
Clemson University
TigerPrints

All Dissertations Dissertations

12-2013

Approximation in Multiobjective Optimization
with Applications
Lakmali Weerasena
Clemson University, lweeras@clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations

Part of the Applied Mathematics Commons

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by
an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Weerasena, Lakmali, "Approximation in Multiobjective Optimization with Applications" (2013). All Dissertations. 1258.
https://tigerprints.clemson.edu/all_dissertations/1258

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1258&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1258&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1258&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1258&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1258&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/1258?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1258&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

Approximation in Multiobjective Optimization with
Applications

A Thesis

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

Mathematical Sciences

by

Lakmali Weerasena

December 2013

Accepted by:

Dr. Margaret M. Wiecek, Committee Chair

Dr. Pietro Belotti

Dr. Mary Elizabeth Kurz

Dr. Beth Novick

Dr. Matthew Saltzman

Abstract

Over the last couple of decades, the field of multiobjective optimization has received

much attention in solving real-life optimization problems in science, engineering, economics

and other fields where optimal decisions need to be made in the presence of trade-offs

between two or more conflicting objective functions. The conflicting nature of objective

functions implies a solution set for a multiobjective optimization problem. Obtaining this

set is difficult for many reasons, and a variety of approaches for approximating it either

partially or entirely have been proposed.

In response to the growing interest in approximation, this research investigates de-

veloping a theory and methodology for representing and approximating solution sets of

multiobjective optimization problems. The concept of the tolerance function is proposed

as a tool for modeling representation quality. Two types of subsets of the set being repre-

sented, covers and approximations, are defined, and their properties are examined.

In addition, approximating the solution set of the multiobjective set covering prob-

lem (MOSCP), one of the challenging combinatorial optimization problems that has seen

limited study, is investigated. Two algorithms are proposed for approximating the solution

set of the MOSCP, and their approximation quality is derived. A heuristic algorithm is

also proposed to approximate the solution set of the MOSCP. The performance of each

algorithm is evaluated using test problems. Since the MOSCP has many real-life applica-

tions, and in particular designing reserve systems for ecological species is a common field

for its applications, two optimization models are proposed in this dissertation for preserving

reserve sites for species and their natural habitats.

ii

Acknowledgments

I would like to express my heartfelt gratitude to my advisor, Dr. Margaret M.

Wiecek, for her guidance and support. Working with her these past three years has been

challenging as well as rewarding. Her insights have improved not only this dissertation but

also my understanding of and ability to conduct research. I admire her expertise and am

grateful that she was so willing to share it with me.

My committee members, Dr. Pietro Belotti, Dr. Mary Elizabeth Kurz, Dr. Beth

Novick and Dr. Matthew Saltzman, each an expert in his/her respective field, were reliable

sources for additional help and suggestions along the way. I am fortunate to have received

their time and commitment during my fourth exam, which resulted in new ideas for this

dissertation, and their numerous suggestions and ideas for further improvement and addi-

tional research directions for my work.

A significant impact on my research is also credited to Dr. Douglas Shier, my mas-

ter’s research advisor, who deserves many thanks because his commitment and fascination

have also broadened my general interests in various aspects of this research. I would also

like to thank Dr. Banu Soylu, Dr. David Tonkyn, and Dr. Daniel Vanderpooten for sharing

their experiences, ideas and valuable time with me to successfully complete the manuscripts

included in this dissertation.

Special thanks go to my family, especially to my mother Mrs. Seetha Weerasena;

without her encouragement and support, I would not have been able to be so successful in

my academic career. I am also grateful for my father and grandparents; although they are

no longer here to see my success, I hope they know they are always in my heart.

iii

My warmest thanks belong to my husband, Dr. Damitha Bandara, for generously

showing his devotion and creating new wonderful moments in my life. His overwhelming

support and encouragement during these last months mean more to me than he can imag-

ine.

While my supporters are too numerous to mention, I also thank all my other teachers

and the faculty who worked with me, in particular Dr. W. B. Daundasekara, Dr. Shelton

Perera, Dr.Chris Cox, Dr. K. B. Kulasekera, and Dr. Robert Taylor for supporting me in

various ways. Finally, I would like to thank Mrs. Barbara Ramirez, Mr. Nathanael Black,

Dr. Brian Dandurand, and all of my friends who helped me to complete this dissertation

successfully.

iv

Table of Contents

Title Page . i

Abstract . ii

Acknowledgments . iii

List of Tables . vii

List of Figures . viii

1 Introduction . 1
1.1 State of the art . 2
1.2 Research Goals . 22
1.3 Research Contributions . 24
1.4 The content of the dissertation . 30
1.5 Conclusion and future research . 31

2 Covers and t-dominance in Multiobjective Optimization 34
2.1 Introduction . 34
2.2 Notations and definitions . 38
2.3 Properties of covers . 41
2.4 Properties of approximations . 49
2.5 Examples and application . 53
2.6 t-dominance and conclusion . 56

3 Pareto Set Approximation for the Multiobjective Set Covering Problem 61
3.1 Introduction . 61
3.2 Problem formulation . 64
3.3 Approximating the Pareto set of the MOSCP 69
3.4 Computational results . 88
3.5 Conclusion . 98

4 Add-Improve Algorithm for approximating the Pareto set of the Mul-
tiobjective Set Covering Problem . 99
4.1 Introduction . 99
4.2 Problem formulation . 102
4.3 Preliminary concepts . 104

v

4.4 Algorithm . 107
4.5 Computational results . 115
4.6 Conclusion . 125

5 A Hierarchical Approach to Designing Compact Ecological Reserve Sys-
tems . 126
5.1 Introduction . 126
5.2 Optimization Models . 132
5.3 Numerical Results . 139
5.4 Oregon data set . 145
5.5 Conclusions and Extensions . 149

Appendices . 151
A MATLAB codes for Chapter 3 . 152
B MATLAB codes for Chapter 4 . 155
C OPL code for Chapter 5 . 160

Bibliography . 189

vi

List of Tables

2.1 Examples of tolerance functions . 54

3.1 Characteristics of the BOSCP test instances 89
3.2 Ranges of z1 and z2 computed by each algorithm 91
3.3 Theoretical and experimental approximation factors 92

4.1 Characteristics of the test instances . 116
4.2 Comparison of the algorithms using C(YP) 117
4.3 Comparison of the algorithms using C(Ỹ) 118
4.4 C measures . 119
4.5 H(YP) and H(Ŷ) measures . 120
4.6 H(Ỹ) and H(Ŷ) measures . 120
4.7 C and H measures for MOSCP with three objective functions 124

5.1 Relative sizes of the two models . 138
5.2 Optimal solution values and CPU times for the 16× 16 study region 142
5.3 Optimal solution values and CPU times for the 13× 18 hexagonal grid when

FB is varied . 146
5.4 Optimal solution values and CPU times for the 13× 18 hexagonal grid when

UB is varied . 148

vii

List of Figures

1.1 Solution Approaches for MOPs . 15

3.1 Comparison of outcomes obtained by Algorithm 1 to the supported Pareto
outcomes for 2scp41A . 94

3.2 Comparison of outcomes obtained by Algorithm 2 to the Pareto outcomes
for 2scp41A . 94

3.3 Comparison of outcomes obtained by Algorithm 1 to the supported Pareto
outcomes for 2scp61D . 95

3.4 Comparison of outcomes obtained by Algorithm 2 to the Pareto outcomes
for 2scp61D . 95

3.5 Comparison of outcomes obtained by Algorithm 1 to the supported Pareto
outcomes for 2scp81C . 96

3.6 Comparison of outcomes obtained by Algorithm 2 to the Pareto outcomes
for 2scp81C . 96

3.7 Comparison of outcomes obtained by Algorithm 1 to the supported Pareto
outcomes for 2scp210B . 97

3.8 Comparison of outcomes obtained by Algorithm 2 to the Pareto outcomes
for 2scp201B . 97

4.1 Comparison of outcomes obtained by the AIA with the Pareto outcomes for
2scp41A . 121

4.2 Comparison of outcomes obtained by the AIA with the Pareto outcomes for
2scp41B . 122

4.3 Comparison of outcomes obtained by the AIA with the Pareto outcomes for
2scp41C . 122

4.4 Comparison of outcomes obtained by the AIA with the Pareto outcomes for
2scp41D . 123

4.5 Comparison of outcomes obtained by the AIA with the Pareto outcomes for
2scp201B . 123

4.6 Comparison of outcomes obtained by the AIA with the relaxed outcomes for
2scp201C . 124

5.1 Two clusters on four sites with different boundary lengths 131
5.2 Two clusters on three sites with the same boundary length 131
5.3 12× 12 study region with 144 sites . 139
5.4 Optimal solutions for Case 1 (UB = 20) and Case 2 (UB = 35), 12×12 study

region . 140

viii

5.5 Sample conservation region with 256 sites 141
5.6 Optimal solutions using C = 2, 3, 4 for the 16× 16 study region 143
5.7 Optimal solution using C = 2 with each species covered at least once 144
5.8 Optimal solutions using C = 2 with each species covered at least twice . . . 145
5.9 Optimal solutions using C = 2 for the 13 × 18 hexagonal grid when FB is

varied . 147
5.10 Optimal solutions using C = 2 for the 13 × 18 hexagonal grid when UB is

varied . 148

ix

Chapter 1

Introduction

Life is about decisions. No matter if made by a group or an individual, decisions

usually involve several conflicting objectives based on group’s or individual goals and prefer-

ences. The presence of several objectives usually does not allow decision makers to identify

a universal best decision, meaning they need to make a choice among all possible alterna-

tives to reach the best decision. If it is too difficult to find all possible decisions or even

their subset, potential alternatives are identified and decision makers select the best among

them. These ideas form the heart of this dissertation.

For further guidance, a brief outline of the general organization of Chapter 1 follows.

Section 1.1 begins with a review of various relevant mathematical concepts, the current lit-

erature, solution approaches to decision problems in the presence of multiple objectives,

and a specific type of the decision problem and its application. A statement of the research

objectives is included in Section 1.2, while the research contributions for each specific goal

are found in Section 1.3. The content of Chapters 2 through 5 is summarized in Section 1.4,

with concluding comments together with ideas and research directions for possible future

work being presented in Section 1.5.

1

1.1 State of the art

Decision making in the presence of multiple conflicting criteria motivates the posing

of mathematical optimization problems for which a finite number of objectives is represented

by a vector-valued function, thereby giving rise to a multiobjective optimization problem

(MOP). Due to the conflicting nature of criteria, a solution that is optimal with respect to all

of the objective functions simultaneously may not exist. Instead, an optimal solution set is

implied whose elements are characterized by the inability to improve any of these solutions

with respect to any objective function without deteriorating at least one other objective

function. The success of applying multiobjective optimization in practice depends, among

other things, on the ability to compute the elements of the optimal solution set. This set is

typically large, and it is often difficult or even impossible to obtain its exact description.

To extend the current theories of multiobjective optimization, which involves the

characterization of the solution sets and the development of applicable methods for their

generation, this section begins with a review of various relevant mathematical concepts

and of the pertinent literature. Section 1.1.1 introduces basic concepts and notations,

while multiobjective optimization and the corresponding concepts of efficiency are reviewed

in Section 1.1.2. Approaches to generating solution sets of MOPs are grouped into two

categories and discussed in Section 1.1.3. More specifically, Section 1.1.4 introduces the

multiobjective set covering problem and discusses solution generating approaches for it.

Designing reserve systems for protecting species, a common field for its applications, is

discussed in Section 1.1.5.

1.1.1 Basic concepts and notations

This section discusses some relevant mathematical concepts and notations related

to multiobjective optimization that are used extensively throughout this dissertation. Let

n and p be two positive integers and let Rn and Rp be two Euclidean spaces. Let X ⊆ Rn

2

be a nonempty set. A function

f : X → Rp

is a mapping that assigns to each element x in the domain X a unique element y ∈ RP

denoted by y = f(x). The image of X under f is denoted by

Y := f(X) := {y ∈ Rp : y = f(x) for some x ∈ X}. (1.1)

If p = 1, then the function f is a scalar-valued function. Otherwise it is a vector-valued

function denoted by f = (f1, f2, . . . , fp), where each fi : X → R is a scalar-valued function.

For a vector valued function f = (f1, f2, . . . , fp), we write

f(x1) 5 f(x2) if and only if fi(x
1) ≤ fi(x2) for all i = 1, 2, . . . , p (1.2a)

f(x1) ≤ f(x2) if and only if fi(x
1) 5 fi(x

2) and f(x1) 6= f(x2) (1.2b)

f(x1) < f(x2) if and only if fi(x
1) < fi(x

2) for all i = 1, 2, . . . , p (1.2c)

and use =,≥ and > accordingly. Binary relations and partial orders play an important role

in multiobjective optimization. We define the notion of a binary relation on an arbitrary

set S as follows:

Definition 1.1.1. A binary relation R on a set S is a subset of the Cartesian product

S × S. A binary relation is said to be

(i) reflexive if (s, s) ∈ R for all s ∈ S,

(ii) irreflexive if (s, s) /∈ R for all s ∈ S,

(iii) symmetric if (s1, s2) ∈ R⇔ (s2, s1) ∈ R for all s1, s2 ∈ S,

(iv) asymmetric if (s1, s2) ∈ R⇒ (s2, s1) /∈ R for all s1, s2 ∈ S,

(v) antisymmetric if (s1, s2) ∈ R and (s2, s1) ∈ R⇒ s1 = s2 for all s1, s2 ∈ S,

(vi) transitive if (s1, s2) ∈ R and (s2, s3) ∈ R⇒ (s1, s3) ∈ R for all s1, s2, s3 ∈ S.

3

Definition 1.1.2. A binary relation R ⊆ S × S on a set S is called

(i) a preorder if it is reflexive and transitive

(ii) a partial order if it is reflexive, transitive, and antisymmetric

(iii) a strict partial order if it is irreflexive and transitive.

In this thesis, we use the concept of binary relations to introduce orders onto the

set Y ⊂ Rp, and for convenience we define these orders on the complete Euclidean space

Rp.

Remark 1.1.1. The binary relations = and 5 in (1.2) are preorders on Rp, and the binary

relations ≥ and ≤ are strict partial orders. Furthermore, the binary relations > and < are

also strict partial orders.

Throughout this thesis, we use several types of cones which we define now.

Definition 1.1.3. A set C ∈ Rp is called a cone if λC ⊆ C for all λ > 0. A cone C is

convex if and only if C + C ⊆ C. Further, a cone C is said to be pointed if
∑k

i=1 c
i = 0 if

and only if ci = 0 for all ci ∈ C, i = 1, 2, . . . , k.

Remark 1.1.2. According to Definition 1.1.3 a cone may contain the origin or not ([90],

[91]).

Definition 1.1.4. Let C be a cone in Rp and v be a vector in Rp. A cone with vertex v is

defined as a translation v + C of the cone C.

Definition 1.1.5. A set C ∈ Rp is called a polyhedral set if there exists a matrix A ∈ Rl×p

and a vector b ∈ Rl so that

C = C(A, b) := {y ∈ Rp : Ay = b}.

If b = 0, then

C = C(A, 0) := {y ∈ Rp : Ay = 0}

4

is called a polyhedral cone.

The nonnegative, nonzero, and positive orthant of Rp

Rp= := {y ∈ Rp : y = 0} (1.3a)

Rp≥ := {y ∈ Rp : y ≥ 0} (1.3b)

Rp> := {y ∈ Rp : y > 0} (1.3c)

are pointed convex cones and play an important role in the following discussion of multiob-

jective optimization. We call these cones Pareto cones.

The definition of orders discussed above may be given in terms of cones when they

are used to define cone-relations between the elements of the set Y [110].

Definition 1.1.6. Let y1, y2 ∈ Y and C be a cone. A cone relation is defined as

y1 5C y
2 if and only if y2 − y1 ∈ C (1.4a)

y1 ≤C y2 if and only if y2 − y1 ∈ C \ {0} (1.4b)

Equivalently, the relation y1 5C y
2 implies that there exists d ∈ C such that d = y2−y1 ∈ C

and the relation y1 ≤C y2 implies that there exists d ∈ C, d 6= 0 such that d = y2 − y1 ∈ C.

We now introduce the concepts of dominated points, nondominated points and non-

dominated sets as established by Yu in 1974 [110] using the cone relation ≤C given in

Definition 2.2.1.

Definition 1.1.7. Let Y ∈ Rp be a nonempty set and C be a cone in Rp. A point y′ ∈ Y

is called a dominated point of the set Y with respect to the cone Y if there exists a point

y ∈ Y such that y ≤C y′.

Definition 1.1.8. A point y′ ∈ Y is called a nondominated point of the set Y with respect

to the cone C if there does not exist y ∈ Y and d ∈ C, d 6= 0, such that y′ = y + d or,

5

equivalently, there does not exist y ∈ Y such that y ≤C y′. The set of all nondominated

points of Y with respect to the cone C is denoted by N(Y,C).

1.1.2 Multiobjective optimization

While the optimization of a scalar-valued function is understood in terms of mini-

mization or maximization, the optimization of a vector-valued function requires the intro-

duction of a different concept of optimality. The optimization of a scalar-valued function

(also called an objective function) is well defined based on the order of real numbers. How-

ever, this concept is not well defined for a vector-valued function.

The concept of partial orders introduced in the previous section is used here to de-

fine optimality in multiobjective optimization. We assume that each scalar-valued function

fi, i = 1, 2, . . . , p, of the vector-valued function f is to be minimized. Let X ⊆ Rn be a

nonempty set and f : X → Rp be a vector-valued function. A multiobjective optimization

problem (MOP) is defined as

min f(x)

s.t. x ∈ X
(1.5)

and is denoted (X, f).

Throughout this dissertation it is assumed that the objective function f maps the

set of feasible decisions X from the decision space Rn to the set of outcomes Y = f(X) in

the outcome or objective space Rp (i.e., as defined in (1.1) the outcome set Y is the image

of the set of feasible decisions X under the objective function f).

Optimality for an MOP is typically understood in terms of efficiency, and Pareto

optimality according to the partial order ≤ is assigned to the objective space Rp. Using

this partial order, the efficiency of a feasible decision x̂ ∈ X and the Pareto optimality of

ŷ = f(x̂) ∈ Y are defined below.

Definition 1.1.9. Let X ⊆ Rn be a nonempty feasible set, f : X → Rp be an objective

6

function, and Y = f(X) ⊆ Rp be the set of outcomes of X under f . A feasible decision

x̂ ∈ X is said to be

(i) efficient if there does not exist x ∈ X such that f(x) ≤ f(x̂), and

(ii) weakly efficient if there does not exist x ∈ X such that f(x) < f(x̂).

In these cases, the outcome ŷ = f(x̂) ∈ Y is said to be a Pareto and a weak Pareto outcome,

respectively.

The set of solutions x̂ efficient for problem (1.5) is denoted by E(X, f,Rp=), and the

corresponding outcome set, denoted by N(Y,Rp=), is referred to as the Pareto set. Further-

more, the set of weakly efficient solutions x̂ for problem (1.5) is denoted by Ew(X, f,Rp=),

and the corresponding outcome set, denoted by Nw(Y,Rp=), is referred to as the weak Pareto

set. If we have a general cone C, the Pareto set N(Y,Rp=) reduces to the nondominated

set N(Y,C) introduced in Definition 2.2.3. In this case, the corresponding efficient set is

denoted as E(X, f,C).

The supported efficient solutions and Pareto points of an MOP can be found by solv-

ing the single objective optimization problem (SOP) obtained through a linear combination

of different objective functions.

Definition 1.1.10. Let (X, f) be an MOP and E(X, f,Rp=) be the efficient set and N(Y,Rp=)

be the Pareto set. Let x ∈ E(X, f,Rp=). If there is some λ ∈ Rp≥ such that x ∈ E(X, f,Rp=)

is an optimal solution of min λT f(x) s.t. x ∈ X, then x is called a supported efficient

solution, and y = f(x) is called a supported Pareto point. The sets of all supported ef-

ficient solutions and supported Pareto points are denoted by Es(X, f,Rp=) and Ns(Y,Rp=),

respectively. Otherwise x and y are called nonsupported points, and their sets are denoted

by Ens(X, f,Rp=) and Nns(Y,Rp=), respectively.

The efficient set E(X, f,Rp=) = Es(X, f,Rp=)∪Ens(X, f,Rp=), and the Pareto setN(Y,Rp=) =

Ns(Y,Rp=) ∪Nns(Y,Rp=).

The ideal point and the nadir point of an MOP are obtained by individually solving

7

the SOPs

min fi(x), s.t. x ∈ X and

max fi(x), s.t. x ∈ X
(1.6)

respectively, for i = 1, . . . , p and combining the optimal objective values. The components

of a nadir and an ideal points define the upper and lower bounds for the objective function

values of Pareto points, respectively.

Definition 1.1.11. Let (X, f) be an MOP. The point y = (y1, . . . , yp) ∈ Rp with

yi = min fi(x)

s.t. x ∈ X for all i = 1, . . . , p

(1.7)

is defined as the ideal point, and any r ∈ Rp with

r ≤ f(x) for all x ∈ X

is called a utopia point of the MOP.

In the following section we discuss methods for computing solutions for MOPs.

1.1.3 Solution approaches for MOPs

The primary goal of multiobjective optimization is to find efficient solutions or

nondominated points of an MOP. Thus, it is of interest to design methods for obtaining a

complete or partial description of both the efficient and the nondominated sets, referred to

in this dissertation as the solution sets. Past research on multiobjective optimization has

identified a number of approaches characterizing these two solution sets as well as providing

a variety of methods for generating them. These approaches can be categorized into two

groups, exact methods and nonexact methods. Exact methods provide the solutions of an

MOP by solving it exactly. Nonexact methods provide feasible solutions of an MOP that

8

are not necessarily in the solution sets. The exact methods are classified into two categories,

scalarization methods and nonscalarizing methods ([25], [27]).

Scalarization methods convert the vector-valued objective function f of an MOP into

a scalar-valued function f , thereby forming a SOP for which the notion of optimality follows

from the order of real numbers. Each SOP instance produces one or more solutions for the

corresponding MOP. In addition, under some assumptions the optimal solutions of the SOP

are efficient solutions for the MOP. Thus, by choosing different scalarization parameters,

multiple SOPs are formulated for a single MOP, their optimal solutions corresponding to a

subset of the efficient solutions of the MOP.

The most common scalarization method combines all objective functions in the form

of a weighted sum ([29]).

Definition 1.1.12. Let (X, f) be an MOP and λ ∈ Rp≥. The SOP

min

p∑
i=1

λifi(x)

s.t. x ∈ X

(1.8)

is defined as the weighted-sum scalarization of the MOP with the weighting parameter λ.

Based on its geometric interpretation, this method finds the supported Pareto points

in the outcome set Y at which the weighting vector λ is normal to a supporting hyperplane

to Y ([29]).

A scalarization method originally introduced by Zeleny in 1973 ([111]) utilizes the

weighted-lp norms for 1 ≤ p ≤ ∞. The use of the l∞- norm corresponds to the weighted-

Chebyshev method ([12]).

Definition 1.1.13. Let (X, f) be an MOP and r ∈ Rp with r ≤ f(x) for all x ∈ X be a

9

utopia point, and λ ∈ Rp≥. The SOP

min max
i=1,...,p

{λi(fi(x)− ri)}

s.t. x ∈ X
(1.9)

is referred to as the weighted-Chebyshev scalarization of the MOP with the reference point

r and the weighting parameter λ.

In this dissertation, the weighted-Chebyshev method is used to find all efficient and

weakly efficient solutions for an MOP. Several other scalarization methods, are found in

the literature, including the ε-constraint method ([29]) and Benson’s method ([29]) among

others.

In contrast to scalarization methods, nonscalarizing methods do not explicitly use

a scalarization function but rather use different orders in Rp to compare objective function

values. These orders include the max-order, the lexicographic order, and others. Under

some assumptions these methods also provide efficient solutions of an MOP.

The max-ordering problem is a well-known nonscalarizing method and its underlying

concept is to minimize the worst objective function value ([29], [57]).

Definition 1.1.14. Let (X, f) be an MOP. The SOP

min max
i=1,...,p

{fi(x)}

s.t. x ∈ X
(1.10)

is referred to as the max-ordering problem of the MOP.

10

It is possible to include a weight vector λ ∈ Rp≥ in the max-ordering problem (1.10),

so that this problem becomes a weighted-max-ordering problem ([29]).

Definition 1.1.15. Let (X, f) be an MOP and λ ∈ Rp≥. The SOP

min max
i=1,...,p

{λifi(x)}

s.t. x ∈ X
(1.11)

is referred to as the weighted-max-ordering problem of the MOP.

The optimal solutions of problems (1.10) and (1.11) are weakly efficient solutions

for the corresponding MOP ([29]).

The lexicographic method, another nonscalarizing method, uses the ranking of the

objectives in the sense that optimization of the function fk is only considered once opti-

mality for objectives {1, . . . , k − 1} has been established, meaning that objective f1 has

the highest priority and only in the case of multiple optimal solutions with respect to f1

will objectives f2 and further objectives be considered. This priority ranking implies the

absence of trade-offs between criteria. For example, an improvement in objective fk does

not compensate for the deterioration of any fi, i < k.

In addition to these methods, other nonscalarizing methods can be found in the

literature including the lexicographic max-ordering approach ([8]), the equitability ap-

proach ([14]), and the balance and level set approaches ([36]) among others.

Many other exact methods have been developed to compute exact solutions for

MOPs using the methods discussed above and others found in the literature. Some well

researched exact methods are discussed by Ehrgott [29], Jahn [51], Martin et al. [67], Mietti-

nen [69], and among others. The recent exact methods include those developed by Efremov

and Kamenev [23], Goel et al. [40], and Hartikainen et al. [44, 45].

Under certain conditions, it is theoretically possible to generate all the solutions of

the efficient set and the nondominated set of an MOP using the methods discussed above

as well as others found in the literature; however, it is computationally challenging and ex-

11

pensive to obtain these points for various reasons. For an MOP with continuous objective

functions and constraints defined over a continuous feasible set, the nondominated set is

usually infinite. For an MOP with a discrete feasible set, the nondominated set may have

a finite number of elements, but its computation may involve solving an NP-hard combi-

natorial optimization problem ([89]), the solution set of which is exponential in the size of

the test instance of the worst case ([24]).

In conclusion, because of the difficulties faced with obtaining the efficient and the

nondominated sets of an MOP using exact methods, the computation of these solution sets

needs to be restricted to only a subset of the complete solution set in the form of a discrete

representation or a collection of solution points ([6], [97]). The quality of discrete represen-

tations of the solution sets is discussed by Faulkenberg and Wiecek [31].

Since the exact solution sets are often not obtainable, various nonexact approaches

to characterize or approximate solutions of the efficient and nondominated sets either par-

tially or in their entirety have been proposed in the literature. These nonexact approaches

can be categorized into two groups, ε-approximation methods and approximation methods.

Even though ε-approximation methods yield feasible solutions for an MOP that may

or may not be in the solution set, a consistent error bound between the approximation set

and the solution set for any instance of the MOP can be obtained using these methods. The

concept of ε-efficiency, which was originally defined by Kutateladze in 1979 ([58]), relaxes

the original efficiency of the solutions in Definition 1.1.9. This concept was later indepen-

dently proposed by Loridan in 1984 ([62]). In 1986 White ([103]) introduced six alternative

definitions of ε-efficiency, establishing their corresponding relationships. In 2007, Engau

and Wiecek ([28]) investigated ε-nondominated points for real vector optimization prob-

lems using the concept of translated cones.

The concept of ε-efficiency has led to the development of ε-approximation. While

the fundamental meaning of ε-approximation is that the elements in the solution set are

approximately dominated by the elements of the approximating set and the approximation

quality is described by ε, various definitions of ε-approximation have been proposed in the

12

literature. For the purposes of this discussion, let S denote a subset of the outcome set Y

of an MOP.

Reuter [87] calls a subset S of Y an ε-approximation if the setN(Y,C)+ε, ε ∈ Rp and

ε1 = · · · = εp, is dominated by S. An approximation S is referred to as an ε-approximation

in the sense of Ruhe and Fruhwirth [92] if the set (1 + ε)N(Y,C) is dominated by S with

ε ∈ R. An adaptation of ε-approximation was introduced by Safer and Orlin in 1995 ([94])

and refined by Papadimitriou and Yannakakis in 2000 ([81]). A subset S ⊂ Y is defined as

an ε-approximation if S is a set such that for every point in the nondominated set N(Y,C),

the set S contains a point that is at least as good approximately within a factor of (1 + ε).

Necessary and sufficient conditions for computing an ε-approximation for discrete MOPs was

further examined, leading to the development of a fast approximation scheme by Safer and

Orlin in 1995, while in 2000 Papadimitriou and Yannakakis showed that an ε-approximate

Pareto set can be constructed in time that is polynomial in the size of the test instance

and 1/ε. In 2010, Legriel et al. ([60]) proposed a method for obtaining an ε-approximation

of the Pareto set based on the Hausdorff distance between this set and the approximating

set. They defined a set of points S in N(Y,C) as an ε-approximation of the set N(Y,C) if

ρ(N(Y,C), S) ≤ ε where ε ∈ Rp and ρ(N(Y,C), S) is the Hausdorff distance between the

set N(Y,C) and the set S. In addition, in 2011, Laumanns and Zenklusen ([59]) proposed

two methods for maintaining a sequence of solution sets that converge to ε-approximations

of a certain quality.

Motivated by the definition of the ε-approximation proposed by Papadimitriou and

Yannakakis in 2000 ([81]) and others, ε-approximation algorithms for approximating the

Pareto sets of many discrete MOPs have been developed. In 1990 Ruhe and Fruhwirth ([92])

reported a method for constructing an ε-approximation for the biobjective minimum cost

flow problem, and in 2001 Diakonikolas and Yannakakis ([22]) developed a 2-approximation

for several biobjective problems including the shortest path problem, the spanning tree

problem, the knapsack problem and a scheduling problem. Erlebach et al. [30] and Bazgan

et al. [7] independently constructed (1 + ε)-approximations for the multiobjective knapsack

13

problem. In 2004, Angel et al. ([4]) constructed a 1.5-approximation for the biobjective

traveling salesman problem, while in 2005 Angel et al. ([5]) and in 2009 Manthey and Ram

([65]) used different assumptions to propose ε-approximations for the multiobjective trav-

eling salesman problem.

When developing ε-approximation methods, proving the error bound or the ap-

proximation quality ε is not easy. In addition, in many situations ε-approximation meth-

ods are time-consuming. For these reasons approximation methods are often preferred to

ε-approximation ones. Approximation methods yield feasible solutions for an MOP that

may or may not be in the efficient or the nondominated sets but do not provide a consistent

error bound between the approximation and the solution set.

Approximation methods can be categorized into two groups: heuristic methods and

metaheuristic methods. A heuristic method is an empirical search or optimization method

applied to obtain solutions of an MOP not necessarily in the solution sets of the MOP but

in the feasible set of the MOP. However, a heuristic method does not guarantee a consistent

error bound between the approximated solutions and true solutions for all instances of the

MOP as its objective is to quickly produce an acceptable solution for the problem at hand.

These methods can be derived from theory or experimental experience ([18], [86] and many

others). In addition, often heuristics are problem-specific so that a method which works for

one MOP cannot be used to solve an MOP of a different type.

In contrast, metaheuristic methods are powerful techniques generally applicable to

a wide range of optimization problems including MOPs. These methods, for example evo-

lutionary or genetic algorithms, are general-purpose algorithms that can be applied to solve

almost any optimization problem. These methods also provide approximations of the solu-

tion set with points that are not necessarily in this set but that are feasible for the MOP

and considered acceptable based on the principle or quality criterion used for the approxi-

mation ([17], [21], and many others). Often both heuristic and metaheuristic methods are

proposed to approximate solutions of discrete MOPs ([54], [80]).

14

The solution approaches discussed above are summarized in Figure 1.1.

Solution
approaches

Exact methods
Nonexact
methods

Scalarization
methods

Nonscalarizing
methods

ε-approximations Approximations

Heuristic
methods

Metaheuristic
methods

Figure 1.1: Solution Approaches for MOPs

This dissertation further investigates the properties of the ε-approximation concept

because of the growing interest in it. While the existing theory and the methodology on

ε-approximation characterize various types of relationships between the approximation and

the corresponding solution set, they do not provide a unifying concept for characterizing

these relationships applicable to all MOPs. The state of the art in the subject of the

ε-approximation calls for a study bringing together the proposed concepts and developing

an overall theory. In addition, many types of approximation sets have been proposed in the

literature, some containing dominated solutions and some not. Thus, grouping or catego-

rizing approximation sets based on the dominated solutions in an approximation set needs

to be addressed.

15

Based on the challenges resulting from obtaining the solution sets, ε-approximation,

heuristic methods and metaheuristics methods are commonly used to find solutions for

multiobjective combinatorial optimization (MOCO) problems, a topic of research interest

that has grown recently as evidenced by the articles summarizing those efforts in Ulungu

and Teghem ([100]), Ehrgott and Gandibleux ([26]) and Ehrgott ([24]), and others. This

dissertation adds to this growing body of research, by investigating and analyzing approxi-

mation for the multiobjective set covering problem (MOSCP), one of the challenging MOCO

problems that has seen limited study.

1.1.4 The mutiobjective set covering problem

The MOSCP is structured similarly to the well-known single objective set covering

problem (SOSCP). An instance of the set covering problem (SCP) consists of a finite set of

items and a family of subsets of them such that every item belongs to at least one of the

subsets in the family. The goal of the SOSCP is to determine a subset of sets among the

sets in the family so that all items are included in at least one set in the subset and the

total cost of the selected sets is minimized. When there are p scalar costs for each set in

the family, the SCP is called the MOSCP, the formulation of which is given below.

Let E denote the set of items, E = {e1, e2, . . . , em}, with the index set I = {i : i =

1, 2, . . . ,m}, and S denote a collection of n subsets of E, S = {S1, S2, . . . , Sn}, with the

index set J = {j : j = 1, 2, . . . , n}. The items are grouped into subsets of E and the item

ei in E is said to be covered by the set Sj in S provided ei is in Sj . An instance of the

SCP is given by the sets E and S. The binary coefficient aij for i ∈ I and j ∈ J is equal

to 1 if the item ei is covered by the set Sj and is equal to zero otherwise. A cover in this

instance is defined as a sub-collection {Sj : j ∈ J∗ ⊆ J} which is a subset of S such that

all items of E are covered and J∗ is the index set of selected sets for the sub-collection. A

feasible solution of the SCP requires that each item be covered by at least one selected set.

Let x ∈ Zn be the decision variable defined as follows:

16

xj =

 1 if Sj is selected for a cover

0 otherwise
for j ∈ J.

The set X of all feasible solutions is defined as

X = {x ∈ Zn :
∑
j∈J

aijxj ≥ 1 for i ∈ I and xj ∈ {0, 1} for j ∈ J}.

The p conflicting objective functions are denoted by zq : Zn → R, with the index set

Q = {q = 1, . . . , p}. Let cqj > 0 denote the cost of the set Sj with respect to the objective

for q ∈ Q. The goal of the MOSCP is to find a cover such that the costs with respect to all

objective functions are minimized. The MOSCP can be represented as follows:

min z(x) =

[
z1(x) =

n∑
j=1

c1
jxj , z2(x) =

n∑
j=1

c2
jxj , . . . , zp(x) =

n∑
j=1

cpjxj

]
subject to x ∈ X.

(1.12)

Since the SCP is categorized as an NP-hard combinatorial problem as shown by

Richard in 1972 ([89]) the SOSCP and MOSCP are also NP-hard problems. The SOSCP

has been the subject of much study, with various exact and nonexact methods being pro-

posed in literature to solve it ([13], [70]). Chvátal ([15]) and Vazirani ([102]) propose

polynomial-time ε-approximation algorithms for the SOSCP. Chvátal’s ([15]) algorithm has

the approximation error ε being a function of the cardinality of the largest subset (i.e.,

ε = logm′ where m′ is the cardinality of the largest subset) while Vazirani’s ([102]) has

it being a function of the number of items in the problem (i.e., ε = logm where m is the

number of items).

The MOSCP, on the other hand, is not a well-studied problem, with only a few

nonexact methods (heuristic and metaheuristic methods) found in past research for obtain-

ing its solutions. Liu ([61]) proposes a heuristic algorithm generating only one solution for

the MOSCP, a method not of interest here as this dissertation is concerned with obtain-

ing at least a subset of the Pareto set. Saxena and Arora ([96]) formulate the SCP with

quadratic objective functions, proposing a method for converting them to linear objective

17

functions by assuming that all objective functions are differentiable and using the Gomory

cut technique to arrive at the efficient solutions. Jaszkiewicz ([53], [52]) provides a compar-

ative study of multiobjective metaheuristics for the biobjective SCP (BOSCP), specifically

comparing nine well-known multiobjective metaheuristics with a new algorithm, the Pareto

memetic algorithm (PMA). This research concluded that the performance of the multiobjec-

tive metaheuristics for the BOSCP depends on the problem structure. Prins and Prodhon

([85]) propose a heuristic-based two-phase method (TPM) to find the Pareto set of the

BOSCP. In the first phase, the scalarized SCP is solved using a heuristic to generate a sub-

set of the Pareto set referred to as the supported Pareto set. In the second phase, a heuristic

algorithm searches for the Pareto points located between two supported Pareto points. This

heuristic optimizes one objective function at a time, requiring that the resulting SOSCP be

reformulated by Lagrangian relaxation. Lust et al. ([64]) adapt a very large-scale neighbor-

hood search ([3]) for the MOSCP, comparing average running times of the adaptation with

the PMA and the TPM for the BOSCP. The performance of their algorithm also depends

on the problem structure. General biobjective mixed integer programing methods can be

applied as well to solve the BOSCP.

Based on this literature review, the approaches related to obtaining Pareto solutions

of the MOSCP involve only heuristic and metaheuristic approaches, none of which can ap-

proximate the entire Pareto set, nor is the performance of the algorithms guaranteed. The

concept of ε-approximation discussed in Section 1.1.3 is used in the approximation of the

Pareto set and the formulation of approximation algorithms for many challenging MOCO

problems including the traveling salesman problem ([5], [65]), the minimum spanning tree

problem ([22]), and the knapsack problem ([7], [30]) but not for the MOSCP. This lack

suggests the need for additional research on the MOSCP.

In addition, due to the nature of the heuristic approaches, it cannot be ascertained

that one is superior to another, especially since the research on them is limited. Further-

more, these heuristic approaches, when obtaining or improving feasible solutions, do not

validate the future costs of the covers associated with these solutions. Thus, developing new

18

heuristic methods to obtain the Pareto set of the MOSCP is merited, especially since the

SCP has many real-life applications in such fields such as scheduling, facility location, and

designing reserve systems ([20], [75], [88] and many others). In particular, designing reserve

systems for ecological species is a common field for its applications as will be discussed in

the following section in relation to the MOSCP.

1.1.5 An application of the mutiobjective set covering problem

The goal of the reserve design problem is to find a subset of sites covering a given

set of species within a limited conservation budget. Inherently in the majority of such prob-

lems, this forms one criterion, while the boundary conditions or structural shapes may lead

to additional criteria. In practice, however, reserve design problems need to consider more

than just species coverage and budget limitation ([66]). Other spatial characteristics such

as the distance between selected reserve sites and the shape of the reserve system should

be considered as well. Several mathematical models considering spatial optimization are

proposed to address the important issues of the representation of species within reserve

systems as seen in [68, 71]. Such approaches make it possible to design a better spatial ar-

rangement for a reserve system by considering attributes such as contiguity and the shape

of the selected sites.

Because the SCP formulation does not consider spatial relationships between the

sites selected, the resulting reserve system may be highly fragmented, the impact of this

fragmentation depending on the specific objectives of the conservation programs. For ex-

ample, if a reserve system consists of many small habitat areas, it may not facilitate the

movement of species among them. As a result, small disconnected reserve systems may

be harmful to the survival of the species within the reserve. Moreover, the contiguity of a

reserve may be important to species survival within it. Such a reserve system, for example,

may help species roam freely within the system without leaving the space.

On the other hand, more compact reserve systems help reduce the edge effects of the

system such as the invasion of predators. Also, compact reserve systems help to improve

19

buffering by absorbing disturbances and other adverse impacts. A variety of shape mea-

sures have been proposed in reserve selection models to represent compactness, including

the boundary length of the reserve, the ratio of boundary length to area, and the average

distance between the sites in the reserve system.

As this analysis suggests, contiguity and compactness can be important in modeling

reserve site selection problems, and as a result, a variety of formulations have been proposed

to address these two attributes. Some explicitly consider both contiguity and compactness,

using a linear combination of the two while others consider only one. Shirabe [98] proposes

an exact formulation for structural contiguity that can be incorporated into a mixed in-

teger programming model. Based on this model, the resulting system enforces contiguity

regardless of other criteria included, such as compactness. Graph theory approaches have

also been proposed to control the contiguity of reserve systems. For example, Onal and

Briers [78] develop a linear integer programing (IP) formulation using a graph theoretic ap-

proach to obtain a connected reserve system. Although this formulation ensures contiguity,

it contains what is referred to as gap sites that are to be excluded in the final solution,

meaning the objective is to minimize the total number of gap sites. These researchers also

incorporate additional variables and constraints explicitly to avoid the formation of cycles.

Onal and Wang [79] developed an improved linear IP formulation, also using a graph theory

approach, their objective being to minimize the total number of gap sites. In this formula-

tion, a sites are represented by nodes and adjacent sites are represented by arcs. The main

difference between these two formulations is the method used to avoid cycle (i.e., a sequence

of vertices starting and ending at the same vertex) formation. Although the model in [78]

explicitly uses additional constraints and variables to avoid cycles, the improved model [79]

does not. Rather, if cycles are present in the solution, new cuts are added, and the model

is solved again. The designers of the improved model [79] report that it is computationally

more efficient because of its reduced size. While both of these formulations focus on the

structural contiguity of a reserve system, Hof and Flather [47] propose a different nonlinear

IP model that preserves the contiguity of the system by controlling the shape, requiring

20

reserves to be either circular or rectangular.

In addition, several mathematical models have been proposed to group disconnected

sites into compact reserves. In these models [33, 34, 68, 71, 72, 76] reserves of compact shapes

are generated as clusters, i.e., collections of adjacent reserve sites. In an ecological sense

clusters correspond to different habitats. Separated clusters, i.e., habitats, may be desirable

because they will preserve the species in the face of natural disasters such as the destruction

of the habitat by fire. In addition, clustering adjacent sites improves the opportunity for

multiple biological interactions among a given species.

Onal and Briers [76] develop two integer programming approaches to address the

problem of reserve selection to obtain compact reserve systems. In the first, they minimized

the sum of the distances between all pairs of sites. In the second approach, an alternative

formulation minimizes the largest distance between between selected sites rather than the

total distance. More recently, Fischer and Church [33] propose a linear IP formulation for

minimizing the boundary length to promote reserve aggregation and compactness.

Fischer and Church [34] propose a bi-objective formulation by considering both the

boundary length and the site selection cost while McDonnell et al. [68] models a bi-objective

nonlinear IP formulation involving a weighted combination of the boundary length of the

selected clusters and the area of the selected sites. They conclude that minimizing the area

of the selected sites is equivalent to minimizing their costs. Nalle et al. [71, 72] develop a

nonlinear formulation which explicitly addresses the compactness and shape of the selected

reserve sites. This model minimizes a weighted combination of two measures: the boundary

length of selected clusters and the distance between all pairs of selected sites, even those in

disjoint clusters.

The models mentioned above measure the distances between all selected sites whether

in the same or different clusters. In some situations consideration of the distance within

clusters rather than the distance between all sites may be more useful. For example, if

each cluster is being treated as a different habitat, in general it is not important to con-

sider the distance between them. Typically, there are reduced biological interactions among

21

geographically separated clusters. For instance, if one habitat represents a mountain and

the other, a swamp, there is no need to measure the distance between these two to obtain

compact clusters. Thus, maintaining an optimum distance between all the sites within a

given cluster will assure maximum interactions among different sites within it, a factor that

has not yet been addressed in the literature. Therefore it is important to minimize the dis-

tance within clusters in order to produce compact clusters, a concept that deserves further

investigation.

After reviewing several methods for obtaining solutions to MOPs and noting cer-

tain difficulties, we conclude that the computation of optimal solutions for an MOP with

or without a performance guarantee is a challenging task. Further, we note that obtaining

optimal solutions of MOCO problems is even harder due to the numerical complexity of the

optimization problem and among the MOCO problems, the MOSCP is not well-studied.

The research goals addressing these challenges are given below.

1.2 Research Goals

The research objectives of this dissertation can be classified into three categories:

ε-approximation for multiobjective optimization problems; approximation of the Pareto set

of the multiobjective set covering problem; and an application of the multiobjective set

covering problem.

1.2.1 The ε-approximation for multiobjective optimization problems

The challenges analyzed in Section 1.1.3 have motivated growing interest in approx-

imating solution sets for MOPs using different notions of ε-approximations. To address

this interest, this research has the following goals for generalizing, combining and prov-

ing the previous and new results of ε-approximations to meet the needs of characterizing

approximated solution sets:

1. Use the notion of ε-approximation to develop a unifying and relevant theory for ap-

22

proximating the solution sets of an MOP. In particular, cover the variety of results in

the literature related to multiple solutions sets, multiple (constant) cones, and multi-

ple quality measures using this unifying concept. In addition, extend the concept of

traditional dominance in multiobjective optimization to tolerance-based dominance

and identify the properties of approximated solution sets based on this concept.

2. Retrospectively identify the presence of the tolerance-based approximation algorithms

found in the literature. In particular, examine the decomposition of complex decision

making problems that are modeled as collections of MOPs with respect to their feasible

regions and objective functions, and investigate how to use our results obtained in this

dissertation for the complex decision making problems.

