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ABSTRACT 

 
Regional innovation systems (RIS) and innovative activity are now recognized as 

having important roles to play in regional economic development policy. The goal of this 

study is to expand our understanding of the relationship between regional economic growth 

and the local characteristics of RIS. The research identified the existence and importance of 

sources of innovation, knowledge spillovers, and regional spillovers as the principal 

characteristics of RIS in the South. A knowledge production function approach was used to 

estimate the determinants of innovative activity in rural counties. A zero inflated negative 

binomial model was estimated to capture the influence of local characteristics of the county 

on the existence and volume of innovative activity in the county.  

The findings of this research indicate that local innovative activity and characteristics 

of RIS matter in regional economic growth. Patenting activities in metro areas had a positive 

and statistically significant association with patent totals for nearby rural areas. However, the 

results of the OLS models and the simultaneous system of equations for the extended 

Carlino-Mills model found a negative association between metro patenting activity and 

economic growth of neighboring rural areas, indicating “backwash” effects. Thus, the 

implication from these findings is that regional policymakers should be careful of 

investments in metro RIS if the goal is economic development in nearby rural areas. 
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CHAPTER 1 

INTRODUCTION 

 

This study examines the role of Regional Innovation Systems (RIS) on county 

innovative activity and regional economic growth in the South1. Cooke and Morgan (1998, p. 

71) defined RIS as “regions that possess the full panoply of innovation organizations set in 

an institutional milieu, where systemic linkage and interactive communication among the 

innovation actors is normal.” The popularity of RIS is closely related to the apparent 

shortcomings of traditional regional development models and policies, the emergence of 

identifiable and successful clusters of innovative activity in many regions, and the increased 

use of regional development policy for stimulating innovative activity at the local level 

(Enright, 2001; Asheim and Isaksen, 1997).  

California’s Silicon Valley, Massachusetts’ Route 128, North Carolina’s Research 

Triangle, and Florida’s Scripps Institute are considered as the intensely productive regions 

with innovative activities. Policymakers, particularly at the local level, increasingly are 

interested in growing their own regional clusters of innovation. Thus, innovative activity and 

RIS are now recognized as having important roles to play in regional economic development 

policy (Black, 2004; Acs et al., 1994). By determining what local characteristics of RIS are 

associated with the spread of innovative activities at the local level, we can develop policies 

and programs to enhance the regional economic development benefits related to RIS. 

 
1 The South is 13 Southern states in the U.S. included in this analysis are: Alabama, Arkansas, Florida,
Georgia, Kentucky, Louisiana, Mississippi, North Carolina, Oklahoma, South Carolina, Tennessee, Texas,
and Virginia.
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Most research on innovation and RIS focused on high-tech industries in large 

metropolitan areas. The findings from such studies of centers of high technology industries 

provided only limited insights into innovation systems in less technologically-advanced 

regions. Thus, a potential shortcoming to the strategy of promoting RIS is that innovative 

activity tends to concentrate in the larger metropolitan areas, and a regional innovation 

system may overlook the endogenous capabilities of less-developed regions (Wiig and Wood, 

1995). For example, the role of nonmetropolitan or rural areas in RIS has received relatively 

little attention. If a metropolitan area’s innovative activity generates “spread” effects on 

surrounding nonmetropolitan areas, these nonmetropolitan areas will benefit from the 

development of RIS in the metro core. On the other hand, metropolitan growth may 

generate “backwash” effects on surrounding nonmetropolitan areas.  

The goal of this study is to identify the local characteristics of RIS associated with 

innovative activity in rural counties in the labor market areas (LMA) of the South. In 

addition, the research will attempt to determine whether innovative activities in the RIS of 

metropolitan areas are associated with innovation in nearby nonmetro or rural areas. 

Innovative activity will be measured by utility patent2 counts for the ten-year period 1990 

through 1999.  Of special interest are the determinants of RIS in nonmetro or rural counties 

near metropolitan clusters of innovative activities.  Specifically, is patenting activity in 

nonmetro or rural counties associated with innovative activity in the metro core, and if so, 

what characteristics of the metro and rural counties contribute to increased rural innovative 

activities? A second purpose of the research is to develop and estimate an empirical 

framework to test for the importance of RIS on regional economic growth. Of special 

 
2 Among three kinds of patents (utility patents, plant patents, and design patents), utility patents were
granted to the inventor or discover of any new and useful method, process, machine, device, manufactured
item, chemical compound, or improvement to the same (USPTO, 2005).
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interest are the local characteristics of RIS as identified by knowledge production function 

(KPF) models for Southern rural areas. 

The research that follows makes three principal contributions. First, the research 

extends the framework initiated by Griliches (1979, 1984) to account for the local 

characteristics of RIS in the South such as innovation sources, knowledge spillovers, and 

regional spillovers effects. Second, a novel empirical framework is developed to test the 

relationship between the local characteristics of RIS and rural patent activity at the local 

level. Third, the paper tests the hypothesis that the contribution of innovative activity to 

regional economic growth depends on the local characteristics of RIS.  

The econometric technique employed in this research (a zero inflated negative 

binomial model) more accurately accounts for the distributional characteristics of innovation 

data than previous work that used count data, such as Poisson and negative binomial 

models. The findings of this research indicated that the innovative performance of regions is 

improved when firms became better innovators by interacting with various support 

organizations within their region. This study also confirmed that local innovation activity and 

regional spillovers mattered in regional economic growth. Patenting activities in metro areas 

had a small but statistically significant association with patent totals for nearby rural 

economies. However, the results did not show any relationship between university R&D 

expenditures in metro cores and patenting activity in the rural remaining counties of the 

core’s LMA. Furthermore, the results of the OLS models and the simultaneous equation for 

the extended Carlino-Mills model found a negative association between metro patenting 

activity and economic growth of neighboring rural areas, indicating ‘backwash’ effects.  

This paper is organized as follows. Chapter 2 provides a brief background of studies 

of RIS at the regional level. These earlier works provide both the empirical and conceptual 
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bases for the research on the South. This chapter includes an overview of innovative 

activities in the South and a brief survey of the role of the extended KPF models for 

research on RIS.  

Chapter 3 develops an empirical model based on a KPF to evaluate the local 

characteristics of RIS at the nonmetro or rural county level for the South during 1990-99. 

The chapter includes a description of the data set for the empirical analyses, followed by 

discussion of the econometric techniques adopted to examine the spillovers effects of 

patenting activity. This is followed by a more analytical discussion of technology-related 

issues associated with the RIS, including an investigation of the region as the base for 

regional innovation activities and the capabilities of firms located there. Specific regional 

factors that affect innovation activities are also examined. Chapter 3 concludes with 

empirical analysis of the determinants of innovative activity in the nonmetro and rural 

counties of the South.  

Chapter 4 develops an empirical model based on the OLS models and the extended 

Carlino-Mills model to evaluate the relationship between innovative activity and economic 

growth at the rural county level of the South during 1990-2000. The chapter includes a 

description of the data set for the empirical analysis, followed by a discussion of the 

econometric technique adopted to examine the determinants of county economic growth 

rates. Lastly, Chapter 5 summarizes the empirical findings and focuses on the policy 

implications emanating from this body of work.
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CHAPTER 2 

RIS AND REGIONAL DEVELOPMENT 

2.1 Introduction  

The concept of RIS has received much attention from policy makers and academic 

researchers as a framework for innovation policy making in recent years (Asheim et al., 2003; 

Cooke et al., 2002). The popularity of the concept of RIS is closely related to the emergence 

of regionally identifiable clusters of industrial activity as well as the surge in regional 

development policies to sustain innovation-based learning economies. A major issue is the 

development of an adequate empirical basis for conceptual work focusing on RIS. The goal 

of this chapter is to review and summarize the recent literature on RIS, and to present a 

summary of the shortcomings and challenges in this research. Furthermore, this chapter will 

suggest a research methodology that may be used to determine the local characteristics of 

RIS.  

The remainder of this chapter is organized as follows. First, RIS at the regional level 

are defined based on local characteristics identified in the literature. The literature reviews 

provide both the empirical and conceptual bases for the research on RIS in the South. 

Second, I review recent research on the association between the local characteristics of RIS 

and regional economic development. Third, this study provides an overview of innovative 

activity in the South from 1990 to 1999. Local indicators of spatial association (Local Moran 

I) are used to identify the cores of clusters of innovation among Southern counties and the 

spatial spillovers of innovative activity from the RIS. In the final section, the summary of 

findings is provided. 
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2.2 Studies of RIS   

The concept of RIS as an economic development policy is relatively new though RIS 

have in the literature since the early 1990s (Cooke, 1992, 2001). This section reviews some of 

the conceptual thoughts and local characteristics of RIS and the role of RIS in regional 

economic growth. 

 

2.2.1 Identification of RIS 

The concept of RIS has no commonly accepted definitions. According to Doloreux 

and Parto (2004), the origin of the concept was from two main bodies of theory and 

research. The first is systems of innovation. The systems of innovation literature 

conceptualized innovation as a social process (Doloreux and Parto, 2004). Freeman (1987) 

defined a regional innovation system as a network of public and private institutions that 

through its activity and interaction creates, brings, modifies, and spreads new technologies. 

The second is regional science. From a regional point of view, innovation is a localized 

process, suggesting that the benefits deriving from localization advantages and spatial 

concentration through which the process of knowledge creation and dissemination occurred 

(Doloreux and Parto, 2004). Andersson and Karlsson (2002) suggested that a regional 

innovation system consisted of two key actors, regional knowledge spillovers and sources of 

innovation.  

Conceptualizations of RIS are provided by Cooke et al. (2000) and others (Asheim 

and Isaksen, 2002; Wolfe, 2003; Enright, 2001). According to these studies, all regions have 

some kind of RIS, including not only regions with strong preconditions to innovation, but 

also old industrial regions, peripheral regions, and rural regions (Wigg, 1999). Cooke (2001) 

and Cooke et al.(1998) ranked RIS at different points on a scale from strong to weak, and 
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Asheim and Isaksen (2002) distinguished between different types of RIS in order to capture 

some conceptual variety. Based on this earlier research, Niosi (2000, p.8) defined RIS as 

“regions in which innovative activities take place. Innovative activities must be measurable 

by some universally acceptable indicator, such as the granting of patents to locally-based 

inventors or the launching of new products designed and developed in the area.”  

Wigg and Wood (1995), however, argued that there had been an overemphasis on 

core regions and high-tech industries in the literature. This early focus also created 

difficulties for the application of findings from the studies of core RIS to RIS in less 

technologically-advanced regions. Thus, studies on RIS often cited the lessons that might be 

learned from successful, usually geographically core regions, without fully understanding on 

the endogenous capabilities of less-developed regions (Wigg and Wood, 1995, p.4).  

Three broad dimensions of the local characteristics of RIS are emphasized in this 

paper. First are the interactions among different sources of innovation in the RIS such as 

small firms, large firms, and the wider research community. Second is the role of knowledge 

spillovers to which innovation processes are institutionally embedded in the regional setting 

of systems of production. Third are regional spillovers, which are related to regional 

characteristics and may embody localized interactive learning. Accordingly, policy strategies 

could be oriented towards the promotion of accessibility in the development of a RIS 

(Andersson and Karlsson, 2002) and the development of local comparative advantages 

linked to specific local resources. 

The context within which firms conduct innovative activities is highly important and 

may be modeled by analyzing the interrelationships between economic and technological 

systems at various scales. The RIS are comprised of the elements (small and large firms, 

universities and government agencies) and relationships (knowledge spillovers and regional 
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spillovers) that interact in the production, diffusion, and use of new knowledge. Figure 2.1 

summarizes the concepts, and the following sections discuss the components of RIS in more 

detail.  
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Figure 2.1 The Flow Chart of Regional Innovation System 
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2.2.2 Sources of Innovation 

The systemic approach to innovation is founded upon the interactive model of 

innovation. It is important to promote interactions between different innovative actors that 

have reasons to interact, such as interactions among small start-up firms, larger firms, 

universities and government agencies (Cooke, 2001). Baumol (2004) argued that there were 

four principal sources of innovation (small firms, large firms, government and universities 

R&D), and each source specialized in a part of the innovation process: revolutionary 

breakthroughs (small firms), incremental improvements (large firms) and basic research 

(government agencies and universities). 

 

Role of Entrepreneurs and Small Firms in Innovation 

Two recent studies (CHI Research, 2003, 2004) by the U.S. Small Business 

Administration (SBA) provided support for small firms as important sources of innovation. 

These reports examined technological change. The entrepreneur is naturally associated with 

the small startup-firm, and these reports found that small firms were more innovative per 

employee than larger firms. The study from CHI Research (2003)3 reported that: 

 
“The small firm share of U.S. patenting is similar to their share of 
manufacturing employment, 41%. Small firms produce more highly cited 
patents than large firms on average. Small firm patents are twice as likely as 
large firm patents to be among the 1% most cited patents. That is, small 
firm patents are on average more technically important than large firm 
patents. Small patenting firms produce 13-14 times more patents per 
employee as large patenting firms. The small firms are younger than the 
large firms, but are not new startups. Persistence distinguishes these 
patenting small firms from innovative small firms in general. We think of 

 
3 The scope of the research was that a total of 1,071 firms with 15 or more patents issued between 1996 and
2000 were examined. A total of 193,976 patents were analyzed. CHI created a database of these firms and
their patents. This list excluded foreign-owned firms, universities, government laboratories, and nonprofit
institutions (CHI Research, 2003).
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these small firms the “serial innovators,” a term suggested by Leigh 
Buchanan at Inc magazine. Small firm patenting is very strong in health 
technologies and gaming, and there are a large number of small firm 
innovators in parts of information technology. Small firm innovation is 
twice as closely linked to scientific research as large firm innovation on 
average, and so substantially more high-tech or leading edge. Small firm 
innovation is more extensively linked to outside technology while large 
firms build more their own technology. Small firm innovators are more 
dependent on local technology.” [CHI Research, 2003, p. 3] 
 

Moreover, the more recent study (CHI Research, 2004, p. ii) found that, “The technological 

influence of small firms is increasing. The percentage of highly innovative U.S. firms (those 

with more than 15 U.S. patents in the last five years) that are defined as small firms increased 

from 33 percent in the 2000 database to 40 percent in the 2002 database…Small companies 

represent 65 percent of the new companies in the list of most highly innovative companies 

in 2002.” 

Koo (2005) argued that a cluster of small firms could achieve economies of scale and 

flexible specialization through close cooperation among themselves. Many researchers 

hypothesized that a local economy’s performance is linked to entrepreneurial activity if the 

entrepreneurs serve as a mechanism for knowledge spillovers (Audretsch and Fritsch, 1996; 

Malecki, 1994). A rich empirical work also linked entrepreneurship to RIS. Feldman (2001) 

examined the formation of innovative clusters around Washington, D.C. and found that 

clusters formed not because resources were initially located in a particular region, but 

through entrepreneurial activity. Feldman notes that large firms have made important 

contributions to RIS, however, the smaller enterprises have specialized in the breakthroughs. 

Role of Large Firms in Innovation 

Schumpeter (1947) argued that innovation increased more than proportionately with 

firm’s size, and that large firms had a natural advantage in innovation because there were 
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scale and scope economies in the production of innovations. Firms with greater market 

power can more easily appropriate the returns from innovation and hence have better 

incentives to innovate. Of particular significance in innovation is competitiveness and rivalry 

among oligopolistic firms (Baumol, 2004). According to data provided by the National 

Science Foundation (National Science Board, 2000), 46 percent of total U.S. industrial R&D 

funds was spent by 167 companies that employed 25,000 or more workers; 60 percent of 

these funds was spent by 366 companies with at least 10,000 employees; and 80 percent was 

spent by 1,990 firms of 1,000 or more employees. Alternatively, about 15 percent of total 

U.S. industrial R&D funds was spent by the 32,000 companies that employed fewer than 500 

workers. 

Acs et al. (1994) pointed out that the innovation output of all firms increased along 

with an increase in R&D expenditures, both in private enterprises and in university 

laboratories. Private enterprises’ R&D expenditures played a particularly important role in 

generating innovation for large firms, while expenditures on government and university 

R&D played an important role in generating innovative activity for small firms (Audretsch 

and Feldman, 2003).  

 

Role of Universities and Government Agencies 

The last two key developers of innovation are universities and government agencies. 

Baumol (2004) argued that basic research was difficult for a small or large firm to conduct 

because it was considered a wasteful investment:  

“From the point of view of the unthinking market mechanism, 
expenditure on basic research is a ‘wasteful’ expenditure, because the outlay 
promises no addition to the profits of the firm. By its very nature, it is nearly 
impossible to predict whether basic research will yield any financial benefit at 
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all and, if so, who will ultimately be the beneficiary. Certainly, it need not be 
the enterprise that carried it out. That is why governments and universities 
have had to step in, if basic research of any magnitude was to be carried out. 
It is important for growth in the long run that this be done, for so much of 
applied innovation is made possible or is at least stimulated by its results.”  
[Baumol, 2004, p. 330] 
 

An additional contribution of universities and the public institutions to innovation includes 

the education of the innovator, and also one of the major purposes of research in the 

academy is the training of the researchers of the future (Baumol, 2004).  

University research spillovers were investigated in several empirical studies. Jaffe 

(1989) and Jaffe et al. (1993) provided empirical evidence that university research had a 

significant effect on innovative activity at the state level. Acs (2002) found that academic 

research had a high-tech employment spillover at the city level. His results also suggested 

that spillovers from university research were greater than those from the private industrial 

R&D. Varga (2000) provided evidence of a positive effect of agglomerations of universities 

on high technology innovations. Anselin et al. (1997) found that regional university research 

stimulated regional high technology firms’ innovative activities in the U.S. Black (2004) 

concluded that greater R&D activity in the local academic sector also contributed to more 

innovative activities for small firms, supporting previous evidence that small firms generated 

innovations from R&D at local universities.  

Woodward et al. (2006) analyzed the connection between university proximity and 

the location of new-technology intensive plants. They used a conditional logit model for all 

counties in the U.S. for 1996. They found that a university’s R&D impact on firm location 

choices varied by industry. These findings were supported by other research indicating that 

government and university research laboratories provided an important source of innovation 

to private enterprises (Jaffe, 1989; Feldman and Audretsch, 1998).  
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2.2.3 Knowledge Spillovers in RIS 

There are three regional factors related to the availability and diffusion of knowledge 

spillovers: industrial specialization, industrial diversity, and regional competitiveness.  

 

Industrial Specialization and Spillovers 

The first theory of external economies was developed by Marshall, 1890; Arrow, 

1962; and Romer, 1986, hereafter MAR. MAR assumed that for a given region, specialization 

in a limited number of economic activities would contribute to spillovers and growth (Van 

Stel and Nieuwenhuijsen, 2004). In a regional innovation system, industrial specialization in a 

region refers to the geographic concentration of a particular industry within a specific region 

and may result from the interaction of increasing returns to scale, transportation costs 

savings, labor pooling, and local demand, generating additional externalities that enhance 

industry innovation and growth (Krugman, 1991). In the MAR theory, regional specific 

industry growth is maximized if an industry is dominant in the region, and if local 

competitiveness is not too strong (Koo, 2005).  

Much empirical research focused on the effects of an economy’s industrial structure 

on innovation and growth. Henderson et al. (1995) examined employment growth rates 

between 1970 and 1987 in five traditional capital goods industries located in 224 cities. They 

found that employment growth in these sectors was positively correlated with a high past 

concentration in the same industry, supporting the industrial concentration, or MAR view. 

Regional Competitiveness and Spillovers 

A second theory of knowledge spillovers was proposed by Porter (1990). Porter 

assumed that local competitiveness accelerated imitation and upgraded innovation. Although 
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competition decreased the relative benefits for the innovator due to large spillovers to 

competitors, the amount of innovative activity increased because competition forced 

enterprises to innovate (Van Stel and Nieuwenhuijsen, 2004). Gleaser et al. (1992) provided 

an evidence of fierce competition to innovate, resulting in growth, from the Italian ceramics 

industries. Thus, while MAR emphasized the negative effect of local competitiveness on the 

amount of innovative activity, Porter assumed that the positive effects dominated (Van Stel 

and Nieuwenhuijsen, 2004). The empirical research tends to favor the competitiveness view 

over the MAR view. Following Glaeser, et al. (1992), much of the empirical research found 

that local competitiveness was more conducive to city growth than was local monopoly. 

Feldman and Audretsch (1999) also found that local competitiveness was more beneficial to 

innovative activity than was local monopoly. 

 

Industry Diversity and Spillovers 

The third explanation on the availability and significance of local knowledge 

spillovers was developed by Jacobs (1969). Jacobs believed that the variety of local economic 

activities played a major role in the innovation process. In her theory, industry variety rather 

than specialization in the region promoted innovation and industry growth because many 

knowledge transfers occurred across industries. The availability of Jacobs externalities (i.e. 

spillovers) provided innovating firms with strong incentives to cluster together to take 

advantage of the various positive agglomeration economies resulting from cross-industry 

networking (Koo, 2005).  

Glaeser et al. (1992), Feldman and Audretsch (1999), and Acs et al. (2002) examined 

the role of externalities associated with knowledge spillovers as an engine of regional 

economic growth. They tested models of knowledge externalities and found that local 



16

competitiveness and industrial diversity, rather than regional specialization and monopoly, 

encouraged employment growth, innovative activities and economic development. Their 

evidence suggested that knowledge spillovers might occur predominately between, rather 

than within, industries, consistent with the theories of Jacobs (1969). Alternatively, 

Henderson et al. (1995) showed that either diversity or specialization might create external 

economies, depending on the industry.  

 

2.2.4 Regional Spillovers in RIS 

If knowledge spillovers are important, it follows that they will influence firms’ 

location decisions. In particular, when knowledge is not easily exchanged due to a distance, 

firms tend to locate in the industry cluster to capitalize on the innovations (e.g. patents) in 

nearby firms (Koo, 2005). Earlier research on RIS supported this view and showed that the 

innovative activity of firms was based on localized resources such as a specialized labor 

market, supplier systems, local learning processes, supporting agencies or organizations, and 

the size of the local economy (Asheim et al., 2003; Cooke et al., 2000). Innovating firms have 

strong incentives to cluster together to take advantage of the various positive agglomeration 

economies provided by geographic spillovers (Koo, 2005).  

 

Role of Agglomeration Effects on Innovative Activity 

Henderson (1986) showed that agglomeration could affect the productivity levels of 

local firms through external economies and thereby boost the economic performance of a 

region, suggesting that such agglomeration effects arose from the diversity of deep local 

labor markets and information. Malecki (1991) also found that agglomerative economies 
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took the form of two related effects such as localization economies and urbanization 

economies.  

