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ABSTRACT 

The 1933 Long Beach, 1957 San Francisco, 1967 Caracas, 1985 Mexico City, 

1989 Loma Prieta, and 1994 Northridge earthquake events left evidences of how the local 

site condition can affect the characteristics of propagating earthquake wave from the 

bedrock through the top soil. The ground motion amplitude, frequency content or the 

duration can be affected by the local site condition and thus can cause significant 

amplification or de-amplification to the original bedrock motion which can seriously 

affect the structures. Quantification of such site effect on ground motions is a challenging 

task. This dissertation is dedicated to improve the existing ground response quantification 

techniques and the related knowledge base. 

The first major attempt towards ground response quantification was the 

development of the 1994 NEHRP (BSSC, 1995) seismic site factor provision. Since the 

development of the NEHRP provisions, several studies have found these factors to 

produce inadequate predictions for the state of South Carolina. In an attempt to generate 

seismic site factors based on conditions specific to South Carolina Coastal Plain (SCCP), 

a series of nonlinear one-dimensional ground response analyses are performed by this 

author as part of a research team considering appropriate soil profiles and location 

specific ground excitations. After the generation of this new site factor model, a 

systematic repercussions study is performed by applying earthquake loads, considering 

both NEHRP and the new site factors, on typical highway bridge structures. 

Being exposed to the realm of nonlinear site response studies, the author feels that 

this sector lacks sufficient benchmarking studies over the code usage protocols and 
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therefore its use in the practitioners’ community has been limited to date (Stewart et al., 

2008; Matasovic and Hashash, 2012). This author performs a benchmarking study over 

several widely used nonlinear one-dimensional site response analysis tools considering 

the ground motions and soil profiles specific to the Charleston, SC region. A few key 

issues are addressed: (i) the modeling techniques of several NL site response programs 

are reviewed for the site; (ii) comparative study over the site factors computed based on 

several nonlinear and equivalent linear analysis programs produce important insights; and 

(iii) a guideline stating the conditions required for selecting a nonlinear analysis over an 

equivalent linear analysis program. 

One dimensional site response analysis is limited to horizontally layered ground 

conditions. Earlier studies showed that topographic variations such as ground slopes can 

significantly affect the computed surface response. Considering the conditions specific to 

the Charleston, South Carolina area, two-dimensional finite element models of a range of 

sloping (mild and infinite) ground cases are analyzed. Based on the outcomes, a slope 

adjustment factor is proposed which modifies the existing one-dimensional site factors to 

account for the ground inclination in the design. 

Shear wave velocity (VS) is an important input for any seismic site response study. 

The author observed significant shear strain accumulation at VS contrast locations at the 

layer interfaces in previous studies. A numerical investigation dedicated to the effect of 

such stiffness contrast on the seismic surface response is performed. Smoothening these 

contrast locations reduced the imposed shear strain, thus lesser damping and higher 

surface spectral accelerations are obtained. 
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CHAPTER 1 

 

INTRODUCTION 
 

1.1 Overview 

The earthquake events like 1933 Long Beach,  1957 San Francisco,1967 Caracas, 

1985 Mexico City, 1989 Loma Prieta, and 1994 Northridge are important examples of 

how local site conditions affect the characteristics of wave propagation through the top 

soil. The ground motion parameters such as amplitude, frequency content or the duration 

can be affected by the local site condition and may result in amplification or de-

amplification to the original bedrock motion. Therefore the structures on the ground 

surface (or even the buried structures i.e. tunnels) can be seriously affected by such 

phenomena and need to be accounted for during the design phase. Quantification of site 

effects on ground motions is a challenging task. This dissertation is dedicated to improve 

the existing ground response quantification techniques and the related knowledge base. 

1.2 Motivation 

1.2.1 Necessity of a new seismic site factor model for SCCP 

The concept of seismic site factor, ratio of the spectral acceleration at the ground 

surface to that of the rock outcrop at a specific spectral period, is used in the design of 

geotechnical and structural systems to consider the effect of geologic and seismic 

conditions. The first major step towards ground response quantification was the 

development of the NEHRP (BSSC, 1995) provision. This provision proposed site factors 
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at 0.2 s (Fa) and 1.0 s (Fv) periods and since then this provision was adopted by several 

other specifications including SCDOT (2008a).  

Since the development of the NEHRP site factors in 1994, a number of studies 

(Borcherdt, 2002; Stewart et al., 2003; Park and Hashash, 2004) found that the 

recommended site factors under-predict in certain soil and loading conditions and over-

predict in some other cases. In South Carolina, several studies (Hwang et al., 1997; 

Power et al., 1998; Lester and Chapman, 2005; Chapman et al., 2006) showed that the 

NEHRP site factors are un-conservative. A possible reason is NEHRP assumes a single 

value (i.e. site factor) for an entire site class which covers a wide range of soil conditions 

(stiffness). Engineers at the South Carolina Department of Transportation (SCODT) also 

found un-conservativeness in the NEHRP code provisions during several of their 

projects. Therefore, a new set of site factors needs to be developed for the State of South 

Carolina considering the local geologic and seismic conditions. 

1.2.2 Benchmarking of nonlinear site response analysis for Charleston, SC area 

Although both equivalent linear and nonlinear one-dimensional site response 

analyses are used for conducting seismic site response analysis, the nonlinear codes better 

predict the seismic response when the system behaves in the highly nonlinear zone. For 

decades, practitioners debated the conditions for which nonlinear analysis is required. 

Recently, a few guidelines have been developed (Kramer and Paulsen, 2004; Matasovic 

and Hashash, 2012; Kaklamanos et al., 2013 and 2015; Kim et al., 2013) for choosing the 

appropriate analysis procedure. These guidelines have several limitations and therefore 
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more work is needed to develop comprehensive criteria for choosing appropriate 

procedure with standard inputs.   

Moreover, the use of nonlinear site response analysis by practicing engineers has 

been limited due to lack of clear guidance on the code usage protocols and parameter 

selections (Stewart et al., 2008). Engineers at the SCDOT have been looking for a 

benchmarking study over a nonlinear site response analysis tool for the state of South 

Carolina. Another issue is that the computed surface response and the resulting site 

factors vary significantly with the type and the computer program used for the analysis 

(Kottke, 2010; Zalachoris, 2014). Therefore, a comprehensive study to compare and 

quantify the difference in computed site factors from industry standard site response 

analysis tools is needed for better practice. 

1.2.3 Effect of mild infinite ground slope on site response analysis  

One dimensional site response analysis is limited to horizontally layered ground 

conditions where the earthquake wave energy is assumed to propagate only in the 

vertically upward (1-D) direction which may not always be an appropriate assumption. 

Numerous earthquake events like: 1971 San Fernando earthquake, 1987 Whittier 

Narrows earthquake and 1999 Athens earthquake etc. showed abundant effects on the 

earthquake wave propagation characteristics due to topographic variations. One of the 

commonly seen topographic features is mild infinitely sloping ground conditions where 

economic importance exists. These sloping ground conditions are often approximated to 

horizontal ground conditions so that the seismic site response analysis can be conducted 
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using one-dimensional codes. A two-dimensional plain strain approximation is necessary 

to effectively handle such a sloping (mild and infinite) ground condition.  

1.2.4 Effect of VS contrast in ground response analysis 

Shear wave velocity (VS) is an important parameter of seismic site response 

analysis. Commonly, shear wave velocity measurements (from field tests such as: seismic 

cone, crosshole seismic, multichannel analysis of surface waves, refraction microtremor 

etc. or resonant column test in laboratory) for a site are simplified by discretizing the 

entire soil profile to a number of homogeneous layers with a constant VS value for each 

layer. Therefore, to represent an increased or decreased shear wave velocity in the 

immediate layers a sudden rise and drop of VS values at the layer interfaces i.e. the VS 

contrasts are inevitable. In this manner the geotechnical engineer compiles the ‘working’ 

VS profile. This has been a wide spread practice in the community for decades as this 

simplification is advantageous to the day-to-day geotechnical engineering related 

computations (both analytical and numerical). However, this assumption of sudden 

contrast of VS in the layer interfaces is often unnatural; as opposed to a gradual increase 

or drop in VS. During site response analysis such sudden changes in VS incur 

unrealistically high shear strain at those interface locations, especially on the softer side 

of the interface (Stewart et al., 2008; Kottke, 2010; Matasovic and Hashash, 2012; 

Bozzano et al., 2012; Gouveia et al., 2012; Brandenberg et al., 2013), a major issue of 

such assumption. The excessive shear strain can cause significant amount of energy loss 

(damping) during the seismic wave propagation through that interface which may 
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eventually reduce the amplitude of the surface response from ground response analysis 

(Gouveia et al., 2012). 

1.2.5 Repercussions of new seismic site factor model on highway structures 

The development of new seismic site factors for the SC locations may greatly 

affect the design of highway structures (i.e. bridges) in this area. The new site factors 

may produce significant variation in the structural design demand as compared to the 

NEHRP site factors and thus a major impact from the economic stand-point is expected. 

Analysis of typical bridge structures with earthquake loads considering both the NEHRP 

and the new site factors to perform a systematic comparison of the computed seismic 

demands from both sides can deliver the best opportunity to visualize the repercussions 

of the new site factors in actual application. 

1.3 Objectives 

The objectives of this dissertation are as follows: 

1.  Perform nonlinear time domain one dimensional site response analysis for four 

locations selected from the coastal plain South Carolina: Charleston, Myrtle 

Beach, Columbia and Aiken. These nonlinear one dimensional simulation 

outcomes are combined with the equivalent linear simulations (performed by Dr. 

Shimelies Aboye as part of the research group) to develop a new seismic site 

factor model for the coastal plain of South Carolina (Aboye et al., 2011, 2013a, 

2013b and 2014; Andrus et al., 2014). 
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2.  Perform a benchmarking study over nonlinear one-dimensional site response 

analysis code usage protocols. This involves: 

a. The Rayleigh damping parameters calibration based on comparison with 

the computed responses from equivalent linear code while the system 

behaves linearly (i.e. within linear elastic strain range). 

b. Comparison of the outcomes from nonlinear and equivalent linear site 

response analysis programs over a range of earthquake loadings and site 

conditions typical of subsurface conditions in Charleston. 

c. Generation of several seismic site factor models each of which are based 

on a separate site response program and then are compared. Several 

nonlinear and equivalent linear site response analysis tools are employed 

to obtain important insights from such relative comparison. 

d. Propose a set of criteria to determine for which conditions a nonlinear site 

response analysis is warranted over equivalent linear analysis. 

3.  Perform ground response analysis for sloping (mild and infinite) ground condition 

using two dimensional finite element simulations with OpenSees. A range of 

‘infinite’ ground slopes, seismic loadings and site conditions specific to 

Charleston area are considered. Based on the outcomes, the new site factor model 

for horizontal ground conditions is updated to account for the infinitely sloping 

ground conditions in structural design.  
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4.  To observe the effect of soil layer interface VS contrast on the computed surface 

response by comparing the ground responses computed using VS profiles with 

interface contrasts and the corresponding ‘smoothed’ interfaces. 

5.  Finally, to study the repercussions of the newly generated site factor model for the 

South Carolina Coastal Plain (SCCP) by applying earthquake loadings, generated 

based on both the new and the current (NEHRP) site factors, on typical bridge 

structures to compare the computed structural responses from Multi-Modal 

Response Spectrum analysis.  

1.4 Contributions 

This dissertation will over-all contribute to the existing knowledge base of 

seismic ground response studies. The specific anticipated contributions are: 

1.  This author contributed to the generation of the new seismic site factor model 

(Aboye et al., 2011, 2013a, 2013b and 2014; Andrus et al., 2014) for the SCCP 

which will replace the existing NEHRP site factor provisions for this region. 

2.  The benchmarking study over the one dimensional nonlinear site response 

analysis will provide a comprehensive guideline for the engineers of the 

Charleston, SC area which is currently unavailable for the region. 

3.  Proposed a unique guideline under which conditions a nonlinear site response 

analysis is warranted over an equivalent linear analysis. 

4.  An update to the new seismic site factor model to extend its applicability to the 

sloping ground (mild and infinite) conditions specific to Charleston area. 
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5.  The observed effect of sudden stiffness contrast in soil layer interfaces on 

computed seismic responses is a brand new addition to the site response 

knowledge base and a potential source of error in site response estimation. 

1.5 Dissertation Organization 

This dissertation report is organized into nine chapters. Chapter 2 provides a 

background overview of the existing knowledge base of the seismic ground response 

study.  

Chapter 3 presents the thousands of nonlinear time domain one dimensional site 

response analysis outcomes performed for the selected SCCP locations: Charleston, 

Myrtle Beach, Columbia and Aiken. These simulation outcomes are used to develop new 

seismic site factor provisions for the SCCP. 

Chapter 4 presents the comparison of the outcomes of thousands of nonlinear and 

equivalent linear one-dimensional site response analyses for Charleston, SC. This chapter 

covers: the Rayleigh damping parameters calibration; comparison of the outcomes from 

nonlinear and equivalent linear programs over a range of earthquake loadings and soil 

profile variations; development of several site factor models each based on separate 

nonlinear and equivalent linear site response programs and then to compare; and finally, 

development of a set of criteria for under which conditions a nonlinear site response 

program is warranted over an equivalent linear type program.  

Chapter 5 presents site response analysis for sloping (mild and infinite) ground 

conditions for Charleston, SC region. Based on the outcomes, an update to the new site 

factor provision is proposed to extend its applicability for the sloping ground conditions. 
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Chapter 6 presents the evaluation of the effect of sudden shear wave velocity 

contrast on seismic site responses. 

The repercussions of the newly proposed site factor model for the South Carolina 

Coastal Plain (SCCP) are discussed in Chapter 7. The earthquake loadings, generated 

based on both the new and the current (NEHRP) site factors, are applied on two highway 

bridge structures to compare the structural responses using the Multi-Modal Response 

Spectrum analysis.  

Chapter 8 presents a few studies in which the author was responsible to perform 

nonlinear ground response analyses with one dimensional approximation. 

Finally, the major outcomes of the dissertation and recommendations for future 

research are summarized in Chapter 9. 
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CHAPTER 2 

 

BACKGROUND REVIEW 
 

2.1 Introduction 

Local site condition can significantly affect the seismic wave while it is 

propagating from bedrock to the ground surface (Kramer, 1996). Depending on the type 

and sequence of soil layers at a site, ground motions can be amplified or de-amplified as 

was illustrated in the 1933 Long Beach, 1957 San Francisco,1967 Caracas, 1985 Mexico 

City, 1989 Loma Prieta, and 1994 Northridge earthquakes. Therefore, ground response 

evaluation is one of the most important geotechnical earthquake engineering problems for 

the both the professional and research communities. The goal is to develop the design 

response spectra at the ground surface which is a quantification of the induced forces on 

the structure. Then the seismic analysis of the structure is performed to establish the 

respective design demand.   

In this chapter, at first a few terminologies common in ground response study are 

discussed; the current code provisions are reviewed; and a generalized overview of the 

current seismic site response analysis methodologies, advancements and validation 

efforts are presented. 

2.2 Common Terminologies of Ground Response Analysis 

Ground response analysis techniques are mostly problem oriented and often are 

grouped on the basis of dimensionality of the specific problem type: one, two or three-

dimensional analysis techniques. Within each technique, further variation exists with 
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respect to the soil material modeling approximations i.e. linear, equivalent-linear or 

nonlinear stress-strain relationships (Kramer, 1996). In this study the primary focus is on 

nonlinear one- and two-dimensional ground response analysis techniques and their 

applications. Before going in-to further details some important terminologies and analysis 

techniques are reviewed: 

Response spectra: A response spectrum represents for a particular input motion 

the maximum response of a SDOF (single-degree-of-freedom) system which is dependent 

on the natural frequency (or period) and damping ratio of the system. Maximum 

responses are calculated on different SDOF systems with different natural periods and a 

response spectra versus period plot is generated (Kramer, 1996). Although the 

acceleration response spectra are widely used in earthquake engineering practice (and 

also in this study) velocity and displacement response spectra can also be generated.  

Average shear wave velocity at top 30 m (VS30): The average shear wave velocity 

in the top 30 m (VS30) of soil profile is defined as (Borcherdt, 1994): 

30
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S n

i

i Si

V
H

V




 

(2.1) 

where Hi is the thickness of soil layer ‘i’ in meter; VSi is the shear wave velocity of layer 

‘i’ in m/s; and n is the number of soil layers in the top 30 m from the ground surface. 

Seismic site factor: The site factor for a specific period is defined by the following 

equation (SCDOT, 2008a): 
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 (2.2) 

where SiteS  is the spectral acceleration computed at the ground surface and 
OutcropS  is the 

B-C soft-rock outcrop spectral acceleration. Both the parameters correspond to the same 

period as the site factor to be calculated.  

Acceleration Design Response Spectra (ADRS) curves: The acceleration design 

response spectra (ADRS) are generated based on seismic site factors of different periods. 

ADRS curves are used to perform seismic analysis of structures to determine the required 

design demand. South Carolina Department of Transportation (SCDOT) is currently 

using site factors which are originally adopted from the NEHRP provisions (BSSC, 1995 

and 2010). The historical development of the NEHRP provisions is discussed in a later 

section. Figure 2.1 describes the procedure of generating three point ADRS curves using 

three factors FPGA, Fa and Fv at 0.0 sec, 0.2 sec and 1.0 sec periods (T), respectively 

(SCDOT, 2008a).  
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Site-response analysis: After a fault rupture takes place (i.e. initiation of an 

earthquake event), body waves spread in every directions and propagate through different 

layers of geologic materials while reflections and refractions at the layer interfaces define 

their travel path to the ground surface. Generally speaking, waves propagate with 

decreasing velocity as they approach to the ground surface, causing the waves to refract 

at the horizontal layer interfaces until the wave path becomes near vertical (Figure 2.2). 

This is the basis for the approximation of one-dimensional site response analysis in the 

case of horizontally layered soil deposit where vertical shear-wave propagation from the 

underlying bedrock to the ground surface is assumed (Kramer, 1996). 

Figure 2.1: Three-point ADRS curve development methodology (SCDOT, 2008a). 
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2.3 Development of NEHRP provisions 

The first major attempt to quantify the effect of soil response on earthquake 

motion was the development of the NEHRP provision. The site factors for short-period or 

0.2 sec (Fa) and long-period or 1.0 sec (Fv) first appeared in the 1994 NEHRP seismic 

provisions (BSSC, 1995 and 2010). SCDOT (2008a) adopted the NEHRP Fa values for 

peak horizontal ground acceleration site factor (FPGA), which corresponds to the 0.0 sec 

spectral period or free-field condition. Values of Fa and Fv were set based on two 

different approaches:  

(i) At small levels of shaking (peak ground accelerations ≈ 0.1 g) Fa and Fv were 

derived from empirical investigations using strong motion data recorded in San 

Francisco during the 1989 Loma Prieta earthquake (Borcherdt, 1994; Borcherdt 

and Glassmoyer, 1992; Joyner et al., 1994).  

Figure 2.2: Wave propagation towards ground surface through parallel soil layers and 

intermediate boundaries (Kramer, 1996). 
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(ii) At stronger levels of shaking, due to lack of strong motion data on soft soil sites, 

Fa and Fv were derived from the results of one-dimensional equivalent linear and 

nonlinear site response analyses (Dobry et al., 1994; Seed et al., 1994). 

In both these approaches, empirical regression curves were fitted to the 

amplification data as a function of mean shear wave velocity in top 30 m (VS30) of the 

site. Using these regression lines the amplification factors (or site factors) were calculated 

at the middle value of the VS30 range corresponding to each site class and adopted in the 

NEHRP provisions as site factors. For example, in Borcherdt (1994) for site class III, 

which has a VS30 range of 200-375 m/s, the middle point selected was 290 m/s and the 

corresponding amplification factor was taken as the site factor for that entire site class. 

Finally a consensus process was held among the experts where the NEHRP factors were 

finalized and adopted in several other specifications (ASCE, 2010; AASHTO, 2011; ICC, 

2012; BSSC, 2010; SCDOT, 2008a).  

2.4 Equivalent Linear (EL) Site Response Analysis 

Frequency domain equivalent linear (EL) analysis can better approximate soil 

nonlinearity than a linear system (Kramer, 1996). SHAKE (Schnabel et al., 1972) is a 

widely used program of this kind. In this method an equivalent linear shear modulus, G 

and an equivalent linear damping ratio, ζ representing energy loss of a single cycle (i.e. 

hysteresis loop) are required. Calculating G and ζ is a five step procedure (according to 

Kramer, 1996): 

i. At first initial estimates of G and ζ are made correspond to the small strain values. 
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ii. These G and ζ are then used to perform ground response which computes the shear 

strain time history for each layer. 

iii. The maximum shear strain is measured from the shear strain time history for each 

layer. This maximum strain is then multiplied by a ratio, R to compute an effective 

shear strain for that layer. R is a function of the earthquake magnitude, Mw (Idriss 

and Sun, 1992): 

1

10

wM
R


  (2.3) 

iv. Using this effective strain, the corresponding G and ζ are read from the user 

specified G-γ and ζ-γ curves for the next iteration. 

v. Now steps (ii) through (iv) are repeated until the computed G and ζ from two 

successive iterations become very close. Thus generated equivalent linear G and ζ 

values are then used for the final run of this ground response analysis. These 

properties are kept constant during the entire earthquake excitation (i.e. final run) 

and thus this method cannot account for soil stiffness changes during an event. 

EL analysis is widely used because of simplicity, low computational requirement 

and also availability of good documentation on the code usage protocol. Limitations are: 

high amplification of responses when frequency matching occurs from both the loading 

and soil profile sides; filtering of high frequency motion; and over and under damping of 

the system due to erroneous selection of effective shear strain.  
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2.5 Nonlinear (NL) Site Response Analysis 

Nonlinear (NL) site response analysis can provide improved predictions 

compared to the corresponding equivalent linear or linear analyses counterparts when the 

system behaves nonlinearly due to either larger loading and/or softer materials, given that 

the nonlinear model parameters are obtained/ modeled accurately. However, due to the 

lack of knowledge in determining the necessary model parameters and the limitations of 

the stress-strain models, the nonlinear analysis has always been the least used or preferred 

by the practitioners (Stewart et al., 2008; Matasovic and Hashash, 2012). This section 

briefly discusses the methodologies and current advancements related to total stress type 

nonlinear site response analysis. 

2.5.1 Methodologies 

The following dynamic equation of motion is solved in nonlinear time domain site 

response analysis:  

Mu” + CRu’+ Ku = f
 

(2.4) 

where M is the mass matrix, CR is the viscous damping matrix, K is the nonlinear 

stiffness matrix, f is the excitation at the base of the layer and u, u’ and u” are the relative 

displacement, velocity and acceleration vectors, respectively. This dynamic equation of 

motion is solved at each time step using a time-integration scheme (e.g. Newmark’s Beta 

method). 

Soil layers are discretized into multi-degree of freedom lumped masses or using 

finite elements (Kramer, 1996). Figure 2.3 (adopted from Stewart et al., 2008) presents a 

schematic representation of a lumped mass and a distributed mass system (i.e. using finite 



18 

 

elements) system in the case of one-dimensional earthquake wave propagation through a 

multi-layered stratum. Here lumped masses are assumed at each layer interface with mass 

contributions (half of the mass) from each of the adjacent layers and thus mass matrix, M 

is developed for the problem. These masses are then connected to each other through a 

set-up with a nonlinear spring and a viscous damping dashpot. Soil behavior is accounted 

for using a constitutive model that can simulate cyclic behavior of soil. The stiffness 

matrix, K is updated at each time step (i.e. dynamically) and thus incorporates the system 

nonlinearity. DMOD2000 (Matasović and Ordóñez, 2011) and DEEPSOIL (Hashash, 

2011) implement lumped-mass concept while OpenSees (McKenna and Fenves, 2001) 

uses finite elements to represent the soil continua and will be described in a later chapter. 

Over the years a broad range of soil constitutive models have been employed into 

the study of nonlinear site effects over ground motion propagation. There have been some 

advanced plasticity based models which can capture important soil features such as pore 

water pressure, anisotropy or dilation (e.g. DYNA1D, Prevost, 1989; SUMDES, Li et al., 

1997; and OpenSees, McKenna and Fenves, 2001). But use of such advanced soil 

constitutive models is not always required and simplified ‘Hyperbolic’ model based 

codes (e.g. DESRA-2, Lee and Finn, 1978; DMOD, Matasovic, 1993; and DEEPSOIL, 

Hashash, 2011) are sufficiently accurate and understandably more popular.   
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2.5.2 Damping estimation 

2.5.2.1 Viscous damping 

Full Rayleigh damping (Hudson et al., 1994) is widely accepted for small strain 

damping (i.e. viscous damping, CR) estimation in different nonlinear time domain site 

response analysis packages. CR is expressed as a function of mass and stiffness as 

follows: 

  
R R R

C M K  (2.5) 

where R and R  are calculated using Equations 4.6 and 4.7, respectively (Matasović and 

Ordóñez, 2011). 

(a) (b)

Figure 2.3: Schematic representation of (a) multi-degree of freedom lumped parameter 

mass system and (b) distributed mass system, which numerically represents the vertical 

wave propagation through a horizontally layered soil deposit (adopted from Stewart et al., 

2008). 
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where tar  is the target damping ratio obtained through calibration and ranging from 0.1 

to 5%, T is the fundamental period of the soil profile given by 
,4 / S avgT H V , H is the 

total depth of the soil profile considered, 
,S avgV  is the weighted average of the shear wave 

velocity of the profile-layers and n is an odd integer (1, 3, 5, 7 etc.) related to mode 

number. 

The natural frequency of the soil profile (first mode) corresponds to n = 1 and the 

higher numbers are related to higher mode. DMOD2000 requires n value correspond to 

the higher mode in addition to the first mode (n = 1) for full Rayleigh damping 

calibration. The parameter ξtar is the small (insignificant) strain damping of each of the 

soil layers. DMOD2000 uses a single ξtar value as an input  for the entire profile for the 

simulation (rather than setting ξtar for each of the layers). Calibration is required to obtain 

a suitable pair of n and ξtar. This calibration is done by running DMOD2000 at a low 

PGAOutcrop and simultaneously adjusting n and ξtar until the response spectrum matches 

well with the corresponding SHAKE2000 response. It is assumed that the NL and EL 

responses should be comparable due to linear elastic behavior of soil at this small 

loading. 

The calibration of full Rayleigh damping parameters has been a challenge for the 

practitioners. Both Phillips and Hashash (2009) and Hashash et al. (2010) reported that 
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Rayleigh damping (small-strain damping) has the tendency to over-dampen the system in 

the case of deep profiles and thus computed responses may be under-predicted.  

Phillips and Hashash (2009) addressed the issue of full Rayleigh damping by 

proposing a new frequency independent small-strain damping estimation scheme which 

does not require calibration; consequently the issues/challenges oriented to the Rayleigh 

damping parameter calibration are eliminated. 

In order to formulate the new frequency independent viscous damping, Phillips 

and Hashash (2009) started from the damping matrix expression by Clough and Penzien 

(1993): 
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where N is the number of modes/frequencies and ab is a scalar value as defined by a 

constant damping ratio, ζn throughout the soil profile such as: 
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For the scalar index b = ½, the ζn in Equation 2.9 reduces to ζn = ab/2 which is frequency 

independent and thus frequency independent damping matrix is obtained (Phillips and 

Hashash, 2009). 

2.5.2.2 Hysteretic damping 

Traditional nonlinear site response analysis tools are observed to have issues 

regarding estimation of the high strain damping as well. The hysteretic damping 

estimated through conventional nonlinear approaches overestimates laboratory 

measurements and thus over-dampens the system responses at high strains. A recent 

scheme developed by Phillips and Hashash (2009) has overcome this issue which enables 
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the nonlinear programs to better estimate both the hysteretic damping and the modulus 

variation as well. Details of these damping estimation improvements in nonlinear 

programs are discussed in Chapter 4. 

2.5.3 Benchmarking studies 

Park and Hashash (2004) compared EL and NL responses for deep soil sites from 

the Mississippi embayment. They found EL responses to be on the lower side at higher 

frequencies than NL analysis in the cases of large loading intensities while both the NL 

and EL produced similar responses at smaller loading levels.  

Stewart et al. (2008) made an excellent effort on a benchmarking study over some 

widely used NL packages which was partly a compilation of some earlier but similar 

works (Kwok et al. 2007, Stewart et al. 2006 and Stewart and Kwok 2008). Most NL 

packages had limited documentation and practitioners were not able to work within a 

defined framework. Stewart et al. (2008) primarily worked on the parameter selection 

protocols to develop a state-of-the-art framework for using the popular one-dimensional 

NL site response packages. The key suggestions were:  

 Outcropping motion should be used as input with an assumption of elastic base 

 Full Rayleigh damping should be used if available in the program and 

 For MKZ model parameters calibration, the modulus-reduction curve matching 

techniqueshould be followed and if available, to match both the modulus-

reduction and damping curves simultaneously. 

They also compared responses generated from several NL and EL packages. They 

found EL responses are deviating from the NL responses at around PGAOutcrop (peak 
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ground acceleration) of 0.1g to 0.2g. However, the responses from several NL programs 

agreed well with each other, in general. 

Kottke (2010) compared the EL analysis outcomes with NL analysis and found 

difference in the responses at frequencies less than 5 Hz for small intensity motions (i.e. 

PGAOutcrop < 0.1g). For higher intensities, NL produced lower spectral amplification than 

EL for cases greater than 25 Hz due to phase incoherence in the NL and EL stress strain 

response. Due to the varying stiffness in NL method and also for damping mismatch, NL 

produced higher and lower amplification than EL in the 5 to 25 Hz range and at site 

frequency, respectively.  

Recently, Matasovic and Hashash (2012) made a comprehensive survey to 

identify and describe the current practice and also the methods available for evaluating 

the influence of local ground conditions on the site response. Based on the collected 

information it has been identified that practitioners still prefer using EL codes over NL 

counterparts due to: (i) familiarity with the EL method, (ii) uncertainty of the input 

parameters for the NL analysis, and (iii) lack of comprehensive validation study of NL 

techniques. Based on the survey responses, they made a series of recommendations for 

future research: 

 A need for further benchmarking study in the field of total stress nonlinear site 

response analysis and improved code usage documentation.  

 A rigorous benchmarking study for the effective stress nonlinear site response 

analysis mostly emphasizing the site class E (soft soil) and F (very soft clay and 

liquefiable soils). 
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 The implied shear strength of the widely used modulus reduction curves has been 

observed to be unreasonable by many researchers. Improvement of modulus 

reduction curves especially at higher strains is needed. 

 Guidelines are necessary to use site response tools for liquefaction evaluation. 

 Benchmarking of vertical site response study is necessary as the current resources 

are insufficient. 

 Extensive validation study of the current site response tools using the recently 

available ground motion array recordings from all over the world is necessary. 

2.5.4 Validation studies 

Borja et al. (1999), Lee et al. (2006) and Stewart et al. (2008) compared EL and 

NL outcomes with recorded responses from various vertical arrays. All these studies 

found differences in the predicted and observed responses (mostly predicted responses on 

the un-conservative side) at higher frequencies. Generally, the NL analyses produced the 

lowest of all at the higher frequencies. Kottke (2010) evaluated EL and NL responses 

based on Lotung, La Cienega and Kik-Net array recordings. He found overall 

competency in each of the EL and NL tools although their performance greatly varies 

with site characteristics.  

Recently, Kaklamanos et al. (2013 and 2015) attempted to develop a set of 

thresholds to define the applicability of linear, EL and NL codes by comparing the 

simulated responses with KiK-net down-hole array data in Japan. They developed a set of 

threshold beyond which they claimed equivalent linear analysis is unable to produce 
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adequate prediction and nonlinear analysis should be performed instead. The details of 

the findings are discussed in the next section. 

Kim and Hashash (2013) considered Kik-net downhole array data during 11 

March 2011 Mw 9.0 and some other smaller earthquake events to evaluate the 

performance of both EL and NL analyses. It was observed that both EL and NL produced 

good agreement with recorded spectral acceleration for soft rock/ stiff soil sites. 

However, for soft soil sites both EL and NL were on the unconservative side, especially 

for the lower periods. The authors pointed out that improper characterization of soil 

dynamic properties may have been the reason, especially for such long duration 

earthquakes which imposed large strain accumulation.  

Zalachoris (2014) compiled borehole array recordings from various locations and 

moderate to high intensity motions were considered. Both the EL and NL analysis tools 

were compared and validated with these recorded data. For shear strain less than 0.1% 

cases, predicted and recorded lines matched considerably well in general at high 

frequencies. For shear strain more than 0.1% cases, predicted lines from both EL and NL 

analyses under-predicted the observed ground response. Interestingly, for higher strain 

(more than 0.4%) and lower period (less than 0.5 sec) cases where EL starts to deviate 

from the observed responses, NL lines also failed to predict those cases adequately. The 

author pointed out to the fact that this might be related to inappropriateness of the one 

dimensional approximation.  

Brandenberg et al. (2013) developed centrifuge models for soft-clay deposits to 

study seismic site response over a wide strain range. They made an effort to evaluate the 
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performance of several EL and NL site response packages with respect to the physical 

model generated data. Both the EL and NL predictions matched well with the measured 

data for low intensity loading cases while in the case of higher loading NL produced 

more accurate predictions than the EL responses, as expected. 

2.5.5 When NL analysis is required over EL analysis 

Site factors computed from the EL and NL analyses can vary significantly, 

especially when the system behavior becomes more and more nonlinear. Thus conditions 

for which a NL analysis should be performed rather than an EL analysis has been a 

matter of great controversy. Kramer and Paulsen (2004) based on a survey done among 

the practitioners claimed that equivalent linear codes can be used up-to 1-2% strain level 

and a peak ground acceleration (PGAOutcrop) of 0.3-0.4g. However, some other studies 

observed nonlinearity in soil at a much lower strain and/or loading levels. A study by 

Tokimatsu and Sugimoto (2008) found strong nonlinearity of a Holocene sand dune (with 

shear wave velocity, VS of 310-350 m/s) at a depth of about 70 m which experienced a 

shear strain of about 0.3% based on down-hole array data recorded during the 2007 

Niigata-ken Cheutsu-oki earthquake. The surface responses computed using nonlinear 

and equivalent linear approaches were found to diverge at strong ground motions (higher 

amplitude shaking) and/or at soft soil sites (lower VS). Stewart et al. (2008) observed the 

responses computed using equivalent linear code deviate from that of nonlinear code at a 

Peak Ground Acceleration (PGAOutcrop) of 0.1g to 0.2g. Hashash et al. (2010), Hartzell et 

al. (2004) and Ardoino et al. (2008) recommended nonlinear approaches for soft soil sites 

which experiences nonlinear behavior even at low PGAOutcrop ranges. Moreover, Hartzell 
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et al. (2004) found nonlinear approaches to be the best predictor in the cases of site 

classes D and E (site class definition can be found in BSSC, 2010). More recently, 

Matasovic and Hashash (2012) made a comprehensive survey to collect information on 

the current practice and also the methods available for evaluating the influence of local 

ground conditions on the site specific earthquake design ground motions. They found the 

need for a well-defined guideline to effectively select the appropriate type of site 

response program: an equivalent linear or a nonlinear analysis, as this survey revealed 

that there is a large controversy on this matter in the community. Matasovic and Hashash 

(2012) suggested nonlinear and equivalent linear approaches starts to diverge at 0.1-0.2% 

strains and after 0.5%, responses calculated by equivalent linear approach are no more 

reliable. Their survey revealed a trend in the practitioners for using nonlinear site 

response tools in the cases of site classes E and F while some use equivalent linear codes 

up to 1% strains. Professors Matasovic and Hashash strongly differed from that opinion 

by claiming that with a strain of 1%, soils would be too close to the failure and a high 

level of nonlinearity is expected. 

Kaklamanos et al. (2013), based on Kik-Net array recordings, observed equivalent 

linear code to produce acceptable estimates up to 0.1% to 0.4% shear strain levels and/or 

around 0.1g PGAOutcrop level. More recently, Kaklamanos et al. (2015) found slight 

deviation of NL responses from EL responses even at 0.05% strain. Limitation involved 

in their approach are: (1) to obtain shear strain a pre-run of a site response analysis tool is 

necessary which the user may not be able to perform in many cases; and (2) shear strains 

computed based on EL and NL programs may differ significantly. Assimaki and Li 
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(2012) identified some key parameters of nonlinearity susceptibility of site response 

analysis tools such as: VS30, the site amplification at the fundamental period, PGAOutcrop, 

and an index related to the wavelength compatibility between soil layer thickness and 

incident wave. In a subsequent study, Kim et al. (2013) identified an estimated strain, γest, 

a ratio of peak ground velocity of incident motion and VS30, a good predictor of soil 

nonlinearity. They developed a predictive model of relative variation of surface spectral 

accelerations computed from EL and NL tools as a function of γest and spectral period, T.  

2.6 Multidimensional Site Response Analysis 

Surface topography can significantly affect earthquake ground motion 

propagating from the bedrock to the ground surface. Evidences of such effects were 

observed during some past earthquake events such as: 1971 San Fernando earthquake 

(Boore, 1972), 1987 Whittier Narrows earthquake and 1999 Athens earthquake etc. 

(Assimaki, 2004). Structural damage concentrations were more abundant in areas with 

uneven topography (hills, slopes, canyons etc.). One of the commonly seen topographic 

features is mild infinitely sloping ground conditions where economic importance exists. 

These sloping ground conditions are often approximated to horizontal ground conditions 

so that the seismic site response analysis can be conducted using one-dimensional codes. 

The seismic site factors recommended by NEHRP (BSSC, 1995) were also developed 

based on one-dimensional analyses ignoring the two-dimensional effect due to sloping 

ground surface. 

For the cases with ground inclination, a static shear stress is always active towards 

the downslope direction. This additional stress causes the horizontal ground deformation 



29 

 

to accumulate in the downslope direction although a temporary deformation may be 

observed in the opposite direction during an earthquake event (Biscontin and Pestana, 

2006; Kramer et al., 2011) and thus can significantly alter the propagating ground motion 

characteristics.  

Numerous studies (Boore, 1972; Geli et al., 1988; Bard, 1999; Assimaki, 2004, 

Bouckovalas and Papadimitriou, 2005) have been done in the past for addressing the 

effect of steep slopes (hills, ridges, dams etc.) on ground motion characteristics. A 

general outcome/observation from all of these studies is that the earthquake motion 

amplifies at the crest of a steep slope. A more recent study by Assimaki and Jeong (2013) 

reveals that to effectively evaluate the effect of steep slope on earthquake ground motion 

acceleration, both of the soil stratigraphy and topography effects should be accounted for 

in a coupled manner. However, there has been scarcely any study that has solely focused 

on the effect of mild infinite slopes on earthquake motion characteristics. So far, mild 

infinite slopes under seismic events have been studied mostly to address the stability 

related problems (Hadj-Hamou and Kavazanjian, 1985; Taboada and Dobry, 1998; 

Mutsuo et al., 2002; Ko, 2001). To the author’s knowledge, only a very few (Taboada 

and Dobry, 1998; Ko, 2001) have looked into, at least to some extent, the effect of mild 

infinite slopes on ground motion acceleration amplitudes. Taboada and Dobry (1998) 

summarized eleven centrifuge model tests performed at Rensselaer Polytechnic Institute 

(RPI) to investigate liquefaction and earthquake-induced lateral spreading in sand using a 

laminar box. Ko (2001) performed parametric study by varying ground inclination with a 

one dimensional ground response analysis program that has been modified to account for 
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slope inclination. Both of these studies reveal an increase in computed surface 

acceleration with the increase of the slope angle until the onset of liquefaction. 