1.2.2 The multiobjective set covering problem

Because of their nature, the various heuristic approaches for solving MOSCPs dis-

cussed in Section 1.1.4 do not provide consistent information about their approximation

quality or accuracy, while ε-approximation does provide such consistent information. The

first objective below addresses the concept of ε-approximation for solving MOSCPs, as

that has been accomplished previously in such MOCO problems as the traveling salesman

problem([4], [65]), the knapsack problem ([7], [30]) and the minimum spanning tree problem

([22]).

1. Develop approximation methods motivated by the concept of ε-approximation to obtain

the Pareto points of the MOSCP and provide proofs of their correctness. Evaluate

the performances of these approximation methods using test problems taken from the

literature.

Over the past two decades, heuristic algorithms have been used extensively as optimization

tools in solving various MOPs, specifically MOCO problems. The primary reasons for

their success are their broad applicability and ease-of-use. Thus, the second objective is to

develop and analyze a new heuristic algorithm for solving the MOSCP.

23

2. Propose a heuristic method for solving the MOSCP using concepts that have not been

considered by available heuristic approaches. Evaluate the quality of the approxi-

mation generated by the proposed algorithm on test problems using various quality

measures. Compare the performance of this method with the performance of the PMA

proposed by Jaszkiewicz ([53]) whose work provides the only state-of-the-art results

available to us.

1.2.3 An application of the multiobjective set covering problem

A number of optimization models and solution approaches have been proposed to

design systems of reserve sites for protecting species and their natural habitats as seen in

Section 1.1.5. Further improvements of those models related to the shape of the design need

to be considered, though few articles address these factors. The research goals motivated

by this need are as follows:

1. Propose an optimization model for obtaining spatially compact ecological reserve sys-

tems to protect species. Subsequently, conduct numerical experiments to validate the

proposed model in terms of the compactness of the connected groups of reserve sites

so that species availability and budget constraints are respected.

1.3 Research Contributions

As a result of investigating the research goals stated in the previous section, this

study makes the following contributions to the field of multiobjective optimization and

applications.

1.3.1 Contributions to the ε-approximation for multiobjective optimiza-

tion problems

The contributions in relation to goals for the ε-approximations for MOPs are as

follows:

24

1. A unifying approximation concept is defined based on the concept of ε-approximation

for an MOP. The notion of ε-approximation serves as a reference to describe tolerance

as measured by the function t : Rp → Rp acting on the points in the objective space

of the MOP. For a given set Y ⊂ Rp and a cone C ⊂ Rp, the function t is defined

as a tolerance function if its image elements are dominated by the elements in Y

with respect to the cone C. For y ∈ Y , the largest tolerable deterioration based

on the function t is represented by t(y). The specific ε-approximations that have

been proposed in the literature ([4], [7], [22],[30], [65], and others) for the purpose of

approximating solution sets are generalized by the tolerance function. The tolerance

functions t : Rp → Rp of the form t(y) = y + ε for ε ∈ Rp and t(y) = (1 + ε)y for

ε > 0 are identified from the literature.

2. Two types of approximation sets of the set being approximated are proposed: t-covers

and t-approximations. Given a set Y ⊂ Rp, a subset S of the set Y is defined as a

t-cover if all elements in Y are covered by at least one element in the S which is at

least as good as y up to a tolerance defined by the function t. A t-approximation set is

defined as an inherently nondominated t-cover (minimal t-cover) [44] of the set Y . The

definition of a t-cover (or a t-approximation) implies that it is of interest to cover the

set Y whereas the usual purpose is to cover the nondominated set N(Y,C). However,

if the S is a cover for the set N(Y,C), then by our definition S ⊆ N(Y,C). It is

theoretically possible to define S as a subset ofN(Y,C), but it is often computationally

challenging to obtain it, which is reflected in the results obtained for the MOSCP and

discussed in Section 1.3.2. It should be mentioned that the definition of a t-cover is

different from the definition of a cover defined for the MOSCP in Section 1.1.4. For

that problem, the term cover is used to refer to a feasible solution.

3. Properties of t-covers and t-approximations are examined and characterized in a

broader context of multiple solutions sets, multiple (constant and polyhedral) cones,

and multiple quality measures. Multiple solution sets may result from a decomposi-

25

tion of the original MOP into smaller problems ([38]); multiple cones may account for

different decision makers having different preferences, while multiple quality measures

may result from applying different algorithms on the same problem.

4. The traditional concept of dominance given in Definition 1.1.7 is relaxed and extended

using a tolerance function, leading to t-dominance. Given a set Y ⊂ Rp, a cone

C ⊂ Rp and a tolerance function t : Rp → Rp, a point y1 ∈ Y is defined as a

t-dominated point of the set Y with respect to the function t and the cone C if

there exists a point y2 ∈ Y such that y1 5C t(y2). The domination set and the

t-nondominated set of the set Y based on t-dominance are defined. The relations

between the nondominated set and the t-nondominated set of the set Y are identified

under multiple quality measures to provide the means of obtaining the t-nondominated

set.

5. For the case of Y being a subset of Zp>, certain conditions of a tolerance function

are proposed to show that under those conditions the t-nondominated set of the set

Y is reduced to the Pareto set of the set Y . This result is significant for discrete or

combinatorial MOPs when their outcome sets are subsets of Zp>.

6. The tolerance functions of the approximation algorithms proposed for approximating

the Pareto sets of many MOPs ([4], [7], [22],[30], [65], and others) are identified since

these algorithms implicitly make use of certain tolerance functions.

7. The usefulness of the properties of t-covers and t-approximations is demonstrated us-

ing complex decision making problems modeled as collections of MOPs ([38], [39]).

Using the properties of covers and approximations obtained, constructing an approx-

imation set for the complex system is explained.

1.3.2 Contribution to the multiobjective set covering problem

The contributions to the goals for approximating the solutions in the Pareto set of

the MOSCP are as follows:

26

1. Following the concept of ε-approximation, two approximation algorithms are proposed

to approximate the supported and weak Pareto points of a MOSCP with a specified

accuracy. The approximated solution sets are defined as subsets of the outcome set Y .

The accuracy of each algorithm is proven based on the theory used for its development.

2. The first algorithm is adapted from the algorithm proposed for the SOSCP ([102]) to

the weighted-sum scalarization of the MOSCP. This algorithm obtains a subset S in

Y approximating the supported Pareto set Ns(Y,Rp=) of the MOSCP with a specified

accuracy, where Y is the outcome set of the MOSCP. The scalar-valued tolerance

function t : R1 → R1 is defined as t(
∑p

i=1 yi) = (1 + ε)
∑p

i=1 yi for y ∈ Y , ε > 0, that

is for y ∈ Y , the largest tolerable deterioration based on this function is represented

by (1 + ε)
∑p

i=1 yi for y ∈ Y . The set S is a (1 + ε)-approximate supported Pareto

set P εs . This set, P εs , is defined as a subset of Y rather than a subset of Ns(Y,Rp=),

which is required by the definition of the t-cover given in Section 1.3.1. Therefore, the

approximation set P εs is not a t-cover in the sense of the definition given in Section 1.3.1

but is a t-cover in the sense of a relaxed definition. Proofs are given to show that

for every supported Pareto point of the MOSCP, there exists a vector λ ∈ Rp> and a

point in the cover S with a specified accuracy defined by ε. It is proved that the ε

depends on the number of items m in the MOSCP.

3. The second algorithm, which is motivated by the first, is developed using the concept

of weighted-max-ordering so that the MOSCP is solved in the vector form without

scalarization. This algorithm obtains a subset S in Y approximating the weak Pareto

set Nw(Y,Rp=) of the MOSCP with a specified accuracy, where Y is the outcome

set of the MOSCP. The vector-valued tolerance function t : Rp → Rp is defined as

t(y) = (1 + ε)y for ε > 0 and y ∈ Y . The set S is a (1 + ε)-approximate Pareto

set P ε. This set, P ε, is defined as a subset of Y rather than a subset of Nw(Y,Rp=),

which is required by the definition of the t-cover given in Section 1.3.1. Therefore, the

approximation set P ε is not a t-cover in the sense of the definition given in Section

27

1.3.1 but is a t-cover in the sense of a relaxed definition. Proofs are given to show

that for every weak Pareto point of the MOSCP, there exists a vector λ ∈ Rp> and a

point in the cover S with a specified accuracy defined by ε. It is proved that the ε

depends on the magnitude of the cost coefficients of the MOSCP, the components of

λ, and the number of items m in the MOSCP.

4. The proposed algorithms are applied to biobjective SCPs generated by Gandibleux

([1]), and the effectiveness and correctness of each algorithm is verified by the com-

putational results. The experimental performance measures, which are proposed as

counterparts to the factors, confirm and improve the theoretical results.

5. A two-phase heuristic algorithm, referred in this dissertation as the Add-Improve

Algorithm (AIA), is proposed to approximate the Pareto set of the MOSCP based on

two scalarization methods: the weighted-sum method and the weighted-Chebyshev

method. The former is used to approximate the supported Pareto points Ns(Y,Rp=)

while the latter is used to approximate the nonsupported Pareto points Nns(Y,Rp=),

where Y is the outcome set of the MOSCP. In the first phase of the algorithm, a

set of initial feasible solutions is found while in the second phase of the algorithm,

objective values corresponding to the initial solutions are improved. Unlike for the

methods discussed in Section 1.1.4, a merit function is used to estimate the value of

the objective functions in the first phase.

6. The AIA is applied to biobjective SCPs generated by Gandibleux ([1]) and to random

three-objective SCPs. The test results are used to compare the AIA and the PMA

proposed by Jaszkiewicz ([53]). The quality of the approximations generated by the

AIA and the PMA is compared using the Chebyshev-scalarization measure (C measure)

proposed in [53]. In addition, the hyper-volume measure (Hmeasure) proposed in [112]

is used to further evaluate the performance of the AIA. Experimental results confirm

that the AIA performs better on a majority of the test problems.

28

1.3.3 Contributions to applications of the multiobjective set covering

problem

The contributions in relation to the goals in Section 1.1.6 are as follows:

1. A biobjective optimization model for selecting reserve sites which clusters them into

a relatively small number of compact groups, referred as clusters, is proposed. This

model is developed to obtain spatially compact clusters by considering two factors:

minimizing both the boundary length and the total distances between all pairs of sites

within a reserve system. For the long-term success of a planned reserve system, each

of these objectives is important. Because minimizing the boundary length is more

important than minimizing the total distance when obtaining compact clusters, the

proposed model is formulated as a hierarchical optimization model. The weighted-sum

scalarization method is used to appropriately weigh the two hierarchical objectives.

The combining weight λ is specified so as to give priority to minimizing the boundary

length as the primary criterion.

2. Since the proposed optimization model has non-convex objective functions defined

over a discrete feasible region, in order to solve the model more efficiently, the ob-

jective functions are linearized. The model is subsequently simplified to reduce the

computational effort.

3. To validate correctness of the models, they are applied to randomly generated data sets

and to a standard data set based on Oregon field data ([19]). The experimental results

show that the proposed simplifications significantly improve the computational effort.

In addition, computational results confirm that models provide compact clusters which

help to protect species and their natural habitats.

29

1.4 The content of the dissertation

For further guidance, we now give a brief outline of the general organization of the

dissertation.

Chapter 2, which presents the contributions outlined in Section 1.3.1, begins with

the current theories about ε-approximation and the new unifying concepts of a tolerance

function t, a t-cover and a t-approximation set. It then goes on to investigate the properties

of t-covers with respect to polyhedral cones, general cones, multiple solution sets, and mul-

tiple tolerance functions. Section 2.4 includes the properties relevant for t-approximation

sets. Identifying tolerance-based approximation algorithms in the literature and investigat-

ing how to use the results obtained for complex decision making problems are discussed in

Section 2.5. The concept of tolerance-based dominance, referred to as t-dominance, and the

new properties identified using it are discussed in Section 2.6.

Presenting the contributions related to approximating the Pareto set of the MOSCP

using ε-approximation, Chapter 3 begins with the theoretical approaches used to find the

efficient solutions of the MOSCP and the ε-approximation concept. Section 3.3 develops

two algorithms for approximating this set: the first aims to approximate the supported

Pareto set and the second, to approximate the weak Pareto set. In particular, the accuracy

of the solutions produced by both algorithms are proven in Section 3.3, the computational

results being included in Section 3.4.

Chapter 4 provides a two-phase heuristic algorithm for approximating the Pareto set

of MOSCPs. More specifically, Section 4.3 presents the fundamental ideas and observations

used in the development of the algorithm. The proposed algorithm is explained in Sec-

tion 4.4, and its performance and its comparison with the PMA proposed by Jaszkiewicz ([53])

are discussed in Section 4.5.

The paper presented in Chapter 5 explores the application of the SCP discussed in

Section 1.1.5. As indicated by the contributions suggested in Section 1.3.3, the formulation

of the mathematical model for obtaining compact reserve sites is given in Section 5.2. The

30

second model proposed for solving the initial model more efficiently is also presented in

this section. Numerical examples comparing the computational aspects of the two models

are provided in Section 5.3, and additional data sets including a standard one based on the

Oregon field data ([19]) are then used in Sections 5.4 to explore more fully the computational

behavior of the models as their parameters are varied.

1.5 Conclusion and future research

Multiobjective optimization is an area of multiple criteria decision making concerned

with mathematical problems involving more than one conflicting objective functions need-

ing to be optimized simultaneously. Because of these conflicting objective functions, the

solution involves a set rather than a single solution for these problems. Obtaining this set

is difficult for many reasons, and, therefore, many approaches for approximating them have

been proposed. The research presented in this dissertation addresses these observations

and difficulties, its primary contribution focusing on two areas: the first is the solution

approximation and theoretical characterization of the solution sets of an MOP and the sec-

ond focuses on the approximation of the Pareto set of the well-known MOSCP, which has

received limited study, and its application in the field of reserve design.

Chapter 2 presents a unified approach for representing ε-approximations using the

tolerance function t and two types of approximation sets, t-covers and t-approximations,

and some of their properties. Future work could explore additional properties, including

applying them to a specific MOP for which there is an ε-approximation algorithm. The

relationships between the nondominated set and the t-nondominated set of an MOP are

analyzed using multiple quality measures. These results enable and stimulate further in-

vestigation of approximate solutions for the MOP solution, approaches proposed in this

dissertation impacting their future use and study.

In Chapter 3 two algorithms for approximating the Pareto set of the MOSCP are de-

veloped and their approximation quality derived. Algorithm 1 approximates the supported

31

Pareto points with a constant error depending only on the number of items in the test in-

stance. It is shown that for every supported Pareto point, there exists a vector λ ∈ Rp and

a point in the approximated solution set. Algorithm 2 approximates the weak Pareto points

with a known quality depending on the problem data (number of items and the magnitude

of the cost coefficients) and on the weight vector used for computing the approximation,

the results indicating that for every weak Pareto point, there exists a vector λ ∈ Rp and

a point in the approximated solution. Even though the results show that such λ vectors

exist, they do not reveal how this vector can be found. Thus, an important avenue of future

study is how these λ vectors can be obtained. Algorithm 2 is the first in the literature to

approximate the Pareto points of the MOSCP with known approximation quality. Even

though, this algorithm provides approximation points with known quality ε, these points are

far from the Pareto points as seen in Section 3.4. Therefore, another possible direction for

future work includes approximation concepts other than the one chosen for Algorithm 2.

Chapter 4 proposes a two-phase heuristic algorithm, the AIA, for approximating

the Pareto points of the MOSCP, developed based on the weighted-sum and the weighted-

Chebyshev methods. In the first phase of the AIA, a set of initial feasible solutions is found

while in the second phase, objective values corresponding to initial solutions are improved.

The performance of this proposed AlA is compared with the performance of the PMA devel-

oped by Jaszkiewicz ([53]), the results indicating that the AlA performs better in many test

instances. However, as discussed in Section 1.1.3, due to their nature, it cannot be proved

that one heuristic algorithm is superior to another. Thus, there are several directions for

future research on this topic. To enhance the quality of the initial feasible solutions, it is

possible to consider optimization methods other than the one considered in the first phase of

the proposed algorithm. In addition, sophisticated improvement strategies could be added

to obtain improved solutions in the second phase. Moreover, it would be useful to conduct

additional and more extensive testing of this algorithm on large problems and problems

with more than three objective functions.

Chapter 5 investigates the design of spatially compact reserve systems, addressing

32

the limitations of the standard SCP covering approach. A hierarchical optimization model

that organizes reserve sites into a relatively small number of compact groups, or clusters,

is developed, one that explicitly considers two factors: minimizing the boundary length of

all selected clusters and minimizing the total distance between all pairs of sites within each

cluster. Each of these objectives is important for the long-term success of a planned reserve

system. Because the boundary length is more important than the total within cluster dis-

tance when creating desirable clusters, the hierarchical optimization model gives priority

to minimizing the boundary length. Because the initial formulation is expressed as a non-

convex optimization model defined over a discrete feasible region, the model is linearized in

order to solve it more efficiently. The experimental results show that the linearized model

significantly reduces the computational time. Both models provide compact clusters to bet-

ter protect species. Because it may be difficult to find an optimal solution for the linearized

model in a reasonable amount of time for large reserve design problems, future work could

involve developing appropriate heuristic algorithms (e.g., see [16, 55]).

This dissertation extends the investigation of multiobjective optimization, especially

multiobjective combinatorial optimization. It is hoped that the questions explored in this

dissertation and the subsequent results and their implications add to the understanding of

the field as well as open new areas of focus for futer research.

33

Chapter 2

Covers and t-dominance in

Multiobjective Optimization

2.1 Introduction

Multiobjective optimization problems (MOPs), which occur frequently in many real-

world applications, involve optimizing several objective functions over a feasible region

defined by constraint functions. Because the objective functions are often conflicting, a

unique solution that optimizes all of them simultaneously does not exist. Instead, an optimal

solution set, also known as the nondominated set, is implied by a partial order or a convex

cone associated with the objective space of the MOP ([110]). Traditionally, the partial

order is based on the Pareto preference ([82]) which, in case of minimization, is equivalent

to the cone being the first orthant of the objective space ([27]). It has been shown in the

literature that general convex cones are also beneficial since they provide a tool for modeling

decision maker’s preferences. Refer to Noghin ([73]), Noghin and Tolstykh ([74]), Hunt and

Wiecek ([50]), Klimova and Noghin ([56]), Wiecek ([104]), and Hunt et al. ([49]) for algebraic

models of such polyhedral cones, and to Hunt et al. ([48]) and Blouin et al. ([10]) for their

applications in engineering design.

The success of applying multiobjective optimization in practice depends, among

34

other things, on the ability to compute the elements of the nondominated set. This set is

typically large and it is often difficult or even impossible to obtain its exact description.

For MOPs with continuous objective and constraint functions defined over a continuous

feasible set, the nondominated set is usually infinite. It can be derived analytically only for

certain classes of problems ([99, 41]), and otherwise it has to be approximated. For MOPs

with a discrete feasible set, the nondominated set may have a finite number of elements.

However, their computation may involve solving NP -hard problems. In particular, for most

multiobjective combinatorial optimization problems the solution set is exponential in the

size of a test instance in the worst case ([29]). In conclusion, even if it is theoretically possible

to find the nondominated set, it is often computationally challenging and expensive to do

so.

Because of the difficulties related to the structure of the nondominated set and the

compounding computational challenges, a wide variety of methods have been proposed for

computing its elements, and numerous approaches have been developed to approximating

this set. All these methods and approaches rely on exact or heuristic algorithms. The

former typically compute actual elements of the solution sets by means of algorithms which

provide theoretical proofs for their correctness (refer to ([93]) for a review of such methods

for continuous MOPs in the period 1975–2003). Recent exact methods include the works

of [67, 40, 23], and [44, 45]. The quality of discrete representations is discussed in [31].

Heuristic and meta-heuristic methods (such as evolutionary and genetic algorithms) pro-

vide approximations of the nondominated set with points that are not necessarily in this

set but that are feasible for the MOP and considered acceptable according to a principle or

a quality criterion used for the approximation. These methods usually find approximating

points quickly but have no proofs of correctness and, thus, are theoretically unsupported

(see [21, 17], and many others).

Rules or criteria for evaluating approximation quality evolved from the concept of

ε-nondominance that was introduced by Kutateladze ([58]) to relax the original efficiency

of the solutions. Other concepts of ε-nondominance followed. They had been researched as

35

types of efficiency (refer to [46] for a survey) before they were used for approximation. The

general idea behind ε-approximations is that the elements in the solution set are approxi-

mately dominated by the elements of the approximating set and the approximation quality

is a function of ε.

Discrete ε-approximations of the solution set of the MOP have been proposed by

various authors. Motivation for those approaches and an overview focusing on defining and

measuring approximation quality is discussed by Sayin ([97]). The problem of computing

an ε-approximation for discrete MOPs is examined by Safer and Orlin ([94]) and Papadim-

itriou and Yannakakis ([81]). The former develop necessary and sufficient conditions for

the existence of a fast approximation scheme while the latter show that an ε-approximate

Pareto set can be constructed in time that is polynomial in the size of a test instance and

1/ε. Often, problem-based ε-approximations are constructed in the literature. Diakoniko-

las and Yannakakis ([22]) develop a 2-approximation for several biobjective problems such

as the shortest path problem, the spanning tree problem, the knapsack problem, and a

scheduling problem. Erlebach et al. ([30]) and Bazgan et al. ([7]) independently construct

(1 + ε)-approximations for the multiobjective knapsack problem. Angel et al. ([4]) con-

struct a 1.5-approximation for the biobjective traveling salesman problem, while Angel et

al. ([5]) and Manthey and Ram ([65]) use different assumptions to propose ε-approximations

for the multiobjective traveling salesman problem. Other authors address general MOPs.

Existence of approximations under different assumptions is discussed by Vassilvitskii and

Yannakakis ([101]). Legriel et al. ([60]) propose a method for obtaining ε-approximation

based on the Hausdorff distance between the Pareto set and the approximating set. Lau-

manns and Zenklusen ([59]) present two methods for maintaining a sequence of solution sets

that converge to ε-approximations of a certain quality. Filippi and Stevanato ([32]) describe

two (1 + ε)-approximation methods for approximating the Pareto set of biobjective combi-

natorial optimization problems and test the proposed methods on the biobjective traveling

salesman problem.

Due to the growing interest in approximation for MOPs and many different notions

36

of ε-approximations in the literature, a theoretical framework for defining and classifying

sets representing or approximating solution sets for MOPs is proposed in this paper. The

notions of ε-efficiency serve as a reference to construct a function acting on the elements in

the objective space of the MOP. This function, which is used to compare the elements being

approximated with the elements that are approximating, models an associated quality, or

more generally, a tolerance measure. Two types of subsets of the set being represented or

approximated are defined: covers and approximations. A cover is defined as a subset of a

set of interest so that the elements of the cover remain in a relation with the elements of

the set. This relation is defined for every element in the set of interest using a tolerance

function that also determines the error or quality of the cover. An approximation set is

defined as an inherently nondominated cover ([44]).

Covers and approximations are studied in a broader context of multiple solutions

sets, multiple (constant) cones, and multiple quality measures. Multiple solution sets may

result from a decomposition of the original MOP into smaller problems ([38]); multiple cones

may account for different decision makers having different preferences; while multiple quality

measures may result from using different algorithms on the same problem. Properties of

covers and approximations are derived for a variety of these cases representing different real-

life circumstances. While the notions of ε-dominance had led researchers to the development

of various types of approximations, the proposed tolerance function extends the traditional

dominance ([110]) to t-dominance in which the dominating element is replaced by its proxy

or surrogate that is yield by the tolerance function.

The chapter is organized in the following manner. In Section 2.2, common termi-

nology and basic definitions are given, and the definitions of cover and approximation are

presented. Their properties are studied in Sections 2.3 and 2.4. Relevance of the results to

the approximation algorithms in the literature and an application are given in Section 2.5.

In Section 2.6, the notion of t-dominance is investigated.

37

2.2 Notations and definitions

We begin with well established notations and definitions. Throughout this paper

let Rp be a Euclidean vector space, Y be a nonempty subset in Rp, and C be a nonempty

cone in Rp. A set C in Rp is called a cone if d ∈ C then λd ∈ C for λ ≥ 0.

For y1, y2 in Y , we use the notation y1 5 y2 if and only if y1
k ≤ y2

k for all k =

1, 2, . . . , p; y1 ≤ y2 if and only if y1
k ≤ y2

k for all k = 1, 2, . . . , p and y1 6= y2; y1 < y2 if and

only if y1
k < y2

k for all k = 1, 2, . . . , p. With the relations =,≥ and > defined accordingly,

we also define the cone Rp= := {y ∈ Rp : y = 0}.

Cones are used to define cone relations between the elements of the set Y , and

dominated and nondominated elements in Y ([110]).

Definition 2.2.1. Let y1, y2 ∈ Y. A relation 5C on Y is defined by y1 5C y2 if and only

if y2 − y1 ∈ C, or equivalently, there exists d ∈ C such that d = y2 − y1 ∈ C. Furthermore

a relation ≤ on Y is defined by y1 ≤C y2 if and only if y2 − y1 ∈ C \ {0}, or equivalently,

there exists d ∈ C, d 6= 0 such that d = y2 − y1 ∈ C.

Definition 2.2.2. A point y′ ∈ Y is called a dominated point of the set Y with respect to

the cone C if there exists a point y ∈ Y such that y ≤C y′.

Definition 2.2.3. A point y′ ∈ Y is called a nondominated point of the set Y with respect

to the cone C if there does not exist y ∈ Y and d ∈ C, d 6= 0 such that y′ = y + d or,

equivalently, there does not exist y ∈ Y such that y ≤C y′. The set of all nondominated

points of Y with respect to the cone C is denoted by N(Y,C).

If the cone C is the Pareto cone (C = Rp=), the set N(Y,C) reduces to the well-known

Pareto set and is denoted as N(Y,Rp=).

A polyhedral cone is defined as follows:

Definition 2.2.4. A polyhedral cone is a cone C in Rp for which there exists a q×p matrix

A ∈ Rq×p such that C = {d ∈ Rp : Ad = 0}.

38

The image of Y under the linear mapping represented by the matrix A ∈ Rq×p is denoted

by A[Y] := {z ∈ Rq : z = Ay for some y ∈ Y }.

We now present the concepts newly introduced in this chapter. We begin with a

tolerance function that yields proxy or surrogate elements of the elements in the set Y . A

function provides tolerance if its image elements, i.e., the proxy elements, are dominated

by the elements in Y with respect to a cone C.

Definition 2.2.5. Let C be a cone in Rp. A vector-valued function t : Rp 7→ Rp such that

y 5C t(y) for all y ∈ Rp is called a tolerance function.

Definition 2.2.5 implies that t(y) ∈ C + y for all y in Y . Otherwise the tolerance function

is not well defined.

Example 2.2.1. For C = Rp=, the function t : Rp 7→ Rp, t = 2y, is well defined. However,

for C = −Rp=, it is not.

The following property of the tolerance function will be useful.

Definition 2.2.6. Let Y be a set in Rp. A vector-valued function t : Rp 7→ Rp is called an

A-invariant function on Y if t(Ay) = At(y) for all y ∈ Y , where A is a p× p matrix.

Example 2.2.2. Let Y ⊂ Rp and t1, t2 : Rp 7→ Rp be two functions defined as t1(y) =

(1 + ε)y for ε ∈ R≥ and t2(y) = y+ ε for ε ∈ Rp≥, and A be an p× p matrix. Then t1 is an

A-invariant function on Y but t2 is not.

Example 2.2.3. Let Y ⊂ R2 such that Y = {(2, 3)T , (1, 1)T }, t1, t2 : R2 7→ R2 be two

functions defined as t1(y) = 2y and t2(y) = 2y + (1, 1)T for y ∈ Y , and A =

2 3

1 2

. We

obtain that t1(Ay) = At1(y) for all y ∈ Y . Thus t1 is an A-invariant function on Y . Let

ȳ = (2, 3)T . We note that t2(Aȳ) = (27, 17)T , At2(ȳ) = (31, 19)T , and hence t2 is not an

A-invariant function on Y .

Given Y ⊂ Rp, a subset S of Y is called a cover of Y if every element in Y is

“covered” by an element in S. An element in Y is “covered” if its proxy is dominated by an

39

element in S with respect to a cone C. In other words, the tolerance function implies the

level of tolerance according to which the proxy elements are treated as the actual elements

of Y even that the proxy elements may not be in Y .

Definition 2.2.7. Let Y be a set in Rp, C be a cone in Rp, and t : Rp 7→ Rp be a tolerance

function. A subset S of Y is called a t-cover of Y with respect to C if for all y ∈ Y there

exists s ∈ S, s 5C t(y).

Example 2.2.4. Let Y ⊂ R2 such that Y = {y1 = (1, 3)T , y2 = (2, 2)T , y3 = (3, 3)T , y4 =

(4, 1)T , y5 = (8, 1)T , y6 = (9, 3)T }, and t : R2 7→ R2 be a tolerance function such that

t(y) = 2y for y ∈ Y .

1. Let C = {d ∈ R2 : d2 ≤ 3d1, d2 ≥ 1
8d1, d1, d2 ≥ 0}. By Definition 2.2.5, yi 5C

t(yi), i = 1, . . . , 6. Also note that y2 5C t(y3) = (6, 6)T and y4 5C t(y6) = (18, 6)T .

Therefore the points y3 and y6 are covered by y2 and y4, respectively. Thus, the set

S = {y1, y2, y4, y5} is a t-cover for Y with respect to the cone C. Further, note that

S \ {y4} does not form a cover for Y because there is no s ∈ S \ {y4} such that

s 5C t(y
4).

2. Let C = R2
= and note that the sets S and S \{y4} are both t-covers for Y with respect

to the cone R2
=.

For the given cone and tolerance function, there may exist many t-covers. The

collection of all t-covers of Y with respect to a cone C is denoted by Ct(Y,C). Some covers

in the collection may contain a large number of points while others may be small. Also,

the points of a cover may dominate each other or not. By removing all dominated points

from a cover, the set remains a cover. If a set S is a t-cover of Y and does not contain any

dominated points then this set is referred to as a t-approximation set of Y . In [44], a set S

satisfying N(S,C) = S is called an inherently nondominated set.

Definition 2.2.8. Let Y be a set in Rp, C be a cone in Rp, and t : Rp 7→ Rp be a tolerance

function. A t-cover S ∈ Ct(Y,C) such that N(S,C) = S is called a t-approximation set of

Y with respect to C.

40

Example 2.2.5. Let Y and t be defined as in Example 2.2.4.

1. Let the cone C be defined is in part 1. Thus the set S is a t-approximation sets for Y

with respect to C.

2. Let the cone C be defined as in part 2. Note that N(S,C) 6= S. Thus the set S is not

a t-approximation set for Y with respect to C.

Given the cone and tolerance function, a t-approximation set in general is not unique.

The set of all t-approximation sets of Y with respect to a cone C is denoted by At(Y,C).

2.3 Properties of covers

In this section properties of covers are studied with respect to polyhedral and general

cones, multiple solution sets, and multiple tolerance functions.

Because the relationship between the nondominated set with respect to a general

polyhedral cone and the Pareto cone is well established ([95]), we examine covers with

respect to polyhedral cones, sets, and related linear transformations. The first proposition

shows the behavior of covers under the linear transformation represented by the matrix of

the cone.

Proposition 2.3.1. Let Y be a set in Rp and C be a polyhedral cone in Rp, C = {d ∈ Rp :

Ad = 0} where A is a p× p matrix. Let t : Rp 7→ Rp be an A-invariant tolerance function.

Then S ∈ Ct(Y,C) if and only if A[S] ∈ Ct(A[Y],Rp=).

Proof. (⇒) Let S ∈ Ct(Y,C) and y ∈ Y . Then by Definition 2.2.7, there exists s ∈ S such

that s 5C t(y). By Definition 2.2.1, there exists d ∈ C such that d = t(y)− s. Since d ∈ C,

Ad = 0 and

Ad = A(t(y)− s) = 0. (2.1)

By setting d1 = Ad, we get d1 ∈ Rp=. Then (2.1) can be written as d1 = At(y)−As ∈ Rp=,

and, by Definition 2.2.1, we have As 5Rp
=
At(y). Because t is an A-invariant function, we

41

obtain

As 5Rp
=
t(Ay). (2.2)

Thus for all y ∈ Y there exists s ∈ S such that inequality (2.2) holds. Also, for all Ay ∈ A[Y]

there exists As ∈ A[S] such that As 5Rp
=
t(Ay). Thus A[S] ∈ Ct(A[Y],Rp=).

(⇐) Let A[S] ∈ Ct(A[Y],Rp=) for S ⊆ Y and u ∈ A[Y] with u = Ay for y ∈ Y . Then

by Definition 2.2.7 there exists ū ∈ A[S] with ū = As for some s ∈ S, such that As 5Rp
=

t(Ay), or equivalently t(Ay) − As ∈ Rp=. Because t is an A-invariant function, we obtain

At(y) − As ∈ Rp=. Since A(t(y) − s) = 0, we have t(y) − s ∈ C. Therefore, for all y ∈ Y

there exists s ∈ S such that s 5C t(y) which completes the proof.

Corollary 1 addresses the case of Proposition 2.3.1 when the matrix A is replaced

by a matrix B not related to the cone C. The proof is analogous to the ‘only if’ part of the

proof of Proposition 2.3.1.

Corollary 1. Let Y ⊂ Rp and t : Rp 7→ Rp be a B-invariant tolerance function where B

is a p× p nonnegative matrix. If S ∈ Ct(Y,Rp=) then B[S] ∈ Ct(B[Y],Rp=).

Proposition 2.3.2 extends Proposition 2.3.1 replacing the cone C with a polyhedral

set C, C = C(A, b) = {d ∈ Rp : Ad = b}, where A is a p× p matrix and b ∈ Rp.

Proposition 2.3.2. Let Y be a set in Rp and C be a polyhedral set in Rp, C = C(A, b) =

{d ∈ Rp : Ad = b}, where A is a p × p matrix and b ∈ Rp. Let t : Rp 7→ Rp be an

A-invariant tolerance function. Then S ∈ Ct(Y,C) if and only if A[S] ∈ Ct(A[Y],Rp=b),

where Rp=b := Rp= + b = {d ∈ Rp : d = b}.

Proof. (⇒) Let S ∈ Ct(Y,C) and y ∈ Y . Then by Definition 2.2.7, there exists s ∈ S such

that s 5C t(y). By Definition 2.2.1, there exists d ∈ C such that d = t(y)− s. Since d ∈ C,

Ad = b and Ad = A(t(y)− s) = b. Thus we obtain Ad = At(y)− As ∈ Rp=b, and again by

Definition 2.2.1, we have As 5Rp
=b
At(y). Since t is an A-invariant function, As 5Rp

=b
t(Ay).

Since y is arbitrary, for all y ∈ Y there exists s ∈ S such that As 5Rp
=b
t(Ay). Also, for all

42

Ay ∈ A[Y] there exists As ∈ A[S] such that As 5Rp
=b
t(Ay). Thus A[S] ∈ Ct(A[Y],Rp=b).

(⇐) Let A[S] ∈ Ct(A[Y],Rp=b) for S ⊆ Y and let u ∈ A[Y] with u = Ay for y ∈ Y .

Then by Definition 2.2.7 there exists ū ∈ A[S] with ū = As for some s ∈ S, such that

As 5Rp
=b
t(Ay), or equivalently t(Ay) − As ∈ Rp=b. Since t is an A-invariant function, we

obtain At(y) − As ∈ Rp=b. Since A(t(y) − s) = b, we have t(y) − s ∈ C. Therefore, for all

y ∈ Y there exists s ∈ S such that s 5C t(y), which completes the proof.

Cones containing the Pareto cone model relative importance of criteria ([73, 49])

and also reduce the nondominated set ([95]), which facilitates the resulting decision making

process ([48, 10]). Proposition 2.3.3 shows a relationship between a t-cover of the Pareto

set and a t-cover of the nondominated set defined with respect to a polyhedral cone C

subsuming the Pareto cone.

Proposition 2.3.3. Let Y be a set in Rp and C be a pointed polyhedral cone in Rp,

C = {d ∈ Rp : Ad = 0} where A is a p× p matrix such that Rp= ⊆ C. Let t : Rp 7→ Rp be

a tolerance function. If S ∈ Ct(N(A[Y],Rp=),Rp=) then S ∈ Ct(A[N(Y,C)], C).

Proof. Let S ∈ Ct(N(A[Y],Rp=),Rp=) with S = A[S̄] for some S̄ ⊆ Y . Since C is a pointed

polyhedral cone, N(A[Y],Rp=) = A[N(Y,C)], and we obtain S ⊆ A[N(Y,C)]. Let u ∈

A[N(Y,C)] with u = Ay for some y ∈ Y . By Definition 2.2.7, there exists s ∈ S with

s = As̄ for some s̄ ∈ Y such that s 5Rp
=
t(u) or, equivalently, As̄ 5Rp

=
t(Ay). Then by

Definition 2.2.1, we obtain t(Ay)−As̄ ∈ Rp=. Since Rp= ⊆ C, we obtain t(Ay)−As̄ ∈ C and

hence, again by Definition 2.2.1, we have that As̄ 5C t(Ay) = t(u). Since u is arbitrary, for

all u ∈ A[N(Y,C)] there exists s ∈ S such that s 5C t(u). Thus the proof is complete.

Proposition 2.3.4. Let Y be a set in Rp and C be a polyhedral cone in Rp, C = {d ∈

Rp : Ad = 0} where A is a p× p matrix such that C ⊆ Rp=. Let t : Rp 7→ Rp be a tolerance

function. If S ∈ Ct(A[N(Y,C)], C) then S ∈ Ct(N(A[Y],Rp=),Rp=).

Proof. Let S ∈ Ct(A[N(Y,C)], C) with S = A[S̄] for some S̄ ⊆ N(Y,C). Since C is

a polyhedral cone, A[N(Y,C)] ⊆ N(A[Y],Rp=) and we obtain S ⊆ N(A[Y],Rp=). Let

43

u ∈ N(A[Y],Rp=) with u = Ay for some y ∈ Y . By Definition 2.2.7, there exists s ∈ S

with s = As̄ for some s̄ ∈ Y such that s 5C t(u) or, equivalently, As̄ 5C t(Ay). Then by

Definition 2.2.1, we obtain t(Ay)−As̄ ∈ C. Since C ⊆ Rp=, we obtain t(Ay)−As̄ ∈ Rp= and

hence, again by Definition 2.2.1, we have that As̄ 5Rp
=
t(Ay) = t(u). Since u is arbitrary,

for all u ∈ N(A[Y],Rp=) there exists s ∈ S such that s 5Rp
=
t(u). Thus the proof is

complete.

Proposition 2.3.5. Let Y be a set in Rp and C be a polyhedral set in Rp, C = {d ∈ Rp :

Ad = b} where A is a p× p matrix and b ∈ Rp, such that Rp=b ⊆ C. Let t : Rp 7→ Rp be a

tolerance function. If b /∈ −Rp= and S ∈ Ct(N(A[Y],Rp=b),R
p
=b) then S ∈ Ct(A[N(Y,C)], C).

Proof. Let S ∈ Ct(N(A[Y],Rp=b),R
p
=b). Since C is a polyhedral cone and b /∈ −Rp=,

N(A[Y],Rp=b) ⊆ A[N(Y,C)], ([28], Proposition 4.3) and we obtain S ⊆ A[N(Y,C)]. Let

u ∈ A[N(Y,C)]. By Definition 2.2.7, there exists s ∈ S such that s 5Rp
=b
t(u). Then by

Definition 2.2.1, t(u) − s ∈ Rp=b, and since Rp=b ⊆ C, t(u) − s ∈ C. Again by Definition

2.2.1, we have that s 5C t(u). Since u is arbitrary, for all u ∈ A[N(Y,C)] there exists s ∈ S

such that s 5C t(u). Thus the proof is complete.

Proposition 2.3.6. Let Y be a set in Rp and C be a polyhedral set in Rp, C = {d ∈ Rp :

Ad = b} where A is a p× p matrix and b ∈ Rp, such that C ⊆ Rp=b. Let t : Rp 7→ Rp be a

tolerance function. If S ∈ Ct(A[N(Y,C)], C) then S ∈ Ct(N(A[Y],Rp=b),R
p
=b).

Proof. Let S ∈ Ct(A[N(Y,C)], C) with S = A[S̄] for some S̄ ⊆ N(Y,C). Since C is

a polyhedral set, A[N(Y,C)] ⊆ N(A[Y],Rp=b) and we obtain S ⊆ N(A[Y],Rp=b). Let

u ∈ N(A[Y],Rp=b) with u = Ay for some y ∈ Y . By Definition 2.2.7, there exists s ∈ S

with s = As̄ for some s̄ ∈ Y such that s 5C t(u) or, equivalently, As̄ 5C t(Ay). Then by

Definition 2.2.1, we obtain t(Ay)−As̄ ∈ C. Since C ⊆ Rp=b, we obtain t(Ay)−As̄ ∈ Rp=b and

hence, again by Definition 2.2.1, we have that As̄ 5Rp
=b
t(Ay) = t(u). Since u is arbitrary,

for all u ∈ N(A[Y],Rp=b) there exists s ∈ S such that s 5Rp
=b

t(u). Thus the proof is

complete.

44

We now focus on covers with respect to general cones. We consider covers of multiple

sets with respect to multiple cones and multiple tolerance functions. We show an application

of multiple sets in Section 6. Multiple cones may model changing or different preferences

of the decision makers engaged in the decision making process.

Given a cover and two sets Y1, Y2 ⊂ Rp, a condition on these sets implies that the

cover works for both sets.

Proposition 2.3.7. Let Y1, Y2 be two sets in Rp such that Y2 ⊆ Y1, C be a cone in Rp,

and t : Rp 7→ Rp be a tolerance function. If S ∈ Ct(Y1, C) then S ∈ Ct(Y2, C).

Proof. Let S ∈ Ct(Y1, C). By Definition 2.2.7, for all y ∈ Y1 there exists s ∈ S such that

s 5C t(y). Since Y2 ⊆ Y1, for all y ∈ Y2 there exists s ∈ S such that s 5C t(y). Hence

S ∈ Ct(Y2, C).

Similar to the previous proposition, given a cover of a set and two cones, a condition

on the cones implies that the cover works for the set and both cones.

Proposition 2.3.8. Let Y be a set in Rp, C1, C2 be two cones in Rp such that C2 ⊆ C1,

and t : Rp 7→ Rp be a tolerance function. If S ∈ Ct(Y,C2) then S ∈ Ct(Y,C1).

Proof. Let S ∈ Ct(Y,C2) and y ∈ Y . Then by Definition 2.2.7, there exists s ∈ S such that

s 5C2 t(y), or equivalently, t(y) − s ∈ C2. Since C2 ⊆ C1, we get t(y) − s ∈ C1. Thus we

obtain s 5C1 t(y) for some s ∈ S. Since y is arbitrary, for all y ∈ Y there exists s ∈ S such

that s 5C1 t(y) and hence S ∈ Ct(Y,C1), which completes the proof.

The next proposition is given without a proof.

Proposition 2.3.9. Let Y be a set in Rp, C1, C2 be two cones in Rp, and t : Rp 7→ Rp be

a tolerance function. If S ∈ Ct(Y,C1 ∩ C2) then S ∈ Ct(Y,C1) and S ∈ Ct(Y,C2).

Based on Propositions 2.3.7 and 2.3.8, the following property holds.

Corollary 2. Let Y1, Y2 be two sets in Rp such that Y2 ⊆ Y1, C1, C2 be two cones in Rp

such that C2 ⊆ C1, and t : Rp 7→ Rp be a tolerance function. If S ∈ Ct(Y1, C2) then

S ∈ Ct(Y2, C1).

45

Proof. By Proposition 2.3.7 we have S ∈ Ct(Y2, C2), and by Proposition 2.3.8 we have

S ∈ Ct(Y2, C1).

For algorithmic developments it is important to know how a cover changes when the

tolerance function is relaxed. Consider two tolerance functions producing proxy elements

dominating each other.

Proposition 2.3.10. Let Y be a set in Rp and C be a convex cone in Rp. Let t1 : Rp 7→ Rp

and t2 : Rp 7→ Rp be two tolerance functions such that t1(y) 5C t2(y) for all y ∈ Y . If

S ∈ Ct1(Y,C) then S ∈ Ct2(Y,C).

Proof. Let S ∈ Ct1(Y,C) and y ∈ Y . Then by Definition 2.2.7, there exists s ∈ S such

that s 5C t1(y) or equivalently t1(y) − s ∈ C. We have that t1(y) 5C t2(y) for all y ∈ Y ,

or equivalently, t2(y) − t1(y) ∈ C for all y ∈ Y. Since C is a convex cone, we obtain

t1(y) − s + t2(y) − t1(y) ∈ C. Thus we get t2(y) − s ∈ C and hence s 5C t2(y). Since y is

arbitrary, for all y ∈ Y there exists s ∈ S such that s 5C t2(y).

We examine the behavior of a cover under the composition of two tolerance functions.

Proposition 2.3.11. Let Y be a set in Rp and C be a convex cone in Rp. Let t1 : Rp 7→ Rp

and t2 : Rp 7→ Rp be two tolerance functions. If S ∈ Ct1(Y,C) then S ∈ Ct2(t1)(Y,C).

Proof. Let S ∈ Ct1(Y,C) and y ∈ Y . Then by Definition 2.2.7, there exists s ∈ S such that

s 5C t1(y). Since t2 is a tolerance function, by Definition 2.2.5, we get t1(y) 5C t2(t1(y)).

Since C is a convex cone, t2(t1(y)) − t1(y) + t1(y) − s ∈ C. Thus we get t2(t1(y)) − s ∈ C

and hence s 5C t2(t1(y)). Since y is arbitrary, for all y ∈ Y there exists s ∈ S such that

s 5C t2(t1(y)).

Proposition 2.3.7 together with Proposition 2.3.10 yield the following result.

Corollary 3. Let Y1, Y2 be two sets in Rp such that Y2 ⊆ Y1 and C be a convex cone in Rp.

