sequence 

analysis software (DNASTAR, Inc., Madison, WI). B. cinerea strain T4 genome sequences 

were obtained from Genbank, accession number FQ790286.1. 

RNA extraction and gene expression analysis. Isolates were grown on potato 
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dextrose agar medium (PDA; Difco Laboratories, Sparks, MD) in 9-cm in diameter Petri 

dishes for 10 to 14 days at 22oC with 12 h intervals of fluorescent light and darkness. 

Conidia were gently scraped off with a sterile, disposable 10 µl inoculation loop (VWR 

International LLC, Radnor, PA) without touching the agar. Then spores were suspended in 

2 ml potato dextrose broth (PDB) with final spore concentration between 1 to 5×105 in 6 

cm diameter Petri dishes. The spores were incubated for 14.5 h on a shaker with 100 rpm 

at 22oC. The germlings were incubated for another 30 min in the petri-dish either with or 

without fludioxonil at a final concentration of 1 mg/liter. For RNA isolation, the germlings 

with the medium were transferred to a 2 ml centrifuge tube and centrifuged for 10,000 rpm 

for 4 min. The pellet was washed twice with autoclaved, distilled water. Total fungal RNA 

was isolated using the MasterPureTM Yeast RNA Purification Kit (EpiCentre Pte. Ltd. 

Madison, WI), the RNA quality was checked and quantified by spectrophotometric 

analysis with a NanoDrop 2000 Spectrophotometer (Thermo Scientific, Waltham, MA). 

The RNA was then reverse transcribed into cDNA (iScriptTM Cdna Synthesis Kit, Bio-

Rad Laboratories, Inc., Hercules, CA). Quantitative RT-PCR was performed as described 

previously (50) with the exception that we used primers atrBfor / atrBrev and atrDfor/ 

atrDrev for AtrB and AtrD expression analysis, respectively, following published 

amplification protocols (73). Expression of the genes was calculated according to Pfaffel 

(99). Transcript levels were normalized against the expression levels of housekeeping 

genes encoding elongation factor 1α (BC1G_09492.1) and shown as normalized fold-

expression levels of non-induced germlings from sensitive (S) strains. Means of at least 
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two biological replicates are shown. Three technical replicates of PCR reaction were used 

for each biological replicate. 

Salt tolerance and determination of glycerol content in germlings. Salt tolerance 

was investigated on 4% NaCl-amended minimal medium. A 5-mm-diameter mycelial plug 

taken from 3-day-old culture grown on PDA was transferred to the center of the amended 

medium and dishes were incubated at 22°C in the dark. The colony diameter was measured 

after 3 days of incubation with three replicates per isolate. Mean colony diameter was used 

to calculate mycelia growth inhibition rate. The experiment was repeated.  

The glycerol content was determined in germlings of S, LR, and MR isolates to 

assess involvement of osmoregulation in the resistance mechanism. Conidia were 

suspended in 2 ml of PDB in 6 cm diameter Petri dishes with a final concentration of 1×105 

per ml. Four dishes per isolate per treatment were incubated for 48 h on a shaker with 100 

rpm at 22oC. The germlings were incubated for another 1.5 h in the dishes either with or 

without fludioxonil at a final concentration of 1 mg/liter. The medium containing the 

germlings was transferred to a 2 ml impact resistant screw cap tube (USA Scientific, Inc. 

Orlando, FL) and centrifuged at 12,000 rpm for 10 min. Medium was removed and the 

pellet was washed twice with autoclaved distilled water. The volume for each sample was 

adjusted to 1 ml with water and ground at 4 m/s for 40 s using a FastPrep-24 Tissue and 

Cell Homogenizer (MP Biomedicals, Solon, OH). Samples were then centrifuged for 10 

min at 12,000 rpm and the glycerol content in the supernatant was determined using 

EnzyChromTM Glycerol Assay Kit following the manufacturer’s instruction. After all of 
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the supernatant was removed, the precipitated cell debris was completely dried in an oven 

for 24 h at 60 oC.The experiments were repeated two times.  