2.7 Summary 

Some common terminologies related to seismic site response study were 

introduced in this chapter. Also the existing practice for seismic design demand 

estimation i.e. NEHRP site factors are briefly discussed. The two most widely used one-

dimensional site response analysis techniques: equivalent linear and nonlinear analyses 

were elaborated. Additionally, available nonlinear site response analysis methodologies, 

recent benchmarking and validation studies were reviewed. For low intensity motions 

both equivalent linear and nonlinear analyses should produce acceptable prediction while 

for higher intensity cases only nonlinear analysis is observed to produce an acceptable 

match with the recorded scenario. However, some studies revealed even with nonlinear 

analysis adequate predictions may not be achieved, especially for the softer sites and 

when adequate/quality site dynamic characterization is available. A list of studies and 

their findings were compiled on the development of a threshold for the use of nonlinear 

analysis instead of equivalent linear analysis. Finally, a literature survey over the site 

response analysis of a sloping ground condition following the multi-dimensional site 

response approach is presented. 
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CHAPTER 3 

 

SEISMIC SITE FACTOR MODEL FOR SCCP BASED ON 

NONLINEAR SITE RESPONSE ANALYSIS RESULTS 
 

3.1 Introduction 

South Carolina Department of Transportation (SCDOT) is currently using seismic 

site factors which are originally adopted from the NEHRP provisions (BSSC, 1995 and 

2010). During some projects SCDOT have found significant deviations in the site factors 

computed from site-specific studies with the recommended NEHRP provisions (Aboye et 

al., 2011).  

After being assigned by the SCDOT, a new generalized model of seismic site 

factors for the Coastal Plain of South Carolina has been developed which is going to be 

implemented in the next version of the Geotechnical Design Manual of SCDOT. The 

research group developed this site factor model based on thousands of one-dimensional 

total stress equivalent linear (with SHAKE2000) and nonlinear (with DMOD2000) site 

response simulations. SHAKE2000 was used for input peak ground accelerations 

(PGAOutcrop): 0.05g, 0.1g, 0.2g and 0.3g whereas DMOD2000 was used for simulating the 

PGAOutcrop’s: 0.4g and 0.5g cases. This author was responsible for the 17000 DMOD2000 

simulations for the four selected sites of the SCCP: Charleston, Columbia, Aiken and 

Myrtle Beach area. Only the part that this author was responsible for, i.e. the DMOD2000 

simulations, is the focus of this Chapter; the generated site factor model based on the 
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combined team effort is presented in Aboye et al. (2011, 2013a, 2013b and 2014) and 

Andrus et al. (2014). 

3.2 Geology and Seismology 

 

 

The geologic map of South Carolina is presented in Figure 3.1 which was published 

by the South Carolina Department of Natural Resources (SCDNR, 2005). The Fall Line 

divides the Coastal Plain and the Piedmont physiographic provinces. The solid squares 

represent the locations selected for ground response analysis. In the Coastal Plain, 

sediments of Quaternary, Tertiary and Cretaceous ages lie on top of Mesozoic/Paleozoic 

Figure 3.1: South Carolina Geologic map (SCDNR, 2005) with areas considered for 

ground response analysis (Adopted from Aboye et al., 2014). 
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basement rocks (Wheeler and Cramer, 2000; Odum et al., 2003).  The SCCP was divided 

into the four general areas: 1) Charleston-Savannah, 2) Myrtle Beach, 3) Columbia-

Florence-Lake Marion, and 4) Aiken. The Charleston-Savannah area, which lies in the 

lower part of the SCCP, mainly consists of beach/barrier, fluvial and back-barrier 

deposits.  The marine deposits of marl, cemented sand and limestone form the underlying 

Cretaceous and Tertiary sediments. This area has a sediment thickness of 600-1200 m.  

The Myrtle Beach area has near-surface sediments older and stiffer than the 

sediments of Charleston-Savannah at the same depths. Myrtle Beach area has a sediment 

thickness of 300-600 m. In the Columbia-Florence-Lake Marion area, near-surface 

weathered crystalline rock gently dips towards the south-east direction with a thickening 

overlying 0-700 m deep deposits of Pleistocene, Pliocene and upper Cretaceous 

sediments. A 0-700 m thick deposit of Paleocene, Eocene and Miocene sediments form 

the majority of surface exposures in Aiken area.  

Mostly the Charleston Seismic Zone located about 30 km northwest of downtown 

Charleston (Woodstock fault on Figure 3.1) dominates the seismicity of the SCCP. As 

mentioned earlier, on 31 August 1886, Charleston experienced an earthquake with 

moment magnitude of 7.3 ± 0.3 (Johnston, 1996) which is the largest in the eastern 

United States (Bollinger, 1977).  

3.3 Soil Profiles and Material Properties 

Figures 3.2(a), 3.2(b), 3.2(c) and 3.2(d) present the VS profiles of Charleston-

Savannah, Myrtle Beach, Columbia-Florence-Lake Marion and Aiken areas, respectively. 

The profiles for Charleston area were generated based on the data collected and compiled 
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from Andrus et al. (2006) and also from suspension logger tests done by South Carolina 

Department of Transportation (SCDOT) in 2006. 137 m deep profiles were selected 

laying over the soft-rock half space with assumed VS of 700 m/s for the area. The ‘dark’ 

line in Figure 3.2(a) presents the ‘reference’ VS profile while all other VS profile 

variations are by considering ±1, -2 and -3 standard deviations of ln(VS) and also by 

assuming a 0m, 10m, 20m and 30m Quaternary soil layer variations. The other geometric 

and geotechnical parameters of the ‘reference’ soil profile are presented in Section 4.3.  

Similar to Charleston-Savannah, VS profiles for all other location were also 

generated. The reference VS profile for Myrtle Beach was developed based on averages of 

profiles presented in Silva et al. (2003) and Odum et al. (2003). Columbia-Florence-Lake 

Marion reference profile was developed using information presented in Silva et al. 

(2003), Odum et al. (2003), Lester and Chapman (2005) and Andrus et al. (2006). The 

source of the development of the Aiken reference profile was the work of Silva et al. 

(2003). All other variations to the ‘reference’ profiles were generated similar to the 

methodology followed in Charleston-Savannah region. The Zhang et al. (2005 and 2008) 

relationships were used for the shear modulus with shear strain (G/Gmax-γ) and damping 

with shear strain (D-γ) curves generation for each site of the SCCP. Readers are 

suggested to visit Aboye et al. (2013a and 2014) and Andrus et al. (2014) for further 

information. 
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Figure 3.2: Shear wave velocity profiles considered for (a) Charleston-Savannah, (b) 

Myrtle Beach, (c) Columbia-Florence-Lake Marion, and (d) Aiken (adopted from Aboye 

et al., 2014) 
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3.4 Ground Motion 

A computer program called Scenario_PC (Chapman, 2006) was employed to 

generate outcroppping motions for all four regions of SCCP as there is no actual strong 

motion record available. Scenario_PC was developed for South Carolina Department of 

Transportation (SCDOT) to perform seismic hazard analysis in the area. Scenario_PC 

was employed in 16, 4, 5 and 15 quadrangles of Charleston, Myrtle Beach, Columbia and 

Aiken areas, respectively. A return period of 2% and 10% probability of exceedance in 

50 years and a modal moment magnitude of 7.3 were used as inputs for Scenerio_PC. 

The generated motions were then scaled to the peak ground acceleration (PGAOutcrop) 

levels of 0.05g, 0.1g, 0.2g, 0.3g, 0.4g and 0.5g to be used for site factor model 

generation. A sample synthetic acceleration time history and corresponding acceleration 

response spectra from the Charleston quadrangle are showed in the Figure 3.3. 
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3.5 Ground Response Analysis with DMOD2000 on SC Locations 

The equivalent linear site response analysis program SHAKE2000 (Ordóñez, 

2011) has been originally developed based on the SHAKE (Schnabel et al., 1972). This 

total stress site response analysis tool was used for simulating ground motions with 
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Figure 3.3: The ground motion generated for Charleston quadrangle: (a) acceleration time 

history and (b) acceleration response spectra. 
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PGAOutcrop of 0.05, 0.1, 0.2 and 0.3g cases for all four regions (Charleston-Savannah, 

Myrtle Beach, Columbia-Florence-Lake Marion, and Aiken) of SCCP. With higher 

loading (i.e. PGAOutcrop) the system is expected to start experiencing nonlinearity to the 

amount that the equivalent linear program can no longer produce responses with 

acceptable accuracy. Thus to deal with higher loading cases of PGAOutcrop scaled to 0.4 

and 0.5g, the nonlinear site response analysis program DMOD2000 (Matasović and 

Ordóñez, 2011) was implemented. DMOD2000 simulations are computation intensive 

with no scheme available for ‘batch mode’ simulation as compared to its equivalent 

linear counterpart SHAKE2000 which has extensive ‘batch mode’ capabilities. Thus due 

to time and resource constraints DMOD2000 simulations were only employed when there 

is an absolute necessity. Overall 17000 DMOD2000 simulations were performed 

through-out this study by manually performing each simulation one by one over a time 

span of nearly 2.5 years.  

3.6 Results 

Immediately after completion of the SHAKE2000 and DMOD2000 simulations 

for a location, necessary calculations for seismic site factor, F were performed. The site 

factor, F is calculated for six spectral period ranges: ≤ 0.01 s as for FPGA, 0.01-0.4 s for 

F0.2 (or Fa), 0.41-0.8 s for F0.6, 0.81-1.2 s for F1 (or Fv), 1.21-2.0 s for F1.6 and 2.01-4.0 s 

for F3.0. These factors are the averaged values over the corresponding period ranges and 

then further averaged over all motions used in that region. These site factors are then 

plotted against corresponding VS30 and grouped for six different SOutcrop ranges for the 

corresponding spectral periods.  
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Figures 3.4-3.7 present the F-VS30 plots based on DMOD2000 simulations 

corresponding to 0, 0.2 and 1.0 s periods for all four locations. The NEHRP provisions 

are also plotted with the simulated data for comparison purposes. These F-VS30 scatters 

based on both SHAKE2000 and DMOD2000 simulations for all PGAOutcrop levels and 

periods were fitted with regression analysis and thus the proposed site factor model for 

the SCCP was developed (Aboye et al., 2014). 
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Figure 3.4: Site factors calculated from DMOD2000 plotted with NEHRP provisions for 

Charleston area: (a) T= 0 sec and PGAOutcrop = 0.4g; (b) T= 0 sec and PGAOutcrop = 0.5g; 

(c) T= 0.2 sec and PGAOutcrop = 0.4g; (d) T= 0.2 sec and PGAOutcrop = 0.5g; (e) T= 1.0 sec 

and PGAOutcrop = 0.4g; (f) T= 1.0 sec and PGAOutcrop = 0.5g. 
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Figure 3.5: Site factors calculated from DMOD2000 plotted with NEHRP provisions for 

Myrtle Beach area: (a) T= 0 sec and PGAOutcrop = 0.4g; (b) T= 0 sec and PGAOutcrop = 

0.5g; (c) T= 0.2 sec and PGAOutcrop = 0.4g; (d) T= 0.2 sec and PGAOutcrop = 0.5g; (e) T= 

1.0 sec and PGAOutcrop = 0.4g; (f) T= 1.0 sec and PGAOutcrop = 0.5g. 
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Figure 3.6: Site factors calculated from DMOD2000 plotted with NEHRP provisions for 

Columbia area: (a) T= 0 sec and PGAOutcrop = 0.4g; (b) T= 0 sec and PGAOutcrop = 0.5g; 

(c) T= 0.2 sec and PGAOutcrop = 0.4g; (d) T= 0.2 sec and PGAOutcrop = 0.5g; (e) T= 1.0 sec 

and PGAOutcrop = 0.4g; (f) T= 1.0 sec and PGAOutcrop = 0.5g. 
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Figure 3.7: Site factors calculated from DMOD2000 plotted with NEHRP provisions for 

Aiken area: (a) T= 0 sec and PGAOutcrop = 0.4g; (b) T= 0 sec and PGAOutcrop = 0.5g; (c) 

T= 0.2 sec and PGAOutcrop = 0.4g; (d) T= 0.2 sec and PGAOutcrop = 0.5g; (e) T= 1.0 sec and 

PGAOutcrop = 0.4g; (f) T= 1.0 sec and PGAOutcrop = 0.5g. 
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3.7 Discussions 

The F-VS30 scatter plots form Figures 3.4-3.7 show some common features in 

general: the scatter has a trend to start from a very low site factor in low VS30 range, and 

then it increases with VS30 until it reaches the peak and then again decreases with the VS30. 

This general trend was observed for all periods and at all four locations simulated. 

Moreover, the peak is shifting towards left on the VS30 axis with the change of period, T 

from smaller (0 sec) to higher (3.0 sec) cases. Additionally, with higher SOutcrop the peak 

shifts towards the right on the VS30 axis in general. The observations with respect to the 

NEHRP provisions are: 

 In the case of C site class (VS30 within 360 m/s and 700 m/s) the scatters fall above 

the NEHRP FPGA, and Fa values while the NEHRP Fv values give conservative 

estimates in general. 

 In case of D site class (VS30 within 180 m/s and 360 m/s) the scatters fall much 

above the NEHRP FPGA, Fa and Fv values and sometimes the differences are more 

than 50%. 

 In case of E site class (VS30 within 180 m/s and 360 m/s) the scatters fall much 

lower than the NEHRP FPGA, Fa  and Fv values and the differences increase with 

the profile VS30 decrease. 

Using all these insights from these figures and in combination with the cases 

handled with SHAKE2000 the research group has developed the site factor model for the 

SCCP and has been published in Aboye et al. (2011, 2013a, 2013b and 2014) and Andrus 

et al. (2014).  
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3.8 Conclusions 

The seismic site factor model for the Coastal Plain South Carolina has been 

developed by the research group in which performing thousands of nonlinear site 

response analyses with DMOD2000 was the responsibility of the author. This chapter 

presents the data generated by DMOD2000 simulations and the insights taken. 
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CHAPTER 4 

 

COMPARISON OF SEISMIC SITE FACTORS BASED ON 

NONLINEAR AND EQUIVALENT LINEAR SITE RESPONSE 

ANALYSIS IN CHARLESTON, SOUTH CAROLINA 
 

4.1 Introduction 

Typically, site response analysis is conducted to predict the local site effect on the 

earthquake motion propagating from the hypocenter to the ground surface where most of 

the civil infrastructure is built. The equivalent linear (EL) site response analysis, typically 

using SHAKE2000, is a widely used method among practitioners. The EL method 

requires only a few well-defined input parameters and predicts the surface response 

reasonably well when the soil profile behaves with a linear or near linear range. On the 

other hand, a nonlinear (NL) site response analysis can better predict the surface response 

compared to the equivalent linear or linear analysis when the soil profile behaves well 

beyond the linear range for the given ground motion characteristics, given that the input 

parameters for the nonlinear analysis are obtained  accurately. Although the nonlinear 

analysis procedure can better predict the response, because of the lack of knowledge in 

determining the necessary input parameters and the limitations of the stress-strain model 

for accurately representing the cyclic behavior of the soil, the nonlinear analysis method 

has always been the least used or preferred by the practitioners (Stewart et al., 2008; 

Matasovic and Hashash, 2012). 
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The purpose of the site response analysis is to predict the acceleration response 

spectra at the ground surface level for the given soil and earthquake conditions. The 

acceleration response spectra is a plot of the maximum acceleration response of a set of 

single-degree-of-freedom (SDOF) systems with a specified (5% typically) damping and 

are plotted against the corresponding fundamental period, for a particular input ground 

motion (Kramer, 1996). The seismic site factor at a specific period (FT) is a ratio of the 

computed surface spectral acceleration (SSite) and the bedrock spectral acceleration 

(SOutcrop) at the same period. The SOutcrop and the site factors are then used to develop an 

Acceleration Design Response Spectrum (ADRS curves; details of ADRS curve 

generation process can be found in SCDOT, 2008a) which is an input for performing 

seismic analyses (e.g. multi-modal response spectrum analysis) of structures. The seismic 

site factors computed from the results of EL and NL analyses can vary significantly, 

especially when the soil profile behaves well beyond the linear range for the given 

conditions. Thus it has been a matter of great controversy for years that under which 

condition a NL analysis should be performed rather than an EL analysis. Kramer and 

Paulsen (2004), based on a survey conducted among the practitioners, claimed that 

equivalent linear analysis can be used up-to 1-2% strain and a peak ground acceleration 

(PGAOutcrop) of 0.3-0.4g. Following their suggestion, seismic site factor models specific to 

the Charleston, South Carolina area were developed by the author and his research team 

based upon thousands of one-dimensional equivalent linear (SHAKE2000 for PGAOutcrop 

≤ 0.3g cases) and nonlinear (DMOD2000 for PGAOutcrop > 0.3g cases) site response 

analysis results (Aboye et al., 2011 and 2013). The developed site factor model is a 
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function of the average shear wave velocity in the top 30 m (VS30) which is defined as 

(Borcherdt, 1994): 

30
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S n

i

i Si
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H
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(4.1) 

where Hi is the thickness of soil layer ‘i’ in meter; VSi is the shear wave velocity of layer 

‘i’ in m/s; and n is the number of soil layers in top 30 m from the ground surface. 

However, some other studies observed difference in the computed response from the EL 

and NL methods at experienced shear strain much lower than 1-2% and also shaking 

lower than 0.3 g PGAOutcrop. A study by Tokimatsu and Sugimoto (2008) found strong 

nonlinearity of a Holocene sand dune (the shear wave velocity, VS of 310-350 m/s) at a 

depth of about 70 m experiencing a shear strain of about 0.3% from a down-hole array 

data during the 2007 Niigata-ken Cheutsu-oki earthquake. The surface responses 

computed using nonlinear and equivalent linear approaches were found to diverge at 

strong ground motions (higher amplitude shaking) and/or at soft soil sites (lower VS). 

Stewart et al. (2008) observed the responses computed using equivalent linear code 

deviate from that of nonlinear code at around a Peak Ground Acceleration (PGAOutcrop) of 

0.1g to 0.2g. Hashash et al. (2010), Hartzell et al. (2004) and Ardoino et al. (2008) 

recommended nonlinear approaches for soft soil sites which experiences nonlinear 

behavior even at low PGAOutcrop ranges. Moreover, Hartzell et al. (2004) found nonlinear 

approaches to be the best predictor in the cases of site classes D and E (site class 

definition can be found in BSSC, 1995). More recently, Matasovic and Hashash (2012) 

made a comprehensive survey to collect information on the current practice and also the 
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methods available for evaluating the influence of local ground conditions on the site 

specific earthquake design ground motions. They found the need for a well-defined 

guideline to effectively select the appropriate type of site response program: an 

equivalent linear or a nonlinear analysis, as this survey revealed that there is a large 

controversy on this matter in the community. Matasovic and Hashash (2012) suggested 

nonlinear and equivalent linear approaches starts to diverge at 0.1-0.2% strains and after 

0.5%, responses calculated by equivalent linear approach are no more reliable. Their 

survey revealed a trend in the practitioners for using nonlinear site response tools in the 

cases of site classes E and F while some use equivalent linear codes up to 1% strains. 

Professors Matasovic and Hashash strongly differed from that opinion by claiming that 

with a strain of 1%, soils would be too close to the failure and a high level of nonlinearity 

is expected. 

Recently, Kaklamanos et al. (2013 and 2015) attempted to develop a set of 

thresholds to define the applicability of linear, EL and NL codes by comparing the 

simulated responses with KiK-net down-hole array data in Japan. In Kaklamanos et al. 

(2013), they observed equivalent linear code to produce acceptable estimates up to 0.1% 

to 0.4% shear strain levels and/or around 0.1g PGAOutcrop level while in Kaklamanos et al. 

(2015), they found slight deviation of NL responses from EL responses even at 0.05% 

strain. Limitations involved in their approach are: (1) to obtain shear strain a pre-run of a 

site response analysis tool is necessary which the user may not be able to perform in 

many cases; and (2) shear strains computed based on EL and NL programs may differ 

significantly. Assimaki and Li (2012) identified some key parameters of nonlinearity 
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susceptibility of site response analysis tools such as: VS30, the site amplification at the 

fundamental period, PGAOutcrop, and an index related to the wavelength compatibility 

between soil layer thickness and incident wave. A following work, Kim et al. (2013), 

identified an estimated strain, γest, a ratio of peak ground velocity of incident motion and 

VS30, which was found to be a good predictor of soil nonlinearity. They developed a 

predictive model of relative variation of surface spectral accelerations computed from EL 

and NL tools as a function of γest and spectral period, T.  

This Chapter is dedicated to address the differences that may occur in the 

computed site factors from EL and NL programs for the deep soil profiles of Charleston, 

SC area. Therefore, similar to the Aboye et al. (2014) site factor model, three separate 

seismic site factor models: ‘SF-SK’, ‘SF-DM’ and ‘SF-DS’ are generated and are then 

compared. SF-SK is a product of purely EL analyses with SHAKE2000 whereas SF-D 

and SF-DS are generated based on purely NL site response programs DMOD2000 and 

DEEPSOIL, respectively. Important insights are taken from the comparison of these site 

factor models generated with the same set of profiles and ground motions from the 

problem area. Finally, based on the data sets generated from SHAKE2000, DMOD2000 

and DEEPSOIL simulations, a set of criteria or in other words a threshold chart is 

developed for the engineers which distinguishes the conditions that warrant the use of a 

NL analysis program over its EL counterpart for the most accurate prediction. The 

uniqueness of this chart is its simplistic nature in the sense of input requirements: VS30 

(site parameter) and PGAOutcrop (motion parameter), which are usually commonly 

available engineering parameters. 
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4.2 Geology and Seismology of Charleston Area  

Charleston, South Carolina is located in the Atlantic coastal plain physiographic 

province. Figure 4.1 presents the geology of the area of interest with 7.5-minute 

quadrangle boundaries. The Ashley, the Cooper, the Stono and the Wando are the major 

rivers. This location of interest has a 700-1000m deep ocean-ward thickening subsurface 

geology with Cretaceous and younger sediments (Chapman and Talwani, 2002). The 

near-surface Quaternary sediments are typically unconsolidated in nature which range 

from beach/barrier island sand to estuarine sand and clay to fluvial sand and silt 

(McCartan et al., 1984). Right beneath the Quaternary layer are the compacted and 

weakly lithified Tertiary and Cretaceous layers over a hard Mesozoic/Paleozoic basement 

rock.  

The historic Charleston earthquake on 31
st
 August, 1886 with a moment 

magnitude of about 7.0 is the largest in the south-eastern United States (Bollinger, 1977). 

Figure 4.1 shows the Woodstock fault zone which is the likely source of this catastrophic 

event. Moreover, in the past 6000 years, this area experienced several liquefaction-

inducing earthquakes and the recurrence rate of an 1886-like earthquake is about 500 

years for this area (Talwani and Schaeffer, 2001). 
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4.3 Soil Profile and Material Properties 

Figure 4.2 presents the twenty eight shear wave velocity, VS profiles for the 

Charleston area. Based on the data collected and compiled from Andrus et al. (2006) and 

also from suspension logger tests done by South Carolina Department of Transportation 

(SCDOT) in 2006, a 137m deep profile is selected laying over the soft-rock half space 

Figure 4.1: The Woodstock fault zone of Charleston, SC area as delineated in Durá-

Gómez and Talwani (2009) (adopted from Aboye et al., 2013a). The red stars show the 

locations of synthetic ground motions generated with Scenario_PC. 
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with an assumed Vs of 700 m/s. The ‘dark’ line in Figure 4.2 presents the ‘reference’ VS 

profile while all other VS profile variations are by considering ±1, -2 and -3 standard 

deviations (σ) of the natural logarithm of VS and also by assuming 0m, 10m, 20m and 

30m Quaternary soil layer depth variations. The geometric and geotechnical parameters 

of the ‘reference’ soil profile are presented in Table 4.1. These parameters include 

number of soil layers and layer thickness, total unit weight (γt), and plasticity index (PI). 

Also, Table 4.2 presents all the variations applied to the ‘reference’ VS profile to generate 

a total of twenty-eight VS profiles for this study. 

Figure 4.3(a) and 4.3(b) present the mean variations of the normalized shear 

modulus (G/Gmax) and damping (D) variation with shear strain amplitude (γ) based on the 

Zhang et al. (2005) relationships, respectively, for each of all nine layers of the soil 

profile. Additionally, the mean±1σ (σ = standard deviation) variations of the G/Gmax-γ 

and D-γ curves (Zhang et al., 2008) are also considered. The Zhang et al. (2005 and 2008) 

relationships are the function of soil plasticity index, mean effective confining pressure 

and geologic age. For the half space (VS30 = 700 m/s), purely linear relationships for 

G/Gmax-γ (G/Gmax = 1.0) and D-γ (D = 0.5%) – pairs are assumed (SCDOT, 2008a).  
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Table 4.1: Reference soil/soft rock profile (From Aboye et al., 2011 based on Andrus et 

al., 2006). 

Layer 

# 

Layer 

thickness 

Total unit 

weight 

Shear wave 

velocity, Vs 

Standard 

deviation 

(σ) of 

ln(Vs) 

Plasticity 

index, PI 

Mean 

effective 

stress, σm' 

Geologic age 

 (m) (kN/m³) (m/s) (m/s) (%) (kPa)  

1 3 18.2 190 0.32 15 15 Quaternary 

(Wando 

Formation) 2 7 18.2 190 0.32 15 50 

3 15 18.5 400 0.312 50 220  

Tertiary 

 
4 11 18.5 435 0.191 

5 20 18.5 435 0.191 15 600 

6 20 18.9 530 0.197 

7 18 18.9 660 0.169 

8 6 18.9 680 0.262 

9 37 19.6 680 0.262 15 1400 

10 Half 

space 

22.5 700 - - - Tertiary and 

older 

 

Depth of 

Quaternary 

layers (m) 

Vs profile variation: Mean+kσ 
Total Number of 

Profiles 
Variation limited to only 

Quaternary layers 

Variation extends to all 

layers 

0 k = 0 k = -2,-1 and +1 4 

10 k = -3,-2,-1,0 and +1 k = -2,-1 and +1 8 

20 k = -3,-2,-1,0 and +1 k = -2,-1 and +1 8 

30 k = -3,-2,-1,0 and +1 k = -2,-1 and +1 8 

 Total = 28 

 

 

Table 4.2: Vs profile variations considered. 
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Figure 4.2: Shear wave velocity profiles considered for Charleston, SC. (Aboye et al., 

2013a). 
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4.4 Ground Motion 

A computer program called Scenario_PC (Chapman, 2006) is employed to 

generate outcroppping motions for Charleston as strong ground motion records are not 

available currently for the area. Scenario_PC was developed for South Carolina 

Department of Transportation (SCDOT) to perform seismic hazard analysis in this area. 
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Figure 4.3: Soil dynamic properties: (a) the G/Gmax-γ; and (b) D-γ curves, based on 

Zhang et al. (2005) relationships. 
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Required inputs for Scenario_PC are: (1) the rock model, (2) earthquake moment 

magnitude, (3) site-to-source distance and (4) return period. The Geologic realistic 

condition (Chapman and Talwani, 2002), a very thick outcropping layer of soft rock (Vs = 

700 m/s) at a depth of 137 m from ground surface, is selected as the rock model for 

Scenario_PC. Twelve quadrangles are selected for this study and thus the site to source 

distance is determined within 6 to 36 km for the center of each quadrangle (locations 

marked in Figure 4.1 with red stars). Considering a return period of 2% probability of 

exceedance in 50 years (known as the Safety Evaluation Earthquake or SEE according to 

SCDOT, 2008a), the site to source distance based on quadrangles (Charleston) and a 

modal moment magnitude of 7.3 are used as inputs to this Scenario_PC. A sample 

synthetic acceleration time history and corresponding acceleration response spectra from 

the Charleston quadrangle are showed in the Figure 4.4. All these motions are scaled to 

the PGAOutcrop levels of 0.05g, 0.1g, 0.2g, 0.3g, 0.4g and 0.5g in order to keep consistency 

with the existing NEHRP recommended site factor tables. 
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4.5 Site Response Analysis Tools and Model Parameter Calibration 

The one-dimensional equivalent linear analyses were conducted using popular 

computer program SHAKE2000 and the one-dimensional nonlinear analyses were 

conducted using DMOD2000 and DEEPSOIL. Although DMOD2000 and DEEPSOIL 
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Figure 4.4: The ground motion generated for Charleston quadrangle: (a) acceleration time 

history and (b) acceleration response spectra. 
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are based on similar theories, differences exist in the way the shear modulus and damping 

curves are matched with input curves and also in the computation of the small stain 

damping. Summary of the similarities, differences and modeling technique of these 

computer programs are described in subsequent sections. 

4.5.1 Equivalent linear site response analysis tool: SHAKE2000 

 SHAKE2000 (Ordóñez, 2011), the latest version of SHAKE (Schnabel et al., 

1972), is developed and commercialized by GeoMotions, LLC in the USA and around 

the world. An equivalent linear analysis can better approximate soil nonlinearity than its 

linear analysis counterparts (Kramer, 1996). EL method is widely used because of its 

simplicity, low computational requirement and also availability of good documentation 

on usage protocol.  

In SHAKE2000, a symmetric hysteretic stress-strain cycle is approximated by an 

equivalent linear shear modulus, G and an equivalent linear damping ratio, ξ. G is 

determined as the secant modulus whereas ξ is the energy lost i.e. proportional to the area 

of the hysteretic loop. The single pair of G and ξ values allows the equivalent linear 

analysis to actually run in the realm of linear dynamic analysis platform. G and ξ are 

primarily determined using iterative procedure by performing trial runs in the program. 

At first based on some initial estimates of G and ξ the first trial run of the linear analysis 

produce shear strain time history for each layer. Then the effective shear strains are 

obtained based on a fraction of the maximum observed strain in each layer. Based on the 

input G/Gmax-γ and D-γ curves (Section 4.3) the estimates of G and ξ corresponding to the 

effective strain values are used for the next trial run and such iterations are continued 
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until a convergence is obtained. The final G and ξ values are then kept constant for the 

final run of the entire earthquake excitation. Therefore this method neither can account 

for soil stiffness changes during an event nor can predict the responses at failure due to 

that originally linear material model. Therefore, an equivalent linear analysis is merely an 

approximation to the actual nonlinear behavior.   

4.5.2 Nonlinear site response analysis tools: DMOD2000 and DEEPSOIL 

GeoMotions, LLC developed DMOD2000 (Matasović and Ordóñez, 2011), a 

Windows
TM

-based platform around DMOD_2 which is an enhanced form of DMOD 

(Matasovic and Vucetic, 1993a). DMOD2000 is a nonlinear one dimensional site 

response analysis tool which models the vertical propagation of horizontal shear wave 

through deep soil deposits. DEEPSOIL v5.0 (Hashash et al., 2011) is another widely 

accepted one-dimensional site response analysis program. Although it is capable of 

performing both nonlinear and equivalent linear analyses, and both total stress and 

effective stress analyses, only nonlinear total stress capabilities are applied. DEEPSOIL 

has an intuitive graphical user interface. 

Both DMOD2000 and DEEPSOIL implement the same soil constitutive model to 

represent the soil stress-strain behavior. In both cases, the deep soil deposit is represented 

by a multi-degree of freedom lumped-mass system. The dynamic equation of motion is 

solved by the Newmark’s β method. However, DEEPSOIL implements advanced 

techniques to estimate both the small strain (viscous) and the hysteretic damping which 

gives theoretical advantage to DEEPSOIL over DMOD2000 in producing quality 

predictions. 
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4.5.2.1 Constitutive models 

Both DMOD2000 and DEEPSOIL incorporate Modified KZ (i.e. MKZ) model 

(Matasovic and Vucetic, 1993a) to define the initial stress-strain backbone curve (Figure 

4.5) in the simulation. The normalized MKZ model is given by: 

1

*
* max

S

r

G 








 

  
 

 
(4.2) 

where α and s are two curve fitting constants added to the Kondner and Zelasko (1963) or 

KZ model, τ is the shear stress, γ is the shear strain, τ
*

 = τ/σ’vc, G
*

max=Gmax/σ’vc, γr= 

τmax/Gmax, σ’vc is the initial vertical effective stress and Gmax is the initial (maximum) 

shear modulus of the soil. The α and s parameters are obtained by a calibration process 

which is described in section 4.5.2.3. The material degradation with repeated cycle is 

incorporated into this model by using degradation index functions (Matasovic and 

Vucetic, 1993b) as shown in Figure 4.5. 
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However, in DEEPSOIL a modified reference shear strain definition (Hashash 

and Park, 2001) has been incorporated: 

'
b

vc
r

ref

a





 
   

 
 (4.3) 

where '

vc = effective vertical stress, 
ref = reference confining pressure and a and b are 

the curve fitting parameters.  

4.5.2.2 Small strain damping estimation 

Presented in Equation 4.4 is the equation of motion in terms of matrix notations 

which is solved by Newmark’s β method in both DMOD2000 and DEEPSOIL.   

Initial Backbone 

Curve

Initial Hysteretic

Loop

Subsequent Degraded Backbone 

Curve

Subsequent Degraded Hysteretic 

Loop

Figure 4.5: Shear stress-strain behavior during first cycle and a subsequent cycle (after 

Stewart et al., 2008). 
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Mu” + CRu’+ Ku = f
 

(4.4) 

where M is the mass matrix, CR is the viscous damping matrix, K is the nonlinear 

stiffness matrix, f is the excitation at the base of the layer and u, u’ and u” are the relative 

displacement, velocity and acceleration vectors, respectively. Since the hyperbolic 

constitutive model employed in both DMOD2000 and DEEPSOIL is very simplified in 

nature, the inherent hysteretic damping becomes insignificant and under-predict the 

system damping at small strain ranges. Therefore, the concept of small strain or viscous 

damping, CR is introduced and is externally incorporated into the dynamic equation of 

motion (i.e. equation 4.4). In DMOD2000, CR is expressed as a function of the frequency 

of the input motion although CR is frequency independent in reality. A frequency 

independent type expression for CR is implemented in DEEPSOIL.  

In DMOD2000, CR is calculated by following the full Rayleigh damping 

formulation (Hudson et al., 1994) and is expressed as a function of mass and stiffness as 

follows: 

R R R  C M K  (4.5) 

where R and R  are calculated using Equations 4.6 and 4.7, respectively (Hudson et al., 

1994; Park and Hashash, 2004). 
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n
 



 
  

 
 (4.7) 
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where tar  is the target damping ratio obtained through calibration and the range is 0.1 to 

5%, T is the fundamental period of the soil profile given by 
,4 / S avgT H V , H is the total 

depth of the soil profile considered, 
,S avgV  is the weighted average of the shear wave 

velocity of the profile-layers and n is an odd integer (1, 3, 5, 7 etc.) related to mode 

number. 

The natural frequency of the soil profile (first mode) corresponds to n = 1 and the 

higher numbers are related to higher mode. DMOD2000 requires n value correspond to 

the higher mode in addition to the first mode (n = 1) for full Rayleigh damping 

calibration. On the other hand, ξtar is the small (insignificant) strain damping of each of 

the soil layers. DMOD2000 requires a single ξtar value as an input (rather than setting ξtar 

for each of the layers) for the entire profile for the simulation. Therefore, calibration is 

required to obtain a suitable pair of n and ξtar. This calibration is done by running 

DMOD2000 at a low PGAOutcrop and simultaneously adjusting n and ξtar until the 

response spectrum matches well with the corresponding SHAKE2000 response; 

assumption is the NL and EL responses should be comparable due to linear elastic 

behavior of soil at this small loading. Presented in Figures 4.6(a), (b) and 4.7 are such 

comparison of spectral accelerations computed using the equivalent linear code 

SHAKE2000 and the nonlinear code DMOD2000 at low PGAOutcrops for three profiles 

(i.e. different VS30 values). 

At first, a PGAOutcrop of 0.1g is selected for calibration of n and ξtar for the 

reference profile (VS30 = 295 m/s) assuming the loading to be small enough to create 

linear elastic soil behavior and is presented in Figure 4.6(a). It is observed that any of the 
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n and ξtar combinations: (5, 0.5), (7, 0.5) and (7, 0.75) have produced acceptable amount 

of matching with the SHAKE2000 response. 

However, differences in responses from SHAKE2000 and DMOD2000 are 

observed in the cases of lower velocity (softer) profiles even for motions with PGAOutcrop 

of 0.05g and 0.1g. This suggests that for softer profiles nonlinearity can occur at a 

PGAOutcrop much lower than even 0.05g. Therefore, two profiles with lower VS30 (100 and 

201 m/s) are selected along with a very small PGAOutcrop of 0.001g. Figure 4.6(b) and 4.7 

present these two cases for calibration at 0.001g level and interestingly the same sets of n 

and ξtar combinations: (5, 0.5), (7, 0.5) and (7, 0.75) are still found to produce acceptable 

matching in responses between SHAKE2000 and DMOD2000. 

Point to be noted here that, in some cases especially for higher PGAOutcrop values 

and/or softer profiles, DMOD2000 experiences convergence issues. Altering the n and 

ξtar values seemed to improve the scenario. This is the justification of considering 

multiple sets of calibrated n and ξtar combinations during the DMOD2000 simulations in 

this study.  
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Figure 4.6: Rayleigh damping parameters n and ξtar calibration procedure: (a) VS30 = 295 

m/s at PGAOutcrop = 0.1g; and (b) VS30 = 100 m/s at PGAOutcrop = 0.001g. 
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Both Phillips and Hashash (2009) and Hashash et al. (2010) reported that 

Rayleigh damping (small-strain damping) has the tendency to over-dampen the system in 

the case of deep profiles and thus computed responses may be under-predicted. 

DEEPSOIL has a frequency independent small-strain damping estimation scheme 

implemented based on Phillips and Hashash (2009) which addresses this issue. 

Consequently the issues/challenges oriented to the Rayleigh damping parameter 

calibration are eliminated.  

In order to formulate the new frequency independent viscous damping, Phillips 

and Hashash (2009) started from the damping matrix expression provided by Clough and 

Penzien (1993): 
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where N is the number of modes/frequencies and ab is a scalar value as defined by a 

constant damping ratio, ζn throughout the soil profile such as: 
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   (4.9) 

For the scalar index b = ½, the ζn in Equation 4.9 reduces to ζn = ab/2 which is frequency 

independent and thus frequency independent damping matrix is obtained (Phillips and 

Hashash, 2009). 

4.5.2.3 Hysteretic damping estimation 

In DEEPSOIL, a special ‘modulus reduction and damping curve fitting’ or MRDF 

fitting is selected for the MKZ model parameters (α and s) calibration which employs a 

reduction factor, RF (Phillips and Hashash, 2009) to modify the extended Masing (1926) 

loading/unloading stress-strain relationship.  

0.1

1
secant

F

max

G
R b

G

 
  

   

(4.10) 

where Gsecant is the secant shear modulus corresponding to the maximum shear strain 

level and b1 is a variable related to soil and input motion properties. RF is multiplied with 

the damping computed using the Masing’s criteria to obtain the modified Masing value in 

the case of MRDF option in DEEPSOIL. This increases the flexibility of the model to 

match both the modulus reduction and damping curves simultaneously with better 

accuracy as compared to the MR or MRD matching options available in DMOD2000.  

Figure 4.8 presents a comparison of different MKZ model parameters calibration 

techniques used for this study: the MR and MRD lines from DMOD2000 and MRDF 
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from DEEPSOIL along with the Zhang et al. (2005) lines, for a soil layer at 4-10m depth 

of the reference profile (VS30 = 295 m/s). Figures 4.8(a) and 4.8(b) present the G/Gmax-γ 

and D-γ plots, respectively. As is seen, the ‘MR’ line matched with the ‘Zhang et al. 

(2005)’ line in the case of G/Gmax-γ (Figure 4.8a) curve while in the case of D-γ (Figure 

4.8b) curve, it shows significantly higher damping than the ‘Zhang et al. (2005)’ line 

especially at higher strains. The MRD line was unable to fit the ‘Zhang et al. (2005)’ line 

on both occasions as expected. On the other hand, the ‘MRDF’ from DEEPSOIL fits the 

‘Zhang et al. (2005)’ line almost perfectly in both figures. This confirms DEEPSOIL’s 

capability of better estimation of high strain damping than it’s nonlinear counterpart 

DMOD2000. 
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Figure 4.8: MKZ model parameter calibration techniques for: (a) G/Gmax-γ and (b) D-γ 

curves. 
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4.6 Results and Discussions 

A total of 18000 site response simulations with SHAKE2000, DMOD2000 and 

DEEPSOIL are considered among which the SHAKE2000 simulations for PGAOutcrop ≤ 

0.3g cases and the DMOD2000 simulations for PGAOutcrop of 0.4g and 0.5g cases were 

also utilized during the site factor model generation as discussed in Chapter 3.  