Localization economies occur largely from concentrations of labor and knowledge 

spillovers, particularly related to high-tech industries (Black, 2004). Rosenthal and Strange 

(2001) found that firms could benefit from reduced innovation costs generated by lower 

labor costs if the search for and acquisition of skilled labor is easier due to the proximity of a 

relevant labor pool, suggesting why many industries requiring certain types of skilled workers 

are clustered geographically. This labor pooling effect can be especially beneficial to high-

tech industries requiring highly skilled and trained workers (Glaeser, 2000). Therefore, the 

innovative activity in a region may be greater with the presence of a relatively high-tech labor 

pool (Black, 2004).  

 Urbanization economies exist because of positive externalities primarily related to 

the size of a geographic area (large populations and employments), indicating the importance 

of the size of the local economy (Black, 2004; Jacobs, 1960). The size of a local economy can 

provide agglomerative economies through greater access to networks among workers, firms 

and institutions located in the area. Black (2004) also argued that the opportunity for 

increased communication and interaction among these agents could enhance the innovation 

process and the ability to perform innovative activity in the area. 

 

Geographical Spillovers of Innovative Activity 

Several papers asserted that knowledge spillovers had clear spatial boundaries 

because the communication between firms and workers depended on their geographical 

proximity (Feldman and Audretsch, 1999). Baptista (2000) provided empirical evidence that 

innovations diffused faster within clusters. Lawson and Lorenz (1999) also gave an increased 
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role for the importance of local institutions in encouraging spillovers. It was maintained that 

relational proximity played a prominent role along with geographical spillovers.  

A significant research effort was devoted to finding evidence of regional spillovers. 

Jaffe et al. (1993) found evidence for both the existence of knowledge spillovers and their 

boundedness in space. They concluded that citations (1972 through 1980) to patents were 

more likely to come from the same region as the patents to which the citations were made, 

indicating a spatial phenomenon. It is indicated in several recent studies that companies were 

attracted to the close proximity of external knowledge inputs such as universities (Audretsch 

and Stephan, 1996; Zucker et al., 1998). Thus, both theory and empirical findings pointed in 

the direction that geographical spillovers was critical for the spread of innovations (Feldman, 

1994).  

A popular approach to empirically model the local characteristics of RIS as well as to 

test for their influence on regional innovative activities is the knowledge production function 

framework initiated by Griliches (1979, 1984). This framework has been widely applied in 

empirical studies of regional innovation in the US (Jaffe, 1989; Anselin et al., 1997, 2000), in 

Italy (Capello, 2002), in Austria (Fischer and Varga, 2003) and in Germany (Fritsch, 2001). 

The literature emphasized the importance of interaction between actors, and proximity 

among innovators is regarded as a core characteristic of RIS (Asheim and Isaksen, 1997).  

Regional scientists and economists also have used many different research 

methodologies in their attempts to assess the existence and magnitude of urban spillovers to 

rural areas. Much of this literature used the Carlino-Mills modeling frameworks. Henry et al.

(1999) used a Carlino-Mills model to explain population and employment changes in rural 

areas based on urban area growth. The model developed by Henry et al. (1997, 1999) was 

extended to the traditional Carlino-Mills model by the addition of a spatial weight matrix as 
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proposed by Boanet (1994). They concluded that rural areas were sensitive to the 

performance of nearby urban areas, indicating that the spillovers were stronger in rural areas 

near urban areas with rapid population growth. They also found that employment and 

population growth in rural areas was significantly impacted by growth in the nearby urban 

areas.  

 

2.2.5 The Role of RIS in Regional Economic Growth 

In the past decades there has been increasing recognition that innovations 

contributed substantially to local economic growth. According to the new growth theory (i.e. 

the endogenous growth theory), innovation spillovers are an engine of economic growth 

(Romer, 1986, 1990; Lucas, 1993). The positive relationship between innovation systems and 

economic growth has been investigated since the works of Schumpeter (1947). Given their 

purported importance as the sources of regional economic growth, innovation spillovers 

received considerable treatment in the economic literatures in both empirical and theoretical 

studies (Griliches, 1984).  

Empirical support for the role of innovative activity in regional economic growth is 

provided in a study of county level differences in 2002 per capita incomes and 1997 to 2002 

per capita income growth (Schunk et al., 2005). Schunk et al. (2005) used county-level utility 

patents and university research and development expenditures as measures of local 

innovative capacity.  Their findings indicated that roughly two-thirds of the variation in 

county-level per capita income across the U.S. could be explained by variations in these 

measures of innovation and innovative capacity. They also found that counties with higher 

levels of patents and university research and development had faster rates of growth (Schunk 

et al., 2005). 
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Although the literature on the role of innovative activity on regional economic 

growth is extensive (Enright, 2001; Porter, 1996; Barkley and Henry, 1997), there is limited 

evidence on the role of RIS in non-metro or rural areas (Barkley et al., 2006; Barkley et al., 

1999). These studies indicated that nonmetropolitan innovative clusters contributed to 

higher wages and an increase in business start-ups, but employment was more volatile with 

industry concentrations. Barkley et al. (1996) found that rapid metropolitan growth would 

stimulate economic activity in hinterlands nearest the metro cores but little spillover of 

growth was evident in the more peripheral rural areas of the functional economic areas. 

Barkley et al. (2006) also found a strong correlation between local indicators of RIS 

and measures of economic growth for metropolitan areas in the South.  In this research, 

cluster analysis was used to divide the 107 metro areas in the South according to 16 

indicators of innovative activity (e.g., patents, university R&D expenditures); innovative 

capacity (e.g., employment in high-technology manufacturing, employment in scientific and 

technical occupations); and entrepreneurial environment (e.g., venture capital investments, 

employment in business services).  The cluster analysis identified six groupings of 

metropolitan areas, and only 21 of the metropolitan areas were classified as RIS based on 

relatively high levels for the selected measures of innovation. Their findings indicated that 

nonmetro counties near a metro regional innovation system experienced more rapid 

population and employment growth; however, nonmetro growth rates varied among the 

three types of metro RIS. In addition, proximity to a metro regional innovation system had a 

stronger impact on nonmetro population change than on nonmetro employment (Barkley et 

al., 2006).   

 



21

2.3 Overview of Innovative Activity in the South4

Since data on innovations generally are not available at the local level, patents in 

metropolitan and county areas often are used as a measure of innovative activity. This 

measure has its disadvantages, since some innovations are not patented and patents differ in 

their economic impacts. Nonetheless, patents remain a useful measure of the generation of 

ideas (Barkley et al., 2006; Acs et al., 2000). Acs et al. (2002) used the KPF approach to test 

whether patent data was a reliable proxy measure of innovative output as opposed to 

innovation count data (as represented by SBA innovation counts). Preliminary analysis 

indicated that patent data and innovation count data had a positive correlation coefficient of 

0.79. They concluded that patents were a reliable measure of innovative activity. However, 

Acs et al. (2002) suggested that patent data over emphasized the effects of localized 

interactions. Alternatively, the influences of university R&D were under represented in the 

model that used patent data.  

 

2.3.1 Innovative Activity in the Southern Counties 

The innovative activity in Southern counties, as measured by utility patents 1990-99, 

varied across the 1342 counties.5 The average county had 88.89 patents from 1990 to 1999 

for an average of 8.94 patents per 10,000 residents (patent intensity). One-hundred and 

eighteen counties (8.79%) reported no patents for the 10 year period (Figure 2.2). Another 

680 counties (50.67%) averaged less than one patent per year for the time period.  Thus over 

 
4 The revised version of this section was published in the author’s article “Innovative Activity in Rural
Areas: The Role of Local and Regional Characteristics” (Barkley, Henry, and Lee, 2006).

5 The data set for employment and population is from the CD-ROM versions of the 1988, 1994, and 2000
County and City Data Books, produced by U.S. Census Bureau. The time span is 11 years, 1990-2000.
Because county patents data in 2000 are not available, the time span for patents in this study is 10 years,
1990-1999.
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one-half (50.67%) of the Southern counties had fewer than 10 patents over the 10 year 

period.  Alternatively, a relatively small number of counties were very active in innovation.  

Twenty five counties averaged more than 100 patents per year from 1990 to 1999.  These 25 

counties accounted for 57,648 patents or 48.33% of the all patenting activity among the 1342 

Southern counties (Figure 2.3).  

 

Figure 2.2 Total Patents of Southern Counties, 1990-99 
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Figure 2.3  Histogram for Patent Totals (PAT_TOT) of 1342 Counties, 1990-1999  

 

2.3.2 Innovative Activity in Metro and Nonmetro Counties 

Metropolitan areas had significantly more patenting activity than nonmetro counties 

(Table 2.1 and 2.2).  The average metropolitan county had 287.4 patents from 1990 to 1999 

for an average of 18.7 patents per 10,000 residents.  Nonmetro counties averaged only a total 

of 13.1 patents and 5.1 patents per 10,000 population.  Proximity to a metro area did not 

necessarily result in greater patenting activity for the nonmetro county.  The average number 

of patents (13) and patents per 10,000 residents (5) were almost identical for the 591 

nonmetro counties in Labor Market Areas (LMA) with a metro core versus the 374 

nonmetro counties in LMA consisting entirely of nonmetro counties.   
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Table 2.1 Descriptive Statistics for Patent Totals, 1990-1999 by County Type 
 
County Type Number of  

Counties  
Mean  Standard 

Deviation 
Min. Max. 

Southern Counties  1342 88.89 357.51 0 4993 

Metropolitan  377 287.39 654.34 0 4993 

Nonmetropolitan  965 13.10 32.60 0 554 

 

Nonmetro Subgroups

Metro LMA  591 13.15 31.37 0 480 

Nonmetro LMA 374 13.03 34.49 0 554 

Source: USPTO, 1999 

 
Table 2.2 Descriptive Statistics for Patent Totals per 10,000 Population, 1990-1999. 
 

County Type Number of  
Counties 

Mean Standard 
Deviation 

Min. Max. 

Southern Counties  1342 8.94 20.99 0 384.32 

Metropolitan  377 18.73 33.73 0 384.32 

Nonmetropolitan  965 5.11 10.17 0 163.25 

 

Nonmetro Subgroups

Metro LMA  591 5.11 10.59 0 163.25 

Nonmetro LMA 374 5.10 9.49 0 114.61           

Source: USPTO, 1999 
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The patent activity in Southern nonmetropolitan counties varied significantly across 

the 965 counties (1990 nonmetro designation). Six-hundred and forty nine counties (67%) 

averaged less than one patent per year during the 10 year period (Figure 2.4). In other words, 

over two-thirds of the Southern nonmetropolitan counties have fewer than 10 patents over 

the time period.  Alternatively, a relatively small number of nonmetro counties were very 

active in innovation.  Seventeen nonmetro counties averaged more than 10 patents per year 

from 1990 to 1999. These 17 counties account for 3,255 patents or 25.7% of the all 

patenting activity among the 965 Southern nonmetro counties (Table 2.3). Barkley et al.

(2006) explain that among the most innovative nonmetropolitan areas are counties with 

major research universities (Oktibbeha, MS and Payne, OK); counties near major federal 

research centers (Roane, TN and Indian River, FL); counties with large employment in the 

oil industry (Washington and Stephens, OK): and counties near metropolitan areas (Hall, 

GA and Bradley, TN). 
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Figure 2.4 Distribution of Annual Average Patenting Activity, 965 Southern Nonmetro 
Counties, 1990-1999. 
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Table 2.3 Southern Counties That Averaged More Than 10 Patents Per Year, 1990-1999. 

 

County State Patents 

Washington Oklahoma    554 

Stephens Oklahoma    480 

Montgomery Virginia    327 

Hall Georgia    193 

Roane Tennessee    188 

Henderson North Carolina    174 

Iredell North Carolina    148 

Indian River Florida    145 

Payne Oklahoma    143 

Franklin Texas    128 

Bradley Tennessee    127 

Kay Oklahoma    121 

Monroe Florida    113 

Kleberg Texas    108 

Oktibbeha Mississippi    107 

Oconee South Carolina    105 

Beaufort South Carolina    104 

Total 17 Counties    3,255 
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2.3.3 Identification of Innovation Clusters in the South   

Previous research indicated that innovative activity was positively associated with the 

availability of localization and urbanization economies (Gordon and McCann, 2005; 

Anderson et al., 2005).  In addition, the existence of limited geographic spillovers from 

innovative activity (Acs, 2002) suggests that patenting activity in the South may be clustered 

in locations with significant R&D inputs plus supportive environments (Barkley et al., 2006).  

Of particular interest to this study is the identification of innovation clusters in the South 

and the role of nonmetro areas in these clusters. 

Anselin (1995) suggested the use of local indicators of spatial association (LISA) for 

the analysis of intra-regional linkages. Anselin’s local Moran statistic (Ii) was selected as the 

local indicator of spatial association. The local Moran for each county i is defined as  









= ∑ j

j
ijii zwzI (2.1) 

where Ii is local Moran for county i; the attribute value zi is the standardized value (mean=0, 

s.d.=1) of patent counts or patents per 10,000 population for county i; zj is the standardized 

value of patent counts or patents per 10,000 population for county j; and the spatial 

proximity measure wij is in row-standardized form (wij= 1/n, where n is the number of 

nonzero elements in row i of the contiguity matrix W). The selected spatial weights matrix 

(W) is a contiguity matrix where wij=0 if counties i and j are not contiguous and 
n

1 if the 

counties share a boundary (n = number of counties contiguous to county i). The county 

attributes are total patents 1990-1999 and total patents per 10,000 people, 1990-1999. 

 A large positive value for Moran’s Ii indicates that the county is surrounded by 

counties with similar values, either high or low. A large negative value for Ii indicates that the 

county is surrounded by counties with dissimilar values. The local Moran enables researchers 
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to identify four types of spatial association: high zj associated with a high zi, high zj associated 

with a low zi, low zj associated with a low zi, and low zj associated with a high zi. Thus, 

insights into both positive and negative associations are available. The local Moran value for 

each county gives an indication of the extent of significant spatial clustering of similar values 

around that county. The local Moran area statistics decompose the global Moran’s I into the 

contribution for each location. These local statistics are used to identify regions that differ 

significantly from those expected under the null hypothesis, which is there is no association 

between the value observed at a location and the values observed at nearby sites.  

 Figure 2.5 provides the LISA results for total patents, using ArcGIS and Anselin’s 

Lab toolbox (GeoDa). The result is a special choropleth map showing those locations with a 

significant local Moran statistic classified by type of spatial correlation: bright red for the 

high surrounded by high, bright blue for low surrounded by low, light blue for low 

surrounded by high, and light red for high surrounded by low. The high-high and low-low 

counties suggest clustering of similar values, whereas the high-low and low-high counties 

indicate spatial outliers. Forty-six counties are included in clusters of high patenting activity, 

which include 43 metro counties and 3 non-metro counties (Table 2.4). The high-high 

cluster counties for total patenting activity are founded in Texas (Houston, Austin and 

Dallas), Atlanta area, South Florida, Raleigh-Durham area, Northern Virginia and 

Washington County OK (home of Conoco-Phillips Petroleum). Also evident in Figure 2.5 

are numerous clusters of low innovative activity.  These agglomerations of counties with few 

patents occur in Appalachian Kentucky, the Mississippi Delta, the Deep South Cotton Belt, 

and Western Texas and Oklahoma. 
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Figure 2.5 LISA Cluster Map for Total Patents of Southern Counties, 1990-99 

High-High Low-Low Low-High High-Low



31

Table 2.4 High-High Cluster Counties for Total Patents (PAT_TOT), 1990-1999  

NAME STATE PAT_TOT NAME STATE PAT_TOT 

Chambers Texas 89 Washington* Oklahoma 554

Douglas Georgia 96 Seminole Florida 632

Bell Texas 96 Kaufman Texas 668

Monroe* Florida 113 Durham North Carolina 797

Lake Florida 129 Hillsborough Florida 844

Forsyth Georgia 129 Rockwall Texas 984

Indian River* Florida 145 Brazoria Texas 1106

Ellis Texas 147 Fulton Georgia 1383

Rockdale Georgia 152 Gwinnett Georgia 1541

Hays Texas 152 De Kalb Georgia 1550

Cherokee Georgia 156 Pinellas Florida 1702

Bastrop Texas 163 Tarrant Texas 1902

Falls Church Virginia 171 Dade Florida 2027

Fairfax City Virginia 199 Dallas Texas 2740

Grayson Texas 204 Denton Texas 2992

Loudoun Virginia 208 Broward Florida 3050

Waller Texas 214 Collin Texas 3173

Pasco Florida 217 Montgomery Texas 3212

Arlington Virginia 274 Palm Beach Florida 3266

Collier Florida 298 Fort Bend Texas 3592

Martin Florida 326 Travis Texas 3700

Galveston Texas 461 Williamson Texas 3715

Alexandria Virginia 520 Harris Texas 4993

* Non-metro counties 
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The LISA clusters of high total patents may understate innovative activity in the 

South because the local Moran I identifies only the cores of the high-high clusters. Missing 

from Figure 2.5 are the fringe counties to the high-high clusters that have high patent values 

but lack high-patent neighbors in most directions. Also missing are “hot spots” of patenting 

activity. These counties have high total patents, but the patenting activity in their 

neighboring counties is insufficient for inclusion as a core in a high-high cluster (Barkley et 

al., 2006). To identify the “fringe” and “hot spot” counties, I add all counties with 89 or 

more patents from 1990 to 1999 because 89 is the fewest number of patents for a county 

included in a high-high cluster.  

One-hundred and fifty additional counties are identified using the modified selection 

criteria, 18 nonmetro and 132 metro counties (Figure 2.6). Some of these 150 counties are 

fringe counties of the high-high clusters, especially in the case of Florida and the Raleigh-

Durham area of North Carolina.  In general, however, the additional counties represent “hot 

spots” that are defined as counties with high patent totals surrounded by counties with a mix 

of patenting activity. These areas may represent “emerging” clusters of innovation if 

spillovers to nearby counties are significant (Barkley et al., 2006). 



33

Figure 2.6 LISA Cluster Map including 89 Total Patents or More Counties, 1990-99 

 

High-High County Non-metro County with 89 or more

Metro County with 89 or more



34

Figure 2.7 provides the LISA results for patent intensity as measured by total patents 

1990-99 per 10,000 population. The 43 counties in high-high clusters are similar to those for 

total patents except that the Atlanta and Florida clusters disappear and clusters in the oil/gas 

rich areas of Texas and Oklahoma become more prominent, especially the Tulsa-Bartlesville 

area. Patent intensity is high in these nonmetro Southwest counties (13 nonmetro counties) 

more because of sparse population than high patent output (Table 2.5). 

 The fringe and “hot spot” counties missed by the LISA are identified by including all 

counties with more than 8.586 patents per 10,000 population, which is the minimum patent 

intensity among the 43 counties in the high-high clusters. Two-hundred and ninety one 

counties met the selected criteria for fringe and hot spots, including 116 nonmetro and 175 

metro (Figure 2.8). Most metropolitan areas in the South are represented as hot spots based 

on the relatively low cut-off of 8.586 patents from 1990 to 1999 per 10,000 residents. In 

addition, many of the identified nonmetro counties are fringe counties of the identified 

metropolitan areas. In sum, it appears that the LISA for total patents is more discriminating 

than that for patent intensity (Barkley et al., 2006).   
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Figure 2.7 LISA Cluster Map for Patent Intensity of Southern Counties, 1990-99 
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Table 2.5 High-High Cluster Counties for Total Patents per 10,000 Population (Patent 
Intensity), 1990-1999  
 

NAME STATE_NAME PAT_INT NAME STATE_NAME PAT_INT 

Lee* Texas 8.58637 Grayson Texas 21.46894

Tulsa Oklahoma 9.53628 Kay* Oklahoma 28.67774

Fannin* Texas 10.06725 Bedford City Virginia 29.63939

Hunt Texas 10.10211 Grady* Oklahoma 34.07922

Washington Tennessee 10.18253 Bastrop Texas 42.5999

Radford* Virginia 10.66499 Durham North Carolina 43.83095

Howard* Texas 10.84028 Nowata* Oklahoma 44.19446

Caldwell Texas 11.74598 Poquoson City Virginia 46.34257

Midland Texas 12.38146 York Virginia 48.55971

Alamance North Carolina 12.38299 Brazoria Texas 57.69221

Pawnee* Oklahoma 14.68429 Travis Texas 64.19075

Mayes* Oklahoma 14.70474 Rogers Oklahoma 75.4033

Dallas Texas 14.78835 Waller Texas 91.49209

Arlington Virginia 16.02939 Denton Texas 109.3867

Austin* Texas 16.08768 Washington* Oklahoma 114.6096

Tarrant Texas 16.25498 Collin Texas 120.173

Burnet* Texas 17.2155 Kaufman Texas 127.9203

Fairfax Virginia 17.64022 Fort Bend Texas 159.3463

Harris Texas 17.71699 Osage Oklahoma 217.0729

Chatham North Carolina 20.89837 Williamson Texas 266.2109

Galveston Texas 21.20525 Rockwall Texas 384.315

San Jacinto* Texas 21.35839

* Non-metro counties 
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Figure 2.8 LISA Cluster Map including 8.586 Patent Intensity or More Counties, 1990-99 
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2.4 Summary  

In recent years, the concept of RIS has evolved into a widely used analytical 

framework providing the foundation for regional economic development policy making. Yet, 

the approaches using this framework remain ambiguous on key issues such as the extent of 

region and the role played by institutions or the institutional context in the emergence and 

sustenance of RIS at the local level. 

This chapter reviewed the theoretical relationship between innovative activity and 

regional economic growth from RIS. These research studies provided a better understanding 

of the local characteristics of RIS, suggesting a road map for the next stages of data analysis.

The findings from the review suggest that RIS are characterized by innovation sources 

(entrepreneurial firms and large firms as private R&D providers, and government agencies 

and universities as research institutes), knowledge spillovers (industry specialization, industry 

diversity, and local competitiveness), and regional spillovers (agglomeration economies and 

geographic spillovers). In the next chapter, a KPF is employed to examine the effects of 

sources of innovation and knowledge and regional spillovers on innovative activity at the 

nonmetro and rural area level. The remainder of this study also will address the question of 

metropolitan to non-metropolitan spillovers of innovative activities.  
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CHAPTER 3 

INNOVATIVE ACTIVITY IN THE SOUTH6

3.1 Introduction  

Although the popularity of the concept of RIS is increasing, the basic argument is 

how to apply the systems to particular regions or localities where the innovation system is 

visible. A potential shortcoming of the RIS strategy is that innovative capacity and activity 

are distributed very unevenly across space. For example, among the 1,343 counties in the 13 

Southern states, 26 counties had an average of 100 or more utility patents a year from 1990 

to 1999 while 681 counties averaged less than one utility patent per year for the same period. 

A clustering of patent activity would not necessarily be detrimental to the economic 

development prospects of areas with little innovative activity if there existed the spillovers of 

jobs and income from the innovation centers to other areas.  Evidence of such spillovers is 

relatively limited (Barkley et al., 2006).  The absence of strong and widespread spillover 

effects from the clusters of innovative activity may contribute to a divergence of economic 

development trends between metropolitan and nonmetropolitan areas. Yet many 

nonmetropolitan counties have a history of innovative activity, and this base of innovation 

may serve as the foundation for an endogenous development strategy for these areas 

(Barkley et al., 2006).   