Detection of mutations in the bcsak1, BcOS4, bos5 and BRRG-1 genes. Nucleotide 

sequences of osmotic regulator genes bcsak1 (102), BcOS4 (132), bos5 (131) and BRRG-

1 (130) were amplified by PCR from fludioxonil S, LR and MR isolates. Two overlapping 

fragments of bcsak1 were amplified with primer pairs SAK1F-f 

(TACCCACTCAACCACCAAC)/SAK1F-r (ATCTTGAATACGGGCGAG) / SAK1B-f 

(GCTGGTCCTGGAGATACTAAGA) /SAK1B-r (AAGCACAAGAGAGCACTCCT). 

These two fragments were assembled into one contiguous sequence covering the entire 

gene. The core sequence of BcOS4 was amplified with primer pair BOS4C-f 

(GCTGACGATGAGGAATCA) / BOS4C-r (GTGCTGTAAACACCGACA). The 

primers were designed based on the B. cinerea T4 genome sequences (2). The bos5 and 

BRRG-1 genes were amplified with primer pairs Os5-F1 / Os5-R1 (131) and Rrg-F1 / Rrg-

R1, respectively (130).  

Assessment of fitness and pathogenicity on fungicide-treated fruit. The following 

fitness components were investigated for isolates sensitive and resistant to fludioxonil and 

iprodione. All experiments were repeated.  

Mycelial growth on PDA. PDA dishes were inoculated with a 5-mm-diameter 

mycelial plug taken from 7-day-old culture grown on PDA. The dishes were incubated at 

22°C in the dark. The colony diameter was measured after 3 days of incubation with three 

replicates per isolate. Mean colony diameter was calculated for growth rate determination.  
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Pathogenicity on untreated and fungicide-treated detached fruit. Pathogenicity of 

each isolate was confirmed by determining its ability to infect and sporulate on strawberry 

fruit. Commercially grown ripe strawberry fruit were rinsed with sterile water three times 

for 30 s each and allowed to air dry. Then, they were placed into plastic boxes (8 

strawberries per box for each of the three replicates). When the fruit surface had dried off, 

each fruit was punctured at one point to a depth of 9.5 mm using a 26G3/8 9.5-mm beveled 

syringe tip (Becton Dickson & Co.). The wounds were injected with a 30 µl-droplet of 

conidia suspension (106 spores/ml) prepared in distilled sterile water using the same type 

of syringe. Most of the conidia suspension formed a droplet on top of the wounded area. 

After inoculation, the boxes were kept at 22°C. During the first 24 hrs the boxes were 

sealed with plastic bags to keep the relative humidity high. After 4 days the lesion diameters 

were measured. 

 The ability of isolates resistant to fludioxonil and iprodione to cause disease on 

fruit treated with fungicides was assessed. Experiments were performed as described above 

for pathogenicity tests with minor modifications. Strawberry fruit were sprayed 4 h prior 

to inoculation with the recommended label rate of the fungicides Scholar SC (2.5 ml/L), 

Switch 62.5WG (1.9 g/L; combination of fludioxonil 25% vol/vol and cyprodinil 37.5% 

vol/vol) and Rovral 4 Flowable (2.5 ml/L), using a hand mister to run off. Control fruit 

were sprayed with sterile distilled water. After 4 days of inoculation the absence or 

presence of sporulating lesions was assessed and the lesion diameters were measured and 

calculated as percent of the control. The experiment was repeated. 
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Data analysis. Statistical analysis was performed related to the in vitro and in vivo 

responses (growth rate, lesion size, disease incidence, control efficacy and relative 

expression of atrB and atrD genes) to the experimental factors of experimental replication, 

isolate or fungicide treatment. Significant differences were determined through Tukey 

HSD test. All calculations were performed by IBM SPSS Statistics, version 19. (IBM SPSS, 

Armonk, NY) and all tests were performed with α = 0.05 except described otherwise. 