4.6.1 Comparison of responses computed using SHAKE2000, DMOD2000 and 

DEEPSOIL 

From the site response analyses performed, at first, the ground surface 

acceleration response spectra are computed. In this section, the computed responses using 

SHAKE2000, DMOD2000 and DEEPSOIL for three sample cases from site class C, D 

and E (site class definition can be found in BSSC, 1995) with VS30 = 134, 295 and 406 

m/s, respectively are selected for comparison. Comparison is performed for only two 

levels of shaking i.e. PGAOutcrop of 0.05g and 0.5g with the Charleston SEE motion (the 

ground motion in Figure 4.4) and only the mean variation of the G/Gmax-γ and D-γ curves 

(Zhang et al., 2005) are considered. Such comparison of the surface acceleration response 

spectra for the PGAOutcrop of 0.05g case are presented in Figure 4.9(a)-4.9(c) for VS30 of 

134, 295 and 406 m/s cases, respectively while the similar plots for the PGAOutcrop of 0.5g 

case are presented in 4.10(a)-4.10(c). Couple of observations can be made from these 

comparisons: (1) the divergence of the EL and NL lines occur mostly for higher loading 

(PGAOutcrop of 0.5g) cases although for softer profiles such deviations occur even for 

PGAOutcrop of 0.05g case (Figure 4.9a) which is the evidence of nonlinearity even at this 

small loading level; (2) the divergence of the EL and NL lines become lesser with profile 
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stiffness (VS30) increase; (3) EL lines mostly produced higher amplitude although they fall 

below the NL lines at the smaller periods (see the response spectra plots); and (4)  the 

divergence between the two NL lines: DMOD2000 and DEEPSOIL, occur mostly for 

higher loading (PGAOutcrop of 0.5g) cases at lower periods. 
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Figure 4.9: Comparison of the computed acceleration response spectra in sub-plots (a), 

(b) and (c) for VS30 of 134, 295 and 406 m/s, respectively; the Charleston ground motion 

scaled to PGAOutcrop of 0.05g is used. 
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Figure 4.10: Comparison of the computed acceleration response spectra in sub-plots (a), 

(b) and (c) for VS30 of 134, 295 and 406 m/s, respectively; the Charleston ground motion 

scaled to PGAOutcrop of 0.5g is used. 
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4.6.2 Generation of site factor models 

Based on the simulations with the site response tools: SHAKE2000, DMOD2000 

and DEEPSOIL, three separate brand new site factor models: ‘SF-SK’, ‘SF-DM’ and 

‘SF-DS’, respectively, are developed following the procedure of Aboye et al. (2013a) and 

are presented in this section. Point to be noted here that, proposing a new site factor 

model for the location is not the intention of this study. The intention is: comparing the 

Aboye et al. (2013a) –type site factor models that are generated purely based on EL and 

NL analyses in order to evaluate the potential deviation of the predicted site factors.  

At first based on the generated data points from each of the SHAKE2000, 

DMOD2000 and DEEPSOIL, the site factor, F for six spectral period ranges: ≤ 0.01 s as 

for FPGA, 0.01-0.4 s for F0.2 (or Fa), 0.41-0.8 s for F0.6, 0.81-1.2 s for F1 (or Fv), 1.21-2.0 s 

for F1.6 and 2.01-4.0 s for F3.0, are generated which are the averaged (arithmetic) values 

of the corresponding ranges. These factors are then averaged (arithmetic) over all twelve 

motions considered and plotted against the corresponding VS30 and also grouped into six 

different SOutcrop ranges for the corresponding spectral periods. Figures 4.11-4.13 present 

sample cases of these F-VS30 scatterplots based on the SHAKE2000 simulation results for 

FPGA, F0.2, and F1.0 cases, respectively while Figures A.1-A.3 from Appendix A present 

the cases from F0.6, F1.6, and F3.0. Similar F-VS30 plots from the DMOD2000 and 

DEEPSOIL simulations are also presented in Figures A.4-A.9 and A.10-A.15, 

respectively. Similar to the F-VS30 plots in Aboye et al. (2013a), the data points obtained 

from each of SHAKE2000, DMOD2000 and DEEPSOIL show the same three distinct 

features. Those are: (a) an increasing trend of F with VS30 for low VS30 values, (b) a zone 
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of peak F, and (c) a decreasing trend of F with VS30 beyond the peak. Thus, the same set 

of equations and procedure described in Aboye et al. (2013a) are used to fit these F-VS30 

scatter (i.e. for each of the SF-Sk, SF-D and SF-DS cases) in this study. For the sake of 

completeness, the equations are presented below (Aboye et al., 2013a):  
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        (exp )S30cV
F a b                  when T > 0.2 s and VS30 ≥  VS30P                       

 

(4.11c) 

where F is the median site factor value, Fp is the peak F value, T stands for the spectral 

period and VS30P is the VS30 corresponding to Fp; a, b and c are the regression coefficients. 

Fp, VS30P, b and c are obtained using following expressions (Aboye et al., 2013a): 

1 2p OutcropF x S x   (4.12a) 
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where x1, x2, x3 and x4 are the regression coefficients.  
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To fit the above equations, a two-stepped procedure is followed: first, a residual 

analysis to fit the median curves for the individual sub-set of data from each of the F-VS30 

plots; secondly, linear regression analysis is performed to fit Fp versus SOutcrop and VS30P 

versus SOutcrop data to obtain x1, x2, x3 and x4 coefficients. As for the residual analysis, the 

computed medians of the residuals are very close to 1.0 proving the central tendencies of 

the corresponding median relationships. The coefficients of the above equations for these 

fittings of SHAKE2000, DMOD2000 and DEEPSOIL data points are tabulated in Table 

4.3. For further details of the model fitting procedure, the reader is suggested to review 

the Aboye et al. (2013a). 

 
Regression coefficients (comma separated values are for the models based on: 

SHAKE2000, DMOD2000 and DEEPSOIL, respectively) 

Spectral 

period, T 

(s) 

SOutcrop x1 (g
-1

) x2 x3 (g
-1

.m/s) x4 (m/s) a 

0.0 PGA -1.91, -1.39, -1.40 1.95, 1.62, 1.27 200, 270, 270 170, 174, 174 - 

0.2 Ss -0.79, -0.76, -0.61 2.00, 1.97, 1.48 129, 84, 84 195, 207, 207 0.65 

0.6 S0.6 -2.26, -2.52, -2.92 2.86, 2.68, 2.71 207, 139, 156 156, 183, 182 0.85 

1.0 S1 -2.39, -2.50, -3.40 3.43, 2.89, 3.41 129, 124, 97 153, 147, 156 0.90 

1.6 S1.6 -4.46, -4.92, -4.92 3.49, 3.22, 3.21 198, 323, 324 121, 113, 133 0.97 

3.0 S3.0 -8.2, -4.389, -0.97 2.80, 2.10, 2.21 394, 346, 482 80, 85, 131 0.99 

 

Table 4.3: Regression coefficients of the site factor models based on SHAKE2000, 

DMOD2000 and DEEPSOIL simulations. 



78 

 

 

0 200 400 600 800
0

1

2

3
F

P
G

A

(a) PGAOutcrop = 0.05g

0 200 400 600 800
0

1

2

3
(b) PGAOutcrop = 0.1g

0 200 400 600 800
0

1

2

3

F
P

G
A

(c) PGAOutcrop = 0.2g

0 200 400 600 800
0

1

2

3
(d) PGAOutcrop = 0.3g

0 200 400 600 800
VS30 (m/s)

0

1

2

3

F
P

G
A

(e) PGAOutcrop = 0.4g

0 200 400 600 800
VS30 (m/s)

0

1

2

3

Fitted Median

Data Points

(f) PGAOutcrop = 0.5g

Figure 4.11: Site Factor model based on SHAKE2000 data points for FPGA: (a) PGAOutcrop 

= 0.05g, (b) PGAOutcrop = 0.1g, (c) PGAOutcrop = 0.2g, (d) PGAOutcrop = 0.3g, (e) PGAOutcrop 

= 0.4g, and (f) PGAOutcrop = 0.5g. 
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Figure 4.12: Site Factor model based on SHAKE2000 data points for Fa or F0.2: (a) 

SOutcrop = 0.125g, (b) SOutcrop = 0.25g, (c) SOutcrop = 0.5g, (d) SOutcrop = 0.75g, (e) SOutcrop = 

1.0g, and (f) SOutcrop = 1.25g. 
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Figure 4.13: Site Factor model based on SHAKE2000 data points for Fv or F1.0: (a) 

SOutcrop = 0.05g, (b) SOutcrop = 0.1g, (c) SOutcrop = 0.2g, (d) SOutcrop = 0.3g, (e) SOutcrop = 0.4g, 

and (f) SOutcrop = 0.5g. 
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4.6.3 Comparison of the seismic site factor models 

Figures 4.14-4.16 present the comparison of the fitted median lines of each of the 

SF-SK, SF-DM and SF-DS site factor models for FPGA, F0.2 and F1.0 cases, respectively 

while the similar plots for the F0.6, F1.6, and F3.0 cases are presented in Figures A.16-A.18 

in the Appendix A. Each figure contains six sub-plots corresponding to six SOutcrop (or 

PGAOutcrop in the case of Figure 4.14) ranges. 
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Figure 4.14: Comparison of the site factor models based on Aboye et al. (2013a),  SF-SK, 

SF-DM and SF-DS in the case of FPGA for PGAOutcrop of (a) 0.05g, (b) 0.1g, (c) 0.2g, (d) 

0.3g, (e) 0.4g and (f) 0.5g. 
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Figure 4.15: Comparison of the site factor models based on Aboye et al. (2013a),  SF-SK, 

SF-DM and SF-DS in the case of Fa or F0.2 for SOutcrop of (a) 0.125g, (b) 0.25g, (c) 0.5g, 

(d) 0.75g, (e) 1.0g, and (f) 1.25g. 
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Figure 4.16: Comparison of the site factor models based on Aboye et al. (2013a),  SF-SK, 

SF-DM and SF-DS in the case of Fv or F1.0 for SOutcrop of (a) 0.05g, (b) 0.1g, (c) 0.2g, (d) 

0.3g, (e) 0.4g, and (f) 0.5g. 
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Based on the Figures 4.14-4.16 and Figures A.16-A.18 in Appendix A, a few 

observations can be made. Firstly, SF-SK generally produces conservative estimates than 

the NL counterparts SF-DM and SF-DS models, even at the lowest loading intensities 

except for the F0.2 (Figure 4.15) and softer profiles cases where SF-DM line predicts 

higher numbers than the SF-SK. This observation is consistent with the observations seen 

in the surface spectral acceleration comparison in Figures 4.9 and 4.10 where 

SHAKE2000 predictions are higher than the corresponding DMOD2000 or DEEPSOIL 

predictions except for the cases with higher loadings and lower periods. Secondly, 

significant differences in the computed responses from the NL models i.e. SF-DM and 

SF-DS, also exist. The SF-DS shows lower values than the SF-DM for low periods such 

as T = 0.0 and 0.2 s. This difference may be attributed to the difference in the Rayleigh 

damping formulation (Kwok et al., 2008) in DMOD2000 and DEEPSOIL. On the other 

hand, the SF-DS shows higher values than the SF-DM for T ≥ 1.0 s cases. This may be 

attributed to better fitting of input hysteretic damping by DEEPSOIL as discussed in the 

Section 4.5.3. Finally, the difference among the site factor models decreases as the 

profiles behave within the linear range where the responses computed from the EL and 

NL programs are expected to converge. All of these observations in the site factor model 

are consistent with that observed in the computed surface responses shown in the Figures 

4.9 and 4.10.  

The Aboye et al. (2013a) site factor models are also plotted in each of the Figures 

4.14-4.16 and Figures A.16-A.18 for the comparison purpose. It should be noted that the 

Aboye et al. (2013a) site factor models are based on the combined EL and NL analysis 
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results and they are expected to be in the next version of the Geotechnical Design Manual 

of the SCDOT. Comparison of the Aboye et al. (2013a) site factor models with the 

models proposed in this study shows that both the NL models (SF-DM and SF-DS) fall, 

in general, below the Aboye et al. (2013a) models. This indicates that the Aboye et al. 

(2013a) site factor models predicts conservative estimate.  

The implication of the models based on EL analysis results generally producing 

higher estimates than the NL based models is that the site factors computed entirely based 

on EL analysis results may overestimate the actual responses, Conversely, existence of 

significant differences in the site factor models computed from the two NL analysis 

programs indicates that the selection of computer program is also important and the users 

must be aware of such differences. This observation demands that the widely used 

computer programs for conducting site response analysis must be validated against 

experimental results and/or actual measurements for various soil and loading conditions. 

The recent efforts to validate the widely used computer programs (Stewart et al., 2008; 

Kottke, 2010; Kaklamanos et al., 2013 and 2015; Zalachoris, 2014 etc.) must be 

continued by various research teams. Even the EL responses have been observed (e.g. 

Zalachoris, 2014) to produce better predictions of the true scenario than an NL analysis 

especially when the system behavior is nonlinear. Therefore, in the case of site specific 

analysis, an efficient approach would be to compute site factors based on both EL and NL 

analyses and make engineering judgments to decide the final site factors for the 

subsequent seismic analysis of the structure (Matasovic and Hashash, 2012).    



87 

 

4.6.4 Factors contributing to the site factor model variations 

In order to explain the behavior observed from the comparison of the models 

based on EL and NL analyses (Figures 4.14-4.16 and Figures A.16-A.18), at first, the 

profile maximum shear strains (
Max _ Pr ofile ) for all six PGAOutcrop levels (i.e. 0.05, 0.1, 0.2, 

0.3, 0.4 and 0.5g in six sub-plots) from the SHAKE2000, DMOD2000 and DEEPSOIL 

simulations are plotted against the respective VS30 in Figure 4.17. 
Max _ Pr ofile  is the 

maximum shear strain observed in the soil profile during the entire excitation period and 

are then arithmetically averaged for all 12 motions considered.  
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Figure 4.17: Profile maximum shear strain vs. VS30 plot for PGAOutcrop levels of: (a) 0.05g, 

(b) 0.1g, (c) 0.2g, (d) 0.3g, (e) 0.4g and (f) 0.5g, from each of SHAKE2000, DMOD2000 

and DEEPSOIL. 
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As is seen in Figure 4.17, higher values of
Max _ Pr ofile  are observed in the softer 

profiles especially for VS30 ≤ 200 m/s profiles for all three cases (i.e. SHAKE2000, 

DMOD2000 and DEEPSOIL) while strains are insignificant for the stiffer profiles. In the 

VS30 ≤ 200 m/s profile cases, the observed
Max _ Pr ofile ≥ 0.1% even for PGAOutcrop of 0.05g; 

this is the suggested threshold after which the EL and NL responses are expected to 

diverge (Matasovic and Hashash, 2012; Kaklamanos et al., 2013). Thus, the site factor 

models (Figures 4.14-4.16 and Figures A.16-A.18) based on EL (i.e. SF-SK) and NL (i.e. 

SF-DM and SF-DS) analyses started to diverge even at such small intensity loading 

levels for the softer profile cases. Shear strain estimates from SHAKE2000 is lower than 

both the NL programs which indicates that SHAKE2000 is using a ‘higher equivalent 

linear modulus and/or lower damping’ and explains the higher site factors observed in the 

previous section (Section 4.6.3). However, the smaller loading cases involve smaller 

spectral accelerations and thus site factors are typically higher in these cases than the 

larger loading scenarios; this has potentially contributed to the contrasts observed in 

Figures 4.14-4.16 and Figures A.16-A.18 between different site factor models at the 

smaller loading cases. Nonetheless, for the higher intensity loading levels such as 0.3, 0.4 

and 0.5g, 
Max _ Pr ofile becomes much higher than 0.5% strain; this is a point where EL 

methods are unable to model the soil responses successfully as suggested by Matasovic 

and Hashash (2012). High amplitude strains involve higher hysteretic damping in the NL 

analysis thus a lesser amplification of the ground motion to the surface level was 

observed than the EL analysis for the softer profiles. Point to be noted here that, a slight 

deviation among the EL and NL models are observed (Figures 4.14-4.16 and Figures 



90 

 

A.16-A.18) even for the stiffer profiles. This is mostly due to the deviation of the data 

sets at the softer profiles which imposes a propagation of deviation of the fitted models 

even in the stiffer profile cases. 

Another factor may have an implication on the NL (i.e. SF-DM and SF-DS) lines 

falling below the EL lines (i.e. SF-SK) and/or even the deviations observed among the 

NL lines. The standard protocol of a site response analysis require the implied shear 

strength, computed by the program based on the input G/Gmax-γ curve, should reasonably 

match the actual shear strength for each soil layer of the profile. Implied shear strength is 

computed from the last pair of data of the G/Gmax-γ curves which corresponds to the 

highest shear strain considered i.e. failure. Due to the unavailability of shear strength 

parameters from the study location, the author was unable to verify the program 

generated implied shear strength values which were computed based on the Zhang et al. 

(2005 and 2008) G/Gmax-γ curves for shear strength estimation at large strains. This 

possibly has induced unrealistic ‘softness’ in the profile behavior and an unreasonably 

damped response may have occurred, especially in the cases of NL analyses where the 

whole G/Gmax-γ curve is being considered rather than a single value (e.g. equivalent linear 

shear modulus in SHAKE2000). For detailed discussions over adjusting the input G/Gmax-

γ curves for matching the implied shear strength can be found in Hashash et al. (2010) 

and Zalachoris (2014). 
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4.6.5 Factors contributing to the differences observed in responses from DMOD2000 

and DEEPSOIL 

An attempt has been made to investigate the differences in the surface responses 

observed from the DMOD2000 and DEEPSOIL programs. Although the framework is 

the same in both the computer programs, differences exists in the way the input modulus 

reduction (MR) and Damping are matched by the analytical model used in the computer 

programs. The small strain damping formulations implemented in these programs are also 

different. To investigate the effect of these differences, a number of analysis were 

conducted on the reference profile (VS30 = 295 m/s) with the Charleston ground motion 

(Figure 4.4) scaled to PGAOutcrop of 0.5g by varying the procedure.  

First, two cases were considered for DEEPSOIL analyses: (i) Case-I which 

applies the MRDF matching (refer to Section 4.5.2 for detail) for MKZ model calibration 

and the frequency independent technique for incorporating small strain damping; and (ii) 

Case-II which applies the MR matching with the full Rayleigh damping. Thus the 

damping estimation technique followed in the Case-II of DEEPSOIL is the closest to the 

technique followed in DMOD2000. Figure 4.18(a) presents the comparison of the surface 

spectral accelerations computed for each of the three cases. Clearly, the Case-II from 

DEEPSOIL and DMOD2000 responses are very close to each other while the Case-I 

from DEEPSOIL shows deviation in both lower and higher periods. Figure 4.18(b) 

presents the comparison of the computed shear strains for a layer at 10 m depth (where 

the largest shear strain concentration is observed for each of the cases) from the ground 

surface. Once again the Case-II from DEEPSOIL and DMOD2000 responses are very 
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close to each other while the Case-I from DEEPSOIL shows deviation as expected. These 

observations reveal: (i) both the DMOD2000 and DEEPSOIL produce very similar 

responses when the damping estimation techniques are identical; and (ii) the 

incorporation of advanced damping estimation techniques (both for small and large strain 

ranges) are the sources of the deviations observed in the DEEPSOIL responses from its 

NL counterpart DMOD2000. The above observation supports the fact that both 

DMOD2000 and DEEPSOIL frameworks are capable of producing almost identical 

predictions given that the estimated damping are close to each other.  

However, DEEPSOIL predicting higher shear strain values than DMOD2000 has 

an implication over the relative difference observed in their surface responses. Once 

again the layer at 10 m depth for the reference profile (VS30 = 295 m/s) is selected for 

comparison of DMOD2000 and DEEPSOIL (here the MRDF matching and frequency 

independent techniques are followed in DEEPSOIL) responses. Figure 4.19(a) presents 

the shear strain-time history comparison where DEEPSOIL produces higher strain than 

DMOD2000, in general. The corresponding damping versus strain curves from both the 

DMOD2000 (MR fitted) and DEEPSOIL (MRDF fitted) are plotted in Figure 4.19(b). 

One of the implications of DEEPSOIL predicting higher strain values than DMOD2000 

is, although the damping versus shear strain curves from both these programs have major 

differences, higher shear strain from DEEPSOIL minimizes the actual damping 

differences computed from both the programs or can even impose a greater damping than 

DMOD2000 in some cases. For example, after 7.7 s of excitation, the shear strain 

computed by DEEPSOIL is 0.37% (as seen in Figure 4.18a). The corresponding damping 
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values according to Figure 4.18(b) for 0.37% strain from ‘DEEPSOIL’ line is 15.5% 

while from ‘DMOD2000’ line it is 28.8%, which means 13.3% difference in damping. 

On the other hand, the shear strain computed by DMOD2000 is 0.27% at 7.7 s, and the 

corresponding damping is 25.5%, instead. Thus DEEPSOIL and DMOD2000 have 

estimated damping difference of 10% while it could be higher (~13.5%) if both the codes 

would produce closer shear strain estimates.  
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Figure 4.18: Differences in the computed surface responses observed from the 

DMOD2000 and DEEPSOIL programs: (a) surface spectral accelration and (b) shear 

strain time history (upto 20 sec) for a layer at 10 m depth from ground surface. 
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4.7 Criteria for Selection of an EL or NL Analysis: A Simple Threshold Chart  

Based on the literature survey performed, the need for a comprehensive guideline 

to select an appropriate site response analysis tool: EL or NL, is enormous. Although a 

few guidelines have emerged from some of the most recent studies (Matasovic and 

Hashash, 2012; kaklamanos et al., 2013 and 2015; Kim et al., 2013), more work is 

necessary to build a comprehensive guideline for the practitioners to be able to apply in 

different sets of conditions all over the world. In this goal, an effort is made in this 

section to develop a guideline using the comparison of simulations from the EL 

(SHAKE2000) and NL (DMOD2000, DEEPSOIL) tools. The guideline is formed as a 

threshold chart which is a function of two commonly available parameters: VS30 and 

PGAOutcrop.  
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from ground surface. 
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4.7.1 Development steps 

Following is a step-by-step procedure of threshold chart generation for the cases 

with mean G/Gmax-γ and D-γ curves: 

(i) First of all, the area enclosed within the band of 0 s and 10 s period of the surface 

response spectral acceleration plots, i.e. the shaded region of the response spectral 

acceleration curve in Figure 4.20, is calculated for each of the simulations with 

SHAKE2000, DMOD2000 and DEEPSOIL. 

(ii) Then for each of the VS30 cases, the arithmetic means of the area from all 12 

motions are calculated from SHAKE2000, DMOD2000 and DEEPSOIL 

simulations, for all six PGAOutcrop levels. 

(iii) Then for each VS30, the corresponding averaged area ratios of the pairs 

SHAKE2000 to DMOD2000 and also SHAKE2000 to DEEPSOIL are computed, 

again for all six PGAOutcrop levels.  

(iv) Finally the threshold chart (Figure 4.21) is generated by setting VS30 and 

PGAOutcrop as the x- and y-axes, respectively; then the area ratios from: 

SHAKE2000 to DMOD2000 and also SHAKE2000 to DEEPSOIL, are combined 

and plotted using separate markers for three distinct ranges of ratios: less than 1.1, 

within 1.1 to 1.2, and greater than 1.2. Based on these area ratios, regions of 

deviations of the EL responses from the responses of NL programs being ‘less 

than 10%’ (i.e., area ratio of 1.1), ‘within 10 to 20%’ (i.e., area ratio within 1.1 to 

1.2), and ‘above 20%’ (i.e., area ratio above 1.2), can be easily distinguished. 

Higher VS30 cases fall ‘less than 10%’ range for up to a PGAOutcrop of 0.5g whereas 
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low velocity profiles fall ‘within 10 to 20%’ or even ‘above 20%’ range even at a 

low PGAOutcrop such as 0.1g. PGAOutcrop ≥ 0.4g cases show more than 20% 

variation for the profiles with VS30 ≤ 300 m/s and thus labeled under ‘above 20%’. 

For cases with VS30 < 200 m/s and PGAOutcrop ≥ 0.1g, at least a 10% variation 

between the EL and NL programs is expected and for above 0.3g it’s above 20%. 

An attempt is made to differentiate these ≤10%, >10% and <20%, ≥20% zones 

with three significant color patches. These regions should help distinguish 

whether to switch for a nonlinear code such as DEEPSOIL or DMOD2000, or to 

stick with an equivalent linear code such as SHAKE2000, for a given set of VS30 

and PGAOutcrop values from the project location to perform a site specific ground 

response analysis.  

Similarly, two other threshold charts are generated for the mean+1σ and mean-1σ 

G/Gmax-γ and D-γ cases based on the same SHAKE2000, DMOD2000 and DEEPSOIL 

simulations and are presented in Figures A.19(a) and A.19(b) in Appendix A.  
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Point to be noted here that, the developed threshold chart accounts for the spectral 

acceleration difference over the entire range of 0.01-10 sec period rather than specifying 

period dependent distinctions as the ones suggested in Kaklamanos et al. (2013) and Kim 

et al. (2013). Therefore, unlike to Kim et al. (2013) who proposed a 30% deviation (i.e. 

deviation of computed responses) is required to trigger the use of NL tools, the here 

proposed threshold is kept to 10% (or greater) as a greater deviation at a specific period 

may be concealed under this full-range (i.e. 0.01-10 sec) deviation. As is seen from 

Figures 4.21 and Figures A.19, the cases with the mean and mean±1σ of G/Gmax-γ and D-

γ can produce significantly different set of outcomes. The mean+1σ case in Figure 

A.19(a) states that the nonlinear and equivalent linear codes are expected to produce very 

close estimates practically for most of the soil profiles and loading conditions that are 

covered in this study. On the other hand, for the mean-1σ cases in Figure A.19(b) it’s the 

opposite. These mean±1σ cases represent two extremes of soil dynamic properties 
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(G/Gmax-γ and D-γ) and are less likely to be found in reality. These two figures (Figures 

A.19a and A.19b) are included here in the intention that the user should be aware of the 

potential variation of the mean case (Figure 4.21) that might occur due to such dynamic 

properties variation. However, the threshold chart for the mean case (Figure 4.21) is the 

recommended one for general engineering application, especially when a very limited 

knowledge is available over the variation of G/Gmax-γ and D-γ curves in the project site. 

All the above charts are generated considering the spectral period band of 0 to 10 sec 

(Figure 4.20). An attempt was made to reduce it to 0-4 sec band and no practical 

deviation was observed in the threshold charts from the 0-10 sec cases. A sample case 

with mean G/Gmax-γ and D-γ case based on 0-4 sec period band is presented in the 

Appendix A Figure A.20. This proves the fact that after 4 sec period no practical 

deviation in spectral acceleration exists between the EL and NL cases. 

Moreover, an attempt is made to generate a regression equation for the 

recommended threshold chart (Figure 4.21) to be able to quickly estimate the 

approximate differences involved in these two types (equivalent linear and nonlinear) of 

programs. At first, the area ratios of SHAKE2000 to DMOD2000 and also SHAKE2000 

to DEEPSOIL are combined, grouped into six PGAOutcrop levels and then plotted against 

the corresponding VS30 values. Figure 4.22 presents the area ratio versus VS30 plot for all 

PGAOutcrop levels. It is observed that the ratios show a clear deviation from ‘1.0’ at around 

200 m/s or below, especially in the PGAOutcrop levels of 0.05, 0.1, 0.2 and 0.3g. For 

PGAOutcrop levels of 0.4 and 0.5g, such deviation starts at even higher velocity. This 

supports the earlier observations in this study that the low velocity profiles start to 
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experience nonlinearity at a very small loading while the stiffer profiles (i.e. with higher 

velocity) stay close to linear zone even at a significant loading. The following equation 

has been developed based on a regression analysis: 

 
( 0.8)

30Area ratio, Equivalent Linear/Nonlinear Sa V b
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where, (28.2) 3.744Outcropa PGA   (4.13b) 
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(4.13c) 

The coefficient of determination, R
2
 values that stated on each sub-plot of Figure 

4.22 supports the quality of these fits. The residual (difference between data and the fit) 

plots are also seemed random in general (not presented here). 

The Equation 4.13 can be used to obtain an exact estimation of the difference 

between the SHAKE2000 and the corresponding DMOD2000 responses or SHAKE2000 

and DEEPSOIL responses. Therefore, together the fitted equation (Equation 4.13) and the 

threshold chart (Figure 4.21) provides the complete guideline on selecting the most 

appropriate site specific response spectrum analysis tool for the project in hand. The tool 

requires the PGAOutcrop and the profile VS30 which are more likely to be available to the 

user prior to performing a site specific response spectrum analysis. This is an advantage 

over the previous protocols (Kramer and Paulsen, 2004; Matasovic and Hashash, 2012; 

kaklamanos et al., 2013 and 2015) which state shear strain as a parameter in the selection 

of an appropriate site response tool.  
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(b) PGAOutcrop = 0.1g (R2= 0.67)
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(c) PGAOutcrop = 0.2g (R2= 0.58)
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(d) PGAOutcrop = 0.3g (R2= 0.83)
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(e) PGAOutcrop = 0.4g (R2= 0.79)
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Figure 4.22: Plots showing variation of the area ratios between the equivalent linear (EL) 

code: SHAKE2000 and the nonlinear (NL) codes: DMOD2000 and DEEPSOIL for the 

mean G/Gmax-γ and D-γ case and for a range of VS30 and PGAOutcrop as: (a) 0.05, (b) 0.1, 

(c) 0.2, (d) 0.3, (e) 0.4 and (f) 0.5g. 
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4.7.2 Validations and limitations 

This study generally agrees with the observation of Kaklamanos et al. (2013 and 

2015) although the site conditions are different. From Figure 4.17, the strain levels are 

observed to be ≥ 0.4% for the cases with VS30 ≤ 200 m/s and PGAOutcrop level ≥ 0.1g; after 

Kaklamanos et al. (2013 and 2015), responses from NL codes considerably deviates from 

the corresponding EL codes at this level. Interestingly, these cases (i.e. VS30 ≤ 200 m/s 

and PGAOutcrop ≥ 0.1g) fall within the ‘>10% and <20%’ or even ‘≥20%’ zones in the 

developed threshold chart (Figure 4.21) which suggests the application of nonlinear 

programs for such conditions.  

Another research group (Afacan et al., 2013 and Brandenberg et al., 2013) 

developed centrifuge models for soft clay deposits to study seismic site response over a 

wide strain range. They made an effort to evaluate the performance of several equivalent 

linear and nonlinear site response analysis packages. Figures 4.23(a) and 4.23(b) present 

two of the cases (Brandenberg et al., 2013) where both the EL and the NL responses 

computed using DEEPSOIL were compared with the measured surface response from the 

centrifuge model for two PGAOutcrop levels: 0.28g and 0.55g, respectively. In the case of 

PGAOutcrop of 0.28g (Figure 4.23a), both the EL and NL lines matched the ‘measured 

spectra reasonably well while in the case of PGAOutcrop of 0.55g (Figure 4.23b), only the 

NL predictions matched the ‘measured spectra well. Here, an effort is made to calculate 

the area ratio (similar procedure followed in Section 4.7.1) between the EL and NL 

responses for both these cases (PGAOutcrop = 0.28g and 0.55g). It is observed that, in the 

case of PGAOutcrop of 0.28g (Figure 4.23a), the calculated area ratio between EL and NL 
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spectral responses fall within 10% (~6%) range which suggests that either the EL or the 

NL programs produces similar predictions. On the other hand, in the case of PGAOutcrop of 

0.55g (Figure 4.23b), the area ratio between EL and NL lines were found to be above 

10% (~13%) which suggests that the NL programs are expected to produce better 

prediction. This is a validation of the idea that the area ratio of computed spectral 

acceleration responses between EL and NL codes is a useful indicator for selecting the 

appropriate analysis procedure. 
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Figure 4.23: Validation of the idea of EL-NL area ratio as an indicator for selecting the 

most appropriate code: (a) PGAOutcrop =0.28g, (b) PGAOutcrop =0.55g. (Reproduced part of 

the Figure 95 from Brandenberg et al., 2013). 
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The primary limitations involved with the here developed threshold chart are: (i) 

it is developed based on the deviations of EL responses from the corresponding NL 

responses without the NL outcomes being validated with actual earthquake recordings 

(unavailable at this time) from the site; this agrees with the assumptions made in 

Assimaki and Li (2012) as they estimated errors associated with linear visco-elastic and 

equivalent linear model responses by setting nonlinear analysis responses as the 

benchmark, (ii) only the conditions specific to the Charleston, SC area is considered 

although a similar tool can also be generated for any other parts of the world by simply 

following and/or adjusting the procedure presented in Section 4.7.1, (iii) the variability 

seen in the responses from different NL codes suggests that the use of a NL code other 

than the here considered ones may have altered the thresholds suggested, and (iv) 

unreasonable implied shear strength may have computed by the NL codes which may 

have tampered the NL outcomes. 

4.8 Conclusions 

Based on a total of 18000 site response analyses with SHAKE2000, DMOD2000 

and DEEPSOIL, three new seismic site factor models: SF-SK, SF-DM and SF-DS, 

respectively are developed and compared in this study. Both NL site factor models (SF-

DM and SF-DS) predicted lower values than the EL model (i.e. SF-SK) even at the 

lowest loading intensities considered indicating the presence of nonlinearity even at that 

small loading level for softer profiles. The programs based on nonlinear theories 

generated much higher shear strain in the profile which implied larger hysteretic damping 

mostly for the softer profile cases. The difference observed in the computed surface 
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amplifications between the NL analysis programs i.e. between the SF-DM and SF-DS, 

may relate to the difference in the damping formulation implemented. However, the site 

factor models generated based on the NL programs falling below the recently proposed 

Aboye et al. (2013a) site factor model ensured adequacy and safety; and therefore 

supported the use of the Aboye et al. (2013a) site factor model for the Charleston, SC 

area. 

Finally, a unique threshold chart was proposed based on the comparisons of the 

EL and NL analysis outcomes which provided a guideline for the practitioners in 

deciding for which conditions the application of a NL program over an EL program is 

warranted, in the case of a site specific response spectrum analysis for the Charleston, SC 

region. 
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CHAPTER 5 

 

EFFECT OF MILD INFINITE GROUND SLOPE ON SEISMIC SITE 

RESPONSE FOR CHARLESTON, SOUTH CAROLINA 

5.1 Introduction 

Surface topography can significantly affect earthquake ground motion 

propagating from the bedrock to the ground surface. Evidences of such effects were 

observed during some past earthquake events such as: 1971 San Fernando earthquake 

(Boore, 1972), 1987 Whittier Narrows earthquake and 1999 Athens earthquake etc. 

(Assimaki, 2004). Structural damage concentrations were more abundant in areas with 

uneven topography (hills, slopes, canyons etc.). One of the commonly seen topographic 

features is mild infinitely sloping ground conditions where economic importance exists. 

These sloping ground conditions are often approximated to horizontal ground conditions 

so that the seismic site response analysis can be conducted using one-dimensional codes. 

The seismic site factors recommended by NEHRP (BSSC, 1995) were also developed 

based on one-dimensional analyses ignoring the two-dimensional effect due to sloping 

ground surface. 

For the cases with ground inclination, a static shear stress is always active towards 

the downslope direction. This additional stress causes the horizontal ground deformation 

to accumulate in the downslope direction although a temporary deformation may be 

observed in the opposite direction during an earthquake event (Biscontin and Pestana, 

2006; Kramer et al., 2011) and thus can significantly alter the propagating ground motion 

characteristics.  
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Numerous studies (Boore, 1972; Geli et al., 1988; Bard, 1999; Assimaki, 2004, 

Bouckovalas and Papadimitriou, 2005) have been done in the past for addressing the 

effect of steep slopes (hills, ridges, dams etc.) on ground motion characteristics. A 

general outcome/observation from all of these studies is that the earthquake motion 

amplifies at the crest of a steep slope. A more recent study by Assimaki and Jeong (2013) 

reveals that to effectively evaluate the effect of steep slope on earthquake ground motion 

acceleration, both of the soil stratigraphy and topography effects should be accounted for 

in a coupled manner. However, there has been scarcely any study that has solely focused 

on the effect of mild infinite slopes on earthquake motion characteristics. So far, mild 

infinite slopes under seismic events have been studied mostly to address the stability 

related problems (Hadj-Hamou and Kavazanjian, 1985; Taboada and Dobry, 1998; 

Mutsuo et al., 2002; Ko, 2001). To the author’s knowledge, only a very few (Taboada 

and Dobry, 1998; Ko, 2001) have looked into, at least to some extent, the effect of mild 

infinite slopes on ground motion acceleration amplitudes. Taboada and Dobry (1998) 

summarized eleven centrifuge model tests performed at Rensselaer Polytechnic Institute 

(RPI) to investigate liquefaction and earthquake-induced lateral spreading in sand using a 

laminar box. Ko (2001) performed parametric study by varying ground inclination with a 

one dimensional ground response analysis program that has been modified to account for 

slope inclination. Both of these studies reveal an increase in computed surface 

acceleration with the increase of the slope angle until the onset of liquefaction. In this 

study, a correction factor is developed to modify the existing ADRS curve generated 

considering flat ground condition to account for mildly sloping ground condition. 
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Previously, this author as part of a research team has developed a seismic site 

factor provision for the horizontal ground condition of Charleston, SC region (Aboye et 

al., 2013a) which is going to be incorporated in the next version of the SCDOT 

Geotechnical Design Manual. Seismic site factors are the ratio of computed/recorded 

surface spectral acceleration, SS_T(θ=0
o

) to the bedrock/outcropping spectral acceleration, 

ST(θ=0
o

)  for a specific spectral period, T (SCDOT, 2008a). In Aboye et al. (2013a), one-

dimensional site response analysis was used for generating surface spectral acceleration 

for the horizontal ground conditions. Here, an effort has been made to modify the surface 

spectral acceleration for horizontal ground condition to be applicable for the mildly 

sloping (infinite) ground conditions. For a mildly (infinite) sloping ground surface 

condition, two dimensional plain-strain modeling approach is required. The two-

dimensional simulation results from the sloping ground cases ranging from: 1
o
 to 6

o
, are 

compared with that of the horizontal ground (0
o
) conditions; a set of slope adjustment 

factors are recommended. It is worthwhile to mention that this study doesn’t consider 

slope failure or lateral spreading of any kind and their effect on the ground motion 

propagation.  Moreover, the bedrock geometry i.e. basin effect of any kind is also beyond 

the scopes of this study although the basin geometry may significantly affect the seismic 

ground response (Semblat et al., 2002; Fernandez and Rix, 2008; Gvirtzman and Louie, 

2010).  

5.2 Topographic Variation of Charleston 

Presented in Figure 5.1 is the topographic map of the location of interest of the 

study: Charleston, SC. The Charleston area lies at the lower part of the Atlantic Coastal 
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Plain. The gridlines represents the boundaries to the 7.5-minute quadrangles. The blue 

areas represent the ocean, rivers, lakes etc. The ground inclination angles (θ) were 

measured using the Digital Elevation Model data, collected from the SCDNR (South 

Carolina Department of Natural Resources) website (http://www.dnr.sc.gov/). The 

ground inclination was classified in five different ranges i.e. 0
o
-1

o
, 1

o
-2

o
, 2

o
-4

o
, 4

o
-6

o
 and 

> 6
o
. As seen in the figure, Charleston is relatively flat with most of the areas less than 1

o
 

ground inclinations. However, in proximity of the depressions (i.e. rivers, channels or 

lakes) a few patches of green (1
o
-2

o
), red (2

o
-4

o
) and even yellow (4

o
-6

o
) are visible. This 

observation indicates the existence of sloping grounds where the seismic wave 

propagation characteristics may be altered. This also indicates the necessity of 

incorporating such specific topographic effect on the computed seismic site factors for 

the study area. 
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Figure 5.1: Topographic map of the Charleston, SC area showing the ground-surface 

inclination angles (Based on the Digital Elevation Model from SCDNR, 2006). 
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5.3 Soil Profile and Material properties 

Figure 5.2 presents the eleven Vs profiles selected from Aboye et al. (2013a) for 

this study. These 137m deep profiles lay over the soft-rock half space with assumed Vs of 

700 m/s for Charleston area. The ‘dark’ line in Figure 5.2 presents the ‘reference/mean’ 

VS profile while all the other VS profiles are generated by considering combinations of: 

‘mean±1σ’ (σ = standard deviation) of the natural logarithm of VS and also by assuming 

0m, 10m, 20m and 30m Quaternary soil layer variations. During the selection of these 

eleven profiles from Aboye et al. (2013a), only the profiles with shear wave velocity  

VS30>200 m/s were considered where VS30 is the average shear wave velocity at top 30 m 

which is defined as follows (Borcherdt, 1994): 

30

1

30
S n

i

i Si

V
H

V




 

(5.1) 

where Hi is the thickness of soil layer ‘i’ in meter; VSi is the shear wave velocity of layer 

‘i’ in m/s; and n is the number of soil layers in top 30 m from ground surface. Profiles 

with VS30<200 m/s were found to be more prone to stability failure (mostly slips at layer 

interfaces) which is beyond the scopes of this study. The selected profiles have VS30 

values ranging from 232 m/s to 543 m/s; eight of these are within the range of site class D 

(VS30 = 180 to 360 m/s) and the remaining three are in the site class C (VS30 = 360 to 700 

m/s). The geometric and geotechnical parameters of the ‘reference’ soil profile are shown 

in Figure 5.2. These parameters include the soil layer thickness, total unit weight (γt), and 

plasticity index (PI). The shear modulus vs. shear strain (G/Gmax-γ) and damping vs. shear 

strain (D-γ) curves are developed based on the Zhang et al. (2005) relationships and are 
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presented in Figure 5.3. Readers are suggested to visit Aboye et al. (2013a) for further 

information about soil profile generation. 

