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Abstract

In the field of Reinforcement Learning, Markov Decision Processes with a finite number of

states and actions have been well studied, and there exist algorithms capable of producing a sequence

of policies which converge to an optimal policy with probability one. Convergence guarantees for

problems with continuous states also exist. Until recently, no online algorithm for continuous states

and continuous actions has been proven to produce optimal policies.

This dissertation contains the results of research into reinforcement learning algorithms for

problems in which both the state and action spaces are continuous. The problems to be solved

are introduced formally as Markov Decision Processes. Also introduced is a value-function solution

method known as Q-learning.

The primary result of this dissertation is the presentation of a Q-learning type algorithm

adapted for continuous states and actions, and the proof that it asymptotically learns an optimal

policy with probability one. While the algorithm is intended to advance the theory of continuous

domain reinforcement learning, an example is given to show that with appropriate exploration

policies, it can produce satisfactory solutions to non-trivial benchmark problems.

Kernel regression based algorithms have excellent theoretical properties, but have high com-

putational cost and do not adapt well to high-dimensional problems. A class of batch-mode regression

tree-based algorithms is introduced. These algorithms are modular in the sense that different meth-

ods for partitioning, performing local regression, and choosing representative actions can be chosen.

Experiments demonstrate superior performance over kernel methods.

Batch algorithms possess superior computational efficiency, but pay the price of not being

able to use past observations to inform exploration. A data structure useful for limited learning

during the exploration phase is introduced. It is then demonstrated that this limited learning can

outperform batch algorithms using totally random action exploration.
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Chapter 1

Introduction

Consider a person searching for a lost puppy in an unfamiliar heavily wooded area. Due to

the thickness of the brush, there is a limited number of paths the person may travel. The cries of the

puppy constitute a signal by which the person can judge their progress to the goal. The searcher’s

task reduces to choosing paths to try and minimize the time until the puppy is found.

By considering elements of the above scenario in the abstract, one can create a class of

problems and consider methods for learning good decisions. The four key structures are the state

space (describing the environment of the agent), the action space (describing the decisions the agent

must choose from), the reward signal (numeric feedback about the most recent state and action),

and the state transition structure (governing how states and actions lead to new states).

Reinforcement Learning is defined broadly by Sutton & Barto [29] as “learning what to

do—how to map situations to actions—so as to maximize a numerical reward signal... Moreover, it

is usually assumed from the beginning that the agent has to operate despite significant uncertainty

about the environment it faces.” The latter half of their statement reveals the role that statistics

can play in Reinforcement Learning. The agent almost never has access to information concerning

the dynamics of the system, so a priori planning is not a realistic option. Instead, the agent must use

trial and error, collect data about how the system operates, and use that data intelligently towards

good decisions.

Let us consider four difficulties associated with learning to find the puppy in minimum time.

The ultimate reward, finding the puppy, can be far delayed from crucial path selections. If an initial

search is unsuccessful, the searcher must be able to assign value to early decisions distant in time
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from the final goal. Also, the searcher may find that path selection based only on audio cues may

lead to dead ends or repeated loops. It may be advantageous to sometimes choose paths for the sake

of exploration—to try and find paths better than any currently known. Third, due to wind, echoes,

or other complications, audio signals from the puppy may be influenced by random factors. The

searcher must be able to “average” out the noise and estimate the true signal. Finally, if the area

to be searched is large and there are many paths, the amount of memory required may overwhelm

the searcher.

The four difficulties cited in the puppy-search problem are central to Reinforcement Learn-

ing. First, the magnitude of rewards may depend greatly on actions used many time steps before

the reward is received, so there must be some method for relating states and actions to delayed

rewards. To highlight the importance of this problem, consider that the dissertation in which Q-

learning, a staple of modern Reinforcement Learning, was introduced was titled “Learning from

Delayed Rewards” [36]. Later we will see how ideas from Dynamic Programming can assist with

this problem.

The second chief difficulty is achieving a balance between exploration and exploitation. On

one hand, if the agent has, in the past, experienced high rewards when using a particular action in a

particular state, it seems reasonable to select that action again upon return to that state. However,

it may be that there are other actions which have not yet been tried that yield higher reward,

that other attempted actions have higher average reward but random observations thus far have not

revealed that, or that actions with low immediate reward can lead to future states with the potential

of higher reward. For this reason, it is necessary to sometimes choose actions which appear to be

sub-optimal in order to sufficiently explore state and action possibilities.

The third difficulty is that the system may be governed by stochastic dynamics. Trying an

action twice from the same state may not produce identical rewards or transitions. This is where

statistics enters the problem. Rewards must be processed as expectations, and transitions must be

processed as probabilities. Furthermore, as values of states and actions will depend on the values

of subsequent states, estimates of expectations and probabilities must remain fluid and adjust as

estimates for other states and actions change.

The fourth difficulty will receive the most attention in this dissertation. If the number of

states and actions is small, the Reinforcement Learning problem is essentially solved both in theory

and practice. However, most interesting real-life problems involve many variables, with a large or

2



even uncountable number of state and action combinations. In such situations, estimating the value

of each state and action is infeasible, and some form of knowledge generalization is necessary. Here

again, statistics has an opportunity to contribute because the value estimate generalization problem

is, at its core, a regression problem.

The remainder of this introduction will formalize the concepts relating to Reinforcement

Learning problems, as well as introduce a classical solution method. Chapter 2 will examine theo-

retical properties of a new algorithm modified for continuous state and action variables. Chapter 3

takes a more pragmatic approach and introduces computationally efficient data structures for value

estimate regression. Chapter 4 introduces a new exploration strategy that is particularly helpful for

large problems which are difficult to explore randomly.

1.1 Discrete Markov Decision Processes

A Markov Decision Process (MDP) is a stochastic control problem, usually considered in

discrete time. At each time step, the system is in a state, and a controller chooses an action. The

system then transitions to a new state with a probability distribution that depends both on the

previous state and the action utilized. A reward (or cost, for some authors) is also received. The

rewards are allowed to be random variables with a distribution that depends on the state and the

action utilized. The goal is to find a policy (a function that maps states to actions) that maximizes

rewards (or minimizes costs) according to some measure of goodness. We will consider MDPs for

which there are no terminal, absorbing states.

This section will formally introduce finite Markov Decision Processes. There are four com-

ponents:

• S, the state space, describing the states or situations the system may find itself in. For now,

we assume S is finite.

• A, the action space, describing the actions or decisions the controller may choose from. For

now, we assume A is finite.

• P (s, s′, a), a set of transitions giving the probability of transitioning to state s′ when the system

is in state s and the controller chooses action a.

3



Figure 1.1: A simple deterministic MDP. The agent must learn to reach the goal state while avoiding
the states with high penalties.

• R(s, a), a set of random variables describing the reward received when the system is in state

s and the controller chooses action a. Rewards are bounded by a constant C0.

The Markov Decision Process proceeds as follows: the process begins in some state s ∈ S

and the controller chooses an action a ∈ A. A random reward R(s, a) is received and the system tran-

sitions to a new state in accordance with the probability measure P (s, ·, a). The system progresses

to the next time step, and this scenario repeats from the new state. The reward distributions and

transition probabilities are assumed to have the Markov property: they only depend on the current

state and action; they do not depend on the history of previous states and actions.

For full generality, we allow mechanics to be stochastic, but they may be deterministic.

Figure 1.1 gives an example of a simple deterministic MDP in which an agent must traverse a maze

to find a goal state which emits rewards. There are two possible paths the agent may traverse, but

one contains penalty states with negative rewards. To behave optimally, the agent must learn to

take the path without penalties.

Figure 1.2 represents the “Left-Right Control” problem, a simple process with stochastic

mechanics. The agent starts in state x0 and must try to steer the system towards one of two reward

states, x1 or x5. The actions available, “left” and “right,” tend to steer the system in the direction

of their name, but with a small probability will move in the opposite direction. It is obvious that

the agent should usually use action “right” and try to obtain the higher reward at state x5, but

4
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Figure 1.2: A simple MDP with stochastic dynamics. The first diagram shows the states and their
associated rewards. The second diagram shows transition probabilities under action “left,” and the
last diagram shows transition probabilities under action “right.”
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suppose the system transitions to state x2. Is it now better to use action “left” and receive a reward

of 1 in as few as 1 time step, or is it more desirable to use action “right” and try to obtain a reward

of 2 in a minimum of 3 time steps? This highlights the need to be specific about how goodness is

measured as a function of rewards and when they are received.

To that end, define a decision-making policy π as a function π : S → A. In some settings,

policies are allowed to be stochastic or non-stationary, but we will restrict our attention to deter-

ministic policies. Define Pπ(s, s′) := P (s, s′, π(s)). Notice Pπ is a transition kernel for a Markov

chain on the space S.

Let γ, 0 < γ < 1, be a discount factor. γ represents the loss in value for delayed rewards.

A value of γ close to one means that rewards received in the future retain almost all their value,

while a lower value for γ means the value of a reward decays quickly over time. Let (st, at) be the

(random) state and action at time t. Under a policy π, the value of a state s is defined under the

expected total discounted reward criterion:

V π(s) = E

[ ∞∑
t=0

γtR(st, π(st))|s0 = s

]
. (1.1)

A policy π∗ is optimal if it satisfies V π
∗
(s) = sup

π
V π(s),∀s ∈ S.

If the transition probabilities and reward means are known, then dynamic programming

methods can obtain an optimal policy in a finite number of steps [22]. However, if probabilities and

rewards are initially unknown but transitions and rewards can be simulated or observed, then the

problem becomes much more difficult, one amenable to the methods of Reinforcement Learning.

1.2 Q-learning

The goal is to find an algorithm that will, when certain assumptions are met, converge to

an optimal policy. To that end, we consider Q-values [36] as

Qπ(s, a) := E[R(s, a)] + γ
∑
t∈S

V π(t)P (s, t, a). (1.2)

Intuitively, Qπ(s, a) is the value obtained if we start in state s, utilize action a, and then follow policy

π thereafter. Consider the Q-values associated with an optimal policy π∗: Q∗(s, a) := Qπ
∗
(s, a).

6



If we can learn the values Q∗(s, a) for all (s, a), then an optimal policy can easily be recovered by

setting

π∗(s) = argsup
a∈A

Q∗(s, a).

Q-learning is an algorithm for producing values Q̂n(s, a) which estimate and converge to

Q∗(s, a) as n → ∞. The algorithm requires a real-valued sequence of learning parameters αk for

each state-action pair such that

0 < αk < 1,

∞∑
k=1

αk =∞,
∞∑
k=1

α2
k <∞. (1.3)

The basic Q-learning algorithm proceeds as follows:

1. Initialize Q̂0(s, a) = 0 ∀(s, a) ∈ S ×A.

2. Pick an initial state s1.

3. For n ≥ 1, repeat the following:

(a) Select an action an, either by an = arg maxa′∈A Q̂n−1(sn, a
′) or according to a pre-

determined exploration method.

(b) Perform action an. Receive reward rn and observe the state transitioned to, un.

(c) Update Q-value estimates. Letting integer-valued m(s, a) denote the number of visits to

state (s, a), define

Q̂n(sn, an) := (1− αm(sn,an))Q̂n−1(sn, an) + αm(sn,an)

[
rn + max

a′∈A
Q̂n−1(un, a

′)

]
.

(d) Set sn+1 = un.

Watkins proved the following theorem.

Theorem 1. Given bounded rewards |R(s, a)| < C0 < ∞, learning parameters that satisfy (1.3),

and assuming all state-actions are visited infinitely often, then with probability one,

Q̂n(s, a)→ Q∗(s, a) ∀(s, a) ∈ S ×A

as n→∞.
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This result is the foundation for what follows in subsequent chapters.

1.3 Exploration

Consider the instructions “Select an action an, either by an = arg maxa′∈A Q̂n−1(sn, a
′) or

according to a pre-determined exploration method.” The particular method used to select actions is

the primary influence on what parts of the state-action space are observed. On one hand, it seems

advantageous to choose actions that have been observed to yield the highest known rewards, so that

high-reward areas are explored fully. On the other hand, the highest known rewards may belong

to a local, not global, maximum. Thus unless actions which appear initially to be sub-optimal are

tried, the algorithm can be trapped in a subset of the state-action space which will not produce an

optimal policy.

The method used to select actions is called the exploration policy. Here are a few common

exploration policies:

• Random Choose actions randomly and uniformly from all possible actions. This method is

suitable for small problems, but for larger problems it can take a large number of trajectories

before the state-action space is explored adequately.

• ε-greedy Pick a value ε between 0 and 1. With probability 1− ε, use the best known action.

With probability ε, choose an action randomly. The idea is that areas thought to yield high

reward receive the most attention, but occasionally choosing random actions ensures adequate

exploration over time. ε may be treated as a constant or as decreasing function of the number

of transitions observed. This latter variant will be seen in Chapter 2.

• Optimism in the face of uncertainty Always choose the best known action, but initialize

Q̂0(s, a) to a value higher than the maximum possible reward. This encourages the agent to

“optimistically” try unknown actions until estimated state-action values begin to converge.

• Quasi-random exploration Most commonly sn+1 = un. That is, the beginning state for

the next iteration is the state at which the system ends in the current iteration. This creates

data consisting of unbroken chains of states or trajectories. Even though a researcher may

have a model that can simulate transitions from arbitrary states, it is customary to always

use the previous ending state unless some condition is met that forces a return to an initial
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state. This is so exploration mimics the collection of data from a physical, online system which

cannot arbitrarily change states. If one is willing to depart from custom, uniform exploration

can be achieved by choosing sn+1 according to a low-discrepancy or quasi-random sequence.

See Appendix A for details on quasi-random sequences.

1.4 What Constitutes a Solution

In practice, a researcher will use Reinforcement Learning to obtain a policy that can suc-

cessfully carry out a task, where “successfully” is measured in an intuitive or qualitative sense. For

example, a vacuum cleaning robot measures battery level and distance from its recharge station as

part of its state, and is successful if it can consistently keep itself powered while cleaning.

In order to learn a good policy, we cast the problem quantitatively as an optimization

problem with Equation 1.1 (or equivalently, Equation 1.2) as the objective. Solution methods such

as Q-learning or policy iteration are designed to try and solve this optimization problem and have

proofs that their policies converge to optimal policies. However, when evaluating whether a policy

is good enough, researchers are typically less rigorous. Policies are not evaluated based on how well

the optimization is solved, for two reasons. For one, actually verifying that the maximum value

is attained is infeasibly difficult for many non-trivial MDPs. Second, the researcher is likely to

view and treat the solution method heuristically, and consider the problem solved when a policy is

observed to qualitatively complete the task satisfactorily. Another consideration is that non-trivial

problems will take significant computation to obtain policies, and a near-optimal policy will often

be preferred over a marginally better one that takes much longer to obtain.