 

Results 

Sensitivity of isolates to fludioxonil and iprodione in vitro. In our collection of 412 

B. cinerea isolates from blackberry and strawberry only four isolates were resistant to 

fludioxonil. Two (Wland1 and CB82a) were categorized as LR based on their ability to 

germinate on 1 μg/ml fludioxonil and two (KC25 and KC33) as MR based on their ability 

to germinate on 1 μg/ml fludioxonil and residual growth on 10 μg/ml. EC50 values 

determined in microtiter assays were 0.16 and 0.26 μg/ml for LR isolates and 0.32 and 0.38 

μg/ml for MR isolates. Fludioxonil LR/MR but not S isolates were resistant to tolnaftate 

and all were sensitive to cycloheximide consistent with the MDR1 phenotype. Together 

with two S isolates, the four LR and MR isolates were also investigated for iprodione 

sensitivity because phenylpyrroles and dicarboxamides are believed to both target proteins 

involved in osmotic regulation. All isolates LR and MR to fludioxonil were also resistant 

(R) to iprodione, but some fludioxonil-sensitive isolates were LR to iprodione (Table 5.2.).  
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Expression of multidrug transporter genes atrB and atrD in isolates with different 

fludioxonil sensitivity phenotypes. The atrB genes of MR isolates from blackberry (KC25 

and KC33) and MDR1h reference isolate Do9 were expressed at approximately 200-fold 

the level of the sensitive isolates (Fig. 5.1.). Lower expression levels were found for all 

other phenotypes. The atrB expression levels of LR isolates Wland1 and CB82a were 30 

and 100-fold increased compared to the S isolate, respectively (Fig. 5.1.). Fludioxonil 

exposure prior to RNA extraction increased expression of four of the six isolates regardless 

of their phenotype. They included S isolate CB3a, LR isolate Wland1, and MR isolates 

KC33 and MDR1h reference isolate Do9.  

Analysis of atrD gene expression was conducted because previous reports noted 

overexpression of this gene in association with multidrug resistance phenotypes (59, 60). 

In this study, the expression of atrD was not different among fludioxonil S, LR and MR 

isolates in untreated or fludioxonil-treated germlings (Fig. 5.2.). Interestingly, the 

expression of atrD in treated germlings was reduced by more than 50% in all isolates after 

fludioxonil treatment. 

Mutations in the transcription factor mrr1 and the promoter sequences of mfsM2 in 

strains LR/MR to fludioxonil. Certain mutations in transcription factor Mrr1 influence atrB 

expression. Therefore mrr1 was sequenced in its entirety from strawberry isolate Wland1 

and six blackberry isolates representing sensitive and resistant phenotypes. The mrr1 

coding regions (including introns) of two sensitive isolates from blackberry (MC14 and 

KC20) were 2444 bp in length and encoded identical amino acid (aa) sequences compare 
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to reference isolate T4 with the exception of two aa variation (L475S and M483V) in isolate 

MC14 (Fig. 5.3.). Sensitive isolate CB3a had an mrr1 gene sequence of 2477 bp in length 

and revealed several aa variations compared to T4. The mrr1 coding region of isolates with 

resistance phenotypes were 2444 bp, 2483 bp and 2489 bp in size for isolates Wland1, 

CB82a, and KC25 and KC33 (both 2489 bp), respectively. Two insertions characteristic 

for group S isolates, 18 bp and 21 bp in length, were discovered in one S, the LR, and both 

MR isolates from blackberry (Fig. 5.3.). Group S isolates were considered a special clade 

of B. cinerea and genetically different from the isolates studied (76). In our study, there 

were only five aa variations among non-group S isolates, but considerably more (about 13 

on average) among group S isolates. The most diversity (up to 38 aa variations) among 

mrr1 gene sequences was found between non-group S and group S isolates. The MDR1-

associated mutation R632I was the only mutation uniquely associated with the fludioxonil 

MR phenotype (Fig. 5.3.). No point mutations or insertions were detected in the mfsM2 

promoter region of isolates LR or MR to fludioxonil.  