The soil model used in OpenSees in this study requires the undrained shear 

strength (cu) of soil as an input. Undrained shear strength is not a typical input for site 

response analysis and therefore it had to be determined from the available information. 

The procedure used to calculate the undrained shear strength is described in a later 

section of this chapter. 
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Figure 5.2: The eleven VS profiles and corresponding material properties (γt in kN/m
3
 and 

PI) for Charleston, SC area adopted from Aboye et al. (2013a). 
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5.4 Ground Motion 

A single synthetic ground motion generated at the center of the Charleston 

quadrangle using Scenerio_PC was used in this study. Scenerio_PC uses a point-source 
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Figure 5.3: Soil dynamic properties: (a) the G/Gmax-γ; and (b) D-γ curves, based on 

Zhang et al. (2005) relationships. 
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stochastic model (Atkinson and Boore, 1995) and the required inputs are the: (1) rock 

model, (2) earthquake moment magnitude, (3) site-to-source distance and (4) return 

period. A geologic realistic condition (Chapman and Talwani, 2002), very thick 

outcropping layer of soft rock (Vs = 700 m/s) half-space at 137 m depth, was selected as 

the rock model for the Scenerio_PC. A modal moment magnitude of 7.3, the site to 

source distance based on quadrangle location and a return period of 2% probability of 

exceedance in 50 years were used as inputs to the Scenerio_PC. The selected synthetic 

acceleration time history and corresponding response spectrum are presented in Figure 

5.4. This motion was scaled to the peak ground acceleration (S0.0sec) levels of: 0.1g, 0.2g, 

0.3g, 0.4g and 0.5g, to be consistent with the previous works (Aboye et al., 2013a and the 

NEHRP site factors) so that the computed results could be compared. These five scaled 

ground motions are referred to as Motions-I to V, respectively, in this section.  
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Figure 5.4: The synthetic ground motion generated for Charleston quadrangle: (a) the 

acceleration time history and (b) corresponding acceleration response spectra. 
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5.5 Finite Element Analysis 

The mild infinite sloping grounds are simulated with OpenSees (Mckenna and 

Fenves, 2001). OpenSees is an open source finite element software framework developed 

under the auspice of the Pacific Earthquake Engineering Research (PEER) Centre. This 

software is capable of simulating complex structural and geotechnical systems in a 

coupled manner. It consists of numerous element types, constitutive models, boundary 

conditions and many other features useful for conducting dynamic analysis of various 

systems. At first the general finite element framework is discussed in this section. Later, 

the specifics about the soil constitutive model in OpenSees, the model building 

techniques and finally the unique calibration procedure that is developed to obtain the 

two-dimensional stress-strain model parameters (i.e. shear strength parameters) based on 

the inputs that are typically suitable for 1-D analysis are discussed. 

5.5.1 General finite element technique 

For many real world problems closed form solution is absent and numerical 

approaches such as finite element analysis is necessary to find appropriate solution of the 

system of equation. In finite element technique, a continuum is discretized into numerous 

elements with nodes at the boundaries. The soil displacement at a point of the continuum, 

{v} can be expressed using the nodal displacement of an element, {q} by  

{ } [ ]{ }v N q             (5.2) 

where [N] is the matrix of shape functions. The strain-displacement matrix [B] and the 

moduli matrix [D] can be defined by 

{ } [ ]{ } B q             (5.3) 

{ } [ ]{ } D 
            

(5.4) 
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where {} and {σ} represent stress and strain tensors, respectively. Using the above 

strain-displacement and stress-strain relationships the element stiffness matrix, [ke] and 

mass matrix, [me] can be expressed by 

T

A

[ ] [ ] [ ][ ]dA ek B D B             (5.5) 

T

A

[ ] [ ] [ ]dA em N N
            (5.5) 

where ρ is the assumed uniform density of the element and A stands for the area of the 

element. The damping matrix [ce] in nonlinear ground response analysis represents the 

viscous damping (or small strain damping) while the hysteretic damping is accounted for 

by the stiffness matrix variation. Finally, the dynamic equation of motion for the element 

can be expressed as 

[ ]{ }+[ ]{ }+[ ]{ } ={ }
e e e

m q c q k q Q  (5.6) 

where {Q} is the element force vector. After developing the equations of motion for all 

the elements, the global equation of motion is developed as 

[ ]{u}+[ ]{u}+[ ]{u} ={ }RM C K R  (5.7) 

where {R} is the global nodal point force vector. The above global equation is solved 

using a numerical integration technique such as the Newmark’s time integration 

technique. The model boundary conditions are necessary in obtaining the solution in 

finite element framework.  

5.5.2 Soil constitutive model in OpenSees 

A pressure independent type multi-yield-surface J2 plasticity model, representing 

the elasto-plastic nature of the stress-strain relationship of the soil, implemented in 

OpenSees by Elgamal et al. (2003), is used. The yield surface is assumed to follow the 
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Von Mises shape which is a function of undrained shear strength of soil. A purely 

deviatoric kinematic hardening rule (Prevost, 1985) is used to generate soil hysteretic 

response under cyclic loading. The nonlinear shear stress-strain backbone curve is 

approximated by a hyperbolic formula (Kondner, 1963) as shown in Equation 5.8: 

1

max

r

G 







 

  
 

 
(5.8) 

where Gmax is the small strain shear modulus, τ is the shear stress of the soil, γ is the shear 

strain, and γr represents the reference shear strain which is calculated as follows: 

max max
r

max max maxG

 


 



 

(5.9) 

where γmax is the maximum shear strain, and τmax is the shear strength of soil. 
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Figure 5.5: Multi-yield-surface J2 plasticity model: (a) Yield surface and (b) 

corresponding piece-wise linear representation of the backbone curve (reproduced from 

Gu et al., 2011). 
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In multi-yield-surface plasticity, the backbone curve (Equation 5.2) is replaced by 

a piecewise linear approximation. Figure 5.5(a) shows multiple yield surfaces in 

deviatoric plane and Figure 5.5(b) shows the corresponding shear stress-shear strain 

response. Here, each line segment on the backbone curve (in Figure 5.5b) stands for a 

yield surface (fi = 0) (in Figure 5.5a) where i = 1, 2, 3,….m,….N; N is the total number of 

yield surfaces. An associative flow rule computes the plastic strain increments. The full 

Rayleigh damping formulation (Hudson et al., 1994) is implemented to incorporate the 

viscous damping to the system. A detailed overview of this soil model is available in Gu 

et al. (2011).  

5.5.3 Model generation 

Presented in Figure 5.6 is the schematic of the generalized 2-D model with all the 

inclined layers, layer numbers and numerical boundaries used to create the finite element 

mesh. This model was generated by setting the column AF in Figure 5.6 to represent the 

137 m deep Charleston profiles (from Figure 5.2). Now, the ground surface slope, θ (0
o
, 

1
o
, 2

o
, 3

o
, 4

o
, 5

o
 and 6

o
) is reduced with depth (i.e. layer boundaries) to merge with the 

surface of the perfectly horizontal (θ = 0
o
) soft-rock at the bottom of the profile. This 

gradual variation of subsequent layer inclinations is to avoid the presence of low aspect 

ratio finite elements at the base of the model, especially at the corner where the model 

has the least thickness, thus avoiding any numerical instability during simulations. The 

method used in this study is similar to the example problem “Dynamic 2D effective stress 

analysis of slope” presented in OpenSees by Chrsitopher McGann and Pedro Arduino 
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from the University of Washington (http://opensees.berkeley.edu/wiki/index.php/ 

Dynamic_2D_Effective_Stress_Analysis_of_Slop).  

5.5.3.1 Boundary conditions 

Utilizing appropriate boundary condition is critical to obtain realistic results, 

especially for dynamic analysis. In reality, the left and right vertical boundaries locate at 

an infinite distance from the center line. To reduce computational time without 

compromising the accuracy of the computed results, special techniques need to be 

employed to absorb the 2-D waves reaching the left and right boundaries. In these 

vertical boundaries, the displacement degrees of freedom of each node are tied together 

which ensures a periodic boundary condition. The nodes at the base of the model are 

fixed against vertical translation while those are tied together in the horizontal direction 

to allow equal horizontal displacement. In addition, extremely large thickness (10000 

times larger thickness than the interior elements in the out-of-plane direction) is used in 

the absorbent boundary. 

5.5.3.2 Mesh and size sensitivity studies 

After the selection of boundary condition and orientation of the layers, it is 

necessary to conduct trial simulations to obtain appropriate element size (mesh 

sensitivity) and the domain size (size sensitivity) of the 2-D geometric model to ensure 

that the computed surface responses are independent of these user controlled parameters. 

For both the parametric studies, the reference profile (the dark line in Figure 5.2) with 

θ=6
o
 and Motion-V are used and the domain is discretized using 4-node quadrilateral 

elements. 
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Figure 5.7(a) presents the mesh sensitivity study. Here, three different meshes 

were considered: (1) with 6120 elements (mesh-1), (2) with 27132 elements (mesh-2) and 

(3) with 49480 elements (mesh-3). Then the computed surface spectral accelerations at 

Point A in Figure 5.6 are compared from the three meshes as shown in Figure 5.7(a). 

From this comparison it is found that the mesh-2 and mesh-3 lines fall on top of each 

other indicating that the number of elements in the second trial with 27132 elements is 

large enough to produce mesh independent results.  

For the size sensitivity study, five trials are conducted using varying a and b 

combinations (see Figure 5.6): a = 3 and b = 20 m, a = 5 and b = 20 m, a = 6 and b = 20 

m, a = 5 and b = 50 m, and a = 5 and b = 100 m. The computed surface spectral 

accelerations are then compared in Figure 5.7(b), evaluated and then the case with a = 5 

and b = 50 m is selected.  
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A Poisson’s ratio of 0.33 is assumed for all the profiles. Simulations are 

conducted in two steps: (1) a static analysis to compute the initial stresses, and (2) a 

dynamic analysis to compute the earthquake responses. Total stress analysis is conducted 

for all the cases in this study. OpenSeesMP, the parallel version of OpenSees executable, 

is installed into the parallel cluster of Clemson University: the Palmetto Cluster and 

significantly reduced the duration of simulations. Further information about the parallel 

version is available on the OpenSees website (http://opensees.berkeley.edu/OpenSees/ 

parallel/parallel.php). 
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5.5.4 Parameter calibration: undrained shear strength 

The constitutive model used in OpenSees requires the undrained shear strength or 

cu as an input. This parameter had to be calibrated for each layers of all eleven profiles 

due to: (i) unavailability of the data for such deep profiles; (ii) to be consistent with the 1-

D profiles presented in Aboye et al. (2013a) as currently these are the most representative 
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profiles of the area that are available; and (iii) this parameter calibration will allow the 

practitioners to be able to perform site response analysis of sloping ground conditions 

using the same sets of inputs as of a 1-D site response analysis (i.e. SHAKE2000, 

DMOD2000, DEEPSOIL etc.).  

Calibration is conducted by matching the acceleration response spectra obtained 

at node A of Figure 5.6 using OpenSees and the 1-D program DEEPSOIL for each layer 

of the profiles. At first, the finite element model of a 30 m thick (as in H of Figure 5.6) 

single horizontal (θ = 0
o
) soil layer laying over the half-space is developed in OpenSees 

by following the similar procedure as section 5.5.3. For the Motion-V (scaled to S0.0sec of 

0.5g), each model is simulated for a set of cu values and for each case, the free field 

acceleration response spectra are recorded at node A (Figure 5.6). Finally the single cu 

value that produces the best match of surface spectral responses computed from 

OpenSees with that of DEEPSOIL is selected as the calibrated cu value for that specific 

soil layer. Similarly, calibrated cu values are generated for all the soil layers from each of 

the eleven soil profile cases for this study. The layer thickness was selected as 30 m 

based on the following considerations: first, from a preliminary study it was seen that the 

thicker the layer is the more accurate the calibrated cu it can produce; and secondly, an 

increasing thickness will turn the simulations numerically expensive. The calibrated cu 

values are listed in Table 5.1 where the cu values are grouped into three categories: the 

‘reference’ or mean profile and its ±1σ VS variations as rest of the profiles considered 

here are different combinations of these three categories. 
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As seen in the Table 5.1, the calibrated cu values, especially in the deeper layers 

(Tertiary) are large numbers. During the geotechnical explorations for the construction of 

Arthur Ravenel Jr. Bridge in Charleston area undrained shear strength was measured up 

to 240 kPa at the shallow (within 20 m from surface) Tertiary layers (known as Cooper 

Marl) as reported by Camp et al. (2002). Moreover, Santi (2006) suggests that the 

compressive strength of residual soil can go up to 1.0 MPa with anything beyond this 

value enters into the zone of weak rock. These support the possibility of existence of such 

higher shear strength obtained through the calibration procedure especially for the layers 

closer to the soft-rock boundary. However, it should be noted that this is the only 

parameter that could be adjusted to obtain comparable surface spectral responses from 

both 1-D and 2-D models which seems more critical in order to obtain reasonable results 

from actual simulations of 2-D cases. 

Layer # Layer thickness (m) 

Calibrated undrained shear strength, cu (kN/m
2
) of the 

profiles 

Mean-1σ Vs Mean Vs Mean+1σ Vs 

1 3 22 34 70 

2 7 30 47 100 

3 15 - 170 300 

4 11 - 180 300 

5 20 - 200 300 

6 20 - 280 400 

7 18 - 350 450 

8 6 - 370 480 

9 37 - 450 500 

10 Soft-rock half space - - - 

 

Table 5.1: Calibrated undrained shear strength, cu (kN/m2) values for all profile 

variations: Mean-1σ, Mean and Mean+1σ of VS. 



128 

 

Finally, by using the calibrated cu values, computed spectral accelerations at the 

surface node A (see Figure 5.6) of each of the 137 m deep profiles for horizontal ground 

condition are compared with the corresponding 1-D DEEPSOIL outcomes; this is done 

for all eleven profiles. A sample case with ‘reference’ profile and Motion-V is presented 

in Figure 5.8 where a close match in the surface spectral accelerations from DEEPSOIL 

and OpenSees is obtained. Similar observations are made for all other profiles (Figures 

B.1-B.10 in Appendix B) and the obtained close match between these 1-D and 2-D 

models in general supported the acceptability of the calibrated parameters and their 

application for the later part of this study. 

 

5.6 Results and Discussions 

Among the 385 simulations 21 cases showed large shear strain accumulation and 

significant ground movement at the end of the earthquake excitation. It is believed that 
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Figure 5.8: Sample validation study of the calibrated cu values by comparing the spectral 

accelerations from OpenSees model with that of DEEPSOIL for the reference profile 

(VS30 = 295 m/s) with flat ground condition and Motion-V. 
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the code is incapable of predicting such a large deformation accurately and therefore is 

not considered for developing adjustment factors. These failed cases consist of mostly 

softer soil profiles (mostly VS30 = 232 and 247 m/s) with relatively steeper slopes (mostly 

≥ 4
0
) subjected to higher S0.0sec motions (i.e. 0.4g and 0.5g). These observations are 

consistent with the general understanding of the physics of slopes made of soft soils that 

are subjected to heavy shakings. 

Plotted in Figure 5.9 is a sample case where the computed acceleration response 

spectra for the ‘reference’ profile (VS30 = 295 m/s) from all the sloping ground cases (0
o
, 

1
o
, 2

o
, 3

o
, 4

o
, 5

o
 and 6

o
) with Motions-I and V or the S0.0sec levels of 0.1g and 0.5g, 

respectively. Overall, responses from the sloping ground cases are higher than that of 

horizontal ground case which indicates the importance of considering even such mild 

surface inclination in the site response analysis. Especially at higher periods (i.e. 0.6-1.0 

sec), spectral accelerations are observed to become higher with the increase of surface 

inclination. At lower periods (i.e. <0.6 sec) no such trend is found although the sloping 

ground spectral accelerations are still higher than the flat ground responses; uncertainty at 

lower periods is a commonly observed feature in the recent site response studies (Stewart 

et al., 2008; Kottke, 2010; Zalachoris, 2014). Overall, the slope effect is more significant 

at smaller shaking (i.e. S0.0sec of 0.1g and 0.2g) and/or for stiffer profile cases; with the 

increased shaking (S0.0sec of 0.3g, 0.4g and 0.5g) and/or softer profile the system becomes 

more nonlinear thus greater damping is involved. Similar observations were also made 

for rest of the profiles which are presented in the Appendix in Figures B.11-B.21.  
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The computed surface spectal accelerations from the sloping ground cases were 

normalized by similar responses from the corresponding flat ground conditions, for all 

the profiles. These normalized spectral accelerations are divided into six spectral period 

ranges: 0.01, 0.01-0.4, 0.41-0.8, 0.81-1.2, 1.21-2.0 and 2.01-4.0 sec, following the exact 

same period ranges that are adopted for seismic site factors generation in Aboye et al. 

(2013a). Then the average of the ratio within each spectral period range is calcualted and 

assigned to the middle of each period range i.e. 0, 0.2, 0.6, 1.0, 1.6 and 3.0 sec periods. 

These averaged spectral ratio is referred to as the slope adjustment factor, K  in this 

section.  

For all cases, K  vs. ground inclination plots were generated. A sample K  vs. 

ground inclination plot for the ‘reference’ profile (VS30 = 295 m/s) and for Motions-I to V, 

are presented in Figure 5.10; T = 0.0, 0.2, 0.6, 1.0, 1.6 and 3.0 sec cases are sorted in 

subplots 5.10(a)-5.10(f), respectively. No clear trend is observed for K  variation with 

slope in the low spectral period cases (i.e. T = 0.0, 0.2 and 0.6 sec) in the subplots (a)-(c) 

in Figure 5.10 while K  is increasing with slope inclination for T = 1.0 sec period 

(Figure 5.10d). This observation is consistent with the observation made in the original 

spectral acceleration values (Figure 5.9) as there the consistent amplitude increment was 

found only in the higher periods. As expected, only the smaller shaking cases produced 

larger values of K  among all, in general. The K  values also points to the fact that the 

spectral acclerations computed based on sloping ground conditions may produce upto 60-

70% higher accleration values than that of the corresponding flat ground cases; such 
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observations proves the importance of considering such topographic variation during site 

response analysis for designing structures on slopeing grounds. Similar observations were 

also made for other profile cases as presented in Figures B.22-B.31 in Appendix B. 

However, there is a general increase of K  with the VS30 increment which is also an 

expected outcome as stiffer materials mean lesser damping and greater contrast in 

computed surface response for sloping ground conditions. 

In order to find the reason behind the inconsistent nature of the spectral 

acceleration at lower periods, profile shear strains at different stages of the simulations 

are investigated. Figure 5.11 presents the computed shear strain along three columns: AF, 

A'F' and A"F", of the ‘reference’ profile (VS30 = 295 m/s) for 0
o
 and 5

o
 sloping ground 

cases after 4.1 sec and 6.9 sec of shaking with Motion-I (i.e. S0.0sec of 0.1g). All three 

columns show very similar shear strains throughout the profile during the entire shaking 

of the 0
o
 case (i.e. Figure 5.11b and 5.11d) while for the sloping ground condition they 

show significant differences (i.e. Figure 5.11c and 5.11e). Further investigation (i.e. 

displacement and acceleration time history at different nodes along each column) reveals 

that the differences in the depth of the profile at these three locations generate a mismatch 

in the mode of vibration; this imposes an in-phase and out-of-phase relative movement 

among these three columns during the earthquake shaking. Therefore, the 0
o
 case shows 

no strain difference due to uniform column depth while the 5
o
 case shows significant 

variation due to difference in column depth. These three columns represent how different 

locations of this long model (i.e. Figure 5.6) responded during the entire vibration; such 

in-phase out-of-phase relative movements could produce tension and compression, 
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especially during high frequency vibration, and thus could amplify or de-amplify the 

surface responses. Therefore, the model geometry may be the source of the 

inconsistencies (i.e. no clear trend in computed spectral acceleration with slope variation) 

observed in the surface spectral acceleration, especially at smaller periods (or at higher 

frequencies), which is certainly a limitation of this study. 
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5.7 Development of Guideline 

Based on the above findings it is clear that mild surface inclination can alter the 

seismic surface response significantly. However, it is a very common practice to consider 

mildly sloping grounds as horizontal and determine the seismic site factors either from 

code provisions or site response analysis. The current code provisions also lack any such 

guideline and/or most typical one-dimensional site response software packages such as 

SHAKE2000, DMOD2000 and DEEPSOIL are incapable of simulating such scenario. In 

this Chapter, an effort is made to develop a guideline to obtain seismic spectral 

acceleration for mild infinitely sloping ground surface condition. 

Table 5.2 presents the recommended slope adjustment factor, K  based on all 

simulations performed in this study. The computed K  are sorted for different ranges of 

values: K <1.1, 1.1< K <1.2, 1.2< K <1.4, 1.4< K <1.6, 1.6< K <1.8
 
and

 
K >1.8, and 

are then plotted keeping θ as the horizontal and VS30 as the vertical axes using separate 

symbols representing each of the different ranges. Figure 5.12 presents such plots of K  

vs. θ and VS30 for some selected cases where K  values are generally higher. Cases where 

K  values are rather insignificant for any slope inclination and VS30 combinations (within 

the considered range of this study) are assigned a constant number and listed in Table 5.2. 

For example, the case of T = 0.0 sec and Motion-I, K  values increase with slope 

inclination as well as VS30 and thus are plotted in Figure 5.12(a). The cases of T=0.0 sec 

and Motion-II to V produced K  values closer to 1.0 which indicates minimal variation 
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in spectral acceleration obtained in these cases from each of the sloped cases than 

horizontal conditions; these cases are assigned a constant K  and is listed in Table 5.2. 

Similarly, the rest of the subplots in Figure 5.12 have been populated with the cases 

where K  values are considerably high and vary with ground inclination as well as the 

VS30: T = 0.6 sec and Motion-I cases in Figure 5.12(b); T = 0.6 sec and Motion-II cases in 

Figure 5.12(c); T = 1.0 sec and Motion-I cases in Figure 5.12(d); T = 1.0 sec and Motion-

II cases in Figure 5.12(e); and T = 1.0 sec and Motion-III to V cases in Figure 5.12(f). 

Corresponding STsec values are also listed for each of the T values and all five scaled 

motion levels. Based on these K  ranges from Figure 5.12, regions of uniform K  values 

can be distinguished and are plotted in Figure 5.13 using different shades. Using these 

shaded regions, K  values can be easily obtained from Figure 5.13 for a known set of θ 

and VS30 values. Therefore, together the Table 5.2 and Figure 5.13 deliver the 

recommended K  values. These K  values are only applicable within the range of values 

for θ, VS30, STsec and T combinations that are considered in this study. 
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Ground 

Slopes, θ 

Spectral 

Period, T 

Motion-I Motion-II
 

Motion-III
 

Motion-IV
 

Motion-V 

STsec
**

 

(g) 
Kθ STsec (g) Kθ STsec (g) Kθ STsec (g) Kθ STsec (g) Kθ 

1
o
 to 6

o*** 

0 sec 0.1 
*
5.13a 0.2 1.2 0.3 1.2 0.4 1.0 0.5 1.0 

0.2 sec 0.19 5.13a 0.38 1.2 0.57 1.2 0.76 1.0 0.95 1.0 

0.6 sec 0.14 5.13b 0.28 5.13c 0.43 1.2 0.57 1.2 0.71 1.0 

1.0 sec 0.09 5.13d 0.18 5.13e 0.27 5.13f 0.36 5.13f 0.45 5.13f 

1.6 sec 0.06 1.1 0.12 1.0 0.17 1.0 0.23 1.0 0.29 1.0 

3.0 sec 0.02 1.1 0.05 1.0 0.07 1.0 0.10 1.0 0.12 1.0 

*Figure number  

**Interpolated K  should be used between two specified STsec ranges for each T 

*** K  is 1.0 for all θ = 0
o
 case. 

Table 5.2: The slope adjustment factor, K  determination for a set of θ, VS30, STsec and T 

combinations. 
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5.8 Application and Limitations 

 To obtain design spectral acceleration for a sloping ground (θ>0
o
) site at a 

specific period (i.e. T = 0.0, 0.2, 0.6, 1.0, 1.6 and 3.0 sec), SS_T(θ), the design spectral 

acceleration assuming flat ground (θ = 0
o
) surface at that period, SS_T(θ=0

o
) has to be 

multiplied with the corresponding slope adjustment factor, K  from Table 5.2 as 

presented in the following equation: 

0_ ( ) _ ( 0 )S T S T
S K S

              (5.10) 

The flowchart in Figure 5.14 lists the required inputs and steps involved in 

generating SS_T(θ) values. At first, SS_T(θ=0
o

) values are obtained from conventional site 

response analysis considering horizontal ground surface or by directly using site factors 

from the code provisions such as NEHRP (BSSC, 1995) or as proposed in Aboye et al. 

(2013a) for Charleston area. Ground inclination can be measured using different 

surveying techniques such as: using a total station reading or a clinometer. Another 

approach to obtain ground inclination can be by analyzing the Digital Elevation Model 

(DEM) data available in the SCDNR website. Soon a high resolution DEM based on 

LiDAR (Light Detection and Ranging) data will be available through SCDNR for 

Charleston, SC area. Using Table 5.2 and Figure 5.13, K values can be obtained for a 

specific inclination and finally SS_T(θ) is calculated using Equation 5.10. Interestingly, 

apart from the parameters that are necessary for generating SS_T(θ=0
o

), this method requires 

only a single additional parameter: θ, for SS_T(θ) generation. 

This study is conducted over the mild infinite slopes ranging from 0
o
-6

o
. Thus, the 

recommendations made in this study cannot be applied in the cases of steep slopes such 
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as hills, dams, steep channel banks etc. Also, the ground inclination has to be continuous 

at-least for a comparable stretch of land as the finite element model in this study is 

developed considering almost a 700 m wide section with a single continuous inclination. 

Similarly, the recommended K is only applicable for soil profiles with VS30 within 232 

m/s - 543 m/s range. All the profiles and the single ground motion considered here is 

from Charleston region, the K recommendations outside this zone may not produce 

adequate estimates. 

This study assumes horizontal bedrock while the slopes of each layer are varied 

from slope θ at the surface and a perfectly horizontal (θ = 0
o
) bedrock boundary at the 

bottom of the profile (see Figure 5.6). As mentioned earlier, this was employed to avoid 

low aspect ratio elements at the base of the finite element model thus avoiding any 

numerical instability during simulations. The authors are fully aware that actual site 

conditions and the layering might be different and thus a bias on results is expected. 

Moreover, the model geometry has varying depth from the left to the right side due to the 

consideration of sloping ground surface and horizontal bedrock boundary. As discussed 

in the previous section, this has imposed a simultaneous in-phase out-of-phase movement 

at different locations of the profile and consequently affects the computed surface 

response which is certainly a limitation of such model. The soil shear strength had to be 

calibrated due to the lack of measurement data for such deep profiles from the site. 

Finally, a systematically designed validation study with field measurements and/or a 

centrifuge model test is required to evaluate the quality of the recommendations made 

here although none is available at this point. 
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5.9 Conclusions 

This study explores the potential effect of ground slopes on the computed surface 

responses under an earthquake event. The study focused only on Charleston, SC region. 

A total of 385 two-dimensional finite element simulations were performed for this study 

Option (1): 1-D Site Response Analysis

Required Inputs: Ground motion, VS , Unit weight, G/Gmax-γ and

D-γ curves

Site 

Factor, F

Step#1: Site Factor, F Generation For θ = 0o Condition

Option (2): Recommended Factors From Aboye et al. (2013a)
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Figure 5.14: Flow chart of SS_T(θ) generation process.  
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consisting of: seven ground inclinations (0
o
, 1

o
, 2

o
, 3

o
, 4

o
, 5

o
 and 6

o
), eleven VS profiles 

representative of the area and one ground motion scaled to five different S0.0sec levels. 

Computed surface spectral accelerations are generally higher for sloping ground cases 

than the corresponding flat ground scenario which immediately justifies the importance 

of such study. Due to a known modeling limitation low period spectral accelerations (i.e. 

<0.6 sec periods) from sloping ground cases didn’t produce a clear trend while in the 

higher periods (i.e. >0.6 sec period) spectral acceleration increases with surface 

inclination. The slope effect is more significant when the system behaves within the 

linear range i.e. stiffer profile and/or smaller loading; when the system behavior enters 

nonlinear zone damping becomes much higher which reduces the slope effect on the 

computed responses. Finally, the combined outcomes are used to develop a slope 

adjustment factor, K  which is multiplied to the surface spectral accelerations for ‘Flat’ 

ground case to obtain the surface spectral acceleration of a sloping ground condition. 

However, more works including extensive validation studies are required to fully 

understand this new branch of site response study. 
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CHAPTER 6 

 

EFFECT OF SUDDEN CONTRAST OF SHEAR WAVE VELOCITY 

AT LAYER INTERFACES ON SEISMIC SITE RESPONSE 

ANALYSIS FOR CHARLESTON, SC 

6.1 Introduction 

Seismic site response analysis predicts the local site effect on the earthquake 

ground motion propagating from the bedrock to the ground surface. Shear wave velocity 

(VS) is an important parameter for such analysis. Commonly, shear wave velocity 

measurements (from field tests such as: seismic cone, crosshole seismic, multichannel 

analysis of surface waves, refraction microtremor etc. or from the laboratory tests such 

as: resonant column tests, bender element test etc.) for a site are simplified by discretizing 

the whole profile with a number of homogeneous layers with a constant VS value for each 

layer. Therefore, to represent an increased or decreased shear wave velocity in the 

immediate layers a sudden rise and drop of VS values at the layer interfaces i.e. the VS 

contrasts are inevitable. In this manner the geotechnical engineer compiles the ‘working’ 

VS profile. This has been a wide spread practice in the community for decades as this 

simplification is advantageous to the general geotechnical engineering related 

computations (both analytical and numerical). 

However, this assumption of sudden contrast of VS in the layer interfaces is often 

unnatural; a gradual rise or drop is a better representation of the measured data for a lot of 

cases. On the other hand, such sudden changes in VS incurs unrealistically high shear 

strain at those interface locations, especially on the softer side of the interface, during 

numerical simulations (Stewart et al., 2008; Kottke, 2010; Matasovic and Hashash, 2012; 
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Bozzano et al., 2012; Gouveia et al., 2012; Brandenberg et al., 2013). Similar shear strain 

concentration was also observed at interface locations while performing thousands of 

simulations in Chapter 3 and 4. Figure 6.1 presents a sample scenario of the shear strain- 

profile in the case of a typical Charleston, SC profile (reference profile as described in 

Chapter 3 and 4) and for a synthetic ground motion (a peak rock-outcropping ground 

acceleration or PGAOutcrop of 0.5g) generated for the area. Extensive amount of shear 

strain is observed in each of the three scenarios (i.e. time) captured (Figures 6.1b, 6.1c 

and 6.1d) during the simulation where the most prominent VS contrast (Figure 6.1a) of the 

whole profile is located. Such excessive shear strain can cause a significant amount of 

energy loss during the seismic wave propagation through that interface which may 

eventually reduce the amplitude of the computed surface response (Gouveia et al., 2012). 

Seismic site response analysis is performed to generate acceleration response 

spectra which is a plot of the maximum response of a set of SDOF (single-degree-of-

freedom) systems with different periods and a specified (5% typically) damping, for a 

particular input ground motion (Kramer, 1996). The ratio of the computed acceleration 

response spectra at the ground surface (SSite) and at rock-outcrop (SOutcrop) is called the 

seismic site factors (F), for a specific spectral period (SCDOT, 2008a). These site factors 

are used to perform seismic analyses of structures. The most common site factors in 

practice are the NEHRP (BSSC, 1995) site factors.  Chapter 3 presented the seismic site 

factor model for the Charleston, South Carolina area that has been developed and 

recommended to SCDOT (Aboye et al., 2011 and 2013a) based upon thousands of one-

dimensional equivalent linear and nonlinear site response analysis results. There, the VS 
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profiles were based on the assumption of sudden contrast at layer interfaces as adopted 

from the Andrus et al. (2006). Such simplification of the VS profiles allowed the research 

group to perform thousands of numerical simulations and to make general 

recommendations over the area. However, a closer investigation on the VS recordings of 

some other published works on this site (Chapman et al., 2006; Jaume, 2006) would 

suggest that a continuous change of VS at some interfaces is a more appropriate approach. 

Figure 6.2 shows the seismic cone penetration (SCPT) measurements and the 

corresponding three-point running mean of SCPT velocities from two sites in Charleston 

area inside the campus of The Citadel, the military college of SC. The sites are referred to 

as: C1SC and C2SC and are presented in Figures 6.2(a) and (b), respectively. This figure 

is a reproduction of the work done by Jaume (2006). In the case of these profiles, the 

transitional zone between the Quaternary (Q) and Tertiary (T) aged layers (details on the 

Quaternary and Tertiary layers are in the following section) are 2-3m wide. The same 

transition has been represented as a sudden jump of VS in Andrus et al. (2006), following 

the conventional approach.  

In this chapter, a few representative VS profiles of the Charleston, SC area from 

Chapters 3 and 4 have been adopted and then the profiles are altered to introduce 

different degrees of continuous variation of VS at a few selected interface locations. These 

profiles were analyzed to compute seismic surface responses and were then compared. 

This investigation offers a scope to evaluate the implication of smoothening the key 

sudden interface VS contrasts over the computed seismic surface response (i.e. site 

factors) for the area. Nevertheless, the intention of this study is not to improve/update any 
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of the currently available site factor provision, rather to raise awareness for this important 

matter which has been ignored for long in site response study. 
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Figure 6.1: Profile shear strain–time history of a typical Charelston profile: (a) simplified 

VS profile; (b) profile shear strain at T=1.60 sec; (b) profile shear strain at T=6.45 sec; (b) 

profile shear strain at T=20.55 sec. A ground motion with PGAOutcrop of 0.5g was used. 
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6.2 Soil Profile and Material properties 

6.2.1 Shear wave velocity profiles 

6.2.1.1 Profiles with sudden contrast at the interface: 

The 137 m deep soil profile designated as the ‘reference’ or mean Vs profile along 

with its ±1σ (σ = standard deviation) same as Chapter 3 and 4 are adopted in this Chapter. 

Figure 6.3 presents all three VS profiles: the mean and mean±1σ which were originally 

based on the data collected and compiled from Andrus et al. (2006) and also from 

suspension logger tests done by South Carolina Department of Transportation (SCDOT) 
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Figure 6.2: Sample VS measurements with SCPT and the three-point running mean of 

SCPT velocities from the C1SC and C2SC sites are presented in (a) and (b), respectively. 

The transitional zone between the Quaternary (Q) and Tertiary (T) layers is also marked 

(Reproduction of Figure 5 from Jaume, 2006).  
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in 2006. In this Chapter, the ‘mean’ Vs profile (dark line in Figure 6.3) with sudden 

contrast is referred to as ‘SC’; the ‘mean+1σ’ (on the right of the dark line in Figure 6.3) 

and the ‘mean-1σ’ (on the left of the dark line in Figure 6.3) cases are referred to as 

‘SC(+)’ and ‘SC(-)’, respectively. Underneath these 137m deep profiles are the soft-rock 

half space with an assumed Vs = 700 m/s for the area. The other profile parameters such 

as: soil layers and thickness, total unit weight and plasticity index are also presented in 

Figure 6.3. 
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6.2.1.2 Altered/smoothened profiles: 

Three additional (hypotheitical) Vs profiles: Model-I (or M-I), Model-II (or M-II) 

and Model-III (or M-III), have been generated based on each of the SC, SC(+) and SC(-) 

profile cases from Figure 6.3. All three model variations for each of the SC, SC(+) and 

SC(-) profile cases are grouped and presented in the subplots (a), (b) and (c) of the 

Figures 6.4, respectively. 
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Figure 6.3: The shear wave velocity profiles: ‘Mean’ and it’s ±1σ variations, based on 

Aboye et al. (2013a) for Charleston, SC area. These profiles have sudden stiffness 

contrasts at layer interfaces. The total unit weight (in kN/m
3
) and plasticity index are 

listed for each layer. 
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These nine hypothetical profiles were developed by smoothening the sudden Vs 

contrasts at 10m and 56m depth from the surface with different degrees of continuous 

variation. These are the two locations where significant Vs contrast exists in the profiles; 

especially the contrast at 10m depth is the interface between Quaternary and Tertiary 

strata. Based on the authors’ experience, these two interfaces are the locations where 

large shear strain usually occurs which is the reason for selecting these two interfaces for 

smoothening.  

Model-I (or M-I): In this case, smoothening was done by discretization of the 

each of the corresponding layers to eight 0.5m thick micro-layers, in conjunction with 

step-like Vs. M-I, M-I(+) and M-I(-) are the three variations generated based on the SC, 

SC(+) and SC(-) profile cases, respectively. 

Model-II (or M-II): This model is similar to the Model-I except six-teen 0.5m 

thick micro-layers were adopted at each of the 10m and 56 deep interfaces. M-II, M-II(+) 

and M-II(-) are the three variations corresponding to the SC, SC(+) and SC(-) profile 

cases, respectively. 

Model-III (or M-III): 1.0m thick micro-layers are extended throughout the 

corresponding layers on the both sides of the interfaces to replace those sudden contrasts 

with a continuous change of Vs. M-III, M-III(+) and M-III(-) are the three variations 

corresponding to the SC, SC(+) and SC(-) profile cases, respectively. 
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6.2.2 Modulus reduction and damping curves 

Figures 6.5(a) and 6.5(b) present the G/Gmax-γ and D-γ curves, respectively, for 

each of the nine layers. These curves were developed using the Zhang et al. (2005) 

relationships which are the function of soil plasticity index, mean effective confining 

pressure and geologic age. For the half space (VS = 700 m/s), purely linear relationships 

for G/Gmax-γ and D-γ were assumed and this was done by keeping G/Gmax  at 1 and D at 

0.5% as constants for all γ values and standard deviations as in South Carolina Coastal 

Plain D = 0.5% is considered as representative for soft rock outcrop (SCDOT, 2008a). 
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Figure 6.4: Three variations in shear wave velocity profiles are considered for each of the 

SC, SC(+) and SC(-) profile cases from Charleston and are presented in the subplots (a), 

(b) and (c), respectively. Only up-to 80m depth has been presented of these 137m deep 

profiles; below this depth no further variation has been implemented to the corresponding 

original profiles. 
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Point to be noted that, in the micro-layers of each of the smoothened profiles only 

the Vs was varied. All other soil properties (i.e. G/Gmax-γ and D-γ curves, unit weight) 

were kept the same as the corresponding profiles with sudden contrast although in reality, 

these properties are usually expected to vary in accordance with the Vs variation. This 

implies that in some of the micro-layers (above 10m and 56m interfaces) these properties 

are under-estimated and in the rest of the micro-layers those are over-estimated. 

Justifications to this assumption are: (i) as the micro-layers are symmetric (in the sense of 

both layer thickness and Vs) with respect to the original layer interface, the effect of over 

and under-estimated soil properties should have cancelled out each other or at-least to 

some extent; and (ii) the G/Gmax-γ and D-γ curves in Figure 6.5(a) and 6.5(b) for different 

layers are very close and thus separate sets of G/Gmax-γ and D-γ curves for each of the 

micro-layers would have produced negligible difference in surface response.  
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Figure 6.5: Soil dynamic properties: (a) the G/Gmax-γ; and (b) D-γ curves, based on 

Zhang et al. (2005) relationships. 
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6.3 Ground Motion 

The single ground motion used for this Chapter also appeared in Chapter 3 and 4. 