Let t1 : Rp 7→ Rp and t2 : Rp 7→ Rp be two tolerance functions such that t1(y) 5C t2(y) for

all y ∈ Y . If S ∈ Ct1(Y1, C) then S ∈ Ct2(Y2, C).

46

Proof. By Proposition 2.3.7, we have S ∈ Ct1(Y2, C). Since C is a convex cone, by Propo-

sition 2.3.10, we have S ∈ Ct2(Y2, C).

Proposition 2.3.8 together with Proposition 2.3.10 yield the following result.

Corollary 4. Let Y be a set in Rp and C1, C2 be two cones in Rp such that C2 ⊆ C1 and

C1 be convex. Let t1 : Rp 7→ Rp and t2 : Rp 7→ Rp be two tolerance functions such that

t1(y) 5C1 t2(y) for all y ∈ Y . If S ∈ Ct1(Y,C2) then S ∈ Ct2(Y,C1).

Proof. By Proposition 2.3.8, we have S ∈ Ct1(Y,C1). Since C1 is a convex cone, by Propo-

sition 2.3.10, we have S ∈ Ct2(Y,C1).

The next three propositions present properties of covers for sets composed of subsets

that are combined using the set operations such as the Cartesian product, algebraic sum,

and union. Each result involves two sets, two cones, and two tolerance functions and can

be generalized to a bigger number of these items.

Proposition 2.3.12. Let Yi be a set in Rpi, Ci be a cone in Rpi, and ti : Rpi 7→ Rpi be

a tolerance function for i = 1, 2. Then S1 ∈ Ct1(Y1, C1) and S2 ∈ Ct2(Y2, C2) if and only if

S1 × S2 ∈ Ct(Y1 × Y2, C1 × C2), where t : Rp 7→ Rp is defined as t(y1, y2) = (t1(y1), t2(y2))

for y1 ∈ Y1, and y2 ∈ Y2, and p = p1 + p2.

Proof. Let S1 ∈ Ct1(Y1, C1) and S2 ∈ Ct2(Y2, C2). By Definition 2.2.7, for all yi ∈ Yi

there exists si ∈ Si such that si 5Ci ti(yi), i = 1, 2. These relations hold if and only if

for all (y1, y2) ∈ Y1 × Y2 there exists (s1, s2) ∈ S1 × S2 such that t1(y1) − s1 ∈ C1 and

t2(y2) − s2 ∈ C2 or, equivalently, (t1(y1), t2(y2)) − (s1, s2) ∈ C1 × C2. That is, for all

(y1, y1) ∈ Y1 × Y2, there exists (s1, s2) ∈ S1 × S2 such that (s1, s2) 5C1×C2 (t1(y1), t2(y2))

or, equivalently, (s1, s2) 5C1×C2 t(y1, y2) with t = (t1, t2).

The next proposition requires that the emerging tolerance function be additively

separable.

47

Proposition 2.3.13. Let Yi be a set in Rp, Ci be a cone in Rp, and ti : Rp 7→ Rp be a

tolerance function for i = 1, 2. If S1 ∈ Ct1(Y1, C1) and S2 ∈ Ct2(Y2, C2) then S1 + S2 ∈

Ct(Y1 +Y2, C1 +C2), where t : Rp 7→ Rp is defined as t(y1 +y2) = t1(y1)+ t2(y2) for y1 ∈ Y1

and y2 ∈ Y2.

Proof. Let S1 ∈ Ct1(Y1, C1) and S2 ∈ Ct2(Y2, C2). Let y1 ∈ Y1 and y2 ∈ Y2. Then by

Definition 2.2.7, there exists s1 ∈ S1 such that s1 5C1 t1(y1) and there exists s2 ∈ S2 such

that s2 5C2 t2(y2), which implies that for y1 +y2 ∈ Y1 +Y2 there exists s1 +s2 ∈ S1 +S2 such

that t1(y1)−s1 ∈ C1 and t2(y2)−s2 ∈ C2. Thus we have t1(y1)−s1 + t2(y2)−s2 ∈ C1 +C2.

That is, s1 + s2 5C1+C2 t1(y1) + t2(y2), or equivalently, s1 + s2 5C1+C2 t(y1 + y2) due to

the definition of t. Since y1 and y2 are arbitrary, we obtain for all y1 + y2 ∈ Y1 + Y2 there

exists s1 + s2 ∈ S1 + S2 such that s1 + s2 5C1+C2 t(y1 + y2).

The final proposition of this section again makes use of two tolerance functions that

produce proxy elements dominating each other.

Proposition 2.3.14. Let Y1, Y2 be two sets in Rp and C1, C2 be two cones in Rp such that

C1 is convex. Let t1, t2 : Rp 7→ Rp be tolerance functions such that t1(y1) 5C1 t2(y1) for all

y1 ∈ Y1. If S1 ∈ Ct1(Y1, C1) and S2 ∈ Ct2(Y2, C2) then S1 ∪ S2 ∈ Ct2(Y1 ∪ Y2, C1 ∪ C2).

Proof. Let S1 ∈ Ct1(Y1, C1) and S2 ∈ Ct2(Y2, C2). Let y1 ∈ Y1. Then by Definition 2.2.7,

there exists s1 ∈ S1 such that s1 5C1 t1(y1), or equivalently t1(y1) − s1 ∈ C1. Since

t1(y1) 5C1 t2(y1), we obtain t2(y1)− t1(y1) ∈ C1. Since C1 is convex, t1(y1)− s1 + t2(y1)−

t1(y1) ∈ C1. Thus, we have t2(y1) − s1 ∈ C1. Now, let y2 ∈ Y2. Then by Definition 2.2.7,

there exists s2 ∈ S2 such that s2 5C2 t2(y2), or equivalently, t2(y2)− s2 ∈ C2. This implies

that for any y ∈ Y1 ∪ Y2, there exists s ∈ S1 ∪ S2 such that t2(y) − s ∈ C1 ∪ C2. Since

y1 ∈ Y1 and y2 ∈ Y2 are arbitrary, for all y ∈ Y1 ∪ Y2 there exists s ∈ S1 ∪ S2 such that

s 5C1∪C2 t2(y).

48

2.4 Properties of approximations

In this section we present additional properties that are relevant only for approxi-

mations. We begin with the following obvious property.

Corollary 5. If S ∈ At(Y,C) then S ∈ Ct(Y,C).

Proposition 2.4.1 addresses the construction of an approximation set from a cover.

Filtering a t-cover by removing dominated elements provides a t-approximation set. The

cover and the filtering do not have to rely on the same cone.

Proposition 2.4.1. Let Y be a set in Rp, C1, C2 be two cones in Rp such that C2 ⊆ C1,

and C1 be a convex cone. Let t : Rp 7→ Rp be a tolerance function. If S ∈ Ct(Y,C1) then

N(S,C2) ∈ At(Y,C1).

Proof. We need to show that (1) N(S,C2) ∈ Ct(Y,C1) and (2) N(N(S,C2), C1) = N(S,C2).

(1): Let s ∈ S\N(S,C2). Since s 6∈ N(S,C2), there exists s′ ∈ N(S,C2) such that s′ ≤C2 s.

Let y ∈ Y such that s 5C1 t(y) for s ∈ S. Since s′ ≤C2 s and s 5C1 t(y) then there ex-

ists d2 ∈ C2, d2 6= 0, such that s′ + d2 = s and d1 ∈ C1 such that s + d1 = t(y). Since

C2 ⊆ C1 we get d2 ∈ C1. As C1 is a convex cone, there exists d = d1 + d2 ∈ C1 such that

s′ + d = t(y), and s′ 5C1 t(y). Since y is covered by s′ ∈ N(S,C2) with respect to the cone

C1 s can be removed from the cover S. Since s is arbitrary, repeating this process for all

s ∈ S \ N(S,C2) we obtain that all s ∈ S \ N(S,C2) such that s 5C1 t(y) for y ∈ Y can

be removed from the cover S and y can be covered by s′ ∈ N(S,C2) with respect to C1.

Therefore, N(S,C2) ∈ Ct(Y,C1).

(2): Let s ∈ N(S,C2) \ N(N(S,C2), C1). Since s 6∈ N(N(S,C2), C1), there exists s′ ∈

N(N(S,C2), C1) such that s′ ≤C1 s. Let y ∈ Y such that s 5C1 t(y) for s ∈ N(S,C2) \

N(N(S,C2), C1). Since s′ ≤C1 s and s 5C1 t(y) then there exists d1 ∈ C1, d1 6= 0, such

that s′ + d1 = s and d′1 ∈ C1 such that s + d′1 = t(y). As C1 is a convex cone, there

exists d = d1 + d′1 ∈ C1 such that s′ + d = t(y), and s′ 5C1 t(y). Since y is covered

49

by s′ ∈ N(N(S,C2), C1) with respect to the cone C1, s can be removed from the cover

N(S,C2). Since s is arbitrary, repeating this process for all s ∈ N(S,C2) \N(N(S,C2), C1)

we obtain that all s ∈ N(S,C2) \ N(N(S,C2), C1) such that s 5C1 t(y) for y ∈ Y can

be removed from the cover N(S,C2) and y can be covered by s′ ∈ N(N(S,C2), C1) with

respect to C1. That is, N(S,C2) has no dominated points with respect to the cone C1 and

N(S,C2) = N(N(S,C2), C1).

Therefore by (1) and (2), we obtain N(S,C2) ∈ At(Y,C1)

Relying on the same cone in Proposition 2.4.1, we obtain the following corollary.

Corollary 6. Let Y be a set in Rp, C be a convex cone in Rp, and t : Rp 7→ Rp be a

tolerance function. If S ∈ Ct(Y,C) then N(S,C) ∈ At(Y,C).

In view of the two results above, the reduction of a cover to an approximation set

is possible with a convex cone even that covers are defined with respect to general cones.

The approximation is considered perfect when it does not allow any tolerance, which

is modeled with the identity function. In this case, the set of all approximations reduces to

the nondominated set.

Proposition 2.4.2. Let Y be a set in Rp and C be a cone in Rp. Let id : Rp 7→ Rp be a

tolerance function such that id(y) = y for all y ∈ Y . Then Aid(Y,C) = {N(Y,C)}.

Proof. Let S ∈ Ct(Y,C) for t = id. By Definition 2.2.7, for every y ∈ Y there exists s ∈ S

such that s 5C id(y) = y. Then also for every y ∈ N(Y,C) there exists s ∈ S such that

s 5C id(y) = y. By definition, y ∈ N(Y,C) if and only if there does not exist y′ ∈ Y such

that y′ ≤C y. Since S ⊆ Y , it must be that s = y with respect to the cone C. Therefore,

we have S = N(Y,C) and N(Y,C) ∈ Aid(Y,C). Thus for any arbitrary cover S, we obtain

S = N(Y,C) and hence Aid(Y,C) = {N(Y,C)}.

50

Proposition 2.4.3 shows that given an approximation set S with respect to a poly-

hedral cone, the image of S under the linear mapping induced by the matrix of the cone,

A[S], is an inherently nondominated set with respect to the Pareto cone.

Proposition 2.4.3. Let Y be a set in Rp and C be a polyhedral cone in Rp, C = {d ∈

Rp : Ad = 0} where A is a p × p matrix. Let t : Rp 7→ Rp be a tolerance function. If

S ∈ At(Y,C) then N(A[S],Rp=) = A[S].

Proof. Clearly N(A[S],Rp=) ⊆ A[S]. We show A[S] ⊆ N(A[S],Rp=). By contradiction, let

s ∈ A[S]\N(A[S],Rp=) with s = As′ for s′ ∈ S. That is, there exists s̄ ∈ A[S] with s̄ = As′′

for s′′ ∈ S and d ∈ Rp=, d 6= 0, such that s = s̄+d. We obtain As′ = As′′+d and A(s′−s′′) =

d ≥ 0 as d 6= 0. Therefore, s′−s′′ ∈ C and there exists d′ ∈ C, d′ 6= 0, such that d′ = s′−s′′,

or equivalently, s′ = d′ + s′′. That is, there exist s′′ ∈ S and d′ ∈ C, d′ 6= 0, such that

s′ = s′′ + d′. Thus, s′′ ≤C s′ and N(S,C) 6= S, which contradicts that N(S,C) = S and

proves the result.

Proposition 2.4.4. Let Y be a set in Rp and C be a polyhedral cone in Rp, C = {d ∈ Rp :

Ad = 0} where A is a p× p matrix. Let t : Rp 7→ Rp be an A-invariant tolerance function.

If S ∈ At(Y,C) then A[S] ∈ At(A[Y],Rp=).

Proof. Let S ∈ At(Y,C). By Corollary 5, S ∈ Ct(Y,C) and by Proposition 2.3.1, A[S] ∈

Ct(A[Y],Rp=). Also, since S ∈ At(Y,C), by Proposition 2.4.3, we have N(A[S],Rp=) = A[S].

Using Definition 2.2.8, we obtain A[S] ∈ At(A[Y],Rp=).

For a proof of Corollary 7 we refer the reader to [37].

Corollary 7. Let Yi be a set in Rpi and Ci be a cone Rpi for i = 1, 2. Then N(Y1 ×

Y2, C1 × C2) = N(Y1, C1)×N(Y2, C2).

Corollaries 8 and 9 follow on Propositions 2.3.12 and 2.3.13.

Corollary 8. Let Yi be a set in Rpi, Ci be a convex cone in Rpi, and ti : Rpi 7→ Rpi

be a tolerance function for i = 1, 2. Let Si ∈ Cti(Yi, Ci) for i = 1, 2. Then N(S1, C1) ∈

51

At1(Y1, C1) and N(S2, C2) ∈ At2(Y2, C2) if and only if N(S1 × S2, C1 × C2) ∈ At(Y1 ×

Y2, C1 × C2), where t : Rp 7→ Rp is defined as t(y1, y2) = (t1(y1), t2(y2)) for y1 ∈ Y1, and

y2 ∈ Y2, and p = p1 + p2.

Proof. Since Ci is a convex cone, by Corollaries 6 and 5, N(Si, Ci) ∈ Cti(Yi, Ci) for i = 1, 2.

Thus, by Corollary 7 and Proposition 2.3.12, we obtain the desired result.

Corollary 9. Let Yi be a set in Rp, Ci be a convex cone in Rp, and ti : Rp 7→ Rp be a

tolerance function for i = 1, 2. If S1 ∈ Ct1(Y1, C1) and S2 ∈ Ct2(Y2, C2) then N(N(S1, C1) +

N(S2, C2), C1 + C2) ∈ At(Y1 + Y2, C1 + C2), where t : Rp 7→ Rp is defined as t(y1 + y2) =

t1(y1) + t2(y2) for y1 ∈ Y1 and y2 ∈ Y2.

Proof. Since C1, C2 are convex cones, by Corollaries 6 and 5, N(Si, Ci) ∈ Cti(Yi, Ci) for

i = 1, 2. Thus, by Proposition 2.3.13, N(S1, C1) +N(S2, C2) ∈ Ct(Y1 + Y1, C1 +C2), where

t(y1 + y2) = t1(y1) + t2(y2) for y1 ∈ Y1 and y2 ∈ Y2. If C1 and C2 are convex cones, then

C1+C2 is a convex cone. Thus, again by Corollary 6, we have N(N(S1, C1)+N(S2, C2), C1+

C2) ∈ At(Y1 + Y2, C1 + C2).

Corollaries 8 and 9 specialize Propositions 2.3.12 and 2.3.13 for the approximation

sets. Proposition 2.3.14 is applied to approximation sets in a different way, which is reflected

in Corollaries 10 and 11.

Corollary 10. Let Y1, Y2 be two sets in Rp, C1, C2 be two cones in Rp such that C1 and

C1 ∪ C2 are convex. Let t1, t2 : Rp 7→ Rp be two tolerance functions such that t1(y1) 5C1

t2(y1) for all y1 ∈ Y1. If S1 ∈ Ct1(Y1, C1) and S2 ∈ Ct2(Y2, C2) then N(S1 ∪ S2, C1 ∪ C2) ∈

At(Y1 ∪ Y2, C1 ∪ C2).

Proof. By Proposition 2.3.14, we have S1 ∪ S2 ∈ Ct2(Y1 ∪ Y2, C1 ∪ C2). Since C1 ∪ C2 is

convex, by Corollary 6, we have the desired result.

Corollary 11. Let Y1, Y2 be two sets in Rp, C be a cone in Rp, and t : Rp 7→ Rp be a

tolerance function. If S1 ∈ Ct(Y1, C) and S2 ∈ Ct(Y2, C) then N(S1∪S2, C) ∈ At(Y1∩Y2, C).

52

Proof. By Proposition 2.3.14, we have S1 ∪ S2 ∈ Ct(Y1 ∪ Y2, C). Since Y1 ∩ Y2 ⊆ Y1 ∪ Y2,

by Proposition 2.3.7, we have that S1 ∪ S2 ∈ Ct(Y1 ∩ Y2, C). Since C is a convex cone, by

Corollary 6, we obtain the desired result.

2.5 Examples and application

We have investigated the properties of covers and approximations of solution sets

which are defined based on the concept of a tolerance function. These properties are applica-

ble to the various approximating sets produced by the algorithms available in the literature.

These algorithm yield covers and approximations, as defined in this paper or other approx-

imation sets. Although the tolerance function implied by those algorithms is not formally

recognized by the authors, it is available. Information about some of those research efforts

is contained in Table 2.1. The first column on the left of this table gives the type of the

MOP for which an approximation algorithm has been designed, the second column displays

the number of objective functions of this MOP, and the third column shows the tolerance

function implied by the algorithm. The most right column contains the corresponding ref-

erence.

In this section we also discuss further applicability of our results. Consider complex

decision making problems that are modeled as collections of MOPs. Since the calculations

of their nondominated sets is even more challenging due to interactions between component

MOPs, the overall complex problem has to be decomposed into the component MOPs

that are more easily solved ([38], [39]). However, as explained in Section 2.1, even for a

decomposed problem, it is often hard to obtain exact solutions to the subproblems and so

the solution sets have to be approximated separately before the overall approximation can

be constructed. The goal is then to approximate the nondominated set of the overall system

by approximating the nondominated sets of the subproblems.

Let the Pareto set of the all-in-one (AiO) problem be denoted by N(Y,Rp=), where

53

problem p t : Rp 7→ Rp reference

web sources access 2 (1 + ε)y Papadimitriou and Yannakakis (2000)

shortest path 2 2y Diakonikolas and Yannakakis (2001)
spanning tree 2 2y
knapsack 2 2y
scheduling 2 2y

knapsack ≥ 2 (1 + ε)y Erlebach et al. (2002)
≥ 2 (1 + ε)y Bazgan et al. (2009)

traveling salesman 2 1.5y Angel et al. (2004)

traveling salesman 2 1.5y Angel et al. (2005)

≥ 3 2p
(p+1)y

traveling salesman ≥ 2 min{1 + γ, α+ ε)}y, Manthey and Ram (2009)

for α = 2γ2

(2γ2−2γ+1)

MOP ≥ 2 y + ε Legriel et al. (2010)
MOP ≥ 2 y + ε Laumanns and Zenklusen (2011)
MOCO 2 (1 + ε)y Filippi and Stevanato (2013)

Table 2.1: Examples of tolerance functions

the set of outcomes Y ⊆ Rp, Y = f(X), is the image the set of feasible decisions X ⊆ Rn

with the vector-valued objective function f : Rn → Rp. Depending upon the properties of

the feasible set X and the function f , three types of decomposition of the AiO problem are

presented which lead to three different calculations of N(Y,Rp=).

1. Let the feasible setX be partitioned into two subsets, X = X1×X2, Xi ⊆ Rni , i = 1, 2,

and n1 + n2 = n.

(a) Assume that the function f is composed of functions fi : Rni → Rpi , f(x) =

(f1(x1), f2(x2)), where p1+p2 = p. Then Y = Y1×Y2, where Yi = fi(Xi), i = 1, 2.

Applying Proposition 3.9 of [38], we obtain

N(Y1 × Y2,Rp1= ×R
p2
=) = N(Y1,Rp1=)×N(Y2,Rp2=).

54

Given a cover or an approximation set for N(Yi,Rpi=), i = 1, 2, and using Proposi-

tion 2.3.12 or Corollary 8, a cover or an approximation set ofN(Y1×Y2,Rp1= ×R
p2
=)

for the AiO problem can be constructed.

(b) Under the assumption that the function f is additively separable, (f(x) =

f1(x1) + f2(x2), where fi : Rni → Rp, i = 1, 2), we have Y = Y1 + Y2, where

Yi = fi(Xi), i = 1, 2. Applying Proposition 3.3 of [38], we obtain

N(Y1 + Y2,Rp=) = N(N(Y1,Rp=) +N(Y2,Rp=),Rp=).

Given a cover or an approximation set of N(Yi,Rp=), i = 1, 2, by applying Propo-

sition 2.3.13 or Corollary 9, a cover or an approximation set of N(Y1 + Y2,Rp=)

for the AiO problem can be constructed. Note that additive separability is a

property commonly found in engineering applications ([42]).

2. Let the feasible set X be partitioned into two subsets, X = X1∪X2, Xi ⊆ Rn, i = 1, 2,

and the function f be additively separable. Then Y = Y1 ∪Y2, where Yi = fi(Xi), i =

1, 2. Extending Proposition 3.2 of [38], we obtain the following result

N
(
Y1 ∪ Y2,Rp=

)
= N

(
N(Y1,Rp=) ∪N(Y2,Rp=),Rp=

)
.

Given a cover or an approximation set for (N(Yi,Rp=),Rp=), i = 1, 2 and applying

Proposition 2.3.14 or Corollary 10, a cover or an approximation set of N
(
Y1∪Y2,Rp=

)
for the AiO problem can be constructed. For example, this case is applicable to mixed-

integer MOPs whose feasible region can be decomposed into the union of subsets by

fixing the integer variables to their feasible values ([9]).

The results presented above can obviously be generalized for more than two subproblems

and for general convex cones C in place of the Pareto cone Rp=.

55

2.6 t-dominance and conclusion

The proposed tolerance function leads to a definition of tolerance-based dominance

or t-dominance for MOPs. In this section we investigate this concept and its properties.

Let Y be a set inRP , y ∈ Y and d ∈ RP . According to Definition 2.2.2, if y 5C y+d,

then the vector d is called a domination direction at y. Now let t : Rp 7→ Rp be a tolerance

function. We can define t-dominance for y ∈ Y in two different ways: (i) y 5C t(y + d) or

(ii) t(y) 5C y+d. Consider case (i). Since y dominates y+d, and by Definition 2.2.5, y+d

dominates t(y + d), then case (i) holds for every y ∈ Y and is trivial.

Consider case (ii). Again, by Definition 2.2.5, y 5C t(y) and hence y 5C t(y) 5C

y + d, which means the tolerance function allows the user to relax y but maintain its

dominance over y + d. We therefore define t-dominance as follows:

Definition 2.6.1. Let Y be a set in Rp, C be a cone in Rp, and t : Rp 7→ Rp be a tolerance

function. A point y′ ∈ Y is called a t-dominated point of the set Y with respect to the cone

C and the tolerance function t if there exists a point y ∈ Y such that t(y) 5C y
′.

Definition 2.6.2. Let Y be a set in Rp, C be a cone in Rp, and t : Rp 7→ Rp be a tolerance

function.

1. A vector d ∈ Rp is said to be a domination direction of y ∈ Y with respect to the cone

C and the tolerance function t if t(y) 5C y + d.

2. The set of all domination directions of y ∈ Y with respect to C and t is defined as

Dt(y) = {d ∈ Rp : t(y) 5C y + d}.

3. The set Dt = {Dt(y) : y ∈ Y } is called the domination set for Y .

In this section we assume that Dt(y) is a nonempty set for all y ∈ Y . Following [63],

we define a translated cone and show that the set Dt(y) is such a cone.

Definition 2.6.3. Let C be a cone in Rp and v be a vector in Rp. A cone with vertex v is

defined as a translation v + C of the cone C.

56

Corollary 12. Let C be a cone in Rp=. The set Dt(y) = {d ∈ Rp : t(y) 5C y + d} is a

translated cone.

Proof. Let d ∈ Dt(y) and show that λd ∈ Dt(y) for λ > 0. By Definition 2.6.2, t(y) 5C y+d

or equivalently y+ d− t(y) ∈ C. Thus d ∈ t(y)− y+C, where t(y)− y+C is a translation

of the cone C, and it is a cone with vertex t(y) − y. Therefore, λd is in the cone C with

vertex t(y)− y. This completes the proof.

Remark 2.6.1. Note that the representation of Dt(y) for y ∈ Y in Definition 2.6.2 can be

written as Dt(y) = t(y)− y + C. If C is a convex pointed cone, then Dt(y) is a translated

convex, pointed cone with vertex at t(y)− y.

Two tolerance functions given in Example 2.6.1 are commonly used in the literature.

Example 2.6.1. Let Y be a set in Rp and C be a convex cone in Rp.

1. Let t(y) = (1 + ε)y, for ε ∈ R : εy ∈ C for all y ∈ Y . Then Dt(y) = εy + C.

2. Let t(y) = y + ε, for ε ∈ C. Then Dt(y) = ε+ C.

Given two tolerance functions t1, t2, two types of conditions guarantee that Dt1 ⊆

Dt2 .

Proposition 2.6.1. Let Y be a set in Rp and t1, t2 : Rp 7→ Rp be two tolerance functions.

If Dt1(y) ⊆ Dt2(y) for all y ∈ Y then Dt1 ⊆ Dt2.

Proof. Let y ∈ Y and Dt1(y) ∈ Dt1 where Dt1(y) = {d ∈ Rp : t1(y) 5C y + d}. Let

d ∈ Dt1(y). Since Dt1(y) ⊆ Dt2(y) for all y ∈ Y , we have d ∈ Dt2(y) = {d ∈ Rp : t2(y) 5C

y+d}, i.e., if d is a domination direction of y with respect to t1, then it is also a domination

direction of y with respect to t2. Since y is arbitrary, the property holds for all y ∈ Y and

the proof is complete.

Proposition 2.6.2. Let Y be a set in Rp, C be a convex cone in Rp, and t1, t2 : Rp 7→ Rp

be two tolerance functions such that t2(y) 5C t1(y) for all y ∈ Y . Then Dt1 ⊆ Dt2.

57

Proof. Since t2(y) 5C t1(y) we have t1(y) − t2(y) ∈ C, or equivalently, t1(y) ∈ C + t2(y).

It follows that t1(y) + C ⊆ C + C + t2(y) ⊆ C + t2(y) since C is a convex cone. Now we

get t1(y) − y + C ⊆ t2(y) − y + C. By Remark 2.6.1, Dti(y) = ti(y) − y + C for i = 1, 2

and hence Dt1(y) ⊆ Dt2(y). Since y is arbitrary we have Dt1(y) ⊆ Dt2(y) for all y ∈ Y and

hence, by Proposition 2.6.1, we obtain Dt1 ⊆ Dt2 .

We now define t-nondominated points with respect to a cone C.

Definition 2.6.4. Let Y be a set in Rp, C be a convex cone in Rp, and t : Rp 7→ Rp be

a tolerance function. A point y′ ∈ Y is called a t-nondominated point of the set Y with

respect to the cone C and the tolerance function t, if there does not exist a point y ∈ Y such

that t(y) ≤C y′. The set of all t-nondominated points of Y with respect to the cone C and

the tolerance function t is denoted by N(Y,C, t).

If t(y) = y+ ε, ε ∈ C \ {0}, the concept of t-nondominated points reduces to the concept of

ε-minimal points in [28].

We obtain the following obvious property.

Corollary 13. N(Y,C) ⊆ N(Y,C, t) for every tolerance function t.

Example 2.6.2. Let Y and t be defined as in Example 2.2.4.

1. Let the cone C be defined as in part 1. The points y1, y2, y4, y5 ∈ N(Y,C) and, by

Corollary 13, these points are in N(Y,C, t). Additionally, there does not exist y ∈ Y

such that t(y) ≤C y3. Thus y3 ∈ N(Y,C, t). However, y6 /∈ N(Y,C, t) because

t(y4) ≤C y6. Therefore N(Y,C, t) = {y1, y2, y3, y4, y5}.

2. Let the cone C be defined as in part 2. The points y1, y2, y4 ∈ N(Y,R2
=) and again,

by Corollary 13, these points are in N(Y,R2
=, t). Also note that y3, y5 ∈ N(Y,R2

=, t)

and y6 /∈ N(Y,R2
=, t) because t(y4) ≤R2

=
y6. Thus N(Y,R2

=, t) = {y1, y2, y3, y4, y5}.

Proposition 2.6.3. Let Y be a set in Rp, C be a convex cone in Rp and t1, t2 : Rp 7→ Rp

be two tolerance functions such that t1(y) 5C t2(y) for all y ∈ Y . Then N(Y,C, t1) ⊆

N(Y,C, t2).

58

Proof. Since t1(y) 5C t2(y), we have t2(y) − t1(y) ∈ C, or equivalently, t2(y) ∈ t1(y) + C.

This implies that t2(y) + C ⊆ t1(y) + C + C+ ⊆ t1(y) + C since C is a convex cone. Since

y is arbitrary, for all y ∈ Y we obtain t2(y) + C ⊆ t1(y) + C.

Let y′ ∈ N(Y,C, t1). By Definition 2.6.4, there does not exist y ∈ Y such that

t1(y) ≤C y′, or equivalently, y′ ∈ t1(y) + C. This implies that there does not exist y ∈ Y

such that y′ ∈ t2(y) + C. Thus y′ ∈ N(Y,C, t2). Since y′ is an arbitrary element of Y , we

have N(Y,C, t1) ⊆ N(Y,C, t2).

The final result of this section refers to the special case of Y being a subset of

Zp> and the tolerance function t(y) = (1 + ε)y. Proposition 2.6.4 reveals that the set of all

t-nondominated points reduces to the Pareto set for a certain magnitude of the ε. The result

is significant for discrete or combinatorial MOPs since this tolerance function is typically

used for that class of problems.

Let ||y||p denote the p norm of y ∈ Y for p ∈ [1,∞).

Proposition 2.6.4. Let Y be a set in Zp> and t : Rp 7→ Rp be a tolerance function such

that t(y) = (1 + ε)y for y ∈ Y , where 0 ≤ ε ≤ 1
max
y∈Y
{||y||p} . Then N(Y,Rp=, t) = N(Y,Rp=).

Proof. By Corollary 13, N(Y,Rp=) ⊆ N(Y,Rp=, t). We show that N(Y,Rp=, t) ⊆ N(Y,Rp=).

Let y′ ∈ N(Y,Rp=, t). By Definition 2.6.4, there does not exist y ∈ Y such that t(y) ≤Rp
=
y′,

or equivalently, there does not exist d ∈ Rp=, d 6= 0, such that y′ = t(y) + d. That is,

there does not exist y ∈ Y and d ∈ Rp=, d 6= 0 such that y′ = y + εy + d. (2.3)

If ε = 0, (2.3) implies that y′ ∈ N(Y,Rp=).

Assume now 0 < ε ≤ 1
max{||y||p} for y ∈ Y . Then for every y ∈ Y we have 0 < εyi < 1

for i = 1, 2, . . . , p. Thus, yi < yi + εyi < yi + 1 for i = 1, 2 . . . , p, or, equivalently, for any

y ∈ Y

y < y + εy < y + (1, 1, . . . , 1)T . (2.4)

Since Y ⊂ Zp>, by (2.4), there does not exist ŷ ∈ Y such that ŷ = y + εy. Then by (2.3),

59

there does not exist ŷ ∈ Y and d ∈ Rp=, d 6= 0, such that y′ = ŷ + d. That is, by Definition

2.2.3, y′ ∈ N(Y,Rp=), which proves the result.

Example 2.6.3. Let Y be the set as defined in Example 2.2.4. We have N(Y,R2
=) =

{y1, y2, y4}. Let t : R2 7→ R2 such that t(y) = (1 + ε)y where ε = 0.1 < 1
max
y∈Y
{||y||2} = 1√

92+32
.

Note that N(Y,R2
=, t) = {y1, y2, y4} = N(Y,R2

=).

Remark 2.6.2. The upper bound of the ε given in Proposition 2.6.4 can be found as the

inverse of the optimal value of the single objective optimization problem max
y∈Y

||y||p whose

complexity depends on the norm selected. Naturally, the `1 norm yields a problem of lowest

complexity. Furthermore, if the `∞-norm is used, then Proposition 2.6.4 holds for 0 ≤ ε <

1
max{||y||`∞}

.

In this paper we have proposed a unified approach to representing solution sets in

multiobjective optimization. We have defined covers and approximations, and collected

and proved their properties. The approach is tolerance-based and is relevant to a number

of approximating algorithms in the literature. The introduced tolerance function leads to

t-dominance which generalizes the concept of ε-nondominated points.

Further research directions are motivated by this paper. Based on the results of

this section, algorithms for computing covers or approximation sets for complex multiob-

jective decision making problems may be designed. Additional properties of covers and

approximations can also be studied in the context of the specific MOP they refer to.

60

Chapter 3

Pareto Set Approximation for the

Multiobjective Set Covering

Problem

3.1 Introduction

Multiobjective combinatorial optimization (MOCO) problems involve optimizing

more than one objective function on a finite set of feasible solutions. Some well-known

MOCO problems include the traveling salesman problem (TSP), the set covering problem

(SCP), the minimum spanning tree problem (MSTP), and the knapsack problem (KP).

During the past decades the interest in solving MOCO problems has been growing and sur-

veys summarizing those efforts are given by Ehrgott ([24]), Ehrgott and Gandibleux ([26]),

and Ulungu and Teghem ([100]). Because there may not exist a single optimal solution to

a MOCO problem as the objective functions are in conflict with each other, a solution set

is defined based on the Pareto concept of optimality. Solving a MOCO problem is then

understood as computing the elements in the Pareto set. In this paper attention is given

to the multiobjective set covering problem (MOSCP), a challenging MOCO problem that

has not been much studied.

61

The MOSCP has the same structure as the well-known single objective set covering

problem (SOSCP). An instance of the SCP consists of a finite set of the items and a family

of subsets of the items so that every item belongs to at least one of the subsets in the family.

When we consider the SOSCP, each set in the family has a positive scalar cost. The goal

of the SOSCP is to determine a subset of sets, among the sets in the family, so that all

items are included by at least one set in the subset and the total costs of the selected sets

is minimized. When there are p scalar costs for each set in the family, the SCP is called the

MOSCP.

The SCP is in the category of NP problems and it is shown to be NP-complete

by Richard ([89]). Therefore, the SOSCP and MOSCP are also NP-hard problems. For

NP-hard problems, we are typically interested in finding a near optimal solution, that is, a

solution that yields the objective value that is worse than the optimal objective value by a

factor of ρ > 0. An algorithm providing a near optimal solution with a factor ρ is called

a ρ-approximation algorithm. Chvátal ([15]) and Vazirani ([102]) propose polynomial-time

approximation algorithms for the SOSCP. Chvátal’s ([15]) algorithm has the factor ρ being

a function of the cardinality of the largest subset while Vazirani’s ([102]) algorithm has the

factor equal to logm where m is the number of items. The SOSCP is a well-studied problem

and different methods have been proposed in the literature to address it ([13], [70]).

The MOSCP has not received as much attention as the SOSCP and only a few stud-

ies are found in the literature. Some real-world application problems such as the emergency

medical service problem ([20]), the reserve site selection problem ([68]) are modelled as the

bi-objective SCP (BOSCP). Liu ([61]) proposes a heuristic algorithm generating only one

solution of the MOSCP. Saxena and Arora ([96]) formulate the SCP with quadratic objec-

tive functions and develop a heuristic enumeration technique for solving the MOSCP. The

authors convert the quadratic objective functions to linear objective functions by assuming

that all objective functions are differentiable and use the Gomory cut technique to get the

efficient solutions. Jaszkiewicz ([53], [52]) provides a comparative study of multiobjective

metaheuristics for the BOSCP. In particular, nine well-known multiobjective metaheuris-

62

tics are compared with a new algorithm called the Pareto memetic algorithm (PMA). The

performance of the multiobjective metaheuristics for the BOSCP depends on the problem

structure. Prins and Prodhon ([85]) propose a heuristic-based two-phase method to find

the Pareto set of the BOSCP. In the first phase, the scalarized SCP is solved with a heuris-

tic to generate a subset of the Pareto set called the supported Pareto set. In the second

phase, a heuristic algorithm searches for the Pareto points located between two supported

Pareto points. This heuristic optimizes one objective function at a time and requires that

this SOSCP be reformulated by Lagrangian relaxation. Lust et al. ([64]) adapt a very

large-scale neighborhood search ([3]) for the MOSCP and compare average running times

of the adaptation with the PMA and the TPM for the BOSCP. The performance of their

algorithm also depends on the problem structure.

All the studies reviewed above propose heuristic approaches to obtaining the Pareto

set of the MOSCP. As the MOSCP is an NP-hard problem, from the computational point

of view, approximating the Pareto set is the right direction of research. However, neither

the authors quoted above claim that their methods approximate the entire Pareto set nor

they provide performance guarantee for their algorithms. Contrary to those approaches,

the objective of this paper is to propose algorithms for approximating the Pareto set of the

MOSCP and provide the information about the approximation that the existing algorithms

lack.

To accomplish this, we follow the definition of Pareto set approximation by Pa-

padimitriou and Yannakakis in 2000 ([81]), who recognize that the Pareto set of a MOCO

problem is typically exponential in its size and therefore, finding all Pareto points is compu-

tationally infeasible. Even for two objective functions, determining whether a point belongs

to the Pareto set is an NP problem. They propose an approximation of the Pareto set

which they call the (1 + ε)-approximate Pareto set and define the approximation as a set

of solutions such that for every Pareto point there exists another point within a factor of

(1 + ε) where ε > 0. This definition has already been considered for other MOCO NP-hard

problems such as the TSP ([4]) and the KP ([30]), but not yet for the MOSCP.

63

This paper proposes two methods to approximate the Pareto set of the MOSCP.

The first algorithm is an application of the greedy algorithm for the SOSCP by Vazirani

([102]) to the weighted-sum formulation of the MOSCP. The second algorithm, although

also motivated by the greedy algorithm, solves the MOSCP in the vector form without

scalarization. Both algorithms appear to be first approaches in the literature to approxi-

mate the Pareto set of the MOSCP with known factors. The first algorithm obtains a set

of feasible solutions of the MOSCP approximating the supported Pareto set of the MOSCP

while the second algorithm obtains a set of feasible solutions of the MOSCP approximating

the weak Pareto set of the MOSCP, a feature not available for the existing methods.

The paper is organized as follows. Section 3.2 provides the formulation of the

MOSCP, terminology, and discusses two general approaches (exact and approximate) to

computing the Pareto points of the MOSCP. In Section 3.3, we present the two algorithms

and derive their approximation factors. In Section 3.4, we show computational results on

the BOSCPs and propose experimental measures of the quality of the computed approxima-

tions. We then compare the experimental and theoretical results. The paper is concluded

in Section 3.5.

3.2 Problem formulation

In the MOSCP, there is a set of m items, E = {e1, e2, . . . , em} with the index set

I = {i : i = 1, 2, . . . ,m}, and a set of n subsets of E, S = {S1, S2, . . . , Sn} with the index

set of J = {j : j = 1, 2, . . . , n}. The items are grouped into subsets of E and an item

ei in E is covered by a set Sj provided ei in Sj . An instance of the SCP is given by the

sets E and S. The binary coefficient aij is equal to 1 if an item ei is covered by a set Sj

and otherwise aij is equal to 0 for i ∈ I and j ∈ J . A cover is defined as a sub-collection

{Sj :  ∈ J∗ ⊆ J} which is a subset of S such that all items of E are covered, where J∗

is the index set of selected sets for the sub-collection. Let x ∈ Rn be the decision variable

defined as follows,

64

xj =

 1 if Sj is selected for a cover

0 otherwise,
for j = 1, 2, . . . , n.

As mentioned in the Introduction, in the SCP each item must be covered by at least one

set, i.e., a cover is sought to cover all items. Thus the feasible region X is defined as

X = {x ∈ Rn :
∑
j∈J

aijxj ≥ 1 for i = 1, 2, . . . ,m and xj ∈ {0, 1} for j = 1, 2, . . . , n}.

Every feasible vector x ∈ X is associated with a cover and vice versa.

The MOSCP has p conflicting objectives and let cqj > 0 be the cost of a set Sj with

respect to objective q for q = 1, 2, . . . , p. The cost of a cover with respect to objective q is

given by
∑
j∈J∗

cqj . In the MOSCP the goal is to find a cover such that the costs with respect

to all objective functions are minimized.

The MOSCP can be presented as follows:

min z(x) =

[
z1(x) =

n∑
j=1

c1
jxj , z2(x) =

n∑
j=1

c2
jxj , . . . , zp(x) =

n∑
j=1

cpjxj

]
subject to x ∈ X.

(3.1)

3.2.1 Preliminaries and basic definitions

Let Rp be a finite dimensional Euclidean vector space. We first introduce some basic

notations. For y1, y2 ∈ Rp, to define an ordering relation on Rp, the following notation will

be used.

1. y1 5 y2 if y1
k ≤ y2

k for all k = 1, 2, . . . , p

2. y1 ≤ y2 if y1
k ≤ y2

k for all k = 1, 2, . . . , p and y1 6= y2

3. y1 < y2 if y1
k < y2

k for all k = 1, 2, . . . , p

In particular, using componentwise orders, the nonzero orthant of Rp is defined as

Rp≥ = {y ∈ Rp : y ≥ 0} and positive orthant of Rp is defined as Rp> = {y ∈ Rp : y > 0}.

Solving the MOSCP is understood as finding its efficient solutions and Pareto outcomes.

65

Definition 3.2.1. A point x∗ ∈ X is called

1. a weakly efficient solution of the MOSCP if there does not exist x ∈ X such that

z(x) < z(x∗).

2. an efficient solution of the MOSCP if there does not exist x ∈ X such that z(x) ≤

z(x∗).

The set of all efficient solutions and the set of all weakly efficient solutions are denoted by

XE and XwE respectively. The set of all attainable outcomes, Y , for feasible solutions,

x ∈ X, is obtained by evaluating the p objective functions. That is Y := z(X) ⊂ Rp. The

image z(x) ∈ Y of a (weakly) efficient solution is called a (weak) Pareto outcome. The

image of (XwE) XE is denoted by (Pw(Y)) P (Y) and is referred to as the (weak) Pareto

set. Given the definition of an (weakly) efficient solution of the MOSCP, we define a (weak)

Pareto cover for the MOSCP.

Definition 3.2.2. A (weak) Pareto cover is a cover that is associated with an (weakly)

efficient solution of the MOSCP.

3.2.2 Finding efficient solutions of the MOSCP

The approximation algorithms we propose in this paper are developed based on

two exact methods for finding the efficient solutions of multiobjecive optimization problems

(MOOPs). These methods are the weighted-sum method and the weighted max-ordering

method. In this section, we first briefly review these two methods and include the results

needed when proving the accuracy of the algorithms. We then present the concepts of

approximation as another approach to solving MOOPs.

3.2.2.1 Exact methods

The weighted-sum method is a well-known scalarization method used for MOOPs

to find supported efficient solutions. The idea of this method is to convert the MOOP into

66

a singleobjective optimization problem (SOOP) using a convex combination of objectives.

In this method each criterion q is assigned a weighting coefficient λq ≥ 0 and the SOOP

is solved over the same feasible region. The weighted-sum problem associated with the

MOSCP can be written as follows:

min

p∑
q=1

λqzq(x)

subject to x ∈ X

(3.2)

where λ = (λ1, λ2, . . . , λp) ∈ Rp≥.

Definition 3.2.3. Let x ∈ XE . If there is some λ ∈ Rp> such that x ∈ XE is an optimal

solution of problem (3.2), then x is called a supported efficient solution and the image

z(x) ∈ Y is called a supported Pareto outcome of the MOSCP.

The set of all supported efficient solutions of the MOSCP is denoted by XsE . The

image of XsE is denoted by Ps(Y) and is referred to as the supported Pareto set.

Definition 3.2.4. A supported Pareto cover is a cover that is associated with a supported

efficient solution of the MOSCP.

The following result is readily available for the MOSCP ([29]).

Proposition 3.2.1. Let x∗ ∈ XE. Then x∗ ∈ XsE of the MOSCP if and only if there exists

λ ∈ Rp> such that x∗ is an optimal solution of problem (3.2).

The underlying concept of the weighted max-ordering method is to minimize the highest

(worst) objective function value, zq. The weighted max-ordering problem associated with

the MOSCP can be written as follows:

min max
q=1,2,...,p

λqzq(x)

subject to x ∈ X
(3.3)

where λ = (λ1, λ2, . . . , λp) ∈ Rp≥.

The following results is useful for the MOSCP ([29]).

67

Proposition 3.2.2. Let x∗ ∈ XE. Then x∗ ∈ XwE of the MOSCP if and only if there

exists λ ∈ Rp> such that x∗ is an optimal solution of problem (3.3).

These two methods imply that there are different ways of comparing vectors. The com-

parison of weighted aggregation of vectors can be used to define a preference relation on

Rp as given in Definition 3.2.5. We write �
ws

to denote the preference relation with respect

to the weighted aggregation of vectors. This relation is called the weighted-sum preference

relation.

Definition 3.2.5. Let y1, y2 ∈ Rp and λ ∈ Rp≥. Vector y1 is preferred to vector y2 with

respect to the weighted-sum preference relation, denoted as y1 �
ws
y2, if and only if

p∑
q=1

λqy
1
q ≤

p∑
q=1

λqy
2
q .

The ordering concept of problem (3.3), can also be used to compare vectors. In this

case, we compare maximum components of vectors to define a preference relation on Rp as

given in Definition 3.2.6. We write �
mo

to denote the resulting preference relation and refer

to it as the max-ordering preference relation.

Definition 3.2.6. Let y1, y2 ∈ Rp and λ ∈ Rp≥. Vector y1 is preferred to vector y2

with respect to the max-ordering preference relation, denoted as y1 �
mo

y2, if and only if

max
q=1,2,...,p

λqy
1
q ≤ max

q=1,2,...,p
λqy

2
q .