Evaluation of salt tolerance and glycerol content. Changes in osmo-regulatory 

pathways conferring resistance to PP and DCs may also influence osmotic sensitivity (44, 

67, 93, 129). Isolates MR to fludioxonil were significantly more susceptible to salt stress 

compared to fludioxonil LR and S isolates (Fig. 5.4.). The sensitivity varied among S 

isolates, with a range of 25 to 40% inhibition. One of each fludioxonil sensitivity phenotype 

(S, LR, and MR) was subjected to a glycerol content analysis. The three representative 

isolates roughly produced similar amounts of glycerol in germlings (Fig. 5.5.). Exposure 
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of germlings to fludioxonil prior to extraction increased glycerol content about 4-fold in 

all isolates regardless of the phenotype.  

Sequencing of genes involved in the osmotic signal transduction pathway. We 

sequenced large portions of the bcsak1 (1669 bp), bos5 (1880 bp), and BRRG-1 (1655 bp) 

genes and the core region of the BcOS4 (1091 bp) gene for the presence of point mutations 

in S, LR, and MR isolates. No point mutations were identified that were uniquely 

associated with the fludioxonil LR or MR phenotype (data not shown). Both MR isolates 

had a 5 bp deletion in an intron at nucleotide position 1261 of the bcsak1 gene (data not 

shown), the sequences from one S and one MR isolate was submitted to Genbank 

(accession numbers KF964016 (CB3a) and KF964017 (KC25)). Analysis of 45 fludioxonil 

S isolates that originated from the same site as the MR isolates (location KC), and 11, 16, 

4, and 24 isolates from locations MC, CO, CA, and WM, respectively, revealed that the 

deletion was unique to the MR isolates (data not shown). However, the deletion was absent 

in the fludioxonil MR reference strain from Germany, suggesting that the deletion is not 

linked to the MDR1 phenotype.  

Fitness components of isolates S, LR, and MR to fludioxonil. Cross resistance 

between phenylpyrroles and dicarboxamides is common because products of both 

fungicide classes are believed to be involved in the inhibition of proteins involved in 

osmotic signal transduction. All isolates LR and MR to fludioxonil were also resistant to 

iprodione. The fludioxonil S isolates however, revealed various iprodione sensitivity 

phenotypes (Table 5.2.). There were no significant differences in mycelial growth rates and 
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lesion size between sensitive isolates and fludioxonil LR and MR isolates, with one 

exception. Mycelium growth was slower for isolate KC25 compared to most isolates 

including 4 sensitive and 2 dual resistant isolates (Table 5.2.). The same isolate also 

produced a significantly smaller lesion (p<0.05) size on inoculated fruit compared to all 

other isolates. The other MR isolate, KC33, did not suffer a fitness penalty in our study. 

All sensitive and resistant isolates were able to produce sporulating lesions on detached 

fruit (Table 5.2.).  

The ability of fludioxonil S, LR, and MR isolates to cause disease on fruit sprayed 

with fungicides was assessed to determine if these isolates can withstand label rates of 

fungicide. Isolates sensitive to fludioxonil were completely controlled with Scholar SC 

fungicide, but fludioxonil LR and MR isolates developed disease with sporulating lesions. 

Both isolates MR to fludioxonil were also able to develop sporulating lesions on fruit 

treated with Switch 62.5WG, a commercially available combination product of fludioxonil 

and AP fungicide cyprodinil indicating that the AP fungicide component in this mixture 

did not prevent disease formation. This is consistent with the in vitro resistance to 

cyprodinil and fludioxonil and the MDR1 phenotype. Isolates resistant to iprodione in vitro, 

including the isolates resistant to both iprodione and fludioxonil, developed disease with 

sporulating lesions on fruit treated with label rates of Rovral 4 Flowable. The isolates 

sensitive to iprodione were almost completely controlled in the Rovral 4 Flowable 

treatment (Table 5.2.).  
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Discussion 

While resistance in B. cinerea to many classes of fungicides including 

benzimidazoles, quinone outside inhibitors, succinate dehydrogenase inhibitors, 

hydroxyanalides, anilinopyrimidines and dicarboxamides is fairly common (7, 74, 75, 76, 

124), resistance to phenylpyrroles including fludioxonil is still rare. In this study we show 

that resistance to fludioxonil is emerging in small fruit crops in the Eastern United States. 