The purpose of this chapter is to identify the local characteristics of RIS associated 

with innovative activity in nonmetro and rural counties in South. Innovative activity will be 

measured by utility patent counts for the ten-year period 1990 through 1999.  

 
6 An earlier version of this chapter was published in the author’s article “Innovative Activity in Rural
Areas: The Role of Local and Regional Characteristics” (Barkley, Henry, and Lee, 2006).
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This chapter is organized as follows. First, the following section describes the 

variables and the construction of the models for data analysis. Next, I conduct data analysis 

of patenting activity of nonmetro and rural county areas in the South. This discussion 

presents the variables and data employed and the hypotheses to be tested. Knowledge 

production functions are estimated for the 591 nonmetropolitan counties and the 647 

nonmetro and rural counties in labor market areas (LMA) with a metropolitan core.  The 

principal goal of these estimations is to determine the local characteristics of RIS and the 

influence of metro innovative activity on non-metro county innovative activities in the metro 

area’s LMA.  In the final section, a summary of the findings is provided.  

 

3.2 Model and Data 

3.2.1 The Knowledge Production Function 

To empirically estimate the existence of local characteristics of RIS in the South, past 

research (Black, 2004; Acs et al. 1994; Anselin et al. 1997, 2000; Audretsch and Feldman 

1996; Feldman 1994; Jaffe 1986, 1989) used the “knowledge production function” (KPF). 

Griliches (1979) first used the production function approach to model the production of 

knowledge outputs as a function of knowledge inputs in an effort to estimate the returns to 

R&D. His KPF included a measure of external knowledge available to firms in order to 

explicitly capture the spillover of knowledge between firms and industries. The model of 

KPF (Griliches, 1979) can be represented as:  

εα γβ RDHKIA = (3.1) 

where IA is the degree of innovative activity; RD is industrial R&D expenditures; HK is 
human capital inputs; α, β and γ are estimated parameters; and ε is the error term.  
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The units of observation for estimating the model of the KPF can be at county, industry, or 

firm level. 

 Studies identifying the extent of knowledge spillovers are based on the model of the 

KPF applied at a spatial unit of observation. Jaffe (1989) modified the traditional approach 

to estimate a model specified for both spatial and product dimensions as: 

εα βββ 321 )( GCURURIRDIA ⋅= (3.2) 

where IRD represents private industry expenditures on R&D; UR is university research 
expenditures; GC measures the geographic coincidence of university and industry research 
activity within the state; and 21,, ββα and 3β are estimated parameters.  
 

The unit of observation for Jaffe’s estimation was at the state and industry level. Jaffe (1989) 

provided empirical evidence that 21 ,ββ and 3β were all greater than zero, supporting the 

existence of knowledge spillovers from university research laboratories as well as from 

industry R&D laboratories.  

Following Griliches (1979) and others (Jaffe et al., 1993; Fritsch, 2002; and Acs, 

2002), the concept of a KPF was used to identify the contributing factors to a county’s 

innovative activity. The analysis of this study follows Feldman (1994) in employing a KPF to 

model the relationship between innovative activity and local characteristics of RIS such as 

sources of innovation, knowledge spillovers, and regional spillovers at the local level. This 

general relationship is provided in Equation (3.3): 

δβα
rrrr RSKSISIA = (3.3) 

where IA stands for innovative activity (in this research, the total number of patents from 
1990 to 1999); IS stands for innovation sources (such as small and large firms, university and 
government); KS represents knowledge spillovers (as related to industry specialization, 
competitiveness, and diversity); RS represents regional spillovers (as reflected by patents in 
nearby counties, regional amenities, the size of local economy, high-tech employment, 
distances between a county and a metropolitan, and metro innovative activities); α, β, and δ
are parameter coefficients; and r represents the nonmetro or rural county area. 
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Decomposing Equation (3.3) into specific sources of innovation, knowledge 

spillovers, and regional components yields the general-form function represented in the 

following equation: 

),,,,,)(,,,,_,,,,( 2
rrrrrrrrrrrrrrr METDISTHTECHEMPAMTYPWCCDMFGSLFSFURPRfP ⋅= (3.4) 

where P is total patents in the regional area r 1990-1999; PR is the proxy for private R&D; 
UR is the proxy for university R&D; SF is the proxy for small firms; LF is the proxy for 
large firms; S_MFG is the location quotient of manufacturing industry; D is the measure of 
industry diversity; C is the measure of regional competitiveness; (W·P) is the spatially lagged 
dependent variable; AMTY is the proxy variable for natural amenity; EMP is the total 
employment; HTECH is the percent of total employment in high-technology manufacturing; 
DIST7 is miles from the largest city in a county to core city in LMA’s MSA; and MET 
represents one of four alternative measure of innovative activity in the core MSA of the 
county’s LMA.  
 

Table 3.1 defines the variables used in the empirical estimation. In the following 

section, I will discuss the variables in more details. Data on patents, the dependent variable, 

are count data, and three estimation procedures for count data analysis will be introduced. 

 

7 I measured the distance data using “City Distance Tool” from the website:
http://www.geobytes.com/CityDistanceTool.htm.



43

Table 3.1 Variable Descriptions and Data Sources 

Variable Hypothesis Description 
% Tech Occup.,  
PR 

Positive Percent of employment in technical professions – computer 
science; engineering; natural, physical and social sciences 
(BLS, 1990) 

College Enrol, 
UR 

Positive Number of individuals in county enrolled in college (Census, 
1990) 

Small Est. per 
capita, SF 

Positive County establishments with fewer than 20 employees per 
capita 

Large Est. per 
capita, LF 

Positive County establishments with more than 500 employees per 
capita 

Mfg LQ, S_MFG Uncertain LQ  in manufacturing, Eq (3.10), 1990 (BEA) 

Competitiveness,  
C

Uncertain The ratio of local to national establishments per worker, Eq. 
(3.11), 1990 (CBP).  

Diversity, D Positive Inverse of Krugman Index, Eq. (3.13),  one-digit SIC, 1990 
(BEA) 

Amenities, AMTY Positive McGranahan Index of natural amenities (ERS, USDA, 1999)

Total Emp, EMP Positive Total county employment, 1990 (BEA) 

% High-Tech. , 
HTECH 

Positive Percent of total county employment in high- 
technology manufacturing, 1992 (Census of Manufacturers) 

W • Patents, W·P Positive Spatially lagged dependent variable, W = contiguity matrix 

Distance, DIST Negative Miles from largest city in county to core city in LMA’s MSA 

MSA Patents, 
MET_T 

Positive MSA patent totals, 1990-1999 (USTPO) 
 

MSA Patent Den.,  
MET_D 

Positive MSA patents per 10,000 population, 1990-1999 (USTPO)  

%MSA Tech. , 
MET_PR 

Positive MSA technical employment as percent of total employment 
(BLS, 1990) 

MSA Uni R&D, 
MET_UR 

Positive MSA University expenditures for research and development 
per capita, 1990-1999 (NSF) 
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3.2.2 Count Data Models 

Count data describe events that take nonnegative integer values for each observation. 

Count data usually have a non-negligible probability of zero, which makes the use of log-

linear relationships problematic. One possibility for dealing with the impossibility of taking a 

logarithm of zero is to eliminate all groups of data that include observations of zero, but this 

requires that the number of these groups is small compared to the whole sample. Another 

possibility is to add a small value to all zero observations, and to add a dummy variable to 

implicitly allow a value different from one so that the logarithms can be taken. 

However, none of these devices are satisfactory because an ordinary least square 

(OLS) analysis does not constrain the expected number of events to be nonnegative, and 

thus the analysis will suffer from a sample selection bias (King, 1988). King (1988) reviewed 

several of the possibilities for dealing with problems where observations were equal to zero, 

and concluded that OLS estimates of count data were inefficient with inconsistent standard 

errors, and that logged OLS estimates on event count data had the same problems and were 

also biased and inconsistent (King, 1988). Various authors have shown that the analysis of 

count data is improved by the use of discrete distributions, such as the Poisson and the 

negative binomial distribution (Hausman et al., 1984; Cameron and Trivedi, 1998; King, 

1989). 

 

Poisson Regression Models 

The Poisson distribution has been widely used to avoid the approximation of count 

data using a continuous distribution. The primary equation of the model is (Greene, 2003): 
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where Yi denotes the number of occurrences of a certain event for an individual i within a 
given interval of time; and any realization yi is observed only at the end of each interval. 
 

The first two moments of the Poisson distribution are equal, and are given by E[Yi]

=VAR[Yi] = iλ . If the data are fairly homogenous, this functional form does not cause 

difficulties, but if some observations are large outliers that cannot be excluded, then λi

becomes very large and the loglikelihood of this observation becomes extremely small. The 

assumed equality of the conditional mean and variance functions is the major shortcoming 

of the Poisson Regression Model (PRM). Many alternatives have been suggested (Hausman 

et al., 1984; Cameron and Trivedi, 1998; and Winkelmann, 2003). The most common is the 

Negative Binomial Regression Model (NBRM) which arises from a natural formulation of 

cross-section heterogeneity, and is discussed below. 

 

Negative Binomial Regression Models 

Greenwood and Yule (1920) were credited for first deriving and applying the 

negative binomial distribution in the literature, even though some special forms of this 

distribution were already discussed by Pascal (1679). The suitability of the NBRM is verified 

by a test to determine whether overdispersion exists. The NBRM addresses the failure of the 

PRM by adding a parameter, α, that reflects unobserved heterogeneity among observations. 

Cameron and Trivedi (1998) offered several different tests for overdispersion. A simple 

regression based procedure was used for testing the hypothesis. The null hypothesis is that 

Var(yi)=E(yi); the alternative hypothesis that Var(yi) = E(yi)+αg(E(yi)).  

Following Cameron and Trivedi (1998), the negative binomial equation takes the 

form: 
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where Γ() is the gamma function; and E(yi/xi)=λi=exp(xi`β).  

The negative binomial distribution relaxes the Poisson condition that the mean equals the 

variance so that the variance is given by 

2),()|( iiiiii xyV αλλαλνν +=== . (3.7) 

In the case of overdispersion, as is evident in this analysis, the mean (λ) is less than 

the variance (υ). Thus, the larger the value of α, the greater the overdispersion. The PRM 

corresponds to α =0. The likelihood ratio test (LRT) is a test of the overdispersion 

parameter α (in the case of  STATA, lnα). When the overdispersion parameter is zero, the 

negative binomial distribution is equivalent to a Poisson distribution (Long and Freese, 

2006). In this study, the estimates of α are significantly greater than zero, indicating the 

NBRM is better suited than the PRM for the county patent data (Appendix 2 and 4).  

 

3.2.3 Zero-inflated Negative Binomial Regression Models 

The NBRM improves upon the underprediction of zeros in the PRM by increasing 

in the conditional variance without changing the conditional mean. The hurdle model 

addresses the underprediction of zeros by using two equations, a binary model to predict 

zeros and a zero-truncated model for the remaining counts because the zero outcome of the 

data generating process is qualitatively different from the positive ones (Greene, 2003). 

Mullahy (1986) argued that this fact constituted a shortcoming of the NBRM and suggested 

a hurdle model as an alternative. Greene (1994) analyzed an extension of the hurdle model in 

which the zero outcomes could arise from one of two regimes. In one regime, the outcome 
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is always zero. In the other, the usual NBRM is at work, which can produce the zero 

outcomes or some others.  

Zero-inflated count models, introduced by Lambert (1992), change the mean 

structure to allow zeros to be generated by two distinct processes, compared with one 

process generating zeros in the hurdle model. The zero-inflated model assumes that there are 

two latent (i.e. unobserved) groups. An individual in the Always-Zero group (Group A) has 

an outcome of zero with a probability of one, whereas an individual in the Not-Always-Zero 

group (Group B) might have a zero count, but there is nonzero probability that it has a 

positive count (Winkelmann, 2003).  

Winkelmann (2003, p. 148) suggested that the ZINBM combines a binary variable ci

with a standard count variable yi* (with support over the nonnegative integers) such that the 

observed count yi is given by  
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If the probability that ci=1 is denoted by ωi, the probability function of yi can be written 

compactly as  

,...2,1,0),()1()( =−+= iiiiii yygdyf ωω (3.9) 

where di=1-min{yi, 1} and g(yi) is the negative binomial probability function.  

 Winkelmann (2003, p. 149) found that the difference between the zero-inflated 

model and the hurdle model is that in the latter, there is a single type of zeros whereas in the 

former one obtains two types of zeros: zero outcomes can either arise from Group A (ci=1) 

or from Group B (ci=0 and yi*=0). 

When interpreting ZINBM using STATA, there are two equations. The first 

equation is labeled the Logit Equation (the unlikelihood of patenting) that contains for the 
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factor change the odds of being in the Always Zero group compared with the Not Always 

Zero group. These can be interpreted just as the coefficients for a binary logit model. The 

second equation is labeled the Count Equation (the rate of patenting or the number of 

patents) and it contains the coefficients for the factor change in the expected count for those 

in the Not Always Zero group. This group comprises those counties that have patents. The 

coefficients can be interpreted in the same way as coefficients from the NBRM. When the 

same explanatory variables are included in both equations, the signs of the corresponding 

coefficients from the logit equation (the probability of no patents) are often in the opposite 

direction of those from the count equation (Long and Freese, 2006). This makes substantive 

sense because the logit equation is predicting membership in the group that always has zero 

patents (Group A), so a positive coefficient indicates lower probability of having a patent. 

The count process predicts number of patents so that a negative coefficient would indicate 

lower number of patents (Long and Freese, 2006, p.400). 

 

3.2.4 The Dependent Variables 

In this study, innovative activity, measured as the total utility patents issued from the 

U.S. Patent and Trademark Office (USPTO) 1990-99, is the dependent variable in the 

models. Barkley et al. (2006) identified RIS using a cluster analysis of 20 indicators of 

innovative and entrepreneurial activity. Their  measures of the innovative activity in a region 

generally focused on innovative inputs (such as expenditures for R&D or employment in 

scientific and technical occupations), an intermediate output (such as patents), or innovative 

capacity (such as employment in high technology and information technology industries, 

technical occupations, or venture capital funding for new enterprises).  Among these 
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alternatives, since data on innovations are not generally available at the local level, total 

patents in a county were selected as the measure of RIS.  

This measure, however, has its disadvantages since some innovations are not 

patented and patents differ enormously in their economic impact. Another problem is that 

patenting activity is concentrated in manufacturing because new ideas in trade and service 

industries are less likely to be patented. Many authors are credited to the home address of 

the lead scientist on the patent, and this location can not be the same county where the 

research and development occurred (Barkley et al., 2006; Acs et al., 2000). Nonetheless, 

patents remain a useful measure of the generation of ideas. Although Acs et al.(2000) 

recognized the shortcomings of patent data, they found a reasonably high (0.79) correlation 

between patent numbers and SBA innovation counts at the metropolitan level, and patent 

and innovation counts were associated in a similar manner to explanatory variables included 

in their regional KPF.   

 

3.2.5 The Explanatory Variables of Sources of Innovation 

The proxy variable selected for industry R&D (PR) is percent of county employment 

in scientific and technical occupations in 1990 because measures of private R&D 

expenditures by county are not available. Scientific and technical professions are defined as 

computer science; engineering except civil; and natural, physical, and social sciences. The 

proxy variable for potential university R&D (UR) is the number of individuals in the county 

enrolled in college. Measures of university R&D expenditures are available, but only for the 

larger universities. Total R&D expenditures at universities and colleges are available from the 

National Science Foundation for only 15 nonmetro counties among the 591 counties (Table 
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3.2). Thus, this research substituted number of college students8 as the measure for potential 

university R&D. Positive coefficients for private and university R&D are hypothesized. 

However, the proxy variable for university R&D is correlated with county size as measured 

by total population in 1990 (0.66), indicating that college enrollment may be reflected 

agglomeration economies.  

 

Table 3.2 Total Expenditures for Nonmetro University R&D Expenditure, 1990-1999 

County Name, 

State 

R&D 

expenditure * 

County Name, 

State 

R&D 

expenditure * 

County 

Name, State 

R&D 

expenditure * 

Montgomery, 

VA 

1460249 

 

Franklin, KY 21679 Brewster, TX 2962 

Macon, AL 123066 Pasquotank, 

NC 

6783 

 

Marshall, MS 2741 

Lincoln, LA 52774 Tangipahoa, 

LA 

4771 Jackson, NC 2177 

Kleberg, TX 42866 Dallas, AL 4679 Wood, TX 1302 

Orangeburg, SC 39426 

 

Watauga, NC 3602 Radford city, 

VA 

454 

* Dollars in thousands 
Source: National Science Foundation/SRS, Survey of Research and Development Expenditures at University 
and Colleges, Fiscal Year 1997 and 1999.  

 

The proxy variable for small firms (SF) is county establishments with fewer than 20 

employees per capita in 1990. The proxy measure of large firms (LF) is county 

establishments with greater than 500 employees per capita in 1990. Research on innovative 

activity in states and metropolitan areas indicates a positive association between area patent 

numbers and proportion of small and large firms in the area (Gordon and McCann, 2005).  

 
8 The coefficient of correlation between county population (1990) and the number of individuals in county
enrolled in college (1990) is 0.659.



51

3.2.6 The Explanatory Variables for Knowledge Spillovers 

It is important how measures of specialization in manufacturing, local 

competitiveness, and industry diversity are defined because the estimation results may be 

sensitive to different variable measures. The measures employed in this study are discussed 

below.  

 

Specialization 

Specialization of manufacturing industry in region r is measured by the location 

quotient (LQ) which is defined as: 

USUSi

rri
r EMPEMP

EMPEMP
MFGS
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,

,= (3.10) 

where EMP
ir 
is manufacturing employment in county r; EMP

r
is total employment in county 

r; EMP
i,us 

is U.S. employment in manufacturing industry; and EMP
us 

is total U.S. employment.  
 
Thus, The S_MFG is the ratio of the share of local manufacturing industry employment to 

the share of national manufacturing industry employment. If a value is greater than one, it 

means that manufacturing industry employment is more concentrated in county r compared 

to the national level. The MAR and Porter theories of external economies suggested that 

industry specialization will stimulate innovative activities in that region. The hypothesized 

coefficient on the variable representing specialization in manufacturing industry (S_MFG) is 

uncertain.  Patenting among manufacturers is high relative to other sectors, but Glaeser and 

Saiz (2003) found that innovative firms avoided traditional manufacturing areas.   
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Competitiveness 

 Following Glaeser et al. (1992), the degree of local competitiveness in region r is 

measured by the ratio of local to national establishments per worker:  

 
USUS

rr
r EMPEST

EMPEST
C

/

/
= (3.11) 

where EST
r
and EST

us 
are establishments in county r and in the U.S., respectively; and EMP

r
and EMP

us 
are employment in county r and in the U.S, respectively. 

 
Thus, more establishments per worker mean more competitiveness (Koo, 2005). Values of C 

greater than one indicate that there are more firms in county r relative to its employment 

compared to that of the nation.  

The competitiveness variable ( C) assesses whether local regional competitiveness is 

higher or lower than national competitiveness. According to MAR, intensive local 

competitiveness impeded economic growth and innovative activities. In case of intensive 

competitiveness, MAR assumed that enterprises limited their amount of innovative activities 

because too much new knowledge spilled over to competitors. According to Jacobs and 

Porter, however, intensive local competitiveness benefited innovative activities because 

enterprises were forced to innovate.Therefore, the effects of local competitiveness within 

industries on innovation are ambiguous. However, a U-shaped relationship between 

competitiveness and patents (Glaeser U-shaped competitiveness) is consistent with 

innovation occurring primarily in the largest and smallest establishments (Glaeser et al., 

1992). 

 Specialization and competitiveness are different concepts in that specialization deals 

with the clustering of workers, while competitiveness deals with the clustering of businesses 

in this study. Since the number of workers and the number of establishment may be 
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positively correlated, the variables specialization and competitiveness may also be correlated. 

In this dataset, the correlation between specialization and competitiveness is -0.2639. This 

value is low enough to assume that the model outcomes do not suffer from multicollinearity.  

 

Diversity 

Following Krugman (1991a), the diversity of region r is defined as:  
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where EMP

i,r 
and EMP

r
are industry i employment in county r and total employment in 

county r, respectively; and EMP
i,us 

and EMP
us 

are U.S. employment in industry i and total U.S. 
employment, respectively.  
 

To explore the possible effects of local industrial diversification, I construct the sum of the 

absolute value of county employment share, in 1990, accounted for by seven one-digit SIC 

industries.9 In Equation (3.12), the summation increase if a region is more specialized than 

the nation. Alternatively, if the industrial mix follows the national average (industry 

diversity), the summation will be close to zero, and also the value of D will increase (in 

Equation (3.13). However, the diversity index takes into account the industry diversity of the 

entire regional economy, so a local economy can have a few specialized industries as well as 

industry diversity (Koo, 2005).  

 
9 The industries are construction; manufacturing; transportation, communications, and public utilities;
wholesale trade; retail trade; services; and FIRE (finance, insurance, and real estate).
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Research on innovative activity in states and metropolitan areas indicated a positive 

association between area patent numbers and diversity of the local economy (Anderson, 

Quigley, and Wilhelmsson, 2005). The industry diversity of the county economy (D) is 

represented by the inverse of the Krugman Index, and a positive association is anticipated 

between regional diversity and county patents.

3.2.7 The Explanatory Variables of Regional Spillovers 

County and regional characteristics found in earlier research to be associated with 

innovative activity are the structure of the local economy, characteristics of the local labor 

market, and innovative activity in nearby communities (spillovers).  More specifically, 

research on innovative activity in states and metropolitan areas indicated a positive 

association between area patent numbers and (a) employment in high-tech industries (Riddel 

and Schwer, 2003); (b) size and density of the local economy (Anderson, Quigley, and 

Wilhelmsson, 2005); (c) the availability of local amenities (Deller et al., 2001); and (d) the 

presence of patenting activity in nearby locations (Lim, 2004; Acs, 2002). Of particular 

interest to this study is the association between innovative activity in metropolitan statistical 

areas (MSA) and patent counts in non-metro counties in the labor market areas (LMA) of 

the MSA. 

Total county employment in 1990 (EMP) is the proxy variable for the size of the 

county economy.  EMP is hypothesized to be positively associated with patenting activity. 

HTECH is the percentage of county employment in high-technology manufacturing 

industries10, and the coefficient on HTECH is hypothesized to be positive.  

 
10 The classifications for high-technology industries followed that of Markusen et al. (2001).
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A common way of modeling spillovers between regions is using spatial econometric 

models. This often involves the use of a spatial weights matrix (W) that allows for explicit 

modeling of the spatial dependence structure. Typically, the weight matrix consists of 

positive elements for ‘neighboring’ locations, and zero elements for other of regions 

(Anselin, 2003). A positive estimated coefficient on the spatially lagged dependent variable 

(W·P) indicates a positive association between patent total in a county and patent activity in 

surrounding counties. 