The preference relations given in Definition 3.2.5 and Definition 3.2.6 are used in

Section 3 for the development of the algorithms.

3.2.2.2 Approximation

As mentioned in the Introduction, approximating the Pareto set with a performance

guarantee is a motivating challenge. Following the definition of Papadimitriou and Yan-

nakakis in 2000 ([81]), we define the (1 + ε)-approximate Pareto set for the MOSCP.

68

Definition 3.2.7. Let ε ∈ R be a positive scalar. The (1 + ε)-approximate Pareto set, P ε,

of the MOSCP is a set of outcomes in Y such that for every y∗ ∈ P (Y), there exists an

outcome ȳ in P ε such that ȳ 5 (1 + ε)y∗.

When the weak Pareto set, Pw(Y) , is approximated, P εw is called (1 + ε)-approximate

weak Pareto set. Definition 3.2.7 can be modified when the approximation of the supported

Pareto set, Ps(Y), is of interest.

Definition 3.2.8. Let ε ∈ R be a positive scalar. The (1+ε)-approximate supported Pareto

set, P εs , of the MOSCP is a set of outcomes in Y such that for every y∗ ∈ Ps(Y), there exist

an outcome ȳ in P εs and a weight λ ∈ Rp≥ such that

p∑
q=1

λqȳq ≤ (1 + ε)

p∑
q=1

λqy
∗
q .

3.3 Approximating the Pareto set of the MOSCP

In this section, we present two deterministic polynomial-time algorithms to approxi-

mate the Pareto set of the MOSCP. The first algorithm computes a (1+ε)-approximate sup-

ported Pareto set of the MOSCP while the other algorithm computes a (1+ ε)-approximate

weak Pareto set of the MOSCP.

3.3.1 Scalar and vector cost effectiveness

We first present the concept of the cost effectiveness of a set. The key idea of our

approach is based on the following observation: when selecting a set to be in a minimum

cost cover, we need to consider not only the cost of the set but also the coverage of the set,

that is, the items this set covers. For example, let S1 = {e1, e2, e3, e4} and S2 = {e5, e6}

be two sets with c1
1 = c1

2 = 1. Intuitively, it is clear that selecting S1 is more beneficial

than selecting S2 as it contains more items even though both sets have the same costs.

Therefore, when we select a minimum cost cover, it seems reasonable to choose a set having

a small cost and a large coverage. Consequently, in the construction of the algorithms,

when selecting a set we consider these two aspects: the minimum cost and the maximum

coverage. This is equivalent to selecting a set having a small ratio of cost to coverage. The

69

ratio (cost/coverage) is called the cost effectiveness of the set and is denoted by αj for a

set Sj . We propose two concepts for defining cost effectiveness. The first concept is based

on the weighted-sum method and defines the cost effectiveness as a scalar while the second

concept is based on the max-ordering method and defines the cost effectiveness as a vector.

To keep derivations simple, we use the same notation α to denote cost effectiveness based

on both approaches; however, it will be clear from the context whether we use the scalar or

vector cost effectiveness.

Based on the weighted-sum method, the scalar cost effectiveness of a set Sj is defined

as follows:

αj =

p∑
q=1

λqc
q
j/|Sj |, (3.4)

where |Sj | is the cardinality of the set Sj and λ ∈ Rp≥.

Then to select a set to include in a cover, we use Definition 3.3.1.

Definition 3.3.1. A set Sj1 is preferred to a set Sj2, j1 6= j2, with respect to the weighted-

sum preference relation if αj1 �
ws
αj2 .

For example, assume that the sets S1 and S2 have two costs. Let c1
1 = 1, c2

1 = 4 and let

c1
2 = 1, c2

2 = 1. Let λ = 1/3. The cost effectiveness of S1 is α1 = 9/12 and that of S2 is

α2 = 4/6. Thus α2 is preferred to α1 by Definition 3.3.1. Therefore selecting S2 is better

than selecting S1.

Based on the weighted max-ordering method, the cost effectiveness of a set is a

vector of cost effectiveness ratios, where each ratio is the cost effectiveness with respect to

one objective. The vector cost effectiveness of a set Sj is defined as follows:

αj =

[
λ1c

1
j/|Sj |, λ2c

2
j/|Sj |, . . . , λpc

p
j/|Sj |

]T
, (3.5)

where |Sj | is the cardinality of the set Sj and λ ∈ Rp≥.

We use Definition 3.3.2 to select a set to include in a cover with respect to the

max-ordering preference relation.

70

Definition 3.3.2. A set Sj1 is preferred to a set Sj2, j1 6= j2, with respect to the max-

ordering preference relation if αj1 �
mo

αj2 .

Considering the same example in the vector form, the cost effectiveness vector of S1 is

α1 = [1/12, 8/12]T and that of S2 is α2 = [1/6, 2/6]T . In this case, we have that α2 is

preferred to α1 by Definition 3.3.2. Thus selecting S2 is better than selecting S1.

3.3.2 Algorithms

The concepts of scalar and vector cost effectiveness lead to the development two ap-

proximation algorithms. A generic algorithm using either of the two concepts and returning

a cover is first presented. Two procedures are used in this generic algorithm. Procedure

1 is constructed based on the weighted-sum approach, and it returns the preferred set Sj∗

and the scalar cost effectiveness αj∗ according to Definition 3.3.1, while Procedure 2 is

constructed based on the max-ordering approach, and it returns the preferred set Sj∗ and

the vector cost effectiveness αj∗ according to Definition 3.3.2. The pseudo-codes of Generic

Algorithm and two procedures are given in Algorithm 1, Procedure 1 and Procedure 2,

respectively. The generic algorithm with Procedure 1 is called Algorithm 1 and that with

Procedure 2 is called Algorithm 2. In the generic algorithm, the symbols Ē, J̄ and C denote

the set of currently covered items in E, the index set of selected sets for covering items in

E, and a cover, respectively. We assign αj∗ to the items covered by the set Sj∗ as their

prices and refer to αj∗ as the price of an item covered by Sj∗ . We let p(ei) denote the price

of item ei. Based on Definitions 3.3.1 and 3.3.2, p(ei) may be a scalar or vector price.

3.3.2.1 Performance of Algorithm 1

The structure of Algorithm 1 is similar to the greedy algorithm ([102]) for the

SOSCP. However; we have adapted it to approximate the set of supported Pareto outcomes

of the MOSCP according to Definition 3.2.8. In other words, the algorithm approximately

solves a collection of SOSCPs obtained from scalarizing the MOSCP with weights λ ∈ Rp>.

The outline of Algorithm 1 is the following: the algorithm starts with the empty sets Ē, J̄

71

Algorithm 1 Generic Algorithm for the MOSCP

1: Input: E, S, cq for q = 1, 2, . . . , p, λ ∈ Rp
> where

p∑
q=1

λq = 1.

2: Initialization: E = ∅, J = ∅ and C = ∅.
3: while E 6= E do
4: Call Procedure 1 or 2 to obtain αj∗ and Sj∗ .
5: for i = 1→ n do
6: if ei ∈ Sj∗ ∩ (E \ E) then

7: p(ei) = αj∗ , J = J ∪ j∗, J ⊆ J
8: end if
9: end for

10: end while

11: Return: Cover, C = {Sj : j ∈ J}.

Pseudo-code of the generic algorithm

and the empty set as the current cover, that is, initially C = ∅. In the main step, Procedure

1 is called to calculate the scalar cost effectiveness values, αjs, for all sets based on the

scalarized costs and uncovered items, and to determine a set to be added to the current

cover. Once the best set, Sj∗ , has been selected, the index j∗ is added to the index set, J̄ ,

and all items in Sj∗ are added to Ē. For each item ei covered in this step, the price is set as

p(ei) = αj∗ . Algorithm 1 is run until all items in E have been covered. Upon termination,

the algorithm yields a cover associated with a feasible solution, x̄, where the components

of x̄ identify the sets selected to be in the cover.

To evaluate the performance of Algorithm 1, we show that x̄, the solution yielded

by Algorithm 1 with a weight λ∗, can be used to get a bound on the optimal objective

function value of problem (3.2) obtained for the same weight λ∗. The key observation

about Algorithm 1 is given in Lemma 3.3.1 in which we estimate the price p(ek) of an item

ek assigned by Algorithm 1, where ek is an item covered in the iteration k.

Lemma 3.3.1. Let x∗ ∈ X be an optimal solution of problem (3.2) associated with λ∗ ∈ Rp>.

Let ek be an item covered in the kth iteration of Algorithm 1. Then

p(ek) ≤
p∑
q=1

λ∗qzq(x
∗)/(m− k − 1).

72

Procedure 1 Weighted-sum method
1: Initialization: αj∗ =∞

2: for j = 1→ n do
3: if j ∈ J \ J then

4: αj =

p∑
q=1

λqα
q
j =

p∑
q=1

λqc
q
j

|Sj ∩ (E \ E)|
5: if αj ≤ αj∗ then
6: αj∗ = αj

7: end if
8: end if
9: end for

10: Return: αj∗ and Sj∗

Pseudo-code of Procedure 1

Proof. By Proposition 3.2.1, x∗ ∈ XsE . Let S∗ be the supported Pareto cover associated

with x∗. Then S∗ = {S∗1 , S∗2 , . . . , S∗r∗} where {S∗1 , S∗2 , . . . , S∗r∗} is a collection of sets from

the family S and r∗ is the number of sets in the supported Pareto cover. We know that

E =
r∗⋃
l=1

S∗l and

r∗⋃
l=1

S∗l is a supported Pareto cover with the cost
r∗∑
l=1

λ∗l c
l. At any iteration

of Algorithm 1, the uncovered items are given by E \ E. Since a supported Pareto cover

covers all items, at any iteration, E \ E can be expressed as E \ E =
r∗⋃
l=1

(S∗l ∩ (E \ E)).

Thus we have,

|E \ E| ≤
r∗∑
l=1

|S∗l ∩ (E \ E)|. (3.6)

Note that at any iteration, the uncovered items in S∗l are contained in S∗l ∩ (E \ E) for

l = 1, 2, . . . , r∗ and if all items in S∗l are covered then S∗l ∩ (E \ E) = ∅. Consider the

iteration in which an item ek is covered. Let Sj∗ be the set selected in this iteration to

cover item ek and let αj∗ be the scalar cost effectiveness of this set. We obtain a bound for

αj∗ using the supported Pareto cover S∗. Let S∗l ∈ S∗ and αl =

p∑
q=1

λ∗qα
q
l be the scalar cost

effectiveness of S∗l . We consider the following two cases.

73

Case 1: Let l ∈ J \ J , that is, some items in S∗l are not covered by Algorithm 1 and

thus the set S∗l is a candidate for Sj∗ . In this case, the uncovered items in S∗l are given by

S∗l ∩ (E \ E) and

S∗l ∩ (E \ E) = Sj ∩ (E \ E) for some j ∈ J \ J.

We calculate αj values for all unselected sets based on formula (3.4) and select a best set

using Definition 3.4. We obtain

αj∗ =

p∑
q=1

λ∗qα
q
j∗ ≤

p∑
q=1

λ∗q
cql

|S∗l ∩ (E \ E)|
for all l /∈ J \ J.

That is, by Definition 3.2.5,

αj∗ �
ws
αl for all l /∈ J \ J. (3.7)

Case 2: Let l /∈ J \ J , that is, all items in S∗l are covered by Algorithm 1. In this case,

S∗l ∩ (E \ E) = ∅ and
λ∗l c

q
l

|S∗l ∩(E\E)| =∞. Thus we obtain

αj∗ =

p∑
q=1

λ∗qα
q
j∗ ≤

p∑
q=1

λ∗q
cql

|S∗l ∩ (E \ E)|
for all l ∈ J \ J.

That is,

αj∗ �
ws
αl for all l ∈ J \ J. (3.8)

From (3.7) and (3.8) we conclude that

αj∗ �
ws
αl for l = 1, 2, . . . , r∗.

Then, by Definition 3.3.1, we have

αj∗ =

p∑
q=1

λ∗qα
q
j∗ ≤

p∑
q=1

λ∗q
cql

|S∗l ∩ (E \ E)|
for l = 1, 2, . . . , r∗.

74

That is,

αj∗ |S∗l ∩ (E \ E)| ≤
p∑
q=1

λ∗qc
q
l for l = 1, 2, . . . , r∗. (3.9)

By summing over all sets in the supported Pareto cover, inequality (3.9) becomes

r∗∑
l=1

(αj∗ |S∗l ∩ (E \ E)|) ≤
r∗∑
l=1

(

p∑
q=1

λ∗qc
q
l). (3.10)

Using inequality (3.6), we write inequality (3.10) as follows:

αj∗ |(E \ E)| ≤
r∗∑
l=1

(

p∑
q=1

λ∗qc
q
l). (3.11)

Since
r∗∑
l=1

λ∗qc
q
l = λ∗qzq(x

∗), inequality (3.11) can be rewritten as

αj∗ |(E \ E)| ≤
r∗∑
l=1

(

p∑
q=1

λ∗qc
q
l) =

p∑
q=1

λ∗qzq(x
∗).

That is,

αj∗ ≤

p∑
q=1

λ∗qzq(x
∗)

|(E \ E)|
. (3.12)

In the iteration in which the item ek is covered, the number of uncovered items is (m−k+1).

That is, |(E \ E)| = m− k + 1. Thus, inequality (3.12) gives the following:

αj∗ ≤

p∑
q=1

λ∗qzq(x
∗)

m− k + 1
. (3.13)

Since p(ek) = αj∗ , from inequality (3.13) we conclude p(ek) ≤

p∑
q=1

λ∗qzq(x
∗)

m−k+1 .

Corollary 14 shows that the objective value of problem (3.2) associated with the

75

solution yield by Algorithm 1 is equal to the cost of covering all items.

Corollary 14. If x̄ ∈ X is a solution of the MOSCP yield by Algorithm 1 for λ∗ ∈ Rp>,

then

p∑
q=1

λ∗qzq(x̄) =

m∑
k=1

p(ek).

Proof. In Algorithm 1, the cost of each set selected in each iteration is distributed among the

items covered in that iteration. Therefore, the cost of covering all items, at the termination

of Algorithm 1, is equal to

m∑
k=1

p(ek). On the other hand, the cost of the selected cover is

given by the objective value of problem (3.2),

p∑
q=1

λ∗qzq(x̄). By definition, a cover covers all

items and thus, we have,
p∑
q=1

λ∗qzq(x̄) =

m∑
k=1

p(ek). (3.14)

The solution yield by Algorithm 1 can be used to obtain a bound on the optimal

objective function value of problem (3.2).

Theorem 3.3.1. Let x̄ ∈ X be a solution of the MOSCP yield by Algorithm 1 and x∗ be

an optimal solution of problem (3.2) associated with λ∗ ∈ Rp>. Then

p∑
q=1

λ∗qzq(x̄) ≤ logm

p∑
q=1

λ∗qzq(x
∗). (3.15)

Proof. Using Lemma 3.3.1, and summing over all items we get,

m∑
k=1

p(ek) ≤
m∑
k=1

p∑
q=1

λ∗qzq(x
∗)

m− k + 1
= (1 + 1/2 + · · ·+ 1/m)

p∑
q=1

λ∗qzq(x
∗).

As (1 + 1/2 + · · ·+ 1/m) ≈ logm, we obtain

m∑
k=1

p(ek) ≤ logm

p∑
q=1

λ∗qzq(x
∗). (3.16)

76

By Corollary 14, inequality (3.16) gives inequality (3.15).

Corollary 15 provides that the result of Theorem 3.3.1 can be used to construct an approx-

imate supported Pareto set P εs for the MOSCP.

Corollary 15. For every x ∈ XsE of the MOSCP, there exist a weight vector λ ∈ Rp> and

a solution x̄ ∈ X yield by Algorithm 1 satisfying the following condition:

p∑
q=1

λqzq(x̄) ≤ logm

p∑
q=1

λqzq(x). (3.17)

Proof. Let x ∈ XsE . Then, by Proposition 3.2.1, there exists λ ∈ Rp>, such that x is an

optimal solution of problem (3.2). We show that there exists a solution x̄ ∈ X such that

(3.17) holds. Suppose that Algorithm 1 is executed for λ and returns a cover associated

with the solution x̄. Then by Theorem 3.3.1, we have

p∑
q=1

λqzq(x̄) ≤ logm

p∑
q=1

λqzq(x), and

(3.17) holds.

According to Corollary 15, the bound on the optimal objective function value of

problem (3.2) is logm for every λ ∈ Rp>. Using condition (3.17) and Definition 3.2.8, we

obtain the following theoretical result.

If Algorithm 1 is run for all λ ∈ RP≥, for every solution in the set Ps(Y) there is a

solution in the set of solutions returned by Algorithm 1 satisfying condition (3.17). Thus,

in view of Definition 3.2.8, the algorithm returns a (1 + ε)-approximate supported Pareto

set of the MOSCP, where

1 + ε = logm and m is the number of items. (3.18)

3.3.2.2 Performance of Algorithm 2

In this section, we present Algorithm 2 that approximately solves the MOSCP and

is the first algorithm for approximating all weak Pareto outcomes of the MOSCP.

The outline of Algorithm 2 is the same as that of Algorithm 1 with the exception

77

that Procedure 1 is replaced with Procedure 2 that calculates the vectors of cost effectiveness

for all sets and determines a set to be added to the current cover.

Procedure 2 Max-ordering method

1: Initialization: αj∗ = (∞,∞, . . . ,∞)

2: for j = 1→ n do
3: if j ∈ J \ J then

4: αj = (α1
j , α

2
j , . . . , α

p
j)T =

(
λ1

c1j
|Sj∩(E\E)| , λ2

c2j
|Sj∩(E\E)| , . . . , λp

cpj
|Sj∩(E\E)|

)T

5: if max{α1
j , α

2
j , . . . , α

p
j} ≤ max{α1

j∗ , α
2
j∗ , . . . , α

p
j∗} then

6: αj∗ = αj

7: end if
8: end if
9: end for

10: Return: αj∗ and Sj∗

Pseudo-code of Procedure 2

To evaluate the performance of Algorithm 2, we show that the cost of the cover

associated with x̄, the solution yield by Algorithm 2 with a weight λ∗, can be used to

get a bound on the cost of a weak Pareto cover associated with the optimal objective

function value of problem (3.3) obtained for the same weight λ∗. The main observation

about Algorithm 2 is given in Lemma 3.3.2 in which we estimate the price p(ek) of an item

ek assigned by Algorithm 2, where ek is an item covered in the iteration k.

In the proofs presented in this section, we use the symbol dae to denote the ceiling

of a which is the smallest integer not less than a, where a is a real number. Given the data

of the MOCSP, we define

ck1min = min{ck11 , c
k1
2 , . . . , c

k1
n }

ck2max = max{ck21 , c
k2
2 , . . . , c

k2
n },

(3.19)

for k1, k2 ∈ {1, 2, . . . p}.

Lemma 3.3.2. Let x∗ ∈ X be an optimal solution of problem (3.3) associated with λ∗ for

λ∗ ∈ Rp>. Let ek be an item covered in the kth iteration of Algorithm 2. Then

78

p(ek) 5 δ



z1(x∗)/(m− k + 1)

z2(x∗)/(m− k + 1)

...

zp(x
∗)/(m− k + 1)


,

where δ = max
k1,k2=1,2,...,p,

k1 6=k2

{λ∗k2d
c
k2
max

c
k1
min

e}.

Proof. By Proposition 3.2.2, x∗ ∈ XwE . Let S∗ be the weak Pareto cover associated with

x∗. Then S∗ = {S∗1 , S∗2 , . . . , S∗r∗} where {S∗1 , S∗2 , . . . , S∗r∗} is a collection of sets from the

family S and r∗ is the number of sets in the weak Pareto cover. We know that E =

r∗⋃
l=1

S∗l

and
r∗⋃
l=1

S∗l is a weak Pareto cover with the cost [λ∗1

r∗∑
l=1

c1
l , . . . , λ

∗
p

r∗∑
l=1

cpl]
T . At any iteration

of Algorithm 2, the uncovered items are given by E \ E. Since a weak Pareto cover covers

all items, at any iteration, E \ E can be expressed as E \ E =

r∗⋃
l=1

(S∗l ∩ (E \ E)). Thus we

have,

|E \ E| ≤
r∗∑
l=1

|S∗l ∩ (E \ E)|. (3.20)

Note that at any iteration, the uncovered items in S∗l are contained in S∗l ∩ (E \ E) for

l = 1, 2, . . . , r∗ and if all items in S∗l are covered then S∗l ∩ (E \ E) = ∅. Consider now

the iteration in which an item ek is covered. Let Sj∗ be the set selected in this iteration to

cover the item ek and let αj∗ be the vector cost effectiveness of this set. We obtain a bound

for αj∗ using the weak Pareto cover S∗. Let S∗l ∈ S∗ and αl = [α1
l , . . . , α

p
l]
T be the cost

effectiveness of S∗l . We consider the following two cases.

Case 1: Let l ∈ J \ J , that is, some items in S∗l are not covered by Algorithm 2 and thus

the set S∗l is a candidate for Sj∗ . In this case, the uncovered items in S∗l are given by

S∗l ∩ (E \ E) and

S∗l ∩ (E \ E) = Sj ∩ (E \ E) for some j ∈ J \ J.

We calculate αj vectors for all unselected sets based on formula (3.5) and select a best set

79

using Definition 3.3.2 . Thus, by Definition 3.2.6, we obtain

αj∗ =


α1
j∗

...

αpj∗

 �mo


λ∗1
c1l

|S∗l ∩(E\E)|
...

λ∗p
cpl

|S∗l ∩(E\E)|

 for all l ∈ J \ J. (3.21)

Case 2: Let l /∈ J \ J , that is, all items in S∗l are covered by Algorithm 2. In this case

S∗l ∩ (E \ E) = ∅ and
cql

|S∗l ∩(E\E)| =∞. Thus we obtain


α1
j∗

...

αpj∗

 �mo


λ∗1
c1l

|S∗l ∩(E\E)|
...

λ∗p
cpl

|S∗l ∩(E\E)|

 for all l /∈ J \ J. (3.22)

From (3.21) and (3.22) we conclude that α∗j �
mo

αl for l = 1, 2, . . . , r∗, or equivalently


α1
j∗

...

αpj∗

 �mo


λ∗1
c1l

|S∗l ∩(E\E)|
...

λ∗p
cpl

|S∗l ∩(E\E)|

 for l = 1, 2, . . . , r∗,

and also 
α1
j∗ |S∗l ∩ (E \ E)|

...

αpj∗ |S∗l ∩ (E \ E)|

 �mo


λ∗1c
1
l

...

λ∗pc
p
l

 for l = 1, 2, . . . , r∗. (3.23)

Now suppose that αk1j∗ |S∗l ∩ (E \E)| is the maximum component of the left-hand-side vector

in (3.23) and λ∗k2c
k2
l is the maximum component of the right-hand-side vector in (3.23)

for some k1, k2 ∈ {1, 2, . . . , p}, respectively. That is, αk1j∗ |S∗l ∩ (E \ E)| ≤ λ∗k2c
k2
l for some

k1, k2 ∈ {1, 2, . . . , p} and for all l = 1, 2, . . . , p. Then also αkj∗ |S∗l ∩(E\E)| ≤ αk1j∗ |S∗l ∩(E\E)|

80

and

αkj∗ |S∗l ∩ (E \ E)| ≤ λ∗k2c
k2
l for k = 1, 2, . . . , p and l = 1, 2, . . . , r∗. (3.24)

By setting k = 1, k = 2, . . . , k = k1, . . . , k = k2, . . . k = p in inequality (3.24) and defining

ck2max and ck1min as in (3.19), we obtain the following inequalities for l = 1, 2 . . . , r∗.

α1
j∗ |S∗l ∩ (E \ E)| ≤

λ∗k2
c
k2
l

c1l
c1
l ≤ λ∗k2d

c
k2
l

c1l
ec1
l ≤ λ∗k2d

c
k2
max

c1min
ec1
l

α2
j∗ |S∗l ∩ (E \ E)| ≤

λ∗k2
c
k2
l

c2l
c2
l ≤ λ∗k2d

c
k2
l

c2l
ec2
l ≤ λ∗k2d

c
k2
max

c2min
ec2
l

...
...

...
...

αk1j∗ |S∗l ∩ (E \ E)| ≤
λ∗k2

c
k2
l

c
k1
l

ck1l ≤ λ
∗
k2
d c
k1
l

c
k1
l

eck1l ≤ λ
∗
k2
d c
k2
max

c
k1
min

eck1l
...

...
...

...

αk2j∗ |S∗l ∩ (E \ E)| ≤ λ∗k2c
k2
l

...
...

...
...

αpj∗ |S∗l ∩ (E \ E)| ≤
λ∗k2

c
k2
l

cpl
cpl ≤ λ

∗
k2
d c
k2
l

cpl
ecpl ≤ λ

∗
k2
d c
k2
max

cpmin
ecpl .

We define δk2 = max
k=1,2,...,p, k 6=k2

{λ∗k2d
c
k2
max

ckmin

e}. Then we get



α1
j∗ |S∗l ∩ (E \ E)|

α2
j∗ |S∗l ∩ (E \ E)|

...

αk1j∗ |S∗l ∩ (E \ E)|
...

αk2j∗ |S∗l ∩ (E \ E)|
...

αpj∗ |S∗l ∩ (E \ E)|



5



λ∗k2d
c
k2
max

c1min
ec1
l

λ∗k2d
c
k2
max

c2min
ec2
l

...

λ∗k2d
c
k2
max

c
k1
min

eck1l
...

λ∗k2c
k2
l

...

λ∗k2d
c
k2
max

cpmin
ecpl



5 δk2



c1
l

c2
l

...

ck1l
...

ck2l
...

cpl



for l = 1, 2, . . . , r∗. (3.25)

Since there are p choices for k2 in inequality (3.25), we have δk2 for k2 = 1, 2, . . . , p. For

81

k2 = 1, inequality (3.25) can be written as:



α1
j∗ |S∗l ∩ (E \ E)|

α2
j∗ |S∗l ∩ (E \ E)|

...

αpj∗ |S∗l ∩ (E \ E)|


5 δ1



c1
l

c2
l

...

cpl


for l = 1, 2, . . . , r∗, (3.26)

where δ1 = max
k=1,2,...,p, k 6=1

{λ∗1d
c1max

ckmin

e}. For k2 = 2, inequality (3.25) can be written as:



α1
j∗ |S∗l ∩ (E \ E)|

α2
j∗ |S∗l ∩ (E \ E)|

...

αpj∗ |S∗l ∩ (E \ E)|


5 δ2



c1
l

c2
l

...

cpl


for l = 1, 2, . . . , r∗, (3.27)

where δ2 = max
k=1,2,...,p, k 6=2

{λ∗2d
c2max

ckmin

e}. By continuing this process for k2 = p, inequality (3.25)

becomes



α1
j∗ |S∗l ∩ (E \ E)|

α2
j∗ |S∗l ∩ (E \ E)|

...

αpj∗ |S∗l ∩ (E \ E)|


5 δp



c1
l

c2
l

...

cpl


for l = 1, 2, . . . , r∗, (3.28)

where δp = max
k=1,2,...,p, k 6=p

{λ∗pd c
p
max

ckmin

e}.

Let δ = max
k2=1,2,...,p

{
max

k=1,2,...,p,
k 6=k2

{λ∗k2d
c
k2
max

ckmin

e}
}

= max
k1,k2=1,2,...,p,

k1 6=k2

{λ∗k2d
c
k2
max

c
k1
min

e}. Then inequality (3.28)

becomes

82



α1
j∗ |S∗l ∩ (E \ E)|

α2
j∗ |S∗l ∩ (E \ E)|

...

αpj∗ |S∗l ∩ (E \ E)|


5 δ



c1
l

c2
l

...

cpl


for l = 1, 2, . . . , r∗. (3.29)

Summing over all sets in the weak Pareto cover, inequality (3.29) gives the following:



r∗∑
l=1

α1
j∗ |S∗l ∩ (E \ E)|

r∗∑
l=1

α2
j∗ |S∗l ∩ (E \ E)|

...
r∗∑
l=1

αpj∗ |S
∗
l ∩ (E \ E)|


5 δ



r∗∑
l=1

c1
l

r∗∑
l=1

c2
l

...
r∗∑
l=1

cpl


= δ



z1(x∗)

z2(x∗)

...

zp(x
∗)


. (3.30)

Using inequality (3.20), inequality (3.30) can be written as follows:



α1
j∗ |(E \ E)|

α2
j∗ |(E \ E)|

...

αpj∗ |(E \ E)|


5 δ



z1(x∗)

z2(x∗)

...

zp(x
∗)


, (3.31)

where δ = max
k1,k2=1,2,...,p,

k1 6=k2

{λ∗k2d
c
k2
max

c
k1
min

e}. In the iteration in which the item ek is covered, the

number of uncovered items is (m− k+ 1). That is, |(E \E)| = m− k+ 1. Thus, inequality

(3.31) becomes: 

α1
j∗

α2
j∗

...

αpj∗


5 δ



z1(x∗)/(m− k + 1)

z2(x∗)/(m− k + 1)

...

zp(x
∗)/(m− k + 1)


. (3.32)

83

Since p(ek) = αj∗ , from inequality (3.32) we conclude

p(ek) 5 δ



z1(x∗)/(m− k + 1)

z2(x∗)/(m− k + 1)

...

zp(x
∗)/(m− k + 1)


.

Corollary 16 shows that the cost of the cover associated with the solution yield by Algo-

rithm 2 is equal to the cost of covering all items.

Corollary 16. If x̄ ∈ X is a solution of the MOSCP yield by Algorithm 2 for λ∗ ∈ Rp>,

then

[λ∗1z1(x̄), λ∗2z2(x̄), . . . , λ∗pzp(x̄)]T =
m∑
k=1

p(ek).

Proof. In Algorithm 2, the cost of each set selected in each iteration is distributed among

the items covered in that iteration. Therefore, the cost of covering all items, at the termi-

nation of Algorithm 2, is equal to
m∑
k=1

p(ek). On the other hand, the cost of the selected

cover is given by the objective vector of problem (3.3), [λ∗1z1(x̄), λ∗2z2(x̄), . . . , λ∗pzp(x̄)]T . By

definition, a cover covers all items and thus, we have, [λ∗1z1(x̄), λ∗2z2(x̄), . . . , λ∗pzp(x̄)]T =
m∑
k=1

p(ek).

We analyze the approximation factor (1 + ε) for the MOSCP using the result in

Corollary 16. We show that x̄ which is the solution yield by Algorithm 2 is a solution

such that z(x̄) 5 (1 + ε)z(x∗) where x∗ is the optimal solution of problem (3.3) associated

with λ∗ ∈ Rp>. Further, we show that the approximation factor, (1 + ε), depends on the

maximum and minimum cost coefficients of each objective function, the weight vector and

84

the number of items of the given test instance. Corollary 16 yields Theorem 3.3.2 which is

the main result of this research.

Theorem 3.3.2. Let x̄ ∈ X be a solution of the MOSCP yield by Algorithm 2 and x∗ be

an optimal solution of problem (3.3) associated with λ∗ ∈ Rp>. Then

z1(x̄)

z2(x̄)

...

zp(x̄)


5 δ log(m)/λ∗min



z1(x∗)

z2(x∗)

...

zp(x
∗)


,

where δ = max
k1,k2=1,2,...,p,

k1 6=k2

{λ∗k2d
c
k2
max

c
k1
min

e} and λ∗min = min{λ∗1, λ∗2, . . . , λ∗p}.

Proof. Using Lemma 3.3.2, and summing over all items we get,

m∑
k=1

p(ek) ≤
m∑
k=1

δ



z1(x∗)/(m− k + 1)

z2(x∗)/(m− k + 1)

...

zp(x
∗)/(m− k + 1)


= (1 + 1/2 + · · ·+ 1/m)δ



z1(x∗)

z2(x∗)

...

zp(x
∗)


,

where δ = max
k1,k2=1,2,...,p,

k1 6=k2

{λ∗k2d
c
k2
max

c
k1
min

e}. As (1 + 1/2 + · · ·+ 1/m) ≈ logm, we obtain

m∑
k=1

p(ek) 5 δ log(m)[z1(x∗), z2(x∗), . . . , zp(x
∗)]T (3.33)

and using Corollary 16



λ∗1z1(x̄)

λ∗2z2(x̄)

...

λ∗pzp(x̄)


5 δ log(m)



z1(x∗)

z2(x∗)

...

zp(x
∗)


. (3.34)

85

Let λ∗min = min{λ∗1, λ∗2, . . . , λ∗p}, then inequality (3.34) gives the following:

λ∗min



z1(x̄)

z2(x̄)

...

zp(x̄)


5



λ∗1z1(x̄)

λ∗2z2(x̄)

...

λ∗pzP (x̄)


5 δ log(m)



z1(x∗)

z2(x∗)

...

zp(x
∗)


.

Thus we have, 

z1(x̄)

z2(x̄)

...

zp(x̄)


5 δ log(m)/λ∗min



z1(x∗)

z2(x∗)

...

zp(x
∗)


,

where δ = max
k1,k2=1,2,...,p,

k1 6=k2

{λ∗k2d
c
k2
max

c
k1
min

e}. This completes the proof.

Now we prove that Algorithm 2 can be used to obtain an (1 + ε)-approximate

Pareto set P ε for the MOSCP. That is, for any weak Pareto outcome, Algorithm 2 yields an

(1 + ε)-approximate Pareto outcome. Let (1 + ε) = δ log(m)/λ∗min > 0. Corollary 17 shows

that when running for all possible λ vectors, Algorithm 2 can be used to approximate all

weak Pareto outcomes of the MOSCP with the bound (1 + ε).

Corollary 17. For every x ∈ XwE of the MOSCP, there exist a weight vector λ ∈ Rp> and

a solution x̄ ∈ X yield by Algorithm 2 satisfying the following condition:



z1(x̄)

z2(x̄)

...

zp(x̄)


5 (1 + ε)



z1(x)

z2(x)

...

zp(x)


, (3.35)

86

where

ε = δ log(m)/λmin, δ = max
k1,k2=1,2,...,p,

k1 6=k2

{λk2d
ck2max

ck1min

e} and λmin = min{λ1, λ2, . . . , λp}. (3.36)

Proof. Let x ∈ XwE . Then, by Proposition 3.2.2, there exists λ ∈ Rp> such that x is an

optimal solution of problem (3.3). We show that there exists a solution x̄ ∈ X such that

(3.35) holds. Suppose that Algorithm 2 is executed for λ and returns a cover associated with

the solution x̄. Then by Theorem 3.3.2, we have



z1(x̄)

z2(x̄)

...

zp(x̄)


5 δ log(m)/λmin



z1(x)

z2(x)

...

z2(x)


and (3.35) holds.

According to Corollary 17, the bound on every component of a weak Pareto solution

associated with λ is δ log(m)/λmin. Using condition (3.35) and Definition 3.2.7, we obtain

the following theoretical result.

If Algorithm 2 is run for all λ ∈ RP≥, for every solution in the set Pw(Y) there is a

solution in the set of solutions returned by Algorithm 2 satisfying condition (3.35). Thus,

in view of Definition 3.2.7, Algorithm 2 returns a (1 + ε)-approximate weak Pareto set of

the MOSCP, where

1 + ε = max
λ∈Rp≥

{δ log(m)/λmin}, δ given in (3.36), m is the number of items, and λ ∈ Rp≥.

(3.37)

3.3.2.3 Complexity

In this section we show that the running times of Algorithm 1 and Algorithm 2 are

polynomial, if they are run for a fixed number of λ ∈ Rp≥.

Theorem 3.3.3. Let λ ∈ Rp≥ be fixed. Algorithm 1 and Algorithm 2 are polynomial-time

87

algorithms.

Proof. In the generic algorithm the loop in the main step iterates for O(m) time, where

|E| = m.

In Procedure 1, the minimum of αj for j = 1, 2, . . . , n can be found in O(log n) time using a

priority heap ([3]). Therefore the total running time of Algorithm 1 is O(m log n) and thus

Algorithm 1 is a polynomial-time algorithm.

In Procedure 2, the maximum component of each cost effectiveness vector αj for

j = 1, 2, . . . , n can be found in O(log p) time using a priority heap where p is the number

of objectives ([3]). Then we get the minimum of these maximum components in constant

time since we update the minimum value as we calculate each maximum. Therefore the

total running time of Algorithm 2 is O(n log p) and thus Algorithm 2 is a polynomial-time

algorithm.

3.4 Computational results

This section presents the computational results obtained with Algorithm 1 and

Algorithm 2 on a variety of BOSCP test instances that are generated by Gandibleux ([1]).

These algorithms were implemented using MATLAB interface while all experiments were

carried out on a Dell Vostro 1400 computer with a Pentium- IV and 2 GB RAM. The

test instances are divided into four different groups A,B,C, and D according to the type

of objective functions. For the instances of type A, the cost coefficients of each objective

function are generated randomly and independently. For the instances of type B, the cost

coefficients of the first objective function are generated randomly and independently, and the

coefficients of the second objective function have a relation with those of the first objective

function. For the type C test instances, the sets of each test instance are divided into

subgroups and each set in one subgroup has the same cost coefficients for both objective

functions. The type D test instances have characteristics of type B and type C. We report

the computational results for the test instances listed in Table 3.1, which we consider the

88

most representative for our work.

Name of the test instance m, number of items n, number of sets

2scp41A 40 200
2scp61D 60 600
2scp81C 80 800
2scp201B 200 1000

Table 3.1: Characteristics of the BOSCP test instances

3.4.1 Measures for evaluating the performance of algorithms

Comparing the (1 + ε)-approximate Pareto set with the Pareto set is important to

assess the quality of the approximation. Several criteria are available in the literature to

evaluate the quality of approximate Pareto sets ([11], [53]).

In this study, we measure the quality of the (1 + ε)-approximate Pareto set in two

different ways. For the first measure, we calculate the relative deviation of the range of

each objective function values of the BOSCP returned by Algorithm 1 and Algorithm 2

with respect to the exact range. The range for an objective function is obtained by finding

the minimum and the maximum values of the function over the computed set while the

exact range is obtained by using the Pareto set.

The second type of measures we propose is calculated using the computed approxi-

mate Pareto sets. These measures are constructed to resemble the meaning of the theoretical

factors of the algorithms given in Corollaries 15 and 17.

Let Algorithm 1 (or Algorithm 2) be run for λ ∈ Rp> and return a solution x̄. Let x∗

be a supported (or weakly efficient) solution associated with the weight λ. Then z(x̄) ∈ P εs

(or P εw) and z(x∗) ∈ Ps(Y) (or Pw(Y)). Based on inequality (3.17), the theoretical factor

89

1 + ε = logm of Algorithm 1 satisfies

p∑
q=1

λqzq(x̄)

p∑
q=1

λqzq(x
∗)

≤ logm.

We propose to calculate experimental factor of Algorithm 1 as follows:

max
λ∈Λ

{ p∑
q=1

λqzq(x̄)

p∑
q=1

λqzq(x
∗)

}
(3.38)

for z(x̄) ∈ P εs , z(x∗) ∈ Ps(Y), and Λ = {λ1, λ2, . . . , λ100} is the set of weights used for the

computation. Based on inequality (3.35), the theoretical factor 1+ε of Algorithm 2 satisfies

zq(x̄)

zq(x∗)
≤ δ logm/λmin

for q = 1, 2, . . . , p. We propose to calculate the experimental factor of Algorithm 2 as

follows:

max
q=1,2,...,p

{ max
z(x̄)∈P εw

{
zq(x̄)

}
min

z(x∗)∈Pw(Y)

{
zq(x∗)

}}. (3.39)

For simplicity, we normalize the λ vectors and have

p∑
q=1

λq = 1 in all our experiments for

λ ∈ Rp>.

In our analysis we do not include computational times because they strongly depend

on the type of computer. For example, Algorithm 2 takes 2 minutes to construct a (1 +

ε)-approximate weak Pareto set of the instance 2scp201B (one of the largest test instances)

on the above mentioned Dell Vostro 1400 computer. When a faster computer is used, it

takes only 2 seconds.

90

3.4.2 Results

Table 3.2 shows the ranges of the objective functions, z1 and z2, for the test instances

listed in Table 3.1. We obtain these ranges for the exact Pareto set, (1 + ε)-approximate

supported Pareto set when running Algorithm 1, and (1 + ε)-approximate weak Pareto set

when running Algorithm 2. The exact Pareto outcomes are computed by applying the aug-

mented ε-constraint method ([29]) and the solver Cplex 12.4 with MATLAB interface.

In Table 3.2, the first column gives the name of the test instance while the second

Instance Name Exact Algorithm 1 Algorithm 2

2scp41A z1 (880, 2647) (895, 3273) (3976, 7021)
z1 (0, 1) (0.017, 1.23) (3.52, 2.65)
z2 (888, 2498) (995, 3376) (4566, 7103)
z2 (0, 1) (0.120, 1.35) (4.14, 2.84)

2scp61D z1 (1790, 9064) (1921, 8704) (19804, 28178)
z1 (0, 1) (0.732, -0.397) (10.063, 2.109)
z2 (1695, 8759) (1828, 9699) (13461, 28660)
z2 (0, 1) (0.078, 0.107) (6.942, 2.272)

2scp81C z1 (908, 5089) (1036, 1151) (32116, 53708)
z1 (0, 1) (0.141, -0.774) (34.370, 9.554)
z2 (1372, 4578) (2105, 9794) (20151, 58757)
z2 (0, 1) (0.534, 1.139) (13.687, 11.835)

2scp201B z1 (1314, 18853) (1514, 19481) (76751, 121100)
z1 (0, 1) (0.152, 0.033) (57.410, 5.423)
z2 (1189, 18397) (1386, 19870) (7567, 125400)
z2 (0, 1) (0.166, 0.080) (5.364, 5.816)

Table 3.2: Ranges of z1 and z2 computed by each algorithm

column specifies the objective function. Columns three, four, and five give ranges for an

objective function obtained by finding the minimum and the maximum values of the func-

tion over the computed set. For example, the first objective function, z1, has the minimum

value of 880 and the maximum value of 2647 on the exact Pareto set of the 2scp41A test

instance. Thus the exact range of z1 of this test instance is (880, 2647). For simplicity, in

the next row, we normalize the range (880, 2647) to the interval (0, 1). The fourth and the

fifth columns also indicate the relative deviation of each objective function values returned

91

by Algorithm 1 and Algorithm 2 with respect to the exact range. For example, consider the

2scp41A test instance. The range of z1 according to Algorithm 1 is (895, 3273). That is,

relative deviation of 895 with respect to 880 is 0.017 and that of 3273 with respect to 2647

is 1.23. Note that two instances, 2scp61D and 2scp81D, have negative relative deviations

based on Algorithm 1. The negative numbers result from the component-wise comparison of

the approximate Pareto outcome and corresponding exact Pareto outcome while Algorithm

1 yields approximate outcomes based on the weighted-sum preference relation. Based on

the data in Table 3.2, we see that the ranges of z1 and z2 given by Algorithm 1 are very

close to the exact ranges. On the other hand, the ranges given by Algorithm 2 are far away

from the exact ranges.

Table 3.3 shows the theoretical and experimental approximation factors of the al-

gorithms for the test instances listed in Table 3.1. The first column gives the name of the

test instance. The second and third columns give the theoretical and experimental factors

of Algorithm 1 while the fourth and fifth columns give the theoretical and experimental

factors of Algorithm 2. These factors are obtained using inequalities (3.17) and (3.38),

and (3.35) and (3.39) respectively. For example, the 2scp41A test instance has m = 40

items, c1
max = 200, c1

min = 2, c2
max = 200, and c1

min = 3. Further, we have λ1 + λ2 = 1

and λmin = 0.01. The theoretical approximation factor of Algorithm 1 is log 40 = 1.602

Algorithm 1 Algorithm 2
Theoretical Experimental Theoretical Experimental
(3.17) (3.38) (3.35) (3.39)

2scp41A 1.602 1.116 15860.393 7.998
2scp61D 1.778 1.221 3243.143 16.906
2scp81C 1.903 1.167 24178.758 59.012
2scp201B 2.301 1.192 76085.858 104.491

Table 3.3: Theoretical and experimental approximation factors

and the experimental approximation factor is equal to 1.116 (by formulas (3.18) and (3.38),

respectively). The theoretical approximation factor of Algorithm 2 is equal to 15860.393

(by formula (3.37)). The experimental approximation factor is calculated using (3.39).

92

The values max{z1(x̄)}, max{z2(x̄)}, min{z1(x∗)} and min{z2(x∗)} for z(x̄) ∈ P εw and

z(x∗) ∈ Pw(Y) are obtained from Table 3.2 and the experimental factor is equal to 7.998.

As seen in Table 3.3, the computational results for all test instances obey the theoretical

approximation factors. Additionally, although these theoretical factors are larger, the ex-

perimental factors are much smaller.

Figures 3.1, 3.3, 3.5 and 3.7 depict (1 + ε)-approximate supported Pareto sets ob-

tained by Algorithm 1 while Figures 3.2, 3.4, 3.6 and 3.8 depict (1 + ε)-approximate weak

Pareto sets obtained by Algorithm 2. Furthermore, in each figure either the (exact) sup-

ported Pareto set or the (exact) Pareto set is depicted for comparison. For example, Figure

3.1 shows the supported Pareto outcomes and the (1 + ε)-approximate supported Pareto

outcomes obtained by Algorithm 1 for 2scp41A instance. Figure 3.2 shows the Pareto out-

comes and the (1 + ε)-approximate weak Pareto outcomes obtained by Algorithm 2 for

2scp41A instance.

Based on Figures 3.1, 3.3, 3.5 and 3.7, we observe that the (1 + ε)-approximate

supported Pareto outcomes returned by Algorithm 1 are very close to the supported Pareto

outcomes and all supported Pareto outcomes are approximated. Further, as seen in Table

3.2, we observe why of 2scp61D and 2scp81C have negative relative deviations based on

Figures 3.3 and 3.5. In agreement with Table 3.2, Figures 3.2, 3.4, 3.6 and 3.8 show that

the (1 + ε)-approximate weak Pareto outcomes obtained by Algorithm 2 are worse than the

Pareto outcomes.