A computer program called Scenario_PC (Chapman, 2006) was employed to generate 

outcroppping motions for Charleston area as there was no actual strong motion record 

available. Scenario_PC was developed for South Carolina Department of Transportation 

(SCDOT) to perform seismic hazard analysis in this area. The acceleration time history 

and corresponding response spectra of the ground motion generated for the Charleston 

quadrangle are presented in the Figure 6.6. A return period of 2% probability of 

exceedance in 50 years and a modal moment magnitude of 7.3 were used as inputs for 

Scenerio_PC. This motion was then scaled to the peak ground accelerations (PGAOutcrop) 

of 0.1g, 0.3g and 0.5g in this Chapter.  
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6.4 Ground Response Analysis 

DEEPSOIL v5.0 (Hashash et. al. 2011) is a widely accepted one-dimensional site 

response analysis program. Although it is capable of performing both nonlinear and 

equivalent linear total stress and effective stress analyses, only nonlinear total stress 
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Figure 6.6: The ground motion generated for Charleston quadrangle: (a) acceleration time 

history and (b) acceleration response spectra. 
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capabilities are used. DEEPSOIL has an intuitive graphical user interface. It models the 

vertical propagation of horizontal shear wave through deep soil deposits using a multi-

degree of freedom lumped-mass system. The dynamic equation of motion is solved by 

Newmark’s β method. 

DEEPSOIL implements the Modified KZ model (Matasovic and Vucetic, 1993a) 

to define the initial hyperbolic stress-strain backbone curve in the simulation. The 

normalized MKZ model is given by: 

1

*
* max

S

r

G 








 

  
 

 
(1) 

where α and s are two curve fitting constants added to the Kondner and Zelasko (1963) or 

KZ model, τ is the shear stress, γ is the shear strain, τ
*

 = τ/σ’vc, G
*

max=Gmax/σ’vc, γr= 

τmax/Gmax, σ’vc is the initial vertical effective stress and Gmax is the initial (maximum) 

shear modulus of the soil.  

A modified reference shear strain definition (Hashash and Park, 2001) has been 

incorporated with the Modified KZ model: 

'
b

vc
r

ref

a





 
   

 
 (2) 

where '

vc = effective vertical stress, 
ref = reference confining pressure and a and b are 

the curve fitting parameters. Hysteretic damping is calculated using the backbone curve 

considering the Masings criteria. 
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The ‘modulus reduction and damping fitting’ option in DEEPSOIL is selected for 

the MKZ model parameters (α and s) calibration. This option in DEEPSOIL employs a 

reduction factor (Phillips and Hashash, 2009) which modifies the extended Masing 

(1926) loading/unloading stress-strain relationship. This increases the flexibility of the 

model to match both the modulus reduction and damping curves simultaneously with 

better accuracy. A frequency independent small-strain damping (Phillips and Hashash, 

2009) technique implemented in DEEPSOIL has been used. 

On the other hand, SHAKE2000 (Ordóñez 2011) was developed by GeoMotions, 

LLC which is a widely used equivalent linear program. SHAKE2000 was developed 

based on the SHAKE program by Schnabel et al. (1972). In this method an equivalent 

linear shear modulus, G and an equivalent linear damping ratio, ξ are primarily 

determined by performing trial runs by the program. These properties are then kept 

constant for the final run of the entire earthquake excitation and thus this method cannot 

account for soil stiffness changes during an event. Therefore, an equivalent linear 

analysis is merely an approximation to the actual nonlinear behavior. Thus in the case of 

higher loading and/or induced shear strain, equivalent linear programs are unable to 

produce reasonable estimates. Equivalent linear method is more popular within 

practitioners because of simplicity, low computational requirement, and also availability 

of good documentation on usage protocol. With SHAKE2000 and DEEPSOIL, all 

profiles presented in Figures 6.3 and 6.4 are simulated for all three PGAOutcrop levels: 

0.1g, 0.3g and 0.5g. Then the computed responses are compared. 
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6.5 Analysis Results 

6.5.1 Comparison of acceleration response spectra 

Acceleration response spectra from DEEPSOIL and SHAKE2000 at the ground 

surface level are computed for each of the cases. In Figure 6.7(a) and 6.7(b) and in Figure 

6.8, DEEPSOIL outcomes for the ‘mean’ or SC profile and the corresponding altered 

models: M-I, II and III are presented, for PGAOutcrop of 0.1g, 0.3g and 0.5g, respectively. 

In Appendix C, Figures C.1(a) and C.1(b) and in Figure C.2, DEEPSOIL outcomes for 

the ‘mean+1σ’ or SC(+) profile and it’s altered models: M-I(+), II(+) and III(+) are 

presented, for PGAOutcrop of 0.1g, 0.3g and 0.5g, respectively. In Figures C.3(a) and 

C.3(b) and in Figure C.4, DEEPSOIL outcomes for the ‘mean-1σ’ or SC(-) profile and 

it’s altered models: M-I(-), II(-) and III(-) are presented, for PGAOutcrop of 0.1g, 0.3g and 

0.5g, respectively. Similar plots based on the SHAKE2000 outcomes are also presented 

in the Appendix C Figures C.5- C.10. 

Based on these figures, generally speaking, in each of the mean and mean±1σ 

cases, the M-I and M-II cases produced higher spectral acceleration peaks while the M-III 

cases are always on the lower side, in compared to the corresponding SC cases. Such 

difference becomes greater with the increase of PGAOutcrop from 0.1g to 0.5g. In the cases 

of M-I and M-II, an increased (due to smoothening) stiffness (or VS) is present within 

10m from the surface compared to the corresponding SC profile (see Figures 6.4a, 6.4b 

and 6.4c). Although there is a symmetric drop of stiffness below 10m, it is common that 

the shallowest profiles are more influential during wave propagation through the topsoil. 

Thus higher peaks are observed in these two cases: M-I and M-II, in-fact, the M-II cases 
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produced the highest peak. Additionally, there is one more symmetric stiffness increase at 

56m depth interface which is also acting in favor of amplification of surface response, in 

these two cases. 
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Figure 6.7: DEEPSOIL generated acceleration response spectra at surface level for 

profile variations presented in Figure 6.4(a) and for: (a) PGAOutcrop = 0.1g; and (b) 

PGAOutcrop = 0.3g. 
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On the other hand, the stiffness changes for M-III models are not symmetric and 

there is a bigger drop of VS below 10m interface (see Figures 6.4a, 6.4b and 6.4c), which 

is the Tertiary layer, has overwhelmed the minor stiffness increase within the top 10m. 

This has reduced the amplification of ground motion travelling through this ‘softer’ 

system and thus explains the eventual drop at the surface spectral acceleration than the 

corresponding SC cases. Point to be noted here that, such difference in the computed 

spectral accelerations between the altered models and the corresponding SC cases 

become more significant when the profile becomes softer i.e. the mean-1σ cases (SC(-), 

M-I(-), M-II(-), and M-III(-)) in Figures C.3-C.4, especially for PGAOutcrop of 0.5g while 

it’s the opposite for stiffer profiles (e.g. Figures C.1-C.2). Softer profiles and/or higher 

loading push the system behavior more into nonlinear zone and that reflects on the 

0.01 0.10 1.00
Period (s)

0.00

0.50

1.00

1.50

2.00

2.50
S

p
ec

tr
al

 A
cc

el
er

at
io

n
 (

g
)

Outcrop

SC

M-I

M-II

M-III

PGAOutcrop= 0.5g

Figure 6.8: DEEPSOIL generated acceleration response spectra at surface level for 

profile variations presented in Figure 6.4(a) and for PGAOutcrop = 0.5g. 
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computed surface response differences. Similar behaviors were also seen in the 

SHAKE2000 responses (Figures C.5-C.10 in Appendix C). However, due to the 

limitation of SHAKE2000 in capturing the true nonlinear behavior, the differences 

observed between the altered and the corresponding SC cases are lesser compared to the 

DEEPSOIL outcomes, especially for the softer profiles (mean-1σ) and higher PGAOutcrop 

cases (i.e. Figure C.10). 

6.5.2 Comparison of seismic site factors 

Seismic site factors are also generated to observe the potential difference that 

could be obtained from the site response analyses considering both the ‘smoothened VS 

profile’ and the typical ‘VS profile with sudden contrast’. Site factor, F was calculated for 

six spectral period ranges: ≤ 0.01 s for T=0 sec period, 0.01-0.4 s for T=0.2 sec period, 

0.41-0.8 s for T=0.6 sec period, 0.81-1.2 s for T=1.0 sec period, 1.21-2.0 s for T=1.6 sec 

period and 2.01-4.0 s for T=3.0 sec period, which are the averaged values of the 

corresponding ranges. Then the site factors from the altered models (all mean and ±1σ 

variations of M-I, II and III), FModels, are normalized by the site factors computed from the 

original profiles with sudden contrast (i.e. mean and ±1σ variations of SC profile) at 

interface locations, FSC, and were plotted against PGAOutcrop values. Figure 6.9 presents 

the FModels/FSC vs. PGAOutcrop plots for all periods from the DEEPSOIL outcomes while in 

Figure C.11 of Appendix C presents the corresponding SHAKE2000 outcomes. 

FModels/FSC =1.0 line stands for the SC, SC(+) and SC(-) while the black, blue and red 

symbols stand for: M-I, II and III; M-I(+), II(+) and III(+); and M-I(-), II(-) and III(-), 

respectively.  
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As is seen in Figure 6.9, the lower periods such as T=0.0 and 0.2 sec cases, each 

of mean and ±1σ variations of the altered (M-I, II and III) cases produced higher ratios 

than unity, thus higher site factors than the corresponding SC (i.e. SC, SC(+) and SC(-)) 

profiles while it is the opposite in higher periods such as 0.6, 1.0, 1.6 and 3.0 sec cases. 

Especially, the soft altered models: M-I(-) and M-II(-), produced about 10-20% higher 

site factors than the SC(-) profile at T= 0.0, 0.2 and even at 0.6 sec periods for higher 

PGAOutcrop cases, proving the softer profiles to be the most critical. Similar behaviors 

were also observed in the SHAKE2000 responses (in Figure C.11 of Appendix C) 

although the lesser difference in computed surface spectral accelerations from 

SHAKE2000 kept these ratios (and/or site factors) lower than the corresponding 

DEEPSOIL cases.  

6.5.3 Comparison of profile maximum shear strain 

Plotted in Figure 6.10 are the maximum shear strains computed throughout the 

layers of the profiles: SC, M-I, II and III, using DEEPSOIL. For better visualization, the 

corresponding VS profiles are also kept side-by-side for each case. For the SC profile 

(Figures 6.10(a) and 6.10(b)), high amount of shear strain are observed at the 10m and 

56m deep layer interfaces as expected although the shallowest one i.e. at 10m depth, 

producing the highest among all point to the fact that the shallowest interfaces with 

significant stiffness contrast are more viable for such behavior. In the cases of M-I and 

M-II (Figures 6.10c-6.10f), a considerable amount of reduction in the interface maximum 

shear strains are observed, as compared to the SC case. This explains the higher peak 

spectral accelerations observed at the surface level for these two profile cases (see 
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Figures 6.7 and 6.8) than the SC case, as lower strain means lower system damping. In 

the case of M-III profile (Figures 6.10g and 6.10h), although the maximum shear strain 

reduces at 10m depth than the mean profile, a zone of increased shear strain is observed 

at locations where this profile has lesser stiffness than the SC profile (below 10m and 

56m). This explains the smaller peak spectral response from this profile at the surface 

level as larger strain means higher hysteretic damping in the system. Similar high shear 

strain at layer interfaces also occurred for the stiffer (mean+1σ cases from Figure 6.4b) 

and softer (mean-1σ cases from Figure 6.4c) profile cases as presented in the Appendix C 

in Figures C.12 and C.13, respectively, although the stiffer profiles produced milder 

strain while the softer ones showed higher, as compared to the cases showed in Figure 

6.10, in general.  
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Figure 6.9: Site Factors Ratios vs. PGAOutcrop plots for the ‘Mean’ and it’s ±1σ variations 

of all three models: M-I, II and II (see Figure 6.4) based on DEEPSOIL data points for: 

(a) T= 0.0 sec, (b) T= 0.2 sec, (c) T= 0.6 sec, (d) T= 1.0 sec, (e) T= 1.6 sec, and (f) T= 

3.0 sec. 
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Figure 6.10: Profile maximum shear strains, based on DEEPSOIL data points, along with 

the corresponding VS profiles from Figure 6.4(a) and for PGAOutcrop levels of 0.1, 0.3 and 

0.5g. Subplots (a) and (b) are for the profile: SC; (c) and (d) for the profile M-I; (e) and 

(f) for the profile M-II; and, (g) and (h) for the profile M-III. 
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6.6 Discussions 

Based on the plots presented in the previous section, even with a very mild 

deviation (e.g. cases M-I and M-II) from the originally compiled VS profiles (i.e. with 

sudden contrast at interface locations or SC cases) could produce a considerably higher 

surface response; this leads to higher seismic site factors especially for lower period cases 

(mostly T=0.0 and 0.2 sec). Such behavior is expected to be prominent when the site in 

hand is relatively softer and/or greater shaking involved. In the case of sudden VS 

variation, significant shear strain was observed at those interface locations, mostly at the 

shallowest interface (at 10m depth). This filters out (or dampens) a major portion of the 

wave energy transmitted through that interface and eventually produces smaller surface 

response.  

With the shear strain increase, the system behavior becomes more and more 

nonlinear and the equivalent linear approach becomes more inadequate; a nonlinear code 

is required to simulate the system behavior properly. With the consideration of 

continuous variation of stiffness in the interface regions, much lower shear strains were 

obtained especially for the M-I and M-II cases. For example in Figure 6.10, in the case of 

PGAOutcrop of 0.5g, the SC profile has a maximum shear strain ~0.5% (Figure 6.10b), at 

the interface of 10m depth from surface, which requires a nonlinear analysis according to 

the recommendation made by Matasovic and Hashash (2012). Matasovic and Hashash 

(2012) claimed that the nonlinear and equivalent linear approaches start to diverge at 0.1-

0.2% strain level and after 0.5%, responses calculated by equivalent linear approach are 

no more reliable. On the other hand, in the case of M-I and M-II, the same location in the 
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profile (at 10m depth from surface) show 0.3% and 0.1% strains, respectively; thus 

equivalent linear analysis is expected to produce adequate estimates for these two cases. 

In order to further investigate, the spectral accelerations computed based on the 

equivalent linear program SHAKE2000 and nonlinear program DEEPSOIL were plotted 

together and presented in Figures 6.11-6.12. As is seen, for PGAOutcrop of 0.1g, for each of 

the SC, M-I and M-II cases the computed spectral accelerations from SHAKE2000 and 

DEEPSOIL matched with great accuracy. On the other hand, for PGAOutcrop of 0.5g case, 

both codes produced significantly different responses in the case of SC profile (Figure 

6.11a) as was expected due to high shear strain involved at interfaces. However, for the 

M-I and M-II cases in Figures 6.11(b) and 6.12, respectively, both the codes produced a 

good peak matching at PGAOutcrop level of 0.5g although in the lower periods both lines 

still differ considerably. Such small period mismatch between nonlinear and equivalent 

linear codes is also very common (Stewart et al., 2008). Therefore, profiles with 

smoothened VS contrasts have a potential wider range of appropriateness for equivalent 

linear analysis, an additional benefit of this concept. 

Moreover, based on the above responses, the author believes that this may 

potentially be a reason or even partly responsible for the under-predictions from several 

site response tools in compared to the recorded scenario which were observed by Kim 

and Hashash (2013) and Zalachoris (2014). The primary reasons are: first, both Kim and 

Hashash (2013) and Zalachoris (2014) observed the current site response tools fail to 

predict especially when system behavior is highly nonlinear i.e. higher loading and/or 

softer sites involved, especially at smaller periods. The smoothened VS contrast cases also 
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produced significantly higher surface responses when the intense loading is involved and 

also within the smaller period ranges. Secondly, estimation of the soil dynamic properties 

such as G/Gmax-γ and D-γ curves at large shear strain levels are always a challenge and is 

speculated by Zalachoris (2014) as a major cause of failed site response predictions of 

actual events. As the consideration of smoothed interface stiffness produces much lower 

profile shear strains, the deviation of G/Gmax-γ and D-γ curves are also expected to be the 

minimum and a better accuracy in site response prediction is expected.  

Another implication of this study is, it introduces a brand new research question 

to the geotechnical earthquake engineering community of how to approximate the limited 

shear wave velocity measurements. In order to fully understand the significance of this 

concept over the current practice of VS measurements, extensive numerical investigations 

aided with sufficient laboratory and field validations are required. Parametric studies of 

the magnitude of the stiffness contrast, depth/location of the contrast and the total number 

of layer interfaces with significant contrasts in the profile etc. are necessary to properly 

estimate the potential effect of such stiffness contrasts in site response analysis. This may 

eventually revolutionize the current practice of collecting VS measurements and the 

generation of the ‘working’ VS profiles for the site specific response spectral analysis. 

The observations made here indicate that large number of shear wave velocity 

measurements must be taken where significant contrast is expected to accurately predict 

the surface response using commonly used site response analysis programs. Nevertheless, 

in the light of the above findings, a few steps are suggested to follow during a site 

specific response spectrum analysis using the VS profiles with interface contrasts, until a 
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more appropriate technique becomes available: first, a preliminary site response analysis 

has to be performed considering the VS profile with conventional simplification (i.e. with 

sudden contrast at interfaces) of the measured data; if a large (as compared to the rest of 

the profile locations) shear strain  at layer interface(s) has been developed then the VS 

profile has to be smoothened at those locations which should also agree with the variation 

pattern of the measured VS from the field tests; finally, site response analysis has to be 

performed again with the ‘smoothened’ profile and compared with that of the previous 

analysis (i.e. with interface contrast). These steps are expected to produce a reasonable 

surface response.   
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Figure 6.11: Comparison of SHAKE and DEEPSOIL spectral acceleration responses for 

the profiles (see Figure 6.4(a) for profile information): SC and M-I in subplots (a) and 

(b), respectively and for PGAOutcrop of 0.1g and 0.5g cases. 
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6.7 Conclusions 

Three VS profiles representative of the Charleston, SC area were considered and 

altered to replace a few selected sudden stiffness contrasts at layer interfaces with 

continuously varying VS values. After analyzing these profiles with seismic site response 

tools: SHAKE2000 and DEEPSOIL, the outcomes were compared.  

Overall, a general reduction in interface shear strains and increase in surface 

spectral accelerations especially at lower periods were observed from the altered 

(smoothened) profiles than the corresponding profiles with interface contrast. For softer 

profiles this difference in the computed site factors from the original and the altered 

profiles was observed to increase up to 20%. This shows the importance of such 

smoothening of the interface contrasts which may eventually revolutionize the current 
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Figure 6.12: Comparison of SHAKE and DEEPSOIL spectral acceleration responses for 

the profiles (see Figure 6.4(a) for profile information) M-II and for PGAOutcrop of 0.1g and 

0.5g cases 
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practice of collecting VS measurements and the generation of the ‘working’ VS profiles for 

the site specific response spectral analysis. Additionally, such smoothening of VS reduces 

the shear strain at interface locations; smaller shear strains mean reduced system 

nonlinearity and thus a potential much wider range of applicability of the equivalent 

linear approach for site response analysis is expected.  
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CHAPTER 7 

 

REPERCUSSIONS OF NEW SEISMIC SITE FACTORS AND ADRS 

CURVES  
 

7.1 Introduction 

The development of models for site factors for the South Carolina Coastal Plain 

(SCCP) was described in earlier chapters (Chapters 3 and 4) in detail. It is observed that 

the newly recommended site factors are different from the site factors currently used by 

SCDOT (2008a) and the difference varies with the site class.  The Acceleration Design 

Response Spectrum (ADRS) generated based on these new site factors are expected to be 

different than the ones generated using the current (AASHTO, 2011 and SCDOT, 2008a) 

site factors used by SCDOT. This could impose a great deal of impact on the seismic 

demand of existing and to-be-built highway structures (i.e. bridges) which will 

consequently impact the industry from an economic standpoint.  

On this view, an attempt was made to apply the ADRS curves generated from 

AASHTO (2011) and the new site factors (Chapter 3), on actual highway structures to 

observe the differences in responses of interest. Thus the goal of this chapter is to 

implement ADRS curves from both the current (also referred to as “AASHTO, 2011” in 

this report) and ‘Recommended’ (i.e. the proposed site factor model as of Chapter 3) 

methods as one of the inputs on typical highway bridge structures and compare the 

responses to better understand the effect of the newly developed site factors on structural 

analysis outcome.  
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Two sample highway bridges are used in this study as listed in Table 7.1. They 

are: (1) the “LRFD Example Bridge”, a Cast in Place (CIP) concrete box-girder bridge 

which is design example no. 8 in “Design examples: Recommended LRFD guidelines for 

the seismic design of highway bridges” (ATC/MCEER, 2003a); and (2) the “Russell 

Creek Bridge”, a to-be-built concrete deck-girder bridge over the Russell Creek River in 

Charleston County, SC. The LRFD Example Bridge was analyzed using SAP2000 

version 14.2.2 (CSI, 2009) for NEHRP site classes C, D and E. For site classes D and E, 

the site factors corresponding to Charleston, SC are used because these two site classes 

are the most frequently encountered in that area. For site class C, site factors 

corresponding to Columbia are used. On the other hand, the Russell Creek Bridge is 

analyzed using CSiBridge version 15 (CSI, 2011) for site class D (site factors 

corresponding to Charleston), following the original design consideration.  First, ADRS 

curves corresponding to each site class are generated using the AASHTO (2011) and 

‘Recommended’ site factors. Then, multi-modal response spectrum (MMRS) analysis 

results obtained by applying the AASHTO (2011) and ‘Recommended’ ADRS curves on 

these two bridges were compared at intermediate bents. For the LRFD Example Bridge, 

forces, moments and displacements are compared at the top and bottom of all four 

intermediate bent columns. For the Russell Creek Bridge, forces, moments and 

displacements are compared at the top of the piles of all nine intermediate bents. Two 

different load combinations are used for each bridge. Finally, a parametric study is 

conducted for the LRFD Example Bridge to investigate the effect of fixity of the 

foundations (fixed and springs) because the original LRFD Design Example uses 
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foundation springs, whereas, SCDOT (2008b) suggests the application of fixed-base for 

pile foundations. Details are provided in subsequent sections.  

Sample 

No. 

Bridge 

name 
Location 

Number 

of spans 

Deck 

type 
Pier type 

Abutment 

type 

Foundation 

type 

Site 

Class 

1 

LRFD 

Example 

Bridge 

Puget Sound 

region of 

Washington 

State 

5 

Concrete 

box 

girder 

Two 

column 

integral 

bent 

Stub type 
Concrete 

piles 

Analyzed 

for Site 

Classes 

C, D and 

E 

2 

Russell 

Creek 

Bridge 

Charleston 

County, SC 
10 

Concrete 

I-girder 
Pile bent Pile bent 

Concrete 

piles 

Site 

Class D 

 

7.2 Generation of ADRS Curves for LRFD Example Bridge Analysis 

For the ADRS curve generation, the site factors for Charleston area are selected 

for the site classes D and E and on the other hand for site class C, Columbia area is 

selected. The depth to the B-C boundary is assumed as 137 m for Charleston (see 

reference profile for Charleston in Chapter 2) and 30 m for Columbia area. The depth to 

the B-C boundary is one of the parameters to be used in the proposed site factor model.  

Seven different ADRS curves were used in this chapter. The first three ADRS 

curves (I, II and III) were generated based on AASHTO (2011) for site classes C, D and 

E, respectively. ADRS-IV, V, VI and VII were generated based on the newly proposed 

model for the SCCP (Chapter 3). ADRS-IV is for site class C with VS30 of 385 m/s, and 

depth to soft-rock equal to 30 m, which was assumed for the Columbia area in Chapter 3 

(thus both KH1 and KH2 are equal to 1.0). ADRS-V is for site class D with VS30 of 293 m/s, 

and depth to soft-rock equal to 137 m which was assumed for Charleston in Chapter 2. 

Table 7.1: List of sample highway bridges considered. 
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ADRS-VI is the maximum possible ADRS curve in site class D using the proposed 

model and also for the location (i.e. the input motion). This ADRS curve was developed 

by using the site factor model developed in Chapter 3 and calculating the maximum 

possible site factors for spectral periods of 0, 0.2 and 1.0 s. The maximum ADRS was 

used to produce the maximum difference between the ‘Recommended’ and AASHTO 

(2011) ADRS curves and observe its impact on the structural response. ADRS-VII is for 

site class E with VS30 of 183 m/s which is the highest VS30 within site class E. Based on 

the simulations conducted in this study, site factors were found to generally decrease with 

decreasing VS30 within site class E. In contrast, the AASHTO (2011) and SCDOT (2008a) 

site factors are constants considering the middle range values within each site class. Thus 

by selecting 183 m/s as VS30, the ‘Recommended’ model is expected to produce the 

highest response (i.e. ADRS curve and also the structural responses) within site class E.  

Then by comparing that with the corresponding similarly generated AASHTO (2011) 

ADRS curve outcome should produce the maximum plausible difference scenario with 

respect to the structural response.  

The ADRS curves (IV, V, VI and VII) generated using the newly recommended 

site factors for SCCP (Chapters 3) are compared with the ADRS curves (I, II and III) 

based on the AASHTO (2011) site factors (AASHTO, 2011 and SCDOT, 2008a) in 

Figure 7.1. Noticeably, in Figure 7.1 ADRS curves II and V fall very close to each other 

while ADRS curves II and VI and ADRS curves III and VII show larger differences. The 

amplitude of ADRS-I is greater than ADRS-IV for spectral periods <0.5 s (0-0.5 s) and 
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lesser for periods beyond 0.5 s. Similar inter-relationships are also expected to be 

reflected on the respective bridge responses presented in later sections. 

Table 7.2 presents the site factors based on the seven ADRS curves generated. 

The spectral accelerations listed in the Table 7.2, PGAB-C, Ss and S1, and respective site 

factors, FPGA, Fa and Fv, corresponding to periods of 0, 0.2 and 1.0 s, respectively. 

Charleston SEE ground motion (2% probability of exceedance in 50 years) with moment 

magnitude of 7.3 was generated by Scenerio_PC (Chapman, 2006). This motion was then 

used to compute the acceleration response at the B-C boundary i.e. SB-C, which are then 

multiplied by the corresponding site factors to calculate the surface spectral acceleration 

i.e. Ssite, for different periods. Ssite values are then used for ADRS curves generation 

following procedures defined in SCDOT (2008a) and AASHTO (2011). Figure 7.2 

presents the procedure followed to develop three-point ADRS curves. For detailed step-

by-step procedures, readers are suggested to visit SCDOT (2008a), from where the figure 

was originally adopted.  
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ADRS- II: AASHTO (2011) (Site class: D)

ADRS- III: AASHTO (2011) (Site class: E)

ADRS- IV: Recommended (Site class: C; VS30= 385 m/s)

ADRS- V: Recommended (Site class: D; VS30= 293 m/s)

ADRS- VI: Recommended (Maximum ADRS in site class D)

ADRS- VII: Recommended (Site class: E; VS30= 180 m/s)

Figure 7.1: ADRS curves used in this Chapter based on an SEE motion for Charleston 

generated by Scenario_PC. 
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ADRS 

curve 

Spectral accelerations at B-C 

boundary 
Site factors 

PGAB-C Ss S1 FPGA Fa Fv 

I 0.190 0.472 0.151 1.200 1.200 1.650 

II 0.532 1.165 0.431 1.000 1.034 1.569 

III 0.532 1.165 0.431 0.900 0.900 2.400 

IV 0.190 0.472 0.151 1.278 1.380 1.475 

V 0.532 1.165 0.431 0.877 1.024 1.607 

VI 0.532 1.165 0.431 0.975 1.041 1.910 

VII 0.532 1.165 0.431 0.539 0.629 1.644 

 

 

 

 

7.3 LRFD Example Bridge and Modeling Procedure 

7.3.1 Problem description  

The bridge is a five-span CIP Concrete Box-Girder with two-column bents and no 

skew. Each span is about 100 ft long, totaling a 500 ft long structure (abutment to 

Table 7.2: Site factors corresponding to all seven ADRS curves considered. 

Figure 7.2: Three-point ADRS curve development methodology (SCDOT, 2008a). 
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abutment). A schematic diagram of the bridge is shown in Figure 7.3 and Table 7.3 

presents the column and foundation seal height. The four bents are attached to the box-

girder superstructure with integrated cross-beams. On the other end, the two circular 

columns of each bent are integrated with pile caps. Figure 7.4 shows a cross-section of 

the bridge superstructure-bent system. Stub-type abutment with an assumption of free 

longitudinal (in global X direction) translation is assumed on both sides of the bridge.  

 

 

 

Bents 
Column Height 

(ft) 

Pile Cap Seal 

Depth (ft) 

1 30 3 

2 45 4 

3 50 6 

4 45 4 

 

Figure 7.3: Schematic diagram of the LRFD Example Bridge (ATC/MCEER, 2003a). 

Table 7.3: Bent details of LRFD Example Bridge. 
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7.3.2 Analysis tool: SAP2000 version 14.2.2 

The three dimensional bridge analysis model of the LRFD Example Bridge is 

generated with the widely used structural analysis program SAP2000 (CSI, 2009). 

SAP2000 is capable of performing elastic response spectrum analysis of three 

dimensional structures, which is the requirement for this study. SAP2000 version 14.2.2 

uses object-based-modeling technique. This particular modeling technique involves 

development of the object based geometry of the structure through an intuitive graphical 

interface and automatic conversion of the object-based model into the analysis model 

(i.e., finite element model consisting of the traditional elements and nodes). Smart 

Figure 7.4: LRFD Example Bridge cross-section at an intermediate pier (ATC/MCEER, 

2003a). 
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graphical environment, helpful object-based modeling option and MMRS analysis 

capability on three dimensional structures –all together helped make the decision to use 

SAP2000 for this study.  

7.3.3 Modeling in SAP2000 

In this sub-section, modeling of the three dimensional bridge system in SAP2000 

is described. The numerical model is developed following the procedure described in the 

design example (Example 8) from the LRFD guidelines (ATC/MCEER, 2003a). In the 

guidelines, foundation springs are used to represent the piles. However, for this analysis, 

fixed column bases are used instead due to: (i) SCDOT (2008b) suggests the use of fixed 

base in the case of deep foundations; (ii) it is a widely accepted procedure among 

practitioners; and (iii) the use of fixed column base makes the bridge response 

independent of soil-pile interaction. Therefore, ADRS curves generated for South 

Carolina conditions could be used for a bridge model that has been borrowed from the 

West Coast of US without misrepresenting the subsurface soil-pile conditions. In a later 

part of this chapter, the same bridge is modeled with foundation springs to evaluate the 

effect of using foundation springs instead of fixed supports. Thus addressing both of the 

‘with’ and ‘without’ spring modeling approaches helps covering the interest of a wide 

range of practicing community. However, in this sub-section, discussion is limited to the 

modeling of the bridge using fixed support. Modeling with foundation springs will be 

discussed under a parametric study section (Section 7.7.1) to show the effect of support 

conditions in the computed responses. 



 

185 

 

Figure 7.5 presents the details of an interior bent including all its frame elements 

assumed for the SAP2000 model used in the LRFD example (ATC/MCEER, 2003a). 

This configuration is used to develop the actual bridge model for this study. The model 

used for this study is presented in Figures 7.6 and 7.7. Figure 7.6 presents a similar bent 

as drawn in Figure 7.5 modeled in SAP2000, showing the elements and node numbers 

referred to in this study. Figure 7.7 presents the 3-D frame or ‘spine’ model of the bridge 

developed in SAP2000 using fixed base condition.  

As is seen in the Figures 7.5, 7.6 and 7.7, the bridge deck section is represented 

with a straight line consisting of frame elements and individual elements are assigned for 

the other components of the structure (i.e., cross-beams and columns). For the deck, four 

elements per span are provided while for the columns, three elements which covers the 

entire length -as required by SCDOT (2008b) are used. Both the column tops are 

connected to the cap beam element using rigid links. The bottom nodes of the seal 

elements are connected to the node with springs by using the rigid link elements again. 

The only difference from the bent model presented in Figure 7.5 to the model in Figure 

7.6 are: the model in Figure 7.6 skips the elements representing the pile cap, the seal 

element, the rigid link connecting the two columns with the foundation springs and 

obviously the foundation springs. Rather, the column bases are restrained for 

displacements at all directions (fixed base) as shown in Figure 7.6.  

Necessary frame member properties i.e. cross-sectional area, density and inertias 

in all three directions are listed in Table 7.4 which is directly adopted from the LRFD 

guideline’s design example. Also adopted from the example are the total dead load 
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including the self-weight, which is 2.35 kips per linear foot of superstructure, and a 

foundation spring stiffness of 375 kips/ft, which are used to model the backfill at each of 

the abutments.  

Properties 

Structural Elements 

Bridge 

Deck 

Bent Cap 

Beam 

Bent 

Columns 
Pile Caps Seals 

Cross sectional area (ft
2
) 72 27 12.57 506 196 

Moment of inertia in Global 

X direction, IX (ft
4
) 

1,177 10,000 5 109,634 6,403 

Moment of inertia in Global 

Y direction, IY (ft
4
) 

401 10,000 5 89225 89225 

Moment of inertia in Global 

Z direction, IZ (ft
4
) 

9,697 10,000 10 20,409 20,409 

Density (lb/ft
3
) 180 150 150 150 140 

 

 

Table 7.4: Section properties for the LRFD Example Bridge model (ATC/MCEER, 

2003a). 

Figure 7.5: Intermediate bent details in the model with foundation springs of LRFD 

Example Bridge (ATC/MCEER, 2003a). 
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Figure 7.6: Intermediate bent details with frame elements and joint numbers in the case of 

fixed column base for a sample bent of LRFD Example Bridge (screen capture of 

SAP2000 model). 
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Readers are suggested to visit the original design example in the LRFD guidelines 

(ATC/MCEER, 2003a) for further information about the bridge system and the modeling 

technique. 

7.4 LRFD Example Bridge Analysis Procedure 

Multi-Modal Response Spectral (MMRS) analysis is selected for this study. The 

analysis is performed according to the procedure described in LRFD bridge design 

specification (ATC/MCEER, 2003b) and also meets the requirements defined in the 

SCDOT Seismic Design Specification of Highway Bridges (SCDOT, 2008b). Because 

this method considers a wide band of spectral period by producing different structural 

modes with different periods, the effect of using different ADRS curves will be 

determined for a broad range of spectral periods. 

The major steps of the MMRS analysis procedure are presented below. 

Figure 7.7: 3-D ‘spine’ model of the bridge in the case of fixed column base of LRFD 

Example Bridge (screen capture of SAP2000 model). 
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Step 1: By performing modal analysis of the entire structure, the mode shapes, 

corresponding periods and the mass participations are determined. The total mass 

participation should be above 90% for the considered number of modes. From this 

requirement, the required number of modes for modal analysis is determined. 

Step 2: Using the periods obtained from previous step, corresponding spectral 

acceleration values are obtained using the ADRS curve that were defined for this 

analysis. These accelerations are then multiplied with the corresponding mass 

contributions to calculate the base shears of the different modes. 

Step 3: Base shears from all the modes are then combined using several statistical 

sums and applied at the base of the structure for the seismic analysis of the structure 

which is a static type analysis in this case. 

In MMRS analysis, structural modes of vibrations are estimated in two directions: 

longitudinal (global X direction) and transverse (global Y direction). Then the Complete 

Quadratic Combination (CQC) rule is applied to combine the different modal responses 

and to estimate the ‘enveloping’ response of the structural components: EQLONG (for 

longitudinal direction) and EQTRANS (for transverse direction). Responses from these two 

directions are then further combined using the 100%-30% rule (SCDOT, 2008b) to 

generate the load or displacement combinations to aid in estimating seismic design 

demands over the structure. The 100%-30% combination rule is defined as: 
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Case # 
Foundation 

Type 

ADRS curve generation 

ADRS curve used Site class considered 

1 Fixed I and IV C
(1)

 with VS30 = 385 m/s 

2 Fixed II and V D
(2)

 with VS30 = 295 m/s 

3 Fixed II and VI Maximum possible ADRS curve within Site Class D 

4 Fixed III and VII E
(3)

 with VS30 = 180 m/s 

(1) Site class C is ranging from 360 to 760 m/s 

(2) Site class D is ranging from 180 to 360 m/s 

(3) Site class E is ranging from 0 to 180 m/s 

 

Load Case 1 or LC1= 100% of EQLONG+ 30% of EQTRANS 

Load Case 2 or LC2= 30% of EQLONG+ 100% of EQTRANS 

 

These LC1 and LC2 are calculated and compared between desired cases for all 

the intermediate bent columns at the top and bottom positions. This entire process (from 

model generation to the calculation of LC1 and LC2) is done through a single run with 

SAP2000 for this study.  

Table 7.5 presents the cases considered in estimating the repercussions of the new 

site factor model. The bridge model developed in Section 7.3.3 with fixed column base- 

type is selected. The recommended site factor model used to generate ADRS curves IV, 

V, VI and VII, are applied on the structure and the analysis outcomes are compared with 

the similar outcomes based on the respective AASHTO (2011) ADRS curves I, II and III.  

Table 7.5: Cases considered for the comparison between the AASHTO (2011) and 

‘Recommended’ model. 
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7.5 LRFD Example Bridge Analysis Results and Discussions 

The complete analysis results in terms of forces, moments and displacements at 

all the columns for Cases #1 to #4 are presented in tabular and graphical formats in the 

Appendix D. In this section, selected structural responses are reported and compared.  

Tables D.1 and D.2 in Appendix D present the natural periods of vibrations and 

the corresponding mass participations for the first 40 modes (including longitudinal and 

transverse vibration) for the bridge model with the fixed base and with foundation 

springs, respectively. For both models, the cumulative mass participation attained above 

90% in both directions which is the minimum requirement according to both 

ATC/MCEER (2003b) and SCDOT (2008b). 

Column forces, moments and displacements in longitudinal (global X direction) 

and transverse (global Y direction) directions are obtained for the load and displacement 

combinations LC1 and LC2. The AASHTO and ‘Recommended’ cases are compared in 

terms of percentage differences in structural response for LC1 and LC2 at the column top 

and bottom positions and at all the bents and are presented both graphically and tabular 

formats. This section and Appendix D jointly present all the tables and necessary figures 

oriented to all of these analysis cases this study involved.  

Now the analysis outcomes from the four cases (listed in Table 7.5) oriented to 

the comparison between the AASHTO (2011) and the ‘Recommended’ model will be 

presented. For Case#1, Tables D.3 and D.4 present the comparison of the computed 

structural responses (forces and moments) based on AASHTO (2011) and 

‘Recommended’ models with respect to the load combinations LC1 and LC2 and their 
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percentage differences for all the column tops and bottom locations, respectively. In 

Tables D.5, the comparison between displacements from AASHTO (2011) and 

‘Recommended’ models with respect to the load combinations LC1 and LC2 (and also by 

stating their percentage differences) for all the column top positions are presented. 

Similarly, comparisons of the load combinations for forces, moments and displacements 

are presented in Tables D.6- D.14 for the Cases #2-4. 