Some patenting activity in rural counties may reflect the residential choices of 

scientists and not the location of the patenting activity.  The variables DIST (miles from 

county’s largest city to MSA core city) and AMTY (the McGranahan (1999) natural amenity 

rank for the county) were included to partially control for county patent activity that may be 

associated with population spillovers.   

Finally, MET represents one of four alternative measures of innovative activity in the 

core MSA of the county’s LMA.  Innovative activity in the metro area is measured by total 

patents 1990-1999 (MET_T); total patents per 10,000 residents (MET_D); total academic 

R&D expenditures 1990-1999 (MET_UR); and percentage of employment in scientific and 

technical occupations in 1990 (MET_PR). A positive coefficient for MET supports the 

hypothesis of a spillover of innovative activity from metro to rural areas.   

 A list of the variables and data sources is provided in Table 3.1. All explanatory 

variables except metro patents and metro university R&D expenditures used 1990 values to 

control for possible endogeneity issues. All the models were estimated with STATA 9.2 for 

count data analysis.    
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3.3 Innovative Activity in Non-metropolitan Areas 

3.3.1 The Data 

The Study Area 

Labor Market Areas (LMA), as defined by the Economic Research Service of the 

USDA (1990), are areas within which individuals live and work (based on the commuting 

data). The LMA and its component counties were identified for the 117 MSA/CMSA’s for 

the 13 Southern states. Each LMA is differentiated into metro counties and nonmetro 

counties. The LMA used in this paper were developed by Tolbert and Sizer (1996) to 

identify the multi-county metro and nonmetro geographic areas that captured economically 

dependent counties based on commuting data. Among the Southern rural counties, 591 non-

metropolitan counties were assigned to LMA with a metro core while 349 counties were 

members of rural LMA. Of particular interest to this study is the association between 

innovative activity in metropolitan areas (MSA) and patent counts in nonmetro counties in 

the LMA of the MSA.  The following model was estimated for the 591 Southern non-

metropolitan counties in LMA with a metro core area.   

 

The Dependent Variable 

Innovative activity, measured as the total utility patents in a county 1990-1999, is the 

dependent variable in the models. To gain some information about the total patents in 

county 1990-1999, it is informative to look at a histogram of the observed data in Figure 3.1. 

Many counties have very few total patents during 1990-1999, and very often not even a 

single patent. The distribution seems to have a long tail. Apart from the long tail the data 

could be Poisson distributed, but as the histograms reveal overdispersion, an adjusted 
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Poisson distribution or a negative binomial distribution will describe the data better. The 

descriptive statistics of the dependent variable are provided in Table 3.3. 

 
Figure 3.1 Histogram for Total Patents (pat_t) of 591 Non-metro counties, 1990-99 
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Table 3.3   Summary Statistics for Variables, 591 Non-metropolitan Counties  

Variables Mean SD Min. Max. 

Total Patents, 1990-99, P 13.1489 31.36955 0 480 

% Tech Occupation, PR 4.263848 1.396378 0 17.40226 

College Enrol. 1990, UR 942.3316 1452.083 0 23197 

Small Est. per capita, SF .0175041 .0055288 .0056221 .0429402 

Large Est. per capita, LF .0000298 .0000483 0   .0003712 

LQ of MFG, S_MFG 1.23095 .9052159 0   4.354384 

Indust. Diversity, D 3.26096 1.291843 1.04626 11.86529 

Competitiveness , C .9974521 .222759 .0951137 2.155624 

Competitiveness squared, C2 1.044448 .4561264 .0090466 4.646717 

Amenity Rank, AMTY 3.705584 .6898435 2 6 

Total Employment, 1990, EMP 9458.675 8974.4 95   57681 

% High Tech Emp, HTECH 1.312094 2.555225 0 23.17731 

W. PAT, W·P .005676 .6657916 -.419161 7.37502 

Distance (miles), DIST 52.08122 39.58603 1 381 

MSA PAT, MET_T 1053.844 2386.88 14 13688 

MSA PAT DEN, MET_D 13.02176 12.04527 .9646847 91.71298 

MSA UNIV R & D per capita, 
MET_UR 

1081.982 2909.791 0 28203.04 

%MSA Tech Emp., MET_PR 4.957243 .6648119 3.404496 7.201031 
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3.3.2 The Count Data Analysis  

The single parameter is equal to the expected value of the Poisson distribution in the 

PRM, and the independent variables are introduced into the model by expressing as a 

deterministic function of these variables. In order to guarantee a positive expected value, the 

functional form estimated by STATA is )exp( βλ ii x= , where β is the parameter vector; 

and x is the vector of independent variables.  
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where PR, UR, SF, LF, S_MFG, D, C, WP, DIST, AMTY, EMP, and HTECH are as 
defined earlier (Table 3.1); β0, β1, β2, β3, β4, β5, β6, β7, β8, β9, β10, β11 and β12 are estimated 
parameters; MET represents one of four alternative measures of innovative activity in the 
core MSA of the county’s LMA; and γ is the estimated parameter for MET.  
 

Innovative activity in the metro area (MET) is measured by total patents 1990-1999; patents 

per 10,000 residents; total academic R&D expenditures 1990-1999; or percentage of 

employment in scientific and technical occupations11  in 1990. A positive coefficient for 

MET supports the hypothesis of a spillover of innovative activity from metro to nonmetro 

areas.   

 All the results for PRM and NBRM are provided in the appendices (Appendix 1 

through Appendix 4). Five models are estimated to determine the role of non-metro county 

characteristics on county patent totals and the sensitivity of the initial estimations’ findings to 

the inclusion of four measures of innovative activity in the metro core of the non-metro 

county’s LMA. The associations between non-metro county characteristics and county 

 
11 For the metropolitan areas, total patents 1990-1999 is a proxy for innovation outputs while total
academic R&D expenditures measures university innovation inputs and total employment in scientific and
technical occupations is a proxy for industry R&D inputs.
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patent totals are similar to those found in earlier studies using state-level and metro-level 

data.  

Although we have good results in PRM, the use of the Poisson model is only 

appropriate if the data have null dispersion, that is, if the mean of the dependent variable is 

equal to its variance. The likelihood ratio test (LRT) at the bottom of Appendices 2 and 4 is 

a test of the overdispersion parameter α. When the overdispersion parameter is zero, the 

negative binomial distribution is equivalent to a Poisson distribution. In this case, α is 

significantly different from zero and thus reinforces the assumption that the Poisson 

distribution is not appropriate. I also checked to see how well the variable, total patents 

(1990-99), fits both the Poisson and negative binomial distributions using graphs (Figure 

3.2). The plots compare the PRM and NBRM, and the NBRM seems to fit theses data better 

than the PRM. 

Table 3.4 and 3.5 show the empirical results from the final step of the zero inflated 

negative binomial models (ZINBM). The ZINBM using STATA provided two equations. 

The first equation is labeled Logit Equation (the unlikelihood of patenting) which contains 

the coefficients for the factor change in the odds of being in the Always Zero group 

compared with the Not Always Zero group. The second equation is the Count Equation (the 

rate of patenting) that contains the coefficients for the factor change in the expected count 

for those in the Not Always Zero group. A Vuong test was used to compare the NBRM and 

ZINBM. The significant, positive value of Vuong test statistics supports the ZINBM over 

NBRM (Table 3.5). Overall, these tests provide evidence the ZINBM fits the data best. The 

following section will discuss the results of the ZINBM for the patent activity in nonmetro 

county areas. 
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Figure 3.2 Comparison of the Poisson and Negative Binomial Models. 
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3.3.3 The Unlikelihood of Patenting: Logit Equations 

Table 3.4 presents the estimated results from the first-step, logit equations of the 

ZINBM. The equation contains coefficients for the factor change in the odds of being in the 

Always Zero group compared with the Not Always Zero group. These can be interpreted 

similarly to the coefficients for a binary logit model.  
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Table 3.4 Logit Equation for the Unlikelihood of Patenting, 591 Nonmetro Countiesa

Independent 
Variables 

Model 1
No MSA Term

Model 2
MSA PAT Total 

Model 3
MSA PAT 

Density 

Model 4
MSA 

UNIV R & D 

Model 5
MSA S & 

Tech 

%Tech Occ., 
PR 

-.4247665 
(-0.60)b

-.2039754 
(-0.36) 

-.5063406 
(-0.84) 

.4669769 
(0.93) 

-.1654851 
(-0.23) 

Coll. Enrol., 
UR 

-.0355308 
(-1.41) 

-.0305247 
(-1.45) 

-.0374867* 
(-1.90) 

-.0753321** 
(-1.99) 

-.0887346** 
(-2.22) 

Small Est. 
SF 

38.29621 
(0.23) 

84.85271 
(0.52) 

28.20712 
(0.17) 

-54.31193 
(-0.31) 

-36.07048 
(-0.20) 

Large Est. 
LF 

-199327.5 
(-0.00) 

-277296.9 
(-0.00) 

-221511.4 
(-0.00) 

2219.243 
(0.00) 

-12303.42 
(-0.00) 

Mfg. LQ,  
S_MFG 

-2.034927 
(-1.28) 

-1.87566 
(-1.49) 

-2.078064 
(-1.41) 

-1.953603 
(-1.19) 

-2.074104 
(-1.11) 

Diversity, 
D

-.6459022 
(-0.74) 

-.8195975 
(-0.93) 

-.7706326 
(-0.85) 

-.5855629 
(-0.63) 

-.9141287 
(-0.82) 

Comp, 
C

-25.29788 
(-1.64) 

-30.34673** 
(-2.35) 

-27.95367* 
(-1.88) 

-15.19805 
(-0.88) 

-14.25612 
(-0.73) 

Comp2,
C2

14.1924* 
(1.78) 

15.69648** 
(2.40) 

15.88556** 
(2.03) 

8.926593 
(1.07) 

8.849306 
(0.91) 

Amenities, 
AMTY 

-.4721216 
(-0.59) 

-.3203033 
(-0.47) 

-.722906 
(-0.81) 

-.1833251 
(-0.22) 

.3719719 
(0.37) 

Total Emp., 
EMP 

-.0008729 
(-1.43) 

-.0010718** 
(-2.12) 

-.0009221* 
(-1.75) 

-0.22 
(-0.46) 

-.000346 
(-0.55) 

% High Tech, 
HTECH 

-3.69598 
(-1.50) 

-3.508667 
(-1.47) 

-3.744786 
(-1.62) 

-2.196791 
(-1.01) 

-3.500787 
(-1.49) 

W. PAT, 
W·P

-1.807701 
(-0.50) 

-5.490153** 
(-2.04) 

-1.692683 
(-0.45) 

-1.608916 
(-0.42) 

-.493001 
(-0.15) 

Distance, 
DIST 

-.0189788* 
(-1.82) 

-.0174601* 
(-1.75) 

-.0157345 
(-1.33) 

-.0182625 
(-1.62) 

-.0264661* 
(-1.80) 

MSA PAT, 
MET_T 

 .0008399** 
(2.31) 

 

MSA PAT D., 
MET_D 

-.1083704 
(-0.76) 

 

MSA U. R & 
D, MET_UR 

.0009136** 
(2.31) 

 

MSA Tech. 
MET_PR 

-1.696109 
(-1.34) 

Intercept 20.28992** 
(2.00) 

20.38708** 
(2.40) 

23.64063** 
(2.17) 

14.50878 
(1.50) 

24.37518* 
(1.81) 

Loglikelihood -1799.892 -1797.36 -1797.561 -1797.901 -1798.044 

a Non zero observations = 520; and zero observations = 71. 
b z-values for the coefficients are provided in parentheses. 
*, P-Value <0.1; **, P-Value <0.05; and  *** P-Value<0.01 
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Sources of Innovation 

The number of individuals in the county enrolled in college, the proxy variable for 

university R&D (UR), is negatively and significantly related to the unlikelihood of patenting 

in nonmetro areas. Thus, areas where firms can appropriate knowledge from the academic 

community into their innovation process are more likely to see some patent activity than 

areas where firms do not have access to nearby research universities, indicating that 

proximity to a university is an important component in the decision to innovate. However, 

other coefficients of the innovation sources variables are not significant.  

The finding for university R&D is consistent with previous evidence of innovation 

research. Anselin et al. (1997, 2000) and Feldman (1994) found that academic R&D had a 

significant effect on the number of innovations. This finding is also supported by evidence 

on the role of geographic proximity between patents and patent citations. Jaffe et al. (1993), 

for example, found that citations to other patents are significantly more likely to refer to 

patents from university research.  

 

Knowledge Spillovers 

The specialization of employment in manufacturing (S_MFG) has no significant 

impact on the unlikelihood of patenting within nonmetro county areas. However, the 

unlikelihood of patenting is weakly related to Glaeser’s U-shaped competitiveness measure 

(C, C2). This finding is inconsistent with earlier research indicating that relatively high levels 

of innovation are associated with both a small number of large establishments as well as a 

large number of small establishments, indicating the role of local monopoly or the 

importance of large sized establishments. Regional diversity (D) has no significant impact on 

the unlikelihood of patenting at the nonmetro county level.   
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Regional Spillovers 

The coefficient of percent of high tech employment (HTECH) and amenity rank 

(AMTY) are negative but not significant at the 10% level. A negative impact of the size of 

local economy (EMP) on the unlikelihood of patenting is found, indicating the probability of 

having a patent is influenced by the size of local economy.  

Of principal interest to this study is the role of spillovers on nonmetro county patent 

activity. The coefficient of the spatially lagged dependent variable (W·P) are negative, 

indicating a positive association between the probability of having a patent and patent 

activity in surrounding counties. However, an unexpected positive and significant 

relationship exists between the unlikelihood of county patenting and metro innovative 

activity and capacity. Distance from the metropolitan core (DIST) is negatively related to no 

patenting activity in nonmetro county areas, indicating that an increase in the distance 

between metropolitan city and nonmetro county city leads to a significant increase in the 

probability of the nonmetro county area having patent activity.  This suggests the proximity 

of metro characteristics play an inverse role in the unlikelihood of patenting among firms at 

the nonmetro county area level. The unlikelihood of patenting is significantly associated with 

metro innovative activities (MET_T and MET_UR), indicating that there are “backwash” 

effects.  

 

3.3.4 The Rate of Patenting: Count Equations 

The previous section provided evidence that the local characteristics of RIS played a 

role in whether or not at least one patent was issued within a nonmetro county area. The 

second stage of the estimation process determines whether these variables also influence the 

frequency of patent activity. Table 3.5 shows the empirical results from the negative 
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binomial equations in ZINBM. It is clear from the results that there is a strong positive 

impact of innovation sources, knowledge spillover, and regional spillovers on patent activity.  

What stands out in Table 3.4 is the overall stronger contribution of the local 

characteristics of RIS to the number of patents compared to the unlikelihood of county 

patenting. Many of the independent variables are significant, and when they are, it is at a 

higher level. These results indicate that innovation sources, knowledge spillovers, and 

regional spillovers have a stronger association with the rate of patenting (innovative activity) 

than indicated in the logit estimations (the unlikelihood of patenting).  

 

Sources of Innovation 

The significance of the percent of employment in scientific and technical 

professional occupations, the proxy variable for private R&D (PR), increases between the 

logit and count equations. The significant, positive effect of industrial R&D activity appears 

at traditional levels of significance when analysis shifts to the number of patents (the rate of 

county patenting). This suggests private R&D is vital to the rate of county patenting. 

Considerable prior evidence indicated that firms appropriate knowledge generated by local 

universities, and that this knowledge is a key determinant of county innovative activity. 

Compared to the other components of the local characteristics of RIS, the frequency of 

county patents does not depend strongly on the number of individuals in the county enrolled 

in college (UR), suggesting that proximity to university R&D is not strongly related to the 

rate of patenting in nonmetro areas.  

The significance of research universities, though, is weaker in the count equations 

compared to the logit equations at a nonmetro county level. Research universities play a 

greater role in determining the unlikelihood of innovative activity than the rate of patenting. 
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For county patent activity, these results suggest that proximity to universities matters more 

in terms of providing access to knowledge than in the volume of knowledge provided, 

thereby allowing innovative activity to take place in areas where it otherwise would not. This 

coincides with the argument that local universities provide knowledge through mechanisms 

besides research, such as the education of the local workforce.  

The variables representing small firms (SF) and large firms (LF) also are positively 

associated with the rate of patenting activity, suggesting a significant role for small and large 

firms on the number of patents in nonmetro county areas.  

 

Knowledge Spillovers 

 The concentration of employment in manufacturing (S_MFG) is not significant, 

implying that the positive spillovers associated with proximity to similar firms matter less in 

determining the frequency of innovation than merely the presence of innovative activity. A 

relatively large manufacturing sector is not significantly related to patenting activity. 

However, non-metro total patents are positively associated with the industry diversity (D) of 

the local economy. The results indicate that less geographical specialization rather than more 

local specialization, promotes innovation and growth, because most important knowledge 

transfers are from outside industries (Jacobs’ hypothesis). 

The competitiveness of the local industry structure (C ) is weakly correlated with 

innovative activity in the nonmetro counties with an inverse U-shaped form. This finding is 

inconsistent with earlier research indicating that relatively high levels of innovation are 

associated with both a small number of large establishments as well as a large number of 

small establishments. The inverse U-shaped relationship indicates that the rates of patenting 

are highest for counties with large sized establishments or local monopoly.  
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Regional Spillovers 

The size of the local economy (EMP) is a more decisive factor of the rate of 

patenting (the number of county patents) than the unlikelihood of patenting, indicating that 

non-metro total patents are positively associated with the size of the local economy 

(urbanization economies). No significant relationship is found between high-technology 

employment (HTECH) in non-metro counties and the number of patents. Acs (2002) found 

that a base of high-tech firms in a nonmetro area appeared to offer little advantage in terms 

of increased patenting activity.  This is consistent with earlier findings by Barkley et al. (1988) 

that nonmetro high-tech firms differed little from firms in traditional nonmetro 

manufacturing industries.  

The spatially lagged dependent variable (W • P) indicates a positive association 

between patent total in a county and patent activity in surrounding counties.  That is, 

counties with low patent totals tend to cluster and counties with high patent totals tend to 

locate near similar counties. The availability of local amenities (AMTY) and proximity to 

metro areas (DIST) areas are positively associated with nonmetro patent totals.  This finding 

may indicate that the more innovative firms in nonmetro areas are located in counties with 

higher amenities and access to metro areas. Alternatively, the lead scientists on patents may 

reside in adjacent, high amenity nonmetro counties but work in metro areas.  Thus, these 

findings may reflect residential instead of production location choices (Barkley, et al., 2006). 

MSA patent totals (MET_T) and MSA patents per 10,000 persons (MET_D) are 

positively associated with nonmetro patent activity at the traditionally significant levels.  One 

of the metro inputs for the innovation process, metro university R&D (MET_UR), is 

negatively related to nonmetro patent counts but not at high levels of statistical significance. 
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The other input measure, the proxy variable of metro private R&D (MET_PR), is positively 

associated with county innovative activity, but not statistically significant.     

The absence of a strong correlation between MSA innovation measures and patent 

counts in nearby non-metro counties is not unexpected.  Recent research founds evidence of 

technology spillovers within metropolitan areas (Fischer and Varga, 2003; Lim, 2004; and 

Acs, 2002); however, this research also noted that these spillovers dissipated with distance.  

Fischer and Varga (2003) concluded that knowledge spillovers followed a distinct distance 

decay pattern. These findings were similar to the research of Shapira (2004) who noted that 

Georgia’s innovation and technology development initiatives had little “trickle down” impact 

outside the Atlanta metropolitan region. The findings for Southern non-metropolitan 

counties appear to indicate that these counties are too distant from the metro innovation 

centers to benefit greatly from available spillovers.  
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Table 3.5 Count Equation for the Number of Patents, in 591 Nonmetro Countiesa

Independent 
Variables 

Model 1
No MSA Term

Model 2
MSA PAT Total 

Model 3
MSA PAT 

Density 

Model 4
MSA 

UNIV R & D 

Model 5
MSA S & 

Tech 

%Tech Occ., 
PR 

.1465425*** 
(3.82)b

.144043*** 
(3.76) 

.1393616*** 
(3.66) 

.1556613*** 
(4.06) 

.1482322*** 
(3.88) 

Coll. Enrol., 
UR 

.0000411 
(1.40) 

.0000447 
(1.52) 

.0000432 
(1.46) 

.0000395 
(1.35) 

.0000399 
(1.36) 

Small Est. 
SF 

36.64243*** 
(2.98) 

37.7247*** 
(3.08) 

36.18055*** 
(2.96) 

36.33426*** 
(2.98) 

36.84798*** 
(3.01) 

Large Est. 
LF 

3495.108*** 
(3.46) 

3498.06*** 
(3.48) 

3533.334*** 
(3.52) 

3540.635*** 
(3.52) 

3448.718*** 
(3.41) 

Mfg. LQ,  
S_MFG 

-.0616448 
(-1.01) 

-.0625702 
(-1.03) 

-.0581255 
(-0.96) 

-.0644573 
(-1.06) 

-.0476173 
(-0.77) 

Diversity, 
D

.1971231*** 
(4.88) 

.1921723*** 
(4.78) 

.1971608*** 
(4.90) 

.1947132*** 
(4.82) 

.1986315*** 
(4.91) 

Comp, 
C

1.194586 
(1.21) 

1.220218 
(1.24) 

1.307574 
(1.33) 

1.299124 
(1.32) 

1.238354 
(1.26) 

Comp2,
C2

-.9974994** 
(-2.20) 

-1.008185** 
(-2.23) 

-1.028623** 
(-2.29) 

-1.056319** 
(-2.35) 

-1.019614** 
(-2.27) 

Amenities, 
AMTY 

.2823737*** 
(4.60) 

.2751303*** 
(4.49) 

.272293*** 
(4.43) 

.2803957*** 
(4.57) 

.2830506*** 
(4.60) 

Total Emp., 
EMP 

.0000713*** 
(10.61) 

.0000705*** 
(10.57) 

.0000704*** 
(10.52) 

.0000715*** 
(10.67) 

.0000722*** 
(10.66) 

% High Tech, 
HTECH 

-.0641657 
(-1.07) 

-.0666373 
(-1.12) 

-.0608697 
(-1.02) 

-.0620373 
(-1.03) 

-.0615716 
(-1.02) 

W. PAT, 
W·P

.1514184** 
(2.45) 

.1417427** 
(2.33) 

.1353633** 
(2.22) 

.1517955** 
(2.45) 

.1538216** 
(2.48) 

Distance, 
DIST 

-.0022466** 
(-2.32) 

-.0023654** 
(-2.46) 

-.0023623** 
(-2.44) 

-.002313** 
(-2.39) 

-.0021511** 
(-2.22) 

MSA PAT, 
MET_T 

 .0000279* 
(1.72) 

 

MSA PAT 
D., MET_D 

.0064539* 
(1.95) 

 

MSA U. R & 
D, MET_UR 

-5.25e-06 
(-0.37) 

 

MSA Tech. 
MET_PR 

.0536324 
(0.92) 

Intercept -1.634681*** 
(-2.70) 

-1.63276*** 
(-2.70) 

-1.721383*** 
(-2.86) 

-1.687076*** 
(-2.80) 

-1.972343*** 
(-2.96) 

Lnα -.3881751*** 
(-5.42) 
 

-.4000764*** 
(-5.58) 

-.3948457*** 
(-5.53) 

-.3889654*** 
(-5.46) 

-.383633*** 
(-5.39) 

Vuong test 
[p-value] 

3.63 
[0.0001] 

3.61 
[0.0002] 

3.54 
[0.0002] 

3.59 
[0.0002] 

3.80 
[0.0001] 

a Non zero observations = 520; and zero observations = 71. 
b z-values for the coefficients are provided in parentheses. 
*, P-Value <0.1; **, P-Value <0.05; and  *** P-Value<0.01 
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3.4 Innovative Activity in Rural Areas 

3.4.1 The Data 

The Study Area 

 One interpretation to the findings provided in section 3.3 is that metropolitan areas 

are defined so broadly as to internalize most of the spillovers resulting from innovative 

activity concentrated in the core counties.  Isserman (2005) suggested an alternative to the 

metro-nonmetro designations of counties based on population density and percent of the 

population that resides in rural areas.  Four county classifications resulted from Isserman’s 

criteria:  rural, mixed rural, mixed urban, and urban.  Of special interest to this paper are the 

rural counties, counties defined by Isserman as having (1) a population density less than 500 

per square mile, and (2) 90 percent of the county’s population is in rural areas or the county 

has no urban area with a population of  10,000 or more (p. 475).  In Figure 3.3, fifty-six 

“rural” counties were contained within the metropolitan areas of the South in 1990.  