Based on these computational results, we observe that the approximate outcomes

obey the theoretical results of Section 3, and the experimental results are far better than

the theoretical results.

93

Figure 3.1: Comparison of outcomes obtained by Algorithm 1 to the supported Pareto
outcomes for 2scp41A

Figure 3.2: Comparison of outcomes obtained by Algorithm 2 to the Pareto outcomes for
2scp41A

94

Figure 3.3: Comparison of outcomes obtained by Algorithm 1 to the supported Pareto
outcomes for 2scp61D

Figure 3.4: Comparison of outcomes obtained by Algorithm 2 to the Pareto outcomes for
2scp61D

95

Figure 3.5: Comparison of outcomes obtained by Algorithm 1 to the supported Pareto
outcomes for 2scp81C

Figure 3.6: Comparison of outcomes obtained by Algorithm 2 to the Pareto outcomes for
2scp81C

96

Figure 3.7: Comparison of outcomes obtained by Algorithm 1 to the supported Pareto
outcomes for 2scp210B

Figure 3.8: Comparison of outcomes obtained by Algorithm 2 to the Pareto outcomes for
2scp201B

97

3.5 Conclusion

We have developed two polynomial-time algorithms for approximating the Pareto

set of the MOSCP and derived their approximation factors. Algorithm 1 approximates the

supported Pareto set with a constant factor depending only on the number of items of the

test instance. Algorithm 2 approximates the weak Pareto set with a factor depending on

the problem data (the number of items and the magnitude of the cost coefficients) and also

on the weight vector used for computing the approximation. While Algorithm 1 approxi-

mates only a subset of the Pareto set, its approximation factor is significantly smaller than

that of Algorithm 2. We have applied the algorithms to BOSCPs of various sizes. For

both algorithms, the obtained numerical results not only confirm but are far better than

the theoretical results. Based on the theoretical and experimental results, Algorithm 1 is

superior to Algorithm 2.

This study motivates the development of an algorithm approximating all Pareto

points of the MOSCP with a better approximation factor than that of Algorithm 2. Alter-

natively, a phase-2 algorithm complementing the approximation of supported Pareto points

by Algorithm 1 could be proposed. Additionally, the presented results show that λ vectors

exist to approximate supported or weak Pareto sets of the MOSCP, but they do not reveal

how these vectors can be found. Thus, an important avenue of future study is to investigate

how these vectors can be constructed.

98

Chapter 4

Add-Improve Algorithm for

approximating the Pareto set of

the Multiobjective Set Covering

Problem

4.1 Introduction

Multiobjective combinatorial optimization (MOCO) problems involve optimizing

more than one objective function on a finite set of feasible solutions. Because there may

not exist a single optimal solution to a MOCO problem as the objective functions are in

conflict with each other, a solution set exists and is referred to as the efficient set. The

image of the efficient set is defined as the Pareto set. During the last 20 years, many heuris-

tic methods for solving MOCO problems have been proposed. Surveys summarizing those

efforts are given by Ehrgott [24], Ehrgott and Gandibleux [26], Ulungu and Teghem [100],

and others.

One of the well-known combinatorial optimization problems is the set covering prob-

99

lem (SCP). It originates from facility location problems and is in the category of NP-hard

problems ([89]). An instance of the SCP consists of a finite set of items and a family of

subsets of the items so that every item belongs to at least one of the subsets in the family.

In the single objective version, each set in the family has a positive scalar cost. The goal of

the single objective SCP (SOSCP) is to determine a subset of sets, named a cover, among

the sets in the family, so that all items are included in at least one set in the subset and

the total cost associated with the selected sets is minimized. If there are p scalar costs for

each set in the family, then the problem turns into the multiobjective set covering problem

(MOSCP). The goal of MOSCP is to determine a set of covers referred to as efficient such

that the total cost associated with each cover are minimized.

The SOSCP is a well-studied problem and different methods, especially heuristics

methods, have been proposed in the literature to address it ([13], [70], and others). Al-

though the MOSCP has many real-life applications in the fields such as scheduling, facility

location, designing reserve systems ([20], [33]), it has not received as much attention as

the SOSCP and only a few studies are found in the literature. In 1993, [61] proposed a

heuristic algorithm generating only one solution of the MOSCP. [96] develop a heuristic

enumeration technique for solving the MOSCP with quadratic objective functions. Under

the assumption of differentiability, the authors linearize the quadratic objective functions

and use the Gomory cut technique to get the set of efficient solutions. Jaszkiewicz ([53],

[52]) provides a comparative study of multiobjective metaheuristics for the biobjective SCP

(BOSCP). In particular, nine well-known multiobjective metaheuristics are compared with

a new algorithm called the Pareto memetic algorithm (PMA). The performance of the mul-

tiobjective metaheuristics for the BOSCP depends on the problem structure. [85] propose

a heuristic based two-phase method (TPM) to find the Pareto set of the BOSCP. In the

first phase, the scalarized SCP is solved with a heuristic to generate a subset of the Pareto

set called the supported Pareto set. In the second phase, a heuristic algorithm searches for

the Pareto points located between two supported Pareto points. This heuristic optimizes

one objective function at a time and requires that this SCP be reformulated by Lagrangian

100

relaxation. [64] adapt a very large-scale neighborhood search ([3]) for the MOSCP and com-

pare average running times of the adaptation with the PMA and the TPM for the BOSCP.

The performance of their algorithm also depends on the problem structure.

All the methods for solving the MOSCP are based on heuristic or metaheuristic

approaches. Due to their nature, it can not be ascertained that one is superior to another.

Further, when obtaining or improving solutions of the MOSCP, these approaches do not

evaluate the quality of the solutions in the objective space since they do not estimate the

cost of the associated covers. The goal of this paper is to investigate how this cost can be

integrated in an algorithm and propose a new heuristic method for solving the MOSCP.

This paper proposes a two-phase heuristic method to approximate the Pareto set

of the MOSCP. The method is developed using two scalarization methods, the weighted-

sum method and the weighted-Chebyshev method ([29]). The solutions to the MOSCP are

constructed iteratively selecting sets which aid to minimize the objective functions. The

distinguishing feature of this method in comparison to the other methods in the literature is

the process of selecting sets to obtain feasible solutions. As a preprocessing of the algorithm,

the best set to cover each item with respect to the each objective function is determined.

When constructing a feasible solution, if a given item is not covered before selecting the

best set to cover it, a merit function is constructed to estimate the value of the objective

functions if the best set has been used.

The paper is organized as follows. Section 4.2 provides the formulation of the

MOSCP, introduces the terminology, and discusses the methods used. Section 4.3 explains

preliminary concept of the proposed algorithm while Section 4.4 introduces the two phases

of the algorithm. A comparison of the performance of the algorithm with the performance

of the PMA proposed by Jaszkiewicz [53] and computational results on test problems are

presented in Section 4.5. The paper is concluded in Section 4.6.

101

4.2 Problem formulation

Let Rp be a finite dimensional Euclidean vector space. For y1, y2 ∈ Rp, y1 ≤ y2

denotes that y1
k ≤ y2

k for all k = 1, 2, . . . , p and y1 6= y2. The nonnegative orthant of Rp is

defined as Rp≥ = {y ∈ Rp : y ≥ 0}.

In the SCP there is a set of m items, E = {e1, e2, . . . , em}, with the index set

I = {i : i = 1, 2, . . . ,m}, and a set of n subsets of E, S = {S1, S2, . . . , Sn}, with the index

set of J = {j : j = 1, 2, . . . , n}. The items are grouped into subsets of E and an item ei

in E is said to be covered by a set Sj in S provided ei in Sj . An instance of the SCP is

given by the sets E and S. The binary coefficient aij , for i ∈ I and j ∈ J , is equal to 1 if

the item ei is covered by the set Sj , and is equal to zero otherwise. A cover is defined as a

subcollection {Sj : j ∈ J∗ ⊆ J} which is a subset of S such that all items of E are covered,

where J∗ is the index set of selected sets for the subcollection.

As mentioned in the Introduction, a feasible solution of the SCP requires that each

item be covered by at least one selected set. Let x ∈ Zn be the decision variable defined as

follows,

xj =

 1 if Sj is selected for a cover

0 otherwise
for j ∈ J.

The set X of all feasible solutions is defined as

X = {x ∈ Zn :
∑
j∈J

aijxj ≥ 1 for i ∈ I and xj ∈ {0, 1} for j ∈ J}.

Note that every feasible vector x ∈ X is associated with a cover and vice versa.

The MOSCP has p conflicting objective functions, zq : Zn → Z, with the index set

Q = {q : q = 1, 2, . . . , p}. Let cqj > 0 denote the cost of the set Sj with respect to the

objective q for q ∈ Q. The cost of a feasible cover, x ∈ X, with respect to the objective q

is zq(x) =
∑
j∈J∗

cqj . The set of all attainable outcomes, Y , for all feasible solutions, x ∈ X,

is obtained by evaluating the p objective functions. That is Y := z(X) ⊂ Rp, where

z = (z1, . . . , zp).

102

The goal of the MOSCP is to find a cover such that the costs with respect to all

objective functions are minimized. The MOSCP can be presented as follows:

min z(x) =

[
z1(x) =

n∑
j=1

c1
jxj , z2(x) =

n∑
j=1

c2
jxj , . . . , zp(x) =

n∑
j=1

cpjxj

]
subject to x ∈ X.

(4.1)

It is of interest to define efficient solutions for the MOSCP.

Definition 4.2.1. A solution x∗ ∈ X is called an efficient solution of the MOSCP if there

does not exist a solution x ∈ X such that z(x) ≤ z(x∗).

The set of all efficient solutions is denoted by XE . The image z(x) ∈ Y of an efficient

solution x ∈ XE is called a Pareto outcome. The image, z(XE), of XE is denoted by YP

and is referred to as the Pareto set. Solving the MOSCP is understood as finding its efficient

solutions and Pareto outcomes. A Pareto cover is a cover that is associated with an efficient

solution of the MOSCP.

The proposed algorithm is developed based on two scalarization methods for find-

ing efficient solutions of multiobjective optimization problems (MOPs): the weighted-sum

method and the weighted-Chebyshev method, which are now briefly reviewed.

The weighted-sum method is a well-known approach to finding Pareto points located

in convex regions of the Pareto frontier. The idea of this method is to convert the original

MOP into a single objective optimization problem (SOP) using a convex combination of

objectives. The weighted-sum function (WS) is defined as

p∑
q=1

λqzq(x), where λq ≥ 0, q ∈ Q.

The weighted-sum problem associated with the MOSCP can be written as follows:

min

p∑
q=1

λqzq(x)

subject to x ∈ X,

(4.2)

where λ = (λ1, λ2, . . . , λp) ∈ Rp≥.

103

When the feasible region of problem (4.2) is given as X̃ = {x ∈ Rn :
∑
j∈J

aijxj ≥

1 for i ∈ I and 0 ≤ xj ≤ 1 for j ∈ J}, problem (4.2) is referred to as the weighted-sum

problem of the relaxed MOSCP.

The weighted-Chebyshev method is also a well-known approach to finding Pareto

points located in convex and nonconvex regions of the Pareto frontier. The weighted-

Chebyshev function (WCh) with respect to the origin in Rp is defined as max
q∈Q
{λq(zq(x)},

where λq ≥ 0, q ∈ Q. This function measures the maximum deviating objective func-

tion value with respect to the origin.The weighted-Chebyshev problem associated with the

MOSCP can be written as follows:

min max
q∈Q
{λqzq(x)}

subject to x ∈ X,
(4.3)

where λ = (λ1, λ2, . . . , λp) ∈ Rp≥.

4.3 Preliminary concepts

In this section we present the preliminary concepts of the proposed algorithm. The

fundamental idea of the algorithm is based on the following observations.

When selecting a set with the aim of obtaining a minimum cost cover, we need

to evaluate the cost of the items covered by the set and also the cost of the uncovered

items. For example, let E = {e1, e2, e3, e4} be a set of items and let S1 = {e1, e2}, S2 =

{e2, e3}, S3 = {e3, e4} be three sets with costs c1
1 = 3, c1

2 = 7, c1
3 = 5, respectively. If the

set S1 is selected first, the cost to cover the items e1 and e2 is 3 and the cost to cover the

uncovered items, e3 and e4, is 5. Thus the total cost of the cover {S1, S3} is 8. Instead, if

the set S2 is selected first, the cost to cover the items e2 and e3 is 7 and the cost to cover

the uncovered items, e1 and e4, is 8. Thus the total cost of the cover {S1, S2, S3} is 15.

Therefore, when selecting a minimum cost cover, it is reasonable to consider the cost of the

items covered by the set and the cost to cover the uncovered items.

104

We also observe that when selecting a set to be in a minimum cost cover, we need to

consider not only the cost of the set but also the coverage of the set. That is, it is reasonable

to choose the set having a small cost and a large coverage, or equivalently, the set having

a small cost to coverage ratio. For example, the cost to coverage ratio of the set S1 is 3/2

and that ratio of the set S2 is 7/3 and it is clear that selecting the set S1 is more beneficial

than selecting the S2 since the set S1 has the smaller ratio of 3/2.

Based on these observation, in the construction of the algorithm, when selecting a

set we consider these two aspects: the cost of uncovered items and the small cost to coverage

ratio.

We first find the best set to cover each item with respect to each objective function

as follows. Let D be an m× p matrix and its element Di,q denote the index of the best set

that can be used to cover the item ei with respect to the objective function q. The element

Di,q is defined as:

Di,q = arg min
Sj :ei∈Sj

{ c
q
j

|Sj |} i ∈ I, q ∈ Q, (4.4)

where |Sj | denotes the cardinality of the set Sj .

For example, refer to the sets S1, S2, and S3 defined above and assume that each

has two costs: the costs c1
j , j = 1, 2, 3, given above and the costs c2

1 = 4, c2
2 = 3, c2

3 = 6.

The item e1 is only covered by the set S1 and therefore D1,1 = 1 and D1,2 = 1. The

item e2 is covered by the sets S1 and S2. Since each set contains two items, according to

the ratio given in (4.4), D2,1 = arg min{3/2, 7/2} = 1 and D2,2 = arg min{4/2, 3/2} = 2.

That is, the best sets to cover the item e2 are the sets S1 and S2 with respect to objective

function 1 and 2, respectively. By continuing this procedure, the best sets to cover each

item with respect to each objective function are found and recored in the matrix D given

105

as

D =



1 1

1 2

3 2

3 3


. (4.5)

Based on these observations we define the estimated cost, Est(cqj), for each set Sj

with respect to the objective function q as follows:

Est(cqj) = cqj +
∑

ei∈E\Sj

cqDi,q , j ∈ J, q ∈ Q. (4.6)

The estimated cost is calculated as the sum of the nominal cost of the set Sj with respect

to the objective function q and the sum of the costs of the sets SDi,q with respect to the

objective function q, where the sets SDi,q are the sets needed to cover all the other uncovered

items, that is, items not in the set Sj .

In the summation of (4.6), we consider the cost of a set only one time because when

a set is added to cover an uncovered item ei, all the other uncovered items in the set are

also covered. For example, consider the set S1. The items e1 and e2 are covered by the

set S1 while the items e3 and e4 are not covered by this set. According to (4.5), the best

set to cover the item e3 is the set S3 and the best set to cover the item e4 is again the set

S3 with respect to objective function 1. By selecting the set S3 we cover both e3 and e4.

Thus to calculate Est(c1
1), we add the cost of the set S3 only one time in (4.6) and obtain

Est(c1
1) = 3 + 5 = 8. But with respect to objective function 2, to cover the items e3 and e4

we need to select the sets S2 and S3, respectively. Thus, we obtain Est(c2
1) = 4+3+6 = 13.

For the MOSCP, we propose two concepts for defining the estimated cost of a set.

Based on the weighted-sum function, the estimated cost of the set Sj , denoted as EstW (Sj),

is defined as follows:

EstW (Sj) =

p∑
q=1

λqEst(c
q
j) where λ = (λ1, . . . , λp) ∈ Rp≥. (4.7)

106

Based on the weighted Chebyshev function, the estimated cost of the set Sj , denoted as

EstC(Sj), is defined as follows:

EstC(Sj) = max
q∈Q
{λqEst(cqj)} where λ = (λ1, . . . , λp) ∈ Rp≥. (4.8)

For example, let λ = (0.5, 0.5). Continuing the example, we obtain EstW (S1) = 0.5(8) +

0.5(13) = 10.5 and EstC(S1) = max{0.5(8), 0.5(13)} = 6.5.

4.4 Algorithm

The concepts of the cost of uncovered items and the small cost to coverage ratio

lead to the development of the proposed algorithm. The algorithm consists of two phases.

In the first phase the algorithm uses these concepts to search for the feasible solutions of

the MOSCP while the second phase consists of improving the solutions returned by the first

phase. The proposed algorithm is called the Add-Improve Algorithm (AIA). The pseudo-

code of the proposed algorithm is given in Algorithm 1.

Let Λ = {λ1, λ2, . . . , λk} be the set of different λ ≥ 0 vectors defined by the decision

maker, A be an m × n matrix with 0 − 1 coefficients aij , and C be an p × n matrix with

coefficients cqj for i ∈ I, j ∈ J and q ∈ Q. The input parameters for the algorithm are

the set Λ and the matrices A and C. The algorithm generates a set of feasible solutions

(denoted by X̂) and the set of corresponding outcomes (denoted by Ŷ) of the MOSCP. At

the beginning of the algorithm, these sets are initialized as empty sets, and Procedure 1

(Dmatrix) is called to obtain the matrix D. The pseudo-code of Dmatrix is given Procedure

1.

The input parameters for Procedure 1 are the matrices A and C. The parameters

αq and minjq record the minimum ratio for each item ei and the index of the corresponding

set with respect to the objective function q, respectively. For each item ei and objective

function q, the procedure initializes αq =∞ and finds the best value for αq based on (4.4).

Finally, the procedure returns the matrix D.

107

In the algorithm, the initial input solution, the weighted-sum function, and the

weighted-Chebyshev function are denoted by x,WS, and WCh, respectively. For each

λ ∈ Λ, in Phase 1 three different initial solutions denoted as x1, x2, x3 using Procedure 2

(Add) and Procedure 3 (LpRelax) are obtained. These solutions are improved in Phase

2 using Procedure 4 (ColReduce) and the improved solutions are denoted as x̂1, x̂2, x̂3.

The pseudo-codes for Add, LpRelax and ColReduce procedures are givenn in Procedure 2,

Procedure 3, and Procedure 4, respectively.

Algorithm 1 Add-Improve algorithm for the MOSCP
1: Input: Λ, A, C
2: Initialization: X̂ = ∅, Ŷ = ∅

3: D ← Dmatrix (A,C) . Call Procedure 2 to obtain the matrix D
4: for λ ∈ Λ do . Call Phase 1 and Phase 2 for each λ ∈ Λ
5: Begin {Phase 1}
. Generate solutions using Procedure 2 with functions WS,WCh and, Procedure 3

6: x1 ← Add(A,C,D, λ, x,WS)
7: x2 ← Add(A,C,D, λ, x,WCh)
8: x3 ← LpRelax (A,C,D, λ)
9: End {Phase 1}

10: Begin {Phase 2}
. Improve initial solutions using Procedure 4

11: x̂1 ← ColReduce(x1, A,C, λ,WS)
12: x̂2 ← ColReduce(x2, A,C, λ,WCh)
13: x̂3 ← ColReduce(x3, A,C, λ,WS)

14: X̂ ← X̂ ∪ {x1, x2, x3}, Ŷ ← Ŷ ∪ {z(x̂1), z(x̂1), z(x̂3)}
15: End {Phase 2}
16: end for

17: Return: X̂, Ŷ

Pseudo-code of the Add-Improve Algorithm

4.4.1 First phase of the algorithm

In the first phase, a set of initial feasible solutions of the MOSCP is found by

using both Procedure 2 and Procedure 3. The underlying concept of these procedures is

to construct the feasible solutions based on the information derived from (4.6), (4.7) and

108

Procedure 1 Dmatrix
1: Input: A, C

2: for i = 1→ m do
3: for q = 1→ p do
4: αq =∞
5: for j = 1→ n do

6: if ei ∈ Sj and
cqj
|Sj | < αq then . Find the best set to cover item ei

7: αq =
cqj
|Sj |

8: minjq = j
9: end if

10: end for
11: Di,q = minjq
12: end for
13: end for

14: Return: D

Pseudo-code of generating matrix D

(4.8).

Procedure 2 makes use of the functions WS or WCh and an infeasible solution x

to construct a feasible solution. The input parameters for the procedure are the matrices

A,C,D, a vector λ, the infeasible solution x, and the functions WS or WCh. The symbols

Ē, J̄ and InitialD denote the set of currently covered items, the index set of selected sets

for covering the items in E, and a copy of the matrix D, respectively.

In the procedure, an unselected set Sj in the infeasible solution x is first considered

(line 5 in Procedure 2). If the item ei is not in the set Sj (i.e., aij = 0) and the item ei is not

covered by any other set (i.e., ei ∈ E \ Ē), the estimated cost of the set Sj with respect to

each objective function q is evaluated based on (4.6) (line 10 in Procedure 2). The estimated

nominal cost of the set Sj is then evaluated based on (4.7) if the type of the function is WS

(line 20 in Procedure 2) or based on (4.8) if that is WCh (line 23 in Procedure 2). Finally,

the set Sj∗ having the minimum cost is selected (lines 29–33 in Procedure 2) as the best

set to be added to the current solution x. The index j∗ is added to the index set J̄ and all

items in the set Sj∗ are added to the set Ē. The procedure is run until all items in E have

been covered. Upon termination, the procedure yields a feasible solution x.

109

The LpRelax procedure is developed based on the weighted-sum scalarization

technique. The input parameters for the procedure are the matrices A,C,D and a vector λ.

Using the weight vector λ, the weighted-sum problem of the relaxed MOSCP is first solved

to yield a solution x (line 3 in Procedure 3). In general, the relaxed problems do not provide

feasible integer solutions to the original problems. To obtain integrality, x is rounded to

the nearest integer solution (lines 5–6 in Procedure 3). If the rounded x is feasible for the

original MOSCP, then the feasible solution is returned. Otherwise, the procedure calls the

Add procedure along with the infeasible solution x and the function WS to obtain a feasible

solution (line 13 in Procedure 3). In any case, upon termination, the procedure returns the

feasible solution x.

110

Procedure 2 Add
1: Input: A,C,D, λ, x, function type = WS or WCh
2: Initialization: InitialD = D

3: while Ē 6= E do .
4: for j = 1→ n do
5: if xj = 0 then . Select an unselected set Sj in the solution x
6: D = InitialD . Reset the matrix D
7: for i = 1→ m do
8: for q = 1→ p do
. Select the items not in Sj and not covered

9: if aij = 0 and ei ∈ E \ Ē and Di,q 6=∞ then
. Estimate the cost of Sj with respect to objective function q

10: Est(cqj) = Est(cqj) + cqDi,q

11: for k = 1→ m do . Update the matrix D
12: if Dk,q = Di,q then
13: Dk,q =∞
14: end if
15: end for
16: end if
17: end for
18: end for
19: if function type = WS then

20: EstW (Sj) =

p∑
q=1

λqEst(c
q
j)

21: end if
22: if function type = WCh then
23: EstC(Sj) = max

q∈Q
{λqEst(cqj)}

24: end if
25: else
26: EstW (Sj) =∞ and EstC(Sj) =∞ . Set the estimated cost of selected sets to ∞
27: end if
28: end for
29: if function type = WS then
30: j∗ = arg minj∈J{EstW (Sj)} . Select Sj∗ having the smallest cost estimation for WS
31: else
32: j∗ = arg minj∈J{EstC(Sj)} . Select Sj∗ having the smallest cost estimation for WCh
33: end if
34: J̄ ← J̄ ∪ {j∗}, Ē ← Ē ∪ Sj∗ , xj∗ = 1 . Update J̄ , Ē and x
35: end while

36: Return: x

Pseudo-code of the Add procedure

111

Procedure 3 LpRelax
1: Input A,C, λ,D
2: Initialization Ē = ∅

3: x← solve relaxed SOSCP with weight vector λ
4: for j = 1→ n do
5: if xj ≥ 0.5 then . Round the fractional solution
6: xj = 1
7: Ē = Ē ∪ Sj

8: else
9: xj = 0

10: end if
11: end for
12: if Ē 6= E then . Call the Add procedure for infeasible solutions
13: xw ← Add(A,C,D, λ, x,WS)
14: x = xw

15: end if

16: Return x

Pseudo-code of the LpRelax procedure

112

4.4.2 Second phase of the algorithm

In the second phase the same scalarization techniques discussed above are utilized

to improve the initial solutions provided by Phase 1. The underlying concept is to remove

redundant sets that were included in the initial solutions. A set Sj is said to be redundant

if feasibility of the current solution is guaranteed after removing the set from the solution.

The improvement process occurs in the ColReduce procedure by eliminating redundant sets

of a solution, if any are found. In this algorithm, a scalar cost is used to identify redundant

sets.

For a given weight vector λ, the scalar costs of the set Sj , denoted by C(Sj), are

defined in (4.9) and (4.10) based on the concepts of the weighted-sum function and the

weighted-Chebyshev function, respectively.

C(Sj) =

p∑
q=1

λqc
j
q (4.9)

C(Sj) = max
q∈Q
{λqcjq} (4.10)

We now give a overview of the ColReduce procedure. The input parameters for the proce-

dure are the matrices A,C,D, the vector λ, the feasible solution x and the functions WS

or WCh. The symbol PR denotes the index set of redundant sets and this set is initialized

as an empty set.

First, for a given solution x, the scalar cost value C(Sj) associated with each redun-

dant set is calculated based on the input function type (line 6 for function WS and line 9

for function WCh in Procedure 4) and the indices of these sets are added to the set PR.

Once all redundant sets have been found, starting from the set having the highest scalar

cost value, the sets are removed from the solution while the feasibility of the solution holds.

The procedure returns the improved solution x.

113

Procedure 4 ColReduce
1: Input A,C, λ,D, x, function type = WS or WCh
2: Initialization PR = ∅

3: for j = 1→ n do
4: if (xj = 1 and (E \ Sj) = E) then . Select redundant set Sj

5: if function type = WS then

6: C(j) =

p∑
q=1

λqc
q
j . Compute the weighted cost of Sj

7: end if
8: if function type = WCh then
9: C(Sj) = max

q∈Q
{λqcqj} . Compute the Chebyshevcost of Sj

10: end if
11: PR = PR ∪ {j} . Update the set PR
12: end if
13: end for
14: while PR 6= ∅ do
15: j∗ = arg maxj∈PR{C(Sj)} . Remove a redundant Sj having the maximum cost
16: if E \ Sj = E then
17: xj = 0
18: end if
19: PR = PR \ {j}
20: end while

21: Return x

Pseudo-code of the ColReduce procedure

114

4.5 Computational results

This section presents the computational results obtained using the proposed Add-

Improve Algorithm (AIA). The algorithm was implemented using MATLAB interface while

all experiments were carried out on a personal computer with a Pentium-IV processor

and 2 GB RAM. The performance of the algorithm is tested using BOSCPs generated by

Gandibleux ([1]) and MOSCPs with three objective functions. The test instances generated

by Gandibleux are divided into four different types A,B,C, and D based on the objective

functions. To generate the cost coefficients of MOSCPs with three objective functions, we

used a random number generator to produce uniform random integers between 1 and 100.

In addition, to generate each coefficient aij of the matrix A, first we used a random number

generator to produce uniform random numbers between zero and one. Then, if the random

number generated for aij is greater than 0.5 we assign aij to be one and otherwise we assign

aij to be zero.

The characteristics of all test problems are given in Table 4.1. In the left column

the names of the test instances are listed while the number of objectives (p) is listed in the

middle column. The number of items (m) and subsets (n) are given in the right column in

this table.

Several quality measures are available in the literature ([11], [43], [53], [112]) for eval-

uating the performances of algorithms which are developed to obtain solutions to MOPs.

In order to compare the quality of the approximations generated by the AIA with the

PMA proposed by Jaszkiewicz ([53]), the Chebyshev-scalarization measure (C measure)

proposed in [43] is used. In addition, the hyper-volume measure (H measure), one of the

most frequently applied measures for comparing the results of multiobjective optimization

algorithms, proposed in [112] is used. Let C(S) and H(S) denote the measures of a generic

approximation set S with respect to the C and H measures, respectively. Let YP , Ỹ and Ŷ

denote the Pareto set, the set of outcomes obtained by solving the relaxed SCP, and the

115

Test problems p m× n
2scp11A, 2scp11B, 2scp11C, 2scp11D 2 10× 100
2scp41A, 2scp41B, 2scp41C, 2scp41D 2 40× 200
2scp43A, 2scp43B, 2scp43C, 2scp43D 2 40× 200
2scp42A, 2scp42B, 2scp42C, 2scp42D 2 40× 400
2scp61A, 2scp61B, 2scp61C, 2scp61D 2 60× 600
2scp62A, 2scp62B, 2scp62C, 2scp62D 2 60× 600
2scp81A, 2scp81B, 2scp81C, 2scp81D 2 80× 800
2scp82A, 2scp82B, 2scp82C, 2scp82D 2 80× 800
2scp101A, 2scp101B, 2scp101C, 2scp101D 2 100× 1000
2scp102A, 2scp102B, 2scp102C, 2scp102D 2 100× 1000
2scp201A, 2scp201B, 2scp201C, 2scp201D 2 200× 1000
3scp40 3 40× 200
3scp60 3 60× 600
3scp80 3 80× 800
3scp100 3 100× 1000
3scp200 3 200× 1000

Table 4.1: Characteristics of the test instances

set of outcomes yield by the AIA, respectively.

In order to calculate the C measure of a set S given a set of weight vectors, the

Chebyshev distances from the points in S to the ideal point are calculated. Then, the av-

erage of these distances over the number of weight vectors is taken as the C measure. For

two sets S1 and S2, the set S1 is better than the set S2 with respect to this measure if

C(S1) < C(S2). In other words, this measure has to be minimized and its smaller value is

always better. Thus, C(YP) and C(Ỹ) always provide lower bounds for C(Ŷ).

Jaszkiewicz [53] uses the test problems generated by Gandibleux ([1]) and the C

measure for evaluating the performance of the PMA. We note that for some test instances

among those generated by Gandibleux our C(YP) and C(Ỹ) measures are different from

those obtained by [53]. We believe that this difference is due to the ideal point selected

in the calculation of these measures. Because of these differences, to better compare the

performance of the proposed AIA against the performance of the PMA, two ratios R1 and

R2 with respect to the AIA and PMA, respectively, are proposed.

Let C(YP), C(Ỹ) and C(Ŷ) denote the C measures of the sets YP , Ỹ and Ŷ , re-

116

spectively, and that are obtained with the AIA and let C(JYP), C(JỸ) and C(JŶ) denote

the C measures of the same sets and obtained with the PMA as reported in [53]. In Table

4.2, R1 = C(Ŷ)/C(YP) and R2 = C(JŶ)/C(JYP) while in Table 4.3, R1 = C(Ŷ)/C(Ỹ) and

R2 = C(JŶ)/C(JỸ). Clearly, a value of each ratio close to 1.0 indicates a good approxima-

tion of the Pareto set. In addition, a smaller ratio corresponds to a better algorithm when

comparing two algorithms. Tables 4.2 and 4.3 show the C measures and the corresponding

ratios R1, R2 for the test problems reported in column 1.

For example, in Table 4.2, both the C(YP) and the C(JYP) measures for the 2scp41A

test problem is 0.1051 and the ratios R1, R2 are 1.0314 and 1.0438, respectively. Thus, for

this test problem, the AIA performs better compared to the PMA. In both Tables 4.2 and

4.3, for each test problem, the better ratio is marked with the “*” sign which indicates the

better performing algorithm. As seen in Tables 4.2 and 4.3, the AIA performs better than

PMA for all test problems except for the test problems 2scp81B, 2scp201A, and 2scp201B.

AIA PMA

C(YP) C(Ŷ) R1 C(JYP) C(JŶ) R2

2scp41A 0.1051 0.1084 1.0314* 0.1051 0.1097 1.0438
2scp41B 0.0779 0.0813 1.0436* 0.0779 0.0821 1.0539
2scp41C 0.1254 0.1468 1.1706* 0.1073 0.1269 1.1827
2scp41D 0.0734 0.0816 1.1117* 0.0668 0.0888 1.3293

Table 4.2: Comparison of the algorithms using C(YP)

In Table 4.4, we report the C(YP) and C(Ŷ) measures for the test problems generated

by Gandibleux ([1]). For all those test problems, we were able to generate the Pareto set

using the ε-constraint method ([29]). As seen in Table 4.4, for many test problems the ratios

are close to 1 and so the AIA performs well.

The H measure gives the volume of the portion of the objective space dominated

by the Pareto set from below and bounded by the nadir point from above. Considering two

sets S1 and S2, H(S1) > H(S2) implies that the set S1 is better than the set S2 based on

the H measure. That is, this measure has to be maximized and the higher value is always

117

AIA PMA

C(Ỹ) C(Ŷ) R1 C(JỸ) C(JŶ) R2

2scp81A 0.0838 0.0842 1.0048* 0.0800 0.0844 1.0550
2scp81B 0.0816 0.0876 1.0735 0.0771 0.0815 1.0571*
2scp81C 0.0299 0.0544 1.8194* 0.0101 0.0205 2.0297
2scp81D 0.0168 0.0245 1.4583* 0.0137 0.0400 2.9197
2scp201A 0.0611 0.0941 1.5402 0.0590 0.0813 1.3780*
2scp201B 0.0612 0.0940 1.5359 0.0513 0.0659 1.2846*
2scp201C 0.0573 0.1602 2.7958* 0.0552 0.1649 2.9873
2scp201D 0.0837 0.4420 5.2808* 0.0789 0.4967 6.2953

Table 4.3: Comparison of the algorithms using C(Ỹ)

better. Thus, H(Yp) and H(Ỹ) always provide an upper bound on H(Ŷ). If all outcomes

produced by an algorithm are not in the region bounded by the Pareto set and the nadir

point, then the H measure is assigned to zero.

Table 4.5 shows the H(YP) and H(Ŷ) measures while Tables 6 shows the H(Ỹ) and

H(Ŷ) measures for the test problems generated by Gandibleux ([1]). In Table 4.6, for the

2scp201C and 2scp201D problems, we use the H(Ỹ) measure since we are not able to obtain

the Pareto sets. For example, in Table 4.5, H(YP) = 0.7770 for the 2scp41A test instance

while H(Y) = 0.7656. Since these values are very close to each other, the AIA outcomes are

also very close to the Pareto outcomes. As seen in Table 4.5 the H(YP) and H(Y) measures

are close to each other for many test problems except for 2scp62C. In Table 4.6, we note

large differences between the H measures of Ỹ and Ŷ for 2scp201C and 2scp201D problems.

It is not clear whether this difference is mainly due to the poor performance of the AIA or

due to a large gap between the sets Ỹ and Ŷ .

118

C(YP) C(Ŷ) R1 C(YP) C(Ŷ) R1

2scp11A 0.0910 0.0964 1.0593 2scp81A 0.0808 0.0850 1.0520
2scp11B 0.1151 0.1239 1.0764 2scp81B 0.0804 0.0876 1.0896
2scp11C 0.1884 0.2130 1.1305 2scp81C 0.0169 0.0250 1.4793
2scp11D 0.1719 0.1772 1.0308 2scp81D 0.0179 0.0210 1.1732
2scp42A 0.0838 0.0867 1.0346 2scp82A 0.0617 0.0704 1.1410
2scp42B 0.0724 0.0747 1.0318 2scp82B 0.0478 0.0526 1.1004
2scp42C 0.1066 0.1159 1.0872 2scp82C 0.2713 0.3654 1.3468
2scp42D 0.1426 0.1602 1.1234 2scp82D 0.0637 0.0882 1.3846
2scp43A 0.0834 0.0905 1.0851 2scp101A 0.0451 0.0526 1.1663
2scp43B 0.0668 0.0684 1.0240 2scp101B 0.0514 0.0589 1.1459
2scp43C 0.1049 0.1128 1.0753 2scp101C 0.1688 0.2545 1.5077
2scp43D 0.1152 0.1241 1.0773 2scp101D 0.1364 0.2157 1.5814
2scp61A 0.0706 0.0805 1.1402 2scp102A 0.0433 0.0507 1.1709
2scp61B 0.0818 0.0929 1.1357 2scp102B 0.0513 0.0594 1.1579
2scp61C 0.1159 0.1551 1.3382 2scp102C 0.1178 0.1516 1.2869
2scp61D 0.0657 0.0933 1.4201 2scp102D 0.1520 0.2106 1.3855
2scp62A 0.0807 0.0808 1.0012 2scp201A 0.0700 0.0878 1.2543
2scp62B 0.0611 0.0703 1.1506 2scp201B 0.0569 0.0769 1.3515
2scp62C 0.3907 0.6447 1.6501
2scp62D 0.1291 0.1580 1.2239

Table 4.4: C measures

119

H(YP) H(Ŷ) H(YP) H(Ŷ)

2scp11A 0.8169 0.7988 2scp62B 0.9122 0.8874
2scp11B 0.7241 0.6912 2scp62C 0.3147 0.0000
2scp11C 0.4498 0.2993 2scp62D 0.7503 0.6424
2scp11D 0.4549 0.4244 2scp81A 0.8502 0.8333
2scp41A 0.7770 0.7656 2scp81B 0.8540 0.8303
2scp41B 0.8635 0.8504 2scp81C 0.9794 0.9537
2scp41C 0.7344 0.6461 2scp81D 0.9835 0.9559
2scp41D 0.8911 0.8608 2scp82A 0.9080 0.8802
2scp42A 0.8439 0.8312 2scp82B 0.9436 0.9311
2scp42B 0.8794 0.8714 2scp82C 0.7462 0.4739
2scp42C 0.7645 0.7283 2scp82D 0.9310 0.8320
2scp42D 0.6885 0.6369 2scp101A 0.9468 0.9267
2scp43A 0.8275 0.8123 2scp101B 0.9336 0.9161
2scp43B 0.8721 0.8599 2scp101C 0.8583 0.5739
2scp43C 0.7730 0.7350 2scp101D 0.8448 0.5715
2scp43D 0.7212 0.6860 2scp102A 0.9490 0.9324
2scp61A 0.8795 0.8436 2scp102B 0.9347 0.9157
2scp61B 0.8521 0.8188 2scp102C 0.7532 0.5307
2scp61C 0.7383 0.5487 2scp102D 0.6143 0.2827
2scp61D 0.8851 0.7872 2scp201A 0.8869 0.8268
2scp62A 0.8133 0.8352 2scp201B 0.9073 0.8155

Table 4.5: H(YP) and H(Ŷ) measures

H(Ỹ) H(Ŷ)

2scp201C 0.9134 0.3769
2scp201D 0.8467 0.0000

Table 4.6: H(Ỹ) and H(Ŷ) measures

120

Figure 4.1: Comparison of outcomes obtained by the AIA with the Pareto outcomes for
2scp41A

Figures 4.1, 4.2, 4.3, 4.4 and 4.5 depict the Pareto outcomes and the outcomes

obtained with the AIA for the test problems 2scp41A, 2scp41B, 2scp41C, 2scp41D, 2scp201B

and 2scp41C, respectively. As seen in these figures, the Pareto outcomes and the outcomes

obtained with the AIA are very close to each other. In Figures 4.3 and 4.4, we observe that

the lower envelopes obtained by connecting adjacent Pareto points have non-convex shapes

for the 2scp41C and 2scp41D test problems. Despite the nonconvexity, the AIA obtains

outcomes located in the non-convex regions. Also, as seen in Figure 4.5, the AIA does

not find any Pareto outcomes for the 2scp201B test problem, but rather obtains outcomes

that are very close to the Pareto outcomes. Figure 4.6 depicts the points in the set Ỹ and

the AIA outcomes for the 2scp201C test problem. We note that there is a very large gap

between the points in Ỹ and the AIA outcomes. Again, it is not clear whether this gap

is mainly due to the poor performance of the AIA on this test problem or due to the gap

between the sets Ŷ and Ỹ .

In Table 4.7, we report the C(Ỹ), C(Ŷ), H(Ỹ) and H(Ŷ) measures for the the test

problems with three objective functions. The set Ỹ is used since we are not able to find

121

Figure 4.2: Comparison of outcomes obtained by the AIA with the Pareto outcomes for
2scp41B

Figure 4.3: Comparison of outcomes obtained by the AIA with the Pareto outcomes for
2scp41C

122

Figure 4.4: Comparison of outcomes obtained by the AIA with the Pareto outcomes for
2scp41D

Figure 4.5: Comparison of outcomes obtained by the AIA with the Pareto outcomes for
2scp201B

123

Figure 4.6: Comparison of outcomes obtained by the AIA with the relaxed outcomes for
2scp201C

C(Ỹ) C(Ŷ) H(Ỹ) H(Ŷ)

3scp40 0.0093 0.0128 0.5876 0.3448
3scp60 0.3836 0.5124 0.7386 0.6764
3scp80 0.2297 0.2978 0.6807 0.6302
3scp100 0.0008 0.0039 0.7651 0.2602
3scp200 0.2051 0.2412 0.7285 0.0000

Table 4.7: C and H measures for MOSCP with three objective functions

Pareto sets YP sets for problems with three objective functions. Table 4.7 shows that

both C(Ỹ) and C(Ŷ) are approximately equal to each other for all test problems. Thus we

conclude that the AIA performs well. In addition, based on the H measure, we observe

that the AIA performs well on the test problems 3scp60 and 3scp80, while it provides poor

performance on the test problems 3scp100 and 3scp200. However, based on these results,

we conclude that the AIA performs well on MOSCPs with a higher number of objectives.

124

4.6 Conclusion

A two-phase heuristic algorithm, named AIA, to approximate the Pareto set of the

MOSCP is proposed based on two scalarization methods. A set of initial feasible solutions is

generated in the first phase and the initial solutions are improved in the second phase. Two

well-known measures, ([43], [112]), are used to evaluate the quality of approximation and

the performance of the AIA is compared with the performance of the PMA ([53]). Although,

it can not be decided that one heuristic algorithm is superior to another, the AIA performs

better than the PMA on a majority of the test problems for which a comparison is possible.

Additionally, based on other numerical and graphical results, we note that the AIA performs

well on other test problems including problems with three objective functions.

Future research may lead in several directions. To improve the quality of the initial

solutions, it might possible to consider other optimization schemes than the two methods

considered in the first phase. In addition, more sophisticated improvement strategies can

be used to improve the solutions in the second phase. Conducting additional numerical

testing using MOSCPs with a higher number of objective functions will also be helpful.

125

Chapter 5

A Hierarchical Approach to

Designing Compact Ecological

Reserve Systems

5.1 Introduction

Methods to design reserve systems for ecological species have been considered by

several papers in the recent literature. In general, the problem is to find a subset of reserve

sites that minimizes the cost of establishing reserve sites containing a given set of species

or that maximizes the number of species present under a given budget constraint. Both of

these types of reserve site selection problems can be formulated as integer programming (IP)

problems and represented as either a set covering problem (SCP) or a maximal covering

problem (MCP).

In the set covering formulation, given a set of target species and a set of potential

sites, we wish to determine the least-cost reserve system that satisfies a specified minimum

representation for each species. In the maximal covering formulation, with a limited con-

servation budget, the objective is to determine a reserve system that includes the maximum

number of species. These aspects have been considered in [75, 88] as well as in other papers.

126

In practice, reserve design problems need to consider more than just species coverage

and budget limitation [66]. Other spatial characteristics such as the distance between se-

lected reserve sites and the shape of the reserve system should be considered as well. Several

mathematical models that consider spatial optimization have been proposed to address the

important issues of representing species within compact reserve systems [68, 71, 77, 105].

Such approaches make it possible to design a better spatial arrangement for a reserve sys-

tem by considering attributes such as contiguity and the shape of the selected sites.

Because the SCP and MCP formulations do not explicitly consider spatial relation-

ships between the sites selected for the reserve system, the resulting reserve system may

be highly fragmented. This may be desirable in certain cases, but more generally species

can disappear quickly from isolated fragments through well-known processes: chance vari-

ations in births, death and sex of individuals (demographic stochasticity), the random loss

of genetic variation (genetic drift), inbreeding, disease, and the like [35, 84]. Fragmented

populations are also less able to move or evolve to survive changing conditions, and all these

threats are greater in rare species, precisely the ones we wish to protect with reserves. In

addition, a contiguous reserve system helps species to roam freely within the system in the

face of fluctuations in density, threats (e.g., predators, fires), and environmental conditions

(e.g., drought, climate change) without leaving the space. This will add to species resilience

and persistence.

More compact reserve systems also help to reduce the edge effects of the system,

which are generally negative [107]. For the same reserve area, a longer boundary will

cost more to fence and patrol. A longer boundary will also allow more protected animals

to leave the reserve, and will allow more threats from the outside to enter. Well-known

threats associated with park boundaries include poaching, wood cutting, grazing, invasive

and exotic species, disease, predation by feral cats and dogs, and altered climate from

neighboring deforested lands. A variety of shape measures have been proposed in reserve

selection models to represent compactness. Some of the proposed measures are the boundary

length of the reserve, the ratio of boundary length to area, and the average distance between

127

sites in the reserve system. A review of such measures and their importance for the reserve

design problem are discussed in detail by Williams et al. [106].

Therefore contiguity and compactness can be important in realistically modeling re-

serve site selection problems. A variety of formulations have been proposed to address these

contiguity and compactness attributes. Some formulations have explicitly considered conti-

guity and compactness together (using a linear combination) while others have considered

only one attribute. We now briefly discuss some of these studies.