It is in this light that the solutions obtained in Chapters 2 and 3 should be viewed. It

is desired and worthwhile to prove that the algorithms yield asymptotically optimal policies, but

determing when an application has been solved adequately will likely dispense with some of the

rigor.
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Chapter 2

Convergence of a Continuous

Algorithm

The previous chapter introduced Q-learning, a novel and popular algorithm for learning

the value of a state-action pair under an optimal policy without explicitly estimating transition

probabilities and mean rewards. The values can then be used to construct an optimal policy. If

there are a finite number of states and actions, then the learned values are proven to converge to

their true values. However, problems with a very large number of states or actions may cause the

values to converge unreasonably slowly. Furthermore, if the number of state-action pairs is infinite,

then the convergence guarantee no longer holds. A natural question is whether the knowledge gained

from an observation can be generalized using function approximators to similar states and actions,

and whether the state-action values still converge, either theoretically or empirically. The immediacy

of this question is apparent even in Watkins’ thesis [36], where a form of function approximation,

the CMAC [1], is used in the solution to two example problems with a large number of state-action

pairs.

Function approximators in reinforcement learning may cause value estimates to converge to

suboptimal values [3], oscillate [11], or even diverge [9] [35]. However, when used carefully, they have

also been impressively effective. A famous example of success with a large yet finite state-action

space is the TD-Gammon program [33], which used temporal difference learning [27] and a neural

network to generalize knowledge. It eventually learned to be competitive with tournament-level
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human backgammon players. Scenarios with continuous states and finite actions have been well

studied. Empirical convergence has been observed with CMACs [28], neural networks [23] [32], and

regression trees [8]. Theoretically, there have been positive results as well. A parametric function

approximator can yield convergent results if it satisfies certain interpolation properties [30]. A

non-parametric technique, kernel regression, has also been proven to converge to optimal values [21].

Problems where both the states and the actions are allowed to be continuous have been

less well-studied. One major reason is that constructing a policy requires taking a supremum over

all possible actions, which is straightforward when actions are finite but generally difficult when

continuous. This difficulty, though present, has not prevented researchers from developing techniques

to make the process manageable. One method is to calculate values for a discrete set of actions, then

use a weighted average to produce a continuous-valued action [18]. Baird & Klopf [2] specifically

designed a function approximator, termed “wire-fitting,” such that the supremum over the action

space can be immediately obtained. Wire-fitting has been combined with neural networks to learn

thruster-control in order to drive a submersible to a target with success [10]. Algorithms allowing

for stochastic policies can rapidly choose actions from a probability distribution, as in Sequential

Monte Carlo Learning [17].

Despite the practical success of these algorithms, there has been very little theoretical inves-

tigation into the convergence properties when actions are continuous. This chapter presents what

is, to my knowledge, the first off-policy Q-learning variant allowing for continuous state and actions

which is proven to converge to optimal values with probability one. Specifically, if the state and

action spaces are both allowed to be infinite but compact subsets of Euclidean space, then with

a sufficiently small kernel regression bandwidth and suitable continuity conditions on the random

rewards and transition probabilities, one may obtain a Q-value function estimate that is uniformly

within an arbitrary tolerance of the true Q-value function. Though the intention of the algorithm is

to fill a theoretical gap, the results of a proof-of-concept example implementation will be provided.

The particular method of knowledge generalization is Nadaraya-Watson kernel regression,

which is a memory-based non-parametric smoothing technique with well-studied properties. It is

similar to the function approximators used by Ormoneit & Sen [21] and Santamaŕıa et al. [24]. To

avoid confusion, a distinction should be made between Nadaraya-Watson kernel regression and an-

other technique based on kernel functions that has been applied to reinforcement learning, commonly

known as kernelized regression or simply “the kernel trick.” This method uses a kernel function to
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obtain the result of an inner product calculation in a higher-dimensional, feature-rich space while

avoiding some of the computational cost of mapping the vectors into the higher-dimensional space.

The inner product calculation is used to perform a linear regression in the higher-dimensional space,

resulting in a non-linear regression in the original space. Nadaraya-Watson kernel regression and

kernelized regression are similar in that they use a kernel function and deliver non-linear regression

results, but the intermediate methodologies are quite different. See Taylor & Parr [31] for a dis-

cussion of kernelized value function methods, and Xu et. al. [39] for an application of kernelized

regression to policy iteration.

In Section 2.1, Markov Decision Processes will be defined. Section 2.2 introduces Nadaraya-

Watson kernel regression and describes an algorithm that uses kernel smoothing to obtain a function

that estimates the Q-value of each state-action pair. The main result of this paper, theoretical

convergence of a continuous state and action algorithm, is stated in Section 2.3 along with sufficient

conditions for convergence. Section 2.4 describes the strategy of the proof, proves a set of lemmas,

and finally proves the main result. An example implementation along with a discussion of practical

difficulties is in Section 2.5. Finally, Section 2.6 discusses a few ideas for extensions.

2.1 Description of a Continuous Markov Decision Process

Subsection 1.1 defined discrete Markov Decision Processes. Mirroring that, this section will

consider Markov Decision Processes for which the state and action spaces are not discrete, but are

compact subsets of Euclidean space. Let S, the state space, be a compact subset of Euclidean space

of dimension dS and B(S) be the Borel σ-algebra on S. Let A, the action space, be a compact subset

of Euclidean space of dimension dA. Note that S×A is a subset of Rd where d = dS +dA. Elements

of this space will be written (s, a) to make the state and action clear, but for all computational

purposes they are best regarded as numerical vectors. Transitions between states are governed by a

function P : S × B(S)×A→ R+ satisfying:

• For each a ∈ A and B ∈ B(S), P (·, B, a) : S → R+ is a measurable function.

• For each s ∈ S and a ∈ A, P (s, ·, a) : B(S)→ R+ is a probability measure on S.

• For each s ∈ S and B ∈ B(S), P (s,B, ·) : A→ R+ is a measurable function.

For each state and action (s, a) there is a random reward R(s, a) bounded by a constant C0.
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The Markov Decision Process proceeds as follows: the process begins in some state s ∈ S

and the controller chooses an action a ∈ A. A random reward R(s, a) is received and the system tran-

sitions to a new state in accordance with the probability measure P (s, ·, a). The system progresses

to the next time step, and this scenario repeats from the new state. The reward distributions and

transition probabilities are assumed to have the Markov property: they only depend on the current

state and action; they do not depend on the history of previous states and actions.

A policy π is a measurable function π : S → A. In some settings, policies are allowed to

be stochastic or non-stationary, but we will restrict our attention to deterministic policies. Define

Pπ(s,B) := P (s,B, π(s)). Then Pπ is a transition kernel for a Markov chain on the space S.

Let γ, 0 < γ < 1, be a discount factor. Let (st, at) be the (random) state and action at time

t. Under a policy π, the value of a state s is defined under the expected total discounted reward

criterion:

V π(s) = E

[ ∞∑
t=0

γtR(st, π(st))|s0 = s

]
.

A policy π∗ is optimal if it satisfies V π
∗
(s) = sup

π
V π(s),∀s ∈ S.

Our goal is to find an algorithm which will, under suitable conditions, converge to an optimal

policy. To that end, we will define Q-values as

Qπ(s, a) := E[R(s, a)] + γ

∫
S

V π(t)P (s, dt, a).

This is a continuous version of the discrete definition made by Watkins. Intuitively Qπ(s, a) is the

value obtained if we start in state s, utilize action a, and then follow policy π thereafter. Consider

the Q-values associated with an optimal policy π∗: Q∗(s, a) := Qπ
∗
(s, a). If we can learn the values

Q∗(s, a) for all (s, a), then an optimal policy can easily be recovered by setting

π∗(s) = argsup
a∈A

Q∗(s, a).

2.2 Description of Algorithm

This section will introduce the form of the function approximator to be used, and then

describe an algorithm which will generate a sequence of estimates of the optimal Q-values.
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2.2.1 Nadaraya-Watson Kernel Regression

Nadaraya-Watson kernel regression [38] [20] is a smoothing technique which estimates the

value at a point as a weighted average of nearby observations, using a non-negative kernel function

to assign weights to observations based on their distance. Kernels typically are symmetric, peak at

zero, and decrease away from zero so that the weight of an observation is inversely related to the

distance. Formally, we will require K : Rd → R+ to be a multivariate function satisfying:

KI. K is integrable:
∫
Rd K(u)du <∞.

KII. K is bounded: ||K||∞ < CK <∞.

KIII. K has compact support: There exists L <∞ such that

K(u) = 0 when ||u||∞ > L.

KIV. K is Lipschitz: There exists M <∞ such that for all u, u′ ∈ Rd,

|K(u)−K(u′)| ≤M ||u− u′||∞.

The compact support condition is not required in all applications (indeed, the Gaussian function is

a common kernel choice) but will be used here to reduce computation load by assigning zero weight

to sufficiently distant observations.

A bandwidth h > 0 is a parameter used to fine-tune the level of smoothing. Define

Kh(u) :=
1

h
K(u/h).

If u is non-scalar, the division may be understood to be component-wise. Values of h which are too

large or small relative to the sample size tend to oversmooth or overfit the data. Typically when

using kernel regression the bandwidth decreases toward zero as the number of observations increases.

A discussion of the particulars of bandwidth selection is beyond the scope of this chapter, but a

rule of thumb obtained from assuming Gaussian density and unit variance is h = n−
1

4+d , where n

is the number of observations and d is the dimension [13]. This rule of thumb should be regarded

as a starting value, not a definitive answer. For example, cross-validation is a common method
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for selecting bandwidths. For more information, the interested reader is referred to the texts by

Silverman [25] or Simonoff [26]. For the purpose of the algorithm to follow, we need only a constant

bandwidth that is sufficiently small.

Given a set of n ordered pairs (xi, yi) and a bandwidth h, the Nadaraya-Watson estimator

is

m̂h(x) =

∑n
i=1Kh(x− xi)yi∑n
i=1Kh(x− xi)

.

2.2.2 The Algorithm

We will use the following notation. For n > 0,

• h is a fixed bandwidth.

• γ is a fixed discount factor.

• (sn, an) is the state-action pair at the beginning of iteration n.

• rn is the sample reward observed at iteration n.

• un is the state that is transitioned to during iteration n.

• yh,n := rn + γ supa∈A Q̂h,n−1(un, a), where Q̂h,n−1(un, a) is defined below in (2.2).

Here is a description of the algorithm.

1. Set the initial Q-value estimate function to be zero everywhere. Q̂h,0(s, a) = 0 for all (s, a) ∈

S ×A. Choose some initial state s1.

2. For n > 0, pick an action an ε-greedily (or according to some other exploration method).

Define a function αh,n : S ×A→ [0, 1] by

αh,n(s, a) =


Kh((s, a)− (sn, an))∑n
j=1Kh((s, a)− (sj , aj))

if
∑n
j=1Kh((s, a)− (sj , aj)) 6= 0

0 if
∑n
j=1Kh((s, a)− (sj , aj)) = 0

(2.1)

and use this to update the Q-value estimate function by setting

Q̂h,n(s, a) := (1− αh,n(s, a))Q̂h,n−1(s, a) + αh,n(s, a)yh,n. (2.2)
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Set sn+1 = un.

Note that as a result of Equation (2.2), one may show by induction that

Q̂h,n(s, a) =



∑n
j=1Kh((s, a)− (sj , aj))yh,j∑n
j=1Kh((s, a)− (sj , aj))

if
∑n
j=1Kh((s, a)− (sj , aj)) 6= 0

Q̂h,0(s, a) if
∑n
j=1Kh((s, a)− (sj , aj)) = 0. (2.3)

Equation (2.2) is how the updates are conceptually performed and has a form familiar to classic

Q-learning, but Equation (2.3) is how all calculations are made. The estimates produced by this

algorithm are essentially kernel-smoothed averages of the terms yh,n := rn+γ supa∈A Q̂h,n−1(un, a).

Algorithm 1 Pseudocode for theoretical algorithm

Initialize h = bandwidth value, m = maximum iterations,
γ = discount factor, ε = exploration parameter
Initialize Q̂h,0(s, a) = 0 ∀(s, a)
Set initial state s1
for i=1:m do

r = Uniform(0,1) random value
if r < ε then ai = random action
else

ai = supa∈A Q̂h,n−1(si, a)
end if
ui = next state, ri = reward
yh,i := ri + γ supa∈A Q̂h,i−1(ui, a)

Q̂h,i(s, a) =
∑i

j=1Kh((s,a)−(sj ,aj))yh,j∑i
j=1Kh((s,a)−(sj ,aj))

si+1 = ui
end for

2.3 Statement of Theorem

Assume the following conditions hold:

AI. The state-action pair to be utilized at the beginning of an iteration (regarded as a random

variable due to exploration and random transitions) has a density f : S × A → R which is

positive everywhere and has uniformly continuous and bounded second derivatives.

AII. Rewards are bounded. There exists a C0 <∞ such that for any (s, a) ∈ S ×A, R(s, a) < C0.
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AIII. The expected values of the rewards are Lipschitz continuous across the state-action space.

There exists a Cr such that for all (s1, a1), (s2, a2) ∈ S ×A,

|E[R(s1, a1)]− E[R(s2, a2)]| ≤ Cr||(s1, a1)− (s2, a2)||.

Also, E[R(s, a)]f(s, a) has uniformly continuous and bounded second derivatives.

AIV. Transition probabilities converge weakly and Lipschitz continuously. Let g : S → R be contin-

uous and bounded. There exists a Ct such that for any (s1, a1), (s2, a2) ∈ S ×A,

∣∣∣∣∫ g(u)P (s1, du, a1)−
∫
g(u)P (s2, du, a2)

∣∣∣∣ ≤ Ct||g(u)||∞||(s1, a1)− (s2, a2)||

Also,
∫
g(u)P (s, du, a)f(s, a) has uniformly continuous and bounded second derivatives.

Theorem 2. Let assumptions AI. - AIV. and kernel conditions KI. - KIV. hold and Q̂h,n(s, a) be

defined by (2.2). With probability one, for any ε > 0, there exists h = h(ε) and N = N(h, ε) such

that for n > N

sup
(s,a)∈S×A

|Q̂h,n(s, a)−Q∗(s, a)| < ε. (2.4)

2.4 Lemmas and Proof of Theorem

The proof strategy is inspired by Watkins’ original proof over finite spaces. For the original

proof, we suggest the technical report [37] that followed Watkins’ thesis. This method is different

from the later approaches to proving convergence of Q-learning, such as those of Tsitsiklis [34]

and Jaakkola et al. [14], which are variations and extensions of stochastic approximation theory.