Innovative activity in these rural counties would be consistent with urban-rural knowledge 

spillovers. 

Of particular interest to this study is the association between innovative activity in 

MSA and patent counts in the nonmetro and rural counties in the LMA of the MSA.  The 

following model was estimated for the 647 Southern rural counties in LMA with a metro 

core area (Figure 3.3).   
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Figure 3.3 The Map of Study Area, 647 Rural Counties and 117 MSAs 

Excluded Rural Counties 647 Rural Counties 117 MSA
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The Dependent Variable 

In this chapter, innovation, measured as the total patents in county 1990-1999, was 

the dependent variable in the models. To gain some information about the total patents in 

647 counties in 1990-1999, it is informative to look at a histogram of the observed data in 

Figure 3.4. Many rural counties have very few total patents during 1990-1999, and very often 

not even a single patent. The distribution seems to have a long tail. Thus, the ZINBM are 

used for the data analysis (resulting from overdispersion test and Vuong test in Table 3.9).  

 

Figure 3.4 Histogram for Total Patents 
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The Explanatory Variables  

The selected explanatory variables are the same as those used for the previous 

estimations for 591 nonmetro counties. A list of the summary statistics for independent 

variables is provided in Table 3.6. All explanatory variables except metro patents and metro 

university R&D expenditures used 1990 values to control for possible endogeneity issues.   

 

Table 3.6   Summary Statistics for Variables, 647 Rural Counties   
 

Variables Mean SD Min. Max. 

Total Patents, 1990-99 16.00773 48.2375 0 904 

% Tech Occupation, PR 4.494523 1.748212 0 17.40226 

College Enrol. 1990, UR 953.8192 1412.423 0 23197 

Small Est. per capita, SF .0171661 .0055104 .0056221 .0429402 

Large Est. per capita, LF .0000285 .0000469 0 .0003712 

LQ of MFG, S_MFG 1.225023 .89368 0 4.354384 

Indust. Diversity, D 3.280918 1.306286 1.04626 11.86529 

Competitiveness , C .9989444 .2245908 .0951137 2.155624 

Competitiveness squared, C2 1.048253 .4677014 .0090466 4.646717 

Amenity Rank, AMTY 3.698609 .6794515 2 6 

Total Employment, 1990, EMP 9400.184 8884.167 95 58803 

% High Tech Emp, HTECH 1.318546 2.604619 0 23.17731 

W. PAT, W·P -.0036592 .6546974 -.331852 9.411605 

Distance (miles), DIST 49.89954 38.6412 1 381 

MSA PAT, MET_T 1096.652 2449.257 14 13364 

MSA PAT DEN, MET_D 13.54642 12.76103 .9646847 94.03884 

MSA UNIV R & D per capita, MET_UR 1179.787 3125.045 0 28203.04 

%MSA Tech Emp., MET_PR 4.942929 .6861581 3.378928 7.201031 
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3.4.2 The Unlikelihood of Patenting: Logit Equations 

The dependent variable in the knowledge production functions, rural county patents 

1990-1999, is count data with an overdispersion of observations of zero or near zero.  Five 

models were estimated to determine the role of rural county characteristics on county patent 

totals and the sensitivity of the initial estimations’ findings to the inclusion of four measures 

of innovative activity in the metro core of the rural county’s LMA. Table 3.7 shows the 

empirical results for the logit equation (the unlikelihood of county patenting) of the zero 

inflated negative binomial model described in section 3.2 for rural county areas.  

 

Sources of Innovation 

Among the variables representing sources of innovation, the number of individuals 

in the county enrolled in college, the proxy variable for university R&D (UR), is negatively 

but not significantly related to the unlikelihood of a rural area receiving total patents except 

in model 5 (Table 3.7). None of the remaining measures of sources of innovation (PR, SF, 

and LF) are significantly related to the unlikelihood of patenting.  

 

Knowledge Spillovers 

The specialization in manufacturing (S_MFG) and industry diversity (D) are not 

significant. The unlikelihood of county patenting is positively related to Graeser U-shaped 

competitiveness, indicating the importance of large sized establishments or local monopoly 

in the probability of having a patent. This finding is inconsistent with earlier research 

indicating that relatively high levels of innovation are associated with both a small number of 

large establishments as well as a large number of small establishments. 
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Regional Spillovers 

The unlikelihood of patenting is negatively related to the percent of high technology 

employment (HTECH), indicating a positive role for high tech employment on the 

probability of receiving a patent. The coefficients of amenity rank (AMTY) were negative 

but not significant at the 10% level. The negative impact of the size of local economy (EMP) 

on the unlikelihood of patenting was found, indicating the probability of having a patent was 

related to the size of local economy (urbanization economies).  

Of principal interest to this study is the role of spillovers in rural county patent 

activity. The coefficient of the spatially lagged variable (W·P) was not significant. An 

unexpected positive or significant relationship existed for metro innovative activity and 

capacity. Distance from metropolitan (DIST) was negatively related to the unlikelihood of 

patenting in rural county areas, indicating that proximity to metro innovative activity was not 

related to the probability of having a patent in a rural area. There was a significant, positive 

impact of metropolitan university R&D (MET_UR) on the unlikelihood of patenting, 

suggesting that the proximity to metro innovation had little impact on the probability of 

patenting among firms at the rural county level (sometimes with “backwash” effects). Thus 

one of possible explanation for the unexpected coefficient of DIST is due to the “backwash” 

effects from the metro innovative activities.  
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Table 3.7 Logit Equation for the Unlikelihood of Patenting, 647 Nonmetro Countiesa

Independent 
Variables 

Model 1
No MSA 

Term 

Model 2
MSA PAT Total

Model 3
MSA PAT 

Density 

Model 4
MSA 

UNIV R & D 

Model 5
MSA S & Tech 

%Tech Occ., 
PR 

.2668697 
(1.11)b

.2655259 
(1.06) 

.2710321 
(1.14) 

.1891753 
(0.83) 

-.1327267 
(-0.19) 

Coll. Enrol., 
UR 

-.004791 
(-0.82) 

-.0043432 
(-0.72) 

-.0050058 
(-0.85) 

-.0057123 
(-0.95) 

-.0911886** 
(-2.20) 

Small Est. 
SF 

114.3135 
(1.27) 

130.9052 
(1.38) 

121.6789 
(1.31) 

128.3717 
(1.36) 

-41.59584 
(-0.23) 

Large Est. 
LF 

3878.994 
(0.34) 

804.7219 
(0.05) 

5006.652 
(0.45) 

7876.563 
(0.76) 

-19612.57 
(-0.00) 

Mfg. LQ,  
S_MFG 

-1.086215 
(-1.50) 

-1.117151 
(-1.44) 

-1.098413 
(-1.55) 

-1.012491 
(-1.43) 

-2.166938 
(-1.14) 

Diversity, 
D

-.0606097 
(-0.12) 

-.0811522 
(-0.15) 

-.0614642 
(-0.12) 

-.0557212 
(-0.10) 

-.9178669 
(-0.81) 

Comp, 
C

-12.31396* 
(-1.90) 

-12.89799* 
(-1.89) 

-12.11546* 
(-1.85) 

-12.33637* 
(-1.80) 

-13.6651 
(-0.65) 

Comp2,
C2

4.374228 
(1.59) 

4.628088 
(1.60) 

4.309972 
(1.54) 

4.640129 
(1.56) 

8.421657 
(0.80) 

Amenities, 
AMTY 

-.4326725 
(-0.82) 

-.3993298 
(-0.74) 

-.4913975 
(-0.92) 

-.3499835 
(-0.65) 

.4162143 
(0.41) 

Total Emp., 
EMP 

-.0012657** 
(-2.09) 

-.0014049** 
(-2.25 ) 

-.0013425** 
(-2.16) 

-.0014078** 
(-2.30) 

-.0003193 
(-0.48) 

% High 
Tech, 
HTECH 

-2.732221 
(-1.53) 

-2.771548 
(-1.54) 

-2.687683 
(-1.58) 

-3.281859* 
(-1.65) 

-3.516331 
(-1.46) 

W. PAT, 
W·P

-1.290955 
(-0.92) 

-2.188269 
(-0.79) 

-1.611374 
(-0.87) 

-1.136636 
(-0.77) 

-.4082088 
(-0.10) 

Distance, 
DIST 

-.0159077* 
(-1.84) 

-.0174257* 
(-1.77) 

-.016504* 
(-1.92) 

-.015528* 
(-1.71) 

-.0264658* 
(-1.77) 

MSA PAT, 
MET_T 

 .0001572 
(0.93) 

 

MSA PAT 
D., MET_D 

.0205432 
(0.65) 

 

MSA U. R & 
D, MET_UR 

.0002145** 
(2.05) 

 

MSA Tech. 
MET_PR 

-1.785851 
(-1.38) 

Intercept 9.924377** 
(2.35) 

9.885168** 
(2.23) 

9.811829** 
(2.28) 

9.68453** 
(2.15) 

24.61819* 
(1.78) 

Loglikelihood -2072.102 -2062.898 -2066.278 -2069.956 -2071.218 

a Non zero observations = 573; and zero observations = 74. 
b z-values for the coefficients are provided in parentheses. 
*, P-Value <0.1; **, P-Value <0.05; and  *** P-Value<0.01 
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3.4.3 The Rate of Patenting: Count Equations 

Table 3.8 shows the estimated effects of the local characteristics of RIS on the 

number of patents (the rate of patenting) within a rural area. It is clear from the results that 

knowledge spillovers, regional spillovers, and sources of innovation on patent activity had a 

strong positive association with the rate of patenting.  

 

Sources of Innovation  

Noticeable differences exist between the impacts of the local characteristics of RIS 

on the number of patents in rural areas compared to the unlikelihood of patenting across 

rural areas. The positive and significant coefficient for private R&D play appears in the 

negative binomial estimations, but not in the first-stage logit estimations. An increased 

presence of overall private R&D activity has significant effect on the number of patents (the 

rate of patenting) in all five models.  

University spillovers (UR) are more important in determining the number of patents 

than the unlikelihood of patenting in a rural area. An increase in university R&D 

expenditures leads to a significant increase in the number of patents issued within a rural 

area. There are also strong effects of small firms (SF) and large firms per capita (LF), 

suggesting that the rate of patent activity benefits from both small and large firms.  All of the 

four variables (UR, PR, SF, and LF) for the sources of innovation are positively associated 

with the rate of county patenting activity.    
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Table 3.8 Count Equation for the Number of Patents, in 647 Nonmetro Countiesa

Independent 
Variables 

Model 1
No MSA Term

Model 2
MSA PAT Total

Model 3
MSA PAT 

Density 

Model 4
MSA 

UNIV R & D 

Model 5
MSA S & Tech

%Tech Occ., 
PR 

.2927817*** 
(9.92)b

.2847479*** 
(9.98) 

.2810757*** 
(9.65) 

.2940469*** 
(9.97) 

.2902912*** 
(9.88) 

Coll. Enrol., 
UR 

.0000753* 
(1.79) 

.0000602 
(1.58) 

.0000722* 
(1.76) 

.0000749* 
(1.78) 

.0000789* 
(1.79) 

Small Est. 
SF 

44.87106*** 
(3.50) 

45.45471*** 
(3.58) 

44.7978*** 
(3.53) 

45.18657*** 
(3.52) 

47.91868*** 
(3.70) 

Large Est. 
LF 

3437.458*** 
(3.26) 

3764.579*** 
(3.57) 

3687.25*** 
(3.52) 

3449.693*** 
(3.27) 

3253.759*** 
(3.08) 

Mfg. LQ,  
S_MFG 

-.1292988** 
(-2.04) 

-.1442152** 
(-2.30) 

-.136173** 
(-2.17) 

-.130278** 
(-2.05) 

-.0937554 
(-1.46) 

Diversity, 
D

.1753627*** 
(4.28) 

.1514632*** 
(3.75) 

.1681002*** 
(4.16) 

.1734485*** 
(4.23) 

.1805133*** 
(4.35) 

Comp, 
C

.9191045 
(0.90) 

1.291688 
(1.28) 

1.191698 
(1.19) 

.9045193 
(0.89) 

1.16138 
(1.15) 

Comp2,
C2

-1.276219*** 
(-2.86) 

-1.375354*** 
(-3.13 ) 

-1.353645*** 
(-3.10) 

-1.268001*** 
(-2.84) 

-1.356251*** 
(-3.07) 

Amenities, 
AMTY 

.3078132*** 
(4.73) 

.2769958*** 
(4.30) 

.2803781*** 
(4.31) 

.3049261*** 
(4.69) 

.3068363*** 
(4.65) 

Total Emp., 
EMP 

.0000642*** 
(8.60) 

.0000657*** 
(9.11) 

.0000633*** 
(8.65) 

.0000641*** 
(8.59) 

.0000657*** 
(8.49) 

% High 
Tech, 
HTECH 

-.0026869 
(-0.04) 

-.0064781 
(-0.09) 

.0050023 
(0.07) 

-.0048564 
(-0.07) 

.0004369 
(0.01) 

W. PAT, 
W·P

.2485394*** 
(3.40) 

.2288489*** 
(3.29) 

.2258115*** 
(3.19) 

.2520361*** 
(3.43) 

.261504*** 
(3.45) 

Distance, 
DIST 

-.0031201*** 
(-3.08) 

-.0033409*** 
(-3.39) 

-.0033178*** 
(-3.30) 

-.003208*** 
(-3.16) 

-.002925*** 
(-2.86) 

MSA PAT, 
MET_T 

 .0000607*** 
(3.93) 

 

MSA PAT 
D., MET_D 

.0101468*** 
(3.19) 

 

MSA U. R & 
D, MET_UR

-.0000131 
(-0.95) 

 

MSA Tech. 
MET_PR 

.0642411 
(1.09) 

Intercept -1.601673** 
(-2.52) 

-1.712419*** 
(-2.73) 

-1.741576*** 
(-2.78) 

-1.567072** 
(-2.46) 

-2.217727*** 
(-3.20) 

Lnα -.235313*** 
(-3.63) 

-.2653404*** 
(-4.05) 

-.2536599*** 
(-3.90) 

-.2384627*** 
(-3.67) 

-.1869373*** 
(-2.95) 

Vuong test 
[p-value] 

3.51 
[0.0002] 

3.51 
[0.0002] 

3.46 
[0.0003] 

3.59 
[0.0002] 

3.75 
[0.0001] 

a Non zero observations = 573; and zero observations = 74. 
b z-values for the coefficients are provided in parentheses. 
*, P-Value <0.1; **, P-Value <0.05; and  *** P-Value<0.01 
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Knowledge Spillovers  

 Rural county total patents are negatively associated with the specialization in 

manufacturing (S_MFG). This finding is consistent with the hypothesis that “manufacturing 

towns” are unattractive places for innovative activity (Acs et al., 2002). However, rural patent 

totals are positively associated with industry diversity (D) of the local economy. These results 

indicate that less specialization promotes innovation and growth because most important 

knowledge transfers are from outside industries (Jacobs’ hypothesis). 

The competitiveness of the local industry structure is statistically correlated with 

innovative activity in the non-metro counties with an inverse U-shaped form, indicating the 

role of local market power. This finding is inconsistent with earlier research indicating that 

relatively high levels of innovation are associated with both a small number of large 

establishments as well as a large number of small establishments.  

 

Regional Spillovers  

The availability of local amenities (AMTY) and proximity to metro areas (DIST)

areas are positively associated with the number of rural patents. An increase in amenity 

quality in rural areas contributes to an increase in the number of patents issued within a rural 

area. This finding may indicate that the more innovative firms in rural areas are located in 

counties with higher amenities and access to metro areas. Alternatively, the lead scientists on 

patents may reside in adjacent, high amenity rural counties but work in metro areas (Barkley, 

et al., 2006). 

Rural patent totals are positively associated with the size of the local economy (EMP) 

indicating that as the rural employment grows, the number of patents significantly increases. 

The strong positive effect of the size of a rural area is consistent with a similar effect found 
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by Jaffe (1989) and Feldman (1994) at the state level.  No significant relationship is found 

between high-technology employment (HTECH) in rural counties and number of local 

patents.   

The spatially lagged dependent variable (W • P) indicates a positive association 

between patent total in a county and patent activity in surrounding counties.  That is, 

counties with low patent totals tend to cluster, and counties with high patent totals tend to 

locate near similar counties. MSA patent totals (MET_T) and MSA patents per 10,000 

persons (MET_D) were positively associated with rural patent activity at the 10% significant 

level, indicating “spread” effects. One of the metro inputs for the innovation process, 

MSA_UR, is negatively related to rural patent counts but not at a high level of statistical 

significance. The other input measure, MSA_PR, is positively associated with county 

innovative activity, but not statistically significant.     

 

3.4.4 Comparison to the Nonmetro and Rural Innovative Activity 

In this chapter the knowledge production functions expressed in Equation (3.4) were 

re-estimated for the 591 nonmetro counties plus the 56 rural counties in the Southern MSA. 

The MSA characteristics in each LMA were re-calculated to reflect the exclusion of the rural 

counties from the MSA. The regression results for the 647 counties are presented in Table 

3.7 and Table 3.8.  The findings are similar to those for the nonmetro county data analysis in 

Table 3.4 and Table 3.5 with a couple of notable exceptions.  

First, proximity to research universities has a significant effect on the unlikelihood of 

patent activity in nonmetro county area. Alternatively, university R&D had a significant 

effect on the number of patents in the “rural” sample. The significant effect of university 

research spillovers is important for policy makers concerned with nonmetro innovative 
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activity in the early stage of innovation process. Second, all of variables representing 

innovation sources (PR, UR, SF, LF) in the rural county areas are more significantly 

associated with the number of patents (in the rate of patenting models) than in nonmetro 

county areas. Third, the negative effect of the specialization in manufacturing (S_MFG) in 

rural county areas was stronger on the number of patents than that of S_MFG in nonmetro 

county areas. The negative coefficient on the percent of high technology employment 

(HTECH) was significant in the unlikelihood of patenting in the rural county areas, while it 

was not significant for the nonmetro county sample.  

The unlikelihood of patenting in nonmetro counties was more positively related to 

MSA patent totals (MET_T) and MSA university R&D (MET_UR), indicating “backwash” 

effects. University research and development activities may be attracting knowledge 

resources away from the hinterland areas.  This relationship for Southern counties also is 

consistent with previous research (McCann and Simonen, 2005).  

The number of patents (the rate of patenting) in nonmetro plus metro rural counties 

were more strongly related to MSA patent total (MET_T) and MSA patent intensity 

(MET_D). The expansion of the data set from nonmetro (591 counties) to nonmetro plus 

rural (647 counties) resulted in both an increase in the size of the coefficients and the 

significance levels.  These findings support earlier research indicating that a county’s 

innovative activity is associated with innovation in nearby locations.  However, the 

sensitivity of the association to the inclusion of 56 rural counties in MSA also is consistent 

with earlier findings of a limited spatial dimension to innovation spillovers (Barkley et al., 

2006).  MSA fringe counties appear to “benefit” from patent activity in the urban MSA 

counties. In sum, innovation spillovers from patents are evident but spatially limited. 
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3.5 Summary of Findings 

This chapter has presented empirical estimates of the impacts of the local 

characteristics of RIS on innovative activity in nonmetro and rural counties. Using utility 

patents as the measure of innovative activity, this impact was examined at two levels: (1) on 

the unlikelihood of patenting in rural areas and (2) on the level of innovative activity.  

First, the evidence indicates that the negative impacts of university spillovers (UR) 

and economy size (EMP) is strong on the unlikelihood of patenting in the first stage of the 

zero inflated negative binomial models. Alternatively, the probability of having a patent in 

rural or nonmetro county areas is positively related to university spillovers and the size of 

local economy. However, the unlikelihood of patenting was positively related to the metro 

patent activities, indicating “backwash” effects. 

Second, this chapter also provided evidence that local characteristics of RIS effected 

the level of innovative activity in rural areas (the rate of patenting). The empirical findings 

indicated that innovation sources, knowledge spillovers, and regional spillovers lead to 

greater patent activity. This supports previous research with similar findings at both the state 

and metropolitan area levels for patents and innovation counts. Innovative activity is most 

evident where the county has sources of innovation (private R&D, university R&D, small 

firms, and large firms), knowledge spillovers (industry diversity, no specialization of 

manufacturing industry), and regional spillovers (high technology employment, spatial 

proximity, quality of amenities, the size of local economy).  

However, evidence of metropolitan innovation spillovers to rural county areas is 

relatively limited. The findings indicated that patent activity in metro areas had a small but 

statistically significant association with the number of patent totals for nearby rural 

economies. This research did not find any relationship between university research and 
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development expenditures in the metro core and patenting activity in the remaining rural 

counties of the LMA. The absence of strong and widespread spillover effects from the 

clusters of innovative activity may contribute to a divergence of economic development 

trends between metropolitan and non-metropolitan areas. The following chapter examines 

the impact of the rural innovative activity and the local characteristics of RIS on the 

economic growth of nonmetro and rural counties (647 counties). 