Shirabe [98] proposed an exact formulation for structural contiguity that can be

incorporated into any mixed integer programming model. According to this model, the

resulting system enforces contiguity regardless of the other included criteria such as com-

pactness. Xiao et al. [109] proposed an evolutionary algorithm to maximize the relative

contiguity in reserve network design. Onal and Briers [78] developed a linear IP formulation

that uses a graph theory perspective to obtain a connected reserve system. Although this

formulation ensures contiguity, it contains some “gap” sites that are to be excluded from

the final solution. Therefore their objective was to minimize the total number of gap sites.

They used additional variables and constraints to avoid cycle formation. Onal and Wang

[79] developed an improved linear IP formulation, also using a graph theory approach. Their

objective was again to minimize the total number of gap sites. The main difference between

these two formulation is the method used to avoid cycle formation. Although the model in

[78] explicitly uses additional constraints and variables to avoid cycles, the improved model

[79] does not. Rather, if cycles are present in the solution, new constraints are added and

the model is solved again. The authors of the improved model [79] mentioned that their

model is computationally more efficient because of its reduced size. Both of these formula-

tions focus on the structural contiguity of a reserve system. Hof and Flather [47] developed

a different nonlinear IP model that preserves the contiguity of the system by controlling

the shape, requiring reserves to be either circular or rectangular. This seems unnecessarily

restrictive, as distributions of populations and their habitats are unlikely to match these

patterns. Wu and Murray [108] proposed an unbiased relative measure of contiguity of a

128

reserve system ranging from zero to one based on graph theory and spatial interaction.

Several mathematical models have been proposed to group disconnected sites to-

gether into compact reserves. A collection of adjacent reserve sites defines a cluster. In

these models [33, 34, 68, 71, 72, 76] such reserves of compact shapes are generated as clus-

ters. In an ecological sense, clusters might correspond to larger areas of single habitats or

even different habitats. This might enhance opportunities for local dispersal, and preserve

species interactions across the larger landscape. On the other hand, separated clusters

(habitats) may be desirable because such separation will preserve species in the face of

natural disasters such as destruction of the habitat by fire.

Onal and Briers [76] developed two IP approaches to the problem of reserve selection

to obtain compact reserve systems. In the first approach, they minimized the sum of

distances between all pairs of sites included in the reserve system. In the second approach, an

alternative formulation minimizes the largest distance between selected sites instead of the

total distance. Fischer and Church [33] presented a linear IP formulation for minimization

of the boundary length to promote reserve aggregation and compactness.

Fischer and Church [34] developed a bi-objective formulation by considering both the

boundary length and the site selection cost. McDonnell et al. [68] developed a bi-objective

nonlinear IP formulation that involves a weighted combination of the boundary length of

the selected clusters and the area of selected sites. They mentioned that minimizing the

area of the selected sites is equivalent to minimizing the cost of the selected sites. Nalle

et al. [71, 72] developed a nonlinear formulation that explicitly addresses the compactness

and shape of the selected reserve sites. This model minimizes a weighted combination of

two measures: the boundary length of selected clusters and the distance between all pairs

of selected sites (even those in disjoint clusters).

The current paper develops a bi-objective optimization model for clustering reserve

sites into a relatively small number of compact groups. One difference between this new

formulation and those given in [71, 72] is the way we measure distance between selected

sites. We measure the distances within each cluster, whereas the models in [71, 72] measure

129

the distances between all selected sites whether such sites are in the same cluster or differ-

ent clusters. We argue that consideration of distance within clusters rather than the total

distance between all sites may be more meaningful. Since each cluster might be treated as

a different habitat, in general it is not important to consider the distance between different

habitats. In fact, minimizing distances between separate clusters will tend to yield reserve

clusters that are close to one another, at a cost of a reduced ability to capture variation

in species that we typically see with distance. In addition, there are reduced biological

interactions among geographically separated clusters. For example if one habitat represents

a mountain and the other habitat represents a swamp, then the species they support may

be quite different and unlikely to interact, so there would be no need to try to find some

compromise site in between to protect. Therefore, there is no need to measure the distance

between these two habitats to obtain compact clusters. Thus if a relatively small distance

can be maintained between all sites within a given cluster, this will assure maximum inter-

actions among different species within the cluster. Therefore we concentrate on minimizing

the distance within clusters in designing compact clusters.

When creating a compact cluster, the boundary length of the cluster is especially

important. For example, Figure 5.1(a) and Figure 5.1(b) illustrate two possible clusters,

each containing four sites. The cluster in Figure 5.1(a) has ten boundary edges while the

cluster in Figure 5.1(b) has eight boundary edges. Since each site is a unit square, the

number of boundary edges is equivalent to the overall boundary length. Visually it is

clear that the cluster in Figure 5.1(b) is more compact than the cluster in Figure 5.1(a).

Therefore when compact clusters are desired, it seems reasonable to pick clusters having

a small boundary length relative to the area. In our models we therefore treat boundary

length as our primary objective.

130

1 2 3 4

1 2

3 4

(a) (b)

Figure 5.1: Two clusters on four sites with different boundary lengths

But simply minimizing the boundary length does not ensure compact clusters for

the system. To illustrate, Figure 5.2 shows two clusters, each containing three (unit square)

sites and each having the same boundary length eight. Consider now the Euclidean distance

between the centers of each site in a cluster. The sum of Euclidean distances between distinct

sites in Figure 5.2(a) is 4 while the corresponding sum in Figure 5.2(b) is 3.41. Visually

it is clear that the cluster in Figure 5.2(b) is more compact than that in Figure 5.2(a).

Therefore it seems reasonable to select among clusters with the same boundary length one

having the smallest sum of (Euclidean) distances. The within cluster distance thus provides

a secondary criterion. As suggested by this example, our strategy for creating a compact

cluster involves two steps. We first consider the boundary length of the cluster and among

all such clusters of minimum boundary length we identify a cluster that minimizes the

distance between all pairs of sites within the cluster.

1 2 3

1 2

3

(a) (b)

Figure 5.2: Two clusters on three sites with the same boundary length

In general we consider both aspects in designing a compact reserve system containing

several clusters: minimizing the boundary length of all clusters and minimizing the total

distances between all pairs of sites within each cluster. This should lead to a reasonably

compact reserve system. Thus we formulate the reserve design problem using an appropriate

hierarchical optimization model. This is another distinguishing feature of our model.

131

To minimize the hierarchical combination of boundary length and then total within

cluster distance, we use a technique from multi-objective programming [29] that appropri-

ately weights these two objectives. The combining weight U is specified in a particular

manner to give priority to minimizing the boundary length as the primary objective. We

can calculate this weight U in advance by considering the sum of l1 (rectilinear) distances

between all possible pairs of sites in the reserve.

The objective function of our optimization model is thus to minimize U times the

boundary length of all clusters plus the sum of Euclidean distances between sites within the

designated clusters. This formulation also incorporates the requirements to cover all target

species with a limited conservation budget.

Our initial formulation is a nonlinear integer programming model and therefore

solving the model exactly is time consuming. In order to solve the model more efficiently, we

convert the proposed model into a linear mixed integer program. Details of this conversion

are discussed in Section 5.2. In Section 5.3 we provide numerical examples to compare

computational aspects of the two models discussed in Section 5.2. Additional data sets

are then used to explore more fully the computational behavior of the linear mixed integer

programming model as parameters of the model are varied. In Section 5.4 we apply our

optimization approach to a standard data set based on Oregon field data. Section 5.5

summarizes our work and briefly outlines a heuristic approach to the design of compact

reserve systems.

5.2 Optimization Models

This section presents optimization models that implement the proposed hierarchical

approach for protecting certain species occurring within a given region. It is assumed that

the prevalence of existing species does not change with time. Also, the entire region is

considered to be partitioned into a number of potential reserve sites. Two sites are said to

be adjacent if they share a common boundary.

132

The models developed in this section assume that the study region is partitioned

into uniformly sized sites. For simplicity, the region is considered to be a rectangular n×m

grid of uniform sites and each site is a 1× 1 unit square. (A grid of hexagonal sites can also

be easily accommodated.) Let V denote the set of sites (or nodes) in the reserve system

and let E denote the set of edges (adjacencies) in the system. In the given n × m grid,

any node v ∈ V can be written as (i, j) where i = 1, . . . , n and j = 1, . . . ,m. If two nodes

v1 = (i, j), v2 = (k, l) ∈ V are adjacent (i.e., their corresponding sites share a boundary)

then the ordered pair (v1, v2) = ((i, j), (k, l)) ∈ E. For a rectangular grid system, each

site can be adjacent to at most four other sites. Other notation used in our mathematical

models is described below:

S = total number of conservation species to be protected

C = maximum number of possible clusters

As = set of sites inhabited by species of type s where s = 1, 2, . . . , S

ns = required number of selected sites for species s where s = 1, 2, . . . , S

N(i, j) = {(k, l) ∈ V : ((i, j), (k, l)) ∈ E}, the set of nodes adjacent to node (i, j)

D(i, j) = {(k, l) ∈ V : either (k ≥ i and l > j) or (k > i and l ≤ j)}

dij,kl = Euclidean distance between the center of site (i, j) and the center of site

(k, l)

bij = budgetary cost of conserving or purchasing site (i, j) ∈ V

B = total budget available for the reserve system.

5.2.1 A nonlinear integer programming model

In this model, we define decision variables to indicate which sites are included in

the reserve and their allocation to clusters:

Xcij =

 1 if site (i, j) is included in Cluster c

0 otherwise.

133

Here, Cluster 1 denotes the sites not selected for conservation and the remaining clusters

contain those sites that are selected for conservation. Clusters c = 2, 3, . . . , C are called real

clusters since they are the ones containing the protected species. Because Cluster 1 is not

used for conservation purposes, we actually have at most (C − 1) real clusters.

The 0-1 quadratic optimization model can be written as follows:

(P1) minimize

C∑
c=2

∑
(i,j)∈V

∑
(k,l)∈D(i,j)

dij,klXcijXckl + U ×

 ∑
(i,j)∈V

∑
(k,l)∈N(i,j)

X1ij(1−X1kl)



subject to

C∑
c=2

∑
(i,j)∈As

Xcij ≥ ns, for all s = 1, 2, . . . , S (5.1)

C∑
c=2

∑
(i,j)∈V

bijXcij ≤ B (5.2)

Xc1ij +Xc2kl ≤ 1, for all ((i, j), (k, l)) ∈ E and c1 > 1, c2 > 1, c1 6= c2 (5.3)

C∑
c=1

Xcij = 1, for all (i, j) ∈ V (5.4)

Xcij ∈ {0, 1} , for all (i, j) ∈ V and c ≥ 1

Let us consider each part of model (P1) in detail. The objective function consists of two

parts: the weighted sum of (a) the distances between sites within the same real clusters and

(b) the boundary length of all real clusters. The parameter U is chosen to be sufficiently

large to give priority to minimizing the boundary length.

The first summation in the objective function calculates the total Euclidean distance

between sites (i, j) ∈ V and (k, l) ∈ D(i, j) within real clusters. Here the set D(i, j) contains

134

the distinct sites that occur “after” site (i, j) in a left-right, top-bottom ordering. The

second summation gives the total number of boundary edges of all real clusters and thus

the boundary length of all selected sites. We justify this claim as follows.

If both (i, j) and (k, l) are selected for Cluster 1, then X1ij = X1kl = 1 and the

product X1ij(1 − X1kl) = 0 so no edge is counted towards the total boundary length. If

(i, j) is in Cluster 1 and (k, l) is in a real cluster, then the product X1ij(1−X1kl) = 1 since

X1kl = 0 and thus 1 is counted towards the total number of boundary edges. That is, since

a real cluster is surrounded by Cluster 1, an edge is counted in the product above precisely

when (i, j) is in Cluster 1 and (k, l) is in a real cluster. Therefore the second summation of

the objective function gives the total number of boundary edges of all selected real clusters.

Counting the total number of boundary edges then gives the boundary length of all clusters

since we assume unit sized sites.

In the formulation of model (P1), it is convenient to place a border of Cluster 1 sites

surrounding the actual reserve system. This ensures that the outermost reserve sites are

all adjacent to Cluster 1. Therefore if we have an n×m grid we are actually modeling an

(n− 2)× (m− 2) reserve system.

The constraints of the model are of the following types. Constraint (5.1) is the

species representation requirement which states that to protect species of type s adequately,

we must select at least ns sites in which species s is present. This general formulation allows

the flexibility to protect some species – those of greater conservation value – in more reserves

than others. Since only the selected reserve sites contribute to species representations, we

consider only real clusters (c > 1) in this constraint. Constraint (5.2) guarantees that

the total cost of selected sites in the real clusters cannot exceed the conservation budget.

Constraint (5.3) enforces that if sites (i, j), (k, l) are included in two different real clusters

then they do not share a boundary. This ensures that real clusters are disjoint from one

another. Constraint (5.4) states that each site is assigned to exactly one cluster c ≥ 1.

135

5.2.2 A linear integer programming model

The objective function for model (P1) is a quadratic function with nmC binary

variables. Unfortunately, the second summation is not a convex function of the variables

Xcij and so model (P1) is a nonlinear, nonconvex formulation. In order to model the problem

more effectively, we convert all quadratic terms of the objective function into linear terms

by replacing each quadratic term XcijXckl by a new binary variable Ycijkl :

Ycijkl =

 1 if both (i, j), (k, l) ∈ V are assigned to Cluster c

0 otherwise.

The following constraints ensure that Ycijkl equals 1 if and only if sites (i, j) and (k, l) are

both selected for Cluster c ≥ 1:

Ycijkl ≤ Xcij , for all (i, j), (k, l) ∈ V (5.5)

Ycijkl ≤ Xckl, for all (i, j), (k, l) ∈ V (5.6)

Xcij +Xckl − Ycijkl ≤ 1, for all (i, j), (k, l) ∈ V (5.7)

Ycijkl ≥ 0, for all (i, j), (k, l) ∈ V (5.8)

Namely, constraints (5.5)–(5.6) ensure that Ycijkl must equal 0 unless both Xcij and Xckl

equal 1, while constraint (5.7) ensures that if both (i, j) and (k, l) are selected for Cluster c,

then Ycijkl must equal 1. Thus Ycijkl = XcijXckl always holds and the following linearized

model (P2) does not change the optimal solution of the original quadratic model (P1):

(P2) minimize
C∑
c=2

∑
(i,j)∈V

∑
(k,l)∈D(i,j)

dij,klYcijkl + U ×

 ∑
(i,j)∈V

∑
(k,l)∈N(i,j)

X1ij − Y1ijkl


136

subject to

C∑
c=2

∑
(i,j)∈As

Xcij ≥ ns, for all s = 1, 2, . . . , S (5.9)

C∑
c=2

∑
(i,j)∈V

bijXcij ≤ B (5.10)

Xc1ij +Xc2kl ≤ 1, for all ((i, j), (k, l)) ∈ Eand c1 > 1, c2 > 1, c1 6= c2 (5.11)

C∑
c=1

Xcij = 1, for all (i, j) ∈ V (5.12)

Ycijkl ≤ Xcij , for all (i, j) ∈ V, (k, l) ∈ N(i, j) and c = 1 (5.13)

Ycijkl ≤ Xckl, for all (i, j) ∈ V, (k, l) ∈ N(i, j) and c = 1 (5.14)

Xcij +Xckl − Ycijkl ≤ 1, for all (i, j) ∈ V, (k, l) ∈ D(i, j) and c > 1 (5.15)

Xcij ∈ {0, 1} , for all (i, j) ∈ V and c ≥ 1

Ycijkl ≥ 0, for all (i, j) ∈ V, (k, l) ∈ N(i, j) and c = 1

Ycijkl ≥ 0, for all (i, j) ∈ V, (k, l) ∈ D(i, j) and c > 1

This model incorporates further simplifications. Consider constraints (5.13)–(5.14). As ex-

plained earlier, Ycijkl ≤ Xcij , Ycijkl ≤ Xckl and Ycijkl ≥ 0 ensure that Ycijkl must equal zero

unless both (i, j) and (k, l) are selected. The first summation in the objective function of

model (P2) contains Ycijkl for c > 1 with a positive weight dij,kl. Thus in this case the

objective function forces Ycijkl to be as small as feasibly possible in order to minimize the

137

objective function value. Therefore it is unnecessary to define (5.13)–(5.14) explicitly for

real clusters c > 1. Moreover, variables Y1ijkl occur in measuring the boundary length of a

real cluster, where (i, j) ∈ V and (k, l) ∈ N(i, j). Thus constraints (5.13)–(5.14) only need

to be defined for adjacent sites when c = 1.

The second summation in the objective function contains −Ycijkl with c = 1. In

this case the negative sign in the objective function forces all Ycijkl to be as large as feasibly

possible in order to achieve a minimum value. Since constraint (5.15) ensures that Ycijkl is

equal to one when both sites (i, j) and (k, l) are selected, it is unnecessary to define con-

straint (5.15) explicitly for Cluster 1. Moreover to measure the distance between two sites

(i, j) and (k, l), we consider (i, j) ∈ V and (k, l) ∈ D(i, j). Therefore when c > 1, constraint

(5.15) only needs to be defined for (i, j) ∈ V and (k, l) ∈ D(i, j).

The binary variables Ycijkl are then defined for the two index sets: {(i, j) ∈ V, (k, l) ∈

D(i, j), c > 1} and {(i, j) ∈ V, (k, l) ∈ N(i, j), c = 1}. Moreover, the nature of the objec-

tive function and constraints (5.13)–(5.15) allows us to relax the binary Y variables to be

continuous variables: namely Ycijkl ≥ 0.

Model (P2) is then a linear, mixed integer optimization model. As seen in Table

5.1, it contains a larger number of variables and constraints compared to model (P1). But

if we consider the efficiency of solving these optimization models, the second formulation is

expected to be computationally preferable because it is a linear (mixed) integer program-

ming model as opposed to a nonlinear, nonconvex integer model. This expectation is clearly

shown by our computational experience, discussed in Section 5.3.

model (P1) model (P2)

binary variables (X) O(nmC) O(nmC)
continuous variables (Y) O(n2m2C)
constraints O(nmC2) O(n2m2C)

Table 5.1: Relative sizes of the two models

138

5.3 Numerical Results

This section presents computational results with models (P1) and (P2) on a variety

of synthetic data sets. All experiments were carried out on a Samsung computer with a

Intel Core i3-2370M processor and 4 GB RAM. Each optimization problem was formulated

using OPL (Optimization Programming Language), a modeling language for Linear and

Integer Programming. OPL uses the solver CPLEX, version 12.4 ([2]).

5.3.1 Comparison of models (P1) and (P2)

We first study models (P1) and (P2) on the 12 × 12 study region shown in Figure

5.3. This reserve system contains three species a, b, c. Those species present in each site of

the grid are so indicated in Figure 5.3.

Figure 5.3: 12× 12 study region

Suppose that we need to conserve at least 20 sites for species of type a, 20 for species

of type b, and 15 for species of type c. As seen in Figure 5.3, initially the region contains

57 potential sites for species of type a, 53 for species of type b, and 51 for species of type

c. For simplicity, we assume that the budgetary cost of conserving each site is 1, so the

budget constraint simply becomes an upper bound UB on the number of selected sites. The

maximum number of allowable clusters C for this problem is set equal to 3.

Case 1

139

When UB = 20, the optimal solution given by both models (P1) and (P2) is depicted

in the left portion of Figure 5.4. Since we allowed a maximum of three clusters (C = 3), the

optimal solution contains two real clusters whose sites are denoted 2 and 3, and are shown

shaded in Figure 5.4. Those sites of Cluster 1 (the non-selected sites) are designated by an

empty cell. The species coverage requirements for each type are 20, 20, 15 respectively and

the selected two real clusters cover 20 of type a, 20 of type b, and 20 of type c. It is clear

that the two selected real clusters display ideal compact shapes.

Case 2

Here a maximum of UB = 35 sites can be selected and we use the same species cov-

erage requirements. The optimal solution for this case given by both models (P1) and (P2)

is depicted in the right portion of Figure 5.4. Although 35 sites are allowed, the optimal

solution produced used only 30 sites to satisfy all stipulated species coverage requirements.

Here 20 species of type a, 22 of type b, and 20 of type c are covered by the optimal so-

lution. Note that only a single real cluster with boundary length 22 is created, denoted 2

in the right portion of Figure 5.4, in contrast to the real two clusters in the left portion of

Figure 5.4 (having total boundary length 26). This reduction in boundary length occurs by

increasing the number of allowable sites in the reserve system.

Figure 5.4: Optimal solutions for Case 1 (UB = 20) and Case 2 (UB = 35), 12× 12 study

region

140

Model (P1) took nearly 62 seconds to provide the globally optimal solution whereas

model (P2) took only 2 seconds to provide the same optimal solution for Case 1. For Case

2, model (P1) required 20 minutes and 45 seconds while model (P2) took 22 seconds. This

substantial reduction in computation time was observed in all test instances, so we use

model (P2) rather than model (P1) in all our subsequent numerical investigations.

5.3.2 Varying the number of clusters

In this section we discuss how the optimal solutions behave when the allowable

number of clusters C is changed. We illustrate this by considering a sample 16× 16 reserve

system involving species a, b, c; see Figure 5.5.

Figure 5.5: Sample conservation region with 256 sites

Model (P2) was then solved using C = 2, C = 3, and C = 4. As we increase

the number of allowable clusters for the 16 × 16 grid, the optimal boundary length BL,

the optimal within cluster distance DIS, and the elapsed CPU time (in seconds) are given

in Table 5.2. Again we notice that the CPU times increase only modestly with problem size.

141

Number of clusters BL DIS CPU time (s)

2 56 13935.90 7

3 56 3483.86 49

4 56 3483.86 58

Table 5.2: Optimal solution values and CPU times for the 16× 16 study region

Figures 5.6(a–c) show the clusters selected for conservation when C = 2, C = 3, and

C = 4, respectively. Even though C = 2 specifies just one real cluster, model (P2) identifies

two disjoint clusters, as seen in Figure 5.6(a). A slightly different set of clusters is produced

for C = 3. Namely site (9, 4) of Cluster 2 in Figure 5.6(a) has migrated to position (15, 11)

of Cluster 3 in Figure 5.6(b). Increasing C = 3 to C = 4 does not however change the

optimal set of clusters. It is important to notice from Table 5.2 that the boundary length

56 remains unchanged as C is varied, whereas the total within cluster distance decreases

from 13935.90 to 3483.86 for C = 3 and C = 4, respectively. When C = 2, we have one

real cluster and the distance is measured within and between the two identified components

of the single real Cluster 2 (Figure 5.6(a)). But when C = 3 and C = 4, the distance is

measured only within each of the two identified clusters, namely, Cluster 2 and Cluster 3

(Figures 5.6(b–c)). This explains why increasing the number of clusters significantly de-

creases the optimal within cluster distance DIS.

142

Figure 5.6: Optimal solutions using C = 2, 3, 4 for the 16× 16 study region

In this example, increasing the number of allowed clusters C does not change the

total boundary length BL. Also we note that the optimal solution stays the same for C

sufficiently large (here C ≥ 3). These properties can be shown to hold more generally using

model (P2).

Since model (P2) produces optimal solutions with the same boundary length for all

C ≥ 2 and since the optimal solution obtained for C = 2 provides reasonable clusters, we

use C = 2 in our models instead of using larger values of C. This will enable us to reduce

the required CPU time significantly, yet identifying a near-optimal clustering.

5.3.3 Varying the coverage of species

In this section we discuss how the optimal solution behaves when the required num-

ber of species of each type is changed. We illustrate this using the data set presented in [83].

In this example, 16 hypothetical species are distributed across a reserve system containing

143

100 sites. Since our formulation assumes a border of non-selected sites, we therefore treat

this test problem as a 12× 12 grid. We now consider two scenarios.

Case 1

First suppose we need to cover at least one of each species. The optimal solution

for this case when C = 2 is depicted in Figure 5.7. Model (P2) identifies a solution with

three clusters, which is the same solution as that reported in [83]. This same clustering

would have been obtained had we used C > 2 in our model. Also, it should be mentioned

that increasing the maximum number of selected sites UB from 3 to 30 does not change the

optimal solution.

Figure 5.7: Optimal solution using C = 2 with each species covered at least once

Case 2

Now suppose we wish to cover at least two of each species. For this case we obtain

three different solutions as the maximum number of selected sites is varied for C = 2.

These optimal solutions are depicted in Figure 5.8, when UB is specified as 6, 7–8, and > 8

respectively. As UB increases, the clusters become fewer in number and the reserve system

becomes more compact in shape.

144

Figure 5.8: Optimal solutions using C = 2 with each species covered at least twice

5.4 Oregon data set

In this section we consider the performance of model (P2) on the Oregon Terrestrial

Vertebrate data set reported in [19], in which a grid based distribution map was created

using coverage of 635 km2 hexagons. There are 441 sampling units containing 426 terrestrial

vertebrate species. For our study, we selected a study region defined by an 11×16 hexagonal

grid. This study region consists of 176 hexagonal units containing 337 species. Since our

formulation assumes a border of non-selected sites, we therefore treat this reserve system

as a 13× 18 hexagonal grid.

We summarize the results of applying optimization model (P2) to this hexagonal

system. We consider two scenarios.

145

5.4.1 Varying the species to be covered

Here we study how the optimal solution behaves when the species to be covered is

changed from rare to common. Specifically, the species to be covered varies from protecting

only those species present in exactly one site to protecting all species. Let FB denote the

specified frequency bound, giving an upper bound on the number of sites in which species

can be present. Table 5.3 shows properties of the optimal configuration obtained using

C = 2 and UB = 60, as FB is varied. We record the optimal boundary length BL, the

optimal within cluster distance DIS, and the CPU time taken for each case.

FB Number of species BL DIS CPU time (s)

1 13 70 614 5
2 18 90 1066 27
3 22 96 1529 48
4 30 104 1805 79
5 38 104 1956 81
10 55 108 2130 119
13 69 108 9817 192

176 (all sites) 337 108 9817 195

Table 5.3: Optimal solution values and CPU times for the 13× 18 hexagonal grid when FB
is varied

Figures 5.9(a–h) display the optimal clusters found for each case and the newly

added sites are shown in black. For example, to cover only the rarest species (FB = 1), the

optimal BL is 70 and the optimal DIS is 614. It should be mentioned that as we increase

FB from 5 to 9 sites, or from 10 to 12 sites, the optimal solution stays the same. Also, once

FB is 13 or greater the same optimal solution persists. In every case, the optimal solution

used the maximum number of sites (60). Further, notice that when FB is changed from 4

to 5 sites (Figures 5.9(d–e)) or from 10 to 13 sites (Figures 5.9(f–g)), the solution has the

same optimal BL but an increased optimal DIS. This occurs since in covering more species,

the optimal solution uses more sites and so the within cluster distance is increased. Yet

by adding new sites, we can improve the overall compactness and shape of the solution.

Finally, while the solution time grows with the size of the formulated model, it still remains

146

modest (always less than 4 minutes).

Figure 5.9: Optimal solutions using C = 2 for the 13×18 hexagonal grid when FB is varied

5.4.2 Varying UB

Now we discuss how the optimal solution changes when the maximum number of

selected sites is changed. We consider the three cases UB = 60, UB = 65, and UB = 70.

Table 5.4 shows characteristics of the optimal solutions for these cases, all obtained using

C = 2 and covering all species.

147

UB BL DIS CPU time (s)

60 108 (60 sites) 9817 195

65 106 (65 sites) 11307 236

70 104 (68 sites) 12197 181

Table 5.4: Optimal solution values and CPU times for the 13× 18 hexagonal grid when UB

is varied

Figures 5.10(a–c) show the optimal clusterings obtained for these cases. When

UB = 60 the optimal solution uses 60 sites with a optimal BL of 108 and a DIS of 9817.

When UB = 65 the optimal solution uses 65 sites; notice that site (10,4) is removed from

Figure 5.10(a) and new six sites (shown in black) are added to the new solution in Figure

5.10(b). Even though this solution uses more sites, the optimal BL of 106 improves upon

the optimal BL of 108 in the previous case. When UB = 70 the optimal solution only uses

68 sites; the three newly added sites are shown in black in Figure 5.10(c). The optimal BL

decreases to 104 and the optimal DIS increases to 12197. This example again illustrates

that as UB is increased the optimal solution is improved in terms of BL and the selected

region for the optimal solution becomes more compact.

Figure 5.10: Optimal solutions using C = 2 for the 13 × 18 hexagonal grid when UB is

varied

148

5.5 Conclusions and Extensions

This paper studies the design of spatially compact reserve systems, which addresses

limitations of the standard SCP and MCP covering approaches. We develop a hierarchical

optimization model that organizes reserve sites into a relatively small number of compact

groups (clusters). This model explicitly considers two factors: minimizing the boundary

length of all selected clusters and minimizing the total distance between all pairs of sites

within each cluster. Each of these objectives is important for the long-term success of

the planned reserve system. We argue that when creating desirable clusters the boundary

length is more important than the total within cluster distance. This naturally leads to

a hierarchical optimization model that gives priority to minimizing the boundary length,

and then minimizing the total within cluster distance as a secondary objective. These

hierarchical objectives are combined into a single objective function using an appropriate

weight U .

Our initial formulation (P1) is expressed as a integer programming problem with a

nonlinear, nonconvex objective function. To solve the model more efficiently we converted

the initial formulation into a linear mixed integer programming problem (P2), having the

same optimal solution as model (P1). The computationally more efficient model (P2) was

then used in all our subsequent numerical investigations. When applied to various data sets

this model provided reasonable clusters. We also studied how the optimal solutions behave

when the allowable number of clusters C, the maximum number of selected sites UB, and

the specified frequency bound FB are changed. Further, we showed that C = 2 provides

a clustering with the optimal boundary length although it may not provide the optimal

within cluster distance. Since our first priority is minimizing the boundary length of the

selected clusters, we can use C = 2 to obtain a meaningful set of clusters, while reducing

the required CPU time significantly.

For large reserve design problems it may be difficult to find an optimal solution of

model (P2) in a reasonable amount of time even for C = 2. Consequently, the use of heuristic

149

algorithms (e.g., see [16, 55]) should be explored. We briefly outline a heuristic procedure

based on a linear relaxation of model (P2). Namely, the binary constraints Xcij ∈ {0, 1} are

replaced by 0 ≤ Xcij ≤ 1. We then identify those sites (i, j) having Xcij = 1 and c > 1 in

the relaxed solution. This partial solution satisfies the budget constraint (10) but in general

does not satisfy the species coverage constraints (9). To achieve feasibility in model (P2),

we consider all non-selected sites adjacent to existing selected sites as possible candidates

for inclusion. These candidates are prioritized based on the following factors: the additional

species coverage provided, the change in boundary length, the fractional value of Xcij , and

the change in within cluster distance.

Once a feasible solution is obtained, it can be improved by applying an interchange

heuristic. Namely, we can swap a currently selected site with another non-selected site that

is adjacent to an existing cluster, after ensuring that this modification maintains feasibility.

We can therefore improve the current solution by considering our two fundamental criteria.

First we consider the reduction in boundary length due to such an interchange. If several

interchanges yield the same reduction in boundary length then we consider the reduction

in total within cluster distance achieved by the interchange. Preliminary experience with

such a heuristic has been encouraging and research is ongoing to explore this approach.

150

Appendices

151

Appendix A MATLAB codes for Chapter 3

Appendix A includes the MATLAB codes for implementing Algorithm 1 and Algo-

rithm 2 described in Chapter 3. These include the generic algorithm and two procedures

get-weighted-sum-sol() and get-max-sum-sol().

A.1 Generic algorithm for the MOSCP

The generic algorithm uses two procedures. The generic algorithm and get-weighted-

sum-sol() correspond to Algorithm 1 and the generic algorithm and get-max-sum-sol() cor-

respond to Algorithm 2. The characteristics of the test problem are the input parameters

for the main algorithm.

clear;clc;

addpath C:\Lakmali\weightedsetcovering

data_weighted=load(’C:\Lakmali\weightedsetcovering\2scp11A\2scp11A.txt’);

[num_item num_set]=size(data_weighted);

data=data_weighted(1:num_item-2,1:num_set);% pick the data part

C=data_weighted(num_item-1:num_item,1:num_set);% pick the objective function

num_item=num_item-2; % reset the number of items

%true_1=[];true_2=[]; wei_1=[];wei_2=[];

lambda_1=1;

generated_num_items=to_get_true_num_items(data,num_item);

dummy_C=C;

dummy_data=data;

solution_set=[];

solution_set_obj=[];

if (generated_num_items==num_item)

while (lambda_1>=0)

[selected_set,cost_1,cost_2,z_w]=get_weighted_sum_sol(data,C,num_item,dummy_C,lambda_1,(1-lambda_1));

%[selected_set,cost_1,cost_2,z_w]=get_max_sum_sol(data,C,num_item,dummy_C,lambda_1,(1-lambda_1));

solution_set=[solution_set ;lambda_1, cost_1,cost_2];

lambda_1=lambda_1-0.1;

C=dummy_C;

data=dummy_data;

end

else

disp(sprintf(’not a good data set’))

end

get_unique_solution(solution_set)

solution_set

plot(solution_set(:,2),solution_set(:,3),’ro’)

152

A.2 Implementation of Algorithm 1

The get-weighted-sum-sol() procedure provides feasible solutions to the MOSCP

based on the scalar cost described in Section 3.3. Characteristics of the test problem and

the direction λ are the main input parameters for this procedure. For each direction λ, the

main method generates feasible solutions using get-weighted-sum-sol() procedure.

function [selected_set,cost_1,cost_2,z_w]=get_weighted_sum_sol(data,C,num_item,dummy_C,lambda_1,lambda_2)

selected_set=[]; covered_items=zeros(1,num_item);

C_1=C(1,:);C_2=C(2,:);

%lambda_2=1-lambda_1;

C=lambda_1*C_1+ lambda_2*C_2;

cost_1=0; cost_2=0;

[cost_ratio,num_coverd]=construct_ratio_array(data,C);% gives the ratio for each set wrt each obj

[weighted_preference_value,weighted_preference_value_position]=get_weighted_preference_value(cost_ratio);

currently_covered_items=data(:,weighted_preference_value_position);

covered_items=to_get_currently_covered_items(currently_covered_items,covered_items);

data=to_update_data_set(data,weighted_preference_value_position);

selected_set=[selected_set weighted_preference_value_position];

cost_1=cost_1+ dummy_C(1,weighted_preference_value_position);

cost_2=cost_2+ dummy_C(2,weighted_preference_value_position);

while (sum(covered_items)~=num_item)

[cost_ratio,num_coverd]=construct_ratio_array(data,C);% gives the ratio for each set wrt each obj

[weighted_preference_value,weighted_preference_value_position]=get_weighted_preference_value(cost_ratio);

currently_covered_items=data(:,weighted_preference_value_position);

currently_covered_items=to_get_currently_covered_items(currently_covered_items,covered_items);

covered_items=to_get_currently_covered_items(currently_covered_items,covered_items);

data=to_update_data_set(data,weighted_preference_value_position);

selected_set=[selected_set weighted_preference_value_position];

cost_1=cost_1+ dummy_C(1,weighted_preference_value_position);

cost_2=cost_2+ dummy_C(2,weighted_preference_value_position);

end

selected_set;

z_w=lambda_1*cost_1+lambda_2*cost_2;

A.3 Implementation of Algorithm 2

The get-max-sum-sol() procedure provides feasible solutions to the MOSCP based

on the vector cost described in Section 3.3. Characteristics of the test problem and the

direction λ are the main input parameters for this procedure. For each direction λ, the

153

main method generates feasible solutions using get-max-sum-sol() procedure.

function [selected_set,cost_1,cost_2,z_w]=get_max_sum_sol(data,C,num_item,dummy_C,lambda_1,lambda_2)

selected_set=[]; covered_items=zeros(1,num_item);

C_1=C(1,:);C_2=C(2,:);

cost_1=0; cost_2=0;

[cost_ratio,num_coverd]=construct_ratio_array(data,C);% gives the ratio for each set wrt each obj

[max_preference_value,max_preference_value_position]=get_max_preference_value(cost_ratio);

currently_covered_items=data(:,weighted_max_value_position);

covered_items=to_get_currently_covered_items(currently_covered_items,covered_items);

data=to_update_data_set(data,max_preference_value_position);

selected_set=[selected_set max_preference_value_position];

cost_1=cost_1+ dummy_C(1,max_preference_value_position);

cost_2=cost_2+ dummy_C(2,max_preference_value_position);

while (sum(covered_items)~=num_item)

[cost_ratio,num_coverd]=construct_ratio_array(data,C);% gives the ratio for each set wrt each obj

[max_preference_value,max_preference_value_position]=get_max_preference_value(cost_ratio);

currently_covered_items=data(:,max_preference_value_position);

currently_covered_items=to_get_currently_covered_items(currently_covered_items,covered_items);

covered_items=to_get_currently_covered_items(currently_covered_items,covered_items);

data=to_update_data_set(data,max_preference_value_position);

selected_set=[selected_set max_preference_value_position];

cost_1=cost_1+ dummy_C(1,max_preference_value_position);

cost_2=cost_2+ dummy_C(2,max_preference_value_position);

end

selected_set;

z_w=[lambda_1*cost_1 lambda_2*cost_2];

154

Appendix B MATLAB codes for Chapter 4

Appendix B includes the MATLAB codes for implementing the Add-Improve Al-

gorithm described in Chapter 4. These include the main method and the four procedures,

get-min-data(), get-weighted-lb-sol(), get-cheby-lb-sol() and drop-redundant().

B.1 Implementation of the Add-Improve Algorithm

The main method uses four procedures and it corresponds to Algorithm 1 of Chapter

4. The set of different λ vectors defined by the decision maker and the characteristics of

the test problem are the input parameters for the main method. At the beginning of

the algorithm, the main method calls get-min-data() procedure to obtain the D matrix

described in Section 4.4. Then, for each λ, it generates feasible solutions using get-weighted-

lb-sol() and get-cheby-lb-sol() procedures and improves the feasible solutions using drop-

redundant() procedure.

clear;clc;

addpath C:\Lakmali\weightedsetcovering

data_weighted=load(’C:\Lakmali\weightedsetcovering\2scp41A\2scp41A.txt’);

[num_item num_set]=size(data_weighted); data=data_weighted(1:num_item-2,1:num_set);% pick the data part

C=data_weighted(num_item-1:num_item,1:num_set);% pick the objective function

num_item=num_item-2; % reset the number of items

lambda_1=1;

solution_set=[]; new_greedy=[]; w_new_greedy=[]; c_new_greedy=[];

dummy_C=C; w_solution_set=[];c_solution_set=[];obj=[]; sol=[];

min_data=get_min_data(C,data);

rhs= -ones(num_item,1) ;

[x_1, fval_1] = linprog(C(1,:), -data, rhs,[],[], zeros(num_set,1), ones(num_set,1),[]); % solve LP model

[x_2, fval_2] = linprog(C(2,:), -data, rhs,[],[], zeros(num_set,1), ones(num_set,1),[]); % solve LP model

tic;

ideal=[fval_1,fval_2];

while (lambda_1>=0)

lambda_2=1-lambda_1;

X=zeros(1,num_set);cost_1=0;cost_2=0; covered_items=zeros(1,num_item);

[sol,cost_1,cost_2]=get_weighted_lb_sol(data,C,lambda_1,lambda_2,min_data,X,cost_1,cost_2,covered_items);

w_solution_set=[w_solution_set ;cost_1,cost_2];

w_new_greedy=[w_new_greedy; sol lambda_1];

lambda_1=lambda_1-0.1;

C=dummy_C;

end

155

[num col]=size(w_new_greedy)

for i=1:num

feasible_solution=w_new_greedy(i,1:end-1);

improved_solution=drop_redundant(data,feasible_solution,C,w_new_greedy(i,end:end));

[val1,val2]=cplex_z1_z2(improved_solution, C,num_set);

obj=[obj; val1 val2];

sol=[sol; improved_solution];

end

lambda_1=1;

while (lambda_1>=0)

[sol,cost_1,cost_2]=get_cheby_lb_sol(data,C,lambda_1,(1-lambda_1),min_data);

c_solution_set=[c_solution_set ;cost_1,cost_2];

c_new_greedy=[c_new_greedy;sol lambda_1];

lambda_1=lambda_1-0.1;

C=dummy_C;

end

[num col]=size(c_new_greedy)

for i=1:num

feasible_solution=c_new_greedy(i,1:end-1);

size(feasible_solution)

improved_solution=drop_redundants(data,feasible_solution,C,c_new_greedy(i,end:end));

[val1,val2]=cplex_z1_z2(improved_solution, C,num_set);

obj=[obj; val1 val2];

sol=[sol; improved_solution];

end

[num col]=size(relaxed);

for i=1:num

feasible_solution=relaxed(i,:);

improved_solution=drop_redundants(data,feasible_solution,C);

[val1,val2]=cplex_z1_z2(improved_solution, C,num_set);

obj=[obj; val1 val2];

sol=[sol; improved_solution];

end

toc;

dlmwrite(’C:\Lakmali\weightedsetcovering\2scp41A\improved_ob_value.txt’,obj,’delimiter’,’\t’);

dlmwrite(’C:\Lakmali\weightedsetcovering\2scp41A\improved_solution.txt’,improved_solution,’delimiter’,’\t’);

The procedure get-min-data() determines the best set to cover each item with respect

to each objective function. This procedure uses the characteristic of the test problem as

the input parameters.

function min_data=get_min_data(C,data);

min_data=[]; [num_item, num_set]=size(data)

for i=1:num_item

min1=100000; min2=100000;

for j=1:num_set

156

if(data(i,j)==1)

if (C(1,j)/sum(data(:,j))<min1)

min1=C(1,j)/sum(data(:,j));

j1=j;

end

if (C(2,j)/sum(data(:,j))<min2)

min2=C(2,j)/sum(data(:,j));

j2=j;

end

end

end

min_data=[min_data; C(1,j1) C(2,j2) j1 j2];

end

The procedure get-weighted-lb-sol() constructs the feasible solutions of the MOSCP

by estimating the cost of each set as described in equation (4.7) in Section 4.3.

function [sol,cost_1,cost_2]=get_weighted_lb_sol(data,C,lambda_1,lambda_2,...

...min_data, X,cost_1,cost_2,covered_items)

[num_item,num_set]=size(data); selected_set=[];

%covered_items=zeros(1,num_item);

dummy_C=C; Dummy_D=min_data;

%X=zeros(1,num_set);

Cost=zeros(1,num_set);

%cost_1=0; cost_2=0;

while (sum(covered_items)~=num_item)

for j=1:num_set

min1=60000;min2=600000;

if(X(j)==0)

dummyset1=zeros(1,num_set);

dummyset2=zeros(1,num_set);

for i=1:num_item

if(covered_items(i)==0 && data(i,j)==0)

if(dummyset1(min_data(i,3))~=inf)

C(1,j)=C(1,j)+(min_data(i,1));

dummyset1(min_data(i,3))=inf;

end

if(dummyset2(min_data(i,4))~=inf)

C(2,j)=C(2,j)+(min_data(i,2));

dummyset2(min_data(i,4))=inf;

end

end

end

Cost(j)= (lambda_1*(C(1,j))+lambda_2*(C(2,j)));

else

Cost(j)= inf;

157

end

end

[min_cost, position_min_cost]=min(Cost);

C=dummy_C;

%selected_set=[selected_set position_min_cost];

currently_covered_items=data(:,position_min_cost);

covered_items=to_get_currently_covered_items(currently_covered_items,covered_items);

X(position_min_cost)=1;

cost_1=cost_1+ C(1,position_min_cost);

cost_2=cost_2+ C(2,position_min_cost);

end

sol=X;

The procedure get-cheby-lb-sol() constructs the feasible solutions of the MOSCP by

estimating the cost of each set as described in equation (4.8) in Section 4.3.

function [sol,cost_1,cost_2]=get_cheby_lb_sol(data,C,lambda_1,lambda_2,min_data)

[num_item,num_set]=size(data); selected_set=[]; covered_items=zeros(1,num_item);

dummy_C=C; X=zeros(1,num_set);Cost=zeros(1,num_set);

cost_1=0; cost_2=0;

while (sum(covered_items)~=num_item)

for j=1:num_set

min1=60000;min2=600000;

if(X(j)==0)

dummyset1=zeros(1,num_set);

dummyset2=zeros(1,num_set);

for i=1:num_item

if(covered_items(i)==0 && data(i,j)==0)

if(dummyset1(min_data(i,3))~=inf)

C(1,j)=C(1,j)+(min_data(i,1));

dummyset1(min_data(i,3))=inf;

end

if(dummyset2(min_data(i,4))~=inf)

C(2,j)=C(2,j)+(min_data(i,2));

dummyset2(min_data(i,4))=inf;

end

end

% possible_covered=get_possible_covered(data,covered_items,j);

Cost(j)=max(lambda_1*(C(1,j)),lambda_2*(C(2,j)));

%Cost(j)=max(lambda_1*(C(1,j)),lambda_2*(C(2,j)));

else

Cost(j)= inf;

end

end

158

[min_cost, position_min_cost]=min(Cost);

C=dummy_C;

%selected_set=[selected_set position_min_cost];

currently_covered_items=data(:,position_min_cost);

currently_covered_items=to_get_currently_covered_items(currently_covered_items,covered_items);

covered_items=to_get_currently_covered_items(currently_covered_items,covered_items);

X(position_min_cost)=1;

cost_1=cost_1+ C(1,position_min_cost);

cost_2=cost_2+ C(2,position_min_cost);

end

sol=X;

The drop-redundant() procedure improves feasible solutions provided by get-weighted-

lb-sol() and get-cheby-lb-sol() procedures using the concepts discussed in Section 4.4.2. The

input parameters are the problem characteristics, feasible solution and its corresponding di-

rection λ.

function improved_solution=drop_redundant(data,feasible_solution,C,lambda)

improved_solution=feasible_solution; [num_item,num_set]=size(data); potential_drops=[0];

final_covers=data*feasible_solution’;

while(min(final_covers)>=1 && isempty(potential_drops)~=1)

potential_drops=[];

for i=1:num_set

vec= final_covers-data(:,i);

if (improved_solution(i)==1 && min(vec)>=1)

cost= (lambda*C(1,i)+(1-lambda)*C(2,i));

potential_drops=[potential_drops; cost i];

%final_covers=final_covers-data(:,i);

%improved_solution(i)=0;

end

end

if (min(final_covers)>=1 && isempty(potential_drops)~=1)

potential_drops=sortrows(potential_drops,-1);

final_covers=final_covers-data(:,potential_drops(1,2));

improved_solution(potential_drops(1,2))=0;

end

end

improved_solution=[improved_solution];

159

Appendix C OPL code for Chapter 5

Appendix C includes the OPL code for implementing the mathematical model (P2)

described in Chapter 5. The implementation is specific to a uniformly partitioned hexagonal

region.