Although Watkins’ method does rely on a stochastic approximation result in a minor way, the key

intuition is how Q-learning imitates model estimation.

One of the strengths of Q-learning is that it does not require a model of the system to

be estimated or maintained. However, the learned Q-values are the optimal values for a model

that can be constructed by appropriately assigning weights to the observed rewards and transitions.

Specifically, if the learning parameters used to update value estimates are used to weight reward and

transition observations to carefully define an artificial process, then the learned Q-value estimates will

be optimal for this artificial process. As more rewards and transitions are observed, the artificial
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process becomes more similar to the real process, so the optimal Q-values for the two processes

become more similar, thus the learned values converge to the optimal values for the real process.

Watkins called such an artificial process the Action Replay Process.

The proof strategy can be summarized in the following five steps:

1. For a fixed bandwidth value, define an auxiliary Action Replay Process (ARP). This artificial

process is purely a proof device.

2. Show that the function Q̂h,n(s, a) is the optimal Q-value function for the ARP with corre-

sponding bandwidth.

3. Show that for sufficiently small bandwidths, the rewards and transition probabilities from the

ARP become arbitrarily close to those of the original process.

4. Show that two MDPs with similar rewards and transition probabilities have similar optimal

Q-values.

5. The optimal values of the ARP converge to the optimal values of the original process. Hence

by step 2, the Q-values learned by the algorithm converge to the optimal Q-values.

2.4.1 Construction of the ARP (Action Replay Process)

Now the ARP will be defined. It is a finite length, terminating MDP. Pick a bandwidth

value h, and keep it fixed throughout the discussion that follows. We suggest thinking of the ARP

as a card game. Suppose that one is preparing to run the algorithm from Section 2.2. Also suppose

that we have a deck of index cards. For each iteration of the algorithm, we will write the following

values on a card: < sk, ak, uk, rk, Q̂h,k(·), αh,k(·) >. These values are regarded as random variables

depending on the random states, actions, and rewards from the original process rather than fixed

values from a particular sample trajectory. We also have a card on which the initial Q̂h,0(·) is written.

With this card on bottom, stack all cards in ascending order by iteration as shown in Figure 2.1.

States A state of the ARP is a 2-tuple < s, n > consisting of a state from the original state space

s ∈ S and a non-negative level n that tells us which card is to be inspected. All cards above

level n are ignored, leaving us with a finite stack of cards. Any state with level 0 is a terminal,

absorbing state.
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< Q̂h,0(·) > Level 0

< s1, a1, u1, r1, Q̂h,1(·), αh,1(·) > Level 1

< s2, a2, u2, r2, Q̂h,2(·), αh,2(·) > Level 2

...

...

< sn−1, an−1, un−1, rn−1, Q̂h,n−1(·), αh,n−1(·) > Level n− 1

< sn, an, un, rn, Q̂h,n(·), αh,n(·) > Level n

Figure 2.1: The ARP envisioned as a stack of cards.

Actions The actions for the ARP are the same as the actions from the real process, a ∈ A.

Transitions and Rewards Suppose the ARP is in state < s, n > and action a is chosen. Inspect

the card corresponding to level n. With probability αh,n(s, a), we accept this card and receive

reward rn and transition to state < un, n − 1 >. Otherwise, ignore that card and inspect

the card at level n − 1. With probability αh,n−1(s, a), accept this card, receive reward rn−1

and transition to state < un−1, n − 2 >. Otherwise, continue inspecting cards until one is

accepted, where the probability of accepting the card at level k is αh,k(s, a). If the bottom

card corresponding to level 0 is reached (that is, the state is < s, 0 > and action a is being

utilized) then a reward Qh,0(s, a) is received and the ARP terminates.

As the ARP is an MDP, it has optimal Q-values. Let Q∗h(< s, n >, a) be the function giving

the optimal Q-values for state < s, n > and action a for the ARP with bandwidth h.

2.4.2 Lemmas

The optimal Q-values at level n for the ARP corresponding to bandwidth h are the learned

Q-value estimates for the original process at iteration n as defined by (2.2).

Lemma 1.

Q∗h(< s, n >, a) = Q̂h,n(s, a),∀(s, a) ∈ S ×A,∀n ≥ 0.
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Proof. Proceed by induction on the level n of the ARP. Recall that if the ARP is in state < s, 0 >

and action a is used, then the reward is Q̂h,0(s, a) and the process terminates. Thus

Q∗h(< s, 0 >, a) = Q̂h,0(s, a)

which proves the n = 0 case.

Now suppose by way of induction that Q∗h(< s, n− 1 >, a) = Q̂h,n−1(s, a) for all states and

actions. Let the ARP be in state < s, n > with action a utilized. Recall that by construction of the

ARP,

• with probability αh,n(s, a) we receive reward rn and transition to < un, n− 1 >. Otherwise,

• with probability 1−αh,n(s, a) that card is thrown away and the situation is identical to utilizing

a in state < s, n− 1 >.

Then by conditioning on whether the level n card is accepted or not, we have by the induction

hypothesis and (2.2):

Q∗h(< s, n >, a) = (1− αh,n(s, a))Q∗h(< s, n− 1 >, a)

+ αh,n(s, a)(rn + γ sup
b∈A

Q∗h(< un, n− 1 >, b))

= (1− αh,n(s, a))Q̂h,n−1(s, a)

+ αh,n(s, a)(rn + γ sup
b∈A

Q̂h,n−1(un, b))

= (1− αh,n(s, a))Q̂h,n−1(s, a) + αh,n(s, a)yh,n

= Q̂h,n(s, a).

The following lemma, which is needed in the proof of Lemma 3, shows that
∑n
k=1 αh,k(s, a)

grows uniformly across the state-action space.

Lemma 2. If assumption AI. holds, then with probability one,

lim
n→∞

inf
(s,a)∈S×A

n∑
k=1

αh,k(s, a)→∞. (2.5)
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Proof. S × A is compact, so it can be covered by a finite number of disjoint sets of fixed positive

diameter with each set having positive Lebesgue measure. Choose the diameter such that u, u′ in

the same set implies Kh(u − u′) > δ > 0. Suppose that J sets are needed, and denote them by

B1, B2, ..., BJ . Set T0 = 0 and for k > 0, let Tk denote the first time at which each set has been

visited at least k times. Note that by AI. and the Borel-Cantelli Lemma, P (Tk < ∞) = 1. Fix

(s, a) ∈ S ×A, and letting CK denote the bound on the kernel values,

Tn∑
k=1

αh,k(s, a) =

n∑
k=1

Tk∑
j=Tk−1+1

αh,j(s, a) ≥
n∑
k=1

δ

CKTk
=

δ

CK

n∑
k=1

T−1k .

The terms Tk, k > 0, are not independent but can be bounded by random variables that are. Set

W1 = T1. Ignoring all previous visits to sets prior to and at time T1, set W2 to be the number of

steps from T1 until each Bj is visited again. It is obvious that W2 ≥ T2 − T1. Likewise, for k > 1,

set Wk to be the number of steps from Tk−1 until each set is visited again, so that Wk ≥ Tk −Tk−1.

Notice that W1,W2, ... are i.i.d. random variables. Applying these inequalities, one may write

T−11 = W−11

T−12 ≥ (W1 +W2)−1

...

T−1k ≥

 k∑
j=1

Wj

−1 .
We now have

Tn∑
k=1

αh,k(s, a) ≥ δ

CK

n∑
k=1

 k∑
j=1

Wj

−1 .

It suffices to show that
∑n
k=1

(∑k
j=1Wj

)−1
goes to infinity with probability one. Set Sn =∑n

k=1Wk. Then
∑n
k=1

1
Sk

=
∑n
k=1

1
k
k
Sk

. Since k
Sk
→ 1

E[W1]
> 0,

∑n
k=1

1
k
k
Sk
→ ∞ with proba-

bility one. Since (s, a) was arbitrary, the result is proved.

The next lemma shows that if one starts the ARP at a sufficiently high level, the probability

of ending below a certain level after a fixed number of actions can be made arbitrarily small.
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Lemma 3. Let ε > 0, l0 be any level of the ARP, and positive integer n represent the length of a

sequence of actions to be followed. Then there exists a level l > l0 such that if the ARP starts at

a level above l and follows the sequence of n actions, the probability of ending below level l0 is less

than ε.

Proof. Proceed by induction. Consider first the case where n = 1. For m > l0, suppose the ARP is

in state < s,m > and action a is utilized. Transitioning to a state with level below l0 means no card

at or above level l0 is accepted. The probability of not accepting the card at level k is 1−αh,k(s, a),

so the probability of accepting none is Πm
k=l0

(1− αh,k(s, a)). Using 1− x ≤ e − x yields

Πm
k=l0(1− αh,k(s, a)) < e−

∑m
k=l0

αh,k(s,a).

It follows from Lemma 2 that it is possible to choose l1 such that m > l1 implies

inf
(s,a)∈S×A

m∑
k=l0

αh,k(s, a) > − log ε.

Then

P (ending below l0) = Πm
k=l0(1− αh,k(s, a)) < e−

∑m
k=l0

αh,k(s,a) < ε.

For a sequence of n actions, there exists l1 such that the probability of ending below l0 from

l1 in one transition is less than ε
2 and by induction there is an l2 such that the probability of ending

below l1 in n− 1 transitions is less than ε
2 . Then if the ARP starts above level l2,

P (below l0 after n transitions)

=P (below l0 after n transitions|above l1 after n− 1 transitions)

∗ P (above l1 after n− 1 transitions)

+P (below l0 after n transitions|below l1 after n− 1 transitions)

∗ P (below l1 after n− 1 transitions)

≤ ε
2
· 1 + 1 · ε

2
= ε.

The next lemma allows one to work with finite sequences of actions rather than infinite ones
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with an arbitrarily small error.

Lemma 4. Consider the value of a state s when a specific sequence of n actions (a0, a1, ..., an−1) is

to be followed and the process is then terminated:

E

[
n−1∑
t=0

γtR(st, at)|s0 = s

]
.

Also consider the value of the same state under the same n actions but then followed by an arbitrary

policy π:

E

[
n−1∑
t=0

γtR(st, at) +

∞∑
t=n

γtR(st, π(st))|s0 = s

]
.

The difference of these two values goes to zero as n increases towards infinity.

Proof. We are interested in the difference

E

[
n−1∑
t=0

γtR(st, at) +

∞∑
t=n

γtR(st, π(st))|s0 = s

]
− E

[
n−1∑
t=0

γtR(st, at)|s0 = s

]
.

The difference is clearly the expectation of the second term in the first expectation. Because the

rewards are bounded by C0, we can use a change of variables v = t− n and write

E

[ ∞∑
t=n

γtR(st, π(st))|s0 = s

]
= E

[ ∞∑
v=0

γv+nR(sv, π(sv))|s0 = s

]

≤ γnE

[ ∞∑
v=0

γv|R(sv, π(sv))||s0 = s

]

≤ γn
∞∑
v=0

γvC0 = γn
C0

1− γ

which goes to zero as n goes to infinity.

The next lemma will consider the reward received from the ARP when in state < s, n > and

action a is utilized. This random quantity depends on the state-actions chosen and rewards received

in the original process, but it also depends on which levels of the ARP are accepted during state

transitions. For the ARP constructed with bandwidth h and rewards received when in state < s, n >

and utilizing action a, let Ê[Rh,n(s, a)] denote an expectation taken over ARP state transitions, but

not over the sequence of state-actions and rewards from the original process. Note that Ê[Rh,n(s, a)]

is not a constant, but a random quantity defined on the same sample space as the original process.
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Similarly, the probability of the ARP transitioning into a state in set T ∈ B(S) is also a

random variable depending on which state-actions are chosen in the original process. For the ARP

constructed with bandwidth h and starting in state < s, n > and utilizing action a, let P̂h,n(s, T, a)

denote the random probability of the ARP transitioning into a state in set T .

The next lemma shows that for high enough levels, the rewards and transition probabilities

of the ARP are close to the rewards and transition probabilities of the original process.

Lemma 5. If assumptions AI.-AIV. and kernel conditions KI.-KIV. are met, then

a) With probability one, for any ε > 0 there exists an h = h(ε, T ) and N = N(ε, h) such that if

n > N ,

sup
(s,a)∈S×A

∣∣∣Ê[Rh,n(s, a)]− E[R(s, a)]
∣∣∣ < ε.

b) With probability one, for any ε > 0 and g : S → R that is integrable, continuous, and bounded,

there exists a h(ε) and N(ε, h) such that if n > N ,

sup
(s,a)∈S×A

∣∣∣∣∫
S

g(u)P̂h,n(s, du, a)−
∫
S

g(u)P (s, du, a)

∣∣∣∣ < ε.

Proof. Consider the expected reward associated with a state-action (s, a) at level n of the ARP.

Condition on whether the card at level n is accepted. With probability 1 − αh,n(s, a) we do not

accept the card, and the expected reward is that of level n− 1. With probability αh,n(s, a) the level

n card is accepted and we receive reward rn. For the special case n = 0, we are at the lowest level of

the ARP and receive reward Q̂h,0(s, a). So the expected rewards satisfy the recursive relationship

Ê[Rh,0(s, a)] = Q̂h,0(s, a),

Ê[Rh,n(s, a)] = (1− αh,n(s, a))E[Rh,n−1(s, a)] + αh,n(s, a)rn, for n > 0.

Now we show by induction that

Ê[Rh,n(s, a)] =

∑n
j=1Kh((s, a)− (sj , aj))rj∑n
j=1Kh((s, a)− (sj , aj))
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when
∑n
j=1Kh((s, a)− (sj , aj)) 6= 0. For the n = 1 case,

Ê[Rh,1(s, a)] = (1− αh,1(s, a))Q̂h,0(s, a) + αh,1r1.

Replace the αh,1(s, a) terms as per the definition in (2.1).

Ê[Rh,1(s, a)] =

(
1−

∑1
j=1Kh((s, a)− (sj , aj))∑1
j=1Kh((s, a)− (sj , aj))

)
Q̂h,0(s, a) +

∑1
j=1Kh((s, a)− (sj , aj))∑1
j=1Kh((s, a)− (sj , aj))

r1

= r1.

Now assume the induction hypothesis holds for n− 1.