84

CHAPTER 4 

THE ROLE OF RIS IN RURAL GROWTH 

 

4.1 Introduction 

This chapter investigates the relationship between the characteristics of rural RIS and 

economic growth rates (population, earnings, employment, and income growth) in 647 rural 

counties of the South from 1990 to 2000 period. The main goal of this chapter is to 

investigate the role of RIS in the regional economic growth at the rural level in the South. Of 

special interest is the role of local innovative activity in rural economic growth. Specifically, 

is the regional economic growth in rural counties associated with the RIS in the county and 

the innovative activity in the metro core, and if so, what characteristics of rural counties 

contribute to increased economic growth?  

 This chapter is organized as follows. First, the research describes the variables and 

data employed, the hypotheses to be tested, and the construction of the models. Next, rural 

economic growth models such as the Glaeser OLS model and the Carlino-Mills model are 

estimated for the 647 rural and nonmetro counties in LMA with a metropolitan core. The 

principal goal of these estimations is to determine the influence of the characteristics of rural 

RIS and metro innovative activity on population, earnings, employment, and income 

changes in the 647 counties in the Southern LMA. The findings indicate that the local 

characteristics of RIS in rural areas had a statistically significant association with rural 

growth. However, the innovative activities in metro areas had a negative association with 

rural economic growth, suggesting “backwash” effects.  
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4.2 Model and Data  

4.2.1 The Study Area 

 The study area is the 591 nonmetro counties in Southern LMA with metro cores. In 

addition, according to Isserman’s criteria (rural, mixed rural, mixed urban, and urban), 56 

rural counties were contained within the metropolitan areas of the South in 1990.  

Innovative activity in these rural counties would be consistent with urban-rural knowledge 

spillovers. The following models were estimated for the 647 Southern counties in LMA with 

a metro core area (nonmetro plus rural counties in MSA).   

 

4.2.2 The Dependent Variables 

This study hypothesizes that rural counties near metro areas with significant 

innovative activity have more rapid economic growth than rural areas proximate to metro 

areas with less innovative activity. Previous research (Barkley et al., 1994) suggested, 

however, that the spillover of economic activity from the metro core to nearby rural counties 

was a function of characteristics of both the MSA and surrounding rural counties. This study 

builds on the empirical framework of Glaeser and Saiz (2003) to determine the effects of 

local characteristics of RIS in rural economics growth. Four models are estimated for 

Southern rural counties according to the following specifications:   
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where: 
POP=Population; EPR=Net earnings by place of residence; EMP=Employment; 
PI=Personal Income; 2000=Year 2000; 1990=Year 1990; r= Rural couny; 
MSA_CHRr=Characteristics of MSA in county r’s LMA; 
MSA_RISr= MSA total patents 1990-99; CHRr=Rural characteristics of county r; 
RISr=Rural characteristics of RIS of county r, 1990; m= metropolitan;  
α, β, γ and δ are the parameter coefficients; and ln stands for log transformation.  
 

In this chapter, four variables are selected as the dependent variables in the models: 

the growth rate of population, the growth rate of net earnings by place of residence12, the 

growth rate of employment, the growth rate of personal income13. All variables are expressed 

in log form. To gain some information about the dependent variables in the 647 counties, it 

is useful to look at a histograms of the observed data in Figure 4.1 through Figure 4.4. Table 

4.1 and Table 4.2 provide the definition and descriptive summary statistics for the four 

dependent variables. 

 

12 BEA note that “Net earnings by place of residence is earnings by place of work-the sum of wage and
salary disbursements, supplements to wages and salaries, and proprietors’ income-less contributions for
government social insurance, plus an adjustments to convert earnings by place of work to a place of
residence basis.” (BEA, www.bea.gov, 2006)

13 BEA noted that “Personal Income (PI) is the income that is received by all persons from all persons from
all sources. It is calculated as the sum of wage and salary disbursements, supplements to wages and
salaries, properties’ income with inventory valuation and capital consumption adjustments, rental income
of persons with capital consumption adjustment, personal dividend income, personal interest income, and
personal current transfer receipts, less contributions for government social insurance.” (BEA,
www.bea.gov, 2006).
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Figure 4.1 Histogram for the Growth of Population (POP) 
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Figure 4.2 Histogram for the Growth of Earnings by Place of Residence (EPR) 
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Figure 4.3 Histogram for the Growth of Employment (EMP) 
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Figure 4.4 Histogram for the Growth of Personal Income (PI) 
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Table 4.1 Variable Descriptions and Data Sources 

Variables Description 

% Tech Occup., PR Percent of employment in technical professions – computer science; 
engineering; natural, physical and social sciences (BLS, 1990) 

% Coll. Enrol. 90, UR Percent of individuals in county enrolled in college, 1990 (Census) 

Small Est. per capita, SF County establishments with fewer than 20 employees per capita 

Mfg LQ, S_MFG LQ  in manufacturing, Eq (3.10), 1990 (BEA) 

Competitiveness,  C The ratio of local to national establishments per worker, Eq. (3.11), 1990 (CBP).

Diversity, D Inverse of Krugman Index, Eq. (3.13),  one-digit SIC, 1990 (BEA) 

Amenities, AMTY McGranahan Index of natural amenities (ERS, USDA, 1999) 

% High-Tech. , HTECH Percent of total county employment in high-technology manufacturing, 1992 
(Census of Manufacturers) 

Emp Density 90, EMPD (County employment, 1990)/(County area, 1990), Census 

Distance, DIST Miles from largest city in county to core city in LMA’s MSA 

PAT per 10000 Pop, 
PATD 

Total patents per 10,000 population, 1990-1999 (USTPO)  

MSA Patent Den.,  
M_PAT 

MSA patents per 10,000 population, 1990-1999 (USTPO)  

W • Growth, W·Y Spatially lagged dependent variable, W = contiguity matrix 

Med. House Val90, 
HVAL 

Median value of housing, 1990 (Census) 

% Non-white 90, 
NWHITE 

Percent of county population nonwhite, 1990 (Census) 

Pop Density 90, POPD (County population, 1990)/(County area, 1990), Census 

Pop 90, POP90 County population, 1990 (Census) 

Total Emp 90, EMP90 Total county employment, 1990 (BEA) 

Earnings 90, EPR90 County net earnings by place of residence, thousands of dollars, 1990 (BEA) 

Personal Incom90, PI90 County personal income, thousands of dollars, 1990 (BEA) 

MSA Pop Den.90, 
lnM_POPD 

(MSA population, 1990)/(MSA area, 1990), Census 

MSA Emp D.90,  
M_EMPD 

(MSA employment, 2000)/(MSA area, 1990), BEA and Census 

MSA Gr. Pop, 
M_GPOP 

(MSA population, 2000)/(MSA population, 1990), Census 

MSA Gr. Earn., 
M_GEPR 

(MSA earnings per worker by place of residence, 2000)/ (MSA earnings per 
worker by place of residence, 1990), BEA 

MSA Gr. Emp,  
M_GEMP 

(MSA employment, 2000)/(MSA employment, 1990), BEA 

MSA Gr.PI., M_GPI (MSA personal income, 2000)/ (MSA personal income, 1990), BEA 
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4.2.3 The Explanatory Variables of Metro Characteristics 

The previous four regression models (Equation (4.1) through (4.4)) are used to 

determine factors related to rural county growth rates in population, net earnings by place of 

residence, employment, and personal income. The model specifications use the MSA values 

for the dependent variables, such as the 1990 to 2000 MSA population growth rate, to 

investigate the relationship between urban growth and rural growth. This is consistent with 

the conclusions by Partridge et al. (2005) that urban growth drives the regional economy and 

creates significant positive impacts on nearby rural areas. Thus, growth rates in rural counties 

are hypothesized to be driven by changes in population, net earnings by place of residence, 

employment and earnings in the LMA’s core metro areas. 

Three other MSA-level variables are included to estimate the influence of 

metropolitan area characteristics (MSA_CHR) on the growth rates of rural counties in the 

metro area’s LMA. First, the 1990 to 1999 patent counts per 10,000 residents (patent 

intensity) were used as the proxy variable for innovative activity in metro areas. A positive 

coefficient on the MSA innovative activity variable (lnM_PAT) is hypothesized if proximity 

to MSA innovative activity is associated with more rapid growth rates in rural counties.  

Second, MSA population density (lnM_POPD) will be positively related to rural 

growth rates if urban population density reflects congestion and higher social costs in the 

urban area. Alternatively, metro population density will be negatively related to rural growth 

rates if population density reflects the availability of urbanization economies in the metro 

area and these urbanization economies contribute to a “backwash” effect on nearby rural 

counties (Barkley et al., 2006). Thus, the sign on the density coefficient is indeterminant, a 

priori.  
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Third, the metropolitan characteristic hypothesized to influence the urban-to-rural 

spillover of growth is MSA employment density (lnM_EMPD) in the metro area. MSA 

employment density is hypothesized to be negatively related to rural employment and 

income growth if employment density reflected agglomeration economies in the metro areas, 

and thus “pulled” economic activity into the LMA’s core city. Alternatively, high 

employment density may reflect congestion costs and thus encourage the spillover of jobs to 

rural counties in the LMA (Barkley et al., 2006). Thus, the effect of metro employment 

density is mixed. 

 

4.2.4 The Explanatory Variables of RIS and Rural Characteristics 

Characteristics of RIS 

The simple descriptive statistics for all variables are provided in Table 4.2. The 

hypotheses regarding local innovative activity, innovation sources, knowledge spillovers and 

regional spillovers are the same as those provided in Chapter 3. The 1990 to 1999 patent 

counts per 10,000 residents (lnPATD)14 is used as the proxy variable for rural innovative 

activity. The literature on the role of innovative activity in nonmetro or rural areas indicates a 

significant positive effect of rural innovative activity on the economic growth (Acs and 

Varga, 2004; Porter, 1996).  

 

14 For log-transformation, I set all zero observations in county total patents equal to 0.5.
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Table 4.2   Descriptive Statistics for Variables in 647 Rural Counties  

Variables Mean S.D. Min Max 

Log-Growth Rate of Population .1083496 .1307066 -.468137 .678199 

Log-Growth Rate of EPOR .5039228 .2166498 -.266722 1.212025 

Log-Growth Rate of Employment .1590089 .1975022 -1.94974 1.846991 

Log-Growth Rate of PI .5243009 .1791372 .000042 1.259838 

% Technical Occup.90, lnPR 1.440018 .3523472 -1 2.82581 

% Coll. Enrol. 90, lnUR 1.255387 .4311866 -1.069134 3.888923 

Small Est. per cap. 90, lnSF -4.115439 .3221685 -5.181057 -3.147948 

Mfg. LQ 90, lnS_MFG 1.014461 .4429398 0 2.086716 

Competitiveness, lnC -.0301072 .2579144 -2.352679 .76808 

Diversity 90, lnD 1.11981 .3638358 .045222 2.473617 

Amenities 90, AMTY 3.698609 .6794515 2 6 

% High Tech Emp, lnHTECH -2.036933 .9874523 -5.03851 2.639511 

Emp Density 90, lnEMPD 2.451452 1.088464   -1.958017 7.768068 

Distance, lnDIST 3.734595 .592247 -.693147 5.942799 

PAT per 10000 Pop, lnPATD .9611426 1.409291 -3.912023 5.38022 

MSA Patents90-99, lnM_PAT 5.668658 1.59809 2.639057 9.50032 

Med. House Val90, lnHVAL 10.63764 .2750759 9.615739 11.92636 

% Non-white 90, lnNWHITE 2.572763 1.257618 -2.780621 4.456533 

Pop 90, lnPOP90 9.648438 .8743722 4.672829 11.93232 

Emp 90, lnEMP90 8.778104 .897548 4.553877 10.98195 

Earnings 90, lnEPR90 11.75646 .9288631 7.007601   14.02716 

Personal Incom90, lnPI90 12.23737 .8906188 7.886081 14.77927 

Pop Density 90, lnPOPD 3.430136 1.13888 -2.307206 7.38911 

MSA Gr. Pop, lnM_GPOP .1299873 .0860902 -.040479 .395237 

MSA Pop Den.90, lnM_POPD 5.30838 .6290271 3.671236 6.904737 

MSA Gr. Earn., lnM_GEPR .5422453 .142214 .223389 1.091419 

MSA Emp D.90, lnM_EMPD 4.751464 .6833522 2.774389 6.27786 

MSA Gr. Emp, lnM_GEMP .2066269 .093838 -.00425 .506645 

MSA Gr.PI., lnM_GPI .5501758 .1162953 .3210681 .9938933 
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The proxy variable selected for industry R&D (lnPR) is percent of county 

employment in scientific and technical occupations because measures of private R&D 

expenditures by county are not available. The proxy variable for potential university R&D 

(lnUR) is the percent of individuals in the county enrolled in college. The positive 

coefficients of private and university R&D are hypothesized. The proxy variable for small 

firms (lnSF) is the county establishments with fewer than 20 employees per capita in 1990. 

However, since the proxy variable of large firms in Chapter 3 had many zero value, I cannot 

use the log transformation. Research on innovative activity in states and metropolitan areas 

indicated a positive association between economic growth rates numbers and proportion of 

small firms in rural areas (Gordon and McCann, 2005).  

The MAR and Porter theories of external economies suggested that industry 

specialization will stimulate growth of the sector in that region. However, the hypothesized 

coefficient on the variable representing specialization in manufacturing (lnS_MFG) is 

uncertain. Patenting among manufacturers is high relative to other sectors, but Glaeser and 

Saiz (2003) found that innovative firms avoided traditional manufacturing areas. According 

to MAR, intensive local competitiveness (lnC) in a sector impeded economic growth in that 

sector. In the case of intensive competitiveness, MAR assumed that enterprises limited their 

innovative activities because too much new knowledge spilled over to competitors. 

According to Jacobs and Porter, intensive local competitiveness benefited economic growth 

because enterprises were forced to innovate. Thus, the impact of regional competitiveness is 

mixed.  

 In Equation (3.12), when a region is more specialized than the nation, the 

summation increases. On the other hand, when the industrial mix follows the national 

average (i.e., if the region is diversified), the summation decreases. Unlike the specialization 
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index that focuses only one industry, the diversity index takes into account the industry mix 

of the entire regional economy. Therefore, contrary to popular belief, specialization and 

diversity are not necessarily mutually exclusive concepts. A regional economy can have a few 

specialized industries and at the same time be diverse. The industrial diversity of the county 

economy (lnD) is represented by the inverse of the Krugman Index (Equation 3.13), and a 

positive association is anticipated between industry diversity and county economic growth 

rates.

County and regional characteristics found in earlier research to be associated with 

regional economic growth rates are the structure of the local economy, characteristics of the 

local labor market, and economic growth rates in nearby communities (spillovers). A 

common way of modeling spillovers between regions is using spatial econometric models. A 

positive estimated coefficient on the spatially lagged dependent variable indicates a positive 

association between economic growth rates in a county and growth rates in surrounding 

counties. The distance variable (lnDIST) reflects proximity to urbanization economies in the 

LMA’s metro area. A negative relationship between distance and county growth rates is 

hypothesized.  

Deller et al. (2001) extended the Carlino-Mills model to explore the nature of 

amenity attributes on rural development. Their main hypothesis was that regional economic 

growth rates are conditional upon regional amenity factors. Their findings indicated that 

workers in low amenity regions were compensated by higher wages than workers that live in 

areas with high levels of amenities. This study hypothesizes that rural growth rates are 

positively related to the perceived local quality of life as reflected in the McGranahan (1999) 

index for natural amenities (AMTY). The percentage of county employment in high-
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technology manufacturing industries (lnHTECH)15 is also hypothesized to be positively 

related to county growth rates (Riddel and Schwer, 2003).  

 

Regional Characteristics  

Local school quality or the local educational environment is represented by the 

instrument Median Value of Housing (lnHVAL), 1990. An increase in local housing value is 

associated with an increase in available funding for schools and a higher demand by residents 

for student performance (Barkely, Henry, and Nair, 2006). This research anticipate a positive 

relationship between county population and earnings growth rates and median housing value 

if local school quality is an important determinant of residential location choice. Local quality 

of life measures also may be positively related to county employment growth. I hypothesize 

that employers are concerned to areas with a high quality of life because labor is less 

expensive in or more easily attracted to such locations (Roback, 1982).  

Racial diversity is measured as the percentage of the county population that is non-

white (lnNWHITE), and a negative relationship is hypothesized between racial diversity and 

growth rates. The county population density variable (lnPOPD) is the proxy for the 

availability of urbanization economies in the rural county, and a positive coefficient is 

hypothesized for the variable. Employment density (lnEMPD) is the proxy for county 

urbanization economies and it is hypothesized to be positively related to county employment 

and earnings growth.  

Table 4.1 provides the detailed variable definitions and data sources. The 

characteristics are selected based on the findings of previous research regarding rural county 

characteristics associated with economic growth (Deller, et al., 2001); metro and rural county 

 
15 For log-transformation, I set all zero observations in county high technology employments equal to 0.5.
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characteristics related to urban-to-rural spillover effects (Henry et al., 1997); and county 

attributes associated with the geographic spread of innovative activity (Acs, 2002). All MSA 

and rural county characteristics variables are expressed as shares of area totals. Base year 

(1990) values of the explanatory variables are used to control for possible endogeneity issues 

except for the innovative activity variables. The models are estimated for the 647 Southern 

nonmetro and rural counties in LMA with metropolitan core cities. All variables were 

expressed in log form except for the quality of life indices (natural amenity ranks). As such, 

the estimated coefficients are elasticities. All the models were estimated with STATA 9.2.    

 

4.3 The Data Analysis with the OLS Models 

4.3.1 The OLS Model for Population Growth 

 The OLS model for the growth rate in nonmetro and rural county population, 1990-

2000, is as follows: 
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where ln stands for log transformation; α0, α1, α2, α3, α4, α5, α6, α7, α8, α9, α10, α11, α12, α13, α14,  α15, α16,  
α17 and α18 are estimated parameters; and the ε1 is the error term.  
 

Metro Characteristics 

The findings of the OLS regression analysis for the population change are presented 

in Table 4.3. Several patterns are evident from the estimated equations. As hypothesized, the 

growth rate of rural county population is significantly related to metro characteristics 

(metropolitan population density and the growth rate of metro population). Rural county 

population growth rate (lnGPOP) is higher if the nearest metro area has experienced 
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relatively rapid population growth. These results indicate that MSA growth provides positive 

spillovers or “spread” effects to rural counties in the MSA’s labor market area. Evidence of 

population spread effects is also consistent with earlier research of nonmetro county growth 

(Bakley et al., 2006; Henry et al., 1997). However, the estimated coefficients for the metro 

patenting activity variable (lnM_PAT) do not support the hypothesis that innovative activity 

in a metropolitan area provides benefits to proximate rural areas. The negative coefficients 

indicate the possibility of a “backwash” effect from metro innovative activity.  

 

RIS and Regional Characteristics 

The percent of employment of in scientific and technical occupations (lnPR) is also 

positively associated with the growth rate of population. The industry diversity (lnD) is 

positively related to the growth rate of county population. The results indicate that less 

geographical specialization rather than more local specialization, promotes local population 

growth because many important knowledge transfers are from outside industries (Jacobs’ 

hypothesis). However, the negative, significant coefficients of the proxy variables for small 

firms (lnSF) and the size of local economy (lnEMP90) are not consistent with hypothesized 

relationships. The population growth rate is not significantly related to the rural patent 

activity (lnPATD). The remaining RIS characteristic variables (regional competitiveness, 

distance, manufacturing specialization, percent of high-technology employment) are also not 

significant.  

As hypothesized, the rural county population growth rate (lnGPOP) is significantly 

related to local quality of life as reflected in local amenities (AMTY) and school quality 

(lnHVAL). The spatially lagged dependent variable (W •lnGPOP) indicates a positive 

association between the population growth rate in a county and the rates in surrounding 
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counties. That is, counties with low growth rates tend to cluster, and counties with high 

growth rates tend to locate near similar counties. The proxy variable for racial diversity 

(lnNWHITE) is negatively related to the growth rate of rural county population. The county 

population density variable (lnPOPD) is positively associated with the population growth 

rate in rural areas, indicating the availability of urbanization economies in the rural county. 

Thus all of coefficients of rural characteristics are significant, suggesting the importance of 

the rural characteristics on the growth rate of rural population. 

 

4.3.2 The OLS Models for Earnings Growth 

 The OLS model for growth rates in rural net earnings by place of residence, 1990-

2000, is as follows: 
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where γ0, γ1, γ2, γ3, γ4, γ5, γ6, γ7, γ8, γ9, γ10, γ11, γ12, γ13, γ14, γ15, γ16, γ17 and γ18 are estimated parameters; 
and the ε2 is the error term.  
 

Metro Characteristics 

The findings of the OLS regression analysis are presented in Table 4.3. The net 

earnings growth rate (lnGEPR) in a rural county is significantly related to metro 

characteristics (metro population density and the net earning growth in metro area). The 

rural county earnings growth rate is higher if the nearest metro areas experienced relatively 

high population density, indicating MSA spillovers or “spread” effects to rural counties in 

the MSA’s labor market area. However, the estimated coefficients for the metro patenting 

activity variable (lnM_PAT) do not support the hypothesis that innovative activity in a 
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metropolitan area provides benefits to proximate rural areas. “Backwash” effects are 

indicated by the negative coefficients.   

 

RIS and Regional Characteristics 

The earnings growth is negatively related to the relative number of small firm 

establishments (lnSF), indicating a negative effect of rural small firms on the growth rate of 

rural earnings by place of residence. As hypothesized, rural industry diversity (lnD) and 

regional competitiveness (lnC) are positively related to the growth rate of net earnings by 

place of residence. The rural earnings growth rate is positively associated with local quality of 

life as reflected in amenities (AMTY). The percent of high technology employment 

(lnHTECH) is positively related to the earnings growth. The coefficient of the rural patent 

activity variable (lnPATD) is positive and significant, indicating the role of rural innovative 

activity on the earnings growth. The coefficients of the remaining variables related to RIS 

characteristics (the proxy variables for private R&D and university R&D, manufacturing 

industry specialization, distance) are not significant at the traditional level.  