C.1 OPL code for Hexagonal Linear Model

/***

* OPL 12.4 Hexagonal Linear Model

* Author: Lakmali Weerasena

* Creation Date: Jan 5, 2013 at 9:25:01 AM

***/

int n=13; // Number of rows in the Grid

int m=23; // Number of columns in the Grid

int UP=10000000; //Upper Bound on Distance

int s=60; // maximum number of sites

int c=2; // number of clusters

int b=343; // number of species

int a=4459; // number of rows of the imported data set

range row=1..n;

range column=1..m;

range clusters=1..c;

range num_spec=1..b;

range block_row=1..a;

int areaofs[block_row,column]=...; // imported data set

int required_spec[num_spec]=...; // required coverage

int x_temp[1..c*n][1..m];

//dvar int x[row][column][clusters];

string range1;

float obj_final;

dvar boolean X[clusters][row][column]; // DECISION VARIABLES X;

dvar float Y[clusters][row][column][row][column];// DECISION VARIABLES Y;

// All Constraints

constraint ct1; constraint ct2; constraint ct3; constraint ct4; constraint ct5; constraint ct6;

constraint ct7; constraint ct8; constraint ct9; constraint ct10; constraint ct11; constraint ct12;

constraint ct13; constraint ct14; constraint ct15; constraint ct16; constraint ct17; constraint ct18;

constraint ct19; constraint ct20; constraint ct21; constraint ct22; constraint ct23; constraint ct24;

constraint ct25; constraint ct26; constraint ct27; constraint ct28; constraint ct29; constraint ct30;

constraint ct31; constraint ct32; constraint ct33; constraint ct34; constraint ct35; constraint ct36;

constraint ct37; constraint ct38; constraint ct39; constraint ct40; constraint ct41; constraint ct42;

constraint ct43; constraint ct44; constraint ct45; constraint ct46; constraint ct47; constraint ct48;

constraint ct49; constraint ct50; constraint ct51; constraint ct52; constraint ct53; constraint ct54;

constraint ct55;

160

// minimize

dexpr float j_odd =

// j<=l, i<=k

sum (c in clusters, i in row,k in row ,j in column,l in column:

(c!=1 && i!=1 && i!=n && j!=1&& j!=m && k!=1 && k!=n && l!=1&& l!=m)

&& ((i<k && j<l)) && (j mod 2!=0))

(maxl(0,(k-i-floor((l-j)/2))) +(l-j))*Y[c,i,j,k,l]

+ sum (c in clusters, i in row,k in row ,j in column,l in column:

(c!=1 && i!=1 && i!=n && j!=1&& j!=m && k!=1 && k!=n && l!=1&& l!=m)

&& ((i==k && j<l) || (i<k && j==l)) && (j mod 2!=0))

(maxl(0,(k-i-floor((l-j)/2))) +(l-j))*Y[c,i,j,k,l]

// j<=l, i> k

+ sum (c in clusters, i in row,k in row ,j in column,l in column:

(c!=1 && i!=1 && i!=n && j!=1&& j!=m && k!=1 && k!=n && l!=1&& l!=m)

&& i>k && j<=l && (j mod 2!=0))

(maxl(0,(i-k-ceil((l-j)/2)))+(l-j))* Y[c,i,j,k,l];

dexpr float j_even =

// j<=l, i<=k

sum (c in clusters, i in row,k in row ,j in column,l in column:

(c!=1 && i!=1 && i!=n && j!=1&& j!=m && k!=1 && k!=n && l!=1&& l!=m)

&& i<k && j<l && (j mod 2 ==0))

(maxl(0,(k-i-ceil((l-j)/2)))+(l-j)) * Y[c,i,j,k,l]

+sum (c in clusters, i in row,k in row ,j in column,l in column:

(c!=1 && i!=1 && i!=n && j!=1&& j!=m && k!=1 && k!=n && l!=1&& l!=m)

&& ((i==k && j<l) || (i<k && j==l)) && (j mod 2 ==0))

(maxl(0,(k-i-ceil((l-j)/2)))+(l-j)) * Y[c,i,j,k,l]

// j<=l, i>k

+ sum (c in clusters, i in row,k in row ,j in column,l in column:

(c!=1 && i!=1 && i!=n && j!=1&& j!=m && k!=1 && k!=n && l!=1&& l!=m)

&& i>k && j<=l && (j mod 2==0))

(maxl(0,(i-k-floor((l-j)/2)))+(l-j)) * Y[c,i,j,k,l];

dexpr float l_odd =

// j>l, i<=k

sum (c in clusters, i in row,k in row ,j in column,l in column:

(c!=1 && i!=1 && i!=n && j!=1&& j!=m && k!=1 && k!=n && l!=1&& l!=m)

&& i<=k && j>l && (l mod 2 !=0))

(maxl(0,(k-i-ceil((j-l)/2)))+(j-l)) * Y[c,i,j,k,l]

// j>l, i > k

+ sum (c in clusters, i in row,k in row ,j in column,l in column:

(c!=1 && i!=1 && i!=n && j!=1&& j!=m && k!=1 && k!=n && l!=1&& l!=m)

161

&& i>k && j>l && (l mod 2!=0))

(maxl(0,(i-k-floor((j-l)/2)))+(j-l)) * Y[c,i,j,k,l];

// j>l, i<=k

dexpr float l_even =

sum (c in clusters, i in row,k in row ,j in column,l in column:

(c!=1 && i!=1 && i!=n && j!=1&& j!=m && k!=1 && k!=n && l!=1&& l!=m)

&& i<=k && j>l && (l mod 2==0))

(maxl(0,(k-i-floor((j-l)/2)))+(j-l)) * Y[c,i,j,k,l]

// j>l, i>k

+ sum (c in clusters, i in row,k in row ,j in column,l in column:

(c!=1 && i!=1 && i!=n && j!=1&& j!=m && k!=1 && k!=n && l!=1&& l!=m)

&& i>k && j>l && (l mod 2==0))

(maxl(0,(i-k-ceil((j-l)/2)))+(j-l)) * Y[c,i,j,k,l];

minimize (j_odd+j_even+l_odd+l_even) // objective function

+ UP* sum (c in clusters, i in row ,j in column :

c==1 && i>2 && i<n-1 && j>2 && j<m-1 &&(j mod 2==0))

(6*X[1,i,j]-Y[1,i,j,i-1,j]-Y[1,i,j,i,j+1]-Y[1,i,j,i+1,j+1]-Y[1,i,j,i+1,j]-Y[1,i,j,i+1,j-1]-Y[1,i,j,i,j-1])

+ UP* sum (c in clusters, i in row, j in column:

c==1 && i>2 && i<n-1 && j>2 && j<m-1 && (j mod 2!=0))

(6*X[1,i,j]-Y[1,i,j,i-1,j]-Y[1,i,j,i-1,j+1]-Y[1,i,j,i,j+1]-Y[1,i,j,i+1,j]-Y[1,i,j,i,j-1]-Y[1,i,j,i-1,j-1])

//[1] neighbours of (real) left upper corner X(2,2)

+ UP* sum (c in clusters, i in row ,j in column :

c==1 && i==2 && j==2)

(3*X[1,i,j]-Y[1,i,j,i,j+1]-Y[1,i,j,i+1,j+1]-Y[1,i,j,i+1,j])

//[2] neighbour of X(2,1)

+ UP* sum (c in clusters, i in row ,j in column :

c==1 && i==2 && j==1)

(1*X[1,i,j]-Y[1,i,j,i,j+1])

//[3] neighbours of X(1,2)

+UP*sum (c in clusters, i in row, j in column :

c==1 && i==1 && j==2)

(2*X[1,i,j]-Y[1,i,j,i+1,j]-Y[1,i,j,i+1,j+1])

//[4] neighbours of X(2,m-1) (real) right upper corner (m is even)

+UP*sum (c in clusters, i in row, j in column :

c==1 && i==2 && j==m-1 && (m mod 2==0))

(2*X[1,i,j]-Y[1,i,j,i+1,j]-Y[1,i,j,i,j-1])

//[5] neighbour of X(1,m) (m is even)

162

+UP*sum (c in clusters, i in row, j in column :

c==1 && i==1 && j==m && (m mod 2==0))

(1*X[1,i,j]-Y[1,i,j,i+1,j-1])

//[6] neighbours of X(1,m-1) (m is even)

+UP*sum (c in clusters, i in row, j in column :

c==1 && i==1 && j==m-1 && (m mod 2==0))

(1*X[1,i,j]-Y[1,i,j,i+1,j])

//[7] neighbours of right upper corner X(2,m-1) (m is odd)

+UP*sum (c in clusters, i in row, j in column :

c==1 && i==2 && j==m-1 && (m mod 2!=0))

(3*X[1,i,j]-Y[1,i,j,i+1,j]-Y[1,i,j,i+1,j-1]-Y[1,i,j,i,j-1])

//[8] neighbours of X(1,m-1) (m is odd)

+UP*sum (c in clusters, i in row, j in column :

c==1 && i==1 && j==m-1 && (m mod 2!=0))

(2*X[1,i,j]-Y[1,i,j,i+1,j-1]-Y[1,i,j,i+1,j])

//[9] neighbour of X(2,m)(m is odd)

+UP*sum (c in clusters, i in row, j in column :

c==1 && i==2 && j==m && (m mod 2!=0))

(1*X[1,i,j]-Y[1,i,j,i,j-1])

//[10] neighbours of middle top X(2,j) (j is odd)

+UP*sum (c in clusters, i in row, j in column :

c==1 && i==2 && j>2 && j<m-1 && (j mod 2!=0))

(3*X[1,i,j]-Y[1,i,j,i,j+1]-Y[1,i,j,i+1,j]-Y[1,i,j,i,j-1])

//[11] neighbour of midlle top boundary X(1,j) (j is odd)

+UP*sum (c in clusters, i in row, j in column :

c==1 && i==1 && j>2 && j<m-1 && (j mod 2!=0))

(1*X[1,i,j]-Y[1,i,j,i+1,j])

//[12] neighbours of midlle top X(2,j) (j is even)

+UP*sum (c in clusters, i in row, j in column :

c==1 && i==2 && j>2 && j<m-1 && (j mod 2==0))

(5*X[1,i,j]-Y[1,i,j,i,j+1]-Y[1,i,j,i+1,j+1]-Y[1,i,j,i+1,j]-Y[1,i,j,i+1,j-1]-Y[1,i,j,i,j-1])

//[13] neighbours of midlle top boundary X(1,j) (j is even)

+UP*sum (c in clusters, i in row, j in column :

c==1 && i==1 && j>2 && j<m-1 && (j mod 2==0))

(3*X[1,i,j]-Y[1,i,j,i+1,j-1]-Y[1,i,j,i+1,j]-Y[1,i,j,i+1,j+1])

//[14] neighbours of left X(i,2)

+UP*sum (c in clusters, i in row, j in column :

163

c==1 && i>2 && i<n-1 && j==2)

(4*X[1,i,j]-Y[1,i,j,i-1,j]-Y[1,i,j,i,j+1]-Y[1,i,j,i+1,j+1]-Y[1,i,j,i+1,j])

//[15] neighbours left boundary X(i,1)

+UP*sum (c in clusters, i in row, j in column :

c==1 && i>2 && i<=n-1 && j==1)

(2*X[1,i,j]-Y[1,i,j,i-1,j+1]-Y[1,i,j,i,j+1])

//[16] neighbours of right X(i,m-1) (m is even)

+UP*sum (c in clusters, i in row, j in column :

c==1 && i>2 && i<n-1 && j==m-1 && (m mod 2==0))

(4*X[1,i,j]-Y[1,i,j,i-1,j]-Y[1,i,j,i-1,j-1]-Y[1,i,j,i,j-1]-Y[1,i,j,i+1,j])

//[17] neighbours of right boundary X(i,m) (m is even)

+UP*sum (c in clusters, i in row, j in column :

c==1 && i>=2 && i<n-1 && j==m && (m mod 2==0))

(2*X[1,i,j]-Y[1,i,j,i,j-1]-Y[1,i,j,i+1,j-1])

//[18] neighbours of right X(i,m-1) (m is odd)

+UP*sum (c in clusters, i in row, j in column :

c==1 && i>2 && i<n-1 && j==m-1 && (m mod 2!=0))

(4*X[1,i,j]-Y[1,i,j,i-1,j]-Y[1,i,j,i,j-1]-Y[1,i,j,i+1,j-1]-Y[1,i,j,i+1,j])

//[19] neighbours of right boundary X(i,m) (m is odd)

+UP*sum (c in clusters, i in row, j in column :

c==1 && i>2 && i<=n-1 && j==m && (m mod 2!=0))

(2*X[1,i,j]-Y[1,i,j,i-1,j-1]-Y[1,i,j,i,j-1])

//[20] neighbours of bottom left corner X(n-1,2)

+UP*sum (c in clusters, i in row, j in column :

c==1 && i==n-1 && j==2)

(2*X[1,i,j]-Y[1,i,j,i-1,j]-Y[1,i,j,i,j+1])

//[21] neighbour of bottom left boundary X(n,1)

+UP*sum (c in clusters, i in row, j in column :

c==1 && i==n && j==1)

(1*X[1,i,j]-Y[1,i,j,i-1,j+1])

//[22] neighbour of bottom left boundary X(n,2)

+UP*sum (c in clusters, i in row, j in column :

c==1 && i==n && j==2)

(1*X[1,i,j]-Y[1,i,j,i-1,j])

//[23] neighbours of bottom right corner X(n-1,m-1) (m is even)

+UP*sum (c in clusters, i in row, j in column :

c==1 && i==n-1 && j==m-1 && (m mod 2==0))

164

(3*X[1,i,j]-Y[1,i,j,i-1,j]-Y[1,i,j,i-1,j-1]-Y[1,i,j,i,j-1])

//[24] neighbour of bottom right boundary X(n-1,m) (m is even)

+UP*sum (c in clusters, i in row, j in column :

c==1 && i==n-1 && j==m && (m mod 2==0))

(1*X[1,i,j]-Y[1,i,j,i,j-1])

//[25] neighbour of bottom right boundary X(n,m-1) (m is even)

+UP*sum (c in clusters, i in row, j in column :

c==1 && i==n && j==m-1 && (m mod 2==0))

(2*X[1,i,j]-Y[1,i,j,i-1,j]-Y[1,i,j,i-1,j-1])

//[26] neighbour of bottom right corner X(n-1,m-1) (m is odd)

+UP*sum (c in clusters, i in row, j in column :

c==1 && i==n-1 && j==m-1 && (m mod 2!=0))

(2*X[1,i,j]-Y[1,i,j,i-1,j]-Y[1,i,j,i,j-1])

//[27] neighbour of bottom right boundary X(n,m)(m is odd)

+UP*sum (c in clusters, i in row, j in column :

c==1 && i==n && j==m && (m mod 2!=0))

(1*X[1,i,j]-Y[1,i,j,i-1,j-1])

//[28] neighbour of bottom right boundary X(n,m-1)(m is odd)

+UP*sum (c in clusters, i in row, j in column :

c==1 && i==n && j==m-1 && (m mod 2!=0))

(1*X[1,i,j]-Y[1,i,j,i-1,j])

//[29] neighbours of bottom X(n-1,j)(j is odd)

+UP*sum (c in clusters, i in row, j in column :

c==1 && i==n-1 && j> 2 && j< (m-1) && (j mod 2!=0))

(5*X[1,i,j]-Y[1,i,j,i,j-1]-Y[1,i,j,i-1,j-1]-Y[1,i,j,i-1,j]-Y[1,i,j,i-1,j+1]-Y[1,i,j,i,j+1])

//[30]neighbours of bottom boundary X(n,j) (j is odd)

+UP*sum (c in clusters, i in row, j in column :

c==1 && i==n && j> 2 && j< (m-1) && (j mod 2!=0))

(3*X[1,i,j]-Y[1,i,j,i-1,j-1]-Y[1,i,j,i-1,j]-Y[1,i,j,i-1,j+1])

//[31] neighbours of bottom X(n-1,j) (j is even)

+UP*sum (c in clusters, i in row, j in column :

c==1 && i==n-1 && j> 2 && j< (m-1) && (j mod 2==0))

(3*X[1,i,j]-Y[1,i,j,i,j-1]-Y[1,i,j,i-1,j]-Y[1,i,j,i,j+1])

//[32] neighbour of bottom boundary X(n,j)(j is even)

+UP*sum (c in clusters, i in row, j in column :

c==1 && i==n && j> 2 && j< (m-1) && (j mod 2==0))

(1*X[1,i,j]-Y[1,i,j,i-1,j]) ;

subject to {

165

//maximum number of cells to be covered;

ct1= sum (c in clusters,i in row,j in column :

c!=1 && i!=1 && i!=n && j!=1&& j!=m)

X[c,i,j] <=s;

//--;

//EVERY CELL IN ONE CLUSTER;

ct2= forall (i in row, j in column)

sum (c in clusters)

X[c,i,j] ==1;

// coverage for each species

ct3= forall (b in num_spec)

sum (c in clusters, i in row, j in column:

c!=1)

areaofs[i+n*(b-1),j]*X[c,i,j] >=required_spec[b] ;

//cells on the boundary are placed in cluster1;

ct6= sum (c in clusters, i in row ,j in column: i==1 && c==1) X[c,i,j]==m;

ct7= sum (c in clusters, i in row ,j in column: i==n && c==1) X[c,i,j]==m;

ct8= sum (c in clusters, i in row ,j in column: j==1 && c==1) X[c,i,j]==n;

ct9= sum (c in clusters, i in row ,j in column: j==m && c==1) X[c,i,j]==n;

//SUB CLUSTER ELIMINATION;

//j even;

ct10= forall (c1,c2 in clusters, i in row,j in column:

(i>2) && (i <= n-1) && (j>=2) && (j<=m-1)

&& (c1<c2) && (c1!=1) && (c2!=1) && (j mod 2==0))

X[c1,i,j]+X[c2,i-1,j]<=1;

ct11= forall (c1,c2 in clusters, i in row,j in column:

(i>=2) && (i <= n-1) && (j>=2) && (j<m-1)

&& (c1<c2) && (c1!=1) && (c2!=1) && (j mod 2==0))

X[c1,i,j]+X[c2,i,j+1]<=1;

ct12= forall (c1,c2 in clusters, i in row,j in column:

(i>=2) && (i < n-1) && (j>=2) && (j< m-1)

&& (c1<c2) && (c1!=1) && (c2!=1) && (j mod 2==0))

X[c1,i,j]+X[c2,i+1,j+1]<=1;

ct13= forall (c1,c2 in clusters, i in row,j in column:

(i>=2) && (i < n-1) && (j>=2) && (j<=m-1)

&& (c1<c2) && (c1!=1) && (c2!=1) && (j mod 2==0))

X[c1,i,j]+X[c2,i+1,j]<=1;

166

ct14= forall (c1,c2 in clusters, i in row,j in column:

(i>=2) && (i < n-1) && (j>=2) && (j<=m-1)

&& (c1<c2) && (c1!=1) && (c2!=1) && (j mod 2==0))

X[c1,i,j]+X[c2,i+1,j-1]<=1;

ct15= forall (c1,c2 in clusters, i in row,j in column:

(i>=2) && (i <= n-1) && (j>=2) && (j<=m-1)

&& (c1<c2) && (c1!=1) && (c2!=1) && (j mod 2==0))

X[c1,i,j]+X[c2,i,j-1]<=1;

// j odd;

ct16= forall (c1,c2 in clusters, i in row,j in column:

(i>=2) && (i <= n-1) && (j>=2) && (j<=m-1)

&& (c1<c2) && (c1!=1) && (c2!=1) && (j mod 2!=0))

X[c1,i,j]+X[c2,i-1,j]<=1;

ct17= forall (c1,c2 in clusters, i in row,j in column:

(i>2) && (i <= n-1) && (j>=2) && (j<m-1)

&& (c1<c2) && (c1!=1) && (c2!=1) && (j mod 2!=0))

X[c1,i,j]+X[c2,i-1,j+1]<=1;

ct18= forall (c1,c2 in clusters, i in row,j in column:

(i>=2) && (i <= n-1) && (j>=2) && (j<m-1)

&& (c1<c2) && (c1!=1) && (c2!=1) && (j mod 2!=0))

X[c1,i,j]+X[c2,i,j+1]<=1;

ct19= forall (c1,c2 in clusters, i in row,j in column:

(i>=2) && (i < n-1) && (j>=2) && (j<=m-1)

&& (c1<c2) && (c1!=1) && (c2!=1) && (j mod 2!=0))

X[c1,i,j]+X[c2,i+1,j]<=1;

ct20= forall (c1,c2 in clusters, i in row,j in column:

(i>=2) && (i <= n-1) && (j>=2) && (j<=m-1)

&& (c1<c2) && (c1!=1) && (c2!=1) && (j mod 2!=0))

X[c1,i,j]+X[c2,i,j-1]<=1;

ct21= forall (c1,c2 in clusters, i in row,j in column:

(i>=2) && (i <= n-1) && (j>=2) && (j<=m-1)

&& (c1< c2) && (c1!=1) && (c2!=1) && (j mod 2!=0))

X[c1,i,j]+X[c2,i-1,j-1]<=1;

// From the boundary length part

// j is even

ct22= forall (c in clusters, i in row, j in column :

(c==1 && i> 2 && i<n-1 &&

j>2 && j<m-1) && (j mod 2==0))

Y[c,i,j,i-1,j]<=X[c,i,j];

ct28= forall (c in clusters, i in row, j in column :

(c==1 && i> 2 && i<n-1 &&

j>2 && j<m-1) && (j mod 2==0))

Y[c,i,j,i-1,j]<=X[c,i-1,j];

167

forall (c in clusters, i in row, j in column :

(c==1 && i> 2 && i<n-1 &&

j>2 && j<m-1) && (j mod 2==0))

-Y[c,i,j,i-1,j]<=0;

ct23= forall (c in clusters, i in row, j in column :

(c==1 && i> 2 && i<n-1 &&

j>2 && j<m-1) && (j mod 2==0))

Y[c,i,j,i,j+1]<=X[c,i,j];

ct29= forall (c in clusters, i in row, j in column :

(c==1 && i> 2 && i<n-1 &&

j>2 && j<m-1) && (j mod 2==0))

Y[c,i,j,i,j+1]<=X[c,i,j+1];

forall (c in clusters, i in row, j in column :

(c==1 && i> 2 && i<n-1 &&

j>2 && j<m-1) && (j mod 2==0))

-Y[c,i,j,i,j+1]<=0;

ct24= forall (c in clusters, i in row, j in column :

(c==1 && i> 2 && i<n-1 &&

j>2 && j<m-1) && (j mod 2==0))

Y[c,i,j,i+1,j+1]<=X[c,i,j];

ct30= forall (c in clusters, i in row, j in column :

(c==1 && i> 2 && i<n-1 &&

j>2 && j<m-1) && (j mod 2==0))

Y[c,i,j,i+1,j+1]<=X[c,i+1,j+1];

forall (c in clusters, i in row, j in column :

(c==1 && i> 2 && i<n-1 &&

j>2 && j<m-1) && (j mod 2==0))

-Y[c,i,j,i+1,j+1]<=0;

ct25= forall (c in clusters, i in row, j in column :

(c==1 && i> 2 && i< n-1 &&

j>2 && j<m-1) && (j mod 2==0))

Y[c,i,j,i+1,j]<=X[c,i,j];

ct31= forall (c in clusters, i in row, j in column :

(c==1 && i> 2 && i< n-1 &&

j>2 && j<m-1) && (j mod 2==0))

Y[c,i,j,i+1,j]<=X[c,i+1,j];

168

forall (c in clusters, i in row, j in column :

(c==1 && i> 2 && i< n-1 &&

j>2 && j<m-1) && (j mod 2==0))

-Y[c,i,j,i+1,j]<=0;

ct26= forall (c in clusters, i in row, j in column :

(c==1 && i> 2 && i<n-1 &&

j>2 && j<m-1)&& (j mod 2==0))

Y[c,i,j,i+1,j-1]<=X[c,i,j];

ct32= forall (c in clusters, i in row, j in column :

(c==1 && i> 2 && i<n-1 &&

j>2 && j<m-1)&& (j mod 2==0))

Y[c,i,j,i+1,j-1]<=X[c,i+1,j-1];

forall (c in clusters, i in row, j in column :

(c==1 && i> 2 && i<n-1 &&

j>2 && j<m-1)&& (j mod 2==0))

-Y[c,i,j,i+1,j-1]<=0;

ct27= forall (c in clusters, i in row, j in column :

(c==1 && i> 2 && i< n-1 &&

j>2 && j<m-1) && (j mod 2==0))

Y[c,i,j,i,j-1]<=X[c,i,j];

ct33= forall (c in clusters, i in row, j in column :

(c==1 && i> 2 && i< n-1 &&

j>2 && j<m-1) && (j mod 2==0))

Y[c,i,j,i,j-1]<=X[c,i,j-1];

forall (c in clusters, i in row, j in column :

(c==1 && i> 2 && i< n-1 &&

j>2 && j<m-1) && (j mod 2==0))

-Y[c,i,j,i,j-1]<=0;

// j is odd

ct34= forall (c in clusters, i in row, j in column :

(c==1 && i> 2 && i<n-1 &&

j>2 && j<m-1) && (j mod 2!=0))

Y[c,i,j,i-1,j]<=X[c,i,j];

ct40= forall (c in clusters, i in row, j in column :

(c==1 && i> 2 && i<n-1 &&

j>2 && j<m-1) && (j mod 2!=0))

Y[c,i,j,i-1,j]<=X[c,i-1,j];

169

forall (c in clusters, i in row, j in column :

(c==1 && i> 2 && i<n-1 &&

j>2 && j<m-1) && (j mod 2!=0))

-Y[c,i,j,i-1,j]<=0;

ct35= forall (c in clusters, i in row, j in column :

(c==1 && i> 2 && i<n-1 &&

j>2 && j<m-1) && (j mod 2!=0))

Y[c,i,j,i-1,j+1]<=X[c,i,j];

ct41= forall (c in clusters, i in row, j in column :

(c==1 && i> 2 && i<n-1 &&

j>2 && j<m-1) && (j mod 2!=0))

Y[c,i,j,i-1,j+1]<=X[c,i-1,j+1];

forall (c in clusters, i in row, j in column :

(c==1 && i> 2 && i<n-1 &&

j>2 && j<m-1) && (j mod 2!=0))

-Y[c,i,j,i-1,j+1]<=0;

ct36= forall (c in clusters, i in row, j in column :

(c==1 && i> 2 && i<n-1 &&

j>2 && j<m-1) && (j mod 2!=0))

Y[c,i,j,i,j+1]<=X[c,i,j];

ct42= forall (c in clusters, i in row, j in column :

(c==1 && i> 2 && i<n-1 &&

j>2 && j<m-1) && (j mod 2!=0))

Y[c,i,j,i,j+1]<=X[c,i,j+1];

forall (c in clusters, i in row, j in column :

(c==1 && i> 2 && i<n-1 &&

j>2 && j<m-1) && (j mod 2!=0))

-Y[c,i,j,i,j+1]<=0;

ct37= forall (c in clusters, i in row, j in column :

(c==1 && i>2 && i< n-1 &&

j>2 && j<m-1) && (j mod 2!=0))

Y[c,i,j,i+1,j]<=X[c,i,j];

ct43= forall (c in clusters, i in row, j in column :

(c==1 && i> 2 && i< n-1 &&

j>2 && j<m-1) && (j mod 2!=0))

Y[c,i,j,i+1,j]<=X[c,i+1,j];

forall (c in clusters, i in row, j in column :

170

(c==1 && i> 2 && i< n-1 &&

j>2 && j<m-1) && (j mod 2!=0))

-Y[c,i,j,i+1,j]<=0;

ct38= forall (c in clusters, i in row, j in column :

(c==1 && i> 2 && i<n-1 &&

j>2 && j<m-1)&& (j mod 2!=0))

Y[c,i,j,i,j-1]<=X[c,i,j];

ct44= forall (c in clusters, i in row, j in column :

(c==1 && i> 2 && i<n-1 &&

j>2 && j<m-1)&& (j mod 2!=0))

Y[c,i,j,i,j-1]<=X[c,i,j-1];

forall (c in clusters, i in row, j in column :

(c==1 && i> 2 && i<n-1 &&

j>2 && j<m-1)&& (j mod 2!=0))

-Y[c,i,j,i,j-1]<=0;

ct39= forall (c in clusters, i in row, j in column :

(c==1 && i> 2 && i< n-1 &&

j>2 && j<m-1) && (j mod 2!=0))

Y[c,i,j,i-1,j-1]<=X[c,i,j];

ct45= forall (c in clusters, i in row, j in column :

(c==1 && i> 2 && i< n-1 &&

j>2 && j<m-1) && (j mod 2!=0))

Y[c,i,j,i-1,j-1]<=X[c,i-1,j-1];

forall (c in clusters, i in row, j in column :

(c==1 && i> 2 && i< n-1 &&

j>2 && j<m-1) && (j mod 2!=0))

-Y[c,i,j,i-1,j-1]<=0;

//[1] neighbours of (real) left upper corner X(2,2)

forall (c in clusters, i in row ,j in column :

c==1 && i==2 && j==2)

Y[c,i,j,i,j+1]<=X[c,i,j];

forall (c in clusters, i in row ,j in column :

c==1 && i==2 && j==2)

Y[c,i,j,i,j+1]<=X[c,i,j+1];

forall (c in clusters, i in row ,j in column :

c==1 && i==2 && j==2)

-Y[c,i,j,i,j+1]<=0;

forall (c in clusters, i in row ,j in column :

c==1 && i==2 && j==2)

171

Y[c,i,j,i+1,j+1]<=X[c,i,j];

forall (c in clusters, i in row ,j in column :

c==1 && i==2 && j==2)

Y[c,i,j,i+1,j+1]<=X[c,i+1,j+1];

forall (c in clusters, i in row ,j in column :

c==1 && i==2 && j==2)

-Y[c,i,j,i+1,j+1]<=0;

forall (c in clusters, i in row ,j in column :

c==1 && i==2 && j==2)

Y[c,i,j,i+1,j]<=X[c,i,j];

forall (c in clusters, i in row ,j in column :

c==1 && i==2 && j==2)

Y[c,i,j,i+1,j]<=X[c,i+1,j];

forall (c in clusters, i in row ,j in column :

c==1 && i==2 && j==2)

-Y[c,i,j,i+1,j]<=0;

//[2] neighbour of X(2,1)

forall (c in clusters, i in row ,j in column :

c==1 && i==2 && j==1)

Y[1,i,j,i,j+1]<= X[1,i,j+1];

forall (c in clusters, i in row ,j in column :

c==1 && i==2 && j==1)

-Y[1,i,j,i,j+1]<= 0;

//[3] neighbours of X(1,2)

forall (c in clusters, i in row, j in column :

c==1 && i==1 && j==2)

Y[1,i,j,i+1,j] <=X[c,i+1,j];

forall (c in clusters, i in row, j in column :

c==1 && i==1 && j==2)

-Y[1,i,j,i+1,j] <=0;

forall (c in clusters, i in row, j in column :

c==1 && i==1 && j==2)

Y[1,i,j,i+1,j+1] <=X[c,i+1,j+1];

forall (c in clusters, i in row, j in column :

c==1 && i==1 && j==2)

-Y[1,i,j,i+1,j+1] <=0;

//[4] neighbours of X(2,m-1) (real) right upper corner (m is even)

forall(c in clusters, i in row, j in column :

c==1 && i==2 && j==m-1 && (m mod 2==0))

Y[1,i,j,i+1,j]<=X[c,i,j];

forall(c in clusters, i in row, j in column :

172

c==1 && i==2 && j==m-1 && (m mod 2==0))

Y[1,i,j,i+1,j]<=X[c,i+1,j];

forall(c in clusters, i in row, j in column :

c==1 && i==2 && j==m-1 && (m mod 2==0))

-Y[1,i,j,i+1,j]<=0;

forall(c in clusters, i in row, j in column :

c==1 && i==2 && j==m-1 && (m mod 2==0))

Y[1,i,j,i,j-1]<=X[c,i,j];

forall(c in clusters, i in row, j in column :

c==1 && i==2 && j==m-1 && (m mod 2==0))

Y[1,i,j,i,j-1]<=X[c,i,j-1];

forall(c in clusters, i in row, j in column :

c==1 && i==2 && j==m-1 && (m mod 2==0))

-Y[1,i,j,i,j-1]<=0;

//[5] neighbour of X(1,m) (m is even)

forall(c in clusters, i in row, j in column :

c==1 && i==1 && j==m && (m mod 2==0))

Y[1,i,j,i+1,j-1]<=X[1,i+1,j-1];

forall(c in clusters, i in row, j in column :

c==1 && i==1 && j==m && (m mod 2==0))

-Y[1,i,j,i+1,j-1]<=0;

//[6] neighbours of X(1,m-1) (m is even)

forall(c in clusters, i in row, j in column :

c==1 && i==1 && j==m-1 && (m mod 2==0))

Y[1,i,j,i+1,j]<=X[1,i+1,j];

forall(c in clusters, i in row, j in column :

c==1 && i==1 && j==m-1 && (m mod 2==0))

-Y[1,i,j,i+1,j]<=0;

//[7] neighbours of right upper corner X(2,m-1) (m is odd)

forall(c in clusters, i in row, j in column :

c==1 && i==2 && j==m-1 && (m mod 2!=0))

Y[1,i,j,i+1,j]<=X[c,i,j];

forall(c in clusters, i in row, j in column :

c==1 && i==2 && j==m-1 && (m mod 2!=0))

Y[1,i,j,i+1,j]<=X[c,i+1,j];

forall(c in clusters, i in row, j in column :

c==1 && i==2 && j==m-1 && (m mod 2!=0))

-Y[1,i,j,i+1,j]<=0;

forall(c in clusters, i in row, j in column :

c==1 && i==2 && j==m-1 && (m mod 2!=0))

Y[1,i,j,i+1,j-1]<=X[c,i,j];

forall(c in clusters, i in row, j in column :

173

c==1 && i==2 && j==m-1 && (m mod 2!=0))

Y[1,i,j,i+1,j-1]<=X[c,i+1,j-1];

forall(c in clusters, i in row, j in column :

c==1 && i==2 && j==m-1 && (m mod 2!=0))

-Y[1,i,j,i+1,j-1]<=0;

forall(c in clusters, i in row, j in column :

c==1 && i==2 && j==m-1 && (m mod 2!=0))

Y[1,i,j,i,j-1]<=X[c,i,j];

forall(c in clusters, i in row, j in column :

c==1 && i==2 && j==m-1 && (m mod 2!=0))

Y[1,i,j,i,j-1]<=X[c,i,j-1];

forall(c in clusters, i in row, j in column :

c==1 && i==2 && j==m-1 && (m mod 2!=0))

-Y[1,i,j,i,j-1]<=0;

//[8] neighbours of X(1,m-1) (m is odd)

forall (c in clusters, i in row, j in column :

c==1 && i==1 && j==m-1 && (m mod 2!=0))

Y[1,i,j,i+1,j-1]<=X[1,i+1,j-1];

forall (c in clusters, i in row, j in column :

c==1 && i==1 && j==m-1 && (m mod 2!=0))

-Y[1,i,j,i+1,j-1]<=0;

forall (c in clusters, i in row, j in column :

c==1 && i==1 && j==m-1 && (m mod 2!=0))

Y[1,i,j,i+1,j]<=X[1,i+1,j];

//[9] neighbour of X(2,m)(m is odd)

forall(c in clusters, i in row, j in column :

c==1 && i==2 && j==m && (m mod 2!=0))

Y[1,i,j,i,j-1]<=X[1,i,j-1];

forall(c in clusters, i in row, j in column :

c==1 && i==2 && j==m && (m mod 2!=0))

-Y[1,i,j,i,j-1]<=0;

//[10] neighbours of middle top X(2,j) (j is odd)

forall(c in clusters, i in row, j in column :

c==1 && i==2 && j>2 && j<m-1 && (j mod 2!=0))

Y[1,i,j,i,j+1]<=X[1,i,j];

forall(c in clusters, i in row, j in column :

c==1 && i==2 && j>2 && j<m-1 && (j mod 2!=0))

Y[1,i,j,i,j+1]<=X[1,i,j+1];

forall(c in clusters, i in row, j in column :

c==1 && i==2 && j>2 && j<m-1 && (j mod 2!=0))

-Y[1,i,j,i,j+1]<=0;

174

forall(c in clusters, i in row, j in column :

c==1 && i==2 && j>2 && j<m-1 && (j mod 2!=0))

Y[1,i,j,i+1,j]<=X[1,i,j];

forall(c in clusters, i in row, j in column :

c==1 && i==2 && j>2 && j<m-1 && (j mod 2!=0))

Y[1,i,j,i+1,j]<=X[1,i+1,j];

forall(c in clusters, i in row, j in column :

c==1 && i==2 && j>2 && j<m-1 && (j mod 2!=0))

-Y[1,i,j,i+1,j]<=0;

forall(c in clusters, i in row, j in column :

c==1 && i==2 && j>2 && j<m-1 && (j mod 2!=0))

Y[1,i,j,i,j-1]<=X[1,i,j];

forall(c in clusters, i in row, j in column :

c==1 && i==2 && j>2 && j<m-1 && (j mod 2!=0))

Y[1,i,j,i,j-1]<=X[1,i,j-1];

forall(c in clusters, i in row, j in column :

c==1 && i==2 && j>2 && j<m-1 && (j mod 2!=0))

-Y[1,i,j,i,j-1]<=0;

//[11] neighbour of midlle top boundary X(1,j) (j is odd)

forall (c in clusters, i in row, j in column :

c==1 && i==1 && j>2 && j<m-1 && (j mod 2!=0))

Y[1,i,j,i+1,j]<=X[1,i+1,j];

forall (c in clusters, i in row, j in column :

c==1 && i==1 && j>2 && j<m-1 && (j mod 2!=0))

-Y[1,i,j,i+1,j]<=0;

//[12] neighbours of midlle top X(2,j) (j is even)

forall(c in clusters, i in row, j in column :

c==1 && i==2 && j>2 && j<m-1 && (j mod 2==0))

Y[1,i,j,i,j-1]<=X[1,i,j];

forall(c in clusters, i in row, j in column :

c==1 && i==2 && j>2 && j<m-1 && (j mod 2==0))

Y[1,i,j,i,j-1]<=X[1,i,j-1];

forall(c in clusters, i in row, j in column :

c==1 && i==2 && j>2 && j<m-1 && (j mod 2==0))

-Y[1,i,j,i,j-1]<=0;

forall(c in clusters, i in row, j in column :

c==1 && i==2 && j>2 && j<m-1 && (j mod 2==0))

Y[1,i,j,i,j+1]<=X[1,i,j];

forall(c in clusters, i in row, j in column :

c==1 && i==2 && j>2 && j<m-1 && (j mod 2==0))

Y[1,i,j,i,j+1]<=X[1,i,j+1];

forall(c in clusters, i in row, j in column :

c==1 && i==2 && j>2 && j<m-1 && (j mod 2==0))

175

-Y[1,i,j,i,j+1]<=0;

forall(c in clusters, i in row, j in column :

c==1 && i==2 && j>2 && j<m-1 && (j mod 2==0))

Y[1,i,j,i+1,j+1]<=X[1,i,j];

forall(c in clusters, i in row, j in column :

c==1 && i==2 && j>2 && j<m-1 && (j mod 2==0))

Y[1,i,j,i+1,j+1]<=X[1,i+1,j+1];

forall(c in clusters, i in row, j in column :

c==1 && i==2 && j>2 && j<m-1 && (j mod 2==0))

-Y[1,i,j,i+1,j+1]<=0;

forall(c in clusters, i in row, j in column :

c==1 && i==2 && j>2 && j<m-1 && (j mod 2==0))

Y[1,i,j,i+1,j]<=X[1,i,j];

forall(c in clusters, i in row, j in column :

c==1 && i==2 && j>2 && j<m-1 && (j mod 2==0))

Y[1,i,j,i+1,j]<=X[1,i+1,j];

forall(c in clusters, i in row, j in column :

c==1 && i==2 && j>2 && j<m-1 && (j mod 2==0))

-Y[1,i,j,i+1,j]<=0;

forall(c in clusters, i in row, j in column :

c==1 && i==2 && j>2 && j<m-1 && (j mod 2==0))

Y[1,i,j,i+1,j-1]<=X[1,i,j];

forall(c in clusters, i in row, j in column :

c==1 && i==2 && j>2 && j<m-1 && (j mod 2==0))

Y[1,i,j,i+1,j-1]<=X[1,i+1,j-1];

forall(c in clusters, i in row, j in column :

c==1 && i==2 && j>2 && j<m-1 && (j mod 2==0))

-Y[1,i,j,i+1,j-1]<=0;

//[13] neighbours of midlle top boundary X(1,j) (j is even)

forall(c in clusters, i in row, j in column :

c==1 && i==1 && j>2 && j<m-1 && (j mod 2==0))

Y[1,i,j,i+1,j-1]<=X[1,i+1,j-1];

forall(c in clusters, i in row, j in column :

c==1 && i==1 && j>2 && j<m-1 && (j mod 2==0))

-Y[1,i,j,i+1,j-1]<=0;

forall(c in clusters, i in row, j in column :

c==1 && i==1 && j>2 && j<m-1 && (j mod 2==0))

Y[1,i,j,i+1,j]<=X[1,i+1,j];

forall(c in clusters, i in row, j in column :

c==1 && i==1 && j>2 && j<m-1 && (j mod 2==0))

-Y[1,i,j,i+1,j]<=0;

forall(c in clusters, i in row, j in column :

c==1 && i==1 && j>2 && j<m-1 && (j mod 2==0))

Y[1,i,j,i+1,j+1]<=X[1,i+1,j+1];

forall(c in clusters, i in row, j in column :

176

c==1 && i==1 && j>2 && j<m-1 && (j mod 2==0))

-Y[1,i,j,i+1,j+1]<=0;

//[14] neighbours of left X(i,2)

forall(c in clusters, i in row, j in column :

c==1 && i>2 && i<n-1 && j==2)

Y[1,i,j,i-1,j]<=X[1,i,j];

forall(c in clusters, i in row, j in column :

c==1 && i>2 && i<n-1 && j==2)

Y[1,i,j,i-1,j]<=X[1,i-1,j];

forall(c in clusters, i in row, j in column :

c==1 && i>2 && i<n-1 && j==2)

-Y[1,i,j,i-1,j]<=0;

forall(c in clusters, i in row, j in column :

c==1 && i>2 && i<n-1 && j==2)

Y[1,i,j,i,j+1]<=X[1,i,j];

forall(c in clusters, i in row, j in column :

c==1 && i>2 && i<n-1 && j==2)

Y[1,i,j,i,j+1]<=X[1,i,j+1];

forall(c in clusters, i in row, j in column :

c==1 && i>2 && i<n-1 && j==2)

-Y[1,i,j,i,j+1]<=0;

forall(c in clusters, i in row, j in column :

c==1 && i>2 && i<n-1 && j==2)

Y[1,i,j,i+1,j+1]<=X[1,i,j];

forall(c in clusters, i in row, j in column :

c==1 && i>2 && i<n-1 && j==2)

Y[1,i,j,i+1,j+1]<=X[1,i+1,j+1];

forall(c in clusters, i in row, j in column :

c==1 && i>2 && i<n-1 && j==2)

-Y[1,i,j,i+1,j+1]<=0;

forall (c in clusters, i in row, j in column :

c==1 && i>2 && i<n-1 && j==2)

Y[1,i,j,i+1,j]<=X[1,i,j];

forall (c in clusters, i in row, j in column :

c==1 && i>2 && i<n-1 && j==2)

Y[1,i,j,i+1,j]<=X[1,i+1,j];

forall (c in clusters, i in row, j in column :

c==1 && i>2 && i<n-1 && j==2)

-Y[1,i,j,i+1,j]<=0;

//[15] neighbours left boundary X(i,1)

forall(c in clusters, i in row, j in column :

c==1 && i>2 && i<=n-1 && j==1)

Y[1,i,j,i-1,j+1]<=X[1,i-1,j+1];

177

forall(c in clusters, i in row, j in column :

c==1 && i>2 && i<=n-1 && j==1)

-Y[1,i,j,i-1,j+1]<=0;

forall(c in clusters, i in row, j in column :

c==1 && i>2 && i<=n-1 && j==1)

Y[1,i,j,i,j+1]<=X[1,i,j+1] ;

forall(c in clusters, i in row, j in column :

c==1 && i>2 && i<=n-1 && j==1)

-Y[1,i,j,i,j+1]<=0 ;

//[16] neighbours of right X(i,m-1) (m is even)

forall (c in clusters, i in row, j in column :

c==1 && i>2 && i<n-1 && j==m-1 && (m mod 2==0))

Y[1,i,j,i-1,j]<=X[1,i,j];

forall (c in clusters, i in row, j in column :

c==1 && i>2 && i<n-1 && j==m-1 && (m mod 2==0))

Y[1,i,j,i-1,j]<=X[1,i-1,j];

forall (c in clusters, i in row, j in column :

c==1 && i>2 && i<n-1 && j==m-1 && (m mod 2==0))

-Y[1,i,j,i-1,j]<=0;

forall (c in clusters, i in row, j in column :

c==1 && i>2 && i<n-1 && j==m-1 && (m mod 2==0))