Ê[Rh,n(s, a)] = (1− αh,n(s, a))Ê[Rh,n−1(s, a)] + αh,n(s, a)rn

=

(∑n−1
j=1 Kh((s, a)− (sj , aj))∑n
j=1Kh((s, a)− (sj , aj))

)(∑n−1
j=1 Kh((s, a)− (sj , aj))rj∑n−1
j=1 Kh((s, a)− (sj , aj))

)

+
Kh((s, a)− (sj , aj))∑n
j=1Kh((s, a)− (sj , aj))

rn

=

∑n
j=1Kh((s, a)− (sj , aj))rj∑n
j=1Kh((s, a)− (sj , aj))

.

The expected rewards for the ARP are equivalent to kernel regression estimates. Assumptions

AI., AII., AIII., and kernel conditions KI.-KIV. meet the technical conditions of Hansen [12]: see

Theorem 9 on page 735. This yields

sup
(s,a)∈S×A

|Ê[Rh,n(s, a)]− E[R(s, a)]| < ε

for sufficiently large n, which proves part a).

For part b), recall that un denotes the state that is transitioned to at iteration n. Consider

the random variable indicator function for the event that the nth transition from the original process

is into T ∈ B(S).

1T (un) =


1 if un ∈ T

0 if un /∈ T .

Similar to rewards, the transition probabilities for the ARP at level n can be conditioned on whether
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or not the level n card is accepted. Assume we are in state-action (s, a). With probability 1 −

αh,n(s, a), we do not accept the card, and the probability of transitioning into T is that of level

n − 1. With probability αh,n(s, a), the level n card is accepted and the value of 1T (un) tells us

whether we transition into T or not. Thus we have the relation

P̂h,1(s, T, a) =αh,1(s, a)1T (u1),

P̂h,n(s, T, a) =(1− αh,n(s, a))P̂h,n−1(s, T, a) + αh,n(s, a)1T (un).

Let g : S → R be a simple function, g(u) =
∑m
i=1 ai1Ti

(u). We can apply this relation to the integral

of g to find

∫
g(u)P̂h,1(s, du, a) =

m∑
i=1

aiP̂h,1(s, Ti, a) =

m∑
i=1

ai1Ti(u1)

= g(u1)

and

∫
g(u)P̂h,n(s, du, a) =

m∑
i=1

aiP̂h,1(s, Ti, a)

=

m∑
j=1

ai

[
(1− αh,n(s, a))P̂h,n−1(s, Ti, a) + αh,n−1(s, a)1Ti(un)

]
= (1− αh,n−1(s, a))

∫
g(u)P̂h,n−1(s, du, a) + αh,n(s, a)g(un).

Using a common argument from measure theory, this relation also holds for any integrable function by

approximating with simple functions. The rest of the proof proceeds as in part a), with assumptions

AI., AIV., and kernel conditions KI.-KIV. fulfilling the requirements of Hansen’s Theorem 9.

Definition. For a given MDP, let Q(s1, < a1, a2, ..., an, t >) denote the expected discounted

reward received when the process starts in state s1 and actions a1, a2, ..., an are utilized consecutively
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and the process then terminates. Formally

Q(s1, < a1, a2, ..., an, t >) = E

 n∑
j=1

γj−1R(sj , aj)


where the chance of transitioning to states s2, ..., sn is understood to be governed by P (sj , ·, aj).

The following lemma shows that state-action values possess a sort of continuity. This prop-

erty will be needed to apply Lemma 7 to state-action values.

Lemma 6. If assumptions AII., AIII., and AIV. hold, then for any n, and for any fixed but arbitrary

sequence of actions < a1, a2, ..., an >, the function f : S → R defined by

f(s) = Q(s,< a1, a2, ..., an, t >)

is Lipschitz continuous.

Proof. Consider first the case n = 1. Let s1, s2 ∈ S. Then by AIII.

|Q(s1, < a1, t >)−Q(s2, < a1, t >)|

=|E[R(s1, a1)]− E[R(s2, a1)]| ≤ Cr||(s1, a1)− (s2, a1)||.

Before considering the case n > 1, notice that by assumption AII.

|Q(s,< a1, a2, ..., an, t >)| ≤ E

 n∑
j=1

γj−1|R(sj , aj)|


≤
∞∑
j=1

γj−1C0

=
C0

1− γ
.

Applying AIII. to the difference of means and AIV. to the difference of integrals, we have for n > 1
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and s1, s2 ∈ S

|f(s1)− f(s2)| =|Q(s1, < a1, ..., an, t)−Q(s2, < a1, ..., an, t >)|

≤|E[R(s1, a1)]− E[R(s2, a1)]|

+

∣∣∣∣γ ∫
S

Q(u,< a2, ...an, t >)P (s1, du, a1)

− γ

∫
S

Q(u,< a2, ...an, t >)P (s2, du, a1)

∣∣∣∣
≤Cr||((s1, a1)− (s2, a1))||+ Ct||Q(u,< a2, ...an, t >)||∞||(s1, a1)− (s2, a1)||

≤Cr||((s1, a1)− (s2, a1))||+ Ct
C0

1− γ
||(s1, a1)− (s2, a1)||.

By taking C1 = 2 max{Cr, CtC0

1−γ } and inserting into the last inequality, we have

|f(s1)− f(s2)| ≤ C1||(s1, a1)− (s2, a1)||.

Finally, notice that ||(s1, a1) − (s2, a1)|| = ||s1 − s2|| from properties of the Euclidean metric. We

end with

|f(s1)− f(s2)| ≤ C1||s1 − s2||,

which proves the result.

For the next lemma, suppose one has two MDPs defined on the same state and action space.

For (s, a) ∈ S × A, let R(i)(s, a) and P (i)(s, ·, a) denote the rewards and transition probabilities of

process i for i = 1, 2. The lemma will show that if the expected rewards and transition probabilities

of the processes are sufficiently close, then the expected discounted reward of a series of actions is

also close.

Lemma 7. Suppose the assumptions required for Lemma 6 hold. For any ε > 0 and sequence

of actions of length n, there exists δr(n, ε) and δt(n, ε) such that if g : S → R is continuous and

||g||∞ ≤ C0

1−γ and the following two conditions hold:

1.

sup
(s,a)∈S×A

∣∣∣E[R(1)(s, a)]− E[R(2)(s, a)]
∣∣∣ < δr(n, ε)
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2.

sup
(s,a)∈S×A

∣∣∣∣∫
S

g(u)P (1)(s, du, a)−
∫
S

g(u)P (2)(s, du, a)

∣∣∣∣ < δt(n, ε),

then for any sequence of actions of length n,

|Q(1)(s1, < a1, a2, ..., an, t >)−Q(2)(s1, < a1, a2, ..., an, t >)| < ε.

Proof. We proceed by induction on n, the number of actions to be executed. For n = 1, take

δr(1, ε) = ε.

|Q(1)(s1, < a1, t >)−Q(2)(s1, < a1, t >)| = |E[R(1)(s1, a1)]− E[R(2)(s1, a1)]| < δr = ε.

Now assume the induction hypothesis holds for a sequence of actions of length n− 1. Take

δr(n, ε) = min
{
ε
3 , δr(n− 1, ε3 )

}
, and δt(n, ε) = min

{
ε
3 , δt(n− 1, ε3 )

}
. Then for a sequence of length

n, we can condition on state s2 and write

|Q(1)(s1, < a1, ..., an, t >)−Q(2)(s1, < a1, ..., an, t >)|

≤ |E[R(1)(s1, a1)]− E[R(2)(s1, a1)]| (2.6)

+ γ

∣∣∣∣∫
S

Q(1)(s2, < a2, ..., an, t >)P (1)(s1, ds2, a1) (2.7)

−
∫
S

Q(2)(s2, < a2, ..., an, t >)P (2)(s1, ds2, a1)

∣∣∣∣ . (2.8)
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Add and subtract
∫
S
Q(1)(s2, < a2, ..., an, t >)P (2)(s1, ds2, a1):

|Q(1)(s1, < a1, ..., an, t >)−Q(2)(s1, < a1, ..., an, t >)|

≤|E[R(1)(s1, a1)]− E[R(2)(s1, a1)]|

+

∣∣∣∣∫
S

Q(1)(s2, < a2, ..., an, t >)P (1)(s1, ds2, a1)

−
∫
S

Q(1)(s2, < a2, ..., an, t >)P (2)(s1, ds2, a1)

∣∣∣∣
+

∣∣∣∣∫
S

Q(1)(s2, < a2, ..., an, t >)P (2)(s1, ds2, a1)

−
∫
S

Q(2)(s2, < a2, ..., an, t >)P (2)(s1, ds2, a1)

∣∣∣∣

From Lemma 6 the value function is continuous, so by assumption the first difference can

be made smaller than ε/3 by choice of δr, the second difference made small by choice of δt, and

the third difference made small by the induction hypothesis. Each difference is less than ε
3 , and the

result is proved.

2.4.3 Proof of Theorem

We are now prepared to prove Theorem 2.

Proof. The terms with subscripts will denote the values of the ARP with bandwidth h. The terms

with no subscripts will refer to the original process. For any policy π, consider the difference

|Qπh(< s, n >, a)−Qπ(s, a)| (2.9)

≤ |Qπh(< s, n >, a)−Qh(< s, n >,< a, π(s2), ..., π(sm), t >)| (2.10)

+ |Qh(< s, n >,< a, π(s2), ..., π(sm), t >)−Q(s,< a, π(s2), ..., π(sm), t >)| (2.11)

+ |Q(s,< a, π(s2), ..., π(sm), t >)−Qπ(s, a)| . (2.12)

By Lemma 4, m can be chosen large enough such that lines (2.10) and (2.12) are less than ε
3 . By

Lemma 5, there exists an h and N such that if more than N iterations are run, the rewards and

transition probabilities of the ARP become arbitrarily close to those of the real process. Furthermore,
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by Lemma 3 there is a higher level N1 such that if one starts at a level above N1, the probability

of straying below N after performing m actions is less than (1−γ)ε
12C0

. When above level N , the

requirements to apply Lemma 7 are met, and one can make line (2.11) less than 2C0ε
12C0−(1−γ)ε . If the

ARP does stray below level N , then the difference is bounded by 2C0

1−γ as mentioned in Lemma 6.

Then by conditioning on whether the ARP strays below level N ,

|Qh(< s, n >,< a, π(s2), ..., π(sm), t >)−Q(s,< a, π(s2), ..., π(sm), t >)|

≤ 2C0

1− γ

(
(1− γ)ε

12C0

)
+

(
2C0ε

12C0 − (1− γ)ε

)(
12C0 − (1− γ)ε

12C0

)
=
ε

3
.

It follows that

|Qπh(< s, n >, a)−Qπ(s, a)| < ε.

Because the policy π was arbitrary, we can replace it with a policy optimal for the real process, π∗.

Then we know ∣∣∣Qπ∗h (< s, n >, a)−Q∗(s, a)
∣∣∣ < ε.

Now we claim that π∗ also gives optimal values for the ARP. If it did not, and some other policy π0

gave higher values, then consider that

|Qπ0

h (< s, n >, a)−Qπ0(s, a)|

can be made arbitrarily small, but this would imply Qπ0(s, a) > Qπ
∗
(s, a), which contradicts the

choice of π∗ as an optimal policy. We now have

|Q∗h(< s, n >, a)−Q∗(s, a)| < ε.

But by Lemma 1, Q∗h(< s, n >, a) = Q̂h(s, a). Thus

∣∣∣Q̂h,n(s, a)−Q∗(s, a)
∣∣∣ < ε.

Since (s, a) ∈ S ×A was arbitrary, the convergence is uniform.
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2.5 Experimental Results

Though the primary intent of this algorithm is to serve as an addition to the theory of

continuous domain reinforcement learning, it is not impotent. With minor modification, it is capable

of obtaining satisfactory solutions to standard benchmark problems in a reasonable amount of time.

In this section we detail an application to the Mountain Car problem [19]. The state space

consists of two variables: the position p of the car, constrained to the interval [−1, 1] and the velocity

v, constrained to [−3, 3]. The action space consists of a single variable, a force applied to the vehicle

along a line tangent to the road with a value in [−4, 4]. The car starts at the bottom of the hill at a

standstill, corresponding to an initial state of (−.5, 0). The goal is to drive the car to the top of the

hill in the positive direction, i.e., p > 1, while keeping the velocity in bounds. If the goal is reached,

a reward of 1 is experienced and the trial terminates. If the car goes out of bounds (that is, p < −1

or |v| > 3) then a reward of −1 is received and the trial terminates. In all other states the reward

received is zero. The hill is defined by the expression

H(p) =


p2 + p if p < 0

p√
1+5p2

if p ≥ 0 .
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Figure 2.2: The hill for the mountain car to climb. The circle represents the initial position, and
the star represents the goal.

This problem is non-trivial because the maximum force in the positive direction is not large
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enough to move directly to the goal. Instead, the agent must learn to build momentum by alternating

acceleration before trying to move to the goal.

2.5.1 Examination of Assumptions

Assumptions AI.-AIV., while sufficient to ensure convergence, are quite strong. In fact,

there are many standard problems in Reinforcement Learning that do not meet them. For example,

rewards are often of a discontinuous nature, where most states emit zero reward and crossing a

boundary suddenly yields a reward or penalty. The purpose of this section is to show that the

proposed algorithm is somewhat robust. That is, even in the presence of violated conditions, it can

obtain policies adequate for solving the problem at hand. Specifically, we will see how the Mountain

Car problem violates two out of four assumptions, yet the algorithm still produces a policy that can

reach the goal state.

The first assumption is the continuous analogue of classic Q-learning’s requirement that

every state-action pair be visited an infinite number of times. We require the distribution of (sn, an)

to possess a density that is positive and sufficiently smooth. However, given the dynamics of the

Mountain Car, there are areas of the state space that are inaccessible with the available actions.

Consider the state consisting of position p = .9 and velocity v = −2.9. The position is at the top of

the hill near the goal. The maximum acceleration in the negative direction is not strong enough to

produce a negative velocity as large as −2.9 in the space given.

Figure 2.3 suggests that the density over the state space is adequately smooth, but it is

clear that there are states which have not been visited. However, if the state space is restricted to

the set of accessible states, it seems reasonable that the density is everywhere positive.

The second assumption requires bounded rewards. The Mountain Car problem clearly

satisfies this.

The third assumption requires rewards to be Lipschitz continuous. It is common in Re-

inforcement Learning for rewards to be zero for most of the state-action space, with a goal state

emitting positive rewards and penalties are issued for leaving boundaries or entering undesirable

states. This is exactly the case for the Mountain Car. One could circumvent this problem by re-

placing impulse rewards with a low-variance Gaussian density function centered at the goal state,

or use a similar method for smoothing rewards without disrupting the overall reward structure.