The regression results for the growth rate of earnings by place of residence indicate 

that the earnings growth rate is highest among rural counties with relatively low base year 

earnings (lnEPR90). The growth rate of net earnings is related to good school quality as 

reflected in 1990 median housing values (lnHVAL) and relatively available urbanization 

economies as indicated by county population density (lnPOPD). The spatially lagged 

dependent variable (W •lnGEPR) indicates a positive association between the earnings 

growth rates in a county and the earnings growth rates in surrounding counties. The proxy 

variable for racial diversity (NWHITE) is negatively related to the growth rate of rural 

county earnings. 
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Table 4.3   OLS Results for Growth Rates in Population and Earnings 

Population Change, lnGPOP Change in Net Earnings by 
Residence,  
lnGERP 

Variables Coefficient t-value Coefficient t-value 

% Technical Occup.90, lnPR .0436451*** 2.94 -.0079148 -0.31 

% Coll. Enrol. 90, lnUR -.0145164 -1.60 .0056903 0.38 

Small Est. per cap. 90, lnSF -.0520776*** -2.90 -.2013186*** -6.94 

Mfg. LQ 90, lnS_MFG -.0079146 -0.72 .0205268 1.10 

Diversity 90, lnD .0256193** 2.11 .0777676*** 3.80 

Competitiveness, lnC -.0132735 -0.56 .0719159* 1.83 

Amenities 90, AMTY .0150319*** 2.62 .0165044* 1.75 

% High Tech Emp, lnHTECH -.00092 -0.24 .0172344*** 2.65 

Emp 90, lnEMP90 -.0187389*** -2.73   

W·lnGPOP .0575632*** 10.10   

W·lnGEPR  .0894588*** 8.73 

Distance, lnDIST -.0042194 -0.62 -.0148421 -1.29 

PAT per 10000 Pop, lnPATD .0024308 0.87 .0087127* 1.85   

Med. House Val90, lnHVAL .121572*** 6.20 .2479338*** 7.58 

% Non-white 90, lnNWHITE -.0112753*** -3.94 -.0148285*** -3.10 

Earnings 90, lnEPR90  -.068857*** -5.94 

Pop Density 90, lnPOPD .0217319*** 3.16 .039271*** 3.43 

MSA Patents90-99, lnM_PAT -.0156814*** -3.85 -.0297283*** -4.49 

MSA Pop Den, lnM_POPD .024235*** 2.69 .0284755* 1.96 

MSA Gr. Pop, lnM_GPOP .3171697*** 5.86   

MSA Gr. EPR, lnM_GEPR .4099697*** 7.60 

Intercept -1.470225*** -6.12 -2.531497*** -6.44 

R2 (Adjusted) 0.5859 0.5741 

Obs. Number 647 647 

*, P-Value <0.1; **, P-Value <0.05; and  *** P-Value<0.01 
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4.3.3 The OLS Models for the Employment Growth 

 The OLS models for growth rates in rural employment, 1990-2000, are as follows: 
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where β0, β1, β2, β3, β4 ,β5 ,β6 , β7, β8 ,β9, β10, β11, β12 β13, β14, β15 and β16 are estimated 
parameters; and the ε3 is the error term.  
 

Metro Characteristics 

The findings of the OLS regression for employment growth rates (lnGEMP)are 

presented in Table 4.4. Rural county employment growth rates are significantly related to 

metro characteristics (metro employment density and the growth rate of metro 

employment). Rural county employment growth rates are higher if the nearest metro areas 

have experienced relatively rapid employment growth. These results indicate that MSA 

growth provided “spread” effects to rural counties in the MSA’s labor market area. 

However, the estimated coefficients for the metro patenting activity variable (lnM_PAT) do 

not support the hypothesis that innovative activity in a metropolitan area provides benefits 

to proximate rural areas.  

 

RIS and Regional Characteristics 

The growth rate of rural employment is positively and significantly related to the 

rural patent activity (lnPATD). Thus, evidence of higher employment growth from rural 

innovative activity is found in Southern rural counties. The percentage of the county’s labor 

force in science and technology professions (lnPR) is positively and significantly related to 

the employment growth. However, the proxy variable for university R&D (lnUR) is not 

significant. County employment growth rates are negatively related to the number of small 
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firm establishments per capita (lnSF), indicating inconsistence with the hypothesis. The 

coefficients of the specialization in manufacturing (lnS_MFG) and rural industry diversity 

(lnD) are not significant. A relatively large manufacturing sector is not significantly related to 

the employment growth rate. However, the growth rate in local employment is positively 

related to the rural competitiveness measure (lnC) with statistically high significance, which is 

consistent with Porter’s hypothesis. 

The regression results for the growth rate of rural employment indicate that the 

employment growth rate is highest among rural counties with relatively low base year 

employment (lnEMP90). The availability of local amenities (AMTY) is positively associated 

with the rural employment growth rate, indicating that employment growth in rural areas is 

concentrated in counties with higher amenities. The county employment growth rate is also 

positively related to county employment in high tech industries (lnHTECH). The spatially 

lagged dependent variable (W •lnGEMP) indicates a positive association between the 

employment growth rate in a county and the employment growth rates in surrounding 

counties. The coefficients of remaining variables related rural characteristics (rural 

employment density, distance) are not significant at the traditional level.  

 

4.3.4 The OLS Models for the Income Growth 

 The OLS model for growth rates in county personal income, 1990-2000, is as 

follows: 
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where δ0, δ1, δ2, δ3, δ4, δ5, δ6, δ7, δ8, δ9, δ10, δ11, δ12 δ13, δ14 , δ15 and δ16 are estimated parameters; 
and the ε4 is the error term.  
 

Metro Characteristics 

The findings of the OLS regression for the growth rate of county personal income 

are presented in Table 4.4. The growth rate in personal income (lnGPI) is significantly 

related to metro characteristics (metro employment density and the growth of personal 

income), indicating that the rural county growth rate is higher if the nearest metro areas have 

experienced relatively rapid income growth. These results indicate that MSA growth 

provides positive spillovers or “spread” effects to rural counties in the MSA’s labor market 

area. However, the estimated coefficients for the metro patent activity variable (lnM_PAT) 

do not support the hypothesis that innovative activity in a metropolitan area provides 

benefits to proximate rural areas. “Backwash” effects are indicated by the negative and 

significant coefficient on the metro patents variable. The findings for Southern non-

metropolitan and rural counties appear to indicate that these counties do not benefit from 

spillovers of metro innovative activity.  

 

RIS and Regional Characteristics 

In Table 4.4, the rural income growth rate is positively and significantly related to the 

rural patent activity (lnPATD), evidence of higher income growth from rural innovative 

activity in Southern rural counties. The percentage of the labor force in science and 

technology professions (lnPR) is positively related to the county income growth. However, 

the income growth rate is negatively related to the relative number of small firm 

establishments in the county (lnSF). Rural county income growth rates are positively 

associated with the rural industry diversity (lnD). Rural county income growth rates are also 
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positively related to employment density (lnEMPD) and employment in high tech industries 

(lnHTECH). The availability of local amenities (AMTY) is positively associated with rural 

income growth rates. The significant, positive coefficient of the spatially lagged dependent 

variable (W •lnGPI) indicates a positive association between the income growth rates in a 

rural county and the growth rates in surrounding counties. However, there are no significant 

coefficients on the RIS proxy variables for university R&D (lnUR), specialization in 

manufacturing (lnS_MFG), rural competitiveness (lnC), and distance from rural county to 

metro core (lnDIST).  
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Table 4.4   OLS Results for Growth Rates in Employment and Income 

Employment Change,  
lnGEMP 

Change in Personal Income, 
lnGPI 

Variables Coefficient t-value Coefficient t-value 

% Technical Occup.90, lnPR .0646193** 2.42 .0504161** 2.57 

% Coll. Enrol. 90, lnUR .0244438 1.46 .0044094 0.36 

Small Est. per cap. 90, lnSF -.2024283*** -6.41 -.1551538*** -6.62 

Mfg. LQ 90, lnS_MFG .0072946 0.36 .0136806 0.91   

Diversity 90, lnD .0197812 0.88 .0409774** 2.52 

Competitiveness, lnC .3181089*** 7.41 .0481975 1.53 

Amenities 90, AMTY .0260143** 2.57 .0377142*** 5.06 

% High Tech Emp, lnHTECH .0170997** 2.37 .0142367*** 2.71 

Emp 90, lnEMP90 -.0309808** -2.39   

Emp Density, lnEMPD .0145126 1.20 .0299436*** 3.23 

Distance, lnDIST .0080252 0.63 -.0128001 -1.38 

PAT per 10000 Pop, lnPATD .0144659*** 2.78 .0095743** 2.52 

W·lnGEMP .0348542*** 3.85   

W·lnGPI  .1083284*** 13.61 

Personal Income 90, lnPI90  -.0365176*** -3.69 

MSA Patents90-99, lnM_PAT -.0082477 -1.11 -.0199321*** -3.52 

MSA Emp Den, lnM_EMPD .0400625** 2.46 .0401122*** 3.41 

MSA Gr. Emp, lnM_GEMP .3386405*** 4.29   

MSA Gr. PI, lnM_GPI .283649*** 5.37 

Intercept -.8992832*** -4.75 -.1794476 -1.20 

R2 (Adjusted) 0.3619 0.5901 

Obs. Number 647 647 

*, P-Value <0.1; **, P-Value <0.05; and  *** P-Value<0.01 
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4.4 The Data Analysis with the Carlino-Mills Models 

4.4.1 The Model 

Model Specification 

Many researchers have suggested that both firms’ and households’ location decisions 

are dependent upon each other. This extends itself to the argument of the direction of 

causality regarding whether “people follow jobs” or “jobs follow people” (Steinnes and 

Fischer, 1974). Carlino and Mills (1987) used a simultaneous equation systems model for 

population and employment change to address this problem. Since, several studies have used 

variations of this model to address various issues relating to population and employment 

growth in counties and metro areas. The Carlino and Mills model (CM model) defines the 

equilibrium population and employment in linear functional form as:  

)/*(* POPEMPfPOP Ω= , (4.9) 

)/*(* EMPPOPgEMP Ω= (4.10) 

where POP* and EMP* are population and employment of the county at equilibrium, 

respectively; and ΩPOP and ΩEMP are the set of independent indicators to explain population 

and employment at initial level. The following equations are used to identify the direction of 

causality issue (Greene, 2003): 
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EMP
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*

10
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where, b, c and d are the parameter coefficients. Under the assumption that population and 

employment are independent, the variables would return to their equilibrium values after an 

adjustment period. The basic assumption of the above model is that both households and 
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firms adjust toward equilibrium levels of population and employment. Carlino and Mills 

(1987) assumed a lagged adjustment toward equilibrium population and employment as:  

)*( pPOPp POPPOPPOPPOP −− −+= ν , (4.13) 

)*( pEMPp EMPEMPEMPEMP −− −+= ν . (4.14) 

where the subscript -p refers to the indicated variable lagged p period, and υPOP and υEMP are 

the speed of adjustments coefficients, with 0≤ υPOP, υEMP ≤1. By rearranging terms, the 

equations are expressed:  

)*( pPOPp POPPOPPOPPOPPOP −− −=−=∆ ν , (4.15) 

)*( pEMPp EMPEMPEMPEMPEMP −− −=−=∆ ν (4.16) 

where ttt IEP ∆∆∆ ,, are the change in population and employment between 1990 and 2000; 

and pPOP− and pEMP− are the initial condition, the 1990 levels. Substituting (4.11) and 

(4.12) into (4.15) and (4.16) gives: 
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b
bPOP ∑ Ω++−∆+=∆ −− 11

1
0 ννν

ν
ν

ν (4.17) 

EMP

iiEMPpEMPpEMP
POP

EMP
EMP dPOPcEMPPOP

c
cEMP ∑ Ω++−∆+=∆ −− 21

1
0 ννν

ν
ν

ν (4.18) 

Furthermore, the model can be expressed: 

113210 ε+Ω+++∆+=∆ ∑−−
POP

iipPOPpPOPPOPPOP eEMPaPOPaEMPaaPOP (4.19) 

223210 ε+Ω+++∆+=∆ ∑−−
EMP

iipEMPpEMPEMPEMP eEMPaPOPaPOPaaEMP (4.20) 

where a0, a1, a2, a3, e1i   and e2i are the estimated parameters; ε1 and ε2 are the random error 

terms. The above equations (4.19) and (4.20) are modeled to give short term equilibrium 

instead of long-term equilibrium so that it would be easier to determine the effects of RIS’s 
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on rural economic growth rates. The Carlino-Mills framework in growth model form would 

be: 

11*)(* d
POP

bEMPAPOP Ω= , (4.21) 

21*)(* d
EMP

cPOPBEMP Ω= (4.22) 

And the equilibrium condition would be, 

POP

pp POP

POP

POP

POP
ν











=

−−

* , (4.23) 

EMP

pp EMP

EMP

EMP

EMP
ν











=

−−

* . (4.24) 

Substituting (4.19) and (4.20) into (4.21) and (4.22), and using a log transformation will give, 

112110 lnlnlnlnln ε+Ω+++∆+=∆ ∑−−
POP

iipPOPpPOPPOP eEMPaPOPaEMPbaPOP , (4.25) 

222110 lnlnlnlnln ε+Ω+++∆+=∆ ∑−−
EMP

iipEMPpEMPEMP eEMPaPOPaPOPcaEMP . (4.26) 

Specifically, the estimated CM models are 

11918

1716151413

1211109876

543210

_ln_ln

_lnlnlnlnln

lnlnlnlnlnln

lnln90ln90lnlnln

εαα
ααααα
ααααααα

αααααα

++
+++++
+++++++

++⋅++++=

POPDMGPOPM

PATMPATDHTECHPOPDNWHITE

HVALAMTYDISTDCSFUR

PRGPOPWEMPPOPGEMPGPOP

, (4.29) 

 

21918

1716151413

1211109876

543210

_ln_ln

_ln_lnlnlnln

lnlnln_lnlnln

lnln90ln90lnlnln

εββ
βββββ

βββββββ
ββββββ

++
+++++

+++++++
++⋅++++=

GEMPMPOPDM

EMPDMPATMPATDHTECHEMPD

AMTYDISTCDMFGSSFUR

PRGEMPWEMPPOPGPOPGEMP

(4.30) 

 
where lnGPOP is the growth rate of county population; lnGEMP is the growth rate of 
county employment; all dependent variables are the same as earlier defined (Table 4.1); and 
ε1, ε2 are error terms. 
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The variables names and descriptive statistics are provided in Tables 4.1 and 4.2. The 

main purpose of these models is to investigate the role of RIS characteristics on regional 

economic development. Specifically, the models can test whether a rural county’s innovative 

activities promote regional economic growth. The model can be used to test whether 

neighboring areas’ innovation has an impact on regional economic growth. To distinguish 

the impacts of spatial knowledge spillovers on regional economic growth between 

metropolitan and rural counties, all the above models are estimated by including metro 

variables.  

 

The Three Stage Least Square (3SLS) Estimation 

The three stage least square (3SLS) method is preferred to two stage least squares 

(2SLS) method because there are several instruments common to both equations, and the 

3SLS method will correct for the correlation occurring across equations (Greene, 2003). 

Thus, the above growth rate system of equations (Equation (4.29) and (4.30)) is estimated 

using the 3SLS method. The dependent variables are first estimated using their sets of 

instrument variables. In the second stage, the estimated value from the first stage are used to 

run an OLS regression to derive the parameters, and the third stage takes into account the 

correlations among the error estimates between the equations to improve the regression 

estimates (Greene, 2003). 

 The growth rate systems of equations are used in this analysis, as it makes it easier to 

interpret the estimated coefficients. The equations are estimated for the nonmetro plus rural 

counties (647 counties) in the metro LMA for the 13 Southern states, for the time period of 

1990-2000. The regression results are shown in Table 4.5. These empirical results provide 
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evidence of the relationship between rural RIS characteristics and the growth rates in 

employment and population. Estimations were made using STATA 9.2.    

 

4.4.2 The Data Analysis for Population Growth 

Estimates for the coefficients for beginning period employment and population give 

an estimate of the speed of adjustment to equilibrium levels as shown in the CM model. The 

positive coefficients of initial population (lnPOP90) suggest that the population growth rate 

is dynamically stable for rural counties, and the opposite in the initial employment 

(lnEMP90). However, neither of the coefficients is significant.  

 

Metro Characteristics 

The findings of the 3SLS regression results are presented in Table 4.5. The growth 

rate in county population (lnGPOP) is significantly related to the growth rate in metro 

population. Rural county growth rates are higher if the nearest metro areas experienced 

relatively rapid population growth. These results indicate that MSA growth provided positive 

spillovers or “spread” effects to rural counties in the MSA’s LMA. However, the population 

growth rates were negatively and significantly related to metro innovative activities 

(lnM_MAT), suggesting the “backwash” effects.  

 

RIS and Regional Characteristics   

Table 4.5 provides the results for the county population growth rate model. The 

growth rates in county population are negatively related to the percent of individuals in 

county enrolled in college (lnUR) and percent of high technology employment (lnHTECH), 

indicating inconsistencies with the hypothesis. The growth rates in county population are 



110

also negatively related to the measure of local competitiveness (lnC), suggesting MAR’s 

hypothesis. The availability of local amenities (AMTY) and proximity to metro areas 

(lnDIST) areas are associated with the growth rate of county population.  These findings 

indicate that more rapid population growth in counties with higher amenities and access to 

metro areas. The coefficients of remaining variables related to RIS characteristics (the proxy 

variable for private R&D, specialization for manufacturing industry, industry diversity, small 

firm establishments per capita, rural patent activity) are not significant at the traditional level.  

The spatially lagged dependent variable (W •lnGPOP) indicates a positive association 

between the population growth rate in a county and the rates in surrounding counties. That 

is, counties with low growth rates tend to cluster and counties with high growth rates tend to 

locate near similar counties. The growth rate of county population (lnGPOP) is positively 

and significantly associated with the county employment growth (lnGEMP), indicating that 

county employment growth rates would increase county population growth rates. 

The rural county population growth rate is significantly related school quality 

(lnHVAL). The proxy variable for racial diversity (NWHITE) is negatively related to the 

growth rate of rural county population. A household’s decision to locate in a county appears 

to be influenced by its social and demographic characteristics, indicating that areas with a 

high percentage of non-whites have slower growth rates of population.  
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Table 4.5   3SLS Results for Growth Rates in Population and Employment 

Population Change, lnGPOP Employment Change,  
lnGEMP 

Variables Coefficient z-val Coefficient z-val 

lnGPOP  .8781805*** 8.86 

lnGEMP .5273619*** 3.02   

Pop 90, lnPOP90 .0455707 0.48 .1193623 0.89 

Emp 90, lnEMP90 -.0370359 -0.39 -.1307933 -0.99 

% Technical Occup.90, lnPR .0224713 1.46 -.0101941 -0.40 

% Coll. Enrol. 90, lnUR -.0239276** -2.33 .0402229*** 2.64 

Small Est. per cap. 90, lnSF .0939664 1.24 -.0519266 -0.40 

Mfg. LQ 90, lnS_MFG .0106932 1.00 -.0045653 -0.24 

Diversity 90, lnD .0116881 0.91 .0048781 0.24 

Competitiveness, lnC -.2100847*** -2.73 .2113424 1.61 

Amenities 90, AMTY .0107798* 1.91 -.0117745 -1.17 

Emp Density 90, lnEMPD  -.0111714 -1.27 

% High Tech Emp, lnHTECH -.0085092* -1.95 .0138673** 2.12 

Distance, lnDIST -.0180948** -2.32 .0248672** 2.11 

PAT per 10000 Pop, lnPATD -.0045133 -1.28 .0108105** 2.27 

Med. House Val90, lnHVAL .0828248*** 3.06   

% Non-white 90, lnNWHITE -.007583** -2.54   

W·lnGPOP .0305419*** 2.73   

W·lnGEMP  .005741 0.93 

MSA Patents90-99, lnM_PAT -.0086517** -2.01 -.0001713 -0.02 

MSA Gr. Pop, lnM_POPD .0320219 0.87 -.0325377 -0.51 

MSA Emp D.90, lnM_EMPD  .0314581 0.49 

MSA Gr. Pop, lnM_GPOP .1621873*** 3.15   

MSA Gr. Emp, lnM_GEMP .0392406 0.53 

Intercept -.6589561* -1.85 -.1714742 -0.42 

R2 0.4776 0.4743 

chi2 936.88 541.91   

Obs. Number 647 647 

*, P-Value <0.1; **, P-Value <0.05; and  *** P-Value<0.01 
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4.4.3 The Data Analysis for Employment Growth 

Table 4.5 provides the estimated results for the growth rate of county employment. 

The coefficient for change in population growth rate is positive and significant, suggesting 

that population growth rates are significantly related to employment growth rates. The 

coefficient of employment growth rate in the population growth equation is 0.527, whereas 

the coefficient of population growth rate in the employment growth equation is 0.878. These 

findings support the view that “jobs follow people.”  

 

Metro Characteristics 

The metropolitan characteristics hypothesized to influence the urban-to-rural 

spillover of employment growth are MSA employment density (M_EMPD), MSA 

employment growth rates (M_GEMP), and innovative activity in the metro area (M_PAT). 

However, rural county employment growth rates were not significantly related to the three 

metro characteristics. The absence of a strong correlation between metro patent activity and 

the rural employment growth rates is not an unexpected results. Barkley et al. (2006) found 

that Southern nonmetropolitan and rural counties were too distant from the metro 

innovation centers to benefit greatly from available spillovers of metro innovative activity.  

 

RIS and Regional Characteristics   

The growth rates in county employment are positively related to the percent of 

individuals in county enrolled in college (lnUR) and high technology employment 

(lnHTECH), while the growth rates in county population are negatively associated with 

lnUR and lnHTECH. These findings suggest that university R&D and high technology 

employment affect county growth through county employment growth. The coefficient on 
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the measure of distance between largest local city and the metro core city (lnDIST) is 

positive, which is inconsistent with the hypothesis. One possible explanation is from the 

research of Renkow (2003). Renkow stated that population deconcentration was increasing 

as workers were traveling greater distance to work. Renkow (2003) also pointed out that 

during 1990-2000, average commuting times in southern states increased by 11 percent. The 

county employment growth rates are positively and significantly related to the rural patent 

activity (lnPATD). Thus, evidence of higher employment growth from rural innovative 

activity is found in the Southern counties. However, no correlation between MSA 

innovation measures and rural employment growth rates was evident. All other remaining 

variables are not statistically significant.  

 

4.5 Summary of Findings 

 The estimation results of all OLS models indicated a spillover of economic growth 

from metro areas to rural counties in the LMA (Table 4.3 and 4.4). In all equations the 

growth rates of population, employment, income, and earnings in the metro area were 

positively related to the economic growth rates in the nearby rural counties, suggesting 

“spread” effects. Thus, rural areas will benefit from proximity to the economic growth in 

nearby metro areas. Contrary to the hypothesis, the coefficients of metro innovative activity 

in all the OLS equations were negative and significant, indicating “backwash” effects. 

However, all of the coefficients of the rural patent activity (lnPATD) are positive in all of 

OLS equations, suggesting significant effects of rural patent activity on county economic 

growth rates.  

All the significant, positive coefficients of spatially lagged dependent variables 

indicates a positive association between the economic growth rates in a rural county and the 
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growth rates in surrounding counties. Quality of life variables in rural county were positively 

associated with all the economic growth rates in the OLS models. In all the economic 

growth equations, county growth rates were related to local RIS characteristics such as 

source of innovation (industry R&D), knowledge spillovers (regional competitiveness, 

industry diversity) and regional spillovers (local natural amenities, high technology 

employment).   

The findings from the extended Carlino-Mills models indicate a more focused role of 

RIS characteristics on population and employment growth rates than that in OLS models. 