Y[1,i,j,i-1,j-1]<=X[1,i,j];

forall (c in clusters, i in row, j in column :

c==1 && i>2 && i<n-1 && j==m-1 && (m mod 2==0))

Y[1,i,j,i-1,j-1]<=X[1,i-1,j-1];

forall (c in clusters, i in row, j in column :

c==1 && i>2 && i<n-1 && j==m-1 && (m mod 2==0))

-Y[1,i,j,i-1,j-1]<=0;

forall (c in clusters, i in row, j in column :

c==1 && i>2 && i<n-1 && j==m-1 && (m mod 2==0))

Y[1,i,j,i,j-1]<=X[1,i,j];

forall (c in clusters, i in row, j in column :

c==1 && i>2 && i<n-1 && j==m-1 && (m mod 2==0))

Y[1,i,j,i,j-1]<=X[1,i,j-1];

forall (c in clusters, i in row, j in column :

c==1 && i>2 && i<n-1 && j==m-1 && (m mod 2==0))

-Y[1,i,j,i,j-1]<=0;

forall (c in clusters, i in row, j in column :

c==1 && i>2 && i<n-1 && j==m-1 && (m mod 2==0))

Y[1,i,j,i+1,j]<=X[1,i,j];

forall (c in clusters, i in row, j in column :

c==1 && i>2 && i<n-1 && j==m-1 && (m mod 2==0))

Y[1,i,j,i+1,j]<=X[1,i+1,j];

forall (c in clusters, i in row, j in column :

c==1 && i>2 && i<n-1 && j==m-1 && (m mod 2==0))

178

-Y[1,i,j,i+1,j]<=0;

//[17] neighbours of right boundary X(i,m) (m is even)

forall (c in clusters, i in row, j in column :

c==1 && i>=2 && i<n-1 && j==m && (m mod 2==0))

Y[1,i,j,i,j-1]<=X[1,i,j-1];

forall (c in clusters, i in row, j in column :

c==1 && i>=2 && i<n-1 && j==m && (m mod 2==0))

-Y[1,i,j,i,j-1]<=0;

forall (c in clusters, i in row, j in column :

c==1 && i>=2 && i<n-1 && j==m && (m mod 2==0))

Y[1,i,j,i+1,j-1]<=X[1,i+1,j-1];

forall (c in clusters, i in row, j in column :

c==1 && i>=2 && i<n-1 && j==m && (m mod 2==0))

-Y[1,i,j,i+1,j-1]<=0;

//[18] neighbours of right X(i,m-1) (m is odd)

forall(c in clusters, i in row, j in column :

c==1 && i>2 && i<n-1 && j==m-1 && (m mod 2!=0))

Y[1,i,j,i-1,j]<=X[1,i,j];

forall(c in clusters, i in row, j in column :

c==1 && i>2 && i<n-1 && j==m-1 && (m mod 2!=0))

Y[1,i,j,i-1,j]<=X[1,i-1,j];

forall(c in clusters, i in row, j in column :

c==1 && i>2 && i<n-1 && j==m-1 && (m mod 2!=0))

-Y[1,i,j,i-1,j]<=0;

forall(c in clusters, i in row, j in column :

c==1 && i>2 && i<n-1 && j==m-1 && (m mod 2!=0))

Y[1,i,j,i,j-1]<=X[1,i,j];

forall(c in clusters, i in row, j in column :

c==1 && i>2 && i<n-1 && j==m-1 && (m mod 2!=0))

Y[1,i,j,i,j-1]<=X[1,i,j-1];

forall(c in clusters, i in row, j in column :

c==1 && i>2 && i<n-1 && j==m-1 && (m mod 2!=0))

-Y[1,i,j,i,j-1]<=0;

forall(c in clusters, i in row, j in column :

c==1 && i>2 && i<n-1 && j==m-1 && (m mod 2!=0))

Y[1,i,j,i+1,j-1]<=X[1,i,j];

forall(c in clusters, i in row, j in column :

c==1 && i>2 && i<n-1 && j==m-1 && (m mod 2!=0))

Y[1,i,j,i+1,j-1]<=X[1,i+1,j-1];

forall(c in clusters, i in row, j in column :

c==1 && i>2 && i<n-1 && j==m-1 && (m mod 2!=0))

-Y[1,i,j,i+1,j-1]<=0;

forall(c in clusters, i in row, j in column :

179

c==1 && i>2 && i<n-1 && j==m-1 && (m mod 2!=0))

Y[1,i,j,i+1,j]<=X[1,i,j];

forall(c in clusters, i in row, j in column :

c==1 && i>2 && i<n-1 && j==m-1 && (m mod 2!=0))

Y[1,i,j,i+1,j]<=X[1,i+1,j];

forall(c in clusters, i in row, j in column :

c==1 && i>2 && i<n-1 && j==m-1 && (m mod 2!=0))

-Y[1,i,j,i+1,j]<=0;

//[19] neighbours of right boundary X(i,m) (m is odd)

forall (c in clusters, i in row, j in column :

c==1 && i>2 && i<=n-1 && j==m && (m mod 2!=0))

Y[1,i,j,i-1,j-1]<=X[1,i-1,j-1];

forall (c in clusters, i in row, j in column :

c==1 && i>2 && i<=n-1 && j==m && (m mod 2!=0))

-Y[1,i,j,i-1,j-1]<=0;

forall (c in clusters, i in row, j in column :

c==1 && i>2 && i<=n-1 && j==m && (m mod 2!=0))

Y[1,i,j,i,j-1]<=X[1,i,j-1];

forall (c in clusters, i in row, j in column :

c==1 && i>2 && i<=n-1 && j==m && (m mod 2!=0))

-Y[1,i,j,i,j-1]<=0;

//[20] neighbours of bottom left corner X(n-1,2)

forall(c in clusters, i in row, j in column :

c==1 && i==n-1 && j==2)

Y[1,i,j,i-1,j]<=X[1,i,j];

forall(c in clusters, i in row, j in column :

c==1 && i==n-1 && j==2)

Y[1,i,j,i-1,j]<=X[1,i-1,j];

forall(c in clusters, i in row, j in column :

c==1 && i==n-1 && j==2)

-Y[1,i,j,i-1,j]<=0;

forall(c in clusters, i in row, j in column :

c==1 && i==n-1 && j==2)

Y[1,i,j,i,j+1]<=X[1,i,j];

forall(c in clusters, i in row, j in column :

c==1 && i==n-1 && j==2)

Y[1,i,j,i,j+1]<=X[1,i,j+1];

forall(c in clusters, i in row, j in column :

c==1 && i==n-1 && j==2)

-Y[1,i,j,i,j+1]<=0;

//[21] neighbour of bottom left boundary X(n,1)

forall (c in clusters, i in row, j in column :

180

c==1 && i==n && j==1)

Y[1,i,j,i-1,j+1]<=X[1,i-1,j+1];

forall (c in clusters, i in row, j in column :

c==1 && i==n && j==1)

-Y[1,i,j,i-1,j+1]<=0;

//[22] neighbour of bottom left boundary X(n,2)

forall(c in clusters, i in row, j in column :

c==1 && i==n && j==2)

Y[1,i,j,i-1,j]<=X[1,i-1,j];

forall(c in clusters, i in row, j in column :

c==1 && i==n && j==2)

-Y[1,i,j,i-1,j]<=0;

//[23] neighbours of bottom right corner X(n-1,m-1) (m is even)

forall(c in clusters, i in row, j in column :

c==1 && i==n-1 && j==m-1 && (m mod 2==0))

Y[1,i,j,i-1,j]<=X[1,i,j];

forall(c in clusters, i in row, j in column :

c==1 && i==n-1 && j==m-1 && (m mod 2==0))

Y[1,i,j,i-1,j]<=X[1,i-1,j];

forall(c in clusters, i in row, j in column :

c==1 && i==n-1 && j==m-1 && (m mod 2==0))

-Y[1,i,j,i-1,j]<=0;

forall(c in clusters, i in row, j in column :

c==1 && i==n-1 && j==m-1 && (m mod 2==0))

Y[1,i,j,i-1,j-1]<=X[1,i,j];

forall(c in clusters, i in row, j in column :

c==1 && i==n-1 && j==m-1 && (m mod 2==0))

Y[1,i,j,i-1,j-1]<=X[1,i-1,j-1];

forall(c in clusters, i in row, j in column :

c==1 && i==n-1 && j==m-1 && (m mod 2==0))

-Y[1,i,j,i-1,j-1]<=0;

forall(c in clusters, i in row, j in column :

c==1 && i==n-1 && j==m-1 && (m mod 2==0))

Y[1,i,j,i,j-1]<=X[1,i,j];

forall(c in clusters, i in row, j in column :

c==1 && i==n-1 && j==m-1 && (m mod 2==0))

Y[1,i,j,i,j-1]<=X[1,i,j-1];

forall(c in clusters, i in row, j in column :

c==1 && i==n-1 && j==m-1 && (m mod 2==0))

-Y[1,i,j,i,j-1]<=0;

//[24] neighbour of bottom right boundary X(n-1,m) (m is even)

181

forall (c in clusters, i in row, j in column :

c==1 && i==n-1 && j==m && (m mod 2==0))

Y[1,i,j,i,j-1]<=X[1,i,j-1];

forall (c in clusters, i in row, j in column :

c==1 && i==n-1 && j==m && (m mod 2==0))

-Y[1,i,j,i,j-1]<=0;

//[25] neighbour of bottom right boundary X(n,m-1) (m is even)

forall (c in clusters, i in row, j in column :

c==1 && i==n && j==m-1 && (m mod 2==0))

Y[1,i,j,i-1,j]<=X[1,i-1,j];

forall (c in clusters, i in row, j in column :

c==1 && i==n && j==m-1 && (m mod 2==0))

-Y[1,i,j,i-1,j]<=0;

forall (c in clusters, i in row, j in column :

c==1 && i==n && j==m-1 && (m mod 2==0))

Y[1,i,j,i-1,j-1]<=X[1,i-1,j-1];

forall (c in clusters, i in row, j in column :

c==1 && i==n && j==m-1 && (m mod 2==0))

-Y[1,i,j,i-1,j-1]<=0;

//[26] neighbour of bottom right corner X(n-1,m-1) (m is odd)

forall (c in clusters, i in row, j in column :

c==1 && i==n-1 && j==m-1 && (m mod 2!=0))

Y[1,i,j,i-1,j]<=X[1,i,j];

forall (c in clusters, i in row, j in column :

c==1 && i==n-1 && j==m-1 && (m mod 2!=0))

Y[1,i,j,i-1,j]<=X[1,i-1,j];

forall (c in clusters, i in row, j in column :

c==1 && i==n-1 && j==m-1 && (m mod 2!=0))

-Y[1,i,j,i-1,j]<=0;

forall (c in clusters, i in row, j in column :

c==1 && i==n-1 && j==m-1 && (m mod 2!=0))

Y[1,i,j,i,j-1]<=X[1,i,j];

forall (c in clusters, i in row, j in column :

c==1 && i==n-1 && j==m-1 && (m mod 2!=0))

Y[1,i,j,i,j-1]<=X[1,i,j-1];

forall (c in clusters, i in row, j in column :

c==1 && i==n-1 && j==m-1 && (m mod 2!=0))

-Y[1,i,j,i,j-1]<=0;

//[27] neighbour of bottom right boundary X(n,m)(m is odd)

forall (c in clusters, i in row, j in column :

c==1 && i==n && j==m && (m mod 2!=0))

182

Y[1,i,j,i-1,j-1]<=X[1,i-1,j-1];

forall (c in clusters, i in row, j in column :

c==1 && i==n && j==m && (m mod 2!=0))

-Y[1,i,j,i-1,j-1]<=0;

//[28] neighbour of bottom right boundary X(n,m-1)(m is odd)

forall (c in clusters, i in row, j in column :

c==1 && i==n && j==m-1 && (m mod 2!=0))

Y[1,i,j,i-1,j]<=X[1,i-1,j];

forall (c in clusters, i in row, j in column :

c==1 && i==n && j==m-1 && (m mod 2!=0))

-Y[1,i,j,i-1,j]<=0;

//[29] neighbours of bottom X(n-1,j)(j is odd)

forall(c in clusters, i in row, j in column :

c==1 && i==n-1 && j> 2 && j< (m-1) && (j mod 2!=0))

Y[1,i,j,i,j-1]<=X[1,i,j];

forall(c in clusters, i in row, j in column :

c==1 && i==n-1 && j> 2 && j< (m-1) && (j mod 2!=0))

Y[1,i,j,i,j-1]<=X[1,i,j-1];

forall(c in clusters, i in row, j in column :

c==1 && i==n-1 && j> 2 && j< (m-1) && (j mod 2!=0))

-Y[1,i,j,i,j-1]<=0;

forall(c in clusters, i in row, j in column :

c==1 && i==n-1 && j> 2 && j< (m-1) && (j mod 2!=0))

Y[1,i,j,i-1,j-1]<=X[1,i,j];

forall(c in clusters, i in row, j in column :

c==1 && i==n-1 && j> 2 && j< (m-1) && (j mod 2!=0))

Y[1,i,j,i-1,j-1]<=X[1,i-1,j-1];

forall(c in clusters, i in row, j in column :

c==1 && i==n-1 && j> 2 && j< (m-1) && (j mod 2!=0))

-Y[1,i,j,i-1,j-1]<=0;

forall(c in clusters, i in row, j in column :

c==1 && i==n-1 && j> 2 && j< (m-1) && (j mod 2!=0))

Y[1,i,j,i-1,j]<=X[1,i,j];

forall(c in clusters, i in row, j in column :

c==1 && i==n-1 && j> 2 && j< (m-1) && (j mod 2!=0))

Y[1,i,j,i-1,j]<=X[1,i-1,j];

forall(c in clusters, i in row, j in column :

c==1 && i==n-1 && j> 2 && j< (m-1) && (j mod 2!=0))

-Y[1,i,j,i-1,j]<=0;

forall(c in clusters, i in row, j in column :

c==1 && i==n-1 && j> 2 && j< (m-1) && (j mod 2!=0))

Y[1,i,j,i-1,j+1]<=X[1,i,j];

forall(c in clusters, i in row, j in column :

183

c==1 && i==n-1 && j> 2 && j< (m-1) && (j mod 2!=0))

Y[1,i,j,i-1,j+1]<=X[1,i-1,j+1];

forall(c in clusters, i in row, j in column :

c==1 && i==n-1 && j> 2 && j< (m-1) && (j mod 2!=0))

-Y[1,i,j,i-1,j+1]<=0;

forall(c in clusters, i in row, j in column :

c==1 && i==n-1 && j> 2 && j< (m-1) && (j mod 2!=0))

Y[1,i,j,i,j+1]<=X[1,i,j];

forall(c in clusters, i in row, j in column :

c==1 && i==n-1 && j> 2 && j< (m-1) && (j mod 2!=0))

Y[1,i,j,i,j+1]<=X[1,i,j+1];

forall(c in clusters, i in row, j in column :

c==1 && i==n-1 && j> 2 && j< (m-1) && (j mod 2!=0))

-Y[1,i,j,i,j+1]<=0;

//[30]neighbours of bottom boundary X(n,j) (j is odd)

forall (c in clusters, i in row, j in column :

c==1 && i==n && j> 2 && j< (m-1) && (j mod 2!=0))

Y[1,i,j,i-1,j-1]<=X[1,i-1,j-1];

forall (c in clusters, i in row, j in column :

c==1 && i==n && j> 2 && j< (m-1) && (j mod 2!=0))

-Y[1,i,j,i-1,j-1]<=0;

forall (c in clusters, i in row, j in column :

c==1 && i==n && j> 2 && j< (m-1) && (j mod 2!=0))

Y[1,i,j,i-1,j]<=X[1,i-1,j];

forall (c in clusters, i in row, j in column :

c==1 && i==n && j> 2 && j< (m-1) && (j mod 2!=0))

-Y[1,i,j,i-1,j]<=0;

forall (c in clusters, i in row, j in column :

c==1 && i==n && j> 2 && j< (m-1) && (j mod 2!=0))

Y[1,i,j,i-1,j+1]<=X[1,i-1,j+1];

forall (c in clusters, i in row, j in column :

c==1 && i==n && j> 2 && j< (m-1) && (j mod 2!=0))

-Y[1,i,j,i-1,j+1]<=0;

//[31] neighbours of bottom X(n-1,j) (j is even)

forall (c in clusters, i in row, j in column :

c==1 && i==n-1 && j> 2 && j< (m-1) && (j mod 2==0))

Y[1,i,j,i,j-1]<=X[1,i,j];

forall (c in clusters, i in row, j in column :

c==1 && i==n-1 && j> 2 && j< (m-1) && (j mod 2==0))

Y[1,i,j,i,j-1]<=X[1,i,j-1];

forall (c in clusters, i in row, j in column :

c==1 && i==n-1 && j> 2 && j< (m-1) && (j mod 2==0))

-Y[1,i,j,i,j-1]<=0;

184

forall (c in clusters, i in row, j in column :

c==1 && i==n-1 && j> 2 && j< (m-1) && (j mod 2==0))

Y[1,i,j,i-1,j]<=X[1,i,j];

forall (c in clusters, i in row, j in column :

c==1 && i==n-1 && j> 2 && j< (m-1) && (j mod 2==0))

Y[1,i,j,i-1,j]<=X[1,i-1,j];

forall (c in clusters, i in row, j in column :

c==1 && i==n-1 && j> 2 && j< (m-1) && (j mod 2==0))

-Y[1,i,j,i-1,j]<=0;

forall (c in clusters, i in row, j in column :

c==1 && i==n-1 && j> 2 && j< (m-1) && (j mod 2==0))

Y[1,i,j,i,j+1]<=X[1,i,j];

forall (c in clusters, i in row, j in column :

c==1 && i==n-1 && j> 2 && j< (m-1) && (j mod 2==0))

Y[1,i,j,i,j+1]<=X[1,i,j+1];

forall (c in clusters, i in row, j in column :

c==1 && i==n-1 && j> 2 && j< (m-1) && (j mod 2==0))

-Y[1,i,j,i,j+1]<=0;

//[32] neighbour of bottom boundary X(n,j)(j is even)

forall(c in clusters, i in row, j in column :

c==1 && i==n && j> 2 && j< (m-1) && (j mod 2==0))

Y[1,i,j,i-1,j]<=X[1,i-1,j];

forall(c in clusters, i in row, j in column :

c==1 && i==n && j> 2 && j< (m-1) && (j mod 2==0))

-Y[1,i,j,i-1,j]<=0;

//--;

// From the distance part

// j is odd

// j<=l, i<=k

ct46= forall (c in clusters, i in row,k in row ,j in column,l in column:

(c!=1 && i!=1 && i!=n && j!=1&& j!=m && k!=1 && k!=n && l!=1&& l!=m)

&& i<k && j<l && (j mod 2!=0))

X[c,i,j] + X[c,k,l] -Y[c,i,j,k,l] <=1;

forall (c in clusters, i in row,k in row ,j in column,l in column:

(c!=1 && i!=1 && i!=n && j!=1&& j!=m && k!=1 && k!=n && l!=1&& l!=m)

&& i<k && j<l && (j mod 2!=0))

-Y[c,i,j,k,l] <=0;

forall (c in clusters, i in row,k in row ,j in column,l in column:

(c!=1 && i!=1 && i!=n && j!=1&& j!=m && k!=1 && k!=n && l!=1&& l!=m)

&& ((i==k && j<l) || (i<k && j==l)) && (j mod 2!=0))

X[c,i,j] + X[c,k,l] -Y[c,i,j,k,l] <=1;

185

forall (c in clusters, i in row,k in row ,j in column,l in column:

(c!=1 && i!=1 && i!=n && j!=1&& j!=m && k!=1 && k!=n && l!=1&& l!=m)

&& ((i==k && j<l) || (i<k && j==l)) && (j mod 2!=0))

-Y[c,i,j,k,l] <=0;

// j<=l, i> k

ct47= forall (c in clusters, i in row,k in row ,j in column,l in column:

(c!=1 && i!=1 && i!=n && j!=1&& j!=m && k!=1 && k!=n && l!=1&& l!=m)

&& i>k && j<=l && (j mod 2!=0))

X[c,i,j] + X[c,k,l] -Y[c,i,j,k,l] <=1;

forall (c in clusters, i in row,k in row ,j in column,l in column:

(c!=1 && i!=1 && i!=n && j!=1&& j!=m && k!=1 && k!=n && l!=1&& l!=m)

&& i>k && j<=l && (j mod 2!=0))

-Y[c,i,j,k,l] <=0;

// j is even

// j<=l, i<=k

ct48= forall (c in clusters, i in row,k in row ,j in column,l in column:

(c!=1 && i!=1 && i!=n && j!=1&& j!=m && k!=1 && k!=n && l!=1&& l!=m)

&& i<k && j<l && (j mod 2 ==0))

X[c,i,j] + X[c,k,l] -Y[c,i,j,k,l] <=1;

forall (c in clusters, i in row,k in row ,j in column,l in column:

(c!=1 && i!=1 && i!=n && j!=1&& j!=m && k!=1 && k!=n && l!=1&& l!=m)

&& i<k && j<l && (j mod 2 ==0))

-Y[c,i,j,k,l] <=0;

forall(c in clusters, i in row,k in row ,j in column,l in column:

(c!=1 && i!=1 && i!=n && j!=1&& j!=m && k!=1 && k!=n && l!=1&& l!=m)

&& ((i==k && j<l) || (i<k && j==l)) && (j mod 2 ==0))

X[c,i,j] + X[c,k,l] -Y[c,i,j,k,l] <=1;

forall(c in clusters, i in row,k in row ,j in column,l in column:

(c!=1 && i!=1 && i!=n && j!=1&& j!=m && k!=1 && k!=n && l!=1&& l!=m)

&& ((i==k && j<l) || (i<k && j==l)) && (j mod 2 ==0))

-Y[c,i,j,k,l] <=0;

// j<=l, i>k

ct49= forall (c in clusters, i in row,k in row ,j in column,l in column:

(c!=1 && i!=1 && i!=n && j!=1&& j!=m && k!=1 && k!=n && l!=1&& l!=m)

&& i>k && j<=l && (j mod 2==0))

X[c,i,j] + X[c,k,l] -Y[c,i,j,k,l] <=1;

forall (c in clusters, i in row,k in row ,j in column,l in column:

(c!=1 && i!=1 && i!=n && j!=1&& j!=m && k!=1 && k!=n && l!=1&& l!=m)

&& i>k && j<=l && (j mod 2==0))

-Y[c,i,j,k,l] <=0;

//l is odd =

// j>l, i<=k

ct50= forall (c in clusters, i in row,k in row ,j in column,l in column:

(c!=1 && i!=1 && i!=n && j!=1&& j!=m && k!=1 && k!=n && l!=1&& l!=m)

&& i<=k && j>l && (l mod 2 !=0))

X[c,i,j] + X[c,k,l] -Y[c,i,j,k,l] <=1;

forall (c in clusters, i in row,k in row ,j in column,l in column:

186

(c!=1 && i!=1 && i!=n && j!=1&& j!=m && k!=1 && k!=n && l!=1&& l!=m)

&& i<=k && j>l && (l mod 2 !=0))

-Y[c,i,j,k,l] <=0;

// j>l, i > k

ct51= forall (c in clusters, i in row,k in row ,j in column,l in column:

(c!=1 && i!=1 && i!=n && j!=1&& j!=m && k!=1 && k!=n && l!=1&& l!=m)

&& i>k && j>l && (l mod 2!=0))

X[c,i,j] + X[c,k,l] -Y[c,i,j,k,l] <=1;

forall (c in clusters, i in row,k in row ,j in column,l in column:

(c!=1 && i!=1 && i!=n && j!=1&& j!=m && k!=1 && k!=n && l!=1&& l!=m)

&& i>k && j>l && (l mod 2!=0))

-Y[c,i,j,k,l] <=0;

// l is even =

// j>l, i<=k

ct52= forall (c in clusters, i in row,k in row ,j in column,l in column:

(c!=1 && i!=1 && i!=n && j!=1&& j!=m && k!=1 && k!=n && l!=1&& l!=m)

&& i<=k && j>l && (l mod 2==0))

X[c,i,j] + X[c,k,l] -Y[c,i,j,k,l] <=1;

forall (c in clusters, i in row,k in row ,j in column,l in column:

(c!=1 && i!=1 && i!=n && j!=1&& j!=m && k!=1 && k!=n && l!=1&& l!=m)

&& i<=k && j>l && (l mod 2==0))

-Y[c,i,j,k,l] <=0;

// j>l, i>k

ct53= forall (c in clusters, i in row,k in row ,j in column,l in column:

(c!=1 && i!=1 && i!=n && j!=1&& j!=m && k!=1 && k!=n && l!=1&& l!=m)

&& i>k && j>l && (l mod 2==0))

X[c,i,j] + X[c,k,l] -Y[c,i,j,k,l] <=1;

forall (c in clusters, i in row,k in row ,j in column,l in column:

(c!=1 && i!=1 && i!=n && j!=1&& j!=m && k!=1 && k!=n && l!=1&& l!=m)

&& i>k && j>l && (l mod 2==0))

-Y[c,i,j,k,l] <=0;

}

execute{

for(var counter1 in clusters)

for(var counter2 in row)

for(var counter3 in column)

x_temp[(counter1-1)*n+counter2][counter3]=X[counter1][counter2][counter3];

//area_temp[counter][counter2][counter3]=areaofs[(counter-1)*n+counter2][counter3];

range1 = "Sheet5!A1:W"+n*c;

obj_final = cplex.getObjValue();

// thisOplModel.postProcess() ;

}

main{

thisOplModel.generate();

187

cplex.exportModel("hexogan_new.lp");

cplex.solve();

thisOplModel.postProcess() ;

writeln("Objective value = ",cplex.getObjValue());

writeln("Best Objective value = ",cplex.getBestObjValue());

writeln("CPLEX status = ",cplex.getCplexStatus());

}

188

Bibliography

[1] http://xgandibleux.free.fr/MOCOlib/MOSCP.html.

[2] http://www.ilog.com.

[3] R. K. Ahuja, O. Ergun, J. B. Orlin, and A. P. Punnen. A survey of very large-scale
neighborhood search techniques. Discrete Applied Mathematics, 123:75–102, 2002.

[4] E. Angel, E. Bampis, and L. Gourves. Approximating the Pareto curve with local
search for the bicriteria TSP (1,2) problem. Theoretical Computer Science, 310:135–
146, 2004.

[5] E. Angel, E. Bampis, L. Gourves, and J. Monnot. (non)-approximability for the mul-
ticriteria tsp (1,2). Fundamentals of Computation Theory 15th International Sympo-
sium, Lecture Notes in Computer Science, 3623:329–340, 2005.

[6] R. Armann. Solving multiobjective programming problems by discrete representation.
Optimization, 20(4):483–492, 2000.

[7] C. Bazgan, H. Hugot, and D. Vanderpooten. Implementing an efficient fptas for the
0–1 multi-objective knapsack problem. European Journal of Operational Research,
198(1):47–56, 2009.

[8] F. A. Behringer. Lexicographic quasiconcave multiobjective programming. Zeitschrift
fur Operations Research, 21:103–116, 1977.

[9] P. Belotti, B. Soylu, and M. M. Wiecek. A branch-and-bound algorithm for biobjective
mixed-integer programs. Technical Report, Department of Mathematical Sciences,
Clemson University, SC, 2012.

[10] V. Blouin, B. J. Hunt, and M. M. Wiecek. MCDM with relative importance of criteria:
application to configuration design of vehicles. T. Trzaskalik, T. Wachowicz, editors,
the Karol Adamiecki University of Economics in Katowice, Katowice, Poland Verlag,
2009.

[11] P. A. N. Bosman and D. Thierens. The balance between proximity and diversity in
multiobjective evolutionary algorithms. IEEE Transactions on Evolutionary Compu-
tation, 7(2):174–188, 2003.

189

[12] V. J. Bowman. On the relationship of the Chebyshev norm and the efficient frontier of
multiple-criteria objectives. Lecture Notes in Economics and Mathematical Systems
130, 1975.

[13] A. Caprara, M. Fischetti, and P. Toth. A heuristic method for the set covering
problem. Operations Research, 47:730–743, 1999.

[14] L. G. Chalmet, L. Lemonidis, and D. J. Elzinga. An algorithm for the bi-criterion
integer programming problem. European Journal of Operational Research, 25:292–
300, 1986.

[15] T. Chvátal. A greedy heuristic for the set covering problem. Mathematics of Opera-
tions Research, 4(3):233–235, 1979.

[16] M. A. Clemens, C. S. ReVelle, and J. C. Williams. Reserve design for species preser-
vation. European Journal of Operational Research, 112:273–283, 1999.

[17] C. C. Coello, V. D. Van, and G. Lamont. Evolutionary algorithms for solving multi-
objective problems, volume 46. Kluwer Academic Publishers, 2002.

[18] A. Colorni, M. Dorigo, F. Maffioli, V. Maniezzo, G. Righini, and M. Trubian. Heuris-
tics from nature for hard combinatorial optimization problems. International Trans-
actions in Operational Research, 3(1):1–21, 1996.

[19] B. Csuti, S. Polasky, P. H. Williams, R. L. Pressey, J. D. Camm, M. Kershaw, A.
R. Kiester, B. Downs, R. Hamilton, M. Huso, and K. Sahr. A comparison of re-
serve selection algorithms using data on terrestrial vertebrates in oregon. Biological
Conservation, 80:83–97, 1997.

[20] M. S. Daskin and E. H. Stern. A hierarchical objective set covering model for emer-
gency medical service vehicle deployment. Operations Research Society of America,
15(2):137–151, 1981.

[21] K. Deb. Multi-objective Optimization using evolutionary algorithms,Wiley inter-
science series in systems and optimization. John Wiley and Sons Ltd, 2001.

[22] I. Diakonikolas and M. Yannakakis. Small approximate Pareto sets for bi-objective
shortest paths and other problems. SIAM Journal on Computing, 39(4):1340–1371,
2001.

[23] R. V. Efremov and G. K. Kamenev. Properties of a method for polyhedral approx-
imation of the feasible criterion set in convex multiobjective problems. Annals of
Operations Research, 166:271–279, 2009.

[24] M. Ehrgott. Approximation algorithms for combinatorial multicriteria optimization
problems. International Transactions in Operational Research, 7:5–31, 2001.

[25] M. Ehrgott and E. A. Galperin. Min-max formulation of the balance number in
multiobjective global optimization. Computers and Mathematics with Applications,
44:899–907, 2002.

190

[26] M. Ehrgott and X. Gandibleux. A survey and annotated bibliography of multiobjec-
tive combinatorial optimization. OR Spektrum, 22:425–460, 2000.

[27] M. Ehrgott and M. M. Wiecek. Multiple Criteria Decision Analysis: State of the Art
Surveys. Figueira J., Greco S., and Ehrgott M., editors, Springer Verlag, 2005.

[28] A. Engau and M. M. Wiecek. Cone characterizations of approximate solutions in real-
vector optimization. Journal of Optimization Theory and Applications, 134:499–513,
2007.

[29] M. Ergott. Multicriteria Optimization. Springer, Second edition, 2005.

[30] T. Erlebach, H. Kellerer, and U. Pferschy. Approximating the multiobjective knapsack
problems. Management Science, 48:1603–1612, 2002.

[31] S. L. Faulkenberg and M. M. Wiecek. On the quality of discrete representations in
multiple objective programming. Optimization and Engineering, 11:423–440, 2010.

[32] C. Filippi and E. Stevanato. Approximation schemes for bi-objective combinatorial
optimization and their application to the TSP with profits. Operations Research,
40:2418–2428, 2013.

[33] D. T. Fischer and R. L. Church. Clustering and compactness in reserve site selection:
An extension of the biodiversity management area selection model. Forest Science,
49:555–565, 2003.

[34] D. T. Fischer and R. L. Church. The SITES reserve selection system: A critical
review. Environmental Modeling and Assessment, 10:215–228, 2005.

[35] R. Frankham, J. D. Ballou, and D. A. Briscoe. Introduction to conservation genetics.
Cambridge University Press, Second edition, 2010.

[36] E. A. Galperin. Nonscalarized multiobjective global optimization. Optimization The-
ory and Applications, 75(1):69–85, 1992.

[37] M. Gardenghi. Multiobjective Optimization for Complex Systems. PhD Thesis, De-
partment of Mathematical Sciences, Clemson University, Clemson, SC, 2009.

[38] M. Gardenghi, T. Goḿez, and M. M. Wiecek. Algebra of efficient sets for multiobjec-
tive complex systems. Journal of Optimization Theory and Applications, 149(2):385–
410, 2011.

[39] M. Gardenghi and M. M. Wiecek. Efficiency for multiobjective multidisciplinary opti-
mization problems with quasiseparable subproblems. Optimization and Engineering,
13(2):293–318, 2012.

[40] T. Goel, R. Vaidyanathan, R. T. Haftka, W. Shyy, N. V. Queipo, and K. Tucker. Re-
sponse surface approximation of Pareto optimal front in multi-objective optimization.
Computer Methods in Applied Mechanics and Engineering, 196:879–893, 2007.

191

[41] C. H. Goh and X. Q. Yang. Analytic efficient solution set for multi-criteria quadratic
programs. European Journal of Operational Research, 92:166–181, 1996.

[42] R. T. Haftka and L. T. Watson. Multidisciplinary design optimization with quasisep-
arable subsystems. Optimization and Engineering, 6:9–20, 2005.

[43] M. P. Hansen and A. Jaszkiewicz. Evaluating the quality of approximations to the
non-dominated set. Institute of Mathematical Modeling: Technical Report, 7, 1998.

[44] M. Hartikainen, K. Miettinen, and M. M. Wiecek. Constructing a Pareto front approx-
imation for decision making. Mathematical Methods of Operations Research, 73:209–
234, 2011.

[45] M. Hartikainen, K. Miettinen, and M. M. Wiecek. Paint: Pareto front interpolation for
nonlinear multiobjective optimization. Computational Optimization and Application,
52:845–867, 2012.

[46] S. Helbig and D. Pateva. On several concepts for ε-efficiency. OR Spektrum, 16(2):179–
186, 1994.

[47] J. Hof and C. H. Flather. Accounting for connectivity and spatial correlation in the
optimal placement of wildlife habitat. Ecological Modeling, 88:143–155, 1996.

[48] B. J. Hunt, V. W. Blouin, and M. M. Wiecek. Relative importance of design criteria:
a preference modeling approach. Journal of Mechanical Design, 129(9):907–914, 2007.

[49] B. J. Hunt, C. Hughes, and M. M. Wiecek. Relative importance of criteria in mul-
tiobjective programming: a cone-based approach. European Journal of Operational
Research, 207:936–945, 2010.

[50] B. J. Hunt and M. M. Wiecek. Cones to aid decision making in multicriteria program-
ming, In: Multi-Objective Programming and Goal-Programming. Tanino T., Tanaka
T. and M. Inuiguchi M., editors, Springer Berlin, 2003.

[51] J. Jahn. Vector Optimization. Theory, applications, and extensions. Springer-Verlag,
Berlin, 2004.

[52] A. Jaszkiewicz. Do multiple-objective metaheuristics deliver on their promises? a
computational experiment on the set covering problem. IEEE Transactions on Evolo-
tionary Computation, 7:133–143, 2003.

[53] A. Jaszkiewicz. A comparative study of multiple objective metaheuristics on the biob-
jective set covering problem and the Pareto memetic algorithm. Annals of Operations
Research, 131:135–158, 2004.

[54] N. Jozefowiez, F. Glover, and M. Laguna. Multi-objective meta-heuristics for the
traveling salesman problem with profits. Journal of Mathematical Modelling and
Algorithms, 7(2):177–195, 2008.

192

[55] R. K. Kincaid, C. Easterling, and M. Jeske. Computational experiments with heuris-
tics for two nature reserve site selection problems. Computers and Operations Re-
search, 35:499–512, 2006.

[56] O. N. Klimova and V. D. Noghin. Using interdependent information on the relative
importance of criteria in decision making. Optimization, 46(12):2178–2190, 2006.

[57] M. M. Kostreva, W. Ogryczak, and A. Wierzbicki. Equitable aggregations and mul-
tiple criteria analysis. European Journal of Operational Research, 158(2):362–377,
2004.

[58] S. S. Kutateladze. Convex ε-programming. Soviet Mathematics. Doklady, 20:391–393,
1979.

[59] M. Laumanns, R. Zenklusen, and O. Maler. Stochastic convergence of random search
methods to fixed size Pareto front approximations. European Journal of Operational
Research, 213(2):414–421, 2011.

[60] J. Legriel, C. L. Cotton, and O. Maler. Approximating the Pareto front of the multi-
criteria optimization problems. 19th International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS), pages 69–83, 2010.

[61] Y. H. Liu. A heuristic algorithm for the multicriteria set covering problems. Applied
Mathematics Letters, 6:21–23, 1993.

[62] P. Loridan. ε-solutions in vector minimization problems. Journal of Optimization
Theory and Applications, 43(2):265–276, 1984.

[63] D. G. Luenberger. Optimization by Vector Space Methods. John Wiley and Sons, New
York, 1969.

[64] T. Lust, J. Teghem, and D. Tuyttens. Very large-scale neighborhood search for solving
multiobjective combinatorial optimization problems. Evolutionary Multi-Criterion
Optimization: 6th International Conference, 6576:254–268, 2011.

[65] B. Manthey and L. S. Ram. Approximation algorithms for the multicriteria traveling
salesman problems. Algorithmica, 53:69–88, 2009.

[66] C. R. Margules and R. L. Pressey. Systematic conservation planning. Nature, 405:243–
253, 2000.

[67] J. Martin, C. Bielza, and D. R. Insua. Approximating nondominated sets in continu-
ous multiobjective optimization problems. Naval Research Logistics, 52:469–480, 2005.

[68] M. D. McDonnell, H. P. Possingham, I. R. Ball, and E. A. Cousins. Mathematical
methods for spatially cohesive reserve design. Environmental Modeling and Assess-
ment, 7:107–114, 2002.

[69] K. Miettinen. Nonlinear Multiobjective Optimization. Kluwer Academic Publishers,
1999.

193

[70] N. Musliu. Local search algorithm for unicost set covering problem. Advances in
Applied Artificial Intelligence, 4031:302–311, 2006.

[71] D. J. Nalle, J. L. Arthur, C. A. Montgomery, and J. Sessions. Economic and spa-
tial impacts of an existing reserve network on future augmentation. Environmental
Modeling and Assessment, 7:99–105, 2002.

[72] D. J. Nalle, J. L. Arthur, and J. Sessions. Designing compact and contiguous reserve
networks with a hybrid heuristic algorithm. Forest Science, 48:59–68, 2002.

[73] V. D. Noghin. Relative importance of criteria: a quantitative approach. Journal of
Multicriteria Decision Analysis, 6:355–363, 1997.

[74] V. D. Noghin and I. V. Tolstykh. Using quantitative information on the relative impor-
tance of criteria for decision making. Computational Mathematics and Mathematical
Physics, 40(11):1529–1536, 2000.

[75] H. Onal. First-best, second-best, and heuristic solutions in conservation reserve site
selection. Biological Conservation, 115:55–62, 2003.

[76] H. Onal and R. A. Briers. Incorporating spatial criteria in optimum reserve network
selection. Proceedings of the Royal Society of London, Biological Sciences, 269:2437–
2441, 2002.

[77] H. Onal and R. A. Briers. Selection of a minimum-boundary reserve network using
integer programming. Proceedings of the Royal Society of London, Biological Sciences,
270:1487–1491, 2003.

[78] H. Onal and R. A. Briers. Designing a conservation reserve network with minimal
fragmentation: A linear integer programming approach. Environmental Modeling and
Assessment, 10:193–202, 2005.

[79] H. Onal and Y. Wang. A graph theory approach for designing conservation reserve
networks with minimal fragmentation. Networks, 51:142–152, 2008.

[80] J. M. A. Pangilinan and G. K. Janssens. Evolutionary algorithms for the multiob-
jective shortest path problem. International Journal of Computer and Information
Engineering, 1:1–5, 2007.

[81] C. H. Papadimitriou and M. Yannakakis. On the approximability of trade-offs and
optimal access of web sources. Proceedings 41st Annual Symposium on Foundations
of Computer Science, 1:86–92, 2000.

[82] N. Pareto. Cours d’Économie Politique. Rouge, Lausanne, Switzerland, 1896.

[83] S. L. Pimm and J. H. Lawton. Planning for biodiversity. Science, 279:2068–2069,
1998.

[84] R. B. Primack. Essentials of conservation biology. Sinauer Associates, Fifth edition,
2010.

194

[85] C. Prins and C. Prodhon. Two-phase method and lagrangian relaxation to solve the
biobjective set covering problem. Annals of Operations Research, 147:23–41, 2006.

[86] C. R. Reeves. Modern heuristic techniques for combinatorial problems. Blackwell
Scientific Publications, Second edition, 1993.

[87] H. Reuter. An approximation method for the efficiency set of multiobjective program-
ming problems. Optimization, 21:905–911, 1990.

[88] C. S. ReVelle, J. C. Williams, and J. J. Boland. Counterpart models in facility location
science and reserve selection science. Environmental Modeling and Assessment, 7:71–
80, 2002.

[89] M. K. Richard. Complexity of Computer Computations. Plenum Press, 1972.

[90] R. T. Rockafellar. Convex analysis. Princeton Landmarks in Mathematics. Princeton
University Press, First edition, 1970.

[91] R. T. Rockafellar and R. J. B. Wets. Variational analysis (Grundlehren der Mathe-
matischen Wissenschaften). Springer, Third edition, 1998.

[92] G. Ruhe and B. Fruhwirth. ε-optimality for bicriteria programs and its application
to minimum cost flows. Computing, 44(1):1340–1371, 1990.

[93] S. Ruzika and M. M. Wiecek. Survey paper: Approximation methods in multiob-
jective programming. Journal of Optimization Theory and Applications, 126:473–571,
2005.

[94] M. H. Safer and J. B. Orlin. Fast approximation schemes for multi-criteria combina-
torial optimization, technical report. MIT Sloan School of Management, 1:3756–3795,
1995.

[95] Y. Sawaragi, H. Nakayama, and T. Tanino. Theory of Multiobjective Optimization.
Academic Press, Orlando, 1985.

[96] R. R. Saxena and S. R. Arora. Linearization approach to multiobjective set covering
problem. Optimization, 43:145–156, 1998.

[97] S. Sayin. Measuring the quality of discrete representations of efficient sets in multiple
objective mathematical programming. Mathematical Programming, 87(3,Ser. A):543–
560, 2000.

[98] T. Shirabe. A model of contiguity for spatial unit allocation. Geographical Analysis,
37:2–16, 2005.

[99] R. E. Steuer. Multiple Criteria Optimization: Theory, Computation, and Application.
John Wiley, New York, 1896.

[100] E. L. Ulungu and J. Teghem. Multiobjective combinatorial optimization problems: A
survey. Journal of Multi-Criteria Decision Analysis, 3:83–104, 1994.

195

[101] S. Vassilvitskii and M. Yannakakis. Efficiently computing succinct trade-off curves.
Theoretical Computer Science, 348(2-3):334–356, 2005.

[102] V. V. Vazirani. Approximation Algorithms. Springer, Second edition, 2003.

[103] D. J. White. Epsilon efficiency. Journal of Optimization Theory and Applications,
49(2):319–337, 1986.

[104] M. M. Wiecek. Advances in cone-based preference modeling for decision making with
multiple criteria. Decision Making in Manufacturing and Services, 1(1-2):153–173,
2007.

[105] J. C. Williams. Optimal reserve site selection with distance requirements. Computers
and Operations Research, 35:488–498, 2008.

[106] J. C. Williams, C. S. ReVelle, and Simon A. Levin. Spatial attributes and reserve
design models: A review. Environmental Modeling and Assessment, 10:163–181, 2005.

[107] R. Woodroffe and J. R. Ginsberg. Edge effects and the extinction of populations
inside protected areas. Science, 280:2126–2128, 1998.

[108] X. Wu and A. T. Murray. A new approach to quantifying spatial contiguity using
graph theory and spatial interaction. International Journal of Geographical Informa-
tion Science, 22:387–407, 2008.

[109] X. Wu, A. T. Murray, and N. Xiao. A multiobjective evolutionary algorithm for
optimizing spatial contiguity in reserve network design. Landscape Ecology, 26:425–
437, 2011.

[110] P. L. Yu. Cone convexity, cone extreme points, and ondominated solutions in decision
problems with multiobjectives. Journal of Optimization Theory and Applications,
14(3):319–377, 1974.

[111] M. Zeleny. Compromise programming. J. Cochrane and M. Zeleny, editors, University
of South Carolina Press, Columbia, 1973.

[112] E. Zitzler. Evolutionary algorithms for multiobjective optimization: Methods and
applications. Ph.D. dissertation, Computer Engineering and Networks Laboratory
(TIK), ETH, Zurich, Switzerland, 1999.

196

	Clemson University
	TigerPrints
	12-2013

	Approximation in Multiobjective Optimization with Applications
	Lakmali Weerasena
	Recommended Citation

	Title Page
	Abstract
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	State of the art
	Research Goals
	Research Contributions
	The content of the dissertation
	Conclusion and future research

	Covers and t-dominance in Multiobjective Optimization
	Introduction
	Notations and definitions
	Properties of covers
	Properties of approximations
	Examples and application
	t-dominance and conclusion

	Pareto Set Approximation for the Multiobjective Set Covering Problem
	Introduction
	Problem formulation
	Approximating the Pareto set of the MOSCP
	Computational results
	Conclusion

	Add-Improve Algorithm for approximating the Pareto set of the Multiobjective Set Covering Problem
	Introduction
	Problem formulation
	Preliminary concepts
	Algorithm
	Computational results
	Conclusion

	A Hierarchical Approach to Designing Compact Ecological Reserve Systems
	Introduction
	Optimization Models
	Numerical Results
	Oregon data set
	Conclusions and Extensions

	Appendices
	MATLAB codes for Chapter 3
	MATLAB codes for Chapter 4
	OPL code for Chapter 5

	Bibliography