The overall percentage differences (for LC1 and LC2) between the AASHTO 

(2011) and the ‘Recommended’ model obtained from the results presented in Appendix D 

are summarized as bar chart in Figure 7.8 for deriving the general conclusion. For 

Case#1, the differences in the column outcomes predicted with the ‘Recommended’ and 

the AASHTO (2011) ADRS curves are around 10% with AASHTO (2011) predicting 

conservative estimate. The AASHTO (2011) ADRS curve fall above the ‘Recommended’ 

ADRS curve at periods higher than approximately 0.5 s, as reported earlier (see Figure 

7.1). Since the first few modes of vibration of the LRFD design bridge have frequencies 

greater than 0.5 s and those modes cover the largest share in mass participation in the 

analysis (see Table D.1), the AASHTO (2011) outcomes are higher than that of the 

‘Recommended’ outcomes. For Case#2, all the column outcomes predicted with the 

‘Recommended’ ADRS curve are only 2-3% higher than that predicted from the 

AASHTO (2011) ADRS curve (Figure 7.8). Such an observation is expected since the 

‘Recommended’ and the AASHTO (2011) ADRS curves corresponding to the profile 

with VS30 of 295 m/s (site class D) are nearly identical (see Figure 7.1). In Case#3, which 

compares the maximum possible ‘Recommended’ ADRS curve within site class D with 
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the AASHTO (2011) site class D curve, the ‘Recommended’ produced about 21% higher 

estimate than the AASHTO (2011) case. This comparison suggests that the design 

forces/displacements computed using the ‘Recommended’ curves can be up to 21% 

higher than that of the AASHTO (2011) curves for similar transportation structures in 

SCCP (e.g. Charleston). For Case#4, the AASHTO (2011) and the ‘Recommended’ 

ADRS curves for site class E are compared. Because the design spectral acceleration for 

site class E is much higher for the AASHTO ADRS than that of the ‘Recommended’, the 

predicted column outcomes are about 31% lower for the ‘Recommended’ ADRS curve. 

Thus more economical design is expected in site class E for SCCP locations using the 

‘Recommended’ site factor models. 
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7.6 Parametric Study 

Parametric studies are performed in this section to investigate the effect of 

different techniques that can be used to model the bridge foundation in SAP2000.  

Discussed in this section are: adjustments made to the previous bridge model to convert 

the foundation system to springs; development of a set of parametric test cases; and 

finally presented are the parametric study outcomes and related discussions. 

7.6.1 Addition of foundation springs 

This time the same bridge (developed in Section 7.3.3) is taken and the fixed 

column bases are modified to include the foundations springs. This modeling 

modification of the same three dimensional bridge system in SAP2000 is described in 

this sub-section. 

To include spring elements in the bridge model, the procedure described in the 

LRFD example (ATC/MCEER, 2003a) is followed. As discussed in the Section 7.3.3 of 

this chapter and also presented in Figure 7.5, all the required elements are added to the 

existing SAP2000 model systematically. First, all the restraints at the foundation base 

nodes are removed, then the elements representing the pile cap and foundation seal are 

introduced, and finally the seal elements are connected by rigid links to a node to which 

all the foundation springs are then attached. The foundation springs are consisted of three 

translational and three rotational springs. Figure 7.9 presents an interior bent modeled in 

SAP2000 environment with foundation springs and Figure 7.10 shows the whole 3-D 

frame or ‘spine’ model of the bridge including the foundation springs with their 

directions. The frame member properties (for the added frame member also) are 
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presented in Tables 7.3 and 7.4 while the foundation spring stiffness properties are listed 

in Table 7.6, which are directly adopted from the LRFD guideline’s design example 

(ATC/MCEER, 2003a). Readers are suggested to visit the original design example in the 

LRFD guidelines (ATC/MCEER, 2003a) for further information about the bridge system 

and modeling technique. 

 

 

 

 

 

 

 

Figure 7.9: Intermediate bent details with frame elements and joint numbers with 

foundation springs for a sample bent (screen capture of SAP2000 model). 



 

197 

 

 

 

 

 
Translational stiffness Rotational stiffness 

Axial Longitudinal Lateral Axial Longitudinal Lateral 

Global UY UX UZ RY RX RZ 

Pier # K11 (k/ft) K22 (k/ft) K33 (k/ft) K44 (k-ft/rad) K55 (k-ft/rad) K66 (k-ft/rad) 

1 7.30E+04 0.00E+00 1.60E+05 0.00E+00 2.99E+07 0.00E+00 

2 3.21E+05 3.33E+05 2.47E+05 1.19E+07 4.74E+07 1.19E+09 

3 3.31E+05 3.43E+05 2.73E+05 1.31E+07 5.24E+07 1.23E+09 

4 4.47E+05 4.59E+05 2.86E+05 1.37E+07 5.50E+07 1.68E+09 

5 3.31E+05 3.43E+05 2.73E+05 1.31E+07 5.24E+07 1.23E+09 

6 7.30E+04 0.00E+00 1.60E+05 0.00E+00 2.99E+07 0.00E+00 

 

 

 

Table 7.6: Foundation spring stiffness. 

Figure 7.10: 3-D ‘spine’ model of the bridge in the case of model with foundation spring 

directions (ATC/MCEER, 2003a). 
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7.6.2 Test cases considered 

The numerical test cases considered in this section are presented in Table 7.7. The 

objective of these tests is to study the effect of using foundation springs instead of fixed 

base in the analysis. The ADRS curves used for the parametric studies are: IV, V, VI and 

VII. These ADRS curves are applied on both bridge models (with fixed support and with 

foundation springs) and the responses are compared. The numerical tests corresponding 

to these four ADRS curves are referred to as Test # 1, 2, 3 and 4, respectively. The site 

class and the VS30 used for developing corresponding ADRS curves are shown in Table 

7.7. It is worth noting that: (i) both ‘with’ and ‘without’ spring bridge models are 

subjected to the ADRS curves developed considering typical VS30 values for 

corresponding site classes and (ii) the foundation springs are adopted from the LRFD 

guideline’s design example (ATC/MCEER, 2003a) which are developed for a different 

site (the Puget Sound region of Washington State). Therefore, the conclusions made 

based on the responses computed ‘with’ spring bridge model in this study are expected to 

have a bias.  
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Test # 

Parameters considered in the compared cases 

Case #1 Case #2 

Foundation Type 

ADRS curve generation 

Foundation Type 

ADRS curve generation 

ADRS curve 

used 
Site class considered 

ADRS curve 

used 
Site class considered 

1 Fixed IV C
(1)

 with VS30 = 385 m/s Foundation Springs IV C
(1)

 with VS30 = 385 m/s 

2 Fixed V D
(2)

 with VS30 = 295 m/s Foundation Springs V D
(2)

 with VS30 = 295 m/s 

3 Fixed VI 
Maximum possible ADRS 

curve within Site Class D 
Foundation Springs VI 

Maximum possible ADRS 

curve within Site Class D 

4 Fixed VII E
(3)

 with VS30 = 180 m/s Foundation Springs VII E
(3)

 with VS30 = 180 m/s 

(1) Site class C is ranging from 360 to 760 m/s 

(2) Site class D is ranging from 180 to 360 m/s 

(3) Site class E is ranging from 0 to 180 m/s 

 

Table 7.7: Parametric study test cases. 
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7.6.3 Parametric study results and discussions 

This sub-section presents the parametric study (test cases presented in Table 7.7) 

outcomes. The natural periods of vibrations and the corresponding mass participations for 

the first 40 modes (including longitudinal and transverse vibration) for the bridge model 

described in Section 7.7.1 is presented in Table D.2 in Appendix D. The cumulative mass 

participation attained is above 90% in both directions which is the minimum requirement 

according to both ATC/MCEER (2003b) and SCDOT (2008b). 

For each analysis, column forces (Shear X, Shear Y and Axial), moments 

(Moments X and Moment Y) and displacements in longitudinal (global X-direction) and 

transverse (global Y-direction) directions are obtained with the load and displacement 

combinations LC1 and LC2. The foundation spring model is compared to the fixed 

support model in terms of the percentage difference in the column forces and moments at 

the column top and bottom positions and the displacement at the column top position 

only, at each bent and for each of the load cases LC1 and LC2 and are presented in 

Tables D.15 - D.26.  

For Case#1, Tables D.15 and D.16 present the comparison of the computed 

structural responses (forces and moments) based on with spring and fixed based models 

with respect to the load combinations LC1 and LC2 and their percentage differences for 

all the column tops and bottom locations, respectively. Table D.17 presents similar 

comparison for the displacements at the columns tops. Similarly, comparisons of the load 

combinations for forces, moments and displacements are presented in Tables D.17- D.26 

for the Test cases #2-4. 
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Summarized in Table 7.8 are the approximate ranges of percentage difference in 

column response (force, moment and displacement) for all four numerical tests, based on 

the responses tabulated in the Appendix D. The percentage difference values indicate the 

sensitivity of the MMRS analysis outcomes to the foundation type and support condition 

(i.e., comparison between the cases with fixed column bases and the cases with 

foundation springs). For the Tests #1- #4, the differences in the computed outcomes are 

between -6.0 and 7.5% for the combinations LC1 and LC2 which indicates that the 

computed responses are less sensitive to the support condition of the columns for the 

loading and soil conditions considered in this study. Therefore, the simplified approach 

(fixed column base) used in this study gives reasonable results.   
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Test 

# 

Parameters considered in the compared cases 
% 

Difference
(3)

 

between 

Case #1 and 

Case #2 

(Approx.) 

Case #1 Case #2 

Foundation 

Type 

ADRS curve generation 

Foundation Type 

ADRS curve generation 

ADRS curve 

used 
Site class considered 

ADRS curve 

used 
Site class considered 

1 Fixed IV C
(1)

 with VS30 = 385 m/s Foundation Springs IV C
(1)

 with VS30 = 385 m/s -5.5 to 7.5% 

2 Fixed V D
(2)

 with VS30 = 295 m/s Foundation Springs V D
(2)

 with VS30 = 295 m/s -6 to 6% 

3 Fixed VI 
Maximum possible ADRS 

curve within Site Class D 
Foundation Springs VI 

Maximum possible ADRS 

curve within Site Class D 
-6 to 4% 

4 Fixed VII E
(3)

 with VS30 = 180 m/s Foundation Springs VII E
(3)

 with VS30 = 180 m/s -6 to 2% 

(1) Site class C is ranging from 360 to 760 m/s 

(2) Site class D is ranging from 180 to 360 m/s 

(3) Site class E is ranging from 0 to 180 m/s 

(4) % Difference (in column Forces, Moments or Displacement combinations: LC1 and LC2) = [Case #2- Case #1] X 100/ Case #1. A negative value 

represents greater Case #2 outcomes.  

 

 

 

 

Table 7.8: Parametric study results. Comparison was done based on column forces, moments or displacement combinations i.e. 

LC1 and LC2. 
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7.7 Russell Creek Bridge Analysis 

This section covers the analysis of a 510 ft long concrete I-Girder bridge, the 

Russell Creek Bridge, in Charleston County, SC. This to-be-built highway structure on 

SC 174 will be constructed over the Russell Creek River. A CSiBridge model of Russell 

Creek Bridge developed by the SCDOT engineers during its design phase was adopted in 

this study to perform MMRS analysis. The analysis results obtained by applying the 

ADRS curves generated using the AASHTO (2011) and ‘Recommended’ factors are 

compared.  

7.7.1 Generation of ADRS curves for Russell Creek bridge analysis 

During the design phase of the Russell Creek Bridge, the ADRS curves 

corresponding to the FEE and SEE motions based on AASHTO (2011) site factors were 

generated and used. Figure 7.11 presents the ‘Design’ (AASHTO, 2011 factors) and 

‘Recommended’ (based on Chapter 3) ADRS curves based on factors for both FEE and 

SEE cases and used in this study. Table 7.9 presents the spectral accelerations (PGAB-C, 

Ss and S1) and the site factors (FPGA, Fs and Fa) corresponding to 0, 0.2 and 1.0 s periods, 

respectively, from which the ADRS curves are generated. This bridge site has a measured 

average shear wave velocity in the upper 30 m (VS30) of 218 m/s which indicates the 

bridge site is in site class D (SCDOT, 2008a). As is seen in Figure 7.11, in the case of 

FEE motions, the both the ‘Design’ and ‘Recommended’ lines are close to each other 

over the entire period range. On the other hand, in the case of SEE motions, the ‘Design’ 

line is much higher than its ‘Recommended’ counterpart.  
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Figure 7.11: ADRS curves used for Russell Creek Bridge. 
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ADRS  

# 
Type 

VS100ft  

(Site Class) 

Spectral accelerations at  

B-C boundary 
Site factors 

PGAB-C Ss S1 FPGA Fa Fv 

1 FEE: Design 

218 m/s 

(Site Class: 

D) 

0.152 0.288 0.084 

1.515 1.560 2.400 

2 
FEE: 

Recommended 
1.503 1.622 2.474 

3 SEE: Design 
0.803 1.522 0.581 

1.000 1.000 1.500 

4 
SEE: 

Recommended 
0.452 0.616 1.681 

 

7.7.2 Problem description 

A schematic diagram and cross section of the Russell Creek Bridge are shown in 

Figures 7.12 and 7.13, respectively. The bridge is a concrete I-Girder bridge with 10 

spans supported on 9 intermediate bents and pile-bent type abutments at both ends.  Span 

length varies from 45 ft to 55 ft. The bents consist of 3 to 7 concrete piles. Bents #1 

through #8 have 7 piles made of 24 inch (square) pre-stressed concrete while Bent #9 and 

the abutments are supported by 3 drilled shafts of 42 inch diameter. Table 7.10 presents 

the interior bent details including the pile lengths. Bridge I-Girders are integrated with the 

deck slab above. The super-structure dead load is transmitted to the piles through the bent 

cap beams on which the I-Girders are supported through the bearings. These elastomeric 

type bearings are assigned fixity for translations and rotations in all directions at the 

abutments while at the interior bents only rotations are allowed.  

 

 

 

 

Table 7.9: Required parameters to generate site factors. 
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Bent # Pile length (ft) 
Number of Piles 

in the bent 

1 32.0 7 

2 31.9 7 

3 32.9 7 

4 33.3 7 

5 33.8 7 

6 33.8 7 

7 33.0 7 

8 32.3 7 

9 46.5 3 (Drilled shaft) 

 

Table 7.10: Bent details of Russell Creek Bridge. 
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Figure 7.12: Schematic diagram of Russell Creek Bridge. 
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Figure 7.13: Russell Creek Bridge deck cross-section at an interior bent.
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7.7.3 Analysis tool (CSiBridge version 15.0) and model generation 

 CSiBridge, a special purpose software for modeling, analysis, and design of 

bridges, is used to analyze the Russell Creek Bridge as the original analyses of this bridge 

is also conducted using CSiBridge before constructing it. This software is widely used by 

practicing engineers, including the SCDOT.  

 Figures 7.14 and 7.15 present the intermediate bent details and 3-D model of the 

bridge in CSiBridge, respectively. In the 3-D spine model in Figure 7.15, the bridge deck 

including the I-Girders are represented by the bridge layout line (layout lines define the 

bridge alignments in CSiBridge) made of frame elements which extend longitudinally in 

the global X direction. As shown in Figure 7.14, the girder bottom is resting on the 

bearings placed on top of the bent cap beams. The cap beam is represented by frame 

elements and is connected to the bearings by rigid links. At the bents, piles are 

represented with frame elements with fixed bases. All the frame member properties such 

as cross-sectional area, density and inertias in all three directions of the girder, cap, beam 

and the pile sections are listed in Table 7.11. 
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*Broken lines are drawn externally (outside of CSiBridge environment) to locate the specific bridge 

elements. 

 

 

Figure 7.14: Intermediate bent details of Russell Creek Bridge (screen capture from 

CSiBridge model). 

Figure 7.15: 3-D ‘spine’ model of Russell Creek Bridge (screen capture from CSiBridge 

model). 
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Properties 

Structural Elements 

I-

Girder 

(Each) 

Bent Cap 

Beam 

Pile details 

24” (square section) 

Pre-stressed 

Concrete Pile 

42” Dia. 

Drilled 

Shaft 

Cross sectional area (ft
2
) 2.31 14.00 3.99 8.67 

Moment of inertia in Global 

X direction, IX (ft
4
) 

0.37 18.67 2.25 23.93 

Moment of inertia in Global 

Y direction, IY (ft
4
) 

1.28 27.19 1.33 5.98 

Moment of inertia in Global 

Z direction, IZ (ft
4
) 

0.25 14.29 1.33 5.98 

Density (lb/ft
3
) 150.00 150.00 150.00 150.00 

 

7.7.4 Results and discussions 

Similar to the LRFD Example Bridge, MMRS analysis is performed for the 

Russell Creek Bridge. In the modal analyses, cracked section stiffness properties are used 

for the concrete section.  

The bridge responses (forces, moments and displacements) at the top of the 

middle pile for all nine bents were computed by applying both ’Design’ and 

‘Recommended’ FEE and SEE ADRS curves in the longitudinal and transverse 

directions.  The analyzed results from the ‘Design’ and ‘Recommended’ cases are 

compared (with respect to both FEE and SEE) to understand the effect of new site factors 

on the to-be-built bridge. Table D.27 in Appendix D presents the natural periods of 

vibration and the corresponding mass participations for the first 60 modes (longitudinal 

and transverse) of vibration. It was confirmed that the cumulative mass participation 

attained was above 90% in both directions (translation in Global X and Y). 

Table 7.11: Section properties used for Russell Creek Bridge model. 
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Similar to the LRFD Example Bridge study, the forces, moments, and 

displacements in both longitudinal (global X direction) and transverse (global Y 

direction) directions are obtained and then the load and displacement combinations LC1 

and LC2 are computed. These recordings are taken at each intermediate bent at the 

middle piles where the pile and cap beam connects to each-other. The percentage 

differences in LC1 and LC2 are calculated for all the cases and compared in Tables D.28 

– D.31 in Appendix D, similar to Section 7.5.  

Table D.28 present the comparison between analyses results (forces and 

moments) from the ‘Design’ and ‘Recommended’ FEE cases with respect to the load 

combinations LC1 and LC2 and also by stating their percentage differences for all the 

column tops and bottoms. Similarly, presented in Table D.29 are the displacements from 

the ‘Design’ and ‘Recommended’ FEE cases with respect to the load combinations LC1 

and LC2 and also their percentage differences for all the column top positions. Similarly, 

the comparisons in the cases of SEE motion are presented in similar Tables D.30 - D.31 

in Appendix D.  

The overall percentage differences (for LC1 and LC2) between the responses 

computed based on ADRS curves with ‘Design’ and ‘Recommended’ factors presented in 

Appendix D are summarized as form of a bar chart in Figure 7.16 for deriving the general 

conclusion. In the case of FEE motion, the ADRS curves with ‘Design’ and 

‘Recommended’ factors produced almost identical results with a margin of 1-4% with 

respect to the percentage difference in forces, moments and displacements. On the other 

hand, the results for ‘Design’ are found to be conservative with a large margin of 38-50% 
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than that of ‘Recommended’ for the SEE cases. As the FEE based ‘Design’ and 

‘Recommended’ ADRS curves are similar (Figure 7.11), it was expected that MMRS 

analysis would also produce similar responses. In contrast, the SEE based ‘Design’ and 

‘Recommended’ ADRS curves showed significant difference and similar trend is 

observed in the MMRS analysis outcomes.  

Therefore with respect to FEE motion, the demand estimated through the ‘Design’ 

curve satisfied the demand estimated using the ‘Recommended’ model.  The 

‘Recommended’ model would have produced a considerably smaller design demand in 

the case of SEE motion for this site condition, and therefore a more economic design.  
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7.8 Conclusions 

The LRFD Example Bridge and Russell Creek Bridge were analyzed for seismic 

performance using SAP2000 and CSiBridge, respectively, by applying  the ADRS curves 

generated based on the ‘Recommended’ and the current (AASHTO, 2011) site factors. 

Based on the computed results, the following observations were made: 
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 For site class C (in Columbia using VS30 of 385 m/s), the AASHTO (2011) 

produced conservative results compared to the ‘Recommended’ model. This 

indicates further cost reduction is possible if the ‘Recommended’ factors are used. 

 For site class D (in Charleston), the ‘Recommended’ model is expected to 

generate more conservative design forces/moments and displacements of the 

structural components than the AASHTO (2011) would have. Two different cases 

modeled based on the ‘Recommended’ factors produced seismic demands from 2 

to 3% (using VS30 of 295 m/s) to 20-22% (for maximum ADRS within site class 

D) more than the respective cases modeled with AASHTO (2011) ADRS curves. 

 For site class E (in Charleston using VS30 of 180 m/s), the cases based on 

‘Recommended’ factors predicted approximately 31%  less design 

forces/moments and displacements of the structural components than the 

AASHTO (2011) would have required, possibility for a more economical design 

option for the softer sites in SCCP. 

 A sensitivity study was performed to investigate the effect of fixed versus spring 

foundation types. Results from both the approaches fell within a close range 

proving no practical bias on the analysis outcomes. Thus this sensitivity study 

confirmed that the MMRS analysis outcomes using fixed column base are valid.  

Russell Creek Bridge: 

 In the case of Russell Creek Bridge, a Site Class D, the analysis with the 

‘Recommended’ site factors produced similar (1-4%) responses (forces, moments 

and displacement) compared to that of the AASHTO (2011) site factors in the 

case of FEE motion. This indicates that the original design is satisfactory with 

respect to the new site factors. However, in the case of SEE motion, the analysis 

with the ‘Recommended’ factors produced significantly lower (38-50%) 

responses. Therefore, the use of ‘Recommended’ site factors has the potential to 

significantly reduce the project cost for bridges similar to the Russell Creek 

Bridge in Site Class D.  
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CHAPTER 8 

 

APPLICATIONS OF SITE RESPONSE ANALYSIS 
 

This author was part of two additional site response studies: (i) the seismic site 

response analysis of unsaturated soils; and (ii) the effect of ground motions with different 

moment magnitudes over the computed surface response. In both studies, performing site 

response analysis using several programs such as: DEEPSOIL, DMOD2000 and 

OpenSees were the responsibilities of this author. 

8.1 Ravichandran et al. (2012 and 2015) 

In this study, a numerically stable and computationally efficient finite element 

model for analyzing dynamic response of unsaturated soil profiles in terms of total 

stresses is introduced. The highly nonlinear, fully-coupled governing differential 

equations are simplified by neglecting the relative accelerations and velocities of the pore 

fluids and the simplified formulation is improved by incorporating an external viscous 

damping formulation for unsaturated soil. The surface spectral accelerations computed 

using the proposed model (TeraUDysac simulation) is then qualitatively compared with 

that of DEEPSOIL and PLAXIS as no experimental data sets for unsaturated soil 

conditions were available for comparison and/or validation of this new model. As part of 

the group, this author was responsible for performing the DEEPSOIL simulations. 

Figure 8.1 presents the finite element mesh of a soil-pile system which was 

simulated with the newly proposed unsaturated soil model. Node N3 represents the free-

filed condition and the spectral accelerations computed from each of DEEPSOIL, 
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PLAXIS and the new unsaturated model (TeraUDysac) were compared at that point of 

the model. The engineering properties of Minco silt were used for the soil profile. The 

Figure 8.2 presents the ground motion used in the study.  

Figure 8.3(a) and 8.3(b) present the comparison of the computed surface spectral 

accelerations from the DEEPSOIL, PLAXIS and the new unsaturated model 

(TeraUDysac) for two degrees of saturation: 70% and 20%, respectively. Based on the 

these comparisons, while the TeraUDysac predictions are close to the PLAXIS 

predictions, the DEEPSOIL predictions are much higher than that of other two codes. 

The possible reasons are: (i) none of the PLAXIS and DEEPSOIL programs have 

capabilities to model unsaturated soil conditions, and (ii) the one-dimensional 

approximation is DEEPSOIL while both the PLAXIS and TeraUDysac approximates 

two-dimensional plain strain condition. 

 

 

 

Figure 8.1: Finite element mesh showing the nodes where responses were recorded 

(Ravichandran et al., 2013). 
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Figure 8.2: Base shaking (used as scaled down by 5.0) (a) Acceleration-time history and 

(b) Spectral acceleration (Ravichandran et al., 2015) 

Figure 8.3: Comparison of Unsaturated-Damped Simplified (TeraUDysac), DEEPSOIL 

and PLAXIS predictions (Ravichandran et al., 2015) 



 

219 

 

8.2 Bhuiyan et al. (2013) 

The comparison of the seismic ground responses computed from different 

nonlinear programs: DMOD2000, DEEPSOIL and OpenSees are conducted in this study. 

Additionally, the effect of synthetically generated ground motions  based on a set of 

moment magnitudes on the computed surface responses is also explored. The Charleston 

reference profile as described in Section 4.3 was adopted for this study. Figure 8.4 

presents all four ground motions generated for the Charleston, SC region with 

Scenario_PC corresponding to the moment magnitudes, Mw of 5.0, 6.0, 7.3 and 8.0.  
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Figure 8.4: Input acceleration time histories for different magnitudes (Bhuiyan et al., 

2013). 
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The modeling techniques of each of the site response analysis programs: 

DMOD2000, DEEPSOIL and OpenSees are already described in previous chapters 

(Chapters 4 and 5). Figure 8.5 presents the comparison of the computed surface spectral 

accelerations from these three programs. The results show that all three codes computed 

similar responses overall. However, there is a slight difference in the low period range 

(<0.2 sec period). In fact, the DMOD2000 and DEEPSOIL lines reasonable match even 

in the shorter periods due to the implementation of the same soil constitutive model (i.e. 

MKZ model) in both these codes. On the other hand, in OpenSees, has different soil 

model (multi-yield surface J2 plasticity model) is implemented and thus the outcome is 

slightly different than the other two at lower periods. 
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OpenSees is also used to explore the effect of synthetic ground motions generated 

based on different moment magnitudes on the computed surface response for the same 

soil profile from Charleston. Figure 8.6 presents the comparison of the computed surface 

spectral accelerations using moment magnitudes of 5.0, 6.0, 7.3 and 8.0. The results show 

that the spectral acceleration values increase with the increasing magnitude of the input 

motion at the lower periods (<0.2 sec period). However, for higher periods, no clear trend 

was observed with moment magnitude variation. 
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CHAPTER 9 

 

CONCLUSIONS AND RECOMMENDATIONS 
 

9.1 Conclusions 

This dissertation over-all contributes to the existing knowledge base of seismic 

ground response studies. Presented in Chapter 3 are the nonlinear time domain one 

dimensional site response analysis outcomes from DMOD2000. 17000 DMOD2000 

simulations were performed for all four locations selected from the SCCP: Charleston, 

Myrtle Beach, Columbia and Aiken. The simulation results were used to develop a new 

seismic site factor provision for the region. This new seismic site factor model has 

already been proposed for the next version of the SCDOT Geotechnical Design Manual. 

Based on a total of 18000 site response simulations with SHAKE2000, 

DMOD2000 and DEEPSOIL, three new seismic site factor models were developed and 

compared in Chapter 4. Both the NL site factor models predicted lower amplitudes than 

that of the EL generally for the softer profiles. The NL programs generated much higher 

shear strain and therefore larger hysteretic damping was imposed mostly for the softer 

profile cases which caused the NL lines to fall below the EL lines. The differences in the 

computed responses (and also the site factor models) observed between the NL programs 

are possibly due to the difference in the damping formulation used and/or unrealistic 

implied shear strength estimated by the program. However, the proposed Aboye et al. 

(2013a) site factor model predicting higher values than the site factor models generated 

based on the NL programs ensured adequacy and safety of the proposed model for 
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engineering applications in this area. Finally, a unique threshold chart was proposed 

based on the comparisons of the EL and NL analysis outcomes to provide a simple 

guideline for the practitioners to select the appropriate program between the NL or EL 

types for the Charleston, SC region. 

The study presented in Chapter 5 explored the potential effect of ground slopes on 

the computed seismic surface responses for Charleston, SC region. A total of 385 two-

dimensional finite element simulations were performed for this study consisting of seven 

ground inclinations (0
o
, 1

o
, 2

o
, 3

o
, 4

o
, 5

o
 and 6

o
), eleven VS profiles representative of the 

area and one ground motion scaled to five different PGAOutcrop levels. Computed surface 

spectral accelerations were generally higher for sloping ground cases than the 

corresponding flat ground scenario, which immediately justifies the importance of 

considering even minor ground slopes into site response study. At the higher periods (i.e. 

>0.6 sec period) spectral acceleration increased with surface inclination although in the 

low periods (i.e. <0.6 sec periods) spectral accelerations from sloping ground cases didn’t 

produce a clear trend due to a known modeling limitation. However, the slope effect on 

ground response has been found to be reduced for higher base shaking and/or softer 

profiles due to increased damping. Finally, the simulation outcomes are used to develop a 

set of slope adjustment factors, K  as a function of ground inclination, profile VS30 and 

SOutcrop values. The K  values are used to modify the surface spectral accelerations from 

level ground case to obtain the surface spectral acceleration of a sloping ground 

condition.  
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In Chapter 6, three VS profiles representative of the Charleston, SC area were 

altered to replace a few interface stiffness contrasts with continuously varying VS values. 

These profiles were analyzed with seismic site response analysis programs SHAKE2000 

and DEEPSOIL. The computed surface responses were compared to evaluate the 

implication of sudden stiffness contrast at layer interfaces on the computed surface 

responses. Overall, a general reduction in interface shear strains and increase in surface 

spectral accelerations especially at lower periods were observed from the altered 

(smoothened) profiles than the corresponding profiles with interface contrast. For softer 

profiles this difference in the computed site factors from the original and the altered 

profiles was observed to increase up to 20%. This shows the importance of such 

smoothening of the interface contrasts which may eventually revolutionize the current 

practice of collecting VS measurements and the generation of the ‘working’ VS profiles for 

the site specific response spectral analysis. Additionally, such smoothening of VS reduces 

the shear strain at interface locations; smaller shear strains mean reduced system 

nonlinearity and thus a potential much wider range of applicability of the equivalent 

linear approach for site response analysis is expected. 

The repercussion of the newly generated site factor model for the South Carolina 

Coastal Plain (SCCP) has been discussed in Chapter 7. The earthquake loading, generated 

based on both the new and the current (NEHRP) site factors, were applied on two 

highway bridge structures to compare the structural responses computed using a Multi-

Modal Response Spectrum analysis with SAP2000 and CSiBridge software. Differences 

in computed structural design demands were observed from these two site factor 
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provisions. The AASHTO (2011) produced slightly conservative results (about 10%) 

compared to the ‘Recommended’ model in the case of site class C. For site class D, the 

difference between the AASHHTO (2011) and the ‘Recommended’ model was observed 

to vary between -40% to 20% (negative value stands for higher AASHTO responses and 

vice versa). For site class E, the ‘Recommended’ site factors predicted approximately 

31% less design demand than the AASHTO (2011). Therefore, the analysis results from 

both these bridges showed a wide band of variation from site to site which proves the 

significance of this update of the site factor provision on the seismic design demand of 

highway structures. 

Finally, a few studies where site response analyses were applied by this author are 

described in Chapter 8. 

9.2 Recommendations 

The recommended future works are as follows: 

1. Although site response analysis has been practiced in the community for decades, 

with the increased availability of the vertical array recordings from different parts 

of the world, it’s only recently that a few validation and verification efforts being 

available (Borja et al., 1999; Lee et al., 2006; Stewart et al., 2008; Kottke, 2010; 

Kaklamanos et al., 2013 and 2015; Kim and Hashash, 2013; and Zalachoris, 

2014). While developing the threshold chart for the selection of an EL or a NL 

analysis in Chapter 4, the NL responses were assumed as the reference (i.e. true 

response) while comparing with the EL responses. A comprehensive validation 
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study with the help of recorded scenario (i.e. vertical array recordings) is highly 

recommended to validate and/or update the threshold chart. 

2. The slope adjustment factors developed in Chapter 5 are very unique in nature as 

to the authors knowledge no such study (both experimental and numerical) has 

ever been conducted. However, the major issue is: these factors are completely 

based on numerical computations with no experimental validation. A 

systematically designed validation study with centrifuge model test is highly 

recommended. 

3. The observed effect of smoothening of the VS contrast is recommended to be 

validated by performing systematically designed centrifuge model tests. If the 

centrifuge test results agree with the numerical predictions, this will encourage 

further investigation and may revolutionize the current practice of collecting VS 

measurements for different geotechnical applications. 

4. Two of the very recent studies: Kim and Hashash (2013) and Zalachoris (2014), 

found lack of conservativeness in the responses computed using site response 

analyses of the both equivalent linear and nonlinear-types, especially when large 

profile shear strain (softer sites and/or large intensity of motion) is involved. 

Such occurring can be due to a cumulative effect from several sources: improper 

soil-layer properties and ground motion characteristics, incompetency of 

numerical model or even due to some assumptions/simplifications made during 

the process. The sudden contrast of VS in the layer interfaces can potentially be a 

major source of such under-prediction while simulated with the popular site 
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response tools, given that the layer interface has rather gradual variation of VS in 

reality. The VS profiles that were found to produce unconservative site response 

predictions by both Kim and Hashash (2013) and Zalachoris (2014) are 

recommended to be evaluated for the above potential source of error. 
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APPENDIX A  
 

SUMMARY OF THE RESULTS FROM THE COMPARISON OF 

NONLINEAR AND EQUIVALENT LINEAR SITE RESPONSE 

ANALYSES IN CHARLESTON, SOUTH CAROLINA PRESENTED 

IN CHAPTER 4 
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Figure A.1: Site Factor model based on SHAKE2000 data points for F0.6 for SOutcrop of (a) 

0.05g, (b) 0.1g, (c) 0.2g, (d) 0.3g, (e) 0.4g and (f) 0.5g. 
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Figure A.2: Site Factor model based on SHAKE2000 data points for F1.6 and SOutcrop of 
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Figure A.3: Site Factor model based on SHAKE2000 data points for F3.0 and SOutcrop of 

(a) 0.01g, (b) 0.02g, (c) 0.04g, (d) 0.06g, (e) 0.08g and (f) 0.12g. 
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Figure A.4: Site Factor model based on DMOD2000 data points for FPGA and PGAOutcrop 
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Figure A.5: Site Factor model based on DMOD2000 data points for Fa or F0.2 and SOutcrop 

of (a) 0.125g, (b) 0.25g, (c) 0.5g, (d) 0.75g, (e) 1.0g, and (f) 1.25g. 



 

235 

 

 

0 200 400 600 800
0

1

2

3

4

F
0

.6

(a) SOutcrop=0.05g

0 200 400 600 800
0

1

2

3

4

(b) SOutcrop=0.10g

0 200 400 600 800
0

1

2

3

4

F
0

.6

(c) SOutcrop=0.20g

0 200 400 600 800
0

1

2

3

4
(d) SOutcrop=0.30g

0 200 400 600 800
VS30 (m/s)

0

1

2

3

4

F
0

.6

(e) SOutcrop=0.40g

0 200 400 600 800
VS30 (m/s)

0

1

2

3

4

Fitted Median

DMOD2000

(f) SOutcrop=0.50g

Figure A.6: Site Factor model based on DMOD2000 data points for F0.6 for SOutcrop of (a) 

0.05g, (b) 0.1g, (c) 0.2g, (d) 0.3g, (e) 0.4g and (f) 0.5g. 
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Figure A.7: Site Factor model based on DMOD2000 data points for Fv or F1.0 and SOutcrop 
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Figure A.8: Site Factor model based on DMOD2000 data points for F1.6 and SOutcrop of (a) 

0.02g, (b) 0.05g, (c) 0.1g, (d) 0.2g, (e) 0.3g and (f) 0.4g. 
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Figure A.9: Site Factor model based on DMOD2000 data points for F3.0 and SOutcrop of (a) 

0.01g, (b) 0.02g, (c) 0.04g, (d) 0.06g, (e) 0.08g and (f) 0.12g. 
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Figure A.10: Site Factor model based on DEEPSOIL data points for FPGA and PGAOutcrop 

of (a) 0.05g, (b) 0.1g, (c) 0.2g, (d) 0.3g, (e) 0.4g, and (f) 0.5g. 
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Figure A.11: Site Factor model based on DEEPSOIL data points for Fa or F0.2 and SOutcrop 

of (a) 0.125g, (b) 0.25g, (c) 0.5g, (d) 0.75g, (e) 1.0g, and (f) 1.25g. 
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Figure A.12: Site Factor model based on DEEPSOIL data points for F0.6 for SOutcrop of (a) 

0.05g, (b) 0.1g, (c) 0.2g, (d) 0.3g, (e) 0.4g and (f) 0.5g. 
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Figure A.13: Site Factor model based on DEEPSOIL data points for Fv or F1.0 and SOutcrop 

of (a) 0.05g, (b) 0.1g, (c) 0.2g, (d) 0.3g, (e) 0.4g, and (f) 0.5g  
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Figure A.14: Site Factor model based on DEEPSOIL data points for F1.6 and SOutcrop of 

(a) 0.02g, (b) 0.05g, (c) 0.1g, (d) 0.2g, (e) 0.3g and (f) 0.4g. 
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Figure A.15: Site Factor model based on DEEPSOIL data points for F3.0 and SOutcrop of 

(a) 0.01g, (b) 0.02g, (c) 0.04g, (d) 0.06g, (e) 0.08g and (f) 0.12g. 
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Figure A.16: Comparison of the site factor models based on Aboye et al. (2013a),  

SHAKE2000, DMOD2000 and DEEPSOIL in the case of F0.6 for SOutcrop of (a) 0.05g, (b) 

0.1g, (c) 0.2g, (d) 0.3g, (e) 0.4g and (f) 0.5g. 
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Figure A.17: Comparison of the site factor models based on Aboye et al. (2013a),  

SHAKE2000, DMOD2000 and DEEPSOIL in the case of F1.6 for SOutcrop of (a) 0.02g, (b) 

0.05g, (c) 0.1g, (d) 0.2g, (e) 0.3g and (f) 0.4g. 



 

247 

 

 

0 200 400 600 800
0

1

2

3

4
F

3
.0

(a) SOutcrop= 0.01g

0 200 400 600 800
0

1

2

3

4
(b) SOutcrop= 0.02g

0 200 400 600 800
0

1

2

3

4

F
3
.0

(c) SOutcrop= 0.04g

0 200 400 600 800
0

1

2

3

4
(d) SOutcrop= 0.06g

0 200 400 600 800
VS30 (m/s)

0

1

2

3

4

F
3
.0

(e) SOutcrop= 0.08g

0 200 400 600 800
VS30 (m/s)

0

1

2

3

4

Aboye et al. (2013a)

SF-SK

SF-DM

SF-DS

(f) SOutcrop= 0.12g

Figure A.18: Comparison of the site factor models based on Aboye et al. (2013a),  

SHAKE2000, DMOD2000 and DEEPSOIL in the case of F3.0 for SOutcrop of (a) 0.01g, (b) 

0.02g, (c) 0.04g, (d) 0.06g, (e) 0.08g and (f) 0.12g. 



 

248 

 

  

50 100 150 200 250 300 350 400 450 500 550
0.0

0.1

0.2

0.3

0.4

0.5

P
G

A
O

u
tc

ro
p
 (

g
)

Ratio<1.1

1.1<Ratio<1.2

Ratio>1.2

(a) Mean+1 G/Gmax- and D-

50 100 150 200 250 300 350 400 450 500 550
VS30 (m/s)

0.0

0.1

0.2

0.3

0.4

0.5

P
G

A
O

u
tc

ro
p
 (

g
)

Ratio<1.1

1.1<Ratio<1.2

Ratio>1.2

(b) Mean-1 G/Gmax- and D-

Difference

2Diffe-
          rence>10%

Difference

Difference10%

2Diffe-
          rence>10%

Difference
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Figure A.20: Threshold chart developed for the mean G/Gmax-γ and D-γ cases considering 

0-4 sec spectral period band of respective response spectral acclerations while computing 

the area ratios. 
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SUMMARY OF THE RESULTS OF THE SITE RESPONSE 

ANALYSIS OF MILD INFINITE GROUND SLOPES PRESENTED 
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Figure B.1: Sample validation study of the calibrated cu values by comparing the spectral 

accelerations from OpenSees model with that of DEEPSOIL for the profile with VS30 = 

232 m/s for flat ground condition and Motion-V. 

Figure B.2: Sample validation study of the calibrated cu values by comparing the spectral 

accelerations from OpenSees model with that of DEEPSOIL for the profile with VS30 = 

247 m/s for flat ground condition and Motion-V. 
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Figure B.3: Sample validation study of the calibrated cu values by comparing the spectral 

accelerations from OpenSees model with that of DEEPSOIL for the profile with VS30 = 

260 m/s for flat ground condition and Motion-V. 

Figure B.4: Sample validation study of the calibrated cu values by comparing the spectral 

accelerations from OpenSees model with that of DEEPSOIL for the profile with VS30 = 

260 m/s for flat ground condition and Motion-V. 
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Figure B.5: Sample validation study of the calibrated cu values by comparing the spectral 

accelerations from OpenSees model with that of DEEPSOIL for the profile with VS30 = 

297 m/s for flat ground condition and Motion-V. 