The CM models support a role for rural innovative activity in employment growth but not 

population growth. Other results from the CM models are similar to those of the OLS 

models.  
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CHAPTER 5 

CONCLUSION  

 

The goal of this study was to expand our understanding of the relationship between 

regional economic growth and the local characteristics of RIS. The research identified the 

existence and importance of sources of innovation, knowledge spillovers, and regional 

spillovers as the principal characteristics of RIS in the South. It also examined the effects of 

the local characteristics of RIS on rural economic growth and explored whether the 

characteristics had a differential effect on rural economic growth rates. In addition, this study 

attempted to identify the characteristics of rural areas that benefited most from the spillovers 

of innovative and economic activities from the metro areas in LMA.  

 

Nonmetro Innovative Activity. A knowledge production function approach was 

used to estimate the determinants of innovative activity in rural counties. The empirical 

model was based on a zero inflated negative binomial model to capture the role of the local 

characteristics of RIS on the existence and volume of innovative activity at the county level. 

First, the empirical findings from the unlikelihood of patenting equation were that the 

probability of having a patent in rural areas was positively associated with the presence of 

research universities (university R&D), high technology employment, and the size of local 

economy. However, the unlikelihood of patenting was not related to the metro innovative 

activities.  

Second, this research also provided evidence that local characteristics of RIS affected 

the relative level of patenting activity in rural areas. The findings from the rate of patenting 

equations were that the determinants of number of total utility patents included access to 
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sources of innovation (private R&D, university R&D, small firms, large firms); knowledge 

spillovers (industry diversity, no specialization of manufacturing); and regional spillovers 

(spatial proximity to innovative activity, quality of amenities, size of local economy). 

However, the findings of this research indicated only a limited association between 

innovative activity in the urban core of the LMA and patent levels in the nonmetro and rural 

counties in the MSA’s labor market area.   

 

Nonmetro Economic Activity. Analysis using OLS models found that rural areas 

near a metro RIS had less rapid growth in economic activity (as measured by growth rates in 

population, earnings by place of residence, employment, and personal income) than rural 

areas not near a metro RIS. These findings indicate a possible “backwash” effects from 

innovative activity in metro areas. In the OLS equations for rural economic growth, the 

growth rates of population, employment, personal income, and net earnings by place of 

residence in the nonmetro area were positively related to the economic growth rates in the 

nearby metro areas, suggesting “spread” effects. Thus, rural areas benefited from proximity 

to the economic growth in nearby metro areas. Quality of life variables in a rural county were 

positively associated with all the economic growth rates in the OLS models. In all the 

economic growth equations, the local measures of innovation (industry R&D, regional 

competitiveness, industry diversity) and regional spillovers (local natural amenities, high 

technology employment) were positively and significantly related to nonmetro economic 

growth rates. Finally, the research confirmed the role of county patent activity on rural 

economic growth. 

The results from the simultaneous equation model (Carlino-Mills model) indicated 

that the rural patenting activity had positive spillovers with regards to increase in 
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employment growth rates in rural areas. No spillovers from the metro RIS to rural areas 

were found for population and employment growth rate. Furthermore, the metro patenting 

activity indicated the presence of “backwash” effect on rural population growth rates. In 

sum, the findings for Southern rural counties indicated that innovative activities in rural 

county areas played a role on the rural economic growth, while metro innovative activities 

provided “backwash” effects.  

 

Policy Implications. Two main policy implications are suggested from this research. 

The first is related to the determinants of RIS, and the second is associated with economic 

development. The research presented in this study supports prior evidence that sources of 

innovation, knowledge spillovers, and regional spillovers contributed to rural RIS. This 

research also provided evidence on the positive contributions of rural patenting activity to 

economic growth. Given this evidence, policymakers may well consider strengthening local 

R&D efforts as a potential road for stimulating innovation and economic development in 

their areas. 

 The empirical results of this research also have important implications related to 

economic development policies. First, local economic development policies should not 

ignore the innovative activity in local researchers. Policymakers should be directed to 

stimulating the interaction between local researchers and institutions or firms in the local 

economy because incentives to attract innovative firms may fall short unless sufficient 

regional spillovers and knowledge spillovers take place (Black, 2004). Black (2004, p.100) 

suggested that incentives to stimulate local innovation should include R&D tax credits, 

corporate tax reductions, targeted funding for education and training for the quality of local 
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labor force, and government programs to aid small and new firms in the innovation process, 

such as business incubators.  

Second, the differential effects of the local characteristics of RIS means that 

policymakers should also consider the types of research fund and investment for local 

innovative activities in their areas. For most nonmetro counties in the South, the RIS in 

metro areas will be benign at best or detrimental if significant “backwash” effects exist. 

Thus, the implication from these findings is that regional policymakers should be careful of 

investments in metro RIS if the goal is to develop the nearby rural areas. Barkley et al. (2006, 

p. 301) suggested that “the economic future is less promising for rural areas near MSAs that 

have limited innovative and entrepreneurial activity. For these LMAs, a twin approach will 

need to be pursued that addresses the competitiveness needs of the metro core as well as 

prepares the rural counties to take advantages of any spillovers from the core.”  

 In summary, increased R&D expenditures at universities and government research 

centers in rural counties may be helpful in stimulating innovation in these areas. Yet, the 

quality of the local labor force and the entrepreneurial environment must improve if 

increases in innovative activity are to ultimately lead to significant new economic activity 

(Barkley et al., 2006). Moreover, insights into the spatial spillovers effects on innovative 

activity suggest that regional economic policymakers consider the specific geographies of 

knowledge spillovers, specifically how the RIS might promote regional economic growth.  

 

Further Study. Although this research does not answer all questions about the 

relationship between the local characteristics of RIS and rural economic growth, it is a step 

towards formulating strategies for further research in several directions. First is to link 

patenting activity of local firms to industrial classifications at the county level because the 
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linking of patent data to additional firm-level data bases could provide further insight on the 

firms performing innovative activities. Second, although this research provides evidence of 

the effects of the local characteristics of RIS on innovative activity over a ten-year period, it 

does not show up whether this effect has changed over time. A useful extension of this 

study would explore this time dimension by exploiting the time series analysis of the patent 

data, including Granger causality (Black, 2004). Due to data constrains, this study was based 

on a cross-sectional analysis. Using panel data analysis, future research also may answer the 

question of what is the long-run effect of geographically-proximate knowledge spillovers on 

RIS, including fixed effects, random effects, and between effects. 
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Appendix 1   Poisson Estimation Results for Total Patents in 591 Nonmetro Countiesa

Independent 
Variables 

Model 1
No MSA Term

Model 2
MSA PAT Total 

Model 3
MSA PAT 

Density 

Model 4
UNIV R & D 

Model 5
MSA S & Tech 

%Tech Occ., 
PR 

.2052733** 
(2.45)b

.2035754** 
(2.35) 

.2027351** 
(2.37) 

.2076578** 
(2.46) 

.2127619** 
(2.30) 

Coll. Enrol., 
UR 

.0000702*** 
(5.11) 

.0000705*** 
(4.94) 

.0000698*** 
(5.15) 

.0000695*** 
(5.03) 

.0000709*** 
(5.34) 

Small Est. 
SF 

38.25265 
(1.35) 

38.10541 
(1.33) 

37.89404 
(1.31) 

38.35028 
(1.35) 

38.73543 
(1.34) 

Large Est. 
LF 

632.3688 
(0.22) 

615.9704 
(0.22) 

583.0711 
(0.20) 

606.6892 
(0.21) 

602.8758 
(0.21) 

Mfg. LQ,  
S_MFG 

.103113 
(0.66) 

.1029466 
(0.66) 

.101125 
(0.64) 

.1017409 
(0.65) 

.0911425 
(0.65) 

Diversity, 
D

.1665094*** 
(3.23) 

.1661472*** 
(3.17) 

.1665609*** 
(3.23) 

.164828*** 
(3.22) 

.1667857*** 
(3.24) 

Comp, 
C

.6587308 
(0.37) 

.6568063 
(0.37) 

.7193794 
(0.40) 

.6185414 
(0.35) 

.529454 
(0.31) 

Comp2,
C2

-.7523861 
(-1.04) 

-.746959 
(-1.03) 

-.7768098 
(-1.08) 

-.7406301 
(-1.05) 

-.7003289 
(-1.06) 

Amenities, 
AMTY 

.3901233*** 
(5.41) 

.3894112*** 
(5.37) 

.3816626*** 
(4.95) 

.3870808*** 
(5.40) 

.3960203*** 
(5.34) 

Total Emp., 
EMP 

.0000504*** 
(8.88) 

.0000502*** 
(8.82) 

.0000504*** 
(8.93) 

.0000501*** 
(8.79) 

.0000503*** 
(8.92) 

% High Tech, 
HTECH 

.0208474 
(1.07) 

.0210402 
(1.07) 

.0206263 
(1.07) 

.02199 
(1.15) 

.0204726 
(1.04) 

W. PAT, 
W·P

.1366442*** 
(3.72) 

.136193*** 
(3.69) 

.1334463*** 
(3.56) 

.1369679*** 
(3.71) 

.1396706*** 
(3.66) 

Distance, 
DIST 

-.0061064** 
(-2.16) 

-.0062453** 
(-2.32) 

-.0061325** 
(-2.18) 

-.0061705** 
(-2.16) 

-.0057708** 
(-2.49) 

MSA PAT, 
MET 

 4.03e-06 
(0.20) 

 

MSA PAT D., 
MET_D 

.0031416 
(0.62) 

 

MSA U. R & 
D, MET_UR 

-.000014 
(-0.95) 

 

MSA Tech. 
MET_PR 

-.0879325 
(-0.58) 

Intercept -1.70086 
(-1.46) 

-1.687229 
(-1.43) 

-1.725173 
(-1.50) 

-1.645644 
(-1.47) 

-1.256586   
(-1.49) 

Loglikelihood -4167.0774 -4166.7279 -4161.3422 -4163.0681 -4153.961 

Goodness-of-
fit(P-value) 

6367.987 
(0.0000) 

6367.288 
(0.0000) 

6356.516 
(0.0000) 

6359.968 
(0.0000) 

6341.754 
(0.0000) 

Pseudo R2 0.5336 0.5337 0.5343 0.5341 0.5351 

a The analysis followed the Woolridge (1991) poisson estimation procedure with robust standard errors with 
robust standard errors.  Estimations were made using STATA 9.2 (www.state.com) 
b z-values for the coefficients are provided in parentheses. 
*, P-Value <0.1; **, P-Value <0.05; and  *** P-Value<0.01 
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Appendix 2 NB Estimation Results for Total Patents in 591 Nonmetro Counties 

Independent 
Variables 

Model 1
No MSA Term 

Model 2
MSA PAT Total

Model 3
MSA PAT 

Density 

Model 4
UNIV R & D 

Model 5
MSA S & Tech 

%Tech Occ., 
PR 

.1575121*** 
(4.04)a

.1498068*** 
(3.83) 

.1485367*** 
(3.82) 

.158016*** 
(4.05) 

.156231*** 
(4.01) 

Coll. Enrol., 
UR 

.0000367 
(1.19) 

.0000402 
(1.29) 

.0000396 
(1.27) 

.0000364 
(1.18) 

.0000356 
(1.15) 

Small Est. 
SF 

24.82802** 
(2.05) 

25.37751** 
(2.09) 

24.81072** 
(2.06) 

24.74024** 
(2.04) 

25.90068** 
(2.13) 

Large Est. 
LF 

3774.916*** 
(3.66) 

3750.187*** 
(3.64) 

3810.159*** 
(3.72) 

3769.899*** 
(3.66) 

3664.046*** 
(3.55) 

Mfg. LQ,  
S_MFG 

-.0081085 
(-0.13) 

-.0068681 
(-0.11) 

-.0050169 
(-0.08) 

-.008806 
(-0.14) 

.0081036 
(0.13) 

Diversity, 
D

.2229911*** 
(5.30) 

.2185934*** 
(5.21) 

.2226767*** 
(5.33) 

.2225461*** 
(5.28) 

.2238782*** 
(5.32) 

Comp, 
C

2.054969** 
(2.19) 

2.05402** 
(2.18) 

2.171018** 
(2.32) 

2.042826** 
(2.17) 

1.991021** 
(2.11) 

Comp2,
C2

-1.331475*** 
(-3.07) 

-1.316781*** 
(-3.03) 

-1.363498*** 
(-3.16) 

-1.32625*** 
(-3.05) 

-1.301019*** 
(-2.99) 

Amenities, 
AMTY 

.2839034*** 
(4.53) 

.2748049*** 
(4.38) 

.2712786*** 
(4.32) 

.283287*** 
(4.52) 

.2813704*** 
(4.48) 

Total Emp., 
EMP 

.0000735*** 
(9.43) 

.0000733*** 
(9.42) 

.0000724*** 
(9.36) 

.0000734*** 
(9.42) 

.0000747*** 
(9.49) 

% High Tech, 
HTECH 

.0109024 
(0.58) 

.0084853 
(0.45) 

.0093417 
(0.50) 

.0113578 
(0.60) 

.009414 
(0.50) 

W. PAT, 
W·P

.1613228** 
(2.47) 

.1524478** 
(2.36) 

.1397526** 
(2.18) 

.1621593** 
(2.47) 

.1645235** 
(2.51) 

Distance, 
DIST 

-.0020695** 
(-2.13) 

-.0021847** 
(-2.26) 

-.0022374** 
(-2.30) 

-.0020974** 
(-2.15) 

-.0019289** 
(-1.98) 

MSA PAT, 
MET 

 .0000272 
(1.62) 

 

MSA PAT D., 
MET_D 

.0084383** 
(2.43) 

 

MSA U. R & 
D, MET_UR 

-4.04e-06 
(-0.28) 

 

MSA Tech. 
MET_PR 

.0784753 
(1.30) 

Intercept -2.254568*** 
(-3.88) 

-2.221686*** 
(-3.83) 

-2.35221*** 
(-4.07) 

-2.237887*** 
(-3.83) 

-2.652264*** 
(-4.05) 

Loglikelihood -1829.9616 -1828.5651 -1826.754 -1829.9233 -1829.1102 

Overdispersion 
Test, LRT 
H0:Alpha=0 

4674.23 
Prob>=chibar2 
= 0.000 

4676.33 
Prob>=chibar2 
= 0.000 

4669.18 
Prob>=chibar2 
= 0.000 

4666.29 
Prob>=chibar2 
= 0.000 

4649.70 
Prob>=chibar2 
= 0.000 

Pseudo R2 0.1179 0.1186 0.1194 0.1179 0.1183 

a z-values for the coefficients are provided in parentheses. 
*, P-Value <0.1; **, P-Value <0.05; and  *** P-Value<0.01 
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Appendix 3 Poisson Estimation Results for Total Patents in 647 Rural Countiesa

Independent 
Variables 

Model 1
No MSA Term

Model 2
MSA PAT Total 

Model 3
MSA PAT 

Density 

Model 4
UNIV R & D 

Model 5
MSA S & Tech 

%Tech Occ., 
PR 

.2619218*** 
(5.96)b

.2560329*** 
(6.00) 

.2617342*** 
(6.31) 

.2617806*** 
(5.92) 

.2632358*** 
(6.06) 

Coll. Enrol., 
UR 

.0000561*** 
(4.25) 

.0000603*** 
(4.60) 

.0000552*** 
(4.25) 

.0000557*** 
(4.22) 

.000054*** 
(3.64) 

Small Est. 
SF 

25.33365 
(0.80) 

25.97971 
(0.84) 

24.72462 
(0.78) 

25.0353 
(0.79) 

25.39136 
(0.80) 

Large Est. 
LF 

2512.528 
(0.72) 

2537.145 
(0.72) 

2584.132 
(0.72) 

2477.59 
(0.71) 

2601.442 
(0.72) 

Mfg. LQ,  
S_MFG 

-.1036022 
(-0.47) 

-.1179231 
(-0.53) 

-.121321 
(-0.54) 

-.1050474 
(-0.47) 

-.09536 
(-0.46) 

Diversity, 
D

.1316785*** 
(2.65) 

.1058163* 
(1.94) 

.1274419** 
(2.50) 

.1296564*** 
(2.62) 

.1309367** 
(2.58) 

Comp, 
C

1.83085 
(0.96) 

1.764651 
(0.94) 

2.002644 
(1.01) 

1.74722 
(0.94) 

2.075899 
(0.97) 

Comp2,
C2

-1.67994* 
(-1.91) 

-1.576147* 
(-1.83) 

-1.758583* 
(-1.91) 

-1.633641* 
(-1.92) 

-1.81637* 
(-1.77) 

Amenities, 
AMTY 

.5012442*** 
(5.54) 

.4855103*** 
(5.48) 

.4736933*** 
(5.08) 

.4932596*** 
(5.55) 

.5030365*** 
(5.37) 

Total Emp., 
EMP 

.0000512*** 
(7.36) 

.0000498*** 
(7.49) 

.0000514*** 
(7.62) 

.0000509*** 
(7.33) 

.0000517*** 
(7.00) 

% High Tech, 
HTECH 

-.0047895 
(-0.20) 

-.0017202 
(-0.07) 

-.0037604 
(-0.16) 

-.0030314 
(-0.13) 

-.0047266 
(-0.20) 

W. PAT, 
W·P

.2344747*** 
(3.79) 

.2343879*** 
(3.66) 

.2249872*** 
(3.62) 

.234912*** 
(3.81) 

.2307898*** 
(3.90) 

Distance, 
DIST 

-.0131906** 
(-2.08) 

-.0166198** 
(-2.31) 

-.0131361** 
(-2.02) 

-.0132998** 
(-2.09) 

-.013769** 
(-2.01) 

MSA PAT, 
MET 

 .0000704** 
(2.48) 

 

MSA PAT D., 
MET_D 

.0099656** 
(2.55) 

 

MSA U. R & 
D, MET_UR 

-.000015 
(-1.15) 

 

MSA Tech. 
MET_PR 

.0917774 
(0.56) 

Intercept -1.574754* 
(-1.65) 

-1.393017 
(-1.41) 

-1.679648* 
(-1.73) 

-1.468316 
(-1.60) 

-2.138242* 
(-1.86) 

Loglikelihood -6666.616 -6478.7027 -6550.3816 -6657.9842 -6647.3941 

Goodness-of-
fit(P-value) 

11123.61 
(0.0000) 

10747.79 
(0.0000) 

10891.15 
(0.0000) 

11106.35 
(0.0000) 

11085.17 
(0.0000) 

Pseudo R2 0.5093 0.5231 0.5178 0.5099 0.5107 

a The analysis followed the Woolridge (1991) poisson estimation procedure with robust standard errors with 
robust standard errors.  Estimations were made using STATA 9.2 (www.state.com) 
b z-values for the coefficients are provided in parentheses. 
*, P-Value <0.1; **, P-Value <0.05; and  *** P-Value<0.01 
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Appendix 4 NB Estimation Results for Total Patents in 647 Rural Counties 

Independent 
Variables 

Model 1
No MSA Term

Model 2
MSA PAT Total

Model 3
MSA PAT 

Density 

Model 4
UNIV R & D 

Model 5
MSA S & Tech 

%Tech Occ., 
PR 

.2943809*** 
(9.74)a

.2845593*** 
(9.75) 

.2803702*** 
(9.44) 

.2953167*** 
(9.76) 

.2953035*** 
(9.84) 

Coll. Enrol., 
UR 

.0000846* 
(1.81) 

.0000634 
(1.53) 

.0000796* 
(1.76) 

.000084* 
(1.80) 

.000081* 
(1.75) 

Small Est. 
SF 

36.25799*** 
(2.85) 

36.4164*** 
(2.90) 

36.50258*** 
(2.90) 

35.99547*** 
(2.83) 

37.88599*** 
(2.97) 

Large Est. 
LF 

3578.1*** 
(3.34) 

3915.496*** 
(3.66) 

3833.882*** 
(3.60) 

3562.148*** 
(3.32) 

3515.782*** 
(3.27) 

Mfg. LQ,  
S_MFG 

-.0509027 
(-0.80) 

-.0702862 
(-1.12) 

-.062818 
(-1.00) 

-.0513421 
(-0.81) 

-.0368578 
(-0.57) 

Diversity, 
D

.2087193*** 
(4.87) 

.1817807*** 
(4.31) 

.1983292*** 
(4.70) 

.2073357*** 
(4.83) 

.2057956*** 
(4.81) 

Comp, 
C

2.012885** 
(2.09) 

2.301266** 
(2.42) 

2.245442** 
(2.37) 

1.993873** 
(2.07) 

1.975572** 
(2.06) 

Comp2,
C2

-1.647812*** 
(-3.86) 

-1.708199*** 
(-4.05) 

-1.704309*** 
(-4.07) 

-1.636966*** 
(-3.82) 

-1.628143*** 
(-3.82) 

Amenities, 
AMTY 

.3001164*** 
(4.48) 

.2663484*** 
(4.02) 

.2706352*** 
(4.04) 

.2982011*** 
(4.46) 

.2942531*** 
(4.38) 

Total Emp., 
EMP 

.0000689*** 
(7.93) 

.0000715*** 
(8.51) 

.0000682*** 
(8.04) 

.0000688*** 
(7.91) 

.0000702*** 
(8.04) 

% High Tech, 
HTECH 

-.0018634 
(-0.10) 

-.0055136 
(-0.31) 

-.0033676 
(-0.19) 

-.0010271 
(-0.06) 

-.003027 
(-0.17) 

W. PAT, 
W·P

.2729373*** 
(3.44) 

.2508378*** 
(3.34) 

.2454085*** 
(3.22) 

.2777058*** 
(3.48) 

.2749184*** 
(3.46) 

Distance, 
DIST 

-.0028225*** 
(-2.76) 

-.0030407*** 
(-3.05) 

-.0030715*** 
(-3.03) 

-.0028955*** 
(-2.83) 

-.0027047*** 
(-2.65) 

MSA PAT, 
MET 

 .0000633*** 
(3.92) 

 

MSA PAT 
D., MET_D 

.0116873*** 
(3.46) 

 

MSA U. R & 
D, MET_UR 

-.0000125 
(-0.88) 

 

MSA Tech. 
MET_PR 

.0842587 
(1.40) 

Intercept -2.4726*** 
(-4.11) 

-2.501435*** 
(-4.24) 

-2.579738*** 
(-4.34) 

-2.43405*** 
(-4.03) 

-2.904145*** 
(-4.31) 

Loglikelihood -2101.4855 -2092.5998 -2094.6711 -2101.1128 -2100.4991 
Overdispersion 
Test, LRT 
H0:Alpha=0 

9130.26 
Prob>=chibar2 
= 0.000 

8772.21 
Prob>=chibar2 
= 0.000 

8911.42 
Prob>=chibar2 
= 0.000 

9113.74 
Prob>=chibar2 
= 0.000 

9093.79 
Prob>=chibar2 
= 0.000 

Pseudo R2 0.1104 0.1141 0.1133 0.1105 0.1108 
a z-values for the coefficients are provided in parentheses. 
*, P-Value <0.1; **, P-Value <0.05; and  *** P-Value<0.01 
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