The fourth assumption requires weak convergence of transition probability measures as
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Figure 2.3: A histogram showing frequency of visits across the state space.

states and actions become more similar. Furthermore, that convergence must be uniform across the

state-action space. For a problem with smooth, deterministic transitions such as Mountain Car, it

is easy to verify convergence in distribution for un (the state being transitioned to) as state-actions

(sn, an) converge, which is equivalent to weak convergence. See Chapter 18 of Jacod & Protter [15].

It should be noted that the strength of the assumptions are directly linked to the desire

for the value function estimate to converge uniformly. Kernel methods can achieve weaker forms

of convergence with much weaker assumptions. For example, Devroye & Györfi [7] show that with

proper bandwith selection, kernel density estimates can converge in L1 with no conditions on the

density being estimated. This suggests that kernel-based algorithms may be able to return good

policies despite discontinuities in the reward function, as is the case for the Mountain Car problem.

However, this has not been thoroughly investigated for other problems yet.

2.5.2 Computational Considerations

An advantage of non-parametric approximators is that they have the potential to repre-

sent any function with arbitrary precision, but at a cost of increased computational load as more

observations are used. The following paragraphs will discuss a few suggestions for alleviating this

problem.

One idea is to be selective about which observations are kept for future calculations while
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discarding the rest. For example, consider that before a boundary is reached for the first time,

all rewards received are equal to zero, which is the initialized function value. Recording these

observations will slow down future value function computations but does not add to the knowledge

of the system. Suppose that when in state-action (s, a), reward rn is received and the next state is

un. One may choose to discard this experience if

|rn + γ sup
b∈A

Q̂h,n−1(un, b)− Q̂h,n−1(s, a)| < δ

for some tolerance δ. Only keeping experiences with the potential to improve the value function

estimate ensures the algorithm learns efficiently.

Another idea is to, at some point, begin discarding old observations as new ones are recorded

to keep a fixed number in memory. Consider that for terms rn + γ supb∈A Q̂h,n−1(un, b) calculated

early, the value Q̂h,n−1(un, b) is not yet calculated with enough data to give a good estimate. Drop-

ping old values in favor of new ones serves a double purpose of capping the increasing computational

load and speeding convergence of value estimates. Care should be taken so that no region of the

state-action space is left without observations for performing kernel regression.

A third option, and the approach taken in this example, is to “seed” the algorithm with

a fixed number of randomly generated episodes that have reached the goal before beginning the

standard ε-greedy exploration strategy. Exploration episodes are generated using random action

selection. Episodes which reach a penalty state or fail to find the goal within 500 iterations are

discarded, while successful episodes are passed to the algorithm. After 20 such episodes, the algo-

rithm chooses random actions with probability ε and optimal (based on current knowledge) actions

otherwise. At this point all iterations are passed to the learning algorithm.

As mentioned in the introduction, taking a supremum over all possible actions for a given

state is, in general, a difficult problem. For the Mountain Car problem, which has only one action

variable, a suitable choice for a kernel function allows for exact solutions. The Epanechnikov kernel

is defined by

Ke(x) =


3
4 (1− x2) if |x| < 1

0 otherwise

(2.13)

and is a common choice for kernel regression as it minimizes an approximation of mean integrated

square error. See Section 3.3.2 of Silverman [25] for more details. For the three dimensional Mountain
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Car problem, we define the multivariate kernel as the product of Epanechnikov kernels for each

variable. That is, for state-action pairs represented by (pk, vk, ak), we define

K((p1, v1, a1)− (p2, v2, a2)) = Ke(p1 − p2)Ke(v1 − v2)Ke(a1 − a2)

An advantage of formulating the kernel in this way is that the numerator of the derivative with

respect to the action variable is quadratic in the action variable. Because the Epanechnikov kernel

is non-zero on a finite interval, the domain of the action variable can be broken into a finite number

of intervals on which the quadratic coefficients are constant. Thus all points which are candidate

maxima are either a root of one of a finite number of quadratics or breakpoints between intervals.

Using this method, the optimal action can be calculated relatively efficiently. If the routine finds

multiple actions with the same optimal value, ties are broken randomly. Currently, this strategy

works only on problems with one action variable, though the possibility of extending into higher

dimensions is being investigated.

2.5.3 Results
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Figure 2.4: The trajectory through the state space as obtained by the final policy.

Implementation was in MATLAB 2012b in Ubuntu 12.04 on hardware with an Intel Xeon

3.47 gigahertz processor and 24 gigabytes of RAM. 7,500 iterations were recorded in 858 seconds.

Parameter values were bandwidth h = .2, exploration parameter ε = .9, discount factor γ = .9, and
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Figure 2.5: Actions chosen from the final policy.

k = 20 successful episodes to initialize with 1.

The policy obtained is near-optimal. Figure 2.5 shows action selection over time. The

optimal policy will choose actions on the extreme ends of the action interval, and the learned policy

sometimes chooses actions near but not at the boundary. Figure 2.6 shows iterations against time.

There is an initially surprising phenomenon here. One would expect the number of iterations per

second to increase as more data is collected, but after around 400 iterations the calculations actually

speed up. The reason is that when only a small amount of data is available, the action-selection

subroutine will find many actions with the same maximum value. Each best-action candidate is

kept in memory until the tie is randomly broken at the end of the subroutine. As more data is

collected, ties occur less commonly, and the subroutine finishes in less time. For a brief time, the

increase in speed from faster action-selection outpaces the decrease in speed from accumulating data.

Over time, this phenomenon vanishes, and the algorithm slows down once again. Figure 2.7 shows

iterations against time for 25,000 iterations. From this plot it is clear that the described phenomenon

is temporary.

Another unexpected occurence involved the optimal bandwidth. Repeating the experiment

multiple times with different bandwidths revealed that the best results were obtained when the

algorithm learned with a bandwidth of .2 but used a smaller bandwidth, .07, when building the final

1For the full source code, see the online appendix at https://www.dropbox.com/s/8q9pd9tufc09tw5/

DissertationOnlineAppendix.zip.
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policy. Early trials resulted in a policy that could find the goal but spent more time than necessary

building momentum. Upon investigation, it was found that the value of state-actions corresponding

to the initial state were calculated using values in the initial position but with positive velocity.

This caused the policy to use positive acceleration (the best action when velocity is already positive)

rather than negative acceleration (the best action when velocity is zero) from the initial state. A

smaller bandwidth, specifically .07, avoided this issue. Note that using .07 when the algorithm was

in the learning phase did not yield good results because it did not sufficiently generalize when a

small amount of data was available. This suggests that even though the convergence proof uses a

fixed bandwidth, in practice it is best to decrease the bandwidth as the amount of data increases.
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Figure 2.6: Graph of 7,500 iterations completed over time.

2.6 Discussion

This chapter has presented a reinforcement learning algorithm for continuous states and

actions which is proven to converge to an optimal solution. Knowledge generalization is based on

Nadaraya-Watson kernel regression. The most similar previous result is that of Ormoneit & Sen

[21], which uses kernel-smoothing for problems with a continuous state space and a finite number

of actions. The algorithm presented here is different in a few important ways. First, actions are

allowed to be continuous. However, this introduces the burden of ensuring that small changes in

actions result in small changes to transition dynamics. Second, the assumption on the distribution
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Figure 2.7: Graph of 25,000 iterations completed over time.

of states is weaker. Ormoneit & Sen’s Assumption 3 requires states to be sampled uniformly from

the state space. This has been weakened in the present paper to requiring the distribution of states

to have a positive and smooth density.

One of the practical difficulties in implementing the algorithm is that the amount of compu-

tation required increases with each recorded observation. In addition to the ideas in Section 2.5, the

author has experimented with sparsifying by selecting a grid of M points {(sj , aj)|j = 1, ...,M} in the

state-action space and assigning to each point a value such that performing kernel regression on those

values will yield predictions similar to predictions obtained using kernel regression on the entire set of

observations. Essentially, the idea is to use the kernel as a radial basis function at fixed locations in

the state-action space and learn the weights for each. Specifically, suppose N transitions have been

observed, N ≥ M , with {(si, ai)|i = 1, ...N} and {yh,i := ri + γ supa∈A Q̂h,i−1(ui, a)|i = 1, ..., N}

recorded. Define a matrix XN×M entry-wise by

Xi,j =
Kh((si, ai)− (sj , aj))∑M
j=1Kh((si, ai)− (sj , aj)

and ~YN×1 by Yi = yh,i. Solve for ~β that minimizes ||X~β − ~Y ||2. For a state-action (s, a), define

~KM×1(s, a) by Kj(s, a) = K((s, a)−(sj , aj)). The value of (s, a) can then be estimated by ~KT (s, a)~β.

For future observations, update ~β as described by Chambers [6]. This method requires computation

that is linear in the number of observations and constant in storage requirements.
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The fourth assumption concerns weak convergence of state transition probability measures.

If the state-action space is separable, it is possible to define a metric on the set of all transition

measures such that convergence in the metric is equivalent to weak convergence. See, for example,

the Prokhorov metric [4]. Therefore it is possible to restate assumption four in a more succint manner

that is sometimes easier to verify. However, extra work is then required to derive the properties

needed in the convergence proof. The author has chosen to state assumption four in the manner

that simplifies the proof.
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Chapter 3

Regression Trees for

Reinforcement Learning

The kernel-based algorithm of the previous chapter has excellent convergence properties,

but computationally is a fundamentally expensive regression method and becomes more expensive

as more data is accumulated. The goal of this chapter is to find a method for predicting state-action

values that is more computationally efficient and better suited to higher dimensions and larger sets

of transition data. Before introducing a new regression method, we will consider a different way of

structuring the learning problem to take advantage of parallel computing.

3.1 Online and Offline Algorithms

Let us consider a Reinforcement Learning algorithm as consisting of two abstract tasks. The

first task is data collection, and involves selecting actions (either randomly, choosing best known,

or via some exploration method) and recording the data. The second task is learning, and uses

the data obtained from the first task to do the actual updating of value estimates. We can classify

algorithms according to how these tasks interact.

An online algorithm is one in which the tasks alternate. In all algorithms the data collection

informs the learning, but in an online algorithm the learned value estimates can inform the data

collection via influencing action selection. Intuitively, one can think of an online algorithm as
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interacting with the system while learning. Both algorithms considered so far, standard Q-learning

in Chapter 1 and the continuous variant in Chapter 2, are online algorithms. In fact, as presented,

they are purely sequential online algorithms, as exactly one observation is made in between value

estimate updates. The advantages of an online algorithm are the potential for smart exploration

and the ability to be used in real time. The disadvantage is that learning is not as computationally

efficient as offline algorithms. Figure 3.1 shows how online algorithms proceed.

Explore Learn Application
single transition (s, a, r, u)

inform action selection

Figure 3.1: A sequential online algorithm interweaves exploration and learning. The exploration
phase can use current knowledge to inform action selection.

An offline algorithm is one which separates the tasks of data collection and learning into

distinct phases. Obviously, data collection occurs first. Because no learning takes place between

iterations, the algorithm has no value estimates to guide action selection, so actions must be chosen

randomly. Once the data collection task ends and all observations have been recorded, the learning

phase begins. Because the algorithm now has access to an entire data set rather than a single

observation, there are many options as to how to update value estimates. A common method is to

use batch updates, which will be explained in more detail soon. The advantage of batch updates

is that learning (and exploration, with a bit of work) no longer needs to be performed sequentially

and can be completed in parallel, offering massive efficiency gains over online algorithms. The

disadvantages are that offline algorithms are not capable of real-time application and that random

action selection may not adequately explore the state-action space.

Explore Learn Application
fixed set of transitions F = {s, a, r, s′}

Figure 3.2: A batch-style offline algorithm separates completely the exploration and learning phases.
Learning can be parallelized to be more efficient, but transition data may not adequately reveal
system dynamics.
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3.2 Fitted Q-iteration

The batch learning algorithm we will consider is Fitted Q-iteration [8]. This algorithm

places no restrictions on how the data is collected, only that it is in the form of a collection of M

four-tuples F = {(sk, ak, rk, uk)|k = 1, ...,M}. Here sk is the state at iteration k, ak is the action, rk

is the reward, and uk is the state to which the system transitions. Fitted Q-iteration also requires a

regression method. Soon a specific regression method will be introduced, but in theory any method

appropriate to the dimension of the state-action space method will work.

Initialize state-action value estimates Q̂0(s, a) = 0 for all (s, a) ∈ S × A. Then, for n > 0,

repeat the following:

1. Build a training set T S = {(ik, ok)|k = 1, · · · ,M} of inputs and outputs where

ik = (sk, ak) (3.1)

ok = rk + γmax
a∈A

Q̂n−1(uk, a) (3.2)

2. Use the regression algorithm to create Q̂n(s, a) from T S

Continue until stopping conditions are reached. Notice that fitted Q-iteration reduces rein-

forcement learning to a sequence of regression problems where the response variable at each iteration

is updated via the previous regression model and Bellman’s equation. The explanatory variables

are simply the state and action variables and do not change across iterations. Pseudocode for fitted

Q-iteration is given by Algorithm 2.

Algorithm 2 Pseudocode for Fitted Q-iteration.

Input: F, a set of M four-tuples; a regression method; a stopping condition; γ, a discount factor.
Initialize Q̂0(s, a) = 0.
Initialize n = 0.
for k=1:M do

ik = (sk, ak).
end for
while Stopping condition not met do n = n + 1

for k=1:M do
ok = rk + γmaxa∈A Q̂n−1(uk, a).

end for
Build next regression model Q̂n(s, a) using {ik|k = 1, · · · ,M} as explanatory data and
{ok|k = 1, · · · ,M} as response data.

end while
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Most of the work will be in building the regression model and finding a maximum of predicted

values over action variables, so the choice of model has a dominant influence on computational speed.

Kernel-based models may work well for problems like Mountain Car with 2-4 dimensions, but higher

dimensional problems require a model better suited for large data and finding maxima over multiple

action variables.

3.3 Regression Trees

One model better suited for higher dimensions is a regression tree. Rather than fit a global

model, partition the input variable space and fit a local model on each partition. The partitioning is

accomplished by a recursive series of binary splits, allowing the partitions to be represented visually

by a tree graph, hence the name. The name regression tree is usually reserved for when all variables

are quantiative while classification tree is used for qualitative variables. It is possible to construct

trees that can deal with a mix of quantitative and qualitative variables, but for reinforcement learning

problems we only need to deal with quantitative variables.