Figure B.6: Sample validation study of the calibrated cu values by comparing the spectral 

accelerations from OpenSees model with that of DEEPSOIL for the profile with VS30 = 

316 m/s for flat ground condition and Motion-V. 
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Figure B.7: Sample validation study of the calibrated cu values by comparing the spectral 

accelerations from OpenSees model with that of DEEPSOIL for the profile with VS30 = 

343 m/s for flat ground condition and Motion-V. 

Figure B.8: Sample validation study of the calibrated cu values by comparing the spectral 

accelerations from OpenSees model with that of DEEPSOIL for the profile with VS30 = 

399 m/s for flat ground condition and Motion-V. 
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Figure B.9: Sample validation study of the calibrated cu values by comparing the spectral 

accelerations from OpenSees model with that of DEEPSOIL for the profile with VS30 = 

406 m/s for flat ground condition and Motion-V. 

Figure B.10: Sample validation study of the calibrated cu values by comparing the 

spectral accelerations from OpenSees model with that of DEEPSOIL for the profile with 

VS30 = 543 m/s for flat ground condition and Motion-V. 
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Figure B.11: Sample acceleration response spectra for the profile with VS30 =232 m/s 

from all the sloping ground cases (0
0
, 1

0
, 2

0
, 3

0
, 4

0
, 5

0
, 6

0
) with (a) PGAOutcrop= 0.1g, (b) 

PGAOutcrop= 0.2g, (c) PGAOutcrop= 0.3g, (d) PGAOutcrop= 0.4g, and (e) PGAOutcrop= 0.5g. 
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Figure B.12: Sample acceleration response spectra for the profile with VS30 =247 m/s 

from all the sloping ground cases (0
0
, 1

0
, 2

0
, 3

0
, 4

0
, 5

0
, 6

0
) with (a) PGAOutcrop= 0.1g, (b) 

PGAOutcrop= 0.2g, (c) PGAOutcrop= 0.3g, (d) PGAOutcrop= 0.4g, and (e) PGAOutcrop= 0.5g. 
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Figure B.13: Sample acceleration response spectra for the profile with VS30 =260 m/s 

from all the sloping ground cases (0
0
, 1

0
, 2
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, 3
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, 4
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0
) with (a) PGAOutcrop= 0.1g, (b) 

PGAOutcrop= 0.2g, (c) PGAOutcrop= 0.3g, (d) PGAOutcrop= 0.4g, and (e) PGAOutcrop= 0.5g. 
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Figure B.14: Sample acceleration response spectra for the profile with VS30 =260 m/s 

from all the sloping ground cases (0
0
, 1

0
, 2

0
, 3

0
, 4

0
, 5

0
, 6

0
) with (a) PGAOutcrop= 0.1g, (b) 

PGAOutcrop= 0.2g, (c) PGAOutcrop= 0.3g, (d) PGAOutcrop= 0.4g, and (e) PGAOutcrop= 0.5g. 
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Figure B.15: Sample acceleration response spectra for the profile with VS30 =295 m/s 

from all the sloping ground cases (0
0
, 1

0
, 2

0
, 3

0
, 4

0
, 5

0
, 6

0
) with (a) PGAOutcrop= 0.2g, (b) 

PGAOutcrop= 0.3g, and (c) PGAOutcrop= 0.4g. 
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Figure B.16: Sample acceleration response spectra for the profile with VS30 =297 m/s 

from all the sloping ground cases (0
0
, 1

0
, 2

0
, 3

0
, 4

0
, 5

0
, 6

0
) with (a) PGAOutcrop= 0.1g, (b) 

PGAOutcrop= 0.2g, (c) PGAOutcrop= 0.3g, (d) PGAOutcrop= 0.4g, and (e) PGAOutcrop= 0.5g. 
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Figure B.17: Sample acceleration response spectra for the profile with VS30 =316 m/s 

from all the sloping ground cases (0
0
, 1

0
, 2

0
, 3

0
, 4

0
, 5

0
, 6

0
) with (a) PGAOutcrop= 0.1g, (b) 

PGAOutcrop= 0.2g, (c) PGAOutcrop= 0.3g, (d) PGAOutcrop= 0.4g, and (e) PGAOutcrop= 0.5g. 
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Figure B.18: Sample acceleration response spectra for the profile with VS30 =343 m/s 

from all the sloping ground cases (0
0
, 1

0
, 2

0
, 3

0
, 4

0
, 5

0
, 6

0
) with (a) PGAOutcrop= 0.1g, (b) 

PGAOutcrop= 0.2g, (c) PGAOutcrop= 0.3g, (d) PGAOutcrop= 0.4g, and (e) PGAOutcrop= 0.5g. 
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Figure B.19: Sample acceleration response spectra for the profile with VS30 =399 m/s 

from all the sloping ground cases (0
0
, 1

0
, 2

0
, 3

0
, 4

0
, 5

0
, 6

0
) with (a) PGAOutcrop= 0.1g, (b) 

PGAOutcrop= 0.2g, (c) PGAOutcrop= 0.3g, (d) PGAOutcrop= 0.4g, and (e) PGAOutcrop= 0.5g. 
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Figure B.20: Sample acceleration response spectra for the profile with VS30 =406 m/s 

from all the sloping ground cases (0
0
, 1

0
, 2

0
, 3

0
, 4

0
, 5

0
, 6

0
) with (a) PGAOutcrop= 0.1g, (b) 

PGAOutcrop= 0.2g, (c) PGAOutcrop= 0.3g, (d) PGAOutcrop= 0.4g, and (e) PGAOutcrop= 0.5g. 
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Figure B.21: Sample acceleration response spectra for the profile with VS30 =543 m/s 

from all the sloping ground cases (0
0
, 1

0
, 2

0
, 3

0
, 4

0
, 5

0
, 6

0
) with (a) PGAOutcrop= 0.1g, (b) 

PGAOutcrop= 0.2g, (c) PGAOutcrop= 0.3g, (d) PGAOutcrop= 0.4g, and (e) PGAOutcrop= 0.5g. 
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Figure B.22: K  vs. θ plots for the profile with VS30 = 232 m/s and Motions-I to V and 

also for the periods, T of (a) 0.0, (b) 0.2, (c) 0.6, (d) 1.0, (e) 1.6, and (f) 3.0 sec. 
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Figure B.23: K  vs. θ plots for the profile with VS30 = 247 m/s and Motions-I to V and 

also for the periods, T of (a) 0.0, (b) 0.2, (c) 0.6, (d) 1.0, (e) 1.6, and (f) 3.0 sec. 
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Figure B.24: K  vs. θ plots for the profile with VS30 = 260 m/s and Motions-I to V and 

also for the periods, T of (a) 0.0, (b) 0.2, (c) 0.6, (d) 1.0, (e) 1.6, and (f) 3.0 sec. 
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Figure B.25: K  vs. θ plots for the profile with VS30 = 260 m/s and Motions-I to V and 

also for the periods, T of (a) 0.0, (b) 0.2, (c) 0.6, (d) 1.0, (e) 1.6, and (f) 3.0 sec. 
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Figure B.26: K  vs. θ plots for the profile with VS30 = 297 m/s and Motions-I to V and 

also for the periods, T of (a) 0.0, (b) 0.2, (c) 0.6, (d) 1.0, (e) 1.6, and (f) 3.0 sec. 
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Figure B.27: K  vs. θ plots for the profile with VS30 = 316 m/s and Motions-I to V and 

also for the periods, T of (a) 0.0, (b) 0.2, (c) 0.6, (d) 1.0, (e) 1.6, and (f) 3.0 sec. 
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Figure B.28: K  vs. θ plots for the profile with VS30 = 343 m/s and Motions-I to V and 

also for the periods, T of (a) 0.0, (b) 0.2, (c) 0.6, (d) 1.0, (e) 1.6, and (f) 3.0 sec. 
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Figure B.29: K  vs. θ plots for the profile with VS30 = 399 m/s and Motions-I to V and 

also for the periods, T of (a) 0.0, (b) 0.2, (c) 0.6, (d) 1.0, (e) 1.6, and (f) 3.0 sec. 
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Figure B.30: K  vs. θ plots for the profile with VS30 = 406 m/s and Motions-I to V and 

also for the periods, T of (a) 0.0, (b) 0.2, (c) 0.6, (d) 1.0, (e) 1.6, and (f) 3.0 sec. 
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Figure B.31: K  vs. θ plots for the profile with VS30 = 543 m/s and Motions-I to V and 

also for the periods, T of (a) 0.0, (b) 0.2, (c) 0.6, (d) 1.0, (e) 1.6, and (f) 3.0 sec. 
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APPENDIX C  
 

SUMMARY OF THE ANALYSIS RESULTS PERFORMED TO 

EVALUATE THE EFFECT OF SUDDEN SHEAR WAVE VELOCITY 

CONTRAST AT LAYER INTERFACES ON SEISMIC SITE 

RESPONSE ANALYSIS FOR CHARLESTON, SC PRESENTED IN 

CHAPTER 6 
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Figure C.1: DEEPSOIL generated acceleration response spectra at surface level for 

profile variations presented in Figure 6.3(b) and for: (a) PGAOutcrop= 0.1g and (b) 

PGAOutcrop= 0.3g. 
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Figure C.2: DEEPSOIL generated acceleration response spectra at surface level for 

profile variations presented in Figure 6.3(b) and for PGAOutcrop of 0.5g. 
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Figure C.3: DEEPSOIL generated acceleration response spectra at surface level for 

profile variations presented in Figure 6.3(c) and for: (a) PGAOutcrop= 0.1g and (b) 

PGAOutcrop= 0.3g. 
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Figure C.4: DEEPSOIL generated acceleration response spectra at surface level for 

profile variations presented in Figure 6.3(c) and for PGAOutcrop of 0.5g. 
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Figure C.5: SHAKE generated acceleration response spectra at surface level for profile 

variations presented in Figure 6.3(a) and for: (a) PGAOutcrop= 0.1g and (b) PGAOutcrop= 

0.3g. 
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Figure C.6: SHAKE generated acceleration response spectra at surface level for profile 

variations presented in Figure 6.3(b) and for PGAOutcrop of 0.5g. 
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Figure C.7: SHAKE generated acceleration response spectra at surface level for profile 

variations presented in Figure 6.3(b) and for: (a) PGAOutcrop= 0.1g and (b) PGAOutcrop= 

0.3g. 
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Figure C.8: SHAKE generated acceleration response spectra at surface level for profile 

variations presented in Figure 6.3(b) and for PGAOutcrop of 0.5g. 
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Figure C.9: SHAKE generated acceleration response spectra at surface level for profile 

variations presented in Figure 6.3(c) and for: (a) PGAOutcrop= 0.1g and (b) PGAOutcrop= 

0.3g. 
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Figure C.10: SHAKE generated acceleration response spectra at surface level for profile 

variations presented in Figure 6.3(c) and for PGAOutcrop of 0.5g. 
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Figure C.11: Site Factors Ratios vs. PGAOutcrop plots for the ‘Mean’ and it’s ±1σ 

variations of all three models: M-I, II and II (see Figure 6.3) based on SHAKE data 

points for: (a) T= 0.0 sec, (b) T= 0.2 sec, (c) T= 0.6 sec, (d) T= 1.0 sec, (e) T= 1.6 sec, 

and (f) T= 3.0 sec. 
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Figure C.12: Profile maximum shear strains, based on DEEPSOIL data points, along with 

the corresponding VS profiles from Figure 6.3(b) and for PGAOutcrop levels of 0.1, 0.3 and 

0.5g. Subplots (a) and (b) are for the profile: SC(+); (c) and (d) for the profile M-I(+); (e) 

and (f) for the profile M-II(+); and, (g) and (h) for the profile M-III(+). 
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Figure C.13: Profile maximum shear strains, based on DEEPSOIL data points, along with 

the corresponding VS profiles from Figure 6.3(c) and for PGAOutcrop levels of 0.1, 0.3 and 

0.5g. Subplots (a) and (b) are for the profile: SC(-); (c) and (d) for the profile M-I(-); (e) 

and (f) for the profile M-II(-); and, (g) and (h) for the profile M-III(-). 
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Figure C.14: Comparison of SHAKE and DEEPSOIL spectral acceleration responses for 

the profiles (see Figure 6.3(b) for profile information): SC(+) and M-I(+) in subplots (a) 

and (b), respectively and for PGAOutcrop of 0.1g and 0.5g cases. 
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Figure C.15: Comparison of SHAKE and DEEPSOIL spectral acceleration responses for 

the profile M-II(+) (see Figure 6.3(b) for profile information) and for PGAOutcrop of 0.1g 

and 0.5g cases. 
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Figure C.16: Comparison of SHAKE and DEEPSOIL spectral acceleration responses for 

the profiles (see Figure 6.3(c) for profile information): SC(-) and M-I(-) in subplots (a) 

and (b), respectively and for PGAOutcrop of 0.1g and 0.5g cases. 
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Figure C.17: Comparison of SHAKE and DEEPSOIL spectral acceleration responses for 

the profile M-II(-) (see Figure 6.3(b) for profile information) and for PGAOutcrop of 0.1g 

and 0.5g cases. 



 

316 

 

 

 

 

 

 

 

 

 

APPENDIX D  
 

SUMMARY OF MODEL INFORMATION, ANALYSIS RESULTS, 

AND COMPARISON WITH ASSHTO (2011) FOR REPERCUSSION 

STUDY PRESENTED IN CHAPTER 7 
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Modes 
Period 

(sec) 

Participating mass 

Individual Mode (Percent) Cumulative Sum (Percent) 

UX UY UZ UX UY UZ 

1 1.605524 0.00% 68.17% 0.00% 0.00% 68.17% 0.00% 

2 1.3625 98.40% 0.00% 0.00% 98.40% 68.17% 0.00% 

3 1.030894 0.00% 3.48% 0.00% 98.40% 71.65% 0.00% 

4 0.668836 0.00% 15.23% 0.00% 98.40% 86.89% 0.00% 

5 0.442127 0.00% 0.21% 0.00% 98.40% 87.09% 0.00% 

6 0.274762 0.00% 2.33% 0.00% 98.40% 89.42% 0.00% 

7 0.203888 0.00% 0.00% 0.00% 98.40% 89.42% 0.00% 

8 0.151085 0.00% 1.01% 0.00% 98.40% 90.43% 0.00% 

9 0.117486 0.00% 0.01% 0.00% 98.40% 90.44% 0.00% 

10 0.110662 0.02% 0.00% 0.00% 98.41% 90.44% 0.00% 

11 0.104737 0.00% 0.08% 0.00% 98.41% 90.52% 0.00% 

12 0.103904 0.00% 0.00% 0.00% 98.41% 90.52% 0.00% 

13 0.10376 0.34% 0.00% 0.00% 98.75% 90.52% 0.00% 

14 0.103604 0.00% 0.10% 0.00% 98.75% 90.62% 0.00% 

15 0.093127 0.00% 0.17% 0.00% 98.75% 90.79% 0.00% 

16 0.08709 0.00% 0.00% 54.27% 98.75% 90.79% 54.28% 

17 0.085262 0.00% 0.02% 0.00% 98.75% 90.81% 54.28% 

18 0.084654 0.00% 0.13% 0.00% 98.75% 90.94% 54.28% 

19 0.084322 0.35% 0.00% 2.64% 99.10% 90.94% 56.92% 

20 0.084193 0.00% 0.00% 0.00% 99.10% 90.94% 56.92% 

21 0.084187 0.01% 0.00% 0.10% 99.11% 90.94% 57.02% 

22 0.083777 0.35% 0.00% 1.64% 99.45% 90.94% 58.65% 

23 0.083469 0.00% 0.03% 0.00% 99.45% 90.96% 58.65% 

24 0.082231 0.00% 0.99% 0.00% 99.45% 91.96% 58.65% 

25 0.081093 0.00% 0.00% 0.92% 99.46% 91.96% 59.57% 

26 0.07255 0.00% 0.00% 26.39% 99.46% 91.96% 85.96% 

27 0.069316 0.00% 0.00% 0.00% 99.46% 91.96% 85.96% 

28 0.065467 0.00% 0.00% 2.88% 99.46% 91.96% 88.84% 

29 0.060783 0.00% 0.29% 0.00% 99.46% 92.24% 88.84% 

30 0.056545 0.00% 0.00% 2.23% 99.46% 92.24% 91.07% 

31 0.055103 0.01% 0.00% 0.00% 99.47% 92.24% 91.07% 

32 0.051975 0.00% 0.01% 0.00% 99.47% 92.25% 91.07% 

33 0.045713 0.00% 0.22% 0.00% 99.47% 92.47% 91.07% 

34 0.044889 0.00% 0.04% 0.00% 99.47% 92.52% 91.07% 

35 0.044715 0.00% 0.00% 0.00% 99.47% 92.52% 91.07% 

36 0.044692 0.08% 0.00% 0.00% 99.55% 92.52% 91.07% 

37 0.04412 0.00% 0.05% 0.00% 99.55% 92.57% 91.07% 

38 0.039936 0.00% 0.05% 0.00% 99.55% 92.62% 91.07% 

39 0.038071 0.08% 0.00% 0.03% 99.63% 92.62% 91.10% 

40 0.03803 0.00% 0.02% 0.00% 99.63% 92.64% 91.10% 

* UX, UY and UZ represent respective mass participations in Global three directions 

 

 

Table D.1: Modal periods and participating mass (Fixed base). 
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Modes 
Period 

(sec) 

Participating mass 

Individual Mode (Percent) Cumulative Sum (Percent) 

UX UY UZ UX UY UZ 

1 1.610791 0.00% 45.67% 0.00% 0.00% 45.67% 0.00% 

2 1.370173 65.80% 0.00% 0.00% 65.80% 45.67% 0.00% 

3 1.035744 0.00% 2.34% 0.00% 65.80% 48.01% 0.00% 

4 0.672964 0.00% 10.38% 0.00% 65.80% 58.38% 0.00% 

5 0.445255 0.00% 0.14% 0.00% 65.80% 58.52% 0.00% 

6 0.277953 0.00% 1.80% 0.00% 65.80% 60.32% 0.00% 

7 0.20747 0.00% 0.00% 0.00% 65.80% 60.32% 0.00% 

8 0.15439 0.00% 1.03% 0.00% 65.80% 61.35% 0.00% 

9 0.132092 0.00% 0.00% 79.26% 65.80% 61.35% 79.26% 

10 0.126357 0.00% 0.00% 2.77% 65.81% 61.35% 82.03% 

11 0.120668 0.00% 0.01% 0.00% 65.81% 61.36% 82.03% 

12 0.112764 0.01% 0.00% 9.46% 65.81% 61.36% 91.49% 

13 0.11072 0.04% 0.00% 0.27% 65.85% 61.36% 91.76% 

14 0.105942 0.00% 0.23% 0.00% 65.85% 61.59% 91.76% 

15 0.104987 0.56% 0.00% 0.09% 66.41% 61.59% 91.85% 

16 0.104272 0.00% 0.10% 0.00% 66.41% 61.69% 91.85% 

17 0.104228 0.00% 0.00% 0.00% 66.41% 61.69% 91.85% 

18 0.095921 0.00% 0.57% 0.00% 66.41% 62.26% 91.85% 

19 0.091662 0.02% 0.00% 0.00% 66.43% 62.26% 91.85% 

20 0.086596 0.00% 2.98% 0.00% 66.43% 65.24% 91.85% 

21 0.086438 1.53% 0.00% 0.02% 67.96% 65.24% 91.87% 

22 0.086064 0.00% 1.17% 0.00% 67.96% 66.41% 91.87% 

23 0.085723 0.87% 0.00% 0.01% 68.83% 66.41% 91.87% 

24 0.085625 0.00% 0.73% 0.00% 68.83% 67.13% 91.87% 

25 0.084534 0.00% 0.00% 0.00% 68.83% 67.13% 91.87% 

26 0.084534 0.00% 0.00% 0.00% 68.83% 67.13% 91.87% 

27 0.084248 0.00% 1.35% 0.00% 68.83% 68.48% 91.87% 

28 0.076822 0.00% 0.07% 0.00% 68.83% 68.55% 91.87% 

29 0.07206 0.00% 0.22% 0.00% 68.83% 68.77% 91.87% 

30 0.070286 0.00% 9.40% 0.00% 68.83% 78.17% 91.87% 

31 0.069931 0.06% 0.00% 2.62% 68.88% 78.17% 94.49% 

32 0.069319 0.00% 0.00% 0.00% 68.88% 78.17% 94.49% 

33 0.069026 0.00% 11.40% 0.00% 68.88% 89.57% 94.49% 

34 0.067641 0.00% 9.73% 0.00% 68.88% 99.30% 94.49% 

35 0.062743 0.00% 0.03% 0.00% 68.88% 99.32% 94.49% 

36 0.06215 6.39% 0.00% 0.00% 75.27% 99.32% 94.49% 

37 0.06194 2.01% 0.00% 0.00% 77.28% 99.32% 94.49% 

38 0.061681 4.60% 0.00% 0.00% 81.88% 99.32% 94.49% 

39 0.061607 9.20% 0.00% 0.00% 91.08% 99.32% 94.50% 

40 0.059434 8.33% 0.00% 0.00% 99.41% 99.32% 94.50% 

* UX, UY and UZ represent respective mass participations in Global three directions 

Table D.2: Modal periods and participating mass (with Foundation Spring). 
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FORCES AND MOMENTS 

Longitudinal (Global X direction) Transverse (Global Y direction) 
Axial (kips) 

Shear X (kips) Moment Y (kips-ft) Shear Z (kips) Moment X (kips-ft) 

Support/ 

Location 

Load 

Case 

AASHTO 

(2011) 
Rec. 

Difference 

(%)* 

AASHTO 

(2011) 
Rec. 

Difference 

(%)* 

AASHTO 

(2011) 
Rec. 

Difference 

(%)* 

AASHTO 

(2011) 
Rec. 

Difference 

(%)* 

AASHTO 

(2011) 
Rec. 

Difference 

(%)* 

Bent 1 

Col 

LC1 345 308 -10.56 5183 4636 -10.56 44 40 -10.53 668 597 -10.55 90 81 -10.44 

LC2 123 110 -10.47 1848 1655 -10.45 148 132 -10.56 2225 1990 -10.56 236 211 -10.55 

Bent 2 

Col 

LC1 102 91 -10.37 2326 2081 -10.53 31 28 -10.35 699 625 -10.53 100 90 -10.39 

LC2 40 36 -10.33 917 820 -10.50 103 92 -10.36 2330 2084 -10.53 241 216 -10.51 

Bent 3 

Col 

LC1 72 65 -10.08 1843 1650 -10.49 33 29 -10.46 837 748 -10.55 86 77 -10.30 

LC2 25 22 -9.48 628 563 -10.37 110 98 -10.46 2789 2495 -10.55 271 242 -10.53 

Bent 4 

Col 

LC1 102 91 -10.33 2328 2083 -10.52 33 30 -10.36 760 680 -10.53 86 77 -10.25 

LC2 40 36 -10.01 908 813 -10.43 111 100 -10.37 2532 2265 -10.54 246 220 -10.50 

* % Difference (in column Forces, Moments or Displacement combinations: LC1 and LC2) = [Recommended- AASHTO (2011)] X 100/ AASHTO 

(2011). A negative value represents greater AASHTO (2011) outcomes.  

Rec.: Based on ADRS curves developed using the recommended site factors. 

  

Table D.3: Analyses results from Case#1 at column top (Seismic loading in both longitudinal and transverse directions, LC1 

and LC2) (Also presented in Chapter 6). 
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FORCES AND MOMENTS 

Longitudinal (Global X direction) Transverse (Global Y direction) 
Axial (kips) 

Shear X (kips) Moment Y (kips-ft) Shear Z (kips) Moment X (kips-ft) 

Support/ 

Location 

Load 

Case 

AASHTO 

(2011) 
Rec. 

Difference 

(%)* 

AASHTO 

(2011) 
Rec. 

Difference 

(%)* 

AASHTO 

(2011) 
Rec. 

Difference 

(%)* 

AASHTO 

(2011) 
Rec. 

Difference 

(%)* 

AASHTO 

(2011) 
Rec. 

Difference 

(%)* 

Bent 1 

Col 

LC1 348 312 -10.56 5220 4669 -10.56 46 41 -10.52 682 610 -10.55 90 81 -10.43 

LC2 124 111 -10.40 1861 1667 -10.42 152 136 -10.56 2271 2031 -10.56 236 211 -10.55 

Bent 2 

Col 

LC1 107 96 -10.37 2384 2133 -10.52 32 29 -10.36 717 642 -10.53 100 90 -10.37 

LC2 43 38 -10.18 944 846 -10.41 107 96 -10.36 2390 2138 -10.53 241 216 -10.50 

Bent 3 

Col 

LC1 78 70 -10.10 1914 1714 -10.45 35 31 -10.46 866 775 -10.55 86 77 -10.19 

LC2 27 25 -9.24 662 595 -10.04 117 104 -10.46 2887 2582 -10.55 271 242 -10.51 

Bent 4 

Col 

LC1 107 96 -10.33 2386 2135 -10.51 35 31 -10.37 781 699 -10.53 86 78 -10.22 

LC2 42 38 -9.88 931 835 -10.34 117 104 -10.38 2603 2329 -10.54 246 221 -10.49 

* % Difference (in column Forces, Moments or Displacement combinations: LC1 and LC2) = [Recommended- AASHTO (2011)] X 100/ AASHTO 

(2011). A negative value represents greater AASHTO (2011) outcomes.  

Rec.: Based on ADRS curves developed using the recommended site factors. 

  

Table D.4: Analyses results from Case#1 at column bottom (Seismic loading in both longitudinal and transverse directions, 

LC1 and LC2). 
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DISPLACEMENTS 

Global X (ft) Global Y (ft) 

Support/ 

Location 

Load 

Case 

AASHTO 

(2011) 
Proposed 

Difference 

(%)* 

AASHTO 

(2011) 
Proposed 

Difference 

(%)* 

Bent 1 

Col 

LC1 0.2838 0.2539 -10.5608 0.0372 0.0332 -10.5650 

LC2 0.1012 0.0906 -10.4364 0.1238 0.1108 -10.5650 

Bent 2 

Col 

LC1 0.2887 0.2582 -10.5673 0.0877 0.0784 -10.5747 

LC2 0.1141 0.1021 -10.5041 0.2922 0.2613 -10.5749 

Bent 3 

Col 

LC1 0.2844 0.2543 -10.5561 0.1302 0.1164 -10.5753 

LC2 0.0975 0.0874 -10.3833 0.4340 0.3881 -10.5755 

Bent 4 

Col 

LC1 0.2891 0.2586 -10.5667 0.0953 0.0853 -10.5755 

LC2 0.1127 0.1008 -10.4960 0.3178 0.2842 -10.5756 

* % Difference (in column Forces, Moments or Displacement combinations: LC1 and LC2) = [Proposed- AASHTO (2011)] X 100/ AASHTO (2011).  

A negative value represents greater AASHTO (2011) outcomes.

Table D.5: Analyses results from Case#1 at column top (Seismic loading in both longitudinal and transverse directions, LC1 

and LC2). 
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FORCES AND MOMENTS 

Longitudinal (Global X direction) Transverse (Global Y direction) 
Axial (kips) 

Shear X (kips) Moment Y (kips-ft) Shear Z (kips) Moment X (kips-ft) 

Support/ 

Location 

Load 

Case 

AASHTO 

(2011) 
Rec. 

Difference 

(%)* 

AASHTO 

(2011) 
Rec. 

Difference 

(%)* 

AASHTO 

(2011) 
Rec. 

Difference 

(%)* 

AASHTO 

(2011) 
Rec. 

Difference 

(%)* 

AASHTO 

(2011) 
Rec. 

Difference 

(%)* 

Bent 1 

Col 

LC1 935 958 2.49 14052 14402 2.49 120 124 3.19 1813 1871 3.20 245 252 2.97 

LC2 333 341 2.47 5008 5132 2.47 400 413 3.19 6040 6233 3.20 639 659 3.11 

Bent 2 

Col 

LC1 275 282 2.49 6304 6462 2.50 84 86 2.37 1902 1947 2.38 272 278 2.40 

LC2 108 111 2.53 2486 2550 2.56 279 286 2.37 6340 6491 2.38 656 672 2.38 

Bent 3 

Col 

LC1 195 199 2.45 4993 5118 2.49 90 92 2.38 2278 2332 2.39 233 238 2.38 

LC2 66 68 2.48 1701 1745 2.57 298 306 2.38 7592 7774 2.39 737 754 2.38 

Bent 4 

Col 

LC1 276 283 2.47 6309 6466 2.49 91 93 2.41 2067 2117 2.43 234 240 2.41 

LC2 108 110 2.44 2461 2522 2.47 303 310 2.41 6890 7058 2.43 670 686 2.42 

* % Difference (in column Forces, Moments or Displacement combinations: LC1 and LC2) = [Recommended- AASHTO (2011)] X 100/ AASHTO 

(2011). A negative value represents greater AASHTO (2011) outcomes.  

Rec.: Based on ADRS curves developed using the recommended site factors. 

 

 

 

 

 

Table D.6: Analyses results from Case#2 at column top (Seismic loading in both longitudinal and transverse directions, LC1 

and LC2) (Also presented in Chapter 6). 
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FORCES AND MOMENTS 

Longitudinal (Global X direction) Transverse (Global Y direction) 
Axial (kips) 

Shear X (kips) Moment Y (kips-ft) Shear Z (kips) Moment X (kips-ft) 

Support/ 

Location 

Load 

Case 

AASHTO 

(2011) 
Rec. 

Difference 

(%)* 

AASHTO 

(2011) 
Rec. 

Difference 

(%)* 

AASHTO 

(2011) 
Rec. 

Difference 

(%)* 

AASHTO 

(2011) 
Rec. 

Difference 

(%)* 

AASHTO 

(2011) 
Rec. 

Difference 

(%)* 

Bent 1 

Col 

LC1 944 968 2.49 14151 14503 2.49 124 127 3.21 1850 1909 3.21 245 252 2.97 

LC2 337 345 2.46 5043 5168 2.46 411 425 3.22 6165 6363 3.21 640 659 3.11 

Bent 2 

Col 

LC1 290 298 2.49 6460 6621 2.50 87 89 2.37 1952 1998 2.38 272 278 2.40 

LC2 115 118 2.55 2558 2624 2.56 291 297 2.37 6505 6659 2.38 656 672 2.38 

Bent 3 

Col 

LC1 211 216 2.46 5184 5313 2.49 95 97 2.39 2357 2414 2.39 233 239 2.37 

LC2 74 75 2.49 1788 1833 2.56 317 325 2.39 7858 8046 2.39 737 755 2.38 

Bent 4 

Col 

LC1 290 298 2.47 6466 6626 2.49 95 97 2.44 2125 2177 2.44 234 240 2.41 

LC2 114 116 2.43 2522 2585 2.47 317 325 2.44 7083 7256 2.44 670 686 2.42 

* % Difference (in column Forces, Moments or Displacement combinations: LC1 and LC2) = [Recommended- AASHTO (2011)] X 100/ AASHTO 

(2011). A negative value represents greater AASHTO (2011) outcomes.  

Rec.: Based on ADRS curves developed using the recommended site factors. 

 

 

 

 

 

Table D.7: Analyses results from Case#2 at column bottom (Seismic loading in both longitudinal and transverse directions, 

LC1 and LC2). 
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DISPLACEMENTS 

Global X (ft) Global Y (ft) 

Support/ 

Location 

Load 

Case 

AASHTO 

(2011) 
Proposed 

Difference 

(%)* 

AASHTO 

(2011) 
Proposed 

Difference 

(%)* 

Bent 1 

Col 

LC1 0.7695 0.7886 2.4889 0.1009 0.1041 3.2077 

LC2 0.2742 0.2809 2.4643 0.3362 0.3469 3.2076 

Bent 2 

Col 

LC1 0.7827 0.8023 2.5004 0.2386 0.2443 2.3816 

LC2 0.3093 0.3173 2.5639 0.7954 0.8143 2.3815 

Bent 3 

Col 

LC1 0.7708 0.7901 2.5011 0.3544 0.3629 2.3940 

LC2 0.2641 0.2710 2.5812 1.1814 1.2097 2.3938 

Bent 4 

Col 

LC1 0.7839 0.8035 2.4900 0.2595 0.2658 2.4403 

LC2 0.3056 0.3131 2.4760 0.8650 0.8862 2.4405 

* % Difference (in column Forces, Moments or Displacement combinations: LC1 and LC2) = [Proposed- AASHTO (2011)] X 100/ AASHTO (2011).  

A negative value represents greater AASHTO (2011) outcomes. 

 

 

 

Table D.8: Analyses results from Case#2 at column top (Seismic loading in both longitudinal and transverse directions, LC1 

and LC2). 



 

325 

 

 

FORCES AND MOMENTS 

Longitudinal (Global X direction) Transverse (Global Y direction) 
Axial (kips) 

Shear X (kips) Moment Y (kips-ft) Shear Z (kips) Moment X (kips-ft) 

Support/ 

Location 

Load 

Case 

AASHTO 

(2011) 
Rec. 

Difference 

(%)* 

AASHTO 

(2011) 
Rec. 

Difference 

(%)* 

AASHTO 

(2011) 
Rec. 

Difference 

(%)* 

AASHTO 

(2011) 
Rec. 

Difference 

(%)* 

AASHTO 

(2011) 
Rec. 

Difference 

(%)* 

Bent 1 

Col 

LC1 935 1135 21.44 14052 17065 21.44 120 145 20.64 1813 2187 20.65 245 296 20.86 

LC2 333 404 21.39 5008 6079 21.38 400 483 20.66 6040 7287 20.65 639 772 20.75 

Bent 2 

Col 

LC1 275 334 21.36 6304 7655 21.42 84 102 21.36 1902 2310 21.42 272 330 21.37 

LC2 108 131 21.27 2486 3017 21.33 279 339 21.36 6340 7698 21.42 656 797 21.41 

Bent 3 

Col 

LC1 195 236 21.19 4993 6061 21.39 90 109 21.37 2278 2765 21.41 233 282 21.34 

LC2 66 80 20.85 1701 2063 21.26 298 362 21.37 7592 9218 21.41 737 895 21.41 

Bent 4 

Col 

LC1 276 335 21.35 6309 7661 21.43 91 110 21.32 2067 2509 21.37 234 284 21.27 

LC2 108 131 21.20 2461 2987 21.37 303 367 21.32 6890 8362 21.37 670 813 21.37 

* % Difference (in column Forces, Moments or Displacement combinations: LC1 and LC2) = [Recommended- AASHTO (2011)] X 100/ AASHTO 

(2011). A negative value represents greater AASHTO (2011) outcomes.  

Rec.: Based on ADRS curves developed using the recommended site factors. 

  

Table D.9: Analyses results from Case#3 at column top (Seismic loading in both longitudinal and transverse directions, LC1 

and LC2). 
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FORCES AND MOMENTS 

Longitudinal (Global X direction) Transverse (Global Y direction) 
Axial (kips) 

Shear X (kips) Moment Y (kips-ft) Shear Z (kips) Moment X (kips-ft) 

Support/ 

Location 

Load 

Case 

AASHTO 

(2011) 
Rec. 

Difference 

(%)* 

AASHTO 

(2011) 
Rec. 

Difference 

(%)* 

AASHTO 

(2011) 
Rec. 

Difference 

(%)* 

AASHTO 

(2011) 
Rec. 

Difference 

(%)* 

AASHTO 

(2011) 
Rec. 

Difference 

(%)* 

Bent 1 

Col 

LC1 944 1147 21.44 14151 17185 21.44 124 149 20.62 1850 2232 20.63 245 296 20.86 

LC2 337 408 21.36 5043 6121 21.37 411 496 20.63 6165 7437 20.64 640 772 20.74 

Bent 2 

Col 

LC1 290 352 21.36 6460 7844 21.42 87 106 21.35 1952 2369 21.41 272 330 21.36 

LC2 115 140 21.19 2558 3102 21.28 291 353 21.35 6505 7898 21.41 656 797 21.41 

Bent 3 

Col 

LC1 211 256 21.20 5184 6292 21.38 95 115 21.36 2357 2862 21.40 233 283 21.31 

LC2 74 89 20.71 1788 2165 21.10 317 385 21.36 7858 9540 21.41 737 895 21.40 

Bent 4 

Col 

LC1 290 352 21.35 6466 7851 21.42 95 115 21.30 2125 2579 21.36 234 284 21.26 

LC2 114 138 21.14 2522 3060 21.33 317 384 21.30 7083 8597 21.36 670 813 21.37 

* % Difference (in column Forces, Moments or Displacement combinations: LC1 and LC2) = [Recommended- AASHTO (2011)] X 100/ AASHTO 

(2011). A negative value represents greater AASHTO (2011) outcomes.  

Rec.: Based on ADRS curves developed using the recommended site factors. 

Table D.10: Analyses results from Case#3 at column bottom (Seismic loading in both longitudinal and transverse directions, 

LC1 and LC2). 



 

327 

 

 

DISPLACEMENTS 

Global X (ft) Global Y (ft) 

Support/ 

Location 

Load 

Case 

AASHTO 

(2011) 
Proposed 

Difference 

(%)* 

AASHTO 

(2011) 
Proposed 

Difference 

(%)* 

Bent 1 

Col 

LC1 0.7695 0.9344 21.4416 0.1009 0.1217 20.6461 

LC2 0.2742 0.3328 21.3772 0.3362 0.4056 20.6466 

Bent 2 

Col 

LC1 0.7827 0.9505 21.4341 0.2386 0.2898 21.4302 

LC2 0.3093 0.3753 21.3216 0.7954 0.9658 21.4300 

Bent 3 

Col 

LC1 0.7708 0.9360 21.4300 0.3544 0.4304 21.4186 

LC2 0.2641 0.3203 21.2605 1.1814 1.4345 21.4184 

Bent 4 

Col 

LC1 0.7839 0.9520 21.4428 0.2595 0.3150 21.3800 

LC2 0.3056 0.3709 21.3932 0.8650 1.0500 21.3800 

* % Difference (in column Forces, Moments or Displacement combinations: LC1 and LC2) = [Proposed- AASHTO (2011)] X 100/ AASHTO (2011).  

A negative value represents greater AASHTO (2011) outcomes. 

 

 

 

Table D.11: Analyses results from Case#3 at column top (Seismic loading in both longitudinal and transverse directions, LC1 

and LC2). 
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FORCES AND MOMENTS 

Longitudinal (Global X direction) Transverse (Global Y direction) 
Axial (kips) 

Shear X (kips) Moment Y (kips-ft) Shear Z (kips) Moment X (kips-ft) 

Support/ 

Location 

Load 

Case 

AASHTO 

(2011) 
Rec. 

Difference 

(%)* 

AASHTO 

(2011) 
Rec. 

Difference 

(%)* 

AASHTO 

(2011) 
Rec. 

Difference 

(%)* 

AASHTO 

(2011) 
Rec. 

Difference 

(%)* 

AASHTO 

(2011) 
Rec. 

Difference 

(%)* 

Bent 1 

Col 

LC1 1429 980 -31.45 21492 14732 -31.45 157 108 -31.07 2359 1626 -31.07 336 231 -31.21 

LC2 509 349 -31.46 7649 5243 -31.46 523 360 -31.07 7863 5420 -31.07 851 586 -31.14 

Bent 2 

Col 

LC1 420 288 -31.45 9622 6596 -31.45 128 88 -31.52 2908 1992 -31.52 415 284 -31.50 

LC2 163 112 -31.43 3736 2562 -31.42 426 292 -31.52 9693 6638 -31.52 1003 687 -31.52 

Bent 3 

Col 

LC1 296 203 -31.45 7618 5223 -31.45 137 94 -31.51 3473 2379 -31.51 355 243 -31.51 

LC2 99 68 -31.42 2551 1750 -31.41 455 312 -31.51 11577 7929 -31.51 1125 770 -31.51 

Bent 4 

Col 

LC1 421 289 -31.45 9645 6612 -31.45 138 94 -31.50 3130 2144 -31.49 355 243 -31.49 

LC2 164 112 -31.46 3749 2570 -31.46 459 314 -31.50 10432 7147 -31.49 1017 697 -31.50 

* % Difference (in column Forces, Moments or Displacement combinations: LC1 and LC2) = [Recommended- AASHTO (2011)] X 100/ AASHTO 

(2011). A negative value represents greater AASHTO (2011) outcomes.  

Rec.: Based on ADRS curves developed using the recommended site factors. 