Resistance to fludioxonil is likely to increase in light of resistance problems with many 

other compounds of different modes of action. The low frequencies of isolates LR and MR 

to fludioxonil in our collection of 412 isolates from blackberry and strawberry is consistent 

with other studies that found that fludioxonil resistance is either absent or rare in 

Southeastern strawberry fields (31, 32) and that it is likely not of practical relevance for 

fruit growers at this time. The low frequency of LR and MR isolates validates that 

phenylpyrroles are still valuable tools for rotations or mixtures with other site-specific 

fungicides for effective gray mold control. However, the here documented emergence of 

such strains in United States berry crop production fields should be considered in disease 

management strategies meant to delay selection. Examples already exist where large 

portions of field isolates gained partial resistance to fludioxonil due to fungicide selection 

(76).  

In this study, the EC50 values for fludioxonil in MR isolates were comparable to 

those found in isolates from strawberry (73, 76) and grapevines (73, 75, 90) in Europe. MR 

to fludioxonil in B. cinerea isolates from European grapes was designated MDR1 and 
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conferred by mutation R632I in transcription factor Mrr1 leading to overexpression of 

ABC transporter gene atrB (73). Both MR isolates analyzed in this study contained the 

R632I mutation in Mrr1 associated with MDR1, but atrB overexpression levels were 

similar to MDR1h reference isolate Do9 (73, 118). MDR1h isolates revealed higher 

resistance levels to cyprodinil and fludioxonil with generally higher overexpression of atrB 

compared to MDR1 (76). Our isolates, however, did not possess the MDR1h`s signature 

L497 deletion in Mrr1 (23). This suggests that this deletion may not exclusively be 

responsible for the high levels of atrB overexpression. MR isolates were resistant to 

tolnaftate, but sensitive to cyclohexamide further confirming the MDR1 phenotype (73). 

The existence of MDR1 in the United States suggests that this resistance mechanism is 

important for the adaptation of B. cinerea to fludioxonil pressure. Because of the great 

distance between the two continents, the Atlantic Ocean separating the two land masses, 

and the significant genetic variation in the mrr1 gene between the German MDR1h 

reference strain and the isolates from the USA (data not shown), it is likely that the same 

resistance mechanism developed independently in the two continents.  

The LR phenotype may be caused by overexpression of atrB as well, albeit at a 

lower expression level (up to 100-fold in this study). However, variations associated with 

the MDR1 or MDR1h phenotypes were not found in the mrr1 genes of LR isolates. An 

investigation into genes involved in osmotic regulation, including bcsak1, bos5, BcOS4 

and BRRG-1, revealed no nucleotide variations associated with resistance between S, LR, 

or MR isolates. Furthermore we found no evidence in MR or LR isolates that would suggest 
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involvement of the MDR2 genotype, which is characterized by promoter region 

rearrangements upstream the mfsM2 promoter region and reduced sensitivity to 

cycloheximide (data not shown) (73).  

The lack of fitness cost of isolate KC33 MR to fludioxonil in this study indicates 

that overexpression of atrB may not necessarily come with a fitness cost. However, MR 

isolate KC25 did have slower growth rates on fruit, which is consistent with reports for a 

fludioxonil-resistant P. expansum field isolate (80). Laboratory mutants of B. cinerea 

revealed two types of fludioxonil-resistant phenotype; one resistant to osmotic stress 