Construct the tree beginning with the root node which corresponds to all observations in

the data set. Choose a “cut” variable and a “cut” value for that variable at which to split the data

set. There are multiple specific methods for choosing the variable and value which will be discussed

later. Create two child nodes from the root, a left child and a right child. All observations for which

the cut variable is less than the cut value are sent to the left child, and all other observations are

sent to the right child. Repeat this process for each child node, and then for all of their children

nodes unless a node satisfies some stopping criterion. At that point, fit a local regression model to

the observations belonging to that terminal node or “leaf.” Most commonly the model is a constant

prediction using the average response value for observations belonging to that node, but there is no

reason a more complex local regression cannot be used.

The tree predicts a response value for a new observation by traveling down through the tree

from the root node choosing the left child node when the observation’s value for the cut variable

is less than the cut value, and taking the right child otherwise. When a leaf is reached, the local

regression model is used to produce a predicted value.

There are many variants on regression trees, with a few well known ones being CART [5],

KD-Trees, Tree Bagging, Random Forests, CHAID, and QUEST. Below is a discussion of what
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Figure 3.3: The first four levels of a regression tree approximating the value-function of the Mountain
Car problem shown. Observations are sent left or right depending on whether the value of the listed
variable is less than (sent left) or greater than (sent right) the listed value.
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properties may vary.

• Number of trees Some methods, like CART, build a single tree. Other methods build forests,

multiple trees, and predict by taking an average of the predictions of each tree.

• Split criteria There are multiple ways of how to determine the cut variable and cut value. A

few of the most common criteria are:

– MinSSE Pick the variable and value such that the sum squared error across both of the

resultant children nodes is minimized. Specifically, pick the cut so that

∑
k∈leftnode

(yk − ȳleftnode)2 +
∑

k∈rightnode

(yk − ȳrightnode)2

is minimized. This is a relatively expensive way of selecting cuts, but observations in a

leaf have homogeneous response values.

– KD-Median Choose the cut variable by making an ordered list of variables and simply

cycling through them, choosing the one least recently split by. Choose the cut value by

taking the median of values of the cut variable for observations belonging to the node.

This builds trees very quickly, but response value in a leaf are probably less homogeneous

than MinSSE.

– Random Choose the cut variable and value uniformly and randomly. This is typically

used with forests where multiple trees strengthen the weak predictive power of any par-

ticular tree.

• Stop splitting criteria When should a node be split into children, and when should it be

left as a leaf?

– MinParent Do not split a node unless it has a minimum number of observations. The

specific value is a parameter input by the user or set as a percentage of the total number

of observations.

– MinLeaf Do not split a node unless each child would have a minimum number of obser-

vations. The practical difference between MinParent and MinLeaf criteria is subtle, but

suppose MinSSE was used and selected 1 observation for the left node and 9 observations
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for the right child. Using MinChild can prevent overfitting by disallowing leaf nodes with

a small number of observations.

– Purity Do not split a node with response values that are already homogeneous enough.

Given a purity tolerance parameter δ, do not split a node if

∑
k∈node(yk − ȳnode)2

n
< δ

where n is the number of observations corresponding to the node.

• Pruning Pruning prevents overfitting and reduces complexity by removing portions of the

tree which do not add to predictive accuracy. For example, a pruning algorithm may use

cross-validation to make predictions with and without a portion of the tree. If that portion

does not aid prediction, it is removed. Many tree variants purposely initially overfit and rely

on pruning to obtain a quality tree.

• Local prediction method Most tree variants simply fit a constant prediction model at each

leaf as the average value of the repsonse variable for observations belonging to that node. It

is also possible to fit linear, kernel, or some other model and let the tree serve simply as a fast

device for clustering the data.

Regression trees have been used in the context of fitted Q-iteration for reinforcement learning

problems with continuous states and finite actions. In Ernst et al. [8] the authors grow a separate

tree (or forest) for each distinct action, building the tree by only splitting state variables. Finding

a maximum over actions for a given state is accomplished by using each tree to make a prediction

for that state, then picking the action with the highest predicted value.

The theme of this dissertation is continuous action reinforcement learning, and growing a

tree for each of an uncountable number of actions is clearly not feasible. The remainder of this

chapter will detail modifications for using regression trees with continuous actions.

48



3.3.1 Regression Trees for Continuous Action Reinforcement Learning

A regression tree for continuous action learning requires additional functionality in two ways.

The first is found in building the outputs for the training set:

ok = rk + γmax
a∈A

Q̂n−1(uk, a).

Specifically, consider the term maxa∈A Q̂n−1(uk, a). We need to be able to find a maximum predicted

value over the action variables. Secondly, when the batch algorithm is complete, a final policy is

built by setting

π∗(s) = argsup
a∈A

Q∗(s, a).

We need not just the best predicted Q-value for a given state, but the particular action variable

values that produce that value. A leaf of the tree will correspond not to one particular value for

the action variables, but to an uncountable subset of values for the action variables. How should

specific action variable values be picked?

Therefore, in addition to the properties described in the previous section, a continuous

action tree must also decide how to implment additional functionality.

• Whether to split action variables

– RegTree The most straightforward approach is to build a single tree over the state-action

space allowing nodes to split at state or action variables. This approach keeps the standard

structure of the tree, simply supplying a sub-algorithm to perform the optimization. This

approach will be referred to as a RegTree, where the “reg” doubly refers to regression and

regular, as it is closer to regular tree structures compared to the other modification to be

presented.

– RLTree Notice that in the context of reinforcement learning, the only values that are

predicted are maximums over action variables. Response variable values for non-optimal

actions are irrelevant. Therefore, one could build a tree by only splitting state variables,

then maximizing over the action variables without splitting them. This approach is only

suitable for reinforcement learning purposes, thus it will be referred to as the RLTree

approach.
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• Action selection Once a node with maximum response value has been found, how should a

representative action be chosen?

– NodeMiddle Each node represents a hyperrectangle in the state-action space. For each

action variable, simply take the average of the bounds defined by the rectangle. This is

a simple and fast way to select actions, effectively discretizing actions according to the

structure of the tree and the amount of data. Notice this will work only with the RegTree

approach. The RLTree approach, which does not split nodes by actions, will always give

the same action value (the middle value for each action variable).

– BestObserved If the MDP has deterministic or low variance system dynamics, then

select the action with the highest observed value. Look at all observations corresponding

to the node, find the one with the highest Q̂n(s, a), and use that action. If system

dynamics are not near-deterministic, this may capture noise rather than average values.

When appropriate to use, it works equally well with RegTree and RLTree approaches.

– LocalOptimization If the tree fits a local prediction model more complex than the

average of response values, one can try to find the action that maximizes the prediction

response. For a linear prediction model with no coefficients equal to zero, this amounts

to finding the corner of the hypercube with the best value. For a kernel or more complex

model, there may not be a straightforward way to find the best action, and a general

purpose optimizer may be used at high computational cost.

• When to find best action Unless a tree is grown as completely as possible with a leaf for

each observation, there will be more observations than leaf nodes. Therefore during Fitted

Q-iteration when the output is calculated for each state-action observation, each leaf node will

be visited multiple times. Hence the action selection procedure will repeat itself needlessly.

– PreCalculated Significant efficiency gains can be achieved by calculating and storing

the best value and best action for each leaf node when the tree is constructed. This

increases slightly the time to construct the tree, but is more than made up for by time

saved in Fitted Q-iteration output calculation.

– OnDemand There are special cases in which finding actions during Fitted Q-iteration is

preferred to pre-calculating and storing. Notice that if constant value prediction is used,
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the exact state variable values are, beyond the fact that they led to this node, irrelevant.

However, if linear, kernel, or a more complex prediction method is used, the exact state

variable values can be used along with the best action variable values to calculate Q̂n(s, a)

with greater precision. Therefore, finding the best actions on demand is useful when value

precision is preferred over quick computation.

3.4 Implementation

At this point, it is becoming clear that there are an overwhelming number of ways of building

a tree. This section will describe the choices made for building a flexible yet manageable regression

tree implementation for continuous action reinforcement learning.

• Single tree We will focus on building a single strong predictor rather than a forest of weak

predictors.

• MinSSE, KD-Median We will allow cuts based on minimizing SSE across children nodes or

by the median value of the variable split by least recently. Note that any particular tree will

only use one of these methods at a time, but the choice is available before the tree is grown.

We will not allow random cuts as this is only useful when building forests.

• MinParent, MinLeaf, Purity These criteria for stopping splits are not mutually exclusive,

so we will use all three for each tree built.

• No Pruning Wise choice of MinParent, MinLeaf, and Purity parameters will prevent overfit-

ting sufficiently, so pruning is redundant and adds unnecessary complexity to the code.

• Constant, Linear, Kernel The user can pick whichever local prediction method they prefer,

though only one at a time can be used in a particular tree.

• RegTree, RLTree The user can pick whether to split over action variables (RegTree) or not

(RLTree). Only one method can be used on a particular tree.

• NodeMiddle, BestObserved, LocalOpt If a RegTree tree uses constant prediction at a

leaf, the user may choose to select actions by taking the middle of the node or the action with

the best observed value. If a RLTree tree uses constant prediction, choosing the action with
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the best observed value is the only sensible choice. If a tree of either variety uses linear or

kernel prediction at a leaf, the action will be selected by local optimization.

• PreCalculated, OnDemand If constant prediction is used at a leaf, there is no reason not

to precaculate the best action and value for that action during tree construction. If linear or

kernel prediction is used, it is assumed the user desires precision over speed, thus actions are

selected on demand during Fitted Q-iteration.
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Figure 3.5: A visual display of all possible tree variants. The third level represents the local prediction method used where C stands for
constant, L stands for Linear, and K stands for Kernel. The fourth level represents the method for selecting actions where NM stands for
NodeMiddle, BO stands for BestObserved, and LO stands for LocalOptimization.
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Figure 3.5 classifies the tree variants by using, appropriately, a tree format. 1

3.5 Experiments and Comparison

First, in order to compare against the results of Chapter 2, we will examine a policy obtained

by a tree variant on the Mountain Car problem. Then, each tree variant will be run under similar

parameters in order to compare their computational efficiency. Then, for the sake of variety, the

Inverted Pendulum problem will be introduced, and a solution will be examined.

For both experimental problems in this chapter, we will generate transition data quasi-

randomly, using a 3-dimensional Halton sequence. See Appendix A for details on constructing the

sequence.

3.5.1 The Mountain Car Problem

We will consider a solution to the Mountain Car problem obtained from a RegTree (splits

over action variables allowed) using the MinSSE method to determine splits, and choosing actions

using the NodeMiddle method. This tree variant is used for comparison because these choices are,

in the author’s opinion, either the most natural or the most commonly used. Specific values for the

tree parameters are in Table 3.1.

Parameter Value

Type of tree RegTree
Split criteria MinSSE

Action selection NodeMiddle
Transitions 20,000

Iterations 20
MinChild 5

MinParent 10
Purity 10−7

Discount factor γ .8

Table 3.1: The specific methods and values used in the tree variant for solving the Mountain Car
problem.

Using a 6-core processor running Fitted Q-iteration in parallel, the algorithm completed in

36.82 seconds. Compare to the 858 seconds for the algorithm in Chapter 2 to complete. Incidentally,

1See the online Appendix at https://www.dropbox.com/s/8q9pd9tufc09tw5/DissertationOnlineAppendix.zip for
MATLAB code for each of the variants.
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using less data and fewer iterations, the algorithm was able to produce less-optimal policies that

were still capable of reaching the goal in as few as 13 seconds. Figure 3.6 shows the final policy

obtained.
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Figure 3.6: The policy obtained using Fitted Q-iteration and a regression tree.

Qualitatively, the policy is quite similar to Figure 2.5 from the previous chapter. Do notice

that the actions, bounded by -4 and 4, are not as close to their boundaries in the tree variant. This

is due to the NodeMiddle method of selecting representative actions. Other methods, such as maxi-

mizing a linear model, can better select actions near the boundaries, but at increased computational

cost.

3.5.1.1 Comparing Solution Time

To compare the computation time for tree variants, we will solve the problem with the same

number of observations and iterations while keeping as many tree parameters as possible constant.

Table 3.2 gives the values for those parameters, and Table 3.3 gives the amount of time needed to

complete all iterations with the given number of transitions.

Some of the results are what one would expect intuitively, but some are not. A first observa-

tion is that the local prediction method has far and away the greatest impact on computation time.

Kernel regression takes around 25 times as long to complete as a constant prediction method, and

linear regression takes around 50 times as long. The increase in time for kernel regression is perhaps
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Parameter Value

Transitions 20,000
Iterations 20
MinChild 5

MinParent 10
Purity 10−7

Discount factor γ .8
Kernel Bandwidth .1

Table 3.2: The tree parameters kept constant across all tree variants for solving the Mountain Car
problem.

Type of Tree Split Criteria Regression/Action Selection Time (seconds)

Constant/NodeMiddle 36.82
MinSSE Constant/BestObserved 22.22

Linear 1491.18
RegTree Kernel 659.45

Constant/NodeMiddle 18.66
KD-Median Constant/BestObserved 23.76

Linear 2087.58
Kernel 1156.72

Constant/BestObserved 22.44
MinSSE Linear 1367.67

Kernel 536.83
RLTree Constant/BestObserved 20.44

KD-Median Linear 1736.95
Kernel 113.39

Table 3.3: Time needed for each tree variant to process 20 iterations at 20,000 transitions.

not as surprising as that for linear. This seems due to using MATLAB’s built-in linear regression

tools. However, even if a custom-coded linear solver is used, constant prediction is much too fast

while still being accurate for either linear or kernel prediction to compete.

A second observation is that the difference between RLTrees and RegTrees is not nearly

as dramatic, but RLTrees seem to have a slight advantage, completing in about 80-90% of the

time for the corresponding RegTree to complete. An outlier to this rule does exist: compare the

times for KD-Median/Kernel trees for RLTree and RegTree. The RLTree takes roughly 10% as

much time to complete. The most likely reason for this huge difference is how the subroutine for

maximizing kernel predictions over actions deals with multiple actions with the same maximum

value. All candidate maximum actions are kept in memory until the tie is broken randomly at the

end, and manipulating and storing the arrays containing the candidate maximum actions increases
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computation time. Depending on the particular structure of the function being maximized over,

there may be very many ties or there may be very few, allowing for significant variation in the

completion time for tree variants with kernel prediction.

A third observation is that while one would expect KD-Median to complete in less time

than MinSSE since the split criteria is much simpler, this is sometimes true but not always. For

example, consider the RegTree/NodeMiddle trees for KD-Median and MinSSE. KD-Median takes

half the time to complete, which agrees with intuition. However, for the RegTree/Linear trees,

MinSSE completes faster. This seeming paradox is resovled when one considers the difference in

computation time for building the tree and using the tree to predict state-action values. In a tree such

as RegTree/NodeMiddle where prediction is very fast, the time it takes to build the tree dominates.