  

Table D.12: Analyses results from Case#4 at column top (Seismic loading in both longitudinal and transverse directions, LC1 

and LC2). 
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FORCES AND MOMENTS 

Longitudinal (Global X direction) Transverse (Global Y direction) 
Axial (kips) 

Shear X (kips) Moment Y (kips-ft) Shear Z (kips) Moment X (kips-ft) 

Support/ 

Location 

Load 

Case 

AASHTO 

(2011) 
Rec. 

Difference 

(%)* 

AASHTO 

(2011) 
Rec. 

Difference 

(%)* 

AASHTO 

(2011) 
Rec. 

Difference 

(%)* 

AASHTO 

(2011) 
Rec. 

Difference 

(%)* 

AASHTO 

(2011) 
Rec. 

Difference 

(%)* 

Bent 1 

Col 

LC1 1444 990 -31.45 21642 14835 -31.45 160 110 -31.06 2402 1656 -31.06 336 231 -31.21 

LC2 514 352 -31.46 7701 5278 -31.46 534 368 -31.05 8005 5519 -31.06 851 586 -31.14 

Bent 2 

Col 

LC1 442 303 -31.45 9856 6756 -31.45 133 91 -31.52 2983 2043 -31.52 415 284 -31.50 

LC2 172 118 -31.41 3832 2628 -31.42 444 304 -31.52 9943 6809 -31.52 1004 687 -31.52 

Bent 3 

Col 

LC1 321 220 -31.44 7905 5419 -31.44 145 99 -31.51 3591 2460 -31.51 355 243 -31.51 

LC2 109 75 -31.39 2665 1828 -31.40 483 331 -31.51 11972 8199 -31.51 1125 770 -31.51 

Bent 4 

Col 

LC1 443 304 -31.45 9883 6774 -31.45 143 98 -31.49 3212 2201 -31.49 355 244 -31.49 

LC2 172 118 -31.46 3838 2631 -31.46 478 328 -31.49 10708 7336 -31.49 1017 697 -31.50 

* % Difference (in column Forces, Moments or Displacement combinations: LC1 and LC2) = [Recommended- AASHTO (2011)] X 100/ AASHTO 

(2011). A negative value represents greater AASHTO (2011) outcomes.  

Rec.: Based on ADRS curves developed using the recommended site factors. 

 

Table D.13: Analyses results from Case#4 at column bottom (Seismic loading in both longitudinal and transverse directions, 

LC1 and LC2). 
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DISPLACEMENTS 

Global X (ft) Global Y (ft) 

Support/ 

Location 

Load 

Case 

AASHTO 

(2011) 
Proposed 

Difference 

(%)* 

AASHTO 

(2011) 
Proposed 

Difference 

(%)* 

Bent 1 

Col 

LC1 1.1768 0.8067 -31.4510 0.1311 0.0904 -31.0624 

LC2 0.4187 0.2870 -31.4594 0.4371 0.3013 -31.0623 

Bent 2 

Col 

LC1 1.1946 0.8189 -31.4465 0.3649 0.2499 -31.5185 

LC2 0.4641 0.3183 -31.4197 1.2162 0.8329 -31.5185 

Bent 3 

Col 

LC1 1.1765 0.8066 -31.4455 0.5403 0.3700 -31.5102 

LC2 0.3953 0.2712 -31.4046 1.8010 1.2335 -31.5102 

Bent 4 

Col 

LC1 1.1986 0.8216 -31.4510 0.3927 0.2690 -31.4924 

LC2 0.4655 0.3191 -31.4581 1.3089 0.8967 -31.4923 

* % Difference (in column Forces, Moments or Displacement combinations: LC1 and LC2) = [Proposed- AASHTO (2011)] X 100/ AASHTO (2011).  

A negative value represents greater AASHTO (2011) outcomes. 

 

Table D.14: Analyses results from Case#4 at column top (Seismic loading in both longitudinal and transverse directions, LC1 

and LC2). 
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FORCES AND MOMENTS 

Longitudinal Transverse 
Axial (kips) 

Shear X (kips) Moment Y (kips-ft) Shear Z (kips) Moment X (kips-ft) 

Support/ 

Location 

Load 

Test 
Case#1 Case#2 

Difference 

(%)* 
Case#1 Case#2 

Difference 

(%)* 
Case#1 Case#2 

Difference 

(%)* 
Case#1 Case#2 

Difference 

(%)* 
Case#1 Case#2 

Difference 

(%)* 

Bent 1 

Col 

LC1 308 306 -0.87 4636 4604 -0.69 40 40 0.11 597 597 -0.02 81 78 -4.00 

LC2 110 109 -0.58 1655 1648 -0.40 132 132 0.20 1990 1990 0.02 211 209 -1.02 

Bent 2 

Col 

LC1 91 94 2.84 2081 2095 0.68 28 29 4.79 625 632 1.04 90 85 -5.28 

LC2 36 37 3.37 820 827 0.80 92 96 4.74 2084 2105 1.02 216 216 0.29 

Bent 3 

Col 

LC1 65 67 3.23 1650 1663 0.82 29 30 1.34 748 750 0.27 77 75 -2.65 

LC2 22 23 4.72 563 570 1.22 98 99 1.20 2495 2500 0.20 242 242 -0.27 

Bent 4 

Col 

LC1 91 95 3.43 2083 2100 0.80 30 31 4.01 680 684 0.71 77 77 -0.40 

LC2 36 39 7.45 813 827 1.69 100 104 3.96 2265 2281 0.69 220 223 0.91 

* % Difference (in column Forces, Moments or Displacement combinations: LC1 and LC2) = [Case#2- Case#1] X 100/ Case#1. A negative value 

represents greater Case#1 outcomes.  

  

Table D.15: Analyses results from Test#1 at column top (Seismic loading in both longitudinal and transverse directions, LC1 

and LC2). 
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FORCES AND MOMENTS 

Longitudinal Transverse 
Axial (kips) 

Shear X (kips) Moment Y (kips-ft) Shear Z (kips) Moment X (kips-ft) 

Support/ 

Location 

Load 

Test 
Case#1 Case#2 

Difference 

(%)* 
Case#1 Case#2 

Difference 

(%)* 
Case#1 Case#2 

Difference 

(%)* 
Case#1 Case#2 

Difference 

(%)* 
Case#1 Case#2 

Difference 

(%)* 

Bent 1 

Col 

LC1 312 309 -0.87 4669 4616 -1.13 41 41 -0.03 610 609 -0.16 81 78 -4.00 

LC2 111 111 -0.53 1667 1654 -0.77 136 136 0.06 2031 2029 -0.12 211 209 -1.03 

Bent 2 

Col 

LC1 96 98 2.17 2133 2141 0.38 29 30 4.29 642 648 0.98 90 85 -5.15 

LC2 38 39 2.77 846 850 0.58 96 100 4.25 2138 2159 0.96 216 217 0.40 

Bent 3 

Col 

LC1 70 72 1.79 1714 1721 0.43 31 32 0.86 775 776 0.22 77 75 -2.29 

LC2 25 26 3.16 595 601 0.94 104 105 0.71 2582 2586 0.15 242 242 -0.17 

Bent 4 

Col 

LC1 96 99 2.72 2135 2146 0.50 31 32 3.54 699 703 0.66 78 77 -0.19 

LC2 38 40 6.41 835 847 1.44 104 108 3.50 2329 2344 0.64 221 223 1.03 

* % Difference (in column Forces, Moments or Displacement combinations: LC1 and LC2) = [Case#2- Case#1] X 100/ Case#1. A negative value 

represents greater Case#1 outcomes.  

Table D.16: Analyses results from Test#1 at column bottom (Seismic loading in both longitudinal and transverse directions, 

LC1 and LC2). 
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DISPLACEMENTS 

Global X (ft) Global Y (ft) 

Support/ 

Location 

Load 

Test 
Case#1 Case#2 

Difference 

(%)* 
Case#1 Case#2 

Difference 

(%)* 

Bent 1 

Col 

LC1 0.2539 0.2560 0.8351 0.0332 0.0338 1.6523 

LC2 0.0906 0.0915 0.9458 0.1108 0.1126 1.6515 

Bent 2 

Col 

LC1 0.2582 0.2603 0.8072 0.0784 0.0790 0.8318 

LC2 0.1021 0.1028 0.7357 0.2613 0.2635 0.8321 

Bent 3 

Col 

LC1 0.2543 0.2564 0.8237 0.1164 0.1171 0.5437 

LC2 0.0874 0.0882 0.9072 0.3881 0.3902 0.5435 

Bent 4 

Col 

LC1 0.2586 0.2607 0.8020 0.0853 0.0858 0.6229 

LC2 0.1008 0.1016 0.7507 0.2842 0.2859 0.6222 

* % Difference (in column Forces, Moments or Displacement combinations: LC1 and LC2) = [Case#2- Case#1] X 100/ Case#1.  

A negative value represents greater Case#1 outcomes. 

 

 

Table D.17: Analyses results from Test#1 at column top (Seismic loading in both longitudinal and transverse directions, LC1 and 

LC2). 
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FORCES AND MOMENTS 

Longitudinal Transverse 
Axial (kips) 

Shear X (kips) Moment Y (kips-ft) Shear Z (kips) Moment X (kips-ft) 

Support/ 

Location 

Load 

Test 
Case#1 Case#2 

Difference 

(%)* 
Case#1 Case#2 

Difference 

(%)* 
Case#1 Case#2 

Difference 

(%)* 
Case#1 Case#2 

Difference 

(%)* 
Case#1 Case#2 

Difference 

(%)* 

Bent 1 

Col 

LC1 958 948 -0.97 14402 14293 -0.75 124 124 -0.18 1871 1868 -0.12 252 242 -4.09 

LC2 341 339 -0.69 5132 5107 -0.49 413 413 -0.12 6233 6227 -0.09 659 652 -1.12 

Bent 2 

Col 

LC1 282 282 -0.11 6462 6469 0.11 86 86 0.05 1947 1950 0.12 278 261 -6.06 

LC2 111 111 -0.01 2550 2553 0.14 286 286 0.01 6491 6497 0.10 672 666 -0.81 

Bent 3 

Col 

LC1 199 201 0.75 5118 5138 0.39 92 92 0.26 2332 2334 0.07 238 229 -3.78 

LC2 68 69 1.37 1745 1755 0.55 306 306 0.19 7774 7777 0.04 754 750 -0.61 

Bent 4 

Col 

LC1 283 284 0.62 6466 6483 0.26 93 94 0.63 2117 2119 0.06 240 237 -1.35 

LC2 110 117 6.31 2522 2558 1.43 310 312 0.61 7058 7062 0.06 686 687 0.04 

* % Difference (in column Forces, Moments or Displacement combinations: LC1 and LC2) = [Case#2- Case#1] X 100/ Case#1. A negative value 

represents greater Case#1 outcomes.  

  

Table D.18: Analyses results from Test#2 at column top (Seismic loading in both longitudinal and transverse directions, LC1 

and LC2). 
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FORCES AND MOMENTS 

Longitudinal Transverse 
Axial (kips) 

Shear X (kips) Moment Y (kips-ft) Shear Z (kips) Moment X (kips-ft) 

Support/ 

Location 

Load 

Test 
Case#1 Case#2 

Difference 

(%)* 
Case#1 Case#2 

Difference 

(%)* 
Case#1 Case#2 

Difference 

(%)* 
Case#1 Case#2 

Difference 

(%)* 
Case#1 Case#2 

Difference 

(%)* 

Bent 1 

Col 

LC1 968 958 -0.95 14503 14333 -1.17 127 127 -0.14 1909 1907 -0.13 252 242 -4.07 

LC2 345 343 -0.67 5168 5123 -0.86 425 424 -0.08 6363 6356 -0.11 659 652 -1.12 

Bent 2 

Col 

LC1 298 297 -0.09 6621 6613 -0.13 89 89 0.06 1998 2000 0.11 278 262 -6.02 

LC2 118 118 0.02 2624 2622 -0.05 297 298 0.02 6659 6666 0.09 672 667 -0.80 

Bent 3 

Col 

LC1 216 218 0.66 5313 5320 0.14 97 98 0.27 2414 2415 0.06 239 230 -3.45 

LC2 75 76 1.17 1833 1840 0.35 325 325 0.19 8046 8048 0.03 755 750 -0.58 

Bent 4 

Col 

LC1 298 299 0.55 6626 6627 0.01 97 98 0.63 2177 2178 0.05 240 237 -1.29 

LC2 116 123 5.60 2585 2616 1.23 325 327 0.61 7256 7259 0.04 686 687 0.06 

* % Difference (in column Forces, Moments or Displacement combinations: LC1 and LC2) = [Case#2- Case#1] X 100/ Case#1. A negative value 

represents greater Case#1 outcomes.  

Table D.19: Analyses results from Test#2 at column bottom (Seismic loading in both longitudinal and transverse directions, 

LC1 and LC2). 
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DISPLACEMENTS 

Global X (ft) Global Y (ft) 

Support/ 

Location 

Load 

Test 
Case#1 Case#2 

Difference 

(%)* 
Case#1 Case#2 

Difference 

(%)* 

Bent 1 

Col 

LC1 0.7886 0.7948 0.7905 0.1041 0.1058 1.6669 

LC2 0.2809 0.2833 0.8661 0.3469 0.3527 1.6671 

Bent 2 

Col 

LC1 0.8023 0.8084 0.7653 0.2443 0.2463 0.8313 

LC2 0.3173 0.3194 0.6836 0.8143 0.8211 0.8317 

Bent 3 

Col 

LC1 0.7901 0.7962 0.7774 0.3629 0.3649 0.5439 

LC2 0.2710 0.2732 0.8134 1.2097 1.2163 0.5441 

Bent 4 

Col 

LC1 0.8035 0.8096 0.7596 0.2658 0.2675 0.6237 

LC2 0.3131 0.3153 0.6939 0.8862 0.8917 0.6234 

* % Difference (in column Forces, Moments or Displacement combinations: LC1 and LC2) = [Case#2- Case#1] X 100/ Case#1.  

A negative value represents greater Case#1 outcomes. 

 

 

Table D.20: Analyses results from Test#2 at column top (Seismic loading in both longitudinal and transverse directions, LC1 

and LC2). 
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FORCES AND MOMENTS 

Longitudinal Transverse 
Axial (kips) 

Shear X (kips) Moment Y (kips-ft) Shear Z (kips) Moment X (kips-ft) 

Support/ 

Location 

Load 

Test 
Case#1 Case#2 

Difference 

(%)* 
Case#1 Case#2 

Difference 

(%)* 
Case#1 Case#2 

Difference 

(%)* 
Case#1 Case#2 

Difference 

(%)* 
Case#1 Case#2 

Difference 

(%)* 

Bent 1 

Col 

LC1 1135 1124 -0.97 17065 16937 -0.75 145 145 0.14 2187 2191 0.20 296 284 -3.93 

LC2 404 401 -0.70 6079 6049 -0.49 483 484 0.19 7287 7303 0.22 772 765 -0.86 

Bent 2 

Col 

LC1 334 334 -0.06 7655 7664 0.13 102 102 0.06 2310 2312 0.10 330 310 -6.08 

LC2 131 131 0.04 3017 3022 0.18 339 339 0.03 7698 7705 0.09 797 790 -0.82 

Bent 3 

Col 

LC1 236 237 0.53 6061 6083 0.35 109 109 0.16 2765 2766 0.04 282 271 -4.18 

LC2 80 81 0.99 2063 2073 0.50 362 363 0.10 9218 9219 0.01 895 889 -0.68 

Bent 4 

Col 

LC1 335 336 0.41 7661 7677 0.21 110 111 0.35 2509 2509 0.01 284 280 -1.46 

LC2 131 136 4.11 2987 3016 0.96 367 369 0.34 8362 8363 0.01 813 813 -0.04 

* % Difference (in column Forces, Moments or Displacement combinations: LC1 and LC2) = [Case#2- Case#1] X 100/ Case#1. A negative value 

represents greater Case#1 outcomes.  

  

Table D.21: Analyses results from Test#3 at column top (Seismic loading in both longitudinal and transverse directions, LC1 

and LC2). 
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FORCES AND MOMENTS 

Longitudinal Transverse 
Axial (kips) 

Shear X (kips) Moment Y (kips-ft) Shear Z (kips) Moment X (kips-ft) 

Support/ 

Location 

Load 

Test 
Case#1 Case#2 

Difference 

(%)* 
Case#1 Case#2 

Difference 

(%)* 
Case#1 Case#2 

Difference 

(%)* 
Case#1 Case#2 

Difference 

(%)* 
Case#1 Case#2 

Difference 

(%)* 

Bent 1 

Col 

LC1 1147 1136 -0.95 17185 16983 -1.17 149 149 0.19 2232 2236 0.19 296 284 -3.91 

LC2 408 406 -0.67 6121 6068 -0.87 496 498 0.24 7437 7452 0.21 772 766 -0.85 

Bent 2 

Col 

LC1 352 352 -0.04 7844 7834 -0.12 106 106 0.07 2369 2372 0.09 330 310 -6.05 

LC2 140 140 0.08 3102 3102 -0.02 353 353 0.05 7898 7904 0.08 797 790 -0.81 

Bent 3 

Col 

LC1 256 257 0.48 6292 6298 0.10 115 116 0.17 2862 2863 0.03 283 272 -3.91 

LC2 89 90 0.88 2165 2171 0.31 385 385 0.11 9540 9540 0.00 895 889 -0.65 

Bent 4 

Col 

LC1 352 354 0.37 7851 7848 -0.04 115 116 0.37 2579 2579 0.00 284 280 -1.42 

LC2 138 143 3.65 3060 3083 0.75 384 386 0.36 8597 8596 0.00 813 813 -0.02 

* % Difference (in column Forces, Moments or Displacement combinations: LC1 and LC2) = [Case#2- Case#1] X 100/ Case#1. A negative value 

represents greater Case#1 outcomes.  

 

Table D.22: Analyses results from Test#3 at column bottom (Seismic loading in both longitudinal and transverse directions, 

LC1 and LC2). 
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DISPLACEMENTS 

Global X (ft) Global Y (ft) 

Support/ 

Location 

Load 

Test 
Case#1 Case#2 

Difference 

(%)* 
Case#1 Case#2 

Difference 

(%)* 

Bent 1 

Col 

LC1 0.9344 0.9418 0.7908 0.1217 0.1241 1.9873 

LC2 0.3328 0.3356 0.8586 0.4056 0.4136 1.9868 

Bent 2 

Col 

LC1 0.9505 0.9578 0.7706 0.2898 0.2921 0.8138 

LC2 0.3753 0.3780 0.7173 0.9658 0.9737 0.8140 

Bent 3 

Col 

LC1 0.9360 0.9433 0.7820 0.4304 0.4326 0.5324 

LC2 0.3203 0.3230 0.8483 1.4345 1.4421 0.5325 

Bent 4 

Col 

LC1 0.9520 0.9593 0.7606 0.3150 0.3170 0.6286 

LC2 0.3709 0.3735 0.6928 1.0500 1.0566 0.6285 

* % Difference (in column Forces, Moments or Displacement combinations: LC1 and LC2) = [Case#2- Case#1] X 100/ Case#1.  

A negative value represents greater Case#1 outcomes. 

 

 

 

Table D.23: Analyses results from Test#3 at column top (Seismic loading in both longitudinal and transverse directions, LC1 

and LC2). 
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FORCES AND MOMENTS 

Longitudinal Transverse 
Axial (kips) 

Shear X (kips) Moment Y (kips-ft) Shear Z (kips) Moment X (kips-ft) 

Support/ 

Location 

Load 

Test 
Case#1 Case#2 

Difference 

(%)* 
Case#1 Case#2 

Difference 

(%)* 
Case#1 Case#2 

Difference 

(%)* 
Case#1 Case#2 

Difference 

(%)* 
Case#1 Case#2 

Difference 

(%)* 

Bent 1 

Col 

LC1 980 970 -0.98 14732 14621 -0.75 108 108 0.12 1626 1629 0.17 231 221 -4.30 

LC2 349 346 -0.71 5243 5216 -0.51 360 361 0.16 5420 5431 0.19 586 581 -0.90 

Bent 2 

Col 

LC1 288 288 -0.02 6596 6604 0.13 88 88 0.10 1992 1994 0.12 284 267 -6.08 

LC2 112 112 0.03 2562 2566 0.15 292 292 0.08 6638 6645 0.11 687 682 -0.79 

Bent 3 

Col 

LC1 203 204 0.29 5223 5239 0.30 94 94 0.07 2379 2379 0.02 243 232 -4.78 

LC2 68 68 0.50 1750 1756 0.37 312 312 0.03 7929 7929 0.01 770 765 -0.73 

Bent 4 

Col 

LC1 289 289 0.15 6612 6622 0.16 94 94 0.06 2144 2143 -0.06 243 240 -1.62 

LC2 112 114 1.58 2570 2581 0.43 314 314 0.06 7147 7143 -0.06 697 696 -0.13 

* % Difference (in column Forces, Moments or Displacement combinations: LC1 and LC2) = [Case#2- Case#1] X 100/ Case#1. A negative value 

represents greater Case#1 outcomes.  

  

Table D.24: Analyses results from Test#4 at column top (Seismic loading in both longitudinal and transverse directions, LC1 

and LC2). 
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FORCES AND MOMENTS 

Longitudinal Transverse 
Axial (kips) 

Shear X (kips) Moment Y (kips-ft) Shear Z (kips) Moment X (kips-ft) 

Support/ 

Location 

Load 

Test 
Case#1 Case#2 

Difference 

(%)* 
Case#1 Case#2 

Difference 

(%)* 
Case#1 Case#2 

Difference 

(%)* 
Case#1 Case#2 

Difference 

(%)* 
Case#1 Case#2 

Difference 

(%)* 

Bent 1 

Col 

LC1 990 980 -0.96 14835 14661 -1.18 110 111 0.17 1656 1659 0.17 231 221 -4.29 

LC2 352 350 -0.69 5278 5231 -0.89 368 369 0.20 5519 5529 0.18 586 581 -0.89 

Bent 2 

Col 

LC1 303 303 -0.01 6756 6748 -0.12 91 91 0.11 2043 2045 0.11 284 267 -6.07 

LC2 118 118 0.05 2628 2626 -0.06 304 304 0.10 6809 6816 0.10 687 682 -0.79 

Bent 3 

Col 

LC1 220 221 0.27 5419 5422 0.05 99 99 0.08 2460 2460 0.01 243 232 -4.61 

LC2 75 75 0.47 1828 1831 0.16 331 331 0.04 8199 8199 -0.01 770 765 -0.71 

Bent 4 

Col 

LC1 304 304 0.14 6774 6768 -0.09 98 98 0.08 2201 2199 -0.06 244 240 -1.60 

LC2 118 120 1.42 2631 2637 0.22 328 328 0.08 7336 7331 -0.07 697 696 -0.12 

* % Difference (in column Forces, Moments or Displacement combinations: LC1 and LC2) = [Case#2- Case#1] X 100/ Case#1. A negative value 

represents greater Case#1 outcomes.  

 

  

Table D.25: Analyses results from Test#4 at column bottom (Seismic loading in both longitudinal and transverse directions, 

LC1 and LC2). 
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DISPLACEMENTS 

Global X (ft) Global Y (ft) 

Support/ 

Location 

Load 

Test 
Case#1 Case#2 

Difference 

(%)* 
Case#1 Case#2 

Difference 

(%)* 

Bent 1 

Col 

LC1 0.8067 0.8131 0.7879 0.0904 0.0922 1.9569 

LC2 0.2870 0.2894 0.8412 0.3013 0.3072 1.9570 

Bent 2 

Col 

LC1 0.8189 0.8252 0.7651 0.2499 0.2519 0.8276 

LC2 0.3183 0.3205 0.6795 0.8329 0.8398 0.8279 

Bent 3 

Col 

LC1 0.8066 0.8128 0.7754 0.3700 0.3721 0.5421 

LC2 0.2712 0.2733 0.7943 1.2335 1.2402 0.5420 

Bent 4 

Col 

LC1 0.8216 0.8279 0.7571 0.2690 0.2707 0.6186 

LC2 0.3191 0.3212 0.6722 0.8967 0.9022 0.6185 

* % Difference (in column Forces, Moments or Displacement combinations: LC1 and LC2) = [Case#2- Case#1] X 100/ Case#1.  

A negative value represents greater Case#1 outcomes. 

 

 

 

Table D.26: Analyses results from Test#4 at column top (Seismic loading in both longitudinal and transverse directions, LC1 

and LC2). 
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Modes Period (sec) 

Participating mass 

Individual Mode (Percent) Cumulative Sum (Percent) 

UX UY UZ UX UY UZ 

1 0.535865 1.064E-19 0.68604 8.063E-18 1.064E-19 0.68604 8.063E-18 

2 0.24793 4.214E-18 0.00001769 5.897E-17 4.321E-18 0.68606 6.704E-17 

3 0.215441 0.94503 1.607E-16 0.000000169 0.94503 0.68606 0.000000169 

4 0.172805 0.000001627 1.769E-14 0.00002019 0.94503 0.68606 0.00002036 

5 0.160199 8.539E-07 1.415E-14 0.00338 0.94503 0.68606 0.0034 

6 0.151785 5.053E-16 0.1945 1.423E-14 0.94503 0.88056 0.0034 

7 0.146294 9.508E-09 5.485E-13 0.00005753 0.94503 0.88056 0.00346 

8 0.14293 0.00006324 2.443E-14 0.00047 0.94509 0.88056 0.00393 

9 0.142318 0.00007235 6.992E-14 0.00001237 0.94517 0.88056 0.00394 

10 0.139284 0.00001039 1.127E-15 0.00006948 0.94518 0.88056 0.00401 

11 0.137672 0.00001807 6.979E-14 2.777E-07 0.94519 0.88056 0.00401 

12 0.136094 0.000003261 1.687E-15 0.00217 0.9452 0.88056 0.00618 

13 0.132799 0.00002533 3.855E-13 0.00207 0.94522 0.88056 0.00826 

14 0.13198 0.0001 3.896E-14 0.01661 0.94532 0.88056 0.02487 

15 0.130891 0.00017 5.657E-17 0.00569 0.94549 0.88056 0.03056 

16 0.128469 0.004 3.038E-14 0.00035 0.94949 0.88056 0.03091 

17 0.123114 0.00001656 5.042E-14 0.00000141 0.94951 0.88056 0.03091 

18 0.117701 0.000002602 8.883E-13 0.34615 0.94951 0.88056 0.37706 

19 0.109126 5.83E-14 5.607E-07 2.332E-12 0.94951 0.88056 0.37706 

20 0.107872 1.086E-08 1.949E-15 0.00642 0.94951 0.88056 0.38348 

21 0.097127 7.219E-07 6.994E-15 0.13491 0.94951 0.88056 0.51839 

22 0.091965 3.802E-14 0.00097 2.256E-11 0.94951 0.88152 0.51839 

23 0.091833 1.2E-13 0.00001931 1.597E-12 0.94951 0.88154 0.51839 

24 0.089486 6.824E-15 0.00213 2.58E-11 0.94951 0.88368 0.51839 

25 0.088176 8.845E-14 0.00044 1.076E-11 0.94951 0.88412 0.51839 

26 0.087722 1.624E-16 0.00045 6.447E-11 0.94951 0.88457 0.51839 

27 0.086453 2.46E-16 0.03297 3E-13 0.94951 0.91754 0.51839 

28 0.085525 0.00236 1.051E-13 0.01447 0.95188 0.91754 0.53286 

29 0.084296 1.459E-15 0.00214 1.258E-11 0.95188 0.91968 0.53286 

30 0.083704 1.33E-13 0.00046 5.282E-12 0.95188 0.92014 0.53286 

31 0.083064 0.00014 5.027E-13 0.05461 0.95201 0.92014 0.58747 

32 0.08299 8.055E-14 0.00157 1.788E-13 0.95201 0.92172 0.58747 

33 0.08201 2.181E-09 2.176E-13 1.115E-10 0.95201 0.92172 0.58747 

34 0.082002 6.769E-09 2.43E-13 6.399E-09 0.95201 0.92172 0.58747 

35 0.081623 2.277E-14 0.00166 1.821E-14 0.95201 0.92338 0.58747 

36 0.081455 0.000006467 4.02E-14 0.08397 0.95202 0.92338 0.67143 

37 0.081405 2.02E-14 0.000000181 5.528E-13 0.95202 0.92338 0.67143 

38 0.081383 7.127E-13 0.000001006 1.331E-11 0.95202 0.92338 0.67143 

39 0.081155 3.967E-12 2.292E-12 3.642E-10 0.95202 0.92338 0.67143 

40 0.081147 9.633E-15 4.505E-13 6.573E-13 0.95202 0.92338 0.67143 

 

 

 

Table D.27: Modal periods and participating mass. 
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 (Continued) 

Modes Period (sec) 

Participating mass 

Individual Mode (Percent) Cumulative Sum (Percent) 

UX UY UZ UX UY UZ 

41 0.081072 4.675E-13 5.084E-09 2.063E-16 0.95202 0.92338 0.67143 

42 0.081045 3.081E-13 2.085E-08 8.122E-19 0.95202 0.92338 0.67143 

43 0.081011 2.708E-11 3.204E-12 5.193E-12 0.95202 0.92338 0.67143 

44 0.08098 1.739E-11 4.909E-14 1.186E-10 0.95202 0.92338 0.67143 

45 0.08074 8.501E-14 1.566E-12 5.488E-12 0.95202 0.92338 0.67143 

46 0.080737 2.564E-13 2.029E-10 3.618E-12 0.95202 0.92338 0.67143 

47 0.080718 3.65E-14 2.112E-08 6.044E-13 0.95202 0.92338 0.67143 

48 0.080698 8.771E-13 4.1E-13 5.267E-13 0.95202 0.92338 0.67143 

49 0.080697 1.514E-13 9.528E-13 7.444E-12 0.95202 0.92338 0.67143 

50 0.080694 4.753E-13 2.037E-08 3.93E-12 0.95202 0.92338 0.67143 

51 0.080689 6.918E-13 1.461E-12 7.424E-14 0.95202 0.92338 0.67143 

52 0.080687 3.198E-14 4.769E-09 2.096E-12 0.95202 0.92338 0.67143 

53 0.080687 4.098E-14 5.374E-09 5.713E-12 0.95202 0.92338 0.67143 

54 0.080684 8.8E-14 8.188E-09 1.703E-12 0.95202 0.92338 0.67143 

55 0.080683 6.916E-14 1.368E-12 5.859E-12 0.95202 0.92338 0.67143 

56 0.080679 2.652E-13 2.891E-14 1.373E-11 0.95202 0.92338 0.67143 

57 0.079821 1.12E-13 0.00008122 5.859E-13 0.95202 0.92346 0.67143 

58 0.079548 1.04E-09 1.982E-13 1.233E-09 0.95202 0.92346 0.67143 

59 0.078941 2.652E-14 9.681E-07 5.015E-14 0.95202 0.92346 0.67143 

60 0.078689 1.142E-12 2.741E-14 2.497E-12 0.95202 0.92346 0.67143 

* UX, UY and UZ represent respective mass participations in Global three directions 
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FORCES AND MOMENTS 

Longitudinal Transverse 
Axial (kips) 

Shear X (kips) Moment Y (kips-ft) Shear Y (kips) Moment X (kips-ft) 

Bent 

# 

Load 

Case 
Des. Prop. 

Difference 

(%) 
Des. Prop. 

Difference 

(%) 
Des. Prop. 

Difference 

(%) 
Des. Prop. 

Difference 

(%) 
Des. Prop. 

Difference 

(%) 

1 
LC1 1 1 3.96 15 16 3.94 1 1 2.24 10 10 0.63 1 1 3.94 

LC2 0 0 3.96 5 5 3.94 2 2 2.24 32 32 0.63 0 0 3.94 

2 
LC1 1 1 3.99 16 17 3.94 1 1 0.78 22 22 0.39 1 1 3.95 

LC2 0 0 3.99 5 5 3.94 4 4 0.78 73 73 0.39 0 0 3.95 

3 
LC1 1 1 3.92 18 19 3.94 2 2 0.68 34 34 0.41 0 0 3.85 

LC2 0 0 3.92 5 6 3.94 6 6 0.68 114 115 0.41 0 0 3.85 

4 
LC1 1 1 3.92 19 20 3.94 2 2 0.40 47 47 0.38 0 0 3.85 

LC2 0 0 3.92 6 6 3.94 7 7 0.40 156 157 0.38 0 0 3.85 

5 
LC3 2 2 3.90 20 21 3.94 2 2 0.72 51 52 0.41 0 0 3.30 

LC4 0 0 3.90 6 6 3.94 8 8 0.72 171 172 0.41 0 0 3.30 

6 
LC5 2 2 4.00 20 21 3.94 2 2 0.52 48 49 0.39 0 0 4.13 

LC6 0 0 4.00 6 6 3.94 8 8 0.52 161 162 0.39 0 0 4.13 

7 
LC7 1 1 3.95 18 19 3.94 2 2 0.62 40 40 0.41 1 1 3.81 

LC8 0 0 3.95 6 6 3.94 7 7 0.62 132 132 0.41 0 0 3.81 

8 
LC9 1 1 3.93 17 17 3.94 1 1 0.74 25 25 0.39 1 1 3.99 

LC10 0 0 3.93 5 5 3.94 4 4 0.74 82 82 0.39 0 0 3.99 

9 
LC11 1 1 3.60 32 33 3.92 4 4 0.46 107 107 0.45 3 3 3.91 

LC12 0 0 3.60 10 10 3.92 14 14 0.46 355 357 0.45 1 1 3.91 

 

Table D.28: Analyses results in case of FEE at pile (middle) top (Seismic loading in both longitudinal and transverse 

directions, LC1 and LC2). 
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DISPLACEMENTS 

Global X (ft) Global Y (ft) 

Bent # Load Case Design Proposed Difference (%) Design Proposed Difference (%) 

1 
LC1 0.0157 0.0163 3.9406 0.0060 0.0061 0.5669 

LC2 0.0047 0.0049 3.9406 0.0201 0.0202 0.5669 

2 
LC1 0.0170 0.0177 3.9408 0.0140 0.0141 0.4282 

LC2 0.0051 0.0053 3.9408 0.0467 0.0469 0.4282 

3 
LC1 0.0184 0.0191 3.9432 0.0232 0.0233 0.3879 

LC2 0.0055 0.0057 3.9432 0.0773 0.0776 0.3879 

4 
LC1 0.0194 0.0201 3.9375 0.0326 0.0327 0.3808 

LC2 0.0058 0.0060 3.9375 0.1087 0.1091 0.3808 

5 
LC3 0.0199 0.0207 3.9394 0.0370 0.0371 0.3843 

LC4 0.0060 0.0062 3.9394 0.1234 0.1238 0.3843 

6 
LC5 0.0197 0.0205 3.9406 0.0349 0.0350 0.3811 

LC6 0.0059 0.0062 3.9406 0.1162 0.1167 0.3811 

7 
LC7 0.0187 0.0195 3.9370 0.0269 0.0270 0.3821 

LC8 0.0056 0.0058 3.9370 0.0898 0.0901 0.3821 

8 
LC9 0.0173 0.0180 3.9406 0.0159 0.0160 0.4149 

LC10 0.0052 0.0054 3.9406 0.0530 0.0532 0.4149 

9 
LC11 0.0146 0.0152 3.9361 0.0059 0.0059 0.5731 

LC12 0.0044 0.0045 3.9361 0.0195 0.0197 0.5731 

 

 

Table D.29: Analyses results in case of FEE at pile (middle) top (Seismic loading in both longitudinal and transverse 

directions, LC1 and LC2). 
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FORCES AND MOMENTS 

Longitudinal Transverse 
Axial (kips) 

Shear X (kips) Moment Y (kips-ft) Shear Y (kips) Moment X (kips-ft) 

Bent 

# 

Load 

Case 
Des. Prop. 

Difference 

(%) 
Des. Prop. 

Difference 

(%) 
Des. Prop. 

Difference 

(%) 
Des. Prop. 

Difference 

(%) 
Des. Prop. 

Difference 

(%) 

1 
LC1 4 2 -44.09 52 32 -38.75 2 1 -43.66 37 23 -38.89 3 2 -38.53 

LC2 1 1 -44.09 15 9 -38.75 8 5 -43.66 123 75 -38.89 1 1 -38.54 

2 
LC1 4 2 -42.43 55 34 -38.54 5 3 -39.08 86 53 -38.29 2 1 -38.65 

LC2 1 1 -42.44 17 10 -38.54 15 9 -39.08 287 177 -38.29 1 0 -38.65 

3 
LC1 4 3 -39.16 61 38 -38.34 7 4 -39.00 134 83 -38.35 2 1 -39.09 

LC2 1 1 -39.16 18 11 -38.34 22 14 -39.00 447 276 -38.35 0 0 -39.09 

4 
LC1 5 3 -38.55 65 40 -38.29 9 5 -38.34 184 114 -38.29 1 1 -39.89 

LC2 1 1 -38.55 20 12 -38.29 29 18 -38.34 614 379 -38.29 0 0 -39.90 

5 
LC3 5 3 -38.40 68 42 -38.28 9 6 -39.05 201 124 -38.36 0 0 -46.26 

LC4 2 1 -38.40 20 13 -38.28 32 19 -39.05 670 413 -38.36 0 0 -46.27 

6 
LC5 5 3 -38.40 67 42 -38.28 9 5 -38.62 190 117 -38.32 1 1 -40.66 

LC6 2 1 -38.40 20 12 -38.28 29 18 -38.62 632 390 -38.32 0 0 -40.67 

7 
LC7 4 3 -39.01 62 39 -38.33 8 5 -38.93 155 96 -38.36 2 1 -39.68 

LC8 1 1 -39.01 19 12 -38.33 25 16 -38.93 517 319 -38.36 1 0 -39.68 

8 
LC9 4 2 -41.92 57 35 -38.51 5 3 -38.98 97 60 -38.30 3 2 -41.48 

LC10 1 1 -41.92 17 10 -38.51 17 10 -38.98 322 199 -38.30 1 1 -41.48 

9 
LC11 4 2 -49.61 108 67 -38.64 17 10 -38.47 417 257 -38.41 9 5 -44.19 

LC12 1 1 -49.61 33 20 -38.64 55 34 -38.47 1391 857 -38.41 3 2 -44.19 

 

Table D.30: Analyses results in case of SEE at pile (middle) top (Seismic loading in both longitudinal and transverse 

directions, LC1 and LC2). 
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DISPLACEMENTS 

Global X (ft) Global Y (ft) 

Bent # Load Case Design Proposed Difference (%) Design Proposed Difference (%) 

1 
LC1 0.0530 0.0327 -38.3131 0.0235 0.0144 -38.6562 

LC2 0.0159 0.0098 -38.3131 0.0784 0.0481 -38.6562 

2 
LC1 0.0575 0.0355 -38.2992 0.0549 0.0339 -38.3770 

LC2 0.0173 0.0106 -38.2992 0.1831 0.1128 -38.3770 

3 
LC1 0.0621 0.0383 -38.2884 0.0911 0.0562 -38.2977 

LC2 0.0186 0.0115 -38.2884 0.3037 0.1874 -38.2977 

4 
LC1 0.0655 0.0404 -38.2828 0.1281 0.0791 -38.2841 

LC2 0.0196 0.0121 -38.2828 0.4270 0.2635 -38.2841 

5 
LC3 0.0673 0.0415 -38.2796 0.1453 0.0897 -38.2910 

LC4 0.0202 0.0125 -38.2796 0.4844 0.2989 -38.2910 

6 
LC5 0.0667 0.0412 -38.2798 0.1369 0.0845 -38.2865 

LC6 0.0200 0.0123 -38.2798 0.4565 0.2817 -38.2865 

7 
LC7 0.0633 0.0391 -38.2873 0.1058 0.0653 -38.2871 

LC8 0.0190 0.0117 -38.2873 0.3525 0.2175 -38.2871 

8 
LC9 0.0585 0.0361 -38.2969 0.0624 0.0385 -38.3524 

LC10 0.0175 0.0108 -38.2969 0.2080 0.1282 -38.3524 

9 
LC11 0.0493 0.0304 -38.2844 0.0229 0.0140 -38.6705 

LC12 0.0148 0.0091 -38.2844 0.0762 0.0467 -38.6705 

 

 

Table D.31: Analyses results in case of SEE at pile (middle) top (Seismic loading in both longitudinal and transverse 

directions, LC1 and LC2). 
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