(FLDosm/r) and another sensitive to high osmotic stress (FLDosm/s). Only FLDosm/s had 

fitness cost (142) that was later confirmed in field studies (141). In this study, both MR 

isolates were hypersensitive to salt in form of exposure to 4% NaCl despite having different 

fitness phenotypes. Neither salt stress hypersensitivity, nor a linkage to iprodione resistance 

has been reported for MDR1 and MDR1h strains before, and are not necessarily expected 

because MDR phenotypes are purely based on efflux transporter overexpression. Whether 

hypersensitivity to salt stress and MR to fludioxonil are linked is unknown due to the low 

sample size investigated in this study. If they are linked, it could be exploited for 

management purposes. The increased sensitivity to salt stress was not associated with 

mutations in the bcsak1, bos5, BRRG-1, and BcOS4 genes involved in the osmoregulation 

pathway (data not shown). It is possible that their expression pattern or other genes 

involved in osmoregulation are responsible for this phenotype. Increased sensitivity to salt 

stress was also found in Botrytis isolates from apple orchards in Washington State (141). 
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Numerous studies reported the linkage of the fludioxonil-resistant phenotype and 

hypersensitivity to salt stress in laboratory mutants with dysfunctional genes involved in 

osmoregulation in Neurospora crassa (43, 44, 93) as well as in B. cinerea (38, 102, 130, 

131, 132). Previous studies on the mode of actions of phenylpyrrole fungicides in N. crassa 

indicated that this class of fungicides affects the osmotic signal transduction pathway (43) 

and our results indicate that this mode of action is also true for B. cinerea.  

All isolates, regardless of fludioxonil resistance phenotype, accumulated glycerol 

when exposed to fludioxonil, which increases the internal turgor pressure. In other fungi 

the exposure to fludioxonil increased the intracellular glycerol content for both sensitive 

and moderately resistant isolates but not highly resistant isolates in Penicillium digitatum 

(68). The authors concluded that the mode of action of fludioxonil in P. digitatum is 

probably the mitogen-activated protein kinase pathway that stimulates glycerol synthesis 

in S and MR. We saw the same phenomenon in our S, LR, and MR isolates, which confirms 

the involvement of fludioxonil in the mitogen-activated protein kinase pathway in B. 

cinerea, but also suggests that the mechanism conferring LR and MR may not be directly 

associated with the regulation of glycerol synthesis.  

We focused our mrr1 gene analysis on characterization of fludioxonil phenotypes 

and therefore sequenced 3 S, 2  LR (one from blackberry and one from strawberry) and 2 

MR isolates. Among those strains, 1 S, 1 LR (blackberry) and 2 MR contained the B. 

cinerea group S signature consistent of two insertions (18 bp and 21 bp) in mrr1 (Fig. 5.3.), 

which were first identified in isolates from German strawberry fields (76). Thus far, group 
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S isolates from Germany have been exclusively found in strawberry fields and are believed 

to be a result of differential host adaptation and/or reduced genetic exchange (76). The 

presence of group S and non-group S strains in populations from blackberry in this study 

would indicate that group S strains are not a result of host adaptation. Group S strains might 

be sexually isolated from other clades as suggested above, given the large numbers of aa 

variation in group S compared to the non-group S strains. However, many more isolates 

and different genes would need to be sequenced to validate this hypothesis.  

The LR and MR phenotypes were capable of developing disease on fruit sprayed 

with label rates of Switch 62.5WG, Scholar SC, or Rovral 4 Flowable. Together with our 

fitness data, this indicates that these resistance phenotypes are likely being selected for by 

these fungicides in the field and that they may be able to compete with sensitive isolates in 

the absence of selection pressure. This finding is consistent with a study from Germany 

that showed establishment of MDR-like phenotypes in both vineyards and strawberry fields 

after application of different spray programs containing Signum (pyraclostrobin and 

boscalid), Teldor (fenhexamid) and Switch 62.5WG (76). 

In conclusion, B. cinerea strains with resistance to fludioxonil are emerging in 

strawberry and blackberry fields of the Southern United States. The mechanism of 

resistance in MR isolates is the same as described in European isolates emphasizing the 

importance and relevance of this mechanism of resistance for fludioxonil. However, the 

low number of isolates examined does not allow firm conclusions to what extent this 
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mechanisms of resistance is present in MR isolates. The role of atrB overexpression in LR 

isolates is still unclear.   
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Table 5.1. Name, origin, and host of isolates used in this study. 

Isolate name Origin Host 
Year of 

isolation 

CA25 South Carolina, US Blackberry 2010 

CB3a South Carolina, US Blackberry 2011 

CO5 South Carolina, US Blackberry 2010 

MC14 South Carolina, US Blackberry 2010 

WM14 South Carolina, US Blackberry 2010 

CO3a South Carolina, US Blackberry 2011 

CB82a South Carolina, US Blackberry 2011 

Wland1 Virginia, US Strawberry 2012 

KC25 North Carolina, US Blackberry 2011 

KC33 North Carolina, US Blackberry 2011 

Do9_K_A31 N/A, Germany Strawberry 2009 
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Table 5.2. Fitness components for Botrytis cinerea isolates sensitive (S), low-resistant 

(LR), moderate resistant (MR), or resistant to fludioxonil or iprodione 

Scholar Switch Rovral Scholar Switch Rovral

Isolates Fludioxonil Iprodione Fludioxonil Iprodione 3 dai
z

CA25 S S n/d n/d 7.3b 3.3b 100.0 0.0a n/d 0.01a 0.0 n/d 4.2a

CB3a S S 0.09 0.21 7.3ab 3.3b 100.0 0.0a 0.0 0.01a 0.0 0.0 2.7a

CO5 S LR n/d n/d 7.6b 3.0b 100.0 0.0a n/d 2.0bc 0.0 n/d 89.6b

MC14 S LR 0.06 3.09 7.4b 3.5b 100.0 0.0a n/d 2.5bcd 0.0 n/d 100.0b

WM14 S LR n/d n/d 7.4b 3.3b 100.0 0.0a n/d 1.9b 0.0 n/d 100.0b

CO3a S HR n/d n/d 7.2ab 3.5b 100.0 0.0a 0.0 2.7de 0.0 0.0 100.0b

CB82a LR HR 0.16
v 6.94 7.5b 3.2b 100.0 1.2b 0.0 2.5cd 100.0 0.0 100.0b

Wland1 LR HR 0.26
v 3.56 7.1ab 2.7a 100.0 1.7c n/d 2.2bcd 100.0 n/d 100b

KC25 MR HR 0.32
v >10 6.1a 2.8a 100.0 1.1b 1.8 2.4bcd 100.0 98.3 97.9b

KC33 MR HR 0.38
v >10 7.3b 3.3b 100.0 1.8c 1.5 3.2e 100.0 100.0 100.0b

Fitness components
w

Mycelial

growth (cm) Sporulating lesions (%)

Lesion size

(cm)

Sporulating

lesions (%)Phenotype
x EC50

y
 (mg/liter) Lesion size (cm)

4 dai 4 dai 4 dai

wNumbers in each column followed by the same letter are not significantly different at α = 

0.05 as determined by analysis of variance (ANOVA). Mean separation was conducted 

using Tukey test. 

xPhenotypes were determined based on a spore germination assay using fludioxonil at 0.1 

and 10 μg/ml and iprodione at 5 and 50 μg/ml (36). The phenotypic characterization (S, 

LR, MR or HR) for some of the isolates listed was reported in an earlier study from our lab 

(13). 

yEC50= fungicide concentration that reduced mycelial growth by 50%.  

zDai = Days after inoculation or transfer. 
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Fig. 5.1. Expression analysis of atrB determined by quantitative RT-PCR. Values 

indicate expression levels relative to the expression of sensitive strain CB3a (which was 

normalized to 1) with (gray bars) and without (white bars) fludioxonil treatment prior to 

RNA extraction.  
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Fig. 5.2. Expression analysis of atrD determined by quantitative RT-PCR. Values 

indicate expression levels relative to the expression of sensitive strain CB3a with (gray 

bars) and without (white bars) fludioxonil treatment prior to RNA extraction. 
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Fig. 5.3. Amino acid variations found in the transcription factor Mrr1 of isolates from 

strawberry and blackberry with different fungicide resistance phenotypes. Nucleotide 

insertions are indicated by ‘+’ followed by the number of inserted base pairs. Nucleotide 

deletions are indicated with a ‘Δ’ followed by the number of missing base pairs. 