Since KD-Median does indeed build a tree faster than MinSSE, we see a shorter computation time for

KD-Median. On the other hand, in a RegTree/Linear tree, the prediction task is more intensive than

the building task. Since KD-Median cyles through variables, the single action variable is split just as

often as each of the state variables. Meanwhile MinSSE, with its more complex split criteria, finds

greater value homogeneity when action variables are split less often than state variables, leading to a

greater number of paths to search down the tree when seeking optimal actions. The greater number

of paths means prediction must be performed at a greater number of terminal nodes. Therefore,

since the prediction task dominates and must be performed more often, KD-Median non-intuitively

leads to an increase in total computation time.

3.5.2 The Inverted Pendulum Problem

Consider a cart on a horizontal track with a massless rod attached to the top via a hinge, so

that the rod may rotate through the half-circle above the top of the cart. The other end of the rod

is attached to a spherical mass, hence the Inverted Pendulum. The goal is to balance the pendulum

above the cart, but the system is obviously inherently unstable. An agent controls the system by

imparting a force on the cart parallel to the horizontal track. Figure 3.7 shows the problem setup.

We will attempt to find a solution when the mass of the cart is 1 kilogram, the length of the rod is

1 meter, and the mass of the pendulum is .2 kilograms.

The state space is defined by 2 variables: θ, the angular deviation of the rod from vertical,

and θvel, the angular velocity of the rod. θ is allowed to be in the interval [−π4 ,
π
4 ] and θvel is allowed

to be in the interval [−π, π]. If either variable leaves its respective interval, the system is considered
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Figure 3.7: A diagram of the Inverted Pendulum problem.

to be in a penalty state, a reward of -1 is assessed, and a new trial starts. If the system is not in a

penalty state, the reward is zero. The action space is defined by a single variable, the force imparted

to the cart in Newtons. The force is constrained to the interval [-10, 10].

The dimensionality of the problem is the same as the Mountain Car problem, so the compu-

tational complexity is similar but there are important differences. First, the Mountain Car problem

has a “bang-bang” optimal policy, so it tests a regression model’s ability to find maxima near bound-

aries. An optimal policy for the Inverted Pendulum problem will actually avoid extreme actions, so

this problem will test an algorithm’s ability to use a fine touch when choosing actions. Secondly,

the Mountain Car is a goal-state driven problem. Exploration must be thorough enough to find the

goal state, but only a small region of the state-space is actually visited in an optimal trajectory,

as can be seen in Figure 2.4. The Inverted Pendulum has no goal state, and is instead driven by

the penalties assessed when the pendulum falls over or reaches a high angular velocity. Thorough

exploration is more important here, as the instability of the pendulum can lead a policy into a large

region of the state space. A good policy must be able to respond to a wide variety of states.

We will use the same tree variant that was used to solve the Mountain Car problem to solve

this problem. Table 3.4 shows the parameters used.

A solution was reached in 168.37 seconds. While testing a policy for the Mountain Car

problem is straightforward (simply begin from the starting position and see if the goal is reached),
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Parameter Value

Type of tree RegTree
Split criteria MinSSE

Action selection NodeMiddle
Transitions 100,000

Iterations 30
MinChild 5

MinParent 10
Purity 10−7

Discount factor γ .9

Table 3.4: The specific methods and values used in the tree variant for solving the Inverted Pendulum
problem.

we desire the pendulum to remain upright under a variety of conditions. Therefore, testing an

Inverted Pendulum policy will consist of a series of 10 trials of 100 time steps each. For each trial,

the system initializes with a random angular position drawn uniformly from [−π8 ,
π
8 ] and a random

angular velocity drawn uniformly from [−π2 ,
π
2 ]. The system must remain in bounds for the full

duration of each trial to be considered a success. Figure 3.8 shows the trajectory for each of ten

trials.

Notice that the policy produces two stable points, to the left and right of vertical, where the

force from acceleration balances gravity and produces zero angular velocity. The angular position

stays within a small region in a dynamic equilibrium, keeping the pendulum from falling indefinitely.
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Figure 3.8: The trajectories for ten trials. States outside the red solid box are penalties. Trials
begin randomly in the green dashed box. The black circle marks the actual starting state for the
trial.
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Chapter 4

Artificial Penalty Learning

In Chapter 2, the algorithm was online and sequential. Data was collected by interacting

with the system, choosing actions based on current value estimates. Exploration of the state-action

space was, in a sense, “smart” because it was guided by what was already learned.

In Chapter 3, the algorithm was offline and batch. Figure 4.1 reminds the reader of the

complete separation between the exploring and learning tasks for a batch algorithm. Since a gen-

erative model for the Mountain Car and Inverted Pendulum problems was available, experiments

used quasi-random sequences to generate transition data that uniformly represented the state-action

space.

Explore Learn Application
fixed set of transitions F = {s, a, r, s′}

Figure 4.1: A batch-style offline algorithm separates completely the exploration and learning phases.
If a transition-generating model is not assumed, exploration takes the form of trajectories driven by
random action selection.

However, it is typically assumed that a generative model is not available. Data must be

collected from trajectories using random actions. This may result in a set of transitions that does

not represent important regions of the state-action space, such as states near a goal. Clearly, this

can have a significant effect on the quality of the final policy produced.

Consider a goal-driven problem in which the agent is in an environment fraught with states

from which the agent can no longer succeed and must reset to an initial state. Examples include
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navigating a field with pits into which the agent can fall, steering a bicycle, helicopter, or any device

which is capable of crashing, or traversing a hilly region with valleys that cannot be escaped. Such

a problem will have a very low probability for a randomly exploring trajectory to reach the goal,

requiring a massive number of trajectories before the number of transitions reaching the goal is

sufficient for the learning phase. This has a two-fold negative effect. First of all, it will take time to

collect or generate enough trajectory data. Also, the learning phase will take a significant amount

of time to process the huge amount of data.

4.1 Artificial Penalty Learning

This chapter proposes a limited form of learning which we call Artificial Penalty Learning

(APL) for the exploration phase. This type of learning yields more thorough exploration of the

state-action space in fewer transitions and has an increasing chance of reaching the goal for each

consecutive trajectory. An example problem will demonstrate superior performance over pure batch.

Exploration

Action
Selection

Artificial
Penalty
Learning

Value-
function
Learning

Application

Figure 4.2: In Artificial Penalty Learning, the exploration and value-function learning phases are
still separate, but the exploration phase uses a limited, efficient style of learning to improve the data
passed to the value-function learning phase.

First, we will consider a state a natural penalty if it is explicitly defined by the dynamics

of the Markov Decision Process to represent failure and force the system back to an initial state.

Usually this is accompanied by a negative reward, so that the learning phase will see this as an

undesirable state. We have seen examples of natural penalties in the Mountain Car and Inverted

Pendulum problems. For example, if the angular position of the pendulum falls outside the interval

[−π4 ,
π
4 ], a reward of −1 is received and a new trial begins.

Now, consider that there also exist states which are not dictated by the MDP to be natural

penalties, but will lead to a natural penalty no matter what action is used. As an example, if the

state of the pendulum is θ = π
4 − .04 and θvel = eπ

4 , the pendulum is leaning too far for any allowable
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Figure 4.3: The Inverted Pendulum problem when θpos = π
4 − .04 and θvel = 3π

4 . The maxi-
mum allowable force to the left will not prevent the angular position from crossing the red penalty
boundary.

action to overcome the force of gravity. At the next time-step, the angular position will be greater

than π
4 . To borrow a phrase from chess, “checkmate in one.” Though the MDP does not define this

state as a penalty, the agent has already lost control and for all practical purposes is in a penalty.

Define an artificial penalty to be a state which is not a natural penalty, but all actions from

this state lead to penalties. Once enough artificial penalty states have been recognized, there may

be states for which all actions will lead to either a natural or artificial penalty. These states will be

classified as artifical penalties themselves. Proceeding in this manner, portions of the state space will

be classified as undesirable and unworthy of further exploration. For the remainder of this chapter,

the term “penalty” will refer to both natural and artificial penalties. The distinction will be made

when important.

APL breaks down into three tasks:

1. Build an efficient data structure for recording whether a state-action leads to a penalty.

2. Recognize when all actions for a particular state lead to a penalty, and classify that state as a

penalty.

3. Select actions randomly and uniformly from those which have not been observed to lead to

penalties.
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Depending on the specific dynamics of the problem, there is potential for the non-penalty

state space to be significantly reduced. If the agent only considers actions which have not been

observed to lead to penalties (natural or artificial) from the current state, the effect is exploration

that is concentrated in areas more relevant to good policies.

For problems with continuous states and actions, we will work with a discretization of

the state-action space. For APL to be effective, we do not want states which are part of optimal

trajectories to become penalties. Thus we need to assume one of the following holds:

• State transitions are continuous in the sense that similar actions used in similar states will

lead to similar states.

• An optimal trajectory will not be too close to penalties.

Algorithm 3 gives pseudocode for APL.

Algorithm 3 Pseudocode for Artificial Penalty Learning.

Input: An MDP with discretized state-action space, number of transitions to record M
Initialize state s0
for n=0:M do

Choose an randomly and uniformly such that
(sn, an) has not been marked as leading to a penalty
Receive next state un and reward rn.
Check if un is a penalty state.
if un is a penalty state then

Mark (sn, an) as leading to a penalty.
if All actions for sn lead to a penalty then

Mark sn as a penalty.
end if
Set sn+1 as an initial state

else
Set sn+1 = un

end if
end for

4.2 Penalty Trees

The goal for APL is to produce good policies in as little time as possible. Therefore, the

exact method used to discretize the state-action space is of key importance, as the three tasks of

APL must be completed as efficiently as possible. Given the success of tree-based binary splits in

the last chapter, we will use a tree as the data structure for discretizing the state-action space.
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A penalty tree is a fully grown binary tree. Unlike a regression tree, which partitions the

space unevenly based on supplied data, a penalty tree partitions the space into identical hyper-

rectangles. All nodes at a particular level of the tree split at the same variable. The user inputs

the number of times each variable is to be split. First, the state variables are cycled through until

each is split the appropriate number of times. Nodes at this level are important because they

represent portions of the state space. Then, action variables are cycled through until each is split

the appropriate number of times. The upper part of the tree partitions the state space, and the

bottom part of the tree partitions the action space.

A terminal node represents a small portion of the state-action space, but rather than as-

signing the leaf a value corresponding to a predicted Q-value, the leaf is assigned a binary variable

penalty which takes value 0 if that state-action has not been observed to lead to a penalty, and

value 1 if it has. For parent nodes of leaves, the variable penalty is real-valued and is the average

of the penalty variable for its children. Traveling back up the tree, the value of penalty for every

non-terminal node is calculated as the average of penalty for its two immediate children node. At

the first level at which an action variable splits (the nodes of which represent partitions of the state

space), the value of penalty is interpreted as the percent of actions which have been observed to lead

to a penalty state. If penalty = 1 for one of these nodes, then the corresponding state is classified

as an artificial penalty.

The penalty variable also drives random action selection. Given a particular state, travel

down the tree until nodes begin splitting at actions. Suppose this results in arriving at node n. Let

pl and pr denote the values of the penalty variable for the left and right children of node n. With

probability

1− pl
2− pl − pr

travel to the left child of n; otherwise travel to the right child. Repeat this process until a terminal

node is reached. This procedure will select, with equal probability, any node corresponding to

state-actions which have not been observed to lead to a penalty. Once a terminal node is reached,

randomly and uniformly generate an action within the boundaries defined by that node.

Figure 4.4 gives an example of a penalty tree just after being initalized. For this example,

assume the MDP has two state variables, x1 and x2, and one action variable, x3. Discretize the

state-action space by splitting each state variable once and the action variable twice. The number
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in each node gives the value of the penalty variable. As no transitions have been observed yet,

penalty = 0 for all nodes.

Now suppose the first transition resulting in a penalty has been observed. The state-action

pair for this observation corresponds to the third node of the last level, and the system transitioned

into a penalty. Figure 4.5 shows the tree at this point.

As more transitions are observed, eventually enough penalties will be observed to recognize

that for some states, all actions lead to penalties. Figure 4.6 shows how the penalty tree might look

when this happens for the first time. The node at level 3 colored red is now an artificial penalty,

and any subsequent transitions into a state corresponding to that node will restart the exploration

trajectory.
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Figure 4.7: A diagram of the Zero-Gravity Rocket problem. The star indicates the goal and the
cross in the lower left indicates the initial position.

4.3 The Zero-Gravity Rocket Problem

The Mountain Car and Inverted Pendulum problems are 3-dimensional, which is small

enough to explore adequately with totally random action selection. Now consider a more difficult

problem. A rocket loaded with explosives is in a spaceport and must find a docking area. The

z-component of the rocket’s initial position matches that of the dock, so the controller only need

worry about maneuvering through 2-dimensional space. However, there are barriers between the

initial position and the dock. Because of the explosive payload, any contact with the barriers will

destroy the rocket and the trial restarts. The agent controls the rocket via thrusters on the front,

back, and both sides of the rocket.

The state space is defined by four variables. xp and yp define the horizontal and vertical

positions, and xv and yv define the horizontal and vertical velocities. The action space is defined

by two variables. xa and ya are the horizontal and vertical accelerations. All together, this is a

6-dimensional problem with a very small probability of a randomly generated sequence of actions

reaching the goal state. Figure 4.7 shows the boundaries and barriers as well as the initial position

and goal location.

We will show that using APL for exploration is superior to random action selection both

in terms of goal visits per trajectory and goal visits per time. Let us consider goal visits per
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Figure 4.8: The end states for 25,000 trajectories generated by random action selection.

trajectory first. Figure 4.8 shows the last position (before transitioning into a penalty state) for

25,000 trajectories generated with random action selection. Notice that most of the trajectories end

very early and none are close to reaching the goal.

Figure 4.9 shows the last positions for 25,000 trajectories generated using APL. Here, we

expect the probability of getting close to the goal to increase over time. To see if this is true, the

25,000 trajectories are broken into 5 groups of 5,000 and plotted separately. The first plot shows

the first 5,000 trajectories, the second plot shows the next set of 5,000 trajectories, and so on. It is

clear that the distribution of positions is changing. The area with the most dense concentration of

positions is under the initial state in the first group, moves up with the second, third, and fourth

groups, and in the last group can be seen moving right towards the second barrier. Also, if one

examines the position of the best trajectories (those closest to the goal), there is a slow but steady

increase in the density of positions directly underneath the goal, and several individual trajectories

which are quite close.