B. cinerea group S isolates are marked with ‘*’ after the isolate name. Vertical lines 

indicate aa variations between group S and non-group S isolates. If the change was 

consistent among all isolates from the group S, the exact aa change is not indicated for 

simplicity reasons. The number of horizontal lines attached to the bottom of a vertical 



 116 

line corresponds to the number of aa variations at that position that are different from 

non-group S isolates. The mutation R632I associated with MDR1 is indicated in bold. 
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Fig. 5.4. Mycelial growth inhibition of isolates S, LR, and MR to fludioxonil on minimal 

medium amended with 4% NaCl.  
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Fig. 5.5. Glycerol content in mycelia of B. cinerea isolates S, LR, and MR to fludioxonil. 

Mycelia subjected to fludioxonil treatment prior to analysis are indicated in shaded bars.  
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CHAPTER SIX 

 

CONCLUSION 

This study shows that at least two Botrytis species exist in blackberry fields of the 

southeastern United States. Botrytis cinerea and Botrytis caroliniana co-existed in 

multiple but not all locations sampled, indicating it is not as widespread as B. cinerea. 

These two species cannot be distinguished based on symptoms on fruit or ITS 

sequencing. The rapid polymerase chain reaction we developed will facilitate the 

identification and separation of the two species. Many questions about the new species 

are still at large, including its host preference, sensitivity to fungicides, adaptability to 

stress, infection requirement, and life cycle.  

Resistance to many classes of fungicides including HA, SDHI, MBC, QoI,and DC 

fungicides were widespread in Botrytis cinerea from blackberry. The most prevalent 

resistance profile in blackberry fields consisted of resistance to the MBC thiophanate-

methyl, the QoI pyraclostrobin, and the SDHI boscalid. A statistical model suggests a 

stepwise accumulation of resistances in B. cinerea in commercial farms. 

Resistance to thiopanate-methyl, pyraclostrobin, boscalid, and the HA fenhexamid 

was based on target gene mutations, including E198A and E198V in β-tubulin, G143A in 

cytochrome b, H272Y and H272R in SdhB, and F412I in Erg27, respectively. These 

mutations are known to not be associated with a fitness penalty or reduced competitive 

ability, indicating that these genotypes are likely to remain in the population in the 

absence of fungicide selection pressure.  
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Resistance to the PP fludioxonil was discovered and characterized. The molecular 

mechanism of resistance was based on a previously described mutation (R632I) in 

transcription factor Mrr1, which increases the expression of ATP-binding cassette 

transporter AtrB. This mechanism was first described in European isolates and thus far is 

the only mechanism known to confer resistance to PP fungicides. The lack of other 

mechanisms conferring resistance to the PP fungicide fludioxonil indicates that target site 

mutations may be detrimental to the fungus. 

Our studies indicated that isolates with resistance to five and six chemical classes 

of fungicides are rare but do exist in commercial blackberry fields. Current resistance 

management practices, such as rotation and mixtures of site-specific fungicides, will 

continue to select for these isolates. Furthermore, our analysis of fitness of multifungicide 

resistant isolates indicated very little to no penalties compared to sensitive isolates, which 

may further accelerate the built up of multifungicide resistant populations. New 

integrated disease management and resistance management practices will need to be 

developed to counteract this development. Future resistance management must emphasize 

on inoculum reduction, reduction of applications/season of site-specific fungicides, and 

the integration of multi-site fungicides that are not prone to resistance development. In 

the absence of gray mold resistant varieties, reduction of inoculum may be achieved by 

cultural methods and the strategic use of biorational fungicides that are not prone to 

resistant development. Resistance monitoring should be conducted if site-specific 

fungicides are to be used effectively for disease management. 
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