It would be informative to have a graphic illustrating how many state-actions have been

marked as leading to penalties. Because the state space consists not only of positions but also

velocities, the state space itself is difficult to illustrate. A work-around can be achieved by making a

figure illustrating a subset of the state space. Begin by making a grid by discretizing the horizontal

and vertical position variables. For each rectangle in the grid, search for all state-action terminal
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Figure 4.9: The end states for 25,000 trajectories when using APL. To illustrate the improving
quality of trajectories, the trajectories are split into 5 groups of 5,000.
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Figure 4.10: The color of each rectangle represents the proportion of corresponding state-actions
that have been observed to lead to penalties. 25,000 transitions have been observed.

nodes corresponding to that rectangle. Calculate the proportion of those state-actions which have

been marked as penalties, and project that proportion onto a color-scale with green meaning no

penalties and red meaning all state-actions lead to penalties. Figure 4.10 gives such an illustration

after 25,000 trajectories.

The preceding figures should make it clear that APL yields better average exploration given

the same number of transitions. However, in application it is not ultimately the number of transitions

that is of concern; it is the time needed to generate and process those transitions. One must consider

the overhead cost of building and maintaining the penalty tree structure as well. To quantify the

overhead, random exploration and APL exploration each ran for 500 seconds, and the time spent

on various tasks was recorded. The results are in Table 4.1.

Task Random APL

Building Tree - .0824
Action Selection 113.845 226.2057

Calculating Transition 228.0396 59.7317
Checking for Penalty - 152.1208

Updating Tree - 16.4248
Other tasks 158.1154 45.4346
Transitions 12,935,738 2,899,852

Goals 6 237

Table 4.1: An analysis of time spent over 500 seconds for each exploration method.
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There are a few interesting observations to be made. For one, the overhead of APL (consist-

ing of the increased time in action selection, checking for penalties, and updating the penalty tree)

is significant. Random exploration completes nearly 13 million transitions, compared with about

3 million for APL exploration. However, even though random exploration generates transitions

roughly 4.5 times faster, it only finds 6 rewards compared to 237 for APL. Thus APL provides a

double advantage over random exploration: APL takes less time to generate data with an adequate

number of goal visits, and since it generates fewer transitions, the value-function learning phase of

the algorithm will also take less time.

Another observation is how the overhead costs of APL break down. Even though the penalty

tree structure is quite large at 220 − 1 = 1048575 nodes (compare to 12547 nodes for the regression

tree that solved the Inverted Pendulum problem), it is constructed in less than a tenth of a second.

This rapid construction is possible because of the highly structured layout of a penalty tree. A

penalty tree is a fully grown binary tree, so by assigning a number to each node, every initial

property of a node can be extracted from a binary representation of its assigned number. This

allows for vectorized tree construction as opposed to constructing in a slower for-loop as is necessary

for regression trees.

The entry labeled “Other tasks” consists nearly entirely of time-keeping. One may notice

that time-keeping represents a much higher percentage of the total time for random exploration.

This can be explained by noting that the time spent time-keeping is proportional to the number

of transitions completed. Random exploration completes many more transitions and uses a small

amount of computational time to record the time needed for that transition. In fact, because the

Zero-Gravity Rocket has such simple mechanics, the time spent simulating a transition is only

slightly larger than the time to measure and record the simulation time. For APL exploration, each

transition also requires more complex action selection, checking for artificial penalties, and updating

the tree if a penalty is found. This total time is significant compared to the time used to record how

long it takes these tasks to complete, thus time-keeping is proportionally smaller for APL.

This leads to another interesting observation: because the problem considered has relatively

simple mechanics (consider that the Mountain Car problem required the derivative of the hill in

order to calculate gravitational force perpendicular to the hill, and the Inverted Pendulum has many

trigonometric terms), the APL overhead is more significant for this problem than for many, perhaps

most, others. Thus when testing whether APL is an improvement over random exploration, APL

74



0 200 400 600 800 1000 1200 1400
0

5

10

15

20

25

30

35

40

45

50

Time (seconds)

#
 o

f 
T

im
e
s
 G

o
a
l 
R

e
a
c
h
e
d

 

 

APL

Random

Figure 4.11: A plot showing how long it takes to reach the goal a given number of times. The blue
line represents random action selection. The red line represents APL exploration.

is at a disadvantage. To quantify, for the Zero Gravity Rocket problem, APL processes transitions

about a fifth as fast as random exploration. A problem with more complicated dynamics, which

would take longer to simulate transitions, could see APL processing transitions only half as fast as

random exploration. The recognition that APL is being compared in a disadvantageous scenario

makes its superior performance even more impressive.

It is clear from Table 4.1 that APL finds the goal more often than random exploration, but

the times at which the goal is found is not clear. Figure 4.11 plots the times at which the goal

is visited until 50 goal visits have been seen. The blue line represents random exploration, and is

roughly linear as one would expect. The red line represents APL, and is increasing at a super-linear

rate.

One could continue the analysis of random versus APL exploration further by continuing

into the value-function learning phase and measuring the time needed to arrive at a near-optimal

solution, but this is unnecessary. The value-function learning phase will proceed similarly whether

the data was generated from random action selection or APL. The only differences will be APL

explores the state-action space more uniformly, visits the goal state more often, and indirectly

speeds up value-function learning by passing less transition data to be processed.
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Chapter 5

Conclusion

This dissertation has presented research into the theory and application of RL algorithms

when states and actions are continuous. Chapter 2, the principal result, presented an algorithm based

on kernel regression and proved convergence to an optimal policy. This result should be understood

to be a chiefly theoretical contribution, and not intended to compete with the state-of-the-art.

Chapters 3 and 4 are less theoretical and more practical. Chapter 3 introduced regression

trees and detailed modifications for use in continuous action RL. Experimental results were provided

to show evidence of superior computational performance over the algorithm of Chapter 2. Chapter

4 discussed difficulties with random exploration and introduced penalty trees, data structures for

learning how to avoid penalties before the value-function learning phase begins.

5.1 Future Work

Concerning the kernel based algorithm of Chapter 2, this research can be regarded as com-

plete. The author’s desire was to create the the first online Q-learning variant for continuous actions

proven to converge to an optimal policy, and this goal is complete. One possible extension concerns

the experimental section. Selecting optimal actions is possible due to special properties of the kernel

used and the single action variable. Extending this strategy to arbitrary kernels or multiple action

variables is a possible direction, but given the far superior performance of non-kernel based methods,

this has limited value.

In the experiments of Chapter 3, unexpected interactions between components of the re-
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gression trees were observed. A better understanding of these interactions and how to choose the

best tree variant for a specific problem could be worthwhile investigations. Also, the variants using

linear regression for predicting state-action values performs less well than one might expect. One

could test whether custom-coded functions (rather than using MATLAB’s built-in functions) could

improve performance enough to make those variants worth using.

Chapter 4 saw a direct comparison of totally random exploration and APL. While totally

random exploration is the only option for pure batch algorithms, it is possible to construct algorithms

that are hybrids of pure batch and pure sequential. Such an algorithm will produce a first (relatively

small) batch by totally random exploration, pass this small sample to the value-function phase, then

use the learned value-function to guide exploration and produce another sample. This repeats until

the sample size is large enough or the learned policy solves the problem satisfactorily. This hybrid

approach is known as growing batch. Showing that APL is superior to growing batch as well as pure

batch is an obvious next step.

Encountering a penalty is not the only undesirable behavior APL could learn to avoid. For

example, in a deterministic goal-driven problem like Mountain Car or Zero-Gravity Rocket, an action

which does not result in a change of state will clearly not bring the agent closer to the goal. APL

could be modified relatively easily to check for stagnation, and to mark state-actions which do not

lead to a new state as a penalty. Also, for both problems mentioned, visiting the same state twice

in a single trajectory indicates a loop. If the algorithm could recognize and mark as a penalty the

state-action which resulted in the loop this would further improve exploration.

More generally, the success of APL demonstrates the success of a limited form of learning

prior to engaging in full-fledged value-function learning. APL is focused entirely on learning the

penalty structure, and thus is well-suited to problems like the Inverted Pendulum and Zero-Gravity

Rocket problems. For problems where penalties play a less significant role, like the Mountain Car,

the benefit of APL will be lessened. Are there other ways to structure limited learning that are not

based on penalties?

As mentioned in Section 1.3, if one is willing to break with the custom of generating tran-

sitions along continuous trajectories, quasi-random sequences can be used to generate state-actions

uniformly with low discrepancy. Quasi-random sequences could still be used to drive exploration

restricted to continuous trajectories. Consider an MDP with finite states and continuous actions. By

assigning an action-valued quasi-random sequence to each state and choosing actions as a function
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of the sequence and the number of visits to the state, more uniform exploration would be achieved.

Now consider continuous states and continuous actions. Is it possible to construct a function which

can assign actions to states using the number of visits to states as input, with the actions for each

state forming a low-discrepancy sequence? Such a sequence could guarantee visiting a goal within

a finite amount of time, and intuition says the time would be shorter than the expected time until

finding the goal with totally random exploration. Finding such a function and verifying intuition is

the most likely next project.

Finally, with regards to future research, it would be nice to move in the direction of more

traditional statistics. RL is a fun field to work in and has opportunities for some interesting regression

applications, but a significant portion lies in the realm of computer science. Chapters 3 and 4 in

particlar, though data driven, begin to stray to the boundaries between mathematics and computer

science.
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Appendix A Quasi-random Sequences

Section 1.3 suggests exploring by choosing states and actions from a quasi-random sequence

in order to ensure uniform exploration, and Section 3.5 describes an experiment with quasi-randomly

generated transition data. This appendix will explain what is meant by a quasi-random sequence

and how to generate one. The definitions, theorems, and exposition is based on the text by Kuipers

and Niederreiter [16].

Let (xn), n = 1, 2, · · · be a sequence of real numbers taking values in the unit interval

I = [0, 1]. For a positive integer N and a subset E of I, let the counting function AN (E) be defined

as the number of terms xn, 1 ≤ n ≤ N , for which xn ∈ E.

Definition The sequence (xn) is uniformly distributed if for every pair a, b of real numbers

with 0 ≤ a < b ≤ 1,

lim
N→∞

AN ([a, b))

N
= b− a. (1)

The obvious example of a uniformly distributed sequence is a sequence of uniform random

variables, whether truly random or generated pseudo-randomly by a computer. Such a sequence

will have areas of high and low density. Consider subintervals of identical width [ iM , i+1
M ) for i =

0, 1, · · · ,M − 1 for large M . It may take an extremely long time before each subinterval is visited,

whereas other subintervals will have many visits.

For many situations, it would be advantageous to have a sequence for which Equation (1)

converges quickly. This motivates the next definition.

Definition Given a sequence (xn) and finite N , the discrepancy of a sequence up to index

N , denoted DN , is defined by

DN = sup
0≤a≤b≤1

∣∣∣∣AN ([a, b))

N
− (b− a)

∣∣∣∣ . (2)

It can be proved (see Theorem 1.1 of Chapter 2 in the above referenced text) that a sequence

is uniformly distributed if and only if limN→∞DN = 0. The discrepancy gives information about

how quickly a sequence achieves uniform density. A sequence is called quasi-random if it is uniformly

distributed and has low discrepancy.
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A.1 Van der Corput Sequences

The Van der Corput sequence given a prime p is a quasi-random sequence which is easy to

generate, has low discrepancy, and is easy to generalize to multiple dimensions. It is constructed by

converting the natural numbers into base p, reflecting the digits across the decimal, and converting

back into base 10. Table A.1 shows the construction of the first 7 entries of the Van der Corput

sequence for p = 2.

Natural number Base p representation Reflected Sequence entry
1 1 .1 .5
2 10 .01 .25
3 11 .11 .75
4 100 .001 .125
5 101 .101 .675
6 110 .011 .375
7 111 .111 .875

Table A.1: The first 7 entries of the Van der Corput sequence for p = 2.

The discrepancy of the Van der Corput sequence for p = 2 satisfies

DN ≤
log(N)

N log 2

which is the lowest rate for all known sequences.

A.2 Halton Sequences

A Halton sequence is a multi-dimensional quasi-random sequence. Each component of an

entry in a Halton sequence comes from a Van der Corput sequence of a different prime. For an

example of dimension 2, let (xn) and (yn), n = 1, 2, · · · be Van der Corput sequences constructed

with primes p1 and p2 respectively, p1 6= p2. Construct a Halton sequence by setting entry n equal

to (xn, yn).
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Figure A.1: Comparisons of random and quasi-random two-dimensional sequences.

A.3 Code

function sequence = vandercorput(p,n)

% SUMMARY: Generates the first n entries of the Van der Corput

% sequence given prime p.

% INPUT: p is a prime number.

% n is the number of entries to generate

% OUTPUT: sequence is the generated quasi-random sequence

sequence = zeros(1,n);

parfor k=1:n
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result = 0;

f=1/p;

i=k;

while i>0

result = result + f*mod(i,p);

i = floor(i/p);

f = f/p;

end

sequence(k) = result;

end

function sequence = three_dim_halton(p_1, p_2, p_3, n)

% SUMMARY: Generates a three dimensional Halton sequence

% using primes p_1, p_2, p_3.

% INPUT: p_1, p_2, and p_3 are the primes to generate each

% Van der Corput sequence.

% n is length of sequence to be generated

% OUTPUT: sequence is the multidimensional quasi-random

% sequence

sequence = cell(1,n);

sequence_1 = vandercorput(p_1, n);

sequence_2 = vandercorput(p_2, n);

sequence_3 = vandercorput(p_3, n);

parfor k = 1:n

sequence{k} = [sequence_1(k), sequence_2(k), sequence_3(k)];

end
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[24] Juan Carlos Santamaŕıa, Richard S. Sutton, and Ashwin Ram. Experiments with reinforcement
learning in problems with continuous state and action spaces. Adaptive Behavor, 1996.

[25] B. W. Silverman. Density estimation for statistics and data analysis. Chapman and Hall,
London, 1986.

[26] J.S. Simonoff. Smoothing methods in statistics. Springer, New York, 1996.

[27] Richard S. Sutton. Learning to predict by the methods of temporal differences. Machine
Learning, 3:9–44, 1988.

[28] Richard S. Sutton. Generalization in reinforcement learning: Successful examples using sparse
coarse coding. In Advances in Neural Information Processing Systems 8, pages 1038–1044. MIT
Press, 1996.

[29] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA, 1998